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Abstract

The range avoidance problem (denoted by AVOID) asks to find a string outside of the range of a given circuit
C : {0, 1}n → {0, 1}m, where m > n. Although at least half of the strings of length m are correct answers, it
is not clear how to deterministically find one. Recent results of Korten (FOCS’21) and Ren, Wang, and Santhanam
(FOCS’ 22) show that efficient deterministic algorithms for AVOID would have far-reaching consequences, including
strong circuit lower bounds and explicit constructions of combinatorial objects (e.g., Ramsey graphs, extractors, rigid
matrices). This strongly motivates the question: does an efficient deterministic algorithm for AVOID actually exist?

In this work, we prove under the existence of subexponentially secure indistinguishability obfuscation (iO) that
deterministic polynomial-time algorithms for AVOID imply NP = coNP. Combining this with Jain, Lin, and Sahai’s
recent breakthrough construction of iO from well-founded assumptions (STOC’21, EUROCRYPT’22), we provide
the first plausible evidence that AVOID has no efficient deterministic algorithm. Moreover, we also prove the hard-
ness of AVOID based on polynomially-secure iO and a weaker variant of the Nondeterministic Exponential Time
Hypothesis (NETH).

Extending our techniques, we prove a surprising separation in bounded arithmetic, conditioned on similar as-
sumptions. Assuming subexponentially secure iO and coNP is not infinitely often in AM, we show that AVOID

has no deterministic polynomial-time algorithm even when we are allowed O(1) queries to an oracle that can invert
the given input circuit on an arbitrarily chosen m-bit string. It follows that the dual Weak Pigeonhole Principle,
the combinatorial principle underlying AVOID, is not provable in Cook’s theory PV1. This gives (under plausible
assumptions) the first separation of Cook’s theory PV1 for polynomial-time reasoning and Jeřábek’s theory APC1 for
probabilistic polynomial-time reasoning.
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1 Introduction
Given a circuit C mapping n-bit inputs to m-bit outputs, where m > n, at least half of the possible m-bit strings are
never output by C. How efficiently can we find such a string? This meta-computational problem is known as RANGE
AVOIDANCE:

Search Problem: RANGE AVOIDANCE (a.k.a. AVOID)
Input: A Boolean circuit C with n inputs, and m > n outputs.
Output: A string y ∈ {0, 1}m such that for all x ∈ {0, 1}n, C(x) ̸= y.

There is a simple randomized algorithm for AVOID: a uniformly random y ∈ {0, 1}m will be outside the range of
C with probability at least 1− 2n/2m ≥ 1/2. Is there an efficient deterministic algorithm for AVOID?

This question is especially intriguing because it does not seem clear what the answer should be. Indeed, Ren-
Wang-Santhanam [RSW22] remark

“It is unknown whether AVOID ∈ FNP, AVOID ∈ FP, or their negations are implied by any plausible
assumptions. As far as we know, we do not even have a good idea of what the ‘ground truth’ should be.”

(FNP and FP refer to the function versions of NP and P respectively.)
Under a plausible derandomization assumption, there is a deterministic polynomial-time algorithm for AVOID

given access to an NP-oracle [Kor21]. In randomized polynomial time with an NP oracle, one can repeatedly sample
a uniformly random y ∈ {0, 1}m and verify it is not in the range with the NP oracle. This process can be derandomized,
assuming ENP requires 2Ω(n)-sized circuits [KvM02]. In fact, Korten [Kor21] shows that AVOID is in FPNP if and
only if ENP does not have 2o(n)-sized circuits infinitely often, so finding a deterministic algorithm for AVOID with a
SAT oracle is equivalent to proving circuit lower bounds.

1.1 Background
Implications of Deterministic Algorithms for RANGE AVOIDANCE

Kleinberg, Korten, Mitropolsky, and Papadimitriou [KKMP21] initiated the study of AVOID (in their notation, AVOID
is the problem α-EMPTY for α ≥ 1). They showed that various explicit construction problems can be reduced to
AVOID, including the problem COMPLEXITY, of outputting a function with high A-oracle circuit complexity, given
the truth table of the oracle A.1

In follow-up work, Korten [Kor21] convincingly demonstrated that deterministic algorithms for AVOID would
have significant consequences for circuit complexity and combinatorics. For example, letting C be a poly(2ℓ)-size
circuit which takes as input descriptions of 2ℓ/10-size circuits and outputs their 2ℓ-bit truth tables, solving RANGE
AVOIDANCE on such C amounts to finding truth tables of high circuit complexity, a task that is widely believed to
be solvable in deterministic polynomial time.2 Korten extended this observation considerably, showing a determin-
istic AVOID algorithm would imply deterministic constructions of a variety of other objects (e.g., Ramsey graphs,
extractors, rigid matrices) where a random choice suffices, but explicit constructions are longstanding open problems.

Ren-Santhanam-Wang [RSW22] found further striking consequences of deterministic efficient AVOID algorithms.
Among many other results, they show that a polynomial-time algorithm for NC0

4 circuits (NC0
k denotes circuits in which

each output only depends on k inputs) with stretch m = n + no(1) would already yield functions in E that require
circuits of depth n1−o(1), a major open problem in circuit complexity. Guruswami-Lyu-Wang [GLW22] improve
upon several reductions of Ren-Santhanam-Wang, and also show that RANGE AVOIDANCE is in fact solvable in

1Kleinberg, Korten, Mitropolsky, and Papadimitriou [KKMP21] also showed that an extremely low-stretch variant of AVOID, where one is given
a circuit mapping from [2n − 1] to [2n], is NP-hard (their Theorem 1). However, because the stretch of this variant is exponentially small, the
complexity of the problem is quite different: for example, this version can’t be easily solved with randomness, as the total number of inputs and
outputs only differ by one.

2In more detail, constructing a 2n-bit truth table with circuit complexity 2Ω(n) in poly(2n) time is equivalent to showing that E requires 2Ω(n)

circuit complexity, which is the main hypothesis powering the famous pseudorandom generators for BPP = P [IW97, STV01].
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deterministic polynomial time for NC0
2 circuits. Gajulapalli-Golovnev-Nagargoje-Saraogi [GGNS23] show that a

deterministic polynomial-time algorithm for AVOID on NC0
3 circuits with m = n+n2/3 implies breakthrough explicit

constructions of rigid matrices. They also give deterministic polynomial-time algorithms for AVOID on NC0
k circuits

with stretch m ≥ nk−1/ log n.

What to Believe? Arguments and Counterarguments.

All the above results underscore the significance of finding nontrivial algorithms for RANGE AVOIDANCE and the
importance of understanding how difficult RANGE AVOIDANCE really is. Should we believe RANGE AVOIDANCE
is in FP (the class of polynomial-time computable functions), or not? To illustrate the depth of this question, we
briefly consider some arguments and counterarguments.

From one point of view, it is natural to imagine a world in which AVOID ∈ FP. From Korten [Kor21], we already
know that if ENP doesn’t have subexponential-size circuits, then AVOID is in FPNP. In light of this, it seems natural
to believe that under the stronger assumption that E (without an NP oracle) doesn’t have subexponential-size circuits
(that is, the widely-believed conjecture E ̸⊆ io-SIZE(2o(n)) [IW97]), one could show AVOID is in FP (without an
NP oracle). Furthermore, standard methods from pseudorandomness [KvM02] imply that there is a polynomial-time
constructible hitting set for AVOID, assuming (for example) that E does not have subexponential-size SAT oracle
circuits. That is, under plausible hypotheses, one can generate in FP a polynomial-size set Ss,m ⊆ {0, 1}m such that
for every circuit C of size s with m outputs, at least one y ∈ Ss,m is not an output of C (see Appendix A for details).
However, checking which y is a non-output apparently requires an NP oracle.

To add to these points, the existence of a randomized algorithm for AVOID seems to preclude a range of approaches
to ruling out a deterministic (FP) algorithm for AVOID. For example, in Appendix B we present a barrier result against
proving AVOID /∈ FP using standard black-box randomized Turing reductions, which exploits the fact that a random
string is a correct answer with high probability. Still, the fact that AVOID has a fast randomized algorithm does not
necessarily mean that we should believe it has a fast deterministic one. For an extreme example, one can easily sample
strings of high Kolmogorov complexity with randomness, but one provably cannot do this deterministically at all:
sufficiently long strings generated by fixed deterministic algorithms always have low Kolmogorov complexity [Sip97,
Chapter 6.4].

Indeed, one might believe AVOID /∈ FP because the opposite may seem “too good” to be true. The prior work
mentioned above shows that, if AVOID ∈ FP, there are many interesting consequences for lower bounds and explicit
constructions. However, as we expect all of those consequences to actually be true, these results alone don’t give a
strong argument that AVOID ̸∈ FP. Rather, they indicate that the opposite may be hard to prove, as it would have
significant consequences.

Another intuition for the difficulty of AVOID is that the generality of the problem allows for more power than
merely generating varieties of hard functions and special combinatorial objects, each of which correspond to specific
structured instances of AVOID. Solving AVOID for all circuits, even arbitrary ones whose descriptions may be very
“scrambled” and complex, could be far more powerful than the generation of interesting mathematical objects.

In summary, it was entirely unclear whether RANGE AVOIDANCE should be solvable in deterministic polynomial
time, or not. In this paper, we shall give evidence that is not, starting from the intuition of the previous paragraph.

Indistinguishability Obfuscation

Before stating our results, we take a quick detour to discuss one of our main tools: Indistinguishability Obfuscation
(iO), a notion first defined by Barak et al. [BGI+01, BGI+12]. Roughly speaking, an iO is a polynomial-time
probabilistic algorithm that given a circuit C, outputs an “obfuscated” circuit iO(C) computing the same function.
The security guarantee of iO is that, for any two circuits C and C ′ of the same size that compute the same function,
iO(C) and iO(C ′) are computationally indistinguishable to a class of “adversaries” (for example, polynomial-sized
circuits). See Section 2.1 for a formal definition.

For many years, iO had the dual deficiency of neither having any candidate constructions, nor having particularly
interesting applications. However, in the two decades since its definition, both of these statements have seen dramatic
reversals. While iO’s security definition initially seems weak (as it only gives a guarantee about circuits computing the
same function), it turns out to be extremely powerful. We now know that nearly every cryptographic primitive (e.g.,
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one-way functions [KMN+22], public-key encryption [SW21], multi-party non-interactive key exchange [BZ17], etc.)
can be constructed assuming iO exists and NP is not in BPP infinitely often (see Section 1.3 of Jain-Lin-Sahai [JLS21]
for a more comprehensive list).

Similarly, while many initial candidate constructions required new assumptions that were later broken, ground-
breaking work of Jain, Lin, and Sahai [JLS21] showed that iO exists assuming four “well-founded” assumptions (this
has been improved to three assumptions, in [JLS22b]). Moreover, the iO they construct has strong security proper-
ties: no polynomial-sized circuit adversary can distinguish the iO of equivalent circuits except with subexponentially
small probability. We refer to iO with these security properties as JLS-security (a formal definition is in Section 2.1).
Following the work of Jain, Lin, and Sahai, iO has now become a widely-believed assumption in cryptography (see
for example the recent Quanta article of Klarreich [Kla20]).

1.2 Our Results
In this paper, we give the first concrete evidence that RANGE AVOIDANCE is hard to solve deterministically when the
number of outputs m(n) = poly(n). In particular, our conditional lower bound for RANGE AVOIDANCE follows from
indistinguishability obfuscation and various forms of NP ̸= coNP. Our argument is quite general in that it holds for a
variety of parameters with trade-offs on the assumptions, but we state a simple version first.

Theorem 1. Assume that NP ̸= coNP and iO with JLS-security exists. Then for all c ≥ 1, there is a k ≥ c such
that there is no deterministic polynomial-time algorithm for AVOID on nk-size circuits with n inputs and m(n) = nc

outputs.

That is, assuming NP ̸= coNP and JLS-secure iO exists, there are no efficient deterministic algorithms for AVOID,
even if the number m of output bits is allowed to be an arbitrarily large polynomial in n. Note that when m is an
arbitrarily large polynomial in n, all but an exponentially small fraction (2−m+n) of length-m strings are outside of
the range of C. Interestingly, the hard instances in our proof are circuits C with at most two elements in their range!3

In fact, one of those two elements is always the string 0m.
Before we discuss extensions of Theorem 1, let us briefly motivate how the assumptions in Theorem 1 arise.

Suppose a deterministic algorithm for AVOID exists, and one is aiming to show a contradiction. What can you do
with a deterministic algorithm, that you could not do with a randomized algorithm (which we know exists)? With a
deterministic efficient algorithm for AVOID, one can guarantee that for every circuit C, there is a short “proof” that a
specific string yC is outside the range ofC. In particular, the computation history of the deterministic AVOID algorithm
running on C and outputting yC , constitutes such a “proof.” In contrast, it is unclear how to get such a guarantee from
the simple randomized algorithm for AVOID that picks a string uniformly at random. A priori, it seems powerful that
every circuit C has a short proof that a specific yC is outside its range. If the description C was complex enough to
function like a “black box,” then the shortest proof that yC is not in the range may simply evaluate C on all inputs
and observe that C never outputs yC . Thus, at a very high level, a deterministic AVOID algorithm may provide short
proofs for statements that might not have short proofs (motivating an assumption like NP ̸= coNP) for circuits that
behave like black boxes (motivating an assumption like iO). Of course, this is a very rough intuition; for more details
we point the reader to the (relatively short) proof of Theorem 1 in Section 3. We remark that our work is certainly not
the first time that iO is being applied in complexity theory (see Section 2.1 for references).

