
Query Complexity of Search Problems1

Arkadev Chattopadhyay #2

Tata Institute of Fundamental Research, Mumbai, India3

Yogesh Dahiya #4

The Institute of Mathematical Sciences (HBNI), Chennai, India5

Meena Mahajan # �6

The Institute of Mathematical Sciences (HBNI), Chennai, India7

Abstract8

We relate various complexity measures like sensitivity, block sensitivity, certificate complexity for9

multi-output functions to the query complexities of such functions. Using these relations, we improve10

upon the known relationship between pseudo-deterministic query complexity and deterministic query11

complexity for total search problems: We show that pseudo-deterministic query complexity is at most12

the third power of its deterministic query complexity. (Previously a fourth-power relation was shown13

by Goldreich,Goldwasser,Ron (ITCS13).) We then obtain a significantly simpler and self-contained14

proof of a separation between pseudodeterminism and randomized query complexity recently proved15

by Goldwasser,Impagliazzo,Pitassi,Santhanam (CCC 2021). We also separate pseudodeterminism16

from randomness in And decision trees, and determinism from pseudodeterminism in Parity decision17

trees. For a hypercube colouring problem closely related to the pseudodeterministic complexity18

of a complete problem in TFNPdt, we prove that either the monotone block-sensitivity or the19

anti-monotone block sensitivity is Ω(n1/3); previously an Ω(n1/2) bound was known but for general20

block-sensitivity.21

2012 ACM Subject Classification Theory of computation → Oracles and decision trees22

Keywords and phrases Boolean functions, Decision trees, Randomness, Search problems, Pseudode-23

terminism24

1 Introduction25

The question of whether randomness adds computational power over determinism, and if26

so, how much, has been a question of great interest that is still not completely understood.27

Naturally, the answer depends on the computational model under consideration, but it also28

depends on the type of problems one hopes to solve. One may wish to compute some function29

of the input, a special case being decision problems where the function has just two possible30

values. There are also the search problems, where for some fixed relation R ⊆ X × Y and31

an input x ∈ X, one wishes to find a y ∈ Y that is related to x; i.e. (x, y) ∈ R. If every32

x ∈ X has at least one such y, we have a total search problem defined by R, the R-search33

problem. In the context of (total) search problems, a nuanced usage of randomness led34

to the beautiful notion of pseudo-determinism; see [11]. A function f solves the R-search35

problem if for every x, (x, f(x)) ∈ R. A randomized algorithm which computes such an f36

with high probability is said to be a pseudo-deterministic algorithm solving the R-search37

problem. Thus a pseudodeterministic algorithm uses randomness to solve a search problem38

and almost always provides a canonical solution per input.39

The original papers introducing and studying pseudodeterminism examined both polynomial-40

time algorithms and sublinear-time algorithms; in the latter case, the computational resource41

measure is query complexity. In [13, 12], a maximal separation was established between42

pseudodeterministic and randomized query algorithms. Namely, for a specific search problem43

with randomized query complexity O(1), it was shown that no pseudodeterministic algorithm44

has sublinear query complexity.45

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 39 (2023)

mailto:arkadev.c@tifr.res.in
mailto:yogeshdahiya@imsc.res.in
mailto:meena@imsc.res.in
https://orcid.org/0000-0002-9116-4398

2 Query Complexity of Search Problems

Very recently, in [14], this separation was revisited. The separating problems in [13, 12] do46

not lie in the query-complexity analogue of NP (nondeterministic polylog query complexity,47

or polylog query complexity to deterministically verify a solution, TFNPdt). This is a48

very natural class of search problems, and in [14], an almost-maximal separation between49

randomized and pseudo-deterministic search is established for a problem in this class. The50

problem in question is SearchCNF: given an assignment to the variables of a highly51

unsatisfiable k-CNF formula, to search for a falsified clause; this problem is very easy for52

randomized search a(O(1) queries), and solutions are easily verifiable. Theorem 7 of [14]53

establishes that for unsatisfiable k-CNF formulas on n variables with sufficiently strong54

expansion in the clause-variable incidence graph (in particular, for most random k-CNF55

formulas), the corresponding search problem has pseudodeterministic complexity Ω(
√

n),56

even in the quantum query setting; its randomised complexity is O(1). In [14], the size57

measure of decision trees in the pseudodeterministic setting was also studied. Lifting the58

query separation using a small gadget, a strong separation between randomized size and59

pseudodeterministic size was obtained: SearchCNF problem on random k-CNFs lifted with60

2-bit XOr has randomized size O(1) but require exp(Ω(
√

n)) size in pseudodeterministic61

setting.62

Taking this study further, Theorem 3 of [14] shows that the promise problem PromiseFIND1,63

of finding a 1 in an n-bit string with Hamming weight at least n/2, is in a sense complete64

for the class of search problems that are in TFNPdt and have efficient randomized query65

algorithms. By relating this search problem to a certain combinatorial problem concerning66

colourings of the hypercube, and by using the lower bound for SearchCNF, a lower bound67

of Ω(
√

n) on the pseudodeterministic complexity of PromiseFIND1 is obtained (Theorem 1468

and subsequent remark in [14]. The colouring problem on hypercubes states that any proper69

coloring of the hypercube contains a point with many 1s and with high block sensitivity. In70

[14], a point with block sensitivity Ω(
√

n) is proven to exist (Theorem 14), and a point with71

block sensitivity Ω(n) is conjectured to exist (Conjecture 16).72

73

Our contributions74

Our first contribution is an improved derandomization of pseudodeterministic query al-75

gorithms.76

For Boolean functions, randomized and deterministic query complexity are known to be77

polynomially related. Since deterministic query lower bounds are often easy to obtain using78

some kind of adversary argument, this provides a route to randomized query lower bounds79

for Boolean functions. For search problems, however, there is no such polynomial relation.80

Note that separating pseudodeterminism from randomness requires a lower bound against81

randomized query algorithms that provide canonical solutions. Such algorithms compute82

multi-output functions (following nomenclature from [14]) as opposed to Boolean functions.83

Thus what is required is randomized query lower bounds for multi-output functions. For such84

functions, too, lower bounds for deterministic querying are often relatively easy to obtain.85

And again, as for Boolean functions, deterministic and randomized query complexity for86

multi-output functions are known to be polynomially related; in [13, 12] (Theorem 4.1(3)),87

the authors show that the deterministic query complexity is bounded above by the fourth88

power (as opposed to cubic power for Boolean functions) of the randomized complexity. They89

also show that it is bounded above by the cubic power times a factor that depends on the90

size of the search problem’s range. We revisit these relations, and further tighten them to a91

cubic power relation. Thus for search problems, deterministic query complexity is bounded92

A. Chattopadhyay, Y. Dahiya, M. Mahajan 3

above by the cubic power of its pseudodeterministic query complexity; Theorem 3.2.93

Our next contribution is to give a significantly simpler, self-contained, proof of (a slightly94

weaker version of) the separation from [14] in the classical setting. For random k-CNF95

formulas, the randomized complexity of the search problem is easily seen to be O(1); see96

Corollary 8 in [14]. The deterministic query complexity for the search problem is known to be97

Ω(n) and follows from [19, 5]; see also [17]. Using the relation from [13, 12], this immediately98

implies that pseudodeterministic query complexity is Ω(n1/4). (In fact, since the number99

of clauses is Θ(n), it even yields the bound Ω((n/ log n)1/3)). Using instead our improved100

derandomization from Theorem 3.2 gives the lower bound Ω(n1/3). While these bounds are101

still not as strong as the lower bound of Ω(
√

n) from [14], they certainly suffice to separate102

pseudodeterminism from randomness for this problem. We give a direct proof (Section 4 of103

the deterministic Ω(n) lower bound. This, along with Theorem 3.2, gives a self-contained104

proof that the pseudo-deterministic complexity of SearchCNF is Ω(n1/3).105

However, the really significant feature of our separation is its simplicity, the way it is106

established. Even for classical (as opposed to quantum) queries, the lower bound proof in107

[14] is highly non-trivial. After connecting pseudodeterministic complexity for this problem108

to a notion in proof complexity, namely the degree of an Nullstellensatz refutation, it uses109

two “heavy hammers” – (1) known lower bounds on the degree of Nullstellensatz refutations110

for such formulas [1], and (2) the recently-proved sensitivity theorem [16], showing that111

sensitivity and degree are quadratically related, and then wraps up the proof with the112

fact that sensitivity gives lower bounds on randomized query complexity. The use of big113

tools seems necessitated by the fact that the authors of [14] directly give lower bounds on114

randomized algorithms for multi-output functions. By using the derandomization, our proof115

bypasses the use of both these known results, and relies on a lower bound for deterministic116

algorithms for multi-output functions; Proposition 2.8(2). Even for this lower bound, the117

already known proof uses other proof complexity results, namely, the connection between118

decision trees and tree-like resolution proofs [19], and the size of tree-like resolution proofs119

[2]. We give a direct proof framed entirely within the context of decision trees; this may be of120

independent interest. As an illustrative example, we first describe in Proposition 4.1 another121

relation (but not one in TFNPdt) that separates pseudodeterminism from randomness.122

Next, using the recent result from [9] that derandomized the size measures for total boolean123

functions, we establish a polynomial relationship between the log of pseudodeterministic size124

and the log of deterministic size, ignoring polylog factors in the input dimension. This gives125

us another way to separate randomized size from pseudodeterministic size: any total search126

problem which is easy with randomization but difficult for deterministic search will lead to127

a separation between pseudodeterministic size and randomized size; one such problem is128

