
Query Complexity of Search Problems
Arkadev Chattopadhyay !�

Tata Institute of Fundamental Research, Mumbai, India

Yogesh Dahiya !�

The Institute of Mathematical Sciences (HBNI), Chennai, India

Meena Mahajan ! �

The Institute of Mathematical Sciences (HBNI), Chennai, India

Abstract
We relate various complexity measures like sensitivity, block sensitivity, certificate complexity
for multi-output functions to the query complexities of such functions. Using these relations,
we show that the deterministic query complexity of total search problems is at most the third
power of its pseudo-deterministic query complexity. Previously, a fourth-power relation was shown
by Goldreich, Goldwasser and Ron (ITCS’13). Furthermore, we improve the known separation
between pseudo-deterministic and randomized decision tree size for total search problems in two
ways: (1) we exhibit an exp(Ω̃(n1/4)) separation for the SearchCNF relation for random k-CNFs.
This seems to be the first exponential lower bound on the pseudo-deterministic size complexity
of SearchCNF associated with random k-CNFs. (2) we exhibit an exp(Ω(n)) separation for the
ApproxHamWt relation. The previous best known separation for any relation was exp(Ω(n1/2)).
We also separate pseudo-determinism from randomness in And and (And, Or) decision trees, and
determinism from pseudo-determinism in Parity decision trees. For a hypercube colouring problem,
that was introduced by Goldwasswer, Impagliazzo, Pitassi and Santhanam (CCC’21) to analyze
the pseudo-deterministic complexity of a complete problem in TFNPdt, we prove that either the
monotone block-sensitivity or the anti-monotone block sensitivity is Ω(n1/3); Goldwasser et al.
showed an Ω(n1/2) bound for general block-sensitivity.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases Boolean functions, Decision trees, Randomness, Search problems, Pseudo-
determinism

1 Introduction

The question of whether randomness adds computational power over determinism, and if
so, how much, has been a question of great interest that is still not completely understood.
Naturally, the answer depends on the computational model under consideration, but it also
depends on the type of problems one hopes to solve. One may wish to compute some function
of the input, a special case being decision problems where the function has just two possible
values. There are also search problems, where for some fixed relation R ⊆ X × Y and an
input x ∈ X, one wishes to find a y ∈ Y that is related to x; i.e. (x, y) ∈ R. If every
x ∈ X has at least one such y, we have a total search problem defined by R, the R-search
problem. In the context of (total) search problems, a nuanced usage of randomness by Gat
and Goldwasser [13] led to the beautiful notion of pseudo-determinism. A function f solves
the R-search problem if for every x, (x, f(x)) ∈ R. A randomized algorithm which computes
such an f with high probability is said to be a pseudo-deterministic algorithm solving the
R-search problem. Thus a pseudo-deterministic algorithm uses randomness to solve a search
problem and almost always provides a canonical solution per input.

The original papers introducing and studying pseudo-determinism examined both polynomial-
time algorithms and sublinear-time algorithms; in the latter case, the computational resource
measure is query complexity. Goldreich, Goldwasser and Ron [14] established a maximal
separation between pseudo-deterministic and randomized query algorithms. Namely, for

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 39 (2023)

mailto:arkadev.c@tifr.res.in
https://orcid.org/0009-0005-3110-3584
mailto:yogeshdahiya@imsc.res.in
https://orcid.org/0000-0001-7338-1762
mailto:meena@imsc.res.in
https://orcid.org/0000-0002-9116-4398


2 Query Complexity of Search Problems

a specific search problem with randomized query complexity O(1), it was shown that no
pseudo-deterministic algorithm has sublinear query complexity.

Goldwasser, Impagliazzo, Pitassi, and Santhanam [15] have recently revisited this sep-
aration. The separating problems in [14] do not lie in the query-complexity analogue of
NP (nondeterministic polylog query complexity, or polylog query complexity to determin-
istically verify a solution, TFNPdt). This is a very natural class of search problems, and in
[15], an almost-maximal separation between randomized and pseudo-deterministic search
is established for a problem in this class. The problem in question is SearchCNF: given
an assignment to the variables of a highly unsatisfiable k-CNF formula, to search for a
falsified clause; this problem is very easy for randomized search a(O(1) queries), and solutions
are easily verifiable. Theorem 7 of [15] establishes that for unsatisfiable k-CNF formulas
on n variables with sufficiently strong expansion in the clause-variable incidence graph
(in particular, for most random k-CNF formulas), the corresponding search problem has
pseudo-deterministic complexity Ω(

√
n), even in the quantum query setting. In [15], the size

measure of decision trees in the pseudo-deterministic setting was also studied. Lifting the
query separation using a small gadget, a strong separation between randomized size and
pseudo-deterministic size was obtained: SearchCNF problem on random k-CNFs lifted with
2-bit Xor has randomized size O(1) but require exp(Ω(

√
n)) size in pseudo-deterministic

setting.
Taking this study further, Theorem 3 of [15] shows that the promise problem PromiseFIND1,

of finding a 1 in an n-bit string with Hamming weight at least n/2, is in a sense complete
for the class of search problems that are in TFNPdt and have efficient randomized query
algorithms. By relating this search problem to a certain combinatorial problem concerning
colourings of the hypercube, and by using the lower bound for SearchCNF, a lower bound of
Ω(
√

n) on the pseudo-deterministic complexity of PromiseFIND1 is obtained (Theorem 14
and subsequent remark in [15]. The colouring problem on hypercubes states that any proper
coloring of the hypercube contains a point with many 1s and with high block sensitivity. In
[15], a point with block sensitivity Ω(

√
n) is proven to exist (Theorem 14), and a point with

block sensitivity Ω(n) is conjectured to exist (Conjecture 16).

Our contributions

1. We improve upon the known relationship between pseudo-deterministic query complexity
and deterministic query complexity for total search problems: We show that deterministic
query complexity is at most the third power of its pseudo-deterministic query complexity.
(Previously a fourth-power relation was shown in [14].

2. Using the above relation, and a decision-tree-manipulation method, we prove that the
SearchCNF problem on random k-CNF has pseudo-deterministic query complexity
Ω(n1/3). While even an Ω(n1/2) bound is known from [15], our proof is significantly
simpler and completely self-contained.

3. We improve the known separations between pseudo-deterministic and randomized decision
tree size in two ways: (1) an exp(Ω̃(n1/4)) separation for the SearchCNF relation for
random k-CNFs (the exp(Ω(n1/2)) separation in [15] is only for the lifted formulas k-CNF
composed with Xor), and (2) an exp(Ω(n)) separation for the ApproxHamWt relation
(the previous best separation for any relation was exp(Ω(n1/2))).

4. We separate pseudo-deterministic and randomized query complexity in And and (And, Or)
decision trees, and show that deterministic and pseudo-deterministic complexity are poly-
nomially related in these models. In the Parity decision tree model, we observe that



A. Chattopadhyay, Y. Dahiya, M. Mahajan 3

deterministic and pseudo-deterministic query complexities are well separated.
5. For the hypercube colouring problem posed in [15], we prove that either the monotone

block-sensitivity or the anti-monotone block sensitivity is Ω(n1/3); previously an Ω(n1/2)
bound was known but only for general block-sensitivity.

Significance, context, and techniques.

We now describe each of our contributions, with surrounding context, in more detail.
For Boolean functions, randomized and deterministic query complexities are known to

be polynomially related by the classic result of Nisan [22]. Since deterministic query lower
bounds are often easy to obtain using some kind of adversary argument, this provides a route
to randomized query lower bounds for Boolean functions. For search problems, however, there
is no such polynomial relation. Note that separating pseudo-determinism from randomness
requires a lower bound against randomized query algorithms that provide canonical solutions.
Such algorithms compute multi-output functions (following nomenclature from [15]) as
opposed to Boolean functions. Thus what is required is randomized query lower bounds for
multi-output functions. For such functions, too, lower bounds for deterministic querying
are often relatively easy to obtain. And again, as for Boolean functions, deterministic and
randomized query complexity for multi-output functions are known to be polynomially
related; in [14] (Theorem 4.1(3)), the authors show that the deterministic query complexity is
bounded above by the fourth power (as opposed to cubic power for Boolean functions) of the
randomized complexity. They also show that it is bounded above by the cubic power times a
factor that depends on the size of the search problem’s range. We revisit these relations, and
further tighten them to a cubic power relation. Thus for search problems, deterministic query
complexity is bounded above by the cubic power of its pseudo-deterministic query complexity;
Theorem 3.2. We show this by relating various complexity measures like sensitivity, block
sensitivity, certificate complexity for multi-output functions to their query complexities;
Theorem 3.1.