Extensions. We now discuss extensions of Theorem 1, which illustrate various tradeoffs between the time com-
plexity of AVOID, simulations of coNP with nondeterminism, and the allowed stretch m. A more general version of
our result rules out subexponential-time (2n

o(1)

-time) deterministic algorithms for AVOID, as well as algorithms for
AVOID where the number of outputs m can be subexponential in n. To rule out subexponential-time AVOID algo-
rithms, we apparently require a stronger (but still standard) notion of security for iO than that of JLS-security. In
particular, we need that no subexponential-size circuit adversary can distinguish the iO of equivalent circuits, ex-
cept with subexponentially small probability. We refer to iO with this security as subexponentially-secure iO. We
point the reader to Section 2.1 for formal definitions, but we stress that subexponentially-secure iO is very plausible

3Having a range of only two elements is best-possible, in a sense. For circuits C with only one string in their range, there is a simple AVOID
algorithm: output any m-bit string different from C(0n).
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and holds if, for example, corresponding security guarantees hold for the three well-founded assumptions used by
Jain-Lin-Sahai [JLS22a].

In the statement below (and throughout this paper) we always assume the number of outputs m(n) is a time-
constructible function.

Theorem 2. Assume subexponentially-secure iO exists. For every m(n) > n there is an s(n) = poly(m) such that,
if there is a deterministic t-time algorithm for AVOID circuits with m(n) outputs and size s(n), then

coNP ⊆
⋃
k∈N

NTIME[t(mk(n))]

Here, NTIME[t] refers to the set of languages computable by a nondeterministic Turing machine in time O(t).
Setting t = 2n

o(1)

, we conclude that RANGE AVOIDANCE cannot be solved in deterministic 2s
o(1)

time on circuits
of size s, assuming subexponentially-secure iO and a rather weak exponential-time hypothesis. Let NSUBEXP :=⋂

k∈N NTIME[2n
1/k

].

Corollary 3. Assuming coNP ̸⊆ NSUBEXP and subexponentially-secure iO, RANGE AVOIDANCE cannot be solved
in deterministic 2s

o(1)

time on circuits of size s.

The assumption coNP ̸⊆ NSUBEXP is significantly weaker than what is often assumed in fine-grained complexity.
For example, the Nondeterministic Exponential Time Hypothesis (NETH) [CGI+16, CRTY20] states that there is an
ε > 0 such that unsatisfiable 3SAT instances with n variables cannot be refuted in nondeterministic 2εn time. Note
NETH is a much stronger hypothesis than coNP ̸⊆ NSUBEXP.

Setting m(n) to be any constructible function that is 2n
o(1)

in Theorem 2, we conclude that even when the number
of outputs m is close to exponential in n, AVOID still does not have a polynomial-time deterministic algorithm,
assuming coNP ̸⊆ NSUBEXP and subexponentially secure iO.

Corollary 4. Assuming coNP ̸⊆ NSUBEXP and subexponentially-secure iO, RANGE AVOIDANCE cannot be solved
in deterministic polynomial-time for every constructible m(n) = 2n

o(1)

.

We also prove that iO with security weaker than JLS-security or subexponential security can still be used to show
the non-existence of deterministic algorithms for AVOID. We show AVOID ̸∈ FP assuming only polynomially-secure
iO and a still weaker statement than the typical NETH.

Hypothesis 5 (NETH for Circuits). There is an ε > 0 such that Circuit Unsatisfiability on n-input circuits of size
2o(n) cannot be solved nondeterministically in 2εn time.

Theorem 6. Assuming NETH for Circuits and polynomially-secure iO, AVOID is not in FP. Moreover, under the
assumptions, it follows that for all b, c ≥ 1 there is an ε > 0 such that AVOID cannot be solved in O(2cεn) time on
circuits of size 2εn with n inputs and bn outputs.

Note that, in the case of circuits with 2o(n) size and bn outputs, exhaustive search solves RANGE AVOIDANCE in
time about 2bn+o(n). Under our assumptions, we rule out 2o(n) time for 2o(n)-size circuits, when the number of outputs
m is linear in n. Therefore, even subexponential-time improvements over exhaustive search for RANGE AVOIDANCE
should already be considered unlikely for these parameters, under our assumptions.

Witness Encryption Suffices. A careful inspection of our proofs reveals that our use of indistinguishability obfus-
cation can be replaced with a seemingly weaker cryptographic primitive called witness encryption. At a high level,
witness encryption [GGSW13] allows one to, given a SAT formula φ, encrypt a message m such that only recipients
who know a satisfying assignment to φ can decrypt m (the actual definition is more involved, but this is the basic
idea). It is known that iO implies witness encryption as a special case [GGH+16]. We state our results in terms of
iO instead of witness encryption for two reasons. First, currently the only known way to construct witness encryption
with our desired parameters under well-founded assumptions is via iO. Second, this paper is aimed primarily at a
complexity-theoretic audience, who is likely more familiar with the notion of iO than witness encryption.
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Nevertheless, witness encryption is believed to be a weaker assumption compared to iO, and admits several plau-
sible constructions. Chen, Vaikuntanathan, and Wee [CVW18] proposed a simple construction from LWE-like prob-
lems, whose security was proved later by Vaikuntanathan, Wee, and Wichs [VWW22] based on LWE-like assumptions.
An alternative LWE-based construction was proposed by Tsabary [Tsa22] under similar assumptions. Barta, Ishai, Os-
trovsky, and Wu [BIOW20] also gave a construction in “generic group model” based on an (unproven) hardness of
approximation hypothesis of certain coding problems.

Application: Separations in Bounded Arithmetic

Bounded arithmetic refers to fragments of Peano arithmetic that aim to formalize the (computational) complexity of
reasoning. For instance, Cook’s theory PV1 [Coo75] corresponds to “reasoning in polynomial time”, Jeřábek’s theory
APC1 [Jeř04, Jeř05, Jeř07a, Jeř09]4 corresponds to randomized polynomial-time computation, and Buss’s theories
S1
2 , S

2
2 , . . . correspond to the polynomial-time hierarchy [Bus85]. Indeed, theories corresponding to other complexity

classes such as TC0, NC1, and PSPACE have been studied (see, e.g., [Kra95, CN10]). From a proof complexity point
of view, bounded theories can also be regarded as uniform versions of propositional proof systems (see, e.g., [Kra19]).

One motivation to study bounded arithmetic is that it may explain why longstanding complexity-theoretic conjec-
tures such as P ̸= NP and NEXP ⊈ P/poly are hard to prove. In contrast to barriers such as relativization [BGS75],
natural proofs [RR97], and algebrization [AW09] that capture the limitation of specific techniques, it is more desirable
to demonstrate the unprovability of these conjectures in strong mathematical theories with a solid logical founda-
tion. Bounded arithmetic provides an ideal testing ground for this program. On the one hand, a rather large fragment
of known algorithms and complexity theory results can be formalized in bounded theories such as PV1 and APC1

[Oja04, LC11, Pic15b, MP20]. On the other hand, connections between bounded arithmetic and complexity theory
make it possible to employ complexity-theoretic techniques to obtain unprovability results, leading to exciting de-
velopments on the unprovability of complexity upper bounds [KO17, BM20, BKO20, CKKO21] and lower bounds
[Kra11, Pic15a, PS21] in PV.

To better understand the power of feasible reasoning, it is important to prove relations (separations or equivalences)
among bounded theories. In particular, it has been open for about twenty years whether the dual Weak Pigeonhole
Principle for PV functions5 (denoted by dWPHP(PV)) is provable in PV1. In other words, the question is whether
Jeřábek’s APC1, defined as PV1 + dWPHP(PV), is the same as PV1. Here, dWPHP(PV) is the “logic version” of
AVOID6 that says for every PV function f and every n and z, there is a y ∈ {0, 1}n+1 such that for every x ∈ {0, 1}n,
f(z, x) ̸= y. Similar to the complexity of AVOID, there has been no strong evidence for either APC1 = PV1 and
APC1 ̸= PV1. Known results on this problem include the separation of the relativized versions of APC1 and PV1

[Jer07b] and a conditional separation based on the assumption that P ⊂ SIZE[nk] for some k [Kra21]. (However,
this assumption contradicts the widely-believed derandomization assumption that E requires circuits of size 2Ω(n).)
Krajíček [Kra22] recently proposed an open problem of showing a conditional separation of PV1 and APC1 under a
“mainstream hypothesis” as the first step to understand the logical power of dWPHP(PV). Moreover, it might seem
reasonable to believe that APC1 is the same as PV1, since its complexity-theoretic counterpart BPP = P follows from
plausible circuit lower bounds [IW97, STV01].

In this work, we provide the first plausible evidence that Jeřábek’s theory APC1 is a strict extension of PV1.

Theorem 7 (Corollary 23, Informal). Assuming iO with JLS-security and coNP is not infinitely often in AM, the dual
Weak Pigeonhole Principle is not provable in PV (in particular, APC1 is a strict extension of PV1).

Our proof utilizes the standard KPT Witnessing Theorem (see Theorem 18) which extracts an algorithm for AVOID
that is allowed to invert the input circuit on a constant number of m-bit strings, assuming APC1 is the same as
PV1. Corollary 23 then follows from an extension of the conditional lower bound for AVOID which holds against
polynomial-time algorithms with such circuit-inversion oracles.7

4Note the terminology APC1 was first used in [BKT14].
5By Cobham’s characterization of the polynomial-time functions, PV functions (when interpreted in the standard model) are exactly polynomial-

time computable functions (see Section 2.3 for details).
6Indeed, Korten’s investigation of the complexity of explicit constructions was inspired by the early developments of Jeřábek’s theory APC1, as

noted in [Kor21, Kor22].
7The drawback of the lower bound result comparing with Theorem 2 is that the assumption NP ̸= coNP is strengthened to coNP ⊈ i.o. AM
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Theorem 8 (Theorem 21, Informal). Assuming the existence of iO with JLS-security and NP is not infinitely often in
AM, there is no polynomial-time algorithm for AVOID with O(1) queries to a circuit-inversion oracle.

This conditional lower bound stands in interesting contrast to the fact that, under standard derandomization hy-
potheses (E does not have 2Ω(n)-size circuits), there is a deterministic polynomial-time algorithm for AVOID that
makes polynomially-many circuit inversion queries (follows from [Kor21]; see Appendix C for details). Alternatively,
under a stronger assumption, namely E does not have 2Ω(n)-size SAT-oracle circuits, we can construct a hitting set of
size poly(n) (see Appendix A) and then find a non-output of the given circuit with poly(n) circuit-inversion queries.

Under similar assumptions, we also demonstrate a separation of APC1 and its fragment UAPC1 that is strong
enough to prove interesting results in complexity theory and formalize approximate counting in Jeřábek’s framework
[Jeř07a], see Section 4.3 for more details.

Application: the Oracle Derandomization Hypothesis for Time-Bounded Kolmogorov Complexity

Our results also have bearing on other hypotheses regarding derandomization. Motivated by applications in parame-
terized complexity and questions related to “instance compressibility,” Fortnow and Santhanam [FS11] introduced the
Oracle Derandomization Hypothesis (ODH). Roughly speaking, ODH says that, given a length-n truth table z of an
arbitrary Boolean function, one can efficiently deterministically generate a truth table y of length at least n.01 such
that the function represented by y has circuit complexity nΩ(1) even when the circuits are given oracle access to the
function represented by z. (See Hypothesis 29 for a formal definition, and Section 5 for a comparison to the related
problem COMPLEXITY.)

This hypothesis is especially intriguing because it is unclear whether it should be true or false. Indeed, Fortnow
and Santhanam remark:

“In our opinion, quite apart from its relevance to compressibility, the Oracle Derandomization Hypothesis
is interesting in its own right because it tests our intuitions of which kinds of derandomization are plausible
and which are not... We do not have a strong belief about the truth of our derandomization assumption,
but we do believe it is hard to refute.”

Using essentially the same proof as in Theorem 1, we rule out a related time-bounded Kolmogorov complexity
version of ODH (formally, Hypothesis 30) under plausible assumptions. Roughly speaking, Hypothesis 30 says that
given a string z of length n, one can efficiently deterministically generate a string y of length n.01 such that the
conditional polynomial-time bounded Kolmogorov complexity of y given z is at least nΩ(1). Here, the conditional
t-time bounded Kolmogorov complexity of y given z refers to the length of the shortest program that outputs x on
input y in time t(|x|) (see Section 2.4 for a formal definition) [Kol65, Sip83, Ko86].

Theorem 9 (Informal version of Theorem 31). The time-bounded Kolmogorov complexity ODH is false assuming
NP ̸= coNP and subexponentially secure iO exists.

It is a tantalizing open question as to whether one can extend this result to rule out ODH itself. To prove Theorem 9
we crucially make use of the fact that, in this version of ODH, the computational model is able to read the entire string
z. In contrast, in the (original) ODH setting, the computational model is only allowed to make a limited number of
queries to the string z.

2 Preliminaries
We assume basic familiarity with notions in computational complexity [AB09]. We first review two extensively used
tools: Indistinguishability Obfuscation and interactive (Arthur-Merlin) protocols. We also provide a brief introduction
on bounded theories PV1 and APC1 (see [Kra95, CN10, Kra19] for more detailed expositions), as well as the time-
bounded Kolmogorov complexity.

due to technical reasons. Intuitively, we need the Goldwasser-Sipser protocol in AM (see Lemma 13) for approximate counting, and we only know
how to “eliminate” oracle queries in the range avoidance algorithm assuming infinitely often lower bounds for coNP.
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2.1 Indistinguishability Obfuscation
Definition 10 (Indistinguishability Obfuscation). A polynomial-time randomized algorithm iO that takes as input a
security parameter λ and a circuit C, and randomness r is an indistinguishability obfuscator with security (S, ϵ) if both
of the following hold:

• Perfect Functionality: For all C and λ, we have that iO(1λ, C) outputs a circuit computing the same function
as C with probability one over its randomness.

• Indistinguishability: For all λ, any two circuits C and C ′ of size at most λ computing the same function, and
any S(λ)-sized adversary circuit A, we have that

|Pr[A(iO(1λ, C) = 1]− Pr[A(iO(1λ, C ′) = 1]| ≤ ϵ(λ)

When λ is clear from the context, we write iO(C) instead of iO(1λ, C). When we want to specify the randomness
r used by the iO algorithm, we write iO(1λ, C; r).