SearchCNF on suitably expanding k-CNF formulas.129

We also consider the complexity of search problems in two other, more general, query130

models. The first model is the And decision tree, where each query is a conjunction of131

variables. The second is the Parity decision trees, where each query reports the parity of132

some subset of variables. Both these models obviously generalise decision trees, and are133

much more powerful in the deterministic setting. We show the following:134

1. For And decision trees, pseudo-determinism is still separated from randomness; The-135

orem 6.3. Furthermore, using the recent result from [9] which derandomized the And136

decision trees for total Boolean functions, we observe that pseudodeterminism and determ-137

inism are polynomially related in this setting, ignoring polylogn factors;Corollary 6.5.138

2. For Parity decision trees, determinism is separated from pseudo-determinism; The-139

orem 6.6. There is no polynomial relation between these two complexity measures.140

4 Query Complexity of Search Problems

In this setting, we do not know whether pseudo-determinism is separated from randomness.141

Finally, in the same spirit of finding simpler proofs, we revisit the hypercube color-142

ing problem from [14]. There, the existence of a point with large Hamming weight and143

block-sensitivity Ω(
√

n) is established, using the previously established lower bound for144

SearchCNF. We give a completely combinatorial and constructive argument to show that a145

point with large Hamming weight and block-sensitivity Ω(n1/3) exists, Theorem 7.3 While we146

seemingly sacrifice stronger bounds in the quest for simplicity, our algorithm actually proves147

something that is stronger in a different way, and hence our result is perhaps incomparable148

with that of [14]. The difference is that we identify many sensitive blocks that are all 1s, or149

many sensitive blocks that are all 0s.150

Our techniques.151

We examine how the notions of sensitivity, block sensitivity, certificate complexity, originally152

defined for Boolean functions, extend to multi-output functions and what relationships can153

be established between them. Ignoring constant multiplicative factors, the same relationships154

continue to hold; see Theorem 3.1. These relationships are obtained by appropriately155

modifying the arguments that establish corresponding relationships for boolean functions.156

These relationships directly yield that that deterministic query complexity is bounded above157

by the cube of pseudodeterministic query complexity; Theorem 3.2.158

To show directly that the search problem for a random k-CNF formula requires large159

deterministic query complexity (Section 4), we consider the notion of redundancy in and160

minimality of decision trees. In a decision tree for the Search CNF problem, a node querying161

a variable is redundant if in at least one of its two subtrees, no leaf is labelled by a clause162

containing that variable. Amongst all depth-optimal decision trees, the smallest tree is also163

minimal i.e. devoid of redundant nodes. We crucially use this property to show that the tree164

must have Ω(n) depth.165

It is worth noting that the randomised lower bound from [14] for random k-CNF formulas166

uses neighbourhood expansion of the incidence graph. Our proof instead uses boundary167

expansion (also known as unique neighbour expansion) of the same graph; this makes the168

proof crisp. It can be seen as a reframing of the width lower bound for such formulas169

established in [5].170

The separations for And and Parity decision trees are obtained through direct com-171

binatorial arguments, using the notion of monotone sensitivity and the random subset sum172

principle respectively.173

Related work.174

For Boolean functions, the relations between many complexity measures and query complexity175

has been studied extensively in the literature. A consolidation of many known results appears176

in the survey [7] as well as in the classic book [17]. The degree and approximate degree of177

Boolean functions has also been a very useful measure, but is not directly relevant to this178

work.179

The connection between decision trees and proof complexity is well-known for years; see180

for instance [19, 5, 4, 6]. However, this work aims to bypass proof complexity in giving lower181

bounds for query complexity.182

A. Chattopadhyay, Y. Dahiya, M. Mahajan 5

Organisation of the paper.183

After giving the definitions and listing relevant known results in Section 2, in Section 3 we184

establish the relationships between various measures for multi-output functions, and establish185

the polynomial relation between pseudodeterministic and deterministic query complexity for186

search problems. In Section 4 we give the simpler lower bound for random k-CNF formulas.187

Section 5 establishes a relationship between pseudodeterministic size and deterministic size.188

Section 6 discusses the complexity of search problems in And and Parity decision trees.189

Section 7 discusses the hypercube coloring problem from [14].190

2 Preliminaries191

Notation192

For x ∈ {0, 1}∗, and b ∈ {0, 1}, |x| denotes the length of x, and |x|b denotes the number of193

occurrences of b in x. We also use the notation wt(x) for |x|1, since it is the Hamming weight194

of x. All logarithms in this paper are taken to the base 2. We use notations Õ(·), Θ̃(·), Ω̃(·)195

to hide polylogarithmic factors in the input size (and not just polylogarithmic factors in the196

argument).197

Search Problems198

A search problem over domain X and range Y is a relation S ⊆ X × Y. Given an input199

x ∈ X , the task is to find a y ∈ Y such that (x, y) ∈ S, if such a y exists. If for every element200

x ∈ X there exist a y ∈ Y such that (x, y) ∈ S, then S is said to be a total search problem.201

A function f : X → Y solves a total search problem S, denoted by f ∈s S, if for every202

x ∈ X , (x, f(x)) ∈ S. To emphasize that the range of f is some subset of Y and f is not203

necessarily a decision problem, we call such functions multi-output functions (following204

nomenclature from [14]).205

Throughout this paper, we consider without loss of generality that X ⊆ {0, 1}∗ and206

Y ⊆ N. For n ∈ N, Xn denotes the set X ∩{0, 1}n, and Yn = {y ∈ Y | ∃x ∈ Xn : (x, y) ∈ S}.207

Further, Sn denotes the restriction of S to Xn; that is, Sn = {(x, y) ∈ S | x ∈ Xn}. The208

parameter ℓS(n) is the number of bits required to represent the range of the projection of209

Sn to Y; that is, ℓS(n) = log |Yn|. Throughout this paper, we use Yn = {1, 2, ..., mn}, and210

we drop the subscript n when clear from context. (Thus we often talk of X ⊆ {0, 1}n and211

Y = [m].)212

Combinatorial Measures for Multi-output functions213

For a multi-output function f : X → Y, several complexity measures can be defined by214

adapting the corresponding definitions for Boolean functions (X = {0, 1}n, Y = {0, 1}).215

Certificate Complexity216

For an input a ∈ X , an f -certificate of a is a subset B ⊆ {1, ..., n} such that217

∀a′ ∈ X ,
[(

a′
j = aj∀j ∈ B

)
=⇒ f(a) = f(a′)

]
.218

6 Query Complexity of Search Problems

Such a certificate need not be unique. Let C(f, a) denote the minimum size of an f -certificate219

for the input a. Then220

For b ∈ Y, Cb(f) = max{C(f, a) | a ∈ f−1(b)}221

C(f) = max{C(f, a) | a ∈ X} = max
b∈Y

Cb(f)222

223
224

Sensitivity and Block Sensitivity225

For an x ∈ X , B ⊆ [n], and b ∈ {0, 1}, bB is the n-bit string that is b at positions in B and226

1− b elsewhere. A (multi-output) function f is sensitive to block B on input x if x⊕ 1B ∈ X227

and f(x) ̸= f(x⊕ 1B). The block sensitivity of x with respect to f , bs(f, x), is the maximum228

integer r for which there exist r disjoint sensitive blocks of f at x. The block sensitivity of229

the function is defined as bs(f) = maxx∈X bs(f, x).230

By restricting the block sizes to 1, we get the notion of sensitivity. A bit i ∈ [n] is sensitive231

for x with respect to f if the block {i} is sensitive for x. The sensitivity of x with respect to232

f , s(f, x), is the number of sensitive bits for x. The sensitivity of the function is defined as233

s(f) = maxx∈X s(f, x).234

Next, we define variants of sensitivity and block sensitivity where one restricts changing input235

by only flipping 0’s or by only flipping 1’s. For b ∈ {0, 1}, a set B ⊆ [n] is a sensitive b-block236

of f at input x if xi = b for each i ∈ B, x ⊕ 1B ∈ X , and f(x) ̸= f(x ⊕ 1B). The b-block237

sensitivity of f at x, denoted by bsb(f, x), is the maximum integer r for which there exist r238

disjoint sensitive b-blocks of f at x. The b-block sensitivity of f is bsb(f) = maxx∈X bsb(f, x).239

For b ∈ {0, 1}, the b-sensitivity of f at x, sb(f, x), is the number of sensitive b-bits of x. The240

b-sensitivity of f is sb(f) = maxx∈X sb(f, x). We note that s0(f) and bs0(f) are the same as241

the monotone sensitivity and monotone block sensitivity used in the work of [18] for studying242

a variant of standard decision trees, namely And-decision trees.243

For d ∈ Y, we extend the notation, and denote sd(f) = maxx∈f−1(d) s(f, x) and bsd(f) =244

maxx∈f−1(d) bs(f, x).245

246

Query Complexity Measures247

Decision trees248

For a search problem S, a (deterministic) decision tree T computing S is a binary tree with249

internal nodes labelled by the variables and the leaves labelled by some y ∈ Y. To evaluate250

S on an unknown input x, the process starts at the root of the decision tree and works down251

the tree, querying the variables at the internal nodes. If the value of the query is 0, the252

process continues in the left subtree, otherwise, it proceeds in the right subtree. Let the label253

of the leaf so reached be T (x). For every x ∈ X , T (x) must belong to S(x). Every decision254

tree T computing S corresponds to a multioutput function f : X → Y solving S, namely,255

the function which maps x ∈ X to T (x). The depth of a decision tree T , denoted Depth(T),256

is the length of the longest root-to-leaf path, and its size Size(T) is the number of leaves.257