For random k-CNF formulas, the randomized complexity of the search problem is easily
seen to be O(1); see Corollary 8 in [15]. The deterministic query complexity for the search
problem is known to be Ω(n) and follows from [21, 5]; see also [18]. Using the relation from
[14], this immediately implies that pseudo-deterministic query complexity is Ω(n1/4). (In
fact, since the number of clauses is Θ(n), it even yields the bound Ω((n/ log n)1/3). This fact
was also observed by the authors of [15] in a personal communication [23], although it does
not appear in their paper.) Using instead our improved derandomization from Theorem 3.2
gives the lower bound Ω(n1/3). While these bounds are still not as strong as the lower bound
of Ω(

√
n) from [15], they certainly suffice to separate pseudo-determinism from randomness

for this problem. We give a direct proof (Section 4) of the deterministic Ω(n) lower bound.
This, along with Theorem 3.2, gives a self-contained proof that the pseudo-deterministic
complexity of SearchCNF is Ω(n1/3).

However, the really significant feature of our separation is its simplicity, the way it is
established. Even for classical (as opposed to quantum) queries, the lower bound proof in
[15] is highly non-trivial. After connecting pseudo-deterministic complexity for this problem
to a notion in proof complexity, namely the degree of an Nullstellensatz refutation, it uses
two “heavy hammers” – (1) known lower bounds on the degree of Nullstellensatz refutations
for such formulas [1], and (2) the recently-proved sensitivity theorem [17], showing that
sensitivity and degree are quadratically related, and then wraps up the proof with the
fact that sensitivity gives lower bounds on randomized query complexity. The use of big
tools seems necessitated by the fact that the authors of [15] directly give lower bounds on



4 Query Complexity of Search Problems

randomized algorithms for multi-output functions. By using the derandomization, our proof
bypasses the use of both these known results, and relies on a lower bound for deterministic
algorithms for multi-output functions; Proposition 2.8(2). Even for this lower bound, the
already known proof uses other proof complexity results, namely, the connection between
decision trees and tree-like resolution proofs [21], and the size of tree-like resolution proofs
[2]. We give a direct proof framed entirely within the context of decision trees; this may be
of independent interest. It uses the notion of redundancy in and minimality of decision trees.
In a decision tree for the Search CNF problem, a node querying a variable is redundant if
in at least one of its two subtrees, no leaf is labelled by a clause containing that variable.
Amongst all depth-optimal decision trees, the smallest tree is also minimal i.e. devoid of
redundant nodes. We crucially use this property to show that the tree must have Ω(n)
depth. It is worth noting that the randomized lower bound from [15] for random k-CNF
formulas uses neighbourhood expansion of the incidence graph. Our direct proof instead
uses boundary expansion (also known as unique neighbour expansion) of the same graph;
this makes the proof crisp. It can be seen as a reframing of the width lower bound for such
formulas established in [5].

Using the recent result from [9] that derandomized the size measures for total Boolean
functions, we establish a polynomial relationship between the log of pseudo-deterministic size
and the log of deterministic size, ignoring polylog factors in the input dimension; Theorem 5.3.
This gives us another way to separate randomized size from pseudo-deterministic size: any
total search problem which is easy with randomization but difficult for deterministic search
will lead to a separation between pseudo-deterministic size and randomized size; one such
problem is SearchCNF on suitably expanding k-CNF formulas. In [15], it was shown
that SearchCNF for such formulas lifted by small gadgets like XOR, has large pseudo-
deterministic size complexity. There are known situations where the complexity of a formula
and its lift by small gadgets widely vary in search problems. For instance, it was known that
proving the unsatisfiability of formulas corresponding to Tseitin contradictions lifted by a
small gadget should be hard in cutting planes proof system [12]. The popular belief was
that such hardness extends to even unlifted Tseitin formulas. In a breakthrough work [11],
this belief was proven false! However, we are able to obtain an exp(Ω̃(n1/4)) lower bound
on the pseudo-deterministic size complexity for SearchCNF with unlifted random k-CNF
formulas, in contrast to the bounds from [15]. As far as we know, this is the first exponential
lower bound on the pseudo-deterministic size complexity of SearchCNF for random k-CNF
formulas. Like Tseitin formulas, determining the complexity of random k-CNF formulas in
various models remains an important theme of current research.

We also show, see Theorem 5.5, that any completion of the promise-problem ApproxMaj
by a total Boolean function requires large randomized decision tree size. Observing that
this promise-problem is “embedded” in the ApproxHamWt search problem, we obtain an
exp(Ω(n)) separation between the pseudo-deterministic and randomized size complexity of
ApproxHamWt, in Theorem 5.6.

The more general query models we consider are those of And (Or, respectively) decision
trees, abbreviated as ADT’s (ODT’s, resp.), where each query is a conjunction (disjunction,
resp.) of variables, (And, Or) decision trees, where each query is either a conjunction or
a disjunction of variables, and Parity decision trees, where each query reports the parity
of some subset of variables. These models obviously generalize decision trees, are more
powerful in the deterministic setting, and appear naturally in contexts like combinatorial
group testing and other contexts. More recently, they have been advocated by [19] as a
meaningful intermediate model between query and communication complexity. For And



A. Chattopadhyay, Y. Dahiya, M. Mahajan 5

and (And, Or) decision trees, we show that pseudo-determinism is still separated from
randomness; Theorems 6.3 and 6.8. To show the former, we relate randomized query
complexity for multi-output functions in this model to monotone block sensitivity. To
show the latter, we note that a recently proved result from [9], relating depth in (And, Or)
trees and size in ordinary trees for Boolean functions, also holds for multi-output functions.
Furthermore, using other results from [9] that derandomized the And and (And, Or) decision
trees for total Boolean functions, we observe that pseudo-determinism and determinism are
polynomially related in these settings, ignoring polylog factors; Theorems 6.5 and 6.10. For
Parity decision trees, in contrast, we observe that determinism is separated from pseudo-
determinism; Theorem 6.11. There is no polynomial relation between these two complexity
measures. In this setting, we do not know whether pseudo-determinism is separated from
randomness.

Finally, we revisit the hypercube coloring problem from [15]. There, the existence of
a point with large Hamming weight and block-sensitivity Ω(

√
n) is established, using the

previously established lower bound for SearchCNF. We give a completely combinatorial and
constructive argument to show that a point with large Hamming weight and block-sensitivity
Ω(n1/3) exists, Theorem 7.3. While we seemingly sacrifice stronger bounds in the quest
for simplicity, our algorithm actually proves something that is stronger in a different way,
and hence our result is perhaps incomparable with that of [15]. The difference is that we
identify many sensitive blocks that are all 1’s, or many sensitive blocks that are all 0’s. In
other words, we show that the monotone (or anti-monotone) block sensitivity is Ω(n1/3).
Monotone block sensitivity was used recently, first in [20] and then in [9], to prove query
complexity lower bounds for ADT’s. In particular, our result implies that every function
that solves PromiseFIND1, requires large depth to be implemented by either randomized
ADT’s or by randomized ODT’s. We believe that this could be strengthened to show that
such solutions are always hard for randomized ADTs 1. Proving such a result is an interesting
open problem.

Related work.

For Boolean functions, the relations between many complexity measures and query complexity
has been studied extensively in the literature. A consolidation of many known results appears
in the survey [7] as well as in the classic book [18]. The degree and approximate degree of
Boolean functions has also been a very useful measure, but is not directly relevant to this
work.

The connection between decision trees and proof complexity is well-known for years; see
for instance [21, 5, 4, 6]. However, this work aims to bypass proof complexity in giving lower
bounds for query complexity.

Organisation of the paper.

After giving the definitions and listing relevant known results in Section 2, in Section 3 we
establish the relationships between various measures for multi-output functions, and establish
the polynomial relation between pseudo-deterministic and deterministic query complexity for
search problems. In Section 4 we give the simpler lower bound for random k-CNF formulas.
In Section 5 we establish relations between pseudo-deterministic size and deterministic size.