We say an iO is polynomially-secure if it is secure for some S(n) = nω(1) and ϵ(n) < 1/nω(1). We say it is
subexponentially-secure if it is secure with S(n) = 2n

δ

and ϵ(n) = 2−nδ

for some δ > 0. We say it is JLS-secure if it
is secure with S(n) = nω(1) and and ϵ(n) = 2−nδ

for some δ > 0. For our results, it is important that our adversaries
are non-uniform circuits.

The breakthrough results of Jain-Lin-Sahai [JLS21, JLS22b] give constructions of both JLS-secure and subexpo-
nentially secure iO.

Theorem 11 (Informal version of Jain-Lin-Sahai [JLS22b]). If three “well-founded” cryptographic assumptions hold,
then JLS-secure iO exists.

Theorem 12 (Informal version of Jain-Lin-Sahai [JLS22a]). If three “well-founded” cryptographic assumptions are
secure against subexponential-sized adversaries with subexponential advantage, then subexponentially secure iO ex-
ists.

Other Complexity Theory Work Using iO. Building on the work of Bitansky, Paneth, and Rosen [BPR15], Garg,
Pandey, and Srinivasan [GPS16] show that computing Nash Equilibria (and thus the TFNP class PPAD) is intractable
assuming one-way permutations and iO exist. Impagliazzo, Kabanets, and Volkovich [IKV18] show that if iO exists
then the Minimum Circuit Size Problem [KC00] is in ZPP if and only if NP ⊆ ZPP.

2.2 Arthur-Merlin Protocols
An Arthur-Merlin protocol [Bab85] for a language L ⊆ {0, 1}∗ is defined as a constant-round interactive protocol
between a computationally unbounded prover (Prover) and a polynomial-time probabilistic verifier (Verifier). For a
given input x ∈ {0, 1}n that is accessible by both Prover and Verifier, Prover wants to convince Verifier that x ∈ L
(even if x /∈ L) with poly(n) bits of communication, whereas the Verifier needs to decide whether x ∈ L based on the
information provided by Prover. Formally, the protocol needs to satisfy the following properties.

• Completeness: If x ∈ L, it is possible for Prover to send poly(n)-bits of messages in constant rounds such that
Verifier accepts with probability at least 2/3.

• Soundness: If x /∈ L, given any messages from Prover, Verifier accepts with probability at most 1/3.

The complexity class AM is defined as the languages that have a sound and complete Arthur-Merlin protocol. As
coNP ⊆ AM implies the collapse of PH [BHZ87], it is widely believed that coNP ⊈ AM and therefore UNSAT /∈ AM.
Indeed, we know that NP = AM assuming a standard derandomization hypothesis: namely, there exists a language
L ∈ NE∩ coNE requiring nondeterministic circuits of size 2Ω(n) [KvM02, MV05]. This implies that coNP is unlikely
to even be infinitely often in AM.
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Goldwasser-Sipser Set Lowerbound Protocol. We will need a well-known Arthur-Merlin protocol for approxi-
mately counting the size of a set that has efficiently computable membership queries.

Lemma 13 ([GS89], also see [AB09, Section 8.4]). There is an Arthur-Merlin protocol such that the following holds.
Suppose that both Prover and Verifier receive a circuit C : {0, 1}n → {0, 1} and a number s ≤ 2n. Let S = {x ∈
{0, 1}n | C(x) = 1}. Then

• Completeness: If |S| ≥ s, then there exist messages Prover can send such that Verifier accepts with probability
at least 2/3.

• Soundness: If |S| ≤ s/2, then regardless of what Prover sends, Verifier accepts with probability at most 1/3.

Moreover, the protocol is a two-round public-key protocol: Verifier first sends a random seed r and receives a message
m; then it deterministically decides whether to accept based on r and m.

2.3 Bounded Theories PV1 and APC1

Cook [Coo75] defined the theory PV related to polynomial-time complexity as an equational theory (i.e. sentences
are of the form t = u for terms t and u). Based on a machine-independent characterization of FP due to Cobham
[Cob65], it can be shown that the set of function symbols introduced in PV (when interpreted in the standard model)
is exactly FP. PV1 is defined as a first-order theory that is a conservative extension of PV axiomatized by universal
sentences. The formal definitions of PV and PV1 are tedious and we refer interested readers to [Kra19, Chapter 12].
We define TPV to be the universal true theory over the language L(PV) of PV over the standard model N.8

To formalize the probabilistic methods that are widely used in complexity theory and combinatorics, Jeřábek
[Jeř04, Jeř05, Jeř07a, Jeř09] introduced an extension of Cook’s PV by including the dual Weak Pigeonhole Principle
for PV function symbols as axioms, which is now known as APC1 (stands for approximate counting). Let f(w⃗, x) be
function symbols9, and let m(n) > n be a function. We define the dual weak Pigeonhole Principle for f(w⃗, ·) with
stretch function m,10 denoted by dWPHPm(f), as

dWPHPm(f) := ∀n ∈ Log ∀w⃗ ∃y ∈ {0, 1}m(n) ∀x ∈ {0, 1}n f(w⃗, x) ̸= y, (1)

which claims that f(w⃗, ·) : {0, 1}n → {0, 1}m(n) cannot be surjective. Here, ∀n ∈ Log is short for ∀N ∀n = |N |,
which means that the feasible reasoning is with respect to strings of length n instead of log n. We use dWPHP(f)
(where m is omitted in the subscript) to mean dWPHPm(f) for m(n) = n+ 1. We define

dWPHP(PV) := {dWPHP(f) | f ∈ L(PV)},

and the theory APC1 is defined as PV1 + dWPHP(PV). Since any polynomial-time function can be computed
with a multi-output polynomial-size circuit, APC1 can also be defined equivalently as PV1 + dWPHP(Eval), where
Eval(C, x) evaluates the circuit C on the input x.

Remark 14. The stretch function m for dWPHP(PV) used to define APC1 can be a subtle issue, as we cannot prove
an equivalence between dWPHP(PV) with different stretch functions within PV1 (such equivalence can be proved
within Buss’s theory S1

2 for polynomial computation, see, e.g., [Jer07b, Theorem 3.1]). Jeřábek [Jer07b] also proved
that PV1(α) (a relativised version of PV1) cannot prove the equivalence of dWPHP(α) between different parameters.
This will not be a problem for us, since our unprovability result works for the weakest version of dWPHP (i.e. with
stretch function m(n) allowed to be an arbitrarily large polynomial). △

We remark that, besides the application of bounded arithmetic to understanding complexity barriers, there are also
recent interesting applications in propositional proof complexity [Kha22] and cryptography [JJ22].

8That is, TPV contains all sentences of the form ∀x⃗ β for some quantifier-free formula β that are true in the standard model N.
9Note that the inclusion of w⃗ is crucial; if we remove w⃗ in the definition of APC1, we will obtain a (possibly) weaker fragment of APC1 (see,

e.g., [PS21, Section 2]).
10In the rest of the paper, we assume that the stretch function m(n) is a PV-function. This is without loss of generality, as the set of PV functions

(when interpreted in the standard model) is exactly FP, the class of polynomial-time computable functions.
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2.4 Time-Bounded Kolmogorov Complexity
There are multiple notions of time-bounded Kolmogorov complexity in the literature; in this paper, we consider the
following. Let U be a fixed universal Turing machine such that U(M,x, 1t) runs the Turing machine encoded by M
for t steps on the input x and outputs the string on the tape.

Let t : N → N be a function.

Definition 15 (Time-Bounded Kolmogorov Complexity [Kol65, Sip83, Ko86]). The Kt-complexity of a string x ∈
{0, 1}n, denoted by Kt(x), is the minimum ℓ such that for some M ∈ {0, 1}ℓ, U(M, ε, 1t(n)) = x.

Definition 16 (Conditional Kt-Complexity). The Kt-complexity of a string x ∈ {0, 1}n conditioned on a string y,
denoted by Kt(x|y), is the minimum ℓ such that for some M ∈ {0, 1}ℓ, U(M,y, 1t(n)) = x.

Although the definitions of Kt-complexity and conditional Kt-complexity depend on the universal Turing machine
U , the results in this paper (as well as most results on these notions) are not sensitive to the choice of U . Therefore we
will omit U and simply use “the encoding of M” to denote the encoding of M with respect to U .

3 No Efficient Deterministic Algorithms for Range Avoidance
In this section, we prove Theorem 1 and Theorem 2. We restate both of these theorems below.

Reminder of Theorem 1. Assume that NP ̸= coNP and iO with JLS-security exists. Then for all c ≥ 1, there is a
k ≥ c such that there is no deterministic polynomial-time algorithm for AVOID on nk-size circuits with n inputs and
nc outputs.

Reminder of Theorem 2. Assume subexponentially-secure iO exists. For every m(n) > n there exists an s(n) =
poly(m) such that if there is a deterministic t-time algorithm for AVOID circuits withm(n) outputs and size s(n), then

coNP ⊆
⋃
k∈N

NTIME[t(mk(n))]

We prove Theorem 2 and remark in the proof how to modify it prove Theorem 1.

Proof of Theorem 2. We will show that, under the assumptions, there is a t(poly(s))-time nondeterministic algorithm
A for the coNP-complete problem of checking whether a propositional formula with n variables and O(n) size11 is
unsatisfiable. Our algorithm A takes as input an O(n)-size formula φ with n variables, and A accepts φ if and only if
φ is unsatisfiable. A works as follows:

1. Nondeterministically guess a y ∈ {0, 1}m(n) and an r ∈ {0, 1}poly(n+λ) where λ = poly(m(n)).
(The degree of the polynomial for λ will be chosen later.)

2. Let C[φ, y] denote a circuit12 that takes n input bits, outputs m(n) > n bits, and satisfies

C[φ, y](x) =

{
0m(n), if φ(x) = 0

y, if φ(x) = 1 .

3. Accept if and only if y = AVOID(iO(C[φ, y]; r)).
(Here, we abuse notation and let AVOID and iO denote their corresponding algorithms.)

11To see this problem is coNP-complete, note that an arbitrary formula can be made linear-sized with polynomial blowup while preserving
unsatisfiability: simply add extra variables that do nothing.

12It does not matter precisely how we implement C[φ, y]; the argument will work as long as our C[φ, y] satisfies the specification and has size
poly(m(n)).
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This completes the description of A.
We now argue the correctness of the reduction A. Observe that, by construction, iO(C[φ, y]; r) is a circuit with

n-inputs, m(n)-outputs, and size poly(m(n)). (To see this size bound, note that φ has size O(n), so C[φ, y] has size
O(m(n)c) for some constant c ≥ 1, and iO blows up this size by at most a fixed polynomial in λ = poly(m(n)).)
Thus, by setting s to be a sufficiently large polynomial in m, the input circuit iO(C[φ, y]; r) to the AVOID algorithm
in item 3 is indeed an instance where the algorithm is assumed to work. Furthermore, it is easy to see that A runs in
nondeterministic time t(poly(m(n))) + poly(m(n)) = t(poly(m(n))). Hence, to prove the theorem we just need to
show soundness (if A accepts, then φ is unsatisfiable) and completeness (if φ is unsatisfiable, then A accepts).

First we show soundness. Suppose A accepts φ. Then there exists y and r such that y = AVOID(iO(C[φ, y]; r)).
By the correctness of AVOID and the perfect functionality of iO, we know that y is not in the range of C[φ, y]. By
construction of C[φ, y], this means that φ is not satisfiable.

Now we show completeness. Suppose the formula φ is unsatisfiable. For simplicity of notation, we let m = m(n)
in the following. We begin by considering the output distribution of the AVOID algorithm on iO(C[φ, 0m]; r) for
uniformly random r (notice we have set y here to be 0m). Since AVOID always outputs a string in {0, 1}m, there exists
a “frequent” string y⋆ such that

Pr
r
[y⋆ = AVOID(iO(C[φ, 0m]; r))] ≥ 2−m.

We now consider what happens when we set y = y⋆. The crucial point is this: because φ is unsatisfiable, observe
that C[φ, 0m] and C[φ, y⋆] compute the same function! Therefore, by the subexponential security of iO, there is an
ϵ > 0 such that for every adversary B of size 2λ

ϵ

taking input of length poly(m(n)),∣∣∣Pr
r
[B(iO(C[φ, 0m]) = 1]− Pr

r
[B(iO(C[φ, y⋆]) = 1]

∣∣∣ < 2−λϵ

.

In particular, we can consider the non-uniform13 circuit adversaryB(X) that outputs 1 if and only if AVOID(X) = y⋆.
Without loss of generality, we can assume the size of B is at most 2poly(m(n)), as the exhaustive search algorithm for
AVOID would provide such a size bound. Thus the size of B is at most

2poly(m(n)) ≤ 2λ
ϵ

when λ is a sufficiently large polynomial in m. (To modify this proof to prove Theorem 1 instead, the only difference
is to observe that, if t(q) = poly(q), then it suffices to have iO with JLS-security in this step, since the circuit checking
if the output of AVOID equals y⋆ has polynomial size.) Consequently, applying iO security to B, we derive

Pr
r
[y⋆ = AVOID(iO(C[φ, y⋆]; r))] ≥ Pr

r
[y⋆ = AVOID(iO(C[φ, 0m]; r))]− 2−λϵ

≥ 2−m − 2−λϵ

> 0,

by setting λ to be a sufficiently large polynomial in m. Hence, we can conclude there is an r such that

y⋆ = AVOID(iO(C[φ, y⋆]; r)),

so A will accept φ.

Remark 17. For readers familiar with the cryptographic notion of witness encryption [GGSW13], we note that in
Theorem 2 (and in fact all theorems in this paper that assume iO), we can relax the assumption that iO exists to the
potentially weaker assumption that witness encryption with similar security and a deterministic decryption algorithm
exists. Informally, witness encryption allows one to encrypt a string y with a SAT formula φ such that

• (Correctness). If φ is satisfiable, then one can efficiently decrypt y given a satisfying assignment.
• (Security). If φ is unsatisfiable, then the encryption of y and 0|y| are computationally indistinguishable.