A. Chattopadhyay, Y. Dahiya, M. Mahajan 7

Deterministic Query and Size Complexity258

The deterministic query complexity of S, denoted by Ddt(S), is defined to be the minimum259

depth of a decision tree computing S. Equivalently,260

Ddt(S) = min
f∈sS

min
T computes f

Depth(T)261

i.e. the minimum number of worst-case queries required to evaluate any f solving S. The262

deterministic size complexity of a S, denoted by DSizedt(S), is defined similarly i.e.263

DSizedt(S) = min
f∈sS

min
T computes f

Size(T)264

Randomized and Distributional Query and Size Complexity265

A randomized query algorithm/decision tree A is a distribution DA over deterministic decision266

trees. On input x, A starts by sampling a deterministic decision tree T according to DA,267

and outputs the label of the leaf reached by T on x. Algorithm A computes S with error at268

most ϵ if for every input x, the probability that A(x) belongs to S(x) is at least 1− ϵ. The269

complexity of the randomized algorithm is measured by the number of worst-case queries270

made by A on any input x i.e. maximum depth over all decision trees in the support of the271

distribution. The randomized query complexity of S for error ϵ, denoted by Rdt
ϵ (S), is the272

minimum number of worst-case queries required to compute S with error at most ϵ. That is,273

Rdt
ϵ (S) = min

A computes S with error ≤ ϵ
max

T :DA(T)>0
Depth(T).274

When no ϵ is specified, it is assumed to be 1/3. The randomized size complexity of a search275

problem S, denoted by RSizedt(S), is defined similarly i.e.276

RSizedt
ϵ (S) = min

A computes S with error ≤ ϵ
max

T :DA(T)>0
Size(T).277

For a probability distribution D over inputs X , the (D, ϵ)-distributional query and size278

complexity of S, denoted by Ddt
D,ϵ(S) and DSizedt

D,ϵ(S) respectively, is the minimum depth/size279

of a deterministic decision tree that gives a correct answer on 1− ϵ fraction of inputs weighted280

by D. That is, with x ∼ D denoting that x is sampled according to D,281

Ddt
D,ϵ(S) = min

{
Depth(T) | T is a deterministic decision tree; Pr

x∼D
[(x, T (x)) ̸∈ S] ≤ ϵ

}
.282

283

DSizedt
D,ϵ(S) = min

{
Size(T) | T is a deterministic decision tree; Pr

x∼D
[(x, T (x)) ̸∈ S] ≤ ϵ

}
.284

Distributional query(size) complexity provides a technique to prove randomized query(size)285

lower bounds. It characterizes the randomized query(size) complexity completely.286

▶ Proposition 2.1 ([20]). Rdt
ϵ (S) = maxD Ddt

D,ϵ(S) and RSizedt
ϵ (S) = maxD DSizedt

D,ϵ(S).287

This is proved in [20] for Boolean functions, but it is easy to see that it also holds for288

multi-output functions and search relations. For an arbitrary distribution D, Ddt
D,ϵ ≤289

Rdt
ϵ (DSizedt

D,ϵ ≤ RSizedt
ϵ), is easily shown using a weighted counting argument. The other290

direction, Rdt
ϵ ≤ maxD Ddt

D,ϵ(RSizedt
ϵ ≤ maxD DSizedt

D,ϵ), was shown using linear programming291

duality. The easy direction of Proposition 2.1 gives us a way to prove randomized query292

lower bounds by proving a (D, ϵ)-distributional query complexity lower bound for some hard293

distribution D. We note that this technique also works for other models of decision tree like294

And and Parity decision trees.295

8 Query Complexity of Search Problems

Pseudodeterministic Query and Size Complexity296

A pseudodeterministic query algorithm/decision tree for a search problem S, with error 1/3,297

is a randomized decision tree A computing S with the property that for every input x, there298

is a canonical value y ∈ Y such that with probability at least 2/3, A(x) = y. Equivalently,299

a pseudodeterministic query algorithm is a randomized query algorithm that computes300

some multi-output function f ∈s S with error at most 1/3. The pseudodeterministic query301

complexity of S, denoted by psDdt(S), is equal to minf∈sS Rdt(f) and pseudodeterministic302

size complexity of S, denoted by psDSizedt(S), is equal to minf∈sS RSizedt(f). Note the303

difference between pseudodeterministic and randomized query algorithms: randomized query304

algorithms on input x are not required to output a canonical value with high probability;305

they just need to output a value in S(x) with high probability.306

The query-complexity analog of TFNP307

TFNP is the class of total functions which can be solved in nondeterministic polynomial308

time, or for which the solution/value can be verified in deterministic polynomial time. Since309

every function is trivially computable with query complexity n, the analog of polynomial-310

time/efficient/tractable for query complexity is poly-logarithmic queries. The class TFNPdt
311

thus denotes total search problems for which solutions can be verified with polylogarithmic312

queries.313

Known results314

▶ Proposition 2.2 ([17][7]). For any Boolean function f : {0, 1}n → {0, 1},315

1. s(f) ≤ bs(f) ≤ C(f) ≤ s(f)bs(f).316

2. s(f) ≤ bs(f) ≤ 3Rdt
1/3.317

3. C(f) ≤ Ddt(f) ≤ C(f)2.318

4. Ddt(f) ≤ C(f)bs(f).319

5. Ddt(f) ∈ O((Rdt(f))3).320

▶ Proposition 2.3 (restated from [12]). For a search relation S,321

1. Ddt(S) ≤
(

psDdt(S)
)4

. [Restated from Theorem 4.1(3) in [12]]322

2. Ddt(S) ≤
(

psDdt(S)
)3

ℓS(n). [Restated from Theorem 4.1(3) in [12]]323

▶ Proposition 2.4. 1. [Corollary 4.2 in [12]] For the relation ApproxHamWt = {(x, v) :324

|wt(x) − v| ≤ n/10}, psDdt(ApproxHamWt) ∈ Ω(n) and Rdt(ApproxHamWt) ∈325

O(1).326

2. [Theorem 4 in [14]] For the relation PromiseFIND1 = {(x, i) : wt(x) ≥ |x|/2∧ xi = 1},327

psDdt(PromiseFIND1) ∈ Ω(
√

n) and Rdt(PromiseFIND1) ∈ O(1).328

Unsatisfiable k-CNF formulas329

We consider random k-CNF formulas over n variables and m = cn clauses. Let Fk,n
m be330

the distribution over random k-CNF formulas with m clauses, where each clause is sampled331

uniformly randomly with repetition from the set of all 2k
(

n
k

)
clauses. To study these formulas,332

we need to study the underlying properties of the clause-variable incidence graph of these333

formulas.334

A. Chattopadhyay, Y. Dahiya, M. Mahajan 9

▶ Definition 2.5. Let F = C1∧C2∧ ...∧Cm be a random k-CNF formula on n variables with335

m clauses. Consider the bipartite graph, GF = (V = [m], U = [n], E) with m left vertices,336

one for each clause Ci, and n right vertices, one for each variable, such that (i, j) ∈ E if337

and only if clause Ci contains one of the literals xj ,¬xj. For any V ′ ⊆ V , the neighborhood338

of V ′ is the set N(V ′) = {u ∈ U | (v, u) ∈ E, v ∈ V ′}, and the boundary of V ′ is the set339

∂V ′ = {u ∈ U | |N(u) ∩ V ′| = 1}. A k-CNF formula F is said to be340

1. (Matchability) r-matchable if in GF , ∀V ′ ⊆ V with |V ′| ≤ r, |N(V ′)| ≥ |V ′|.341

2. (Neighborhood Expansion) an (r, ϵ)-expander if in GF , ∀V ′ ⊂ V with r/2 ≤ |V ′| ≤ r,342

|N(V ′)| ≥ ϵ|V ′|.343

3. (Boundary Expansion) an (r, ϵ)-boundary expander if in GF , ∀V ′ ⊂ V with r/2 ≤ |V ′| ≤ r,344

|∂V ′| ≥ ϵ|V ′|.345

There are several notions of expansion in literature; they are similar but not exactly346

equivalent. We use boundary-expansion in our work. Boundary expansion is a stronger347

notion than neighborhood expansion, but neighborhood expansion does imply boundary348

expansion with some weakening in the expansion parameter. In particular, the following349

proposition can be easily verified.350

▶ Proposition 2.6. If a k-CNF formula, F , is an (r, ϵ)-expander, then it is an (r, 2ϵ− k)-351

boundary expander.352

▶ Proposition 2.7 ([10][2] [3]). For a constant c large enough and 0 < ϵ < 1/2, there exist353

constants κ1, κ2 ≤ 1, function of ϵ and c, such that following holds. For F a random 3-CNF354

formula on n variables with m = cn clauses sampled from F3,n
m , with high probability, 1−o(1),355

(F is highly unsatisfiable): Every assignment falsifies at least half of the clauses of F .356

(F is highly matchable): F is n-matchable.357

(F has expansion properties): F is (κ1n, 1 + ϵ)-expander.358

(F has boundary expansion properties): F is (κ2n, ϵ)-boundary expander.359

For an unsatisfiable CNF formula F = ∧i∈[m]Ci on n variables, the SearchCNF relation is360

defined as SearchCNF(F) = {(a, i) | a ∈ {0, 1}n, a falsifies clause Ci}. It is known that for361

suitably expanding unsatisfiable formulas, the SearchCNF relation has high deterministic362

and pseudo-deterministic query complexity.363

▶ Proposition 2.8. For F a random 3-CNF formula on n variables with m = cn clauses364

sampled from F3,n
m , with probability 1− o(1), F is unsatisfiable and furthermore,365