1 Note that there are solutions that are easy for ODTs, even deterministically. For instance, a binary
search can be implemented to find efficiently the first occurrence of a 1.



6 Query Complexity of Search Problems

Section 6 discusses the complexity of search problems in And, (And, Or), and Parity
decision trees. Section 7 discusses the hypercube coloring problem.

2 Preliminaries

Notation
For x ∈ {0, 1}∗, and b ∈ {0, 1}, |x| denotes the length of x, and |x|b denotes the number of
occurrences of b in x. We also use the notation wt(x) for |x|1, since it is the Hamming weight
of x. All logarithms in this paper are taken to the base 2. We use notations Õ(·), Θ̃(·), Ω̃(·)
to hide polylogarithmic factors in the input size (and not just polylogarithmic factors in the
argument). For a set S, we use ∼u S to denote sampling uniformly from S.

Search problems
A search problem over domain X and range Y is a relation S ⊆ X × Y. Given an input
x ∈ X , the task is to find a y ∈ Y such that (x, y) ∈ S, if such a y exists. If for every element
x ∈ X there exist a y ∈ Y such that (x, y) ∈ S, then S is said to be a total search problem.

A function f : X → Y solves a total search problem S, denoted by f ∈s S, if for every
x ∈ X , (x, f(x)) ∈ S. To emphasize that the range of f is some subset of Y and f is not
necessarily a decision problem, we call such functions multi-output functions (following
nomenclature from [15]).

Throughout this paper, we consider without loss of generality that X ⊆ {0, 1}∗ and
Y ⊆ N. For n ∈ N, Xn denotes the set X ∩{0, 1}n, and Yn = {y ∈ Y | ∃x ∈ Xn : (x, y) ∈ S}.
Further, Sn denotes the restriction of S to Xn; that is, Sn = {(x, y) ∈ S | x ∈ Xn}. The
parameter ℓS(n) is the number of bits required to represent the range of the projection of
Sn to Y; that is, ℓS(n) = log |Yn|. Throughout this paper, we use Yn = {1, 2, ..., mn}, and
we drop the subscript n when clear from context. (Thus we often talk of X ⊆ {0, 1}n and
Y = [m].)

Combinatorial measures for multi-output functions
For a multi-output function f : X → Y, several complexity measures can be defined by
adapting the corresponding definitions for Boolean functions (X = {0, 1}n, Y = {0, 1}).

Certificate complexity

For an input a ∈ X , an f -certificate of a is a subset B ⊆ {1, ..., n} such that

∀a′ ∈ X ,
[(

a′
j = aj∀j ∈ B

)
=⇒ f(a) = f(a′)

]
.

Such a certificate need not be unique. Let C(f, a) denote the minimum size of an f -certificate
for the input a. Then

For b ∈ Y, Cb(f) = max{C(f, a) | a ∈ f−1(b)}.
C(f) = max{C(f, a) | a ∈ X} = max

b∈Y
Cb(f).

Sensitivity and block sensitivity

For an x ∈ X , B ⊆ [n], and b ∈ {0, 1}, bB is the n-bit string that is b at positions in B and
1− b elsewhere. A (multi-output) function f is sensitive to block B on input x if x⊕ 1B ∈ X



A. Chattopadhyay, Y. Dahiya, M. Mahajan 7

and f(x) ̸= f(x⊕ 1B). The block sensitivity of x with respect to f , bs(f, x), is the maximum
integer r for which there exist r disjoint sensitive blocks of f at x. The block sensitivity of
the function is defined as bs(f) = maxx∈X bs(f, x).
By restricting the block sizes to 1, we get the notion of sensitivity. A bit i ∈ [n] is sensitive
for x with respect to f if the block {i} is sensitive for x. The sensitivity of x with respect to
f , s(f, x), is the number of sensitive bits for x. The sensitivity of the function is defined as
s(f) = maxx∈X s(f, x).
Next, we define variants of sensitivity and block sensitivity where one restricts changing input
by only flipping 0’s or by only flipping 1’s. For b ∈ {0, 1}, a set B ⊆ [n] is a sensitive b-block
of f at input x if xi = b for each i ∈ B, x ⊕ 1B ∈ X , and f(x) ̸= f(x ⊕ 1B). The b-block
sensitivity of f at x, denoted by bsb(f, x), is the maximum integer r for which there exist r

disjoint sensitive b-blocks of f at x. The b-block sensitivity of f is bsb(f) = maxx∈X bsb(f, x).
For b ∈ {0, 1}, the b-sensitivity of f at x, sb(f, x), is the number of sensitive b-bits of x. The
b-sensitivity of f is sb(f) = maxx∈X sb(f, x). We note that s0(f) and bs0(f) are the same as
the monotone sensitivity and monotone block sensitivity used in the work of [20] for studying
a variant of standard decision trees, namely And-decision trees.

Query complexity measures
Decision trees

For a search problem S, a (deterministic) decision tree T computing S is a binary tree with
internal nodes labelled by the variables and the leaves labelled by some y ∈ Y. To evaluate
S on an unknown input x, the process starts at the root of the decision tree and works down
the tree, querying the variables at the internal nodes. If the value of the query is 0, the
process continues in the left subtree, otherwise, it proceeds in the right subtree. Let the label
of the leaf so reached be T (x). For every x ∈ X , T (x) must belong to S(x). Every decision
tree T computing S corresponds to a multi-output function f : X → Y solving S, namely,
the function which maps x ∈ X to T (x). The depth of a decision tree T , denoted Depth(T ),
is the length of the longest root-to-leaf path, and its size Size(T ) is the number of leaves.

Deterministic query and size complexity

The deterministic query complexity of S, denoted by Ddt(S), is defined to be the minimum
depth of a decision tree computing S. Equivalently,

Ddt(S) = min
f∈sS

min
T computes f

Depth(T )

i.e. the minimum number of worst-case queries required to evaluate any f solving S. The
deterministic size complexity of a S, denoted by DSizedt(S), is defined similarly i.e.

DSizedt(S) = min
f∈sS

min
T computes f

Size(T )

Randomized and distributional query and size complexity

A randomized query algorithm/decision tree A is a distribution DA over deterministic decision
trees. On input x, A starts by sampling a deterministic decision tree T according to DA,
and outputs the label of the leaf reached by T on x. Algorithm A computes S with error at
most ϵ if for every input x, the probability that A(x) belongs to S(x) is at least 1− ϵ. The



8 Query Complexity of Search Problems

complexity of the randomized algorithm is measured by the number of worst-case queries
made by A on any input x i.e. maximum depth over all decision trees in the support of the
distribution. The randomized query complexity of S for error ϵ, denoted by Rdt

ϵ (S), is the
minimum number of worst-case queries required to compute S with error at most ϵ. That is,

Rdt
ϵ (S) = min

A computes S with error ≤ ϵ
max

T :DA(T )>0
Depth(T ).

When no ϵ is specified, it is assumed to be 1/3. The randomized size complexity of a search
problem S, denoted by RSizedt(S), is defined similarly i.e.

RSizedt
ϵ (S) = min

A computes S with error ≤ ϵ
max

T :DA(T )>0
Size(T ).

For a probability distribution D over inputs X , the (D, ϵ)-distributional query and size
complexity of S, denoted by Ddt

D,ϵ(S) and DSizedt
D,ϵ(S) respectively, is the minimum depth/size

of a deterministic decision tree that gives a correct answer on 1− ϵ fraction of inputs weighted
by D. That is, with x ∼ D denoting that x is sampled according to D,

Ddt
D,ϵ(S) = min

{
Depth(T ) | T is a deterministic decision tree; Pr

x∼D
[(x, T (x)) ̸∈ S] ≤ ϵ

}
.

DSizedt
D,ϵ(S) = min

{
Size(T ) | T is a deterministic decision tree; Pr

x∼D
[(x, T (x)) ̸∈ S] ≤ ϵ

}
.

Distributional query(size) complexity provides a technique to prove randomized query(size)
lower bounds. It characterizes the randomized query(size) complexity completely.