13The non-uniformity comes from y⋆.
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Garg et al. [GGH+16] observed that iO implies witness encryption (with a deterministic decryption algorithm) as a
special case. Indeed, in Garg et al.’s construction, one can witness-encrypt a message y with a formula φ by outputting
iO(C[φ, y]). We are implicitly using this construction in our proofs.

To modify the proof of Theorem 2 to use witness encryption instead, one modifies the algorithm A to the nonde-
terministic algorithm below:

1. Nondeterministically guess a y ∈ {0, 1}m(n) and an r ∈ {0, 1}poly(n+λ)

2. Let e be the witness encryption of the string y according to φ using randomness r and security parameter λ.

3. Let C be the circuit that takes as input a string x ∈ {0, 1}n and attempts to output the decryption of e using the
purported witness x (if decryption fails, output 0m).

4. Accept if and only if y = AVOID(C).

The analysis of the new algorithm is essentially the same as the analysis of the original A, where the perfect func-
tionality and indistinguishability properties of iO are now replaced by the correctness and security properties of the
witness encryption scheme respectively. Our other proofs using iO can be similarly modified. △

The proof of Theorem 2 can be generalized in several other ways. For one, the same proof also works to rule
out zero-error randomized algorithms (although zero-error randomized algorithms also imply deterministic algorithms
under a derandomization assumption).

The proof can also be generalized to work with just polynomially-secure iO. To do this, instead of NP ̸= coNP,
we consider a nondeterministic version of the exponential time hypothesis:

Reminder of Hypothesis 5. (NETH for Circuits) There is an ε > 0 such that Circuit Unsatisfiability problem on
n-input circuits of size 2o(n) cannot be solved nondeterministically in 2εn time.

Hypothesis 5 is in fact a much weaker statement than the usual NETH, which posits that nondeterministically
refuting unsatisfiable 3-CNFs requires 2εn-size proofs verifiable in 2εn time. We only require an exponential lower
bound in the case of refuting subexponential-size circuits.

Reminder of Theorem 6. Assuming NETH for Circuits and polynomially-secure iO, AVOID is not in FP. Moreover,
under the assumptions, it follows that for all b, c ≥ 1 there is an ε > 0 such that AVOID cannot be solved in O(2cεn)
time on circuits of size 2εn with n inputs and bn outputs.

Proof. The algorithm for UNSAT in our proof is essentially the same as that of Theorem 2, except we analyze the case
of a very large security parameter λ.

Assume there is a universal constant d ≥ 1 and an algorithm B for polynomially-secure iO which runs in time
O((s · λ)d) on circuits of size s with security parameter λ. Furthermore, assume that there are universal constants
b, c ≥ 1 such that for all sufficiently small α ∈ (0, 1), RANGE AVOIDANCE can be solved in O(2cαn) time on circuits
of size 2αn with n inputs and bn outputs. Given the assumptions, we show how to construct a nondeterministic
algorithm for proving the unsatisfiability of arbitrary subexponential-size circuits in subexponential time.

Fix b, c ≥ 1. Let m = bn, α ∈ (0, 1) be a constant to be chosen later, and A be an algorithm for RANGE
AVOIDANCE as described above. Let ε > 0 be an arbitrarily small constant. Given a circuit φ with n inputs and size
2o(n), we run precisely the same reduction as Theorem 2, except with an exponentially large value of λ.

1. Nondeterministically guess y ∈ {0, 1}m and r ∈ {0, 1}ℓ, where ℓ = (poly(|φ|)λ)d and λ = 2ϵ·n.
(The parameter ℓ is upper-bounded by the running time of B.)

2. Let C[φ, y] be a circuit taking n input bits and outputting m bits with the specification:

C[φ, y](x) =

{
0m, if φ(x) = 0

y, if φ(x) = 1.

3. Accept if and only if y = A(B(C[φ, y]; r)).
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It takes poly(|φ|) time to construct C[φ, y]. Given our assumption on algorithm B, the output of B(C[φ, y]) is
a circuit of size (poly(|φ|)λ)d = 2εdn+o(n). Thus our algorithm A for RANGE AVOIDANCE applies to the circuit
B(C[φ, y]), by setting α = 2εd so that (poly(|φ|)λ)d = 2εdn+o(n) ≤ 2αn. Therefore the above algorithm runs in
nondeterministic time 2cαn = 22εcdn. As the input circuit φ has size 2o(n), c and d are fixed, and ε > 0 can be made
arbitrarily small, this would refute NETH for Circuits.

As in the proof of Theorem 2, it remains to show that φ is unsatisfiable if and only if there is a y and r such that
y is the output of A on B(C[φ, y]; r). First, if such y and r exist, then analogously to the proof of Theorem 2, we
conclude that φ is unsatisfiable by the construction of C[φ, y].

For the other direction, suppose that φ is unsatisfiable. As in the proof of Theorem 2, we know that there is some
y⋆ ∈ {0, 1}m such that

Pr
r
[y⋆ = A(B(C[φ, 0m]; r))] ≥ 2−m.

Given y⋆, we may define an “adversary” circuit D which has y⋆ ∈ {0, 1}m hard-coded, takes in an input circuit C ′

(ostensibly simulating B(C[φ, y]; r) on some y and r), and outputs 1 if and only if y⋆ = A(C ′). Using a standard
translation of t-time algorithms into O(t3)-size circuits, the input circuit C ′ only has to have size at most 23εdn+o(n).
Translating the composition of A, B, and C[φ, y] into circuits, the size of the adversary circuit D is at most 26εcdn,
which is only polynomially larger than its input circuit C ′.

Assuming polynomially-secure iO, since C[φ, 0m] and C[φ, y⋆] compute the same function, we have for every
constant K ≥ 1 that ∣∣∣Pr

r
[D(B(C[φ, 0m]; r)) = 1]− Pr

r
[D(B(C[φ, 0m]; r)) = 1]

∣∣∣ < 1

λK
,

which implies

Pr
r
[y⋆ = A(B(C[φ, y⋆]; r))] ≥ Pr

r
[y⋆ = A(B(C[φ, y⋆]; r))]− 1

λK
≥ 1

2m
− 1

λK
. (2)

The above probability is greater than 0, provided that 2m < λK , i.e.,

λ > 2m/K . (3)

Recall that we set λ = 2εn for an arbitrarily small fixed ε > 0, and m = bn for a fixed b ≥ 1, while the constant
K ≥ 1 can be as arbitrarily large as needed (independently of all other constants). Therefore (3) holds.

By (2), there is an r such that y⋆ = A(B(C[φ, y⋆]; r)), as desired.

4 Application in Bounded Arithmetic: Separating APC1 and PV1

In this section, we prove a conditional separation of the bounded theories APC1 and PV1, assuming that iO with
JLS-security exists and coNP is not infinitely often in AM.

The only result from logic that we need is the standard KPT Witnessing Theorem for ∀∃∀ formulas, which con-
nects the provability of any (∀∃∀)-sentence with a Student-Teacher game for interactively computing a witness to the
existential quantifier.

Theorem 18 (KPT Witnessing Theorem for TPV [KPT91]). For every quantifier-free formula φ(x⃗, y, z) in the lan-
guage L(PV), if TPV ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z), then there is a k ∈ N and L(PV)-terms t1, t2, . . . , tk such that

TPV ⊢ ∀x⃗ ∀z1 ∀z2 . . . ∀zk
k∨

i=1

φ(x⃗, ti(x⃗, z1, . . . , zi−1), zi). (4)

It is well-known that the terms t1, t2, . . . , tk extracted from the proof in the KPT Witnessing Theorem can be
interpreted as an k-round interactive computation of a witness y such that ∀z φ(x⃗, y, z) given the input x⃗. Consider
the following game between a Student who wants to find a correct witness y and a Teacher who will provide help.
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In the first round, the Student proposes y1 := t1(x⃗) as a candidate, and, in the case, y1 is not a correct witness of
∃y ∀z φ(x⃗, y, z), the Teacher provides a counterexample z1 such that φ(x⃗, y1, z1) is false. The Student then proposes
a new candidate y2 := t2(x⃗, z1) based on the counterexample given in the first round, and the Teacher, again, provides
a counterexample z2 if y2 is not a correct witness, etc. Equation (4) means that after k rounds of interaction between
the Student and the Teacher, at least one of the y1, y2, . . . , yk proposed by the Student has to be a correct witness of
∃y ∀z φ(x⃗, y, z). We refer the readers to [Kra19] for more discussion about the KPT Witnessing Theorem and the
Student-Teacher game.

4.1 Provability of dWPHP and the Tractability of AVOID

The KPT Witnessing Theorem (Theorem 18) provides a connection between the provability of dWPHP and the
tractability of AVOID, in the sense of the Student-Teacher game. Let Eval(C, x) := C(x) be the circuit evaluation
function. Recall that dWPHPℓ(Eval) refers to the following sentences:

dWPHPℓ(Eval) := ∀n ∈ Log ∀circuits C : {0, 1}n → {0, 1}ℓ ∃y ∈ {0, 1}ℓ ∀x ∈ {0, 1}n [Eval(C, x) ̸= y].

Suppose that dWPHPℓ(Eval) is provable in TPV. Then there is a constant-round Student-Teacher game that finds
a y ∈ {0, 1}ℓ witnessing the existential quantifier, where the Teacher provides counterexamples for the universal
quantifier over x ∈ {0, 1}n. Taking a closer look at this game, we can see that this corresponds to an algorithm for
AVOID with circuit-inversion oracle queries, which is formally defined as follows.

Definition 19 (Solving AVOID with a Circuit-Inversion Oracle). Let m = m(n) and k = k(n). A polynomial-time
algorithm with k circuit-inversion oracle queries for AVOID with m outputs is a polynomial-time oracle algorithm A
such that given a circuit C : {0, 1}n → {0, 1}m and access to an oracle O(·) : {0, 1}m → {0, 1}n with at most k
queries, AO(·)(C) outputs a y ∈ {0, 1}m such that C(O(y)) ̸= y. Furthermore, O(y) always returns an x such that
C(x) = y, when such an x exists.

Theorem 20. For every constructive function m(n) ≤ poly(n) such that m(n) > n, if TPV ⊢ dWPHPℓ(Eval), then
AVOID with m outputs has a polynomial-time algorithm with O(1) circuit-inversion oracle queries.

Proof. Let m(n) = poly(n) be some constructive function. By the assumptions, we know that

TPV ⊢ ∀n ∈ Log ∀C ∃y ∈ {0, 1}m(n) ∀x ∈ {0, 1}n [Eval(C, x) ̸= y].

By the KPT Witnessing Theorem (Theorem 18), there is a k = O(1) and L(PV)-terms t1, t2, . . . , tk such that

TPV ⊢ ∀n ∀C ∀z1 . . . ∀zn
(
[Eval(C, z1) ̸= t1(n,C)] ∨ [Eval(C, z2) ̸= t2(n,C, z1)] ∨ . . .

∨ [Eval(C, zk) ̸= tk(n,C, z1, . . . , zk−1)]
)
.

Now we show that given any circuit C : {0, 1}n → {0, 1}m(n) and access to an oracle O : {0, 1}m(n) → {0, 1}n,
there is a polynomial-time algorithm that makes k queries to O(·) and finds a y ∈ {0, 1}m(n) such that C(O(y)) ̸= y.
Let f1, f2, . . . , fk ∈ FP be the functions that are the interpretations of t1, t2, . . . , tk, respectively, in the standard
model. We play the aforementioned Student-Teacher game, where in the i-th round, the Student proposes yi :=
fi(n,C, z1, . . . , zi−1), and the Teacher responds with zi := O(yi). By Equation (4) and the soundness of TPV in the
standard model, we know that for some i ∈ [k], the Teacher fails to provide a correct counterexample zi in the i-th
round, i.e., Eval(C, zi) ̸= yi. The algorithm can then output yi.

4.2 Impossibility of Solving AVOID with a Circuit-Inversion Oracle
Now we show that AVOID has no polynomial-time algorithm withO(1) circuit-inversion oracle queries under plausible
assumptions by generalizing the proof of Theorem 2.
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Theorem 21. Let m = m(n) = poly(n) and k = O(1) such that m ≥ n + 1. Assume that coNP is not infinitely
often in AM and iO with JLS-security exists. Then there is no polynomial-time deterministic algorithm for AVOID on
circuits with m outputs using k circuit-inversion oracle queries.

Proof. Let m and k be defined as above and let iO be a JLS-secure indistinguishability obfuscator. To prove that
AVOID with the given parameters cannot be solved in deterministic polynomial time, it suffices to show that for every
k-query oracle algorithm A, there exists a circuit C mapping n-bits to m-bits and a (consistent) inversion oracle
O(·) : {0, 1}m → {0, 1}n such that AO(·)(C) outputs a y where C(O(y)) = y (in which case, A fails to solve AVOID
on C). For any polynomial-time algorithm A that makes k queries to O(·) : {0, 1}m → {0, 1}n, we can decompose
A into k + 1 polynomial-time algorithms A1, A2, . . . , Ak+1 (without oracle queries) that work as follows:

• A1: Given the input circuit C, it computes y1 = A1(C) and queries O(y1).
• A2: Letting x1 be the answer to the last query, it computes y2 = A2(C, x1) and queries O(y2).
• A3: Letting x2 be the answer to the last query, it computes y3 = A3(C, x1, x2) and queries O(y3).
• . . .
• Ak+1: Letting xk be the answer to the last query, it computes yk+1 = Ak+1(C, x1, . . . , xk) and outputs yk+1.

Therefore to rule out the existence of the oracle algorithmA as described above, it suffices to show that for all deter-
ministic polynomial-time algorithms A1, . . . , Ak+1, there is a circuit C : {0, 1}n → {0, 1}m, strings y1, . . . , yk+1 ∈
{0, 1}m, and strings x1, . . . , xk+1 ∈ {0, 1}n such that:

• (Oracle Consistency). For all i, j ∈ [k + 1] such that yi = yj , we have xi = xj .
(That is, the oracle gives consistent answers xi to input strings yi.)