1. Rdt(SearchCNF(F)) = O(1). (From Proposition 2.7.)366

2. Ddt(SearchCNF(F)) = Ω(n). (From [19, 5])367

3. psDdt(SearchCNF(F)) = Ω(
√

n). (Corollary 8 in [14])368

4. DSizedt(SearchCNF(F)) = exp(Ω(n)). (From [5])369

5. psDSizedt(SearchCNF(F)) = exp(Ω(
√

n)). (Theorem 22 in [14])370

3 Relating Measures for Multivalued functions371

We show the analogs of Proposition 2.2(1-4) for multi-output functions.372

▶ Theorem 3.1. For a function f : {0, 1}n → [m], the following relations hold.373

1. C(f) ≤ s(f)bs(f).374

2. s(f) ≤ bs(f) ≤ 3Rdt
1/3(f)375

3. C(f) ≤ Ddt(f) ≤ C(f)2.376

4. Ddt(f) ≤ 2C(f)bs(f).377

10 Query Complexity of Search Problems

Proof. The proof idea is to do the necessary modifications to the analogous results in the378

Boolean function case. The first two items are completely straightforward, but are nonetheless379

included here for completeness.380

1. (C(f) ≤ s(f)bs(f)): The construction in the boolean function case works for multioutput381

functions as well. For completeness, we repeat the argument explicitly.382

For an arbitrary input a ∈ {0, 1}n, let f(a) = i. We show that C(f, a) ≤ bs(f, a)si(f).383

Let B1, ..., Bk be disjoint minimal sets of blocks of variables that achieve k = bs(f, a).384

Then we claim that the set B = B1 ∪B2 ∪ ... ∪Bk is an f -certificate of a. Suppose not.385

Then there exists b ∈ {0, 1}n which coincides with a on B, but f(b) ̸= f(a). Let Bk+1 be386

the set of positions where b differs from a. Since b coincides with a on B, Bk+1 is disjoint387

from b and is a sensitive block for a, contradicting bs(f, a) = k.388

Hence C(f, a) ≤ |B|. Now, we just need to analyze the size of the certificate B. Note that389

|B| ≤ bs(f, a) maxj∈[k] |Bj |. We bound maxj∈[k] |Bj | by showing that any minimal block390

to which a is sensitive w.r.t. to f cannot have more than si(f) variables. Let Bj be a391

minimal sensitive block for a and aBj = a⊕ 1Bj . Now, observe that if we flip any variable392

in Bj , the function value flips from f(aBj) to f(a) = i. So, |Bj | ≤ si(f, aBj) ≤ si(f). Since393

this holds for arbitrary minimal sensitive block Bj for a, we have maxj∈[k] |Bj | ≤ si(f).394

Thus C(f, a) ≤ |B| ≤ bs(f, a)si(f) ≤ bs(f)s(f).395

2. (s(f) ≤ bs(f) ≤ 3Rdt
1/3(f)): The first inequality follows form the definitions. The second396

inequality can be proven for the Boolean case in many ways. The proof via distributional397

query complexity works in the multi-output function setting as well, as follows.398

Let a be an input achieving the block sensitivity k = bs(f), and B1, B2, ..., Bk be disjoint399

sensitive blocks for a. We demonstrate a hard distribution D such that Ddt
D,1/3(f) ≥ k/3,400

thereby showing Rdt
1/3(f) ≥ k/3. The hard distribution is as follows401

D(x) =

1/2 if x = a

1/(2k) if x = a⊕ 1Bi
for i ∈ [k]

0 Otherwise
402

Let T be any deterministic decision tree that gives correct answer for f on 2/3 fraction of403

inputs weighted by D. We argue that depth of T must be atleast k/3. Consider the path404

P traversed on a by T and let j be the label of the leaf l so reached. We argue that path405

P must query at least k/3 variables. Suppose not. Then there exist at least s = (2k/3)+1406

blocks Bi’s such that none of the variables from these block are queried by the path P .407

Without loss of generality, let these blocks be B1, B2, ..., Bs. So for all inputs in the set408

A = {a, a⊕1B1 , a⊕1B2 , ..., a⊕1Bs
}, the path P is traversed and the answer j is returned409

by T . Now, if f(a) = j, then T errors on the inputs {a⊕ 1B1 , a⊕ 1B2 , ..., a⊕ 1Bs}, which410

together have probability mass more than 1/3.On the other hand, if f(a) ̸= j, then T411

errs on a which has probability mass of 1/2. Either way, this contradicts the assumption412

that T answers correctly on 2/3 probability mass according to D.413

Since the argument works for arbitrary T that is a (D, 1/3)-distributional query algorithm414

for f , we have k/3 ≤ Ddt
D,ϵ(f) ≤ Rdt

1/3(f).415

3. (C(f) ≤ Ddt(f) ≤ C(f)2): The first inequality is easy to see. Given a decision tree T416

for f , on an input x, the variables queried by T on x form a valid certificate and so417

C(f) ≤ Ddt(f).418

The construction for the upper bound is exactly same as the one in the boolean case,419

but the analysis has to be done more carefully for multi-output functions. For a multi-420

output function f : X → [m], let C⃗ = (C1(f), C2(f), ..., Cm(f)). Let ρ1(f) and ρ2(f)421

A. Chattopadhyay, Y. Dahiya, M. Mahajan 11

denotes the largest and the second largest number in the tuple C⃗ respectively. We claim422

Ddt(f) ≤ ρ1(f)ρ2(f). Note that this proves our proposition since ρ1(f)ρ2(f) ≤ C(f)2.423

We prove the claim by induction on ρ2(f). For the base case, when ρ2(f) = 0, f is424

constant and so Ddt(f) ≤ ρ1(f)ρ2(f) = 0. For the induction step, ρ2(f) > 0, let i ∈ [m]425

be the index such that Ci(f) = ρ1(f). Pick an input a such that f(a) = i (such an input426

exists because Ci(f) > 0). Let S be the certificate for a and B be the set of variables in427

it. Without loss of generality, let B = {x1, x2, ..., xk}. Take a complete binary tree T0428

querying all the variables in B. On one of the leaves of T0, where variables in B match429

the bits of a, we know that the value of f is i. Each of the other leaves correspond to a430

unique setting ν of x1, ..., xk. Replace each leaf by the minimal depth decision tree for f431

restricted with ν, denoted by fν .432

First, we claim that ρ2(fν) ≤ ρ2(f)− 1. This comes from the simple observation that for433

h, l ∈ [m] with h ̸= l, every h-certificate must intersect with every l-certificate of f . Since434

we queried an i-certificate of f , for all j ≠ i, Cj(fν) ≤ Cj(f)−1. Hence ρ2(fν) ≤ ρ2(f)−1.435

Now applying the induction hypothesis for fν , Ddt(fν) ≤ ρ1(fν)ρ2(fν) ≤ ρ1(f)(ρ2(f)−1).436

Putting things together, Ddt(f) ≤ ρ1(f) + ρ1(f)(ρ2(f)− 1) ≤ ρ1(f)ρ2(f).437

4. (Ddt(f) ≤ 2C(f)bs(f)): This part is different from the boolean function case. We give438

an algorithm to compute f , querying at most 2C(f)bs(f) variables. The algorithm is as439

follows440

a. Repeat the following at most 2bs(f) times: Pick an input with a certificate C that is441

consistent with the queries so far but still has unqueried variables. Query the unqueried442

variables of C.443

If no such input exists, then the function under the restriction of queried variables has444

become constant. Return the appropriate constant and stop. Otherwise continue to445

the next step.446

b. Pick any input y consistent with the variables queried so far, and return f(y).447

First note that the algorithm queries atmost 2bs(f)C(f) variables in the worst case. We448

must show the correctness of the algorithm.449

If the algorithm stops in stage a, then we know that for all inputs, every certificate is either450

fully queried or inconsistent with the queries. Since certificates cannot be inconsistent451

for all inputs, we have an input x whose certificate is consistent and empty. This means452

that all the variables in the certificate have already been queried and checked, and so the453

function must evaluate to f(x).454

Now consider the case when the algorithm does not halt in stage a. We show that if455

the algorithm reaches stage b, then then all the consistent inputs y must have the same456

f(y) value. Suppose, to the contrary, there exist y and z consistent with all variables457

queried in stage a, and with f(y) ̸= f(z). Let t = 2bs(f), f(y) = ly, f(z) = lz and ρ be458

the partial assignment of variables queried so far. Let C1, C2, ..., Ct be the certificates459

chosen in step a, and for 1 ≤ i ≤ t, let Bi be the set of variables on which ρ disagrees460

with Ci. Even though ρ⊕ 1Bi
is a partial assignment, it is consistent with the certificate461

Ci, and hence f becomes constant under partial assignment ρ⊕ 1Bi . Thus f(ρ⊕ 1Bi) is462

well-defined. Consider the following sets:463

My = {i ∈ [t] | f(ρ⊕ 1Bi
) ̸= ly}.464

465

Mz = {i ∈ [t] | f(ρ⊕ 1Bi
) ̸= lz}.466

Then My ∪Mz = [t], so t ≤ |My| + |Mz|. Without loss of generality, let |My| ≥ |Mz|;467

then |My| ≥ t/2 = bs(f).468

Let B be the set of positions where y and z differ.469

12 Query Complexity of Search Problems

By construction, each Bi can only have variables that are in Ci, but not queried in470

∪j<iCj . Hence the blocks Bi for i ∈My are disjoint.471

Also, B is disjoint from each Bi, since y and z are consistent with ρ.472

Each block Bi for i ∈My, and block B, are all sensitive blocks for y.473

But this means that f is sensitive to |My|+ 1 ≥ bs(f) + 1 disjoint blocks, a contradiction.474