▶ Proposition 2.1 ([24]). For a search relation S,
Rdt

ϵ (S) = maxD Ddt
D,ϵ(S) and RSizedt

ϵ (S) = maxD DSizedt
D,ϵ(S).

This is proved in [24] for Boolean functions, but it is easy to see that it also holds for
multi-output functions and search relations. For an arbitrary distribution D, Ddt

D,ϵ ≤
Rdt

ϵ (DSizedt
D,ϵ ≤ RSizedt

ϵ ), is easily shown using a weighted counting argument. The other
direction, Rdt

ϵ ≤ maxD Ddt
D,ϵ(RSizedt

ϵ ≤ maxD DSizedt
D,ϵ), was shown using linear programming

duality. The easy direction of Proposition 2.1 gives us a way to prove randomized query
lower bounds by proving a (D, ϵ)-distributional query complexity lower bound for some hard
distribution D. We note that this technique also works for other models of decision tree like
And and Parity decision trees.

Pseudo-deterministic query and size complexity

A pseudo-deterministic query algorithm/decision tree for a search problem S, with error 1/3,
is a randomized decision tree A computing S with the property that for every input x, there
is a canonical value y ∈ Y such that with probability at least 2/3, A(x) = y. Equivalently,
a pseudo-deterministic query algorithm is a randomized query algorithm that computes
some multi-output function f ∈s S with error at most 1/3. The pseudo-deterministic query
complexity of S, denoted by psDdt(S), is equal to minf∈sS Rdt(f) and pseudo-deterministic
size complexity of S, denoted by psDSizedt(S), is equal to minf∈sS RSizedt(f). Note the
difference between pseudo-deterministic and randomized query algorithms: randomized query
algorithms on input x are not required to output a canonical value with high probability;
they just need to output a value in S(x) with high probability.



A. Chattopadhyay, Y. Dahiya, M. Mahajan 9

The query-complexity analog of TFNP

TFNP is the class of total functions which can be solved in nondeterministic polynomial
time, or for which the solution/value can be verified in deterministic polynomial time. Since
every function is trivially computable with query complexity n, the analog of polynomial-
time/efficient/tractable for query complexity is poly-logarithmic queries. The class TFNPdt

thus denotes total search problems for which solutions can be verified with polylogarithmic
queries.

Known results

▶ Proposition 2.2 ([22][18][7]). For any Boolean function f : {0, 1}n → {0, 1},
1. s(f) ≤ bs(f) ≤ C(f) ≤ s(f)bs(f).
2. s(f) ≤ bs(f) ≤ 3Rdt

1/3.
3. C(f) ≤ Ddt(f) ≤ C(f)2.
4. Ddt(f) ≤ C(f)bs(f).
5. Ddt(f) = O((Rdt(f))3).

▶ Proposition 2.3 (restated from [14]). For a search relation S,

1. Ddt(S) ≤
(

psDdt(S)
)4

. [Restated from Theorem 4.1(3) in [14]]

2. Ddt(S) ≤
(

psDdt(S)
)3

ℓS(n). [Restated from Theorem 4.1(3) in [14]]

▶ Proposition 2.4. 1. [Corollary 4.2 in [14]] For the relation
ApproxHamWt = {(x, v) : |wt(x)− v| ≤ n/10},
psDdt(ApproxHamWt) ∈ Ω(n) and Rdt(ApproxHamWt) = O(1).

2. [Theorem 4 in [15]] For the relation PromiseFIND1 = {(x, i) : wt(x) ≥ |x|/2∧ xi = 1},
psDdt(PromiseFIND1) ∈ Ω(

√
n) and Rdt(PromiseFIND1) = O(1).

Unsatisfiable k-CNF formulas
We consider random k-CNF formulas over n variables and m = cn clauses. Let Fk,n

m be
the distribution over random k-CNF formulas with m clauses, where each clause is sampled
uniformly randomly with repetition from the set of all 2k

(
n
k

)
clauses. To study these formulas,

we need to study the underlying properties of the clause-variable incidence graph of these
formulas.

▶ Definition 2.5. Let F = C1∧C2∧ ...∧Cm be a random k-CNF formula on n variables with
m clauses. Consider the bipartite graph, GF = (V = [m], U = [n], E) with m left vertices,
one for each clause Ci, and n right vertices, one for each variable, such that (i, j) ∈ E if
and only if clause Ci contains one of the literals xj ,¬xj. For any V ′ ⊆ V , the neighborhood
of V ′ is the set N(V ′) = {u ∈ U | (v, u) ∈ E, v ∈ V ′}, and the boundary of V ′ is the set
∂V ′ = {u ∈ U | |N(u) ∩ V ′| = 1}. A k-CNF formula F is said to be
1. (Matchability) r-matchable if in GF , ∀V ′ ⊆ V with |V ′| ≤ r, |N(V ′)| ≥ |V ′|.
2. (Neighborhood Expansion) an (r, ϵ)-expander if in GF , ∀V ′ ⊂ V with r/2 ≤ |V ′| ≤ r,
|N(V ′)| ≥ ϵ|V ′|.

3. (Boundary Expansion) an (r, ϵ)-boundary expander if in GF , ∀V ′ ⊂ V with r/2 ≤ |V ′| ≤ r,
|∂V ′| ≥ ϵ|V ′|.

There are several notions of expansion in literature; they are similar but not exactly
equivalent. We use boundary-expansion in our work. Boundary expansion is a stronger



10 Query Complexity of Search Problems

notion than neighborhood expansion, but neighborhood expansion does imply boundary
expansion with some weakening in the expansion parameter. In particular, the following
proposition can be easily verified.

▶ Proposition 2.6. If a k-CNF formula, F , is an (r, ϵ)-expander, then it is an (r, 2ϵ− k)-
boundary expander.

▶ Proposition 2.7 ([10][2] [3]). For a constant c large enough and 0 < ϵ < 1/2, there exist
constants κ1, κ2 ≤ 1, function of ϵ and c, such that following holds. For F a random 3-CNF
formula on n variables with m = cn clauses sampled from F3,n

m , with high probability, 1−o(1),
(F is highly unsatisfiable): Every assignment falsifies at least half of the clauses of F .
(F is highly matchable): F is n-matchable.
(F has expansion properties): F is (κ1n, 1 + ϵ)-expander.
(F has boundary expansion properties): F is (κ2n, ϵ)-boundary expander.

For an unsatisfiable CNF formula F = ∧i∈[m]Ci on n variables, the SearchCNF relation is
defined as SearchCNF(F ) = {(a, i) | a ∈ {0, 1}n, a falsifies clause Ci}. It is known that for
suitably expanding unsatisfiable formulas, the SearchCNF relation has high deterministic
and pseudo-deterministic query complexity.

▶ Proposition 2.8. For F a random 3-CNF formula on n variables with m = Θ(n) clauses
sampled from F3,n

m , with probability 1− o(1), F is unsatisfiable and furthermore,
1. Rdt(SearchCNF(F )) = O(1). (From Proposition 2.7.)
2. Ddt(SearchCNF(F )) = Ω(n). (From [21, 5])
3. psDdt(SearchCNF(F )) = Ω(

√
n). (Corollary 8 in [15])

4. DSizedt(SearchCNF(F )) = exp(Ω(n)). (From [5])

3 Relating measures for multi-output functions

We show the analogs of Proposition 2.2 for multi-output functions.

▶ Theorem 3.1. For a function f : {0, 1}n → [m], the following relations hold.
1. C(f) ≤ s(f)bs(f).
2. s(f) ≤ bs(f) ≤ 3Rdt

1/3(f)
3. C(f) ≤ Ddt(f) ≤ C(f)2.
4. Ddt(f) ≤ 2C(f)bs(f).
5. Ddt(f) = O((Rdt(f))3).

Proof. The proof idea is to do the necessary modifications to the analogous results in the
Boolean function case. The first two items are completely straightforward, but are nonetheless
included here for completeness.

1. (C(f) ≤ s(f)bs(f)): The construction in the Boolean function case works for multi-output
functions as well. For completeness, we repeat the argument explicitly.
Consider an arbitrary input a ∈ {0, 1}n. We show that C(f, a) ≤ bs(f, a)s(f). Let
B1, ..., Bk be disjoint minimal blocks of variables that achieve k = bs(f, a). Then we
claim that the set B = B1 ∪ B2 ∪ ... ∪ Bk is an f -certificate of a. Suppose not. Then
there exists b ∈ {0, 1}n which coincides with a on B, but f(b) ̸= f(a). Let Bk+1 be the
set of positions where b differs from a. Since b coincides with a on B, Bk+1 is disjoint
from B and is a sensitive block for a, contradicting bs(f, a) = k.