• (Oracle Inverting). For every i ∈ [k + 1], we have C(xi) = yi = Ai(C, x1, . . . , xi−1).
(That is, given yi, the oracle indeed provides an xi such that C(xi) = yi.)

To add more detail, the aforementioned circuit C and any oracle satisfying O(yi) = xi for every i ∈ [k+ 1] can force
each Ai (equivalently, the i-th oracle query of A) to output yi. In such a case, Ak+1 (equivalently, the oracle algorithm
A) outputs a string yk+1 = C(xi+1) that is in the output range of the input circuit C, and thus does not solve AVOID.

We first introduce some notation. For n-variable 3-CNF formulas φ1, . . . , φk of size n and strings y1, . . . , yk ∈
{0, 1}m, we let C[φ1, . . . , φk; y1, . . . , yk] denote a polynomial-sized circuit that takes an input (x, i) ∈ {0, 1}n × [k]
and outputs

C[φ1, . . . , φk; y1, . . . , yk](x, i) :=

{
0m, if φi(x) = 0

yi, if φi(x) = 1 .

In the case that we do not specify a φi and its corresponding yi, such as in C[φ1, φ2; y1, y2] for k = 3, we adopt
the convention that any missing φi is the trivial unsatisfiable formula ⊥ and yi = 0m. For instance when k = 3,
C[φ1, φ2; y1, y2] := C[φ1, φ2,⊥; y1, y2, 0

m].
Fix any polynomial-time algorithm A with k oracle queries and its decomposition as polynomial-time algorithms

A1, A2, . . . , Ak+1. We begin by making the following claim.

Claim 22. For all j ∈ {0, . . . , k+1} and for all sufficiently large n, there exist n-variable satisfiable 3-CNF formulas
φ1, . . . , φj of size n, strings x1, . . . , xj ∈ {0, 1}n, and strings y1, . . . , yj ∈ {0, 1}m such that the following holds.

• For all distinct i1, i2 ∈ [j], if φi1 = φi2 , then xi1 = xi2 .
• For every i ∈ [j], φi(xi) = 1.
• Let Ĉj = iO(C[φ1, . . . , φj ; y1, . . . , yj ]; r). Over the random seed r of iO, it holds with probability at least
2−Ω((2k−j)m) that for every i ∈ [j], yi = Ai(Ĉj , x1, . . . , xi−1).

Observe that when j = k+1, Claim 22 implies the existence of φ1, . . . , φk+1, x1, . . . , xk+1, and y1, . . . , yk+1 that
satisfy the aforementioned Oracle Consistency property (which follows from the first bullet of Claim 22) and Oracle
Inverting property (which follows from the second and the third bullet of Claim 22 and the perfect functionality of
iO). Indeed, this claim shows that the polynomial-time algorithm A with k circuit-inversion oracle queries will fail
on Ĉk+1 (A will output a string in the range of Ĉk+1) with probability at least 2−Ω((k−1)m). Therefore, to prove the
theorem, it remains to prove Claim 22.
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Before we start, one crucial definition is in order. Define a circuit D to be j-good if for every i ∈ [j], yi =
Ai(D,x1, . . . , xi−1). In other words, D is j-good if it satisfies the property in the third bullet of Claim 22.

We prove Claim 22 by induction on j. The base case j = 0 is trivially true. Now we assume the claim is true for
j − 1, which gives 3-CNF formulas φ1, . . . , φj−1 of size n, strings x1, . . . , xj−1, and strings y1, . . . , yj−1 that make
the claim true for j − 1. Let λ = poly(m) be the security parameter to be determined later, and let ℓ = poly(n, λ) be
the randomness complexity of iO with security parameter λ. We define an AM protocol P , detailed in Algorithm 1,
that attempts to solve UNSAT (i.e., the Prover aims to convince the Verifier that a given formula is unsatisfiable). For
simplicity, we assume without loss of generality that our formulas are 3-CNFs with n clauses and n variables.

Input: A 3-CNF formula φ(x) on n variables and clauses.
1 Prover sends 3-CNF formulas φ1, . . . , φj−1, strings x1, . . . , xj−1 ∈ {0, 1}n, and y1, . . . , yj ∈ {0, 1}m;
2 Verifier rejects if φi(xi) ̸= 1 for some i ∈ [j], or φi1 = φi2 and xi1 ̸= xi2 for distinct i1, i2 ∈ [j];
// For r ∈ {0, 1}ℓ, let Cr

j := iO(C[φ1, . . . , φj−1, φ; y1, . . . , yj ]; r).

// Let E : {0, 1}ℓ → {0, 1} be a circuit such that E(r) = 1 if and only if Cr
j is j-good.

3 Prover and Verifier run the Goldwasser-Sipser protocol (Lemma 13) on the instance (E, δ);
// The parameter δ = 2ℓ−Ω((2k−j)m).

// Prover aims to convince Verifier that |{r ∈ {0, 1}ℓ | E(r) = 1}| ≥ δ.

Algorithm 1: The AM protocol P that aims to solve UNSAT.

Completeness of P . We now show that the AM protocol P is complete; the Verifier accepts every unsatisfiable 3-
CNF formula φ on n variables with probability at least 2/3. Let φ be an arbitrary unsatisfiable formula, and let Ĉj−1

be the random variable Ĉj−1 := iO(C[φ1, . . . , φj−1; y1, . . . , yj−1]; r) defined over r ∈ {0, 1}ℓ. By the induction
hypothesis, we know that

Pr
r∈{0,1}ℓ

[
Ĉj−1 is (j − 1)-good

]
≥ 2−Ω((2k−j+1)m).

By an averaging argument, there is a y ∈ {0, 1}m such that

Pr
r∈{0,1}ℓ

[
[Ĉj−1 is (j − 1)-good] ∧ [y = Aj(Ĉj−1, x1, . . . , xj−1)]

]
≥ 2−Ω((2k−j+1)m) · 2−m = 2−Ω((2k−j)m). (5)

Let yj ∈ {0, 1}m be one such y, and let Ĉj be the random variable Ĉj := iO(C[φ1, . . . , φj−1, φ; y1, . . . , yj ]; r)
defined over r ∈ {0, 1}ℓ. Since φ is unsatisfiable, it follows that

C[φ1, . . . , φj−1, φ; y1, . . . , yj ] and C[φ1, . . . , φj−1; y1, . . . , yj−1]

compute the same function. By the JLS-security of iO, we know that Ĉj and Ĉj−1 are 2−λε

-indistinguishable
against any polynomial-sized adversary. To verify that a circuit Ĉ of poly(n) size is j-good, we need to check
yi = Ai(Ĉ, x1, . . . , xi−1) for every i ∈ [j], which can be done by a circuit of poly(n) size. This means by Equation (5)
that

Pr
r∈{0,1}ℓ

[
Ĉj is j-good

]
= Pr

r∈{0,1}ℓ

[
[Ĉj is (j − 1)-good] ∧ [yj = Aj(Ĉj , x1, . . . , xj−1)]

]
≥ 2−Ω((2k−j)m) − 2−λϵ

. (6)

Let λ := m2/ϵ = poly(n) and δ := 2ℓ · (6) = 2ℓ−Ω(2k−j)m. The Prover will work as follows. In the first
step, the Prover sends 3-CNF formulas φ1, . . . , φj−1, strings x1, . . . , xj−1 ∈ {0, 1}n, and y1, . . . , yj ∈ {0, 1}m. By
Equation (6), we know that Ĉj is j-good with probability at least δ/2ℓ, which means by the definition ofE : {0, 1}ℓ →
{0, 1} (which can be implemented in poly(n) size) that there is a Prover for the Goldwasser-Sipser protocol in Line
3 of Algorithm 1 such that the Verifier accepts with probability at least 2/3. This concludes the completeness of the
protocol P .
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Employ the Lack of Soundness. At this point, we have shown that P is a polynomial-time AM protocol attempting
to check unsatisfiability, and that P has the completeness property. By the assumption that coNP is not infinitely often
in AM, P cannot solve unsatisfiability even infinitely often, which means that this P does not have soundness for
all sufficiently large n. In other words, there is a Prover such that for sufficiently large n, the Verifier accepts some
satisfiable 3-CNF formula φ on n variables with probability > 1/3. Let φj be this formula φ and let

• 3-CNF formulas φ1, φ2, . . . , φj−1,
• strings x1, x2, . . . , xj−1 ∈ {0, 1}n, and
• strings y1, y2, . . . , yj ∈ {0, 1}m

be the message sent in Line 1 (of Algorithm 1) by this Prover on the input φj . Since the Verifier does not reject in
Line 2, we have

• φi(xi) = 1 for every i ∈ [j − 1], and
• for all distinct i1, i2 ∈ [j], if φi1 = φi2 , then xi1 = xi2 .

We define the string xj ∈ {0, 1}n to be xi if there is some i ∈ [j− 1] such that φi = φj ; otherwise, we set xj to be an
arbitrary n-bit string such that φj(xj) = 1. Now we show that the formulas φ1, . . . , φj , strings x1, . . . , xj ∈ {0, 1}n,
and strings y1, . . . , yj ∈ {0, 1}m satisfy the conditions of Claim 22, which will conclude the proof.

Let Ĉj be the random variable defined as Ĉj−1 := iO(C[φ1, . . . , φj ; y1, . . . , yj ]; r). Since the Verifier accepts
with probability > 1/3, by the soundness of the Goldwasser-Sipser protocol (Lemma 13), we know that

Pr
r∈{0,1}ℓ

[
Ĉj is j-good

]
≥ 1

3
· 2−ℓ · δ = 2−Ω((2k−j)m).

This implies the third bullet of Claim 22. The first two bullets hold by the definition of φi, xi, and yi.

By combining Theorem 20 and Theorem 21, we know that dWPHPℓ(Eval) is not provable in TPV based on the
assumptions of Theorem 21. Since TPV is an extension of PV1, this further means that dWPHP(PV) is not provable
in PV, which separates PV1 and APC1. We summarize the results as follows.

Corollary 23. Assume the existence of JLS-secure iO and coNP is not infinitely often in AM. For every constructive
function ℓ(n) ≤ poly(n) such that ℓ(n) > n, TPV ⊬ dWPHPℓ(Eval). In particular, APC1 is a strict extension of PV1.

4.3 An Extension: Separating UAPC1 with APC1

Given the conditional separation of PV1 and APC1, it is natural to further investigate the bounded theories in between.
For instance, we may ask whether there are non-trivial fragments of APC1 (i.e. equal to neither PV1 nor APC1) that
are strong enough to formalize circuit lower bounds or sustain Jeřábek’s framework for approximate counting [Jeř07a].
We initiate the study of this question by proving that under plausible assumptions, an important fragment of APC1,
which we call UAPC1 (stands for Uniform Approximate Counting), is a strict sub-theory of APC1.

Let f be a function. We define the uniform dual Weak Pigeonhole Principle for f , denoted by dWPHP′(f), be the
sentence14

dWPHP′(f) := ∀n > 0 ∀m ∈ Log ∃y < n(m+ 1) ∀x < nm f(x) ̸= y, (7)

which says that f : [nm] → [n(m+ 1)] cannot be surjective. We define

dWPHP′(PV) := {dWPHP′(f) | f ∈ L(PV)}

and UAPC1 := PV1 + dWPHP′(PV).
The main difference between dWPHP′(f) and dWPHP(f) is that dWPHP′(f) does not allow the function f to

take extra parameters w⃗ in Equation (1). Intuitively speaking, it only states that any uniform PV function f whose
codomain is sufficiently larger than its domain cannot be surjective, and says nothing about the non-uniform functions.

14We can also define dWPHP′
ℓ with stretch function ℓ as dWPHP′

ℓ(f) := ∀n ∈ Log ∃y ∈ {0, 1}ℓ(n) ∀x ∈ {0, 1}n f(x) ̸= y. Since
dWPHP′(f) defined by Equation (7) denotes the dual Weak Pigeonhole Principle for f : [nm] → [n(m+ 1)], where the size of the codomain is
even smaller than twice of the size of the domain, dWPHP′(f) implies dWPHPℓ(f) for every ℓ(n) ≥ n+ 1 in any reasonable base theory.
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Despite being (seemingly) weaker, UAPC1 is known to formalize many results based on approximate counting and
probabilistic methods, e.g., the existence of hard Boolean functions and rigid matrices. In particular, as observed
by Pich and Santhanam [PS21], UAPC1 proves the main theorem in [Jeř07a] for approximate counting via Nisan-
Wigderson generators (see Appendix D for details).

Let T0
APC := TPV + dWPHP′(PV) be an extension of UAPC1. We will prove the following result.

Theorem 24 (Separating UAPC1 and APC1). Assume the existence of JLS-secure iO and coNP is not infinitely often in
NP/poly. For every constructive function ℓ(n) such that n < ℓ(n) ≤ poly(n), T0

APC ⊬ dWPHPℓ(Eval). In particular,
APC1 is a strict extension of UAPC1.

The Consequence of the Provability of dWPHP in UAPC1. We will use the following KPT-style witnessing theo-
rem for T0

APC due to Pich and Santhanam [PS21], where the witnessing functions are computable by polynomial-sized
circuits instead of uniform algorithms. (Note that this is the reason that we need to assume non-uniform coNP lower
bounds in Theorem 24.)

Theorem 25 (KPT Witnessing for T0
APC [PS21, Theorem 4]). For every quantifier-free formula φ(x⃗, y, z) in the

language L(PV), if T0
APC ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z), then there are a constant k ∈ N and k functions (in the standard

model) f1(x⃗), f2(x⃗, z1), . . . , fk(x⃗, z1, . . . , zk−1) such that the following holds.
For every n⃗ = (n1, . . . , nt) ∈ N⃗ and for every m1,m2, . . . ,mk ∈ N, it holds in the standard model that:

• either φ(n⃗, f1(n⃗),m1) is true;
• or φ(n⃗, f2(n⃗,m1),m2) is true;
• or φ(n⃗, f3(n⃗,m1,m2),m3) is true;
• . . . ;
• or φ(n⃗, fk(n⃗,m1, . . . ,mk−1),mk) is true.