Thus, if the algorithm reaches stage b, all the inputs which are consistent with the queried475

variables must have the same function value. Hence the algorithm’s output in stage (b)476

is correct.477

◀478

Using the above, we now show the analogs of Proposition 2.2(5) and Proposition 2.3 for479

multi-output functions and search problems.480

▶ Theorem 3.2. The following relations hold.481

1. For a multi-output function f , Ddt(f) ∈ O((Rdt(f))3).482

2. For a total search problem S, Ddt(S) ∈ O((psDdt(S))3).483

Proof. For a multi-output function f , using Theorem 3.1, we have484

Ddt(f) ≤ 2C(f)bs(f) ≤ 2s(f)bs(f)2 ≤ 2bs(f)3 ≤ 2
(

3Rdt
1/3(f)

)3
.485

For total search problem S, let f̃ be a function solving S, with psDdt(S) = Rdt(f̃). Then486

Ddt(S) = min
f∈sS

Ddt(f) ≤ Ddt(f̃) ≤ O((Rdt
1/3(f̃)3) = O(psDdt(S)3).487

488

◀489

4 Simpler separations between psDdt and Rdt
490

Using Theorem 3.2, we now provide simpler proofs of separations between randomized and491

pseudo-deterministic query complexity.492

In [12], the search problem ApproxHamWt was shown to demonstrate the limitations493

of pseudo-determinism over randomized querying. In a similar vein, the search problem494

BalancedFind1 defined below shows a similar separation, and (arguably) the lower bound495

is simpler to prove.496

▶ Proposition 4.1. Let S be the search problem497

BalancedFind1 = {(x, i) : (|x|1 = |x|0 ∧ xi = 1) or (|x|1 ̸= |x|0)}.498

Then Rdt(S) ∈ O(1), Ddt(S) = n, and psDdt(S) ∈ Ω(n1/3).499

Proof. First we show that Rdt
1/4(S) is 2. For odd n, simply output 1 without querying500

anything. For even n = 2m, the randomized query algorithm is as follows: Randomly choose501

two distinct indices i, j ∈ [n], and query them. If xi ∨ xj = 1, output any index k ∈ {i, j}502

with xk = 1. Otherwise output 1. It is clear that for inputs x where |x|1 ̸= |x|0, the algorithm503

is always correct. If |x|1 = |x|0, an error occurs only if both i, j are among the exactly m504

indices where x has a 0; this happens with probability
(

m
2
)
/
(2m

2
)

= 1
2 . m−1

2m−1 ≤ 1/4.505

Next we show that Ddt(S) = ⌊n/2⌋ = m. It suffices to consider even n, since for odd n no506

queries are required. To see Ddt(S) ≤ m, consider the decision tree TS which queries the first507

m variables, outputs the first index j for which xj = 1, and if no such index exists it outputs508

A. Chattopadhyay, Y. Dahiya, M. Mahajan 13

m + 1. It is easy to verify that TS solves S. For the lower bound Ddt(S) ≥ m, let T be any509

decision tree solving S on instances of length n = 2m. Consider the left-most path P in the510

tree, i.e. the path where all the queried variables are reported to be 0, and let it terminate at511

the leaf ℓ labelled i. We argue that this path must be of length at least m. Suppose not.512

Without loss of generality, let the variables queried on the path be x1, x2,, xk for some513

k < m. The set F of m + 1 inputs defined as F = {0m−11j01m−j |0 ≤ j ≤ m} acts as a514

fooling set for T : since k < m, all the inputs in F are consistent with the variables queried515

on P , so for each x ∈ F , T reaches ℓ and outputs i; however, for each i ∈ [2m], there exist516

x ∈ F such that xi = 0 and so (x, i) ̸∈ S. Hence T does not solves S, a contradiction. Hence517

any decision tree T which solves S must have left-most path of length at least m and thus518

Ddt(S) ≥ m = ⌊n/2⌋.519

From Theorem 3.2 and the fact that Ddt(S) = Ω(n) as shown above, it follows that520

psDdt(S) = Ω(n1/3). ◀521

Neither ApproxHamWt nor BalancedFind1 are in TFNPdt. However, the search prob-522

lem SearchCNF for random k-CNFs is in TFNPdt, and as shown in [14], also separates523

pseudodeterminism from randomness. For the SearchCNF problem on suitably expanding524

kCNF formulas, the randomised query complexity is O(1), while it is shown in [14] that the525

pseudo-deterministic query complexity is Ω(
√

n). Note that already from the results of [19, 5],526

the deterministic complexity of SearchCNF for these formulas is Ω(n) (see Proposition 2.8).527

Hence from the results of [12] (see Proposition 2.3), it follows that pseudo-deterministic query528

complexity is Ω(n1/4) and even Ω((n/ log n)1/3) since ℓS(n) = O(n), giving the separation.529

The proof in [14] improves the lower bound to Ω(n1/2). At a very high level, the stages530

involved in their proof are as follows: ignoring constant multiplicative factors,531

psDdt(SearchCNF) = Rdt(f) choose f computing canonical solutions optimally532

≥ max
i

Rdt(f i) f i: Boolean indicator function for each i in range533

≥ max
i
{s(f i)} known relation534

≥ max
i
{
√

deg(f i)} by sensitivity theorem [16]535

≥
√

degNS(CNF) construct Nullstellensatz refutation using f i’s536

≥
√

n by NS-degree lower bound [1, 8, 15]537538

The stage involving the Sensitivity theorem makes the connection between sensitivity and539

degree, and the stage involving Nullstellensatz degree lower bound uses expansion of random540

formulas.541

Observe that by using Proposition 2.8(2) in conjunction with Theorem 3.2, we can542

already obtain a lower bound of Ω(n1/3) on psDdt, marginally improving on the lower bound543

obtainable by using Proposition 2.8(2) in conjunction with Proposition 2.3. Of course, this is544

still not as strong as the lower bound from Proposition 2.8(3), but the proof is significantly545

simpler.546

Below we present a direct proof of the deterministic lower bound from Proposition 2.8(2),547

using only Proposition 2.7. Though it does not show anything new, it is interesting because548

it directly operates on decision trees, and the tree manipulation techniques used may be549

useful in other contexts as well. This proof, along with the proof of Theorem 3.2, gives a550

complete self-contained proof of the fact that for SearchCNF, psDdt = Ω(n1/3).551

Proof. (Self-contained proof of the deterministic lower bound in Proposition 2.8(2).) Let F552

be a 3-CNF formula on n variables with m = cn clauses such that F is highly unsatisfiable553

14 Query Complexity of Search Problems

(i.e. each assignment falsifies at least half of the clauses), F is n-matchable, and F is a554

(κn, ϵ)-boundary expander for some ϵ > 0. As noted in Proposition 2.7, for large enough c, a555

random formula chosen from F3,n
m satisfies these properties with high probability.556

Let T be any decision tree solving S. Then T has the following properties557

1. The leaves of T are labelled by the clauses of F . The subformula F ′, comprising of only558

the clauses appearing at leaves of T , must form an unsatisfiable system since on every559

assignment T leads to a falsified clause. Since F is n-matchable, Hall’s theorem implies560

that any subset of at most n clauses of F can be matched to variables and thus can be561

satisfied by setting the variables appropriately. Hence F ′ must have at least n + 1 clauses.562

2. The partial assignment leading up to a leaf must falsify the clause labelled on the leaf.563

For example, if the leaf is labelled by the clause x1 ∨¬x2 ∨x4 then the partial assignment564

formed by querying the variables leading up to the leaf must have x1 = x4 = 0, x2 = 1.565

We show that any T solving S must have a node in T whose depth is at least ϵκn/2. We do566

this by performing modifications on T , deleting some of the unnecessary query nodes of T ,567

and reasoning about the modified tree. The modified decision tree is constructed as follows.568

For each non-leaf node v in T , let xv be the variable queried on v and let F L
v and F R

v be569

the set of clauses appearing at the leaves of the left and the right subtree of v respectively.570

We note below that the node v is redundant unless xv appears in some clause of F L
v as571

well as in some clause of F R
v .572

While T has redundant nodes, pick any such node v. Replace v by its left subtree if xv573

does not appear in any clause in F L
v , and by its right subtree if xv does not appear in any574

clause in F R
v .575

Let T ′ be the tree obtained when no more deletion of nodes is possible; there are no576

redundant nodes. We observe the following properties about T ′.577

1. T ′ solves S.578

2. Depth(T ′) ≤ Depth(T).579

3. For each node v in T ′, let Fv denote the set of clauses appearing at the leaves of subtree580

rooted at v. Let ∂Fv be the set of boundary variables, or unique-neighbour variables,581

associated with Fv. Then all the variables in ∂Fv must have been queried before node v.582

To see why this is so, let x be some variable in ∂Fv, and assume to the contrary that x583

is not queried by T on the path leading to v. By choice of x, there is a unique clause584

Cx ∈ Fv containing either x or ¬x; without loss of generality assume it contains x. In585

particular, no clause C ∈ Fv contains the literal ¬x. Let ℓ be a leaf in the subtree of v,586

labelled Cx. Since Cx is falsified by the partial assignment ρ that leads to ℓ, x must be587

set by ρ. Since it is not set upto v, there must be a node w on the path from v to ℓ that588

queries x. Since no clause in Fv has ¬x, the node w is redundant, a contradiction.589