A. Chattopadhyay, Y. Dahiya, M. Mahajan 11

Hence C(f, a) ≤ |B|. Now, we just need to analyze the size of the certificate B. Note that
|B| ≤ bs(f, a) maxj∈[k] |Bj |. We bound maxj∈[k] |Bj | by showing that any minimal block
to which a is sensitive w.r.t. to f cannot have more than s(f) variables. Let Bj be a
minimal sensitive block for a and aBj = a⊕ 1Bj . Now, observe that if we flip any variable
in Bj , the function value flips from f(aBj ) to f(a). So, |Bj | ≤ s(f, aBj ) ≤ s(f). Since
this holds for arbitrary minimal sensitive block Bj for a, we have maxj∈[k] |Bj | ≤ s(f).
Thus C(f, a) ≤ |B| ≤ bs(f, a)s(f) ≤ bs(f)s(f).

2. (s(f) ≤ bs(f) ≤ 3Rdt
1/3(f)): The first inequality follows from the definitions. The second

inequality can be proven for the Boolean case in many ways. The proof via distributional
query complexity works in the multi-output function setting as well, as follows.
Let a be an input achieving the block sensitivity k = bs(f), and B1, B2, ..., Bk be disjoint
sensitive blocks for a. We demonstrate a hard distribution D such that Ddt

D,1/3(f) ≥ k/3,
thereby showing Rdt

1/3(f) ≥ k/3. The hard distribution is as follows

D(x) =


1/2 if x = a

1/(2k) if x = a⊕ 1Bi for i ∈ [k]
0 Otherwise

Let T be any deterministic decision tree that gives correct answer for f on 2/3 fraction of
inputs weighted by D. We argue that depth of T must be at least k/3. Consider the path
P traversed on a by T and let j be the label of the leaf l so reached. We argue that path
P must query at least k/3 variables. Suppose not. Then there exist at least s = (2k/3)+1
blocks Bi such that none of the variables from these block are queried by the path P .
Without loss of generality, let these blocks be B1, B2, ..., Bs. So for all inputs in the set
A = {a, a⊕1B1 , a⊕1B2 , ..., a⊕1Bs}, the path P is traversed and the answer j is returned
by T . Now, if f(a) = j, then T errs on the inputs {a⊕ 1B1 , a⊕ 1B2 , ..., a⊕ 1Bs

}, which
together have probability mass more than 1/3. On the other hand, if f(a) ̸= j, then T

errs on a which has probability mass of 1/2. Either way, this contradicts the assumption
that T answers correctly on 2/3 probability mass according to D.
Since the argument works for arbitrary T that is a (D, 1/3)-distributional query algorithm
for f , we have k/3 ≤ Ddt

D,ϵ(f) ≤ Rdt
1/3(f).

3. (C(f) ≤ Ddt(f) ≤ C(f)2): The first inequality is easy to see. Given a decision tree T

for f , on an input x, the variables queried by T on x form a valid certificate and so
C(f) ≤ Ddt(f).
The construction for the upper bound is exactly same as the one in the boolean case,
but the analysis has to be done more carefully for multi-output functions. For a multi-
output function f : X → [m], let C⃗ = (C1(f), C2(f), ..., Cm(f)). Let ρ1(f) and ρ2(f)
denotes the largest and the second largest number in the tuple C⃗ respectively. We claim
Ddt(f) ≤ ρ1(f)ρ2(f). Note that this proves our proposition since ρ1(f)ρ2(f) ≤ C(f)2.
We prove the claim by induction on ρ2(f). For the base case, when ρ2(f) = 0, f is
constant and so Ddt(f) ≤ ρ1(f)ρ2(f) = 0. For the induction step, ρ2(f) > 0, let i ∈ [m]
be the index such that Ci(f) = ρ1(f). Pick an input a such that f(a) = i (such an input
exists because Ci(f) > 0). Let S be the certificate for a and B be the set of variables in
it. Without loss of generality, let B = {x1, x2, ..., xk}. Take a complete binary tree T0
querying all the variables in B. On one of the leaves of T0, where variables in B match
the bits of a, we know that the value of f is i. Each of the other leaves correspond to a
unique setting ν of x1, ..., xk. Replace each leaf by the minimal depth decision tree for f

restricted with ν, denoted by fν .



12 Query Complexity of Search Problems

First, we claim that ρ2(fν) ≤ ρ2(f)− 1. This comes from the simple observation that for
h, l ∈ [m] with h ̸= l, every h-certificate must intersect with every l-certificate of f . Since
we queried an i-certificate of f , for all j ̸= i, Cj(fν) ≤ Cj(f)−1. Hence ρ2(fν) ≤ ρ2(f)−1.
Now applying the induction hypothesis for fν , Ddt(fν) ≤ ρ1(fν)ρ2(fν) ≤ ρ1(f)(ρ2(f)−1).
Putting things together, Ddt(f) ≤ ρ1(f) + ρ1(f)(ρ2(f)− 1) ≤ ρ1(f)ρ2(f).

4. (Ddt(f) ≤ 2C(f)bs(f)): This part is different from the boolean function case. We give
an algorithm to compute f , querying at most 2C(f)bs(f) variables. The algorithm is as
follows
a. Repeat the following at most 2bs(f) times: Pick an input with a certificate C that is

consistent with the queries so far but still has unqueried variables. Query the unqueried
variables of C.
If no such input exists, then the function under the restriction of queried variables has
become constant. Return the appropriate constant and stop. Otherwise continue to
the next step.

b. Pick any input y consistent with the variables queried so far, and return f(y).
First note that the algorithm queries at most 2bs(f)C(f) variables in the worst case. We
must show the correctness of the algorithm.
If the algorithm stops in stage a, then we know that for all inputs, every certificate is either
fully queried or inconsistent with the queries. Since certificates cannot be inconsistent
for all inputs, we have an input x whose certificate is consistent and empty. This means
that all the variables in the certificate have already been queried and checked, and so the
function must evaluate to f(x).
Now consider the case when the algorithm does not halt in stage a. We show that if
the algorithm reaches stage b, then then all the consistent inputs y must have the same
f(y) value. Suppose, to the contrary, there exist y and z consistent with all variables
queried in stage a, and with f(y) ̸= f(z). Let t = 2bs(f), f(y) = ly, f(z) = lz and ρ be
the partial assignment of variables queried so far. Let C1, C2, ..., Ct be the certificates
chosen in step a, and for 1 ≤ i ≤ t, let Bi be the set of variables on which ρ disagrees
with Ci. Even though ρ⊕ 1Bi is a partial assignment, it is consistent with the certificate
Ci, and hence f becomes constant under partial assignment ρ⊕ 1Bi

. Thus f(ρ⊕ 1Bi
) is

well-defined. Consider the following sets:

My = {i ∈ [t] | f(ρ⊕ 1Bi) ̸= ly}.

Mz = {i ∈ [t] | f(ρ⊕ 1Bi) ̸= lz}.

Then My ∪Mz = [t], so t ≤ |My|+ |Mz|. Without loss of generality, let |My| ≥ |Mz|; then
|My| ≥ t/2 = bs(f). Let B be the set of positions where y and z differ. By construction,
each Bi can only have variables that are in Ci, but not queried in ∪j<iCj . Hence the
blocks Bi for i ∈ My are disjoint. Also, B is disjoint from each Bi, since y and z are
consistent with ρ. Each block Bi for i ∈My, and block B, are all sensitive blocks for y.
But this means that f is sensitive to |My|+ 1 ≥ bs(f) + 1 disjoint blocks, a contradiction.
Thus, if the algorithm reaches stage b, all the inputs which are consistent with the queried
variables must have the same function value. Hence the algorithm’s output in stage (b)
is correct.

5. Using items (4), (1), (2), (2) in that order, we see that

Ddt(f) ≤ 2C(f)bs(f) ≤ 2s(f)bs(f)2 ≤ 2bs(f)3 ≤ 2
(

3Rdt
1/3(f)

)3
.