Moreover, each fi is computable by a family of polynomial-sized deterministic circuits.

Similar to algorithms for AVOID with circuit-inversion oracles (see Definition 19), we can define its non-uniform
counterpart, where the oracle queries are implemented as a special gate of the circuits.

Definition 26 (Circuits for AVOID with Circuit-Inversion Oracle Gates). Letm = m(n) and k = k(n). A polynomial-
sized circuit family with k circuit-inversion oracle gates for AVOID with stretch m is a polynomial-sized circuit family
{Fs} where each Fs contains at most k oracle gates of fan-in s and fan-out s.

Moreover, {Fs} is said to solve AVOID if for every circuitC : {0, 1}n → {0, 1}m of size s and any O : {0, 1}m →
{0, 1}n such that O(y) outputs an x ∈ {0, 1}n satisfying C(x) = y provided that such an x exists, Fs(C) outputs a
y ∈ {0, 1}m satisfying C(O(y)) ̸= y, when we interpret the fan-in-s oracle gates in Fs as computing O, where the
s−m unused input bits are ignored and the s− n unused output bits always output 0.

Theorem 27. For every constructive function ℓ = poly(n), if T0
APC ⊢ dWPHPℓ(Eval), then AVOID with stretch ℓ is

computable by a family of polynomial-sized circuits with O(1) circuit-inversion oracle gates.

Proof. Let ℓ(n) = poly(n) be some constructive function. By the assumptions, we know that

T0
APC ⊢ ∀n ∀C ∃y ∈ {0, 1}ℓ(n) ∀x ∈ {0, 1}n Eval(C, x) ̸= y.

By Theorem 25, there is a k = O(1) and k functions f1, . . . , fk computable by families of polynomial-sized circuits
such that for every n, every circuit C : {0, 1}n → {0, 1}, and every x1, x2, . . . , xn:

• either C(x1) ̸= f1(n,C);
• or C(x2) ̸= f2(n,C, x1);
• or C(x3) ̸= f3(n,C, x1, x2);
• . . .
• or C(xk) ̸= fk(n,C, x1, . . . , xk).
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Now we show that AVOID is also computable by families of polynomial-sized circuits with at most k circuit-
inversion oracle gates. Let s be the input length (i.e. we are dealing with circuits encoded by an s-bit string) and
consider the following circuit:

1. Given the input circuit C, we compute its input length n and y1 = f1(n,C) ∈ {0, 1}ℓ(n).
2. We feed y1 to the circuit-inversion oracle gate and let x1 be the output of it. If C(x1) ̸= y1, we output y1;

otherwise, we compute y2 = f2(n,C, x1) ∈ {0, 1}ℓ(n).
3. We feed y2 to the circuit-inversion oracle gate and let x2 be the output of it. If C(x2) ̸= y2, we output y2;

otherwise, we compute y3 = f3(n,C, x1, x2) ∈ {0, 1}ℓ(n).
4. . . .
k. We feed yk−1 to the circuit-inversion oracle gate and let xk be the output of it. By the discussion above,

C(xk) ̸= yk, where yk := fk(n,C, x1, . . . , xk−1) ∈ {0, 1}ℓ(n). We output yk.

The correctness of this circuit is obvious. Since each fi is computable by a family of polynomial-sized circuits, we
know that this circuit is of polynomial size and contains k = O(1) circuit-inversion oracle gates.

Impossibility of Solving AVOID by Circuits with Circuit-Inversion Oracle Gates. To prove Theorem 24, it now
suffices to rule out small circuits solving AVOID with O(1) circuit-inversion oracle gates.

Theorem 28. Let m = m(n) = poly(n) and k = O(1) such that m ≥ n + 1. Assume that coNP is not infinitely
often in NP/poly and iO with JLS-security exists. Then AVOID with m outputs is not computable by a family of
polynomial-sized circuits with at most k circuit-inversion oracle gates.

Proof Sketch. We follow the proof of Theorem 21, where the witnessing algorithms A1, A2, . . . , Ak+1 are now (fam-
ilies of) polynomial-sized circuits. The only problem is that the AM protocol P for UNSAT (see Algorithm 1) needs
to be replaced by a polynomial-sized nondeterministic circuit. Here we only show how to deal with this issue.

Towards a contradiction, we assume that AVOID with m outputs is computable by an algorithm A that is com-
putable by a family of polynomial-sized circuits with at most k circuit-inversion oracle gates. As in Theorem 21, we
can decomposeA into k+1 algorithmsA1, A2, . . . , Ak+1 such that eachAi is computable by a family of polynomial-
sized circuits without circuit-inversion oracle gates. Let P be the AM-protocol in Algorithm 1 constructed from the
algorithmsA1, A2, . . . , Ak+1 here. Since eachAi is computable by a family of polynomial-sized circuits, the protocol
P will be a three-round public-key protocol with a verifier V computable by a family of polynomial-sized circuits. Let
n be the length (and the number of variables) of the input formula φ. The protocol will have the following structure:

1. Prover sends a string s1 of length ℓ1 = poly(n).
2. Verifier generates a random string r of length ℓr = poly(n).
3. Prover sends a message s2 of length ℓ2 = poly(n).
4. Verifier accepts φ if and only if V (φ, s1, s2, r) = 1.

Moreover, following the proof of Theorem 21, we can show that this protocol is complete, that is for every un-
satisfiable formula φ ∈ {0, 1}n, there is an s1 ∈ {0, 1}ℓ1 , such that with probability at least 2/3 over the choice of
r ∈ {0, 1}ℓr , there is an s2 ∈ {0, 1}ℓ2 such that V (φ, s1, s2, r) = 1. To complete the proof, it suffices to prove that
the protocol cannot be sound even infinitely often. (The rest of the proof follows from the proof of Theorem 21, see
the paragraph Employ the Lack of Soundness.)

Towards a contradiction, we assume that for infinitely many n, every satisfiable formula φ ∈ {0, 1}n, and every
s1 ∈ {0, 1}ℓ1 , it holds that with probability at most 1/3 over the choice of r ∈ {0, 1}ℓr , there is an s2 ∈ {0, 1}ℓ2
such that V (φ, s1, s2, r) = 1. For every such n, P is a sound and complete AM-protocol for UNSAT on input length
n. Therefore, it suffices to translate P on every such input length n into an equivalent poly(n)-sized nondeterministic
circuit, since this will contradict the assumption that NP is not infinitely often in NP/poly. This translation follows
from the fact that promiseAM/poly ⊆ promiseNP/poly. For completeness, we provide a self-contained proof of the
result.

Let krep = poly(n) be a parameter to be determined later and VAM : {0, 1}n × ({0, 1}ℓr )krep → {0, 1} be the
following polynomial-sized nondeterministic circuit:
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• Given the input φ ∈ {0, 1}n and r1, r2, . . . , rkrep ∈ {0, 1}ℓr , accept if and only if there exist s1 ∈ {0, 1}ℓ1 and
s2 ∈ {0, 1}ℓ2 such that for at least krep/2 of i ∈ [krep], V (φ, s1, s2, ri) = 1.

We treat VAM be a randomized nondeterministic circuit for UNSAT, where the second input will be uniformly
chosen. That is, we repeat the protocol P for krep times with independent random strings and output the majority
output of the protocol. We will set krep to be a sufficiently large polynomial so that the error probability of the
randomized algorithm is at most 2−2n and a good random string can be fixed as advice.

• (Completeness). Suppose φ ∈ {0, 1}n is an unsatisfiable formula. We know by the completeness of P (Theo-
rem 21) that there is a string s1 such that

Pr
r∈{0,1}ℓr

[∃s2 ∈ {0, 1}ℓ2 V (φ, s1, s2, r) = 1] ≥ 2/3. (8)

Fix this string s1. For every i ∈ [krep], let Xi be a random variable defined over the i-th random string ri ∈
{0, 1}ℓr of VAM, where Xi = 1 if and only if there is an s2 ∈ {0, 1}ℓ2 such that V (φ, s1, s2, r) = 1. It follows
from eq. (8) that E[Xi] ≥ 2/3. By the Chernoff bound,

Pr
[
X1 + · · ·+Xkrep < krep/2

]
≤ 2−Ω(krep).

This implies that, for a uniformly chosen random string (r1, . . . , rkrep) ∈ {0, 1}ℓrkrep , VAM accepts φ with
probability at least 1− 2−Ω(krep).

• (Soundness). Suppose φ ∈ {0, 1}n is a satisfiable formula, we know by the soundness of P on input length n
that for every s1,

Pr
r∈{0,1}ℓr

[∃s2 ∈ {0, 1}ℓ2 V (φ, s1, s2, r) = 1] ≤ 1/3. (9)

Fix an arbitrary s1 ∈ {0, 1}ℓ1 . For every i ∈ [krep], let Y s1
i be a random variable defined over the i-th random

string ri ∈ {0, 1}ℓr of VAM, where Y s1
i = 1 if and only if there is an s2 ∈ {0, 1}ℓ2 such that V (φ, s1, s2, r) = 1.

It follows from eq. (9) that E[Y s1
i ] ≤ 1/3. By the Chernoff bound,

Pr
[
Y s1
1 + · · ·+ Y s1

krep
≥ krep/2

]
≤ 2−Ω(krep).

Therefore we can see that

Pr [VAM accepts φ] = Pr
[
∃s1 ∈ {0, 1}ℓ1 Y s1

1 + · · ·+ Y s1
krep

≥ krep/2
]

≤
∑

s1∈{0,1}ℓ1

Pr[Y si
1 + · · ·+ Y si

krep
≥ krep/2] (Union Bound)

≤ 2ℓ1−Ω(krep). (Equation (9))

By setting krep = ℓ1 + O(n) ≤ poly(n), we can set the error probability of VAM to be less than 2−2n. Therefore
by a union bound, we can fix a “good” random string r̂ such that VAM(·, r̂) solves UNSAT on input length n. This
completes the proof.

5 The Oracle Derandomization Hypothesis for Time-Bounded Kolmogorov
Complexity

In this section, we investigate the Oracle Derandomization Hypothesis (ODH) and its variants.

Hypothesis 29 (Oracle Derandomization Hypothesis [FS11]). For any m with n ≤ m ≤ poly(n), there is a deter-
ministic algorithm A mapping m bits to n bits such that for all z ∈ {0, 1}m we have that y = A(z) satisfies that
the circuit complexity15 of y given oracle access to z is at least nΩ(1) (when y and z are viewed as truth tables in the
natural way).

15Actually, [FS11] considers nondeterministic circuit complexity instead of the usual circuit complexity.
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We note that ODH is closely related to the COMPLEXITY problem studied by Kleinberg, Korten, Mitropolsky, and
Papadimitriou [KKMP21], which is defined as follows:

Search Problem: COMPLEXITY
Input: A length-n truth table z of a Boolean function.
Output: A length-n truth table y such that the circuit complexity of the function represented by y given oracle
access to the function represented by z is at least Ω( n

log2 n
).

There are two main differences between ODH, and having a deterministic polynomial-time algorithm for COM-
PLEXITY. First, to solve COMPLEXITY, one is interested in truth tables with near-maximal conditional circuit com-
plexity, while in ODH it suffices to output truth tables that have conditional circuit complexity nΩ(1). Second, in
COMPLEXITY, |z| = |y|, while in ODH one needs to handle cases where |y| is polynomially smaller than |z|.

We consider a time-bounded Kolmogorov complexity version of ODH. Roughly speaking, this version says that
given a string z of length n, one can efficiently deterministically generate a string y of length n.01 such that the
time-bounded Kolmogorov complexity of y given z is large. We give a formal definition below.

Hypothesis 30 (Time-Bounded Kolmogorov Complexity Oracle Derandomization Hypothesis). For every m with
n ≤ m ≤ poly(n) and for any t = poly(n), there is a deterministic algorithm A mapping m bits to n bits such that
for all z ∈ {0, 1}m we have that y = A(z) is a string such that Kt(y|z) = nΩ(1).

Theorem 31. Hypothesis 30 is false assuming NP ̸= coNP and JLS-secure iO exists.

Proof. The proof is very similar to the proof of Theorem 2.
Let m = poly(n) and t = poly(n) be parameters we set later. For contradiction, let A be an algorithm mapping m

bits to n bits such that for all z ∈ {0, 1}m we have Kt(y|z) = Ω(nϵ) for some ϵ > 0, where y = A(z).
We give a polynomial-time nondeterministic algorithm for checking if an nϵ/2-variable formula φ is unsatisfiable.

1. Nondeterministically guess a y ∈ {0, 1}n and an r ∈ {0, 1}poly(n+λ) where λ = poly(n) is the security
parameter of the JLS-secure iO to be determined later.

2. Let C[φ, y] denote a poly(n)-size circuit that takes n input bits and outputs m bits and satisfies

C[φ, y](x) =

{
0m, if φ(x) = 0

y, if φ(x) = 1 .

3. Set z to be the m-bit string given by the description of the circuit iO(C[φ, y]; r). (We set m > n so that this is
possible. We can also pad the description with zeroes if necessary.)

4. Accept if and only if y = A(z).

It is easy to see that this is a polynomial-time nondeterministic algorithm. We now will show soundness and
completeness for sufficiently large n.

First, we show soundness. If φ is satisfiable, then we claim that for all choices of y and r, we have Kt(y|z) ≤
O(nϵ/2). This is because if φ is satisfiable, then there is an input x⋆ ∈ {0, 1}nϵ/2

such that φ(x⋆) = 1. Consequently,
C[φ, y](x⋆) = y. Thus, when z is interpreted as the description of the circuit iO(C[φ, y]; r), we have z(x⋆) = y. This
shows that Kt(y|z) ≤ O(nϵ/2) (setting t to be a sufficiently large polynomial). This completes our proof of soundness.