With the observations above, the only thing left to do is to find a node which has lots of590

boundary variables associated with it.591

For the root node r, |Fr| = |F ′| =≥ n + 1 because of n-matchability. For a leaf node ℓ,592

|Fℓ| = 1. At each node v, Fv = F L
v ∪F R

v . Hence, there exists a node v with κn/2 ≤ |Fv| ≤ κn.593

(Start from the root node, and repeatedly move to the subtree with more clauses in its594

subtree until such a node is found.)595

Since F is a (κn, ϵ)-boundary-expander, ∂Fv has size at least ϵκn/2.596

By observation 3 above, the path in T ′ leading to v queries all variables in ∂Fv. Along597

with observation 2, we put things together:598

Depth(T) ≥ Depth(T ′) ≥ DepthT ′(v) ≥ |∂Fv| ≥
ϵκn

2 .599

Since this holds for an arbitrary decision tree T solving S, hence Ddt(S) ≥ Ω(n). ◀600

A. Chattopadhyay, Y. Dahiya, M. Mahajan 15

5 Pseudodeterministic Size vs Deterministic Size601

In this section, we show a polynomial relationship, ignoring polylog n factors, between the602

log of pseudodeterministic size and the log of deterministic size for total search problems.603

But before we do that we look at an argument to extend results on Boolean functions to604

multi-output functions. We observe that a relationship between randomized and deterministic605

complexity in a query model for Boolean functions leads to an almost similar relationship606

between pseudodeterministic complexity and deterministic complexity for search problems.607

The result follows from a straightforward application of a binary search argument and also608

appears in the work of [13] for making a similar claim for the ordinary query model.609

▷ Claim 5.1. In a query model M , let DM, RM, and psDM denote deterministic, random-610

ized and pseudodeterministic query complexities, respectively. And let DSizeM, RSizeM
611

and psDSizeM denote deterministic, randomized and pseudodeterministic size complexities,612

respectively. Then,613

1. If for all Boolean functions f : {0, 1}n → {0, 1}, DM(f) ≤ q(RM(f), n) for a function614

q : N×N→ N, then for any search problem S ⊆ {0, 1}n×[m], DM(S) = O(q(psDM(S), n)·615

min(log m, psDM(S))).616

2. If for all Boolean functions f : {0, 1}n → {0, 1}, log DSizedt(f) ≤ q(log RSizedt(f), n) for617

a function q : R×N→ N, then for any search problem S ⊆ {0, 1}n× [m], log DSizeM(S) =618

O(q(log psDSizeM(S), n) ·min(log m, psDSizeM(S))).619

Proof. We prove (2) above; the proof of (1) follows along similar lines. First, we extend
the relationship between randomized and deterministic complexities for Boolean functions
to multi-output functions. Let f : {0, 1}n → [m] be a multi-output function. Without loss
of generality, we assume that f is an onto function, i.e. for each i ∈ [m], there exists a
x ∈ {0, 1}n such that f(x) = i. Let T be an optimal size randomized decision tree for f with
size complexity s = log RSizeM(f). Consider the log m Boolean functions f0, f1, ..., flog m−1
such that for x ∈ {0, 1}n, fi(x) = 1 if and only if the i-th bit in the binary representation of
f(x) is 1. For each function fi, log RSizeM(fi) ≤ s. Indeed, take T and replace the labels of
the leaves to 0 if the i-th bit in the binary representation of the label is 0 and to 1 otherwise.
By the given randomized and deterministic relationship, there exist deterministic decision
trees T0, T1, ..., Tlog m−1 computing fi’s each with size at most 2q(s,n). Composing Ti’s, we
obtain a deterministic decision tree for f of size at most 2q(s,n) log m. So, for any multi-output
function f : {0, 1}n → [m],

log DSizeM(f) ≤ q(log RSizeM(f), n) · log m.

Next, we upper bound m by randomized size complexity RSizedt(f). We claim m <=620

2 · RSizeM(f). Suppose not, m > 2 · RSizeM(f). For random coins r, the number of possible621

labels output by T is clearly upper bounded by RSizeM(f). So, Er[|{ℓ : ∃x s.t. T (x, r) =622

ℓ}|] ≤ RSizeM(f). For m > 2 · RSizeM(f), by averaging argument, there exist i ∈ [m]623

such that Prr[T outputs i] < 1/2. Since for each i ∈ [m] there exist x such that f(x) = i,624

choosing one such x we get that Prr[T (x) = f(x)] < 1/2, contradicting the correctness of T .625

So for any multi-output function f we have, log DSizeM(f) ≤ q(log RSizeM(f), n) · log m ≤626

q(log RSizeM(f), n) · (log RSizeM(f) + 1).627

We utilize the relationship between deterministic and randomized complexities for multi-628

output functions to relate pseudodeterministic and deterministic complexities of search629

problems. For total search problem S, let f̃ be a multi-output function solving S, with630

16 Query Complexity of Search Problems

psDSizeM(S) = RSizeM(f̃). Then631

log DSizeM(S) = min
f∈sS

log DSizeM(f)632

≤ log DSizeM(f̃)633

= O(q(log RSizeM(f̃), n) ·min(log m, log RSizeM(f̃)))634

= O(q(log psDSizeM(S), n) ·min(log m, log psDSizeM(S))).635
636

◀637

Using the above result and a result from [9], we relate the log of deterministic size and638

the log of pseudodeterministic size for search problems. Recently it was shown in [9] that for639

all total Boolean functions, the log of deterministic size and the log of randomized size are640

polynomially related, ignoring a polylogarithmic factor in the input size.641

▶ Theorem 5.2 ([9, Theorem 3.1]). For every total Boolean function f : {0, 1}n → {0, 1},
we have

log DSizedt(f) = O((log RSizedt(f))4 log3(n)).

We get the following result by applying Claim 5.1 to Theorem 5.2.642

▶ Corollary 5.3. For a total search problem S ⊆ {0, 1}n × [m], we have

log DSizedt(S) = O(log4 psDSizedt(S) · log3(n) ·min(log m, log psDSizedt(S)))

.643

A separation between pseudodeterminism and randomized size was shown in [14]. For the644

SearchCNF problem on suitably expanding kCNF formulas lifted with 2-bit XOr gadget, the645

randomized size complexity is O(1), while it was shown in [14] that the pseudo-deterministic646

size complexity is exp(Ω(
√

n)). We note that using the result from [5], which showed a647

exp(Ω(n)) lower bound on deterministic size complexity of SearchCNF on suitably expanding648

kCNF formulas(see Proposition 2.8), and applying Corollary 5.3, we obtain a lower bound of649

exp(Ω̃(n1/5)) on psDSizedt of SearchCNF on such formulas, giving us a separation between650

RSizedt and psDSizedt albeit not as strong as [14]. However, due to Corollary 5.3, we can now651

say that any total search problem which is easy for randomized size and hard for deterministic652

size will give us a separation between RSizedt and psDSizedt.653

6 More general decision trees654

A variable is queried at each node of a decision tree. Generalising the class of permitted655

queries gives rise to many variants of decision trees that have been considered in different656

contexts. The two fundamental functions that are hard for decision tree depth are And and657

Parity, which are two of the most basic Boolean functions. It is thus natural to look at658

decision trees where query nodes can evaluate And’s or Parity’s of arbitrary subsets of659

input bits.660

And decision trees: Each node queries a conjunction of some variables.661

Parity decision trees: Each node queries the parity of some variables.662

We denote the query complexity in these models, for different modes of computation, by663

D∧-dt, psD∧-dt, R∧-dt and D⊕-dt, psD⊕-dt, R⊕-dt.664

A. Chattopadhyay, Y. Dahiya, M. Mahajan 17

Both these versions generalise decision trees and are much more powerful in the determ-665

inistic setting – the Andn function has Ddt = n and D∧-dt = 1, while the Parityn function666

has Ddt = n and D⊕-dt = 1.667

Pseudodeterminism can be separated from randomness in And decision trees. To establish668

the separation, we first give a technique to prove a pseudo-deterministic lower bound using669

monotone block sensitivity. The following theorem generalises Theorem 3.1(2) to And670

decision trees. The same relation is proved for Boolean functions in [18], by reduction to a671

hard communication problem; here, we give a more direct proof.672

▶ Theorem 6.1. For a multi-output function f , R∧-dt
1/3 (f) ≥ mbs(f))/3.673

Proof. Let a be an input with monotone block sensitivity k = mbs(f), and let B1, B2, . . . , Bk674

be sensitive disjoint 0-blocks of a. We describe a hard distribution D such that D∧-dt
D,1/3(f) ≥675

k/3, thereby showing R∧-dt
1/3 (f) ≥ k/3. The hard distribution is similar to the one used in676

Theorem 3.1(2).677

D(x) =

1/2 if x = a

1/(2k) if x = a⊕ 1Bi for i ∈ [k]
0 otherwise

678

We show that there is an adversary strategy A for responding to And queries such that679

for any And-decision tree T , if Depth(T) < k/3, then the probability that T errs when680

following the responses of A is more than 1/3.681

The adversary, A, maintains a partial assignment ρ consistent with his answers as follows:682

Firstly, adversary fixes all the variables not part of ∪iBi according to a. Now, if T asks a683

query whose answer is already determined by ρ, A answers accordingly. Otherwise, the query684

asked must involve variables from at least one of the sensitive blocks not set in ρ yet. A685

picks one such block arbitrarily and sets all its variable to 0 in ρ, and returns 0 to T as the686

query reply.687

It is clear that the ρ maintained by the adversary is consistent with his answers to queries.688

Also, at each stage, each of the sensitive blocks is either set entirely to 0s in ρ, or entirely689

unset in ρ. Each query results in at most one of the sensitive blocks being set.690

If Depth(T) < k/3, then T asks less than k/3 queries and returns an answer L on a leaf691

l. More than 2k/3 blocks thus remain unset when l is reached; w.l.o.g. let B1, B2, ..., Bs be692

these blocks, for some s > 2k/3. On all the inputs in the set {a, a⊕ 1B1 , a⊕ 1B2 , ..., a⊕ 1Bs
},693