◀



A. Chattopadhyay, Y. Dahiya, M. Mahajan 13

Using the above, we can now improve the bounds from Proposition 2.3 for search problems.
One psDdt(S) factor from item 1 there can be removed, as also the ℓS(n) factor in item 2.

▶ Theorem 3.2. For any total search problem S, Ddt(S) = O((psDdt(S))3).

Proof. For total search problem S, let f̃ be a function solving S, with psDdt(S) = Rdt(f̃).
Then, using Theorem 3.1(5), we obtain

Ddt(S) = min
f∈sS

Ddt(f) ≤ Ddt(f̃) ≤ O((Rdt
1/3(f̃)3) = O(psDdt(S)3).

◀

4 Simpler separations between psDdt and Rdt

Using Theorem 3.2, we now provide simpler proofs of separations between randomized and
pseudo-deterministic query complexity.

In [14], the search problem ApproxHamWt was shown to demonstrate the limitations
of pseudo-determinism over randomized querying. In a similar vein, we define the search
problem BalancedFind1 below, which exhibits a similar separation, although it is much
simpler than ApproxHamWt. As we will see in Section 5, the ApproxHamWt problem
not only has Ω(n) pseudo-deterministic query complexity but also has a large exp(Ω(n))
pseudo-deterministic size. On the other hand, the BalancedFind1 problem has Ω(n)
pseudo-deterministic query complexity but can be solved deterministically with an O(n) size
decision tree.

▶ Proposition 4.1. Let S ⊆ {0, 1}n × [n] be the search problem

BalancedFind1 = {(x, i) : (|x|1 = |x|0 ∧ xi = 1) or (|x|1 ̸= |x|0)}.

Then Rdt(S) = O(1), and Ddt(S), psDdt(S) ∈ Ω(n).

Proof. We consider even n = 2m, as for odd n no queries are required.
First we show that Rdt

1/4(S) is 2. The randomized query algorithm is as follows: Randomly
choose two distinct indices i, j ∈ [n], and query them. If xi ∨ xj = 1, output any index
k ∈ {i, j} with xk = 1. Otherwise output 1. It is clear that for inputs x where |x|1 ≠ |x|0,
the algorithm is always correct. If |x|1 = |x|0, an error occurs only if both i, j are among the
exactly m indices where x has a 0; this happens with probability

(
m
2
)
/
(2m

2
)

= 1
2 . m−1

2m−1 ≤ 1/4.
To show that psDdt(S) = Ω(n), we show that any function f solving S can be used to

compute a total Boolean function g that solve Maj correctly on instances of odd length
2m − 1 that are either all-zeroes or have exactly m ones; we call this promise problem
ExactMaj. We then observe that every total Boolean function g solving ExactMaj (i.e.
every completion of the promise problem) has 0-sensitivity at least m. If f solves S optimally,
then from the definitions and invoking Proposition 2.2(2) we conclude

psDdt(S) = R(f) ≥ R(g) ≥ s(g)/3 ≥ Ω(n).

We can obtain g from f as follows: Let f(02m) = t. Then

g(x1, . . . , x2m−1) =
{

0 if f(x1, . . . , xt−1, 0, xt, . . . , x2m−1) = t

1 otherwise

To see that g has high sensitivity, start at an input of the form 02m−1, where g evaluates to 0.
Sequentially flip non-sensitive 0s to 1s as long as such 0s exist. This process must terminate
on an input y whose hamming weight is less than m and in which all 0s are sensitive. ◀



14 Query Complexity of Search Problems

Neither ApproxHamWt nor BalancedFind1 are in TFNPdt. However, the search
problem SearchCNF for random k-CNFs is in TFNPdt, and as shown in [15], also separates
pseudo-determinism from randomness. For the SearchCNF problem on suitably expanding
kCNF formulas, the randomized query complexity is O(1), while it is shown in [15] that the
pseudo-deterministic query complexity is Ω(

√
n). Note that already from the results of [21, 5],

the deterministic complexity of SearchCNF for these formulas is Ω(n) (see Proposition 2.8(2)).
Hence from the results of [14] (see Proposition 2.3), it follows that pseudo-deterministic query
complexity is Ω(n1/4) and even Ω((n/ log n)1/3) since ℓS(n) = O(n), giving the separation.
(This was also observed by the authors of [15] in a personal communication [23], although
it does not appear in their paper.) The proof in [15] improves the lower bound to Ω(n1/2).
At a very high level, the stages involved in their proof are as follows: ignoring constant
multiplicative factors,

psDdt(SearchCNF) = Rdt(f) choose f computing canonical solutions optimally
≥ max

i
Rdt(f i) f i: Boolean indicator function for each i in range

≥ max
i
{s(f i)} known relation

≥ max
i
{
√

deg(f i)} by sensitivity theorem [17]

≥
√

degNS(CNF ) construct Nullstellensatz refutation using f i’s
≥
√

n by NS-degree lower bound [1, 8, 16]

The stage involving the Sensitivity theorem makes the connection between sensitivity and
degree, and the stage involving Nullstellensatz degree lower bound uses expansion of random
formulas.

Observe that by using Proposition 2.8(2) in conjunction with Theorem 3.2, we can
already obtain a lower bound of Ω(n1/3) on psDdt, marginally improving on the lower bound
obtainable by using Proposition 2.8(2) in conjunction with Proposition 2.3. Of course, this
is still not as strong as the Ω(

√
n) lower bound from Proposition 2.8(3), but the proof is

significantly simpler.
Below we present a direct proof of the deterministic lower bound from Proposition 2.8(2),

using only Proposition 2.7. Though it does not show anything new, it is interesting because
it directly operates on decision trees, and the tree manipulation techniques used may be
useful in other contexts as well. This proof, along with the proof of Theorem 3.2, gives a
complete self-contained proof of the fact that for SearchCNF, psDdt = Ω(n1/3).

Proof. (Self-contained proof of the deterministic lower bound in Proposition 2.8(2).) Let F

be a 3-CNF formula on n variables with m = cn clauses such that F is highly unsatisfiable
(i.e. each assignment falsifies at least half of the clauses), F is n-matchable, and F is a
(κn, ϵ)-boundary expander for some ϵ > 0. As noted in Proposition 2.7, for large enough c, a
random formula chosen from F3,n

m satisfies these properties with high probability.
Let T be any decision tree solving S. Then T has the following properties

1. The leaves of T are labelled by the clauses of F . The subformula F ′, comprising of only
the clauses appearing at leaves of T , must form an unsatisfiable system since on every
assignment T leads to a falsified clause. Since F is n-matchable, Hall’s theorem implies
that any subset of at most n clauses of F can be matched to variables and thus can be
satisfied by setting the variables appropriately. Hence F ′ must have at least n + 1 clauses.

2. The partial assignment leading up to a leaf must falsify the clause labelled on the leaf.
For example, if the leaf is labelled by the clause x1 ∨¬x2 ∨x4 then the partial assignment
formed by querying the variables leading up to the leaf must have x1 = x4 = 0, x2 = 1.



A. Chattopadhyay, Y. Dahiya, M. Mahajan 15

We show that any T solving S must have a node in T whose depth is at least ϵκn/2. We do
this by performing modifications on T , deleting some of the unnecessary query nodes of T ,
and reasoning about the modified tree. The modified decision tree is constructed as follows.

For each non-leaf node v in T , let xv be the variable queried on v and let F L
v and F R

v be
the set of clauses appearing at the leaves of the left and the right subtree of v respectively.
We note below that the node v is redundant unless xv appears in some clause of F L

v as
well as in some clause of F R

v .
While T has redundant nodes, pick any such node v. Replace v by its left subtree if xv

does not appear in any clause in F L
v , and by its right subtree if xv does not appear in any

clause in F R
v .