Now we show completeness. Suppose φ is unsatisfiable. As in the proof of Theorem 2, we consider A being run
on iO(C[φ, 0n]; r) for uniformly random r. As A must output an element of {0, 1}n, we know there’s a y⋆ satisfying

Pr
r
[y⋆ = A(iO(C[φ, 0m]; r))] ≥ 2−n.

To this end, we (just as in Theorem 2) consider an adversary circuit B which takes in a circuit C ′ (ostensibly of the
form C ′ = iO(C[φ, 0m]) and outputs 1 if and only if y⋆ = A(C ′). As in Theorem 2, we can argue that the size of the
adversary B is small enough that our iO assumption applies.
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As in Theorem 2, C[φ, 0n] and C[φ, y⋆] compute the same function. Thus, by the JLS-security of iO, applied to
the adversary circuit B on the input circuits iO(C[φ, 0n]) and iO(C[φ, y⋆), we have

Pr
r
[y⋆ = A(iO(C[φ, y⋆]; r))] ≥ Pr

r
[y⋆ = A(iO(C[φ, 0m]; r))]− 2−λϵ

≥ 2−n − 2−λϵ

> 0

by setting λ to be a sufficiently large polynomial in n. Thus, there is an r such that

y⋆ = A(iO(C[φ, y⋆]; r)),

so A accepts φ.

6 Conclusion
We conclude with several open questions and directions of particular interest.

Intractability of C-Avoid? For a given circuit class C (e.g., AC0, TC0, NC1), Ren, Santhanam, and Wang [RSW22]
introduce the C-AVOID problem, which considers AVOID over circuits drawn from C. They showed many interesting
lower bound consequences from showing C-AVOID is in FP (or even FPNP).

Our work suggests the following natural question:

What is the “weakest” circuit class C such that, under plausible assumptions, C-AVOID is not in FP?

It seems reasonable that NC-AVOID (i.e., RANGE AVOIDANCE over poly(log n)-depth circuits of poly(n) size) is not
in FP, under similar assumptions to ours.

Intractability of Range Avoidance on Uniform Circuits? The specific instances used to show lower bound and
combinatorial consequences of AVOID ∈ FP [Kor22, RSW22, GLW22] arise from uniform circuits. Formally, for
these instances, there is a deterministic machineM with anO(1)-bit description such that, given 1n,M runs in poly(n)
time and prints the description of a Cn on n inputs and m > n outputs. Could AVOID on such uniformly-generated
circuits be in FP? On the one hand, our arguments concluding AVOID /∈ FP evidently rely on the non-uniformity of
input circuits in a crucial way. On the other hand, since (for example) NP-complete problems on uniformly-generated
instances typically remain hard in a different way (e.g., NEXP-complete), some of the authors are skeptical that this
special case of AVOID is easy.

The Landscape Around Range Avoidance. Prior to our work, there were no examples of a relational problem
that has both an efficient randomized algorithm (i.e. in the class FBPP) and an inefficient deterministic algorithm
(for example, in FPH), but was unlikely to have an efficient deterministic algorithm. (For comparison, Aaronson,
Buhrman, and Kretschmer [ABK23] give an example of problem that is in FEXP ∩ FBPP but unconditionally not in
FP.) AVOID has these properties, and (for large stretch) apparently lies in (FBPP∩FPH) \FP, under the assumptions
of this paper.16 What are other examples of such problems? The space of such problems seems interesting to study, in
itself.

The Structure of Probabilistic Feasible Reasoning. We have demonstrated that under plausible assumptions, PV1

is a strict sub-theory of APC1. Furthermore, the fragment UAPC1 of APC1 that sustains the basic mechanism of
Jeřábek’s approximate counting framework [Jeř07a] is strictly weaker than APC1 under similar assumptions. This
motivates revisiting the question of what is the “right” theory to capture probabilistic feasible reasoning. For instance,
we may ask the following question: Is UAPC1 conservative over PV1? Is there a strict fragment of UAPC1 that (in
some sense) captures probabilistic feasible reasoning? Are there interesting mathematical theorems that are provable
in APC1 but not provable in UAPC1 (or its weaker fragments)?

16Here, our notion of FBPP is that there is a randomized polynomial-time algorithm that generates a solution with probability at least 3/4 (say).
In our case, the error probability for solving AVOID directly depends on the stretch of the instance. See [ABK23] for further discussion on FBPP.
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A Hitting Set for Range Avoidance
We say that a Hitting Set for AVOID on circuits of size s with m outputs and n inputs (m > n) is a set Sm,s of m-bit
strings such that every circuit of size s with m outputs fails to output at least one string in Sm,s.

Here, we note how (under standard derandomization assumptions) one can construct a Hitting Set for AVOID on
circuits of size s with m > n outputs, in deterministic poly(s,m) time. We stress that our methods here are standard,
and we are simply recording this fact for convenience of the reader.

Theorem 32. Assume that there is an ε > 0 such that some function in E = TIME[2O(n)] does not have SAT-oracle
circuits of size 2εn, for almost every input length n. Then there is an algorithm A that takes 1s and 1m as input, runs
in poly(s,m) time, and outputs a set Sm,s of m-bit strings, such that every circuit of size s fails to output at least one
string in Sm,s.

Proof. Recall that the well-known connections from circuit complexity lower bounds to pseudorandom generators
relativize [KvM02]. Thus our hypothesis implies that there is a polynomial-time algorithm generating a discrepancy
set for SAT-oracle circuits. Namely, there is a polynomial-time algorithm B such that, on inputs 1n

′
and 1s

′
, for

sufficiently large n′ and s′, B outputs a set of poly(n′, s′) strings Tn′,s′ of length n′ such that, for every SAT-oracle
circuit C with n′ inputs and s′ size,∣∣∣∣ Pr

x∼Un′
[C(x) = 1]− Pr

x∼Tn′,s′
[C(x) = 1]

∣∣∣∣ < 1/10,

where “x ∼ Tn′,s′” indicates that x is chosen uniformly at random from Tn′,s′ . In other words, Tn′,s′ “fools” every
such SAT-oracle circuit C.

We now construct a specific SAT-oracle circuit C, and argue that fooling C allows us to construct our desired
hitting set from Tn′,s′ .

First of all, we observe that for m > n, a standard union bound argument implies that a uniform random subset of
m-bit strings of cardinality 2s2 is a hitting set for size-s circuits, in that every circuit of size s fails to output at least
one string in Sm,s with probability 1 − o(1). (There are only sO(s) such circuits, and for each such circuit, a random
m-bit string is in its range with probability at most 1/2. Thus, choosing 2s2 such strings will “hit” all s-size circuits
with probability 1− o(1).)

Let m be the desired output-length parameter and s be the desired size parameter for our hitting set Sm,s. Our
SAT-oracle circuit C will be designed to output 1 if and only if its input encodes a hitting set. In particular, C takes
2s2 ·m inputs, treats the inputs as a sequence of strings y1, . . . , y2s2 ∈ {0, 1}m, and uses its SAT oracle to check if
there exists a circuit C ′ of size s, an input x′ of length less than m, and an i = 1, . . . , 2s2 such that C ′(x′) = yi. If so,
our circuit C outputs 0, otherwise C outputs 1. Moreover, observe that C can itself be implemented in at most k(sm)k

size for some constant k, using SAT oracle gates.
Since a random choice of m-bit strings is a hitting set with high probability, we have

Pr
x∼Un

[C(x) = 1] = 1− o(1).

Therefore, if we run our polynomial-time algorithm B on input 1n
′

and 1s
′
, with n′ = 2s2m and s′ = k(sm)k, B

outputs a set of poly(s,m) strings Tn′,s′ of length n′ = 2s2m such that

Pr
x∼Tn′,s′

[C(x) = 1] ≥ 9/10− o(1).

Therefore, breaking every n′-bit string in Tn′,s′ into 2s2 strings of length m appropriately, the union of all such m-bit
strings is a hitting set, as desired.

B A Barrier Against Black-Box Reductions
In this section, we show a barrier result to proving that AVOID is intractable via standard black-box reductions.
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We say there is a black-box randomized polynomial-time reduction from a problem A to a problem B if there is
a probabilistic polynomial-time oracle Turing machine R such that for any oracle O that solves B we have that RO

solves A.
We show that any black-box randomized polynomial-time reduction from a problem A to AVOID with sufficiently

large stretch in the number of outputs actually implies a randomized polynomial-time algorithm for A. This rules out
basing the intractability of deterministic algorithms for AVOID on, say, lower bounds against SAT (or any problem
outside of BPP) via black-box randomized reductions.

Theorem 33. If there is a black-box randomized reduction from a problem A to AVOID on circuits with n-inputs and
n2 outputs, then A can be solved in randomized polynomial-time.

Proof (Sketch). Let R be the probabilistic polynomial-time oracle Turing machine R guaranteed by the black-box
reduction. Set k > 1 to be a constant such that R runs in o(nk) time and thus makes at most o(nk) oracle queries.

We claim the that the following is a randomized polynomial-time algorithm for A. Given an instance x, simulate
running RO(x) and output the answer. Whenever a query (i.e. a circuit C mapping t bits to t2-bits) is asked to the
oracle O, respond as follows:

1. If this query has been asked before, answer with the previous answer.

2. If t ≤ k log n, then brute force through all the strings in the range of C, and output the lexicographically first
string not in the range of C.

3. If t > k log n, pick a uniformly random string of length t2 and respond to the query with that.

It is easy to see that this is a polynomial-time randomized algorithm. We now show that it computes the answer to
A with high probability. Because R is a black box reduction, observe that as long as we always answer queries to O
with valid answers to AVOID, that RO(x) must correctly solve A on x. Queries answered when t ≤ k log n will be
correct by construction. Each query answered when t > k log n will be incorrect with probability at most

2−t2+t < 2−k2 log2 n+k logn ≪ 1

Ω(n−k)
.

Union bounding over o(nk) queries made by R, the probability that all oracle queries receive correct answers is at
least 1− o(1), as desired.

C An Algorithm for AVOID with a Circuit-Inversion Oracle
In this section, we give a polynomial-time reduction from AVOID to the problem of constructing a truth table of high
circuit complexity. (For the latter problem, having a polynomial-time algorithm is equivalent to establishing circuit
lower bounds for E.) The reduction is essentially from [Kor21] (although Korten’s formulation of the result is slightly
weaker), which is inspired by earlier provability results in bounded arithmetic [Jeř04] and the Goldreich-Goldwasser-
Micali construction of pseudorandom functions [GGM84].

Let ε ∈ (0, 1) be a constant.

Search Problem: HARDε

Input: 1N such that N = 2n is a power of two.
Output: The truth table of a function f : {0, 1}n → {0, 1} that requires Boolean circuits of size 2εn.

Lemma 34. There is a polynomial-time algorithm for AVOID on circuits C : {0, 1}n → {0, 1}n+1 that has access to
an oracle that inverts the input circuit, and makes one oracle call to AVOID on a circuit D : {0, 1}n → {0, 1}2n.
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Proof. Let C1 := C be the input circuit. For i ∈ {2, 3, . . . , n}, we construct the circuit Ci : {0, 1}n → {0, 1}n+i:

Ci(x) := (C(Ci−1(x)|[n]), Ci−1(x)|\[n]),

where Ci−1(x)|[n] denotes the first n bits of Ci−1(x) and Ci−1(x)|\[n] denotes the last i− 1 bits. We call our AVOID
oracle once on Cn : {0, 1}n → {0, 1}2n to obtain a string yn ∈ {0, 1}2n outside of the range of Cn, and then make at
most n oracle queries to the circuit-inversion oracle, as follows.

For every i = n − 1, n − 2, . . . , 1, we will find a yi ∈ {0, 1}n+i that is outside of the range of Ci. Assume that
we have found one such yi+1 = (y′i+1, y

′′
i+1), where y′i+1 ∈ {0, 1}n+1. We call the inversion oracle on y′i+1 to obtain

an x ∈ {0, 1}n such that C(x) = y′i+1. If the oracle fails to invert y′i+1, we obtain a non-output y′i+1 ∈ {0, 1}n+1 of
the input circuit C; otherwise, we define yi := (x, y′′i+1). In the latter case, we know by the definition of Ci+1 that yi
is outside of the range of Ci. At the end, we obtain a string y1 ∈ {0, 1}n+1 outside of the range of C1 = C.

Theorem 35. There is a polynomial-time algorithm for AVOID on circuits with n inputs and m > n outputs that has
access to an oracle that inverts the input circuit, and makes one call to an oracle for HARDε.

Proof. Given a circuit C with n inputs andm > n outputs, we can start by padding C with dummy inputs if necessary
so that m = n+1. Furthermore, by applying Lemma 34, we may assume that C has n inputs and 2n outputs (assume
it is the oracle call in Lemma 34).

Let k be a parameter to be determined later, and let C0 : {0, 1}n → {0, 1} be the first output bit of C(x).
For simplicity, define Clft and Crgt to be the first n bits and the last n bits of the 2n-bit output of C, respectively
(i.e., C(x) = (Clft(x), Crgt(x))). For i ∈ {1, 2, . . . , k}, we construct a circuit Ck : {0, 1}n → {0, 1}2k defined as

Ck(x) := (Ck−1(Clft(x)), Ck−1(Crgt(x))).

Claim 36. For every x ∈ {0, 1}n, there is a circuit D : {0, 1}k → {0, 1} of size O(k(n + |C|)) such that the truth
table of D is Ck(x) ∈ {0, 1}2k .

Proof. The circuit D is essentially the evaluation function of the GGM construction of PRF [GGM84]. (Also see
Figure 2 in the proof of Theorem 7 in [Kor21].)