T will reach l and output answer L. However, f(a⊕ 1Bi
) ̸= f(a) for each i ∈ [s]. If L ̸= f(a),694

then Prx∼D[T (x) ̸= f(x)] ≥ D(a) = 1/2. On the other hand, if L = f(a), then695

Pr
x∼D

[T (x) ̸= f(x)] ≥
∑
i∈[s]

D(a⊕ 1Bi) = s× 1
2k

>
2k

3
1
2k

= 1
3 .696

Thus, either way, if Depth(T) < k/3 = mbs(f)/3 then Prx∼D[T (x) ̸= f(x)] > 1/3. It697

follows that D∧-dt
D,1/3(f) ≥ mbs(f)/3. By Proposition 2.1, R∧-dt

1/3 (f) ≥ mbs(f)/3. ◀698

From this theorem and the definition of pseudodeterminism, we obtain the following corollary.699

700

▶ Corollary 6.2. For a total search problem S, psD∧-dt
1/3 (S) ≥ minf∈sS mbs(f)/3.701

Using this result, we can now separate randomised and pseudodeterministic complexity702

for And decision trees.703

18 Query Complexity of Search Problems

▶ Theorem 6.3. Let S be the search problem ApproxHamWt = {(x, v) : |wt(x) − v| ≤704

n/10}, where wt(x) is the Hamming weight of x. Then R∧-dt(S) = Rdt(S) = O(1), while705

psD∧-dt(S) ∈ Ω(n).706

Proof. It is easy to see, and already noted in Corollary 4.2 of [12], that Rdt(S) = O(1).707

To show psD∧-dt(ApproxHamWt) = Ω(n), we will show that any f solving ApproxHamWt708

must have monotone sensitivity of at least 4n/5. This too follows the proof outline from709

Corollary 4.2 of [12], where a lower bound on psDdt was obtained. But using Corollary 6.2,710

we draw the stronger conclusion that psD∧-dt(ApproxHamWt) ≥ 4n/5.711

Suppose that for some f solving ApproxHamWt, ms(f) < 4n/5. We start with x0 = 0n
712

and create a sequence of inputs ⟨xi⟩ such that wt(xi) = i and f(xi) = f(0n). Because f713

solves ApproxHamWt, n/10 ≥ f(0n) = f(x1) = f(x2) = . . . = f(xl) ≥ l − n/10. Thus is714

we are able to create such a sequence of length at least l = n/5 + 1, then we already have a715

contradiction.716

The only thing left is to create the sequence xi. For 0 ≤ i ≤ n/5, given xi with717

f(xi) = f(0n), we need to find a suitable xi+1. Note that xi has exactly n− i 0-bit positions,718

of which at most ms(f) are sensitive, so at least s = n− i−ms(f) 0-bit positions are not719

sensitive. Since ms(f) < 4n/5 and i ≤ n/5, s > 0, so xi has at least one non-sensitive720

0-bit position. Pick any such position, say j, and define xi+1 = xi ⊕ 1{j}. Note that721

xi+1 satisfies the desired properties we are looking for i.e. f(xi+1) = f(xi) = f(0n) and722

wt(xi+1) = i + 1. ◀723

Recently it was shown in [9] that the deterministic And query complexity and randomized724

And query complexity for total boolean functions are polynomially related, ignoring polylogn725

factors.726

▶ Proposition 6.4 ([9, Theorem 4.5]). For every total Boolean function f : {0, 1}n → {0, 1},727

D∧-dt(f) = O(R∧-dt(f)3 log4(n)).728

Using this along with Claim 5.1, we get a polynomial relationship between psD∧-dt and D∧-dt.729

730

▶ Corollary 6.5. For a total search problem S ⊆ {0, 1}n × [m], we have

D∧-dt(S) = O(psD∧-dt(S)3 · log4(n) ·min(log m, psD∧-dt(S)))

.731

For Parity decision trees we show that such a relation does not hold; pseudodeterminism732

adds significant power.733

▶ Theorem 6.6. Let S be the search problem734

SearchOR = {(x, v) : (xv = 1) or (x = 0n ∧ v = n + 1)}.735

Then D⊕-dt(S) = n whereas psD⊕-dt(S) = O(log n log log n).736

Proof. D⊕-dt(S) ≤ n is trivial; we show D⊕-dt(S) ≥ n. Let T be any parity decision tree737

solving S. Consider the left-most path P in the tree, i.e. the path where all the queries are738

reported to be 0, and let it terminate at the leaf ℓ. We claim that this path must be of739

length n. Suppose not. Let L1, L2, ..., Lk, for k < n, be the set of parities queried by T on740

the path P . Now, note that all the inputs on which T reaches leaf ℓ form an affine subspace741

A of co-dimension at most k defined by L1 = 0, L2 = 0, . . . , Lk = 0. Since k < n, it contains742

A. Chattopadhyay, Y. Dahiya, M. Mahajan 19

at least 2n−k ≥ 2 points. Clearly, 0n is in A, but it must contain at least one more point, x,743

other than 0n. Since S(0)∩S(x) = ∅, T must err on either x or 0 (or both). Thus, Depth(T)744

must be at least n. Hence D⊕-dt(S) = n.745

Next, we show that psD⊕-dt(S) = O(log n log log n). Let f be the multi-output function746

which returns n + 1 on input 0n, and on all other inputs it returns the bit position of the747

first 1. Note that f solves SearchOR. We give a randomized algorithm for f making748

O(log n log log n) queries, thereby showing that psD⊕-dt(S) = O(log n log log n). The main749

idea for the randomized algorithm is to perform binary search for the bit position of the first750

1. The algorithm is as follows:751

1. Initialise the search space C to [1, 2, ..., n]. C is an ordered set.752

2. Repeat until the search space C contains exactly one bit position: Let C = [p, p+1, ..., p+s]753

at the current stage. For k = 2 log log n, sample k random parities L1, L2, . . . , Lk754

independently over the variables xp, xp+1, ..., xp+⌊s/2⌋. That is, for i ∈ [k] and p ≤ j ≤755

p + ⌊s/2⌋, each Li independently contains xj with probability 1/2. Query L1, . . . , Lk,756

and if any one of them evaluates to 1, update the search space C to [p, p + 1., , p + ⌊s/2⌋].757

Otherwise update C to [p + ⌊s/2⌋+ 1, p + ⌊s/2⌋+ 2, ..., p + s].758

3. Let p be the only bit position in C at this stage. If xp = 0 return n + 1 otherwise return p.759

First, note that the algorithm makes at most O(log n log log n) queries, since the search space760

reduces by half in each iteration of step 2 and each iteration of step 2 makes 2 log log n761

queries. We now show the correctness.762

On the all-zero input 0n, with probability 1 the algorithm is correct (since it reaches step763

3 with p = n).764

Let x be an input which contains at least one bit set to 1, and let q be the first such bit765

position. The algorithm performs a binary search trying to find q. It maintains in C the766

potential search space which should contain q. Certainly, in the beginning, C contains q.767

The algorithm reduces the search space to half by querying random parities over variables768

from the first half of the search space. We argue that with good enough probability, the769

algorithm reduces the search space correctly i.e. if C contained q before an iteration of step770

2, then with the good probability it contains q after the operation. Observe that if the771

first half of the search space contains q, then each Li independently evaluates to 1 with772

probability 1/2. Since we query k = 2 log log n parities, with probability 1− 1
2k = 1− 1

(log n)2 ,773

the algorithm detects the correct half of the search space containing q. If the first half774

of the search space does not contain q, then all queries report 0, and so with probability775

1, the algorithm detects the correct half of the search space containing q. Thus any one776

iteration erroneously discards q from the search space with probability at most 1
(log n)2 . If777

the algorithm reduces the search space correctly in each of the log n iterations of step 2, then778

it will return the correct answer for x. By the union bound, the algorithm is correct on x779

with probability at least 1− 1
log n . ◀780

The separation between randomness and pseudodeterminism remains unclear in Parity781

decision tree model.782

7 A combinatorial proof of a Combinatorial Problem783

In [14], the authors studied the pseudodeterministic query complexity of a promise problem784

(PromiseFIND1). Here the input bit string has 1s in at least half the positions, and the task785

is to find a 1. They observed that PromiseFIND1 is a complete problem for easily-verifiable786

search problems with randomized query algorithms (see Theorem 3 in [14]), and proved a787

Ω(
√

n) lower bound on its pseudodeterministic query complexity. They conjectured that788

20 Query Complexity of Search Problems

the pseudodeterminisitic query lower bound for PromiseFIND1 can be improved to Ω(n).789

Towards understanding the PromiseFIND1 problem better, they introduced a natural790

colouring problem on hypercubes which states that any proper coloring of the hypercube791

contains a point with many 1s and with high block sensitivity.792

▶ Definition 7.1. A proper coloring of the n-dimensional hypercube is any function ϕ :793

{0, 1}n − {0n} −→ [n] such that for all β ∈ {0, 1}n − {0n}, βϕ(β) = 1.794

We say a proper coloring ϕ is d-sensitive if there exists a β ∈ {0, 1}n such that |β|1 ≥ n/2795

and β has block sensitivity at least d with respect to ϕ. That is, there are d disjoint blocks796

of inputs, B1, ..., Bd such that for all i ∈ [d], ϕ(β) ̸= ϕ(β ⊕ 1Bi). The hypercube coloring797

problem is about proving lower bound on the (block) sensitivity of every proper coloring. In798