Let T ′ be the tree obtained when no more deletion of nodes is possible; there are no
redundant nodes. We observe the following properties about T ′.
1. T ′ solves S.
2. Depth(T ′) ≤ Depth(T ).
3. For each node v in T ′, let Fv denote the set of clauses appearing at the leaves of subtree

rooted at v. Let ∂Fv be the set of boundary variables, or unique-neighbour variables,
associated with Fv. Then all the variables in ∂Fv must have been queried before node v.
To see why this is so, let x be some variable in ∂Fv, and assume to the contrary that x

is not queried by T on the path leading to v. By choice of x, there is a unique clause
Cx ∈ Fv containing either x or ¬x; without loss of generality assume it contains x. In
particular, no clause C ∈ Fv contains the literal ¬x. Let ℓ be a leaf in the subtree of v,
labelled Cx. Since Cx is falsified by the partial assignment ρ that leads to ℓ, x must be
set by ρ. Since it is not set upto v, there must be a node w on the path from v to ℓ that
queries x. Since no clause in Fv has ¬x, the node w is redundant, a contradiction.

With the observations above, the only thing left to do is to find a node which has lots of
boundary variables associated with it.

For the root node r, |Fr| = |F ′| =≥ n + 1 because of n-matchability. For a leaf node ℓ,
|Fℓ| = 1. At each node v, Fv = F L

v ∪F R
v . Hence, there exists a node v with κn/2 ≤ |Fv| ≤ κn.

(Start from the root node, and repeatedly move to the subtree with more clauses in its
subtree until such a node is found.)

Since F is a (κn, ϵ)-boundary-expander, ∂Fv has size at least ϵκn/2.
By observation 3 above, the path in T ′ leading to v queries all variables in ∂Fv. Along

with observation 2, we put things together:

Depth(T ) ≥ Depth(T ′) ≥ DepthT ′(v) ≥ |∂Fv| ≥
ϵκn

2 .

Since this holds for an arbitrary decision tree T solving S, hence Ddt(S) ≥ Ω(n). ◀

5 Pseudo-deterministic size vs deterministic size

In this section, we establish a polynomial relationship, up to polylog factors, between the
logarithm of pseudo-deterministic size and the logarithm of deterministic size for total search
problems, Theorem 5.3. We also improve the separation between pseudo-deterministic and
randomized size, Theorem 5.6.

However, before delving into this result, we examine an argument for extending results on
Boolean functions to multi-output functions. We note that a relationship between randomized
and deterministic complexity in a query model for Boolean functions yields an almost identical
relationship between pseudo-deterministic complexity and deterministic complexity for search



16 Query Complexity of Search Problems

problems. The result follows from a straightforward application of a binary search argument
and also appears in the work of [14] for making a similar claim for the ordinary query model.

▶ Proposition 5.1. In a query model M , let DM (DSizeM), RM (RSizeM) and psDM

(psDSizeM) denote the query complexity (size complexity, respectively) in the deterministic,
randomized and pseudo-deterministic settings. Then,
1. If for some monotonic function q : N × N → N and every total Boolean function f :
{0, 1}n → {0, 1}, DM(f) ≤ q(RM(f), n), then for any total search problem S ⊆ {0, 1}n ×
[m], DM(S) = O(q(psDM(S), n) ·min(log m, psDM(S))).

2. If for some monotonic function q : R × N → N and every total Boolean function f :
{0, 1}n → {0, 1}, log DSizeM(f) ≤ q(log RSizeM(f), n), then for any total search problem
S ⊆ {0, 1}n×[m], log DSizeM(S) = O(q(log psDSizeM(S), n)·min(log m, log psDSizeM(S))).

Proof. We prove the second statement; the proof of the first follows along similar lines. Let
S ⊆ {0, 1}n × [m] be a total search problem with psDSizeM(S) = s. Then there is a multi-
output function f̃ solving S, with RSizeM(f̃) = s witnessed by a randomized tree T . The range
of f̃ has size at most m, but could be much smaller. Let k be the smallest number such that
k-bit strings can represent all elements in the range of f̃ ; k = ⌈log |Range(f̃)|⌉ ≤ ⌈log m⌉.
Define the Boolean functions f1, f2, . . . , fk where fi(x) extracts the ith bit in the k-bit
representation of f̃(x). Then for each i ∈ [k], RSizeM(fi) ≤ RSizeM(f̃) = s; simply relabel
the leaves of T appropriately. By the hypothesized relation for Boolean functions, for each
i ∈ [k], log DSizeM(fi) ≤ q(log RSizeM(fi), n) ≤ q(log s, n). Let Ti be a deterministic tree
achieving this size bound. By composing the trees T1, T2, . . . , Tk and suitably relabelling
the leaves with elements from [m], we obtain a deterministic tree for f̃ of size (2q(log s,n))k.
Hence log DSizeM(S) ≤ log DSizeM(f̃) ≤ q(log s, n)× k.

Recall that k ≤ ⌈log m⌉. If, further, k ∈ O(log s), then we have already proved the
required inequality. We will now show that this is always the case; in fact, k ≤ 2 + log s.
Suppose not. However, since k = ⌈log |Range(f̃)|⌉, we obtain 4s < 2k < 2|Range(f̃)| and
conclude that s/|Range(f̃)| < 1/2. Consider the experiment of sampling a deterministic tree
in the support of T according to the distribution of T , and producing as output the number
of distinct labels appearing at the leaves of the sampled tree. This number is always bounded
by s, since every tree in the support has at most s leaves. By a standard averaging argument,
there must be some y ∈ Range(f̃) such that a tree containing y in its label set is sampled
with probability at most s/|Range(f̃)| < 1/2. This means that for every x ∈ f̃−1(y) (and
there is at least one such x since y is in the range), Pr[T (x) = f̃(x)] = Pr[T (x) = y] < 1/2,
contradicting the correctness of T .

(For proving the first statement, with psDM(S) = d, compose trees as above to get depth
q(d, n)× k, and show as above that k ≤ d + 2.) ◀

Using the above result and a result from [9], we relate the log of deterministic size and
the log of pseudo-deterministic size for search problems. Recently it was shown in [9] that
for all total Boolean functions, the log of deterministic size and the log of randomized size
are polynomially related, ignoring a polylogarithmic factor in the input size.

▶ Proposition 5.2 ([9, Theorem 3.1(b)]). For every total Boolean function f : {0, 1}n → {0, 1},

log DSizedt(f) = O((log RSizedt(f))4 log3(n)).

Using the relation from Proposition 5.2 as the “hypothesized function” in Proposition 5.1(2),
we obtain the following result.



A. Chattopadhyay, Y. Dahiya, M. Mahajan 17

▶ Theorem 5.3. For a total search problem S ⊆ {0, 1}n × [m], we have

log DSizedt(S) = O(log4 psDSizedt(S) · log3(n) ·min(log m, log psDSizedt(S))).

In [15] (Theorem 22), a separation was established between pseudo-deterministic and
randomized size for a SearchCNF problem, defined on suitably expanding kCNF formulas
lifted with 2-bit Xor gadgets. It was shown that the randomized size complexity of this
problem is O(1), while the pseudo-deterministic size complexity is exp(Ω(

√
n)). We now

establish a similar (but weaker) separation for the SearchCNF problem without any lifting.

▶ Corollary 5.4. For F a random 3-CNF formula on n variables with m = cn clauses
sampled from F3,n

m , with probability 1− o(1), F is unsatisfiable and

psDSizedt(SearchCNF(F )) = exp(Ω(n1/4/ log n)).

Proof. By Proposition 2.8(Item 4), with high probability a random 3-CNF formula F from
F3,n

m has DSizedt(SearchCNF(F )) = exp(Ω(n)). From Theorem 5.3, the lower bound on
pseudo-deterministic size follows. ◀

Since RSizedt of SearchCNF on random 3-CNF formulas is O(1) w.h.p (see Proposi-
tion 2.8(Item 1)), we get a separation between RSizedt and psDSizedt, albeit not as strong as
[15]. However, by virtue of Theorem 5.3, we can now conclude that any total search problem
that is easy for randomized size and hard for deterministic size will yield a separation between
RSizedt and psDSizedt.