We choose k = 10 · ε−1 · log(n+ |C|) = O(log |C|), so that the circuit size of D in Claim 36 is smaller than 2εk

for sufficiently large n. By calling the HARDε oracle on the input 12
k

, we will obtain a yk ∈ {0, 1}2k that requires 2εk

size circuits, which, by Claim 36, is outside of the range of Ck.
We define the following recursive algorithm with inputs (i, y) ∈ {0, 1, . . . , k} × {0, 1}i that attempts to invert the

circuit Ci on the string y with the help of the circuit-inversion oracle:

• If i = 0, we know that Ci outputs the first bit of C and y ∈ {0, 1}. We call the inversion oracle on (y, 02n−1) ∈
{0, 1}2n.

• If i ≥ 1, denote y = (y′, y′′), where y′, y′′ ∈ {0, 1}2i−1

. We recursively try to invert the circuit Ci−1 on the
inputs y′ and y′′. If we successfully obtain x′, x′′ ∈ {0, 1}n such that Ci−1(x

′) = y′ and Ci−1(x
′′) = y′′, we

call the circuit-inversion oracle to invert C on the input (x′, x′′) ∈ {0, 1}2n and output the answer x̂, which, by
the definition of Ck, satisfies that Ck(x̂) = y.

Our recursive algorithm runs in time 2O(k) · poly(|C|) = poly(|C|) and makes at most 2O(k) = poly(|C|) queries to
the circuit-inversion oracle. We run this recursive algorithm on the input (k, yk). Since yk is outside of the range of
Ck, this recursive algorithm will necessarily fail on an oracle query; in other words, it asks the oracle to invert a string
that is outside of the range of the input circuit C. We can then output this string.

In particular, assuming that E is not computable infinitely often by circuits of size 2εn, there is a polynomial-time
algorithm that on 12

n

outputs (for almost all n) a solution to HARDε. Therefore, by Theorem 35, assuming the circuit
lower bound for E, we solve AVOID in polynomial-time with (polynomially many) queries to an oracle that inverts the
input circuit.
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D The Power of UAPC1

In this section, we demonstrate the power of the theory UAPC1 by showing that Jeřábek’s main theorem of approximate
counting for APC1 [Jeř07a] can be proved for UAPC1. This was observed by Pich and Santhanam [PS21, Section 2].
For simplicity, we only present Jeřábek’s theorem, outline the proof in [Jeř07a], and verify that all applications of the
dual weak pigeonhole principle can be replaced by its uniform variant.

We adopt set-theoretic notation, where a natural number a is identified with the set {0, 1, . . . , a − 1}. Recall that
n ∈ Log is the shorthand of ∃V n = |V |. We say ε−1 ∈ Log if there is an n ∈ Log such that ε−1 ≤ n.

A bounded definable set is a set of numbers of the form X = {x < a | φ(x)}, where a is a number and φ is a
formula. In particular, given n and a Boolean circuit C : {0, 1}n → {0, 1} (where strings are encoded as numbers,
say C : 2n → 2), the bounded set defined by C is XC := {x < 2n | C(x) = 1}. As bounded theories (e.g. PV1)
cannot represent sets, the notion of bounded definable sets X = {x < a | φ(x)} is only defined in the meta-theory,
and x ∈ X is a shorthand of the first-order formula x < a ∧ φ(x).

For bounded definable sets X ⊆ a and Y ⊆ b, we define X × Y := {bx + y | x ∈ X, y ∈ Y } ⊆ ab and
X ∪̇ Y := X ∪ {y + a | y ∈ Y } ⊆ a+ b. In particular, x× y = xy and x ∪̇ y = x+ y, if we consider x ⊆ a, y ⊆ b
as bounded sets.

For a function f : a → b and a bounded definable set X ⊆ a, we use f [X] to denote the range of f over the
domain X , i.e., the bounded set {y < b | ∃x ∈ X, y = f(x)}. We use idX to denote the identity function over X .

Main theorem for approximate counting. Let a be a number and X ⊆ a be a bounded definable set. The goal of
Jeřábek’s approximate counting is to estimate |X|/a up to a small additive error. Since the brute-force definition of
the size of a set X ⊆ a requires poly(a) = exp(O(|a|)) time to enumerate {0, 1, . . . , a− 1}, Jeřábek [Jeř07a] defines
the approximate size of bounded definable sets as follows.

Let C : 2n → 2m be a Boolean circuit and X ⊆ 2n, Y ⊆ 2m be definable sets. We say C computes a function
from X to Y , denoted by C : X → Y , if C[X] ⊆ Y . In addition, we use C : X ↪→ Y to denote that C is injective.
We introduce the notation C : X ↠ Y to denote that Y ⊆ C[X]. Note that C : X ↠ Y does not necessarily imply
C : X → Y . As above, the notation is defined in meta-theory as the shorthands of corresponding first-order sentences
in PV1. For instance, let X = {x < a | φ(x)} and Y = {y < b | ψ(y)}, then C : X → Y is shorthand for
∀x, x < a ∧ φ(x) → C(x) < b ∧ ψ(C(x)).

Now we define (approximate) size comparison of definable sets. Let X,Y ⊆ 2n be definable sets and ε ≤ 1. We
say that X is approximately smaller than Y with error ε, denoted by X ⪯ε Y , if for some Boolean circuit G and
v ̸= 0, G : v × (Y ∪̇ ε2n) ↠ v × X . The number v is introduced due to technical reasons. Intuitively, X ⪯ε Y
means that there is an (efficiently computable) surjection from Y ∪̇ ε2n to X , which is the natural way to define
|X| ≤ |Y |+ ε2n in bounded theories. We say that X and Y are of the same size up to an error ε, denoted by X ≈ε Y ,
if X ⪯ε Y and Y ⪯ε X . In particular, we say that X is of size s up to an error ε if X ≈ε s, which intuitively stands
for s− ε2n ≤ |X| ≤ s+ ε2n.

The following theorem suggests that for every bounded set X ⊆ 2n defined by circuits, there is an s ≤ 2n such
that X is of size s up to an error ε provable in UAPC1. Intuitively, the theorem shows that under UAPC1, for every
circuit C : {0, 1}n → {0, 1}, let X = {x ∈ {0, 1}n | C(x) = 1} be the set of inputs accepted by C, there is an
efficiently computable surjection from X ∪̇ ε2n to s and an efficiently computable surjection from s + ε2n to X ,
which formalizes |X| ∈ [s− ε2n, s+ ε2n] (i.e. s/2n approximates the acceptance probability of C up to an additive
error ε).

Theorem 37 (Main theorem for approximate counting). The following is provable in UAPC1. For every bounded set
X = {x ≤ 2n | C(x) = 1} defined by a Boolean circuit C and ε−1 ∈ Log, there exist an s ≤ 2n such that X ≈ε s.
Moreover, for some v ≤ poly(nε−1|C|) and circuits Gξ, Hξ, ξ ∈ {0, 1} of size poly(nε−1|C|),

G0 : v(s+ ε2n) ↠ v ×X H0 : v ×X ↪→ v(s+ ε2n) G0 ◦H0 = idv×X ;

G1 : v × (X ∪̇ ε2n) ↠ vs H1 : vs ↪→ v × (X ∪̇ ε2n) G1 ◦H1 = idvs.

We first outline the proof of this theorem for APC1 in [Jeř07a] and then check that the applications of dWPHP(PV)
in both steps can be replaced by dWPHP′(PV). The proof consists of two steps.
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1. From dWPHP(PV), we can show that there is an average-case hard truth table. That is for k ∈ LogLog, there
is a function f : 2k → 2 (represented by its truth table) such that for some small ε ∈ (0, 1) and every circuit
D : 2k → 2 of size 2εk, |{x < 2n | f(x) = D(x)}| ≤ (1/2 + 2−εk)2k. Note that the size of the set is defined
by a brute-force counting algorithm, as k ∈ LogLog implies that it is feasible to enumerate all strings of length
k and count the number of strings x such that D(x) = f(x).

2. We adopt the correctness proof of the Nisan-Wigderson pseudorandom generator [NW94] to approximate the
size of X , which is the acceptance probability of the circuit C that defines it, by the acceptance probability of
C on the pseudorandom generator. More precisely, let NWf : 2t → 2n be the PRG for some t ∈ LogLog and
Y := {y < 2t | C(NWf (y)) = 1}, we will show that X × 2t ≈ε 2

n × Y . Since the seed length is t ∈ LogLog,
the size s′ of Y can be feasibly computed, we can show that X ≈ε s, where s := 2n−ts′.

We will show that the first step is provable in UAPC1 = PV1+dWPHP′(PV), and the second step is provable in PV1

given the result from the first step.

Step 1: Hard truth table. The proof of the existence of a hard truth table is similar to the reduction from HARD to
AVOID. Let TT be the following algorithm: given a circuit D : 2k → 2 of size 2εk and a (succinctly encoded) string
w ∈ 2m such that |w| ≤ (1/2 +m−ε)m, TT outputs tt(D)⊕ w, where m = 2k and tt(D) is the truth table of D. It
can be easily seen that the output length of TT is sufficiently larger than its input length for a small constant ε > 0. It
is provable in PV1 by the definition of the hard truth tables that any string outside of the range of TT is a desired hard
truth table. Moreover, TT is a uniform PV function without any additional parameters. Therefore the existence of a
hard truth table can be proved by PV1 + dWPHP′(TT) ⊆ UAPC1.

Step 2: Nisan-Wigderson PRG. With a closer inspection of the proof in [Jeř07a], we can see that it does not use
the power of dWPHP(PV), i.e., the proof can be formalized in PV1 given the hard truth table constructed in Step 1.
For simplicity, we only sketch the proof and refer the readers to the original paper [Jeř07a] for more details.

The main idea is to formalize the standard correctness proof of Nisan-Wigderson PRG via the hybrid argument
(see, e.g., [AB09]) in PV1. Let f : 2k → 2 be an (average-case) hard function and NWf : 2t → 2n be the Nisan-
Wigderson PRG. That is, for an (explicit) combinatorial design S = (S1, . . . , Sn) satisfying

1. Si ⊆ [t] for every i ∈ [n],
2. |Si| = k for every i ∈ [n], and
3. |Si ∩ Sj | is “small” for every i ̸= j,

the i-th bit of NWf (x) is f(x|Si), where x|Si := (xj1 , xj2 , . . . , xjk) ∈ 2k, Si = {j1, j2, . . . , jk}, and j1 < j2 <
· · · < jk. Let X := {x < 2n | C(x) = 1} and Y := {y < 2t | C(NWf (y)) = 1}. Recall that we want to prove that
X × 2t ≈ε 2

n × Y .
We define hybrids M0,M1, . . . ,Mn as follows. For every i ∈ {0, 1, . . . , n}, we define

Mi := {(x, y) ∈ 2n × 2t | C(NWf (y)1,NWf (y)2, . . . ,NWf (y)i, xi+1, xi+2, . . . , xn) = 1} ⊆ 2n × 2t.

Notice that M0 = X × 2t and Mn = 2n × Y . To prove that M0 ≈ε Mn, it is sufficient to show that for every
i ∈ {0, 1, . . . , n − 1}, Mi ≈ε′ Mi+1 for ε′ := ε/n. This can be shown by proving M0 ≈ε′·i Mi with an induction
on i. However, since M0 ≈ε′·i Mi is not defined by a quantifier-free formula, one needs to slightly strengthen the
induction hypothesis to have explicit G1

i , G
2
i , H

1
i , H

2
i , v

1
i , v

2
i that witness M0 ≈ε′·i Mi. That is,

G1
i : v1i × (M0 ∪̇ ε′i2n) ↠ v1i ×Mi H1

i : v1i ×Mi ↪→ v1i × (M0 ∪̇ ε′i2n) G1
i ◦H1

i = idv1
i×Mi

, (10)

G2
i : v2i × (Mi ∪̇ ε′i2n) ↠ v2i ×M0 H2

i : v2i ×M0 ↪→ v2i × (Mi ∪̇ ε′i2n) G2
i ◦H2

i = idv2
i×M0

. (11)

In such case, we only need the induction principle for quantifier-free formulas and thus it is provable in PV1.
It remains to show that Mi ≈ε′ Mi+1 (with explicit witnesses in the sense of Equations (10) and (11)). Fix this i.

Let h : 2t → 2t−k × 2k be the bijection that maps y ∈ 2t to (y|Si+1
, y|[t]\Si+1

), where both h and h−1 are computable
by PV-functions. Let fwj (u) := f(h−1(u,w)|Sj ). By the definition, we know that fwi (u) = f(u), and fwj (u) for
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j ̸= i depends on a small fraction of bits of u, since |Si ∩ Sj | is small. We define

M ′
i := {(xi+2, . . . , xn, r, w, u) | C(fw1 (u), . . . , fwi (u), r, xi+2, . . . , xn) = 1} ⊆ 2n−i−1 × 2× 2t−k × 2k,

M ′
i+1 := {(xi+2, . . . , xn, r, w, u) | C(fw1 (u), . . . , fwi (u), f(u), xi+2, . . . , xn) = 1} ⊆ 2n−i−1 × 2× 2t−k × 2k.

One can notice that there are PV-functions g1 : Mi → M ′
i × 2i and g2 : Mi+1 → M ′

i+1 × 2i that are bijections,
therefore we only need to show that M ′

i ≈ε′ M
′
i+1.

Fix w < 2t−k and xi+2, . . . , xn < 2. We define the sets

Uw,x⃗ := {(r, u) ∈ 2× 2k | C(fw1 (u), . . . , fwi (u), r, xi+2, . . . , xn) = 1} ⊆ 2× 2k,

V w,x⃗ := {(r, u) ∈ 2× 2k | C(fw1 (u), . . . , fwi (u), f(u), xi+2, . . . , xn) = 1} ⊆ 2× 2k.

We will choose k ∈ LogLog so that it is possible to precisely count the size of Uw,x⃗ and V w,x⃗ in brute-force. Since
f is hard on average against circuits, we can prove that |Uw,x⃗| − |V w,x⃗| is small. Since the functions that witness
Uw,x⃗ ≈ε′ V

w,x⃗ is uniform in w and x⃗, we can further extend it to witness that M ′
i ≈ε′ M

′
i+1, which completes the

proof.
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