[14] it was shown that every proper coloring is Ω(
√

n)-sensitive.799

▶ Theorem 7.2 (Restated from Theorem 14 [14]). Every proper coloring of the Boolean cube800

is Ω(
√

n)-sensitive.801

The hypercube coloring problem is closely related to the pseduodeterministic query complexity802

of PromiseFIND1. It is a straightforward observation that showing every proper coloring803

is d-sensitive implies a lower bound of d on the pseudo-deterministic query complexity of804

PromiseFIND1. To prove Theorem 7.2, [14] converted their sensitivity lower bound for the805

search problem associated with a random unsat k-XOR formula into a block sensitivity lower806

bound for the hypercube coloring problem.807

We give a self-contained combinatorial solution to the coloring problem. Our solution808

shows that every proper coloring of hypercube has a β ∈ {0, 1}n with Hamming weight ≥ n/2809

and with block sensitivity Ω(n1/3). In fact, we show that either the 1-block sensitivity or the810

0-block sensitivity (or both) is Ω(n1/3). Thus this appears incomparable with the bound811

from [14].812

Our solution is constructive: we describe an algorithm that finds the required high-weight813

high-block-sensitivity point, by querying ϕ at various points. It is not an efficient algorithm,814

since it involves computing block-sensitivity at various points. But it finds the required point,815

hence proving that such a point exists. On the other hand, the solution in [14] independently816

proves the existence of such a point, and so a brute-force search algorithm can find one.817

▶ Theorem 7.3. Every proper coloring ϕ of the Boolean hypercube has a β ∈ {0, 1}n with818

|β| ≥ n/2 satisfying bs0(ϕ, β) = Ω(n1/3) or bs1(ϕ, β) = Ω(n1/3).819

In particular, this implies a Ω(n1/3) lower bound on the block sensitivity of the hypercube820

coloring problem and on the pseudodeterministic query complexity of PromiseFIND1.821

While our bound is not as strong as the lower bound of Ω(
√

n) from [14], it is simple822

and self-contained, and we hope that it will add to our understanding of PromiseFIND1823

problem.824

Proof. In Algorithm 1, we describe a procedure to find the required point β. To prove825

that the algorithm is correct, we need to prove that if it returns β ∈ {0, 1}n and blocks826

D1, D2, . . . , Dr, then827

1. β ∈ X (i.e. β has Hamming weight at least n/2),828

2. D1, D2, . . . , Dr are disjoint sensitive blocks of ϕ at β, and829

3. either all these blocks are 1-blocks of β or all these blocks are 0-blocks.830

4. r ∈ Ω(n1/3),831

A. Chattopadhyay, Y. Dahiya, M. Mahajan 21

Observe that by construction, for each i ∈ [t+1] where βi is constructed by the algorithm,832

βi has 0s in Bj for j < i and 1s in Bi (in fact, 1s elsewhere); hence the blocks B1, . . . , Bi−1833

are disjoint.834

Further, by construction, each complete iteration of the for loop adds fewer than t2
835

positions to C: there are fewer than t blocks (otherwise the algorithm would terminate at836

line 12) and each block has size less than t (otherwise the algorithm would terminate at837

line 16). Thus, since |C0| = 0, if the algorithm reaches line 18 in iteration i, then Ci has size838

less than i · t2. Hence βi+1 has hamming weight n−|Ci| > n− it2 ≥ n− t3 > n−n/2 ≥ n/2839

and is in X .840

Algorithm 1 Algorithm to find the sensitive point

Require: A proper coloring ϕ. i.e.
1: For X = {x ∈ {0, 1}n |

∑
i xi ≥ n/2, ϕ : X → [n] satisfying ∀x ∈ X , xϕ(x) = 1.

2: t← ⌊(n/2)1/3⌋
3: C0 ← ∅
4: for i from 1 to t do
5: βi ← 0Ci−1 ▷ Reference input for

which we try to find t

sensitive 1-blocks.
6: ℓ← ϕ(βi)
7: s← bs1(ϕ, βi) ▷ {ℓ} is a 1-sensitive

block of βi, so s ≥ 1
8: Bi,1, Bi,2, ..., Bi,s: disjoint, minimally-sensitive
9: 1-blocks achieving the 1-block sensitivity s.

10: Bi ← ∪s
j=1Bi,j ▷ ℓ is a sensitive bit

of βi and s is maximum
number of disjoint
1-sensitive blocks, ℓ ∈ Bi

.
11: if s ≥ t then
12: return βi and {Bi,1, Bi,2, ..., Bi,s} ▷ bs1(ϕ, βi) ≥ t

13: end if
14: if maxj∈[s] |Bi,j | ≥ t then
15: Pick any such j ∈ [s] with |Bi,j | ≥ t.
16: return βi ⊕ 1Bi,j and {{k} | k ∈ Bi,j} ▷ s0(ϕ, βi ⊕ 1Bi,j) ≥ t

17: end if
18: Ci ← Ci−1 ∪Bi ▷ We show: Ci forms a

ϕ-certificate for βi

19: end for
20: βt+1 ← 0Ct

21: return βt+1 and {B1, B2, ..., Bt} ▷ bs0(ϕ, βt+1) ≥ t

If the algorithm terminates at line 12 in the ith iteration of the for loop, then by the841

choice in line 9 the returned blocks are disjoint 1-sensitive blocks of β = βi, and there are at842

least t of them. Similarly, if the algorithm terminates at line 16 in the ith iteration of the for843

loop, then by minimality of the sensitive block Bi,j chosen in line 15, each position in Bi,j is844

a 0-sensitive location in β = βi ⊕ 1Bi,j
, and there are at least t of them.845

If the algorithm terminates at line 21, then each Bi is a 0-block of β = βt+1 and there846

are t such blocks. It remains to prove that each Bi is sensitive for β = βt+1. To show this,847

22 Query Complexity of Search Problems

we will first show that each Ci is a certificate for βi, and then show that this implies each Bi848

is sensitive for β.849

For the first part, suppose for some i ∈ [t], Ci is not a certificate for βi. Then there exists850

an α ∈ X such that ∀j ∈ Ci, αj = βi
j , but ϕ(α) ̸= ϕ(βi). Let B be the set of positions where851

α and βi differ i.e. α = βi ⊕ 1B. Since α and βi agree on Ci, B must be disjoint from Ci.852

Since ϕ(βi) ̸= ϕ(α) = ϕ(βi ⊕ 1B), B is a 1-sensitive block of ϕ at βi. By the choice in line 9853

at the ith iteration, βi has no 1-sensitive blocks disjoint from the blocks Bi,1, . . . , Bi,s. But854

Bi is precisely the union of the these blocks, and is contained in Ci, so B is disjoint from Bi,855

a contradiction. Hence Ci is indeed a ϕ-certificate for βi.856

For the second part, note that for each i ∈ [t], β and βi agree on Ci−1 and β ⊕ Bi and857

βi agree on Ci. Since Ci is a certificate for βi, ϕ(β ⊕ Bi) = ϕ(βi) = ℓ, say. By the definition858

of proper coloring, {ℓ} is a 1-sensitive block of βi, and since the blocks chosen in line 9 are859

the maximum possible 1-sensitive blocks, ℓ ∈ Bi. But ϕ(β) ̸= ℓ because β = 0Ct and has860

only 0s in Bi. Thus ϕ(β) ̸= ϕ(β ⊕ Bi), and hence Bi is a 0-sensitive block for β.861

Finally, by choice of t, we see that r ∈ Ω(n1/3). This completes the proof of correctness862

of the algorithm. ◀863

References864

1 Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:865

Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science FOCS,866

pages 190–199. IEEE Computer Society, 2001.867

2 Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution868

and Davis–Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002.869

3 Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Random870

Structures & Algorithms, 23(1):92–109, 2003.871

4 Eli Ben-Sasson*, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like872

and general resolution. Combinatorica, 24(4):585–603, 2004.873

5 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J.874

ACM, 48(2):149–169, 2001.875

6 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resolution876

size. Information Processing Letters, 113(18):666–671, 2013.877

7 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity: a878

survey. Theoretical Computer Science, 288(1):21–43, 2002.879

8 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps880

between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,881

62(2):267–289, 2001.882

9 Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil Mande, Jaikumar Radhakrishnan, and883

Swagato Sanyal. Randomized versus deterministic decision tree size. Electron. Colloquium884

Comput. Complex., TR22-185, 2022.885

10 Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM, 35(4):759–886

768, 1988.887

11 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and888

their cryptographic applications. Electron. Colloquium Comput. Complex., page 136, 2011.889

12 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of890

pseudodeterministic algorithms. Electron. Colloquium Comput. Complex., page 101, 2012.891

extended abstract in proceedings of ITCS 2013.892

13 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of893

pseudodeterministic algorithms. In Robert D. Kleinberg, editor, Innovations in Theoretical894

Computer Science ITCS, pages 127–138. ACM, 2013. See also ECCC Vol. 19, T.R. 12-101,895

2012.896

A. Chattopadhyay, Y. Dahiya, M. Mahajan 23

14 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the897

pseudo-deterministic query complexity of NP search problems. In Valentine Kabanets, editor,898

36th Computational Complexity Conference CCC, volume 200 of LIPIcs, pages 36:1–36:22.899

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.900

15 Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs. In 39th Annual901

Symposium on Foundations of Computer Science FOCS, pages 648–652. IEEE Computer902

Society, 1998.903

16 Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. CoRR,904

abs/1907.00847, 2019.905

17 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms906

and Combinatorics. Springer, 2012.907

18 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for908

and-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of909

Computing, pages 197–208, 2021.910

19 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision911

tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.912

20 Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract). In913

24th Annual Symposium on Foundations of Computer Science FOCS, pages 420–428. IEEE914

Computer Society, 1983.915

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