We now improve the separation between randomized and pseudo-deterministic sizes, from
O(1) vs exp(Ω

√
n) as shown in [15], to O(1) vs exp(Ω(n)). To achieve this, we focus on the

ApproxHamWt problem. For this problem, a linear depth separation between randomized
and pseudo-deterministic algorithms is already known from [14] (see Proposition 2.4). By
using a 1-bit indexing gadget, we can lift the depth separation in ApproxHamWt to an
exponential size separation, as was done in [15, Theorem 22]. (The 1-bit indexing gadget
replaces each variable x by the function Sel(xa, xb, xc) = if xa = 1 then xb else xc.) In the
rest of this section, we show that the exponential size separation between randomized and
pseudo-deterministic algorithms can also be achieved using ApproxHamWt itself without
the lift. It is easy to see that the randomized size of ApproxHamWt is O(1). We show
that its pseudo-deterministic size is exp(Ω(n)). To this end, we establish that every solution
to ApproxHamWt embeds a hard boolean function whose randomized decision tree size is
exponential in the input size. This hard function is a completion of the promise problem
Approximate Majority, ApproxMaj.

ApproxMaj is a promise problem (i.e. partial Boolean functions; certain bit strings
are promised to never appear as inputs) where the task is to compute the majority of the
given bit string. The promise is that the fraction of bits set to 1 in the input is either at
least 3/4 or at most 1/2. A completion of ApproxMaj is a total Boolean function that
extends ApproxMaj arbitrarily on the non-promised inputs. We show that every solution
to ApproxHamWt embeds some completion of ApproxMaj, and that the randomized
decision tree size of every completion of ApproxMaj is exponential in the input size.

▶ Theorem 5.5. For the promise problem (partial boolean function) ApproxMaj,

ApproxMaj(x) =
{

0 if |x| ≤ n/2
1 if |x| ≥ 3n/4 ,

every completion f of ApproxMaj has RSizedt(f) = exp(Ω(n)).



18 Query Complexity of Search Problems

The proof of Theorem 5.5 is based on a corruption argument and follows the template for
proving randomized decision tree size lower bounds in [9, Theorem A.7]. This argument is
essentially due to Swagato Sanyal, and we thank him for allowing us to include it here. Before
we see its proof, let us use it to establish an exponential separation between randomized and
pseudo-deterministic size forApproxHamWt.

▶ Theorem 5.6. Let S be the search problem ApproxHamWt = {(x, v) ∈ {0, 1}n ×
{0, 1, ..., n} : |wt(x) − v| ≤ n/10}, where wt(x) is the Hamming weight of x. Then
RSizedt(S) = O(1), while psDSizedt(S) = exp (Ω(n)).

Proof. The Hamming weight of a string can be estimated within a small (θ(n)) additive
error by querying a constant number of variables uniformly at random and outputting the
scaled-up fraction of 1’s seen in the queried bits. Since a constant-depth tree also has a
constant size, RSizedt(S) = O(1).

To show a pseudo-deterministic size lower bound, we need to show that any function that
solves the ApproxHamWt problem must have randomized decision tree of size exp(Ω(n)).
Let f be any function solving the ApproxHamWt problem. The total Boolean function
f̄ : {0, 1}n → {0, 1} defined as f̄(x) = 1 iff f(x) > 6n/10 is a completion of ApproxMaj.
Given a randomized decision tree that computes f , we can relabel the leaves appropriately
to obtain a randomized decision tree that computes f̄ . Using Theorem 5.5, we conclude that
RSizedt(f) ≥ RSizedt(f̄) = exp(Ω(n)). ◀

Proof of Theorem 5.5. Let f be any completion of ApproxMaj. Our strategy is to con-
struct a hard distribution D on the inputs {0, 1}n such that DSizedt

D,1/3(f) = exp(Ω(n)),
and then use Proposition 2.1 to conclude that RSizedt(f) = exp(Ω(n)). To define the
hard distribution, we start by introducing some terminology. For an input x ∈ {0, 1}n, let
S1

x = {i : xi = 1} and S0
x = [n]\S1

x. We say that x is 0-sensitive if all the 0s in x are sensitive
with respect to f . For x ∈ {0, 1}n, we define the set of extreme upward neighbors of x as
EUN(x) = {y : S1

x ⊆ S1
y , f(x) = f(y) and y is 0-sensitive}. With this terminology in place,

we can define the hard distribution as follows:
1. Let rep : {0, 1}n → {0, 1}n be a function which maps x ∈ {0, 1}n to an arbitrary input

from EUN(x). Define µ0 , a distribution over f−1(0) as follows: Sample an x of Hamming
weight n/2 uniformly at random, and output rep(x).

2. Define µ1, a distribution over f−1(1), as follows: Sample an x according to µ0, an index
i uniformly at random from S0

x, and return x⊕ 1{i}.
3. Our hard distribution D is (µ0 + µ1)/2 i.e. with probability 1/2 return a sample from µ0,

and with probability 1/2 return a sample from µ1.
We show below that DSizedt

D,1/10(f) = exp(Ω(n)). Let T be a deterministic decision computing
f correctly on at least 9/10-probability mass when the input is sampled according to D.
Since D samples with probability 1/2 from µ0 and with probability 1/2 from µ1, T must be
correct on at least 4/5-th mass of µ0 as well as at least 4/5 mass of µ1. Let L0 be set of all
0-labelled leaves(0-leaves) in T . Let ρ0 and ρ1 be the µ0 and µ1 mass captured by 0-leaves
respectively; i.e.

ρ0 =
∑

v∈L0

Pr
x∼µ0

[x reaches v]; ρ1 =
∑

v∈L0

Pr
x∼µ1

[x reaches v].

As discussed above above, ρ0 ≥ 4/5 and ρ1 ≤ 1/5.
For a 0-leaf v, let Zv denote the set of indices of variables fixed to zero on the path

leading to v. We will show that 0-paths with small |Zv| together capture at most 2/5 of the



A. Chattopadhyay, Y. Dahiya, M. Mahajan 19

µ0 mass, and 0-paths with large |Zv| individually capture exponentially small µ0 mass. Thus
to ensure that ρ0 is large enough, there must be many 0-leaves.

1. (0-paths with few 0’s). Firstly, we show that 0-paths which see less than ⌈n/8⌉ 0’s must
capture no more than 2/5-th mass of µ0, i.e.,

ρ0
0 =

∑
v∈L0

|Zv|<⌈n/8⌉

Pr
x∼µ0

[x reaches v] ≤ 2/5.

This essentially follows from the sensitivity property of µ0. Specifically, each y in the
support of µ0 has a Hamming weight less than 3n/4, and since all the 0s in y are sensitive,
each y in the support of µ0 has 0-sensitivity of at least n/4. Therefore, if a 0-path has
not observed many 0s, the corresponding leaf will also capture a significant amount of µ1
mass.
Formally, consider a subcube Q corresponding to a 0-leaf with less than ⌈n/8⌉ variables
fixed to 0. Due to the sensitivity property of µ0, each x supported by µ0 has at least n/4
sensitive 0s. Hence, any x supported by µ0 that lies in Q has at least half of its total 0s
unfixed. By flipping any of these 0s, we obtain an input supported by µ1 that still lies in
Q. Therefore,

1/5 ≥ ρ1 ≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ1

[x reaches v]

=
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0
i∼uS0

x

[x⊕ 1{i} reaches v]

≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0
i∼uS0

x

[x reaches v and i ̸∈ Zv]

=
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0

[x reaches v] Pr
x∼µ0
i∼uS0

x

[i ̸∈ Zv|x reaches v]

≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0

[x reaches v] ·
(
|S0

x| − n/8
|S0

x|

)

≥ 1
2 ·

 ∑
v∈L0

|v|0<⌈n/8⌉

Pr
x∼µ0

[x reaches v]

 (because |S0
x| > n/4)

= 1
2ρ0

0.

Hence ρ0
0 ≤ 2/5.

2. (0-paths with lots of 0’s). Secondly, we show that a 0-path which sees more than ⌈n/8⌉
0’s can capture at most κ = exp(−Ω(n)) of µ0 mass. Consider a leaf v labelled 0 such
that the path leading to v fixes t ≥ ⌈n/8⌉ variables to 0; |Zv| = t ≥ n/8. Let Sn/2 be all



20 Query Complexity of Search Problems

strings of Hamming weight n/2. We have

κ = Pr
y∼µ0

[y reaches v] = Pr
x∼uSn/2

[rep(x) reaches v]

≤ Pr
x∼uSn/2

[S1
rep(x) ∩ Zv = ∅]

≤ Pr
x∼uSn/2

[S1
x ∩ Zv = ∅] (because S1

x ⊆ S1
rep(x))

≤

(
n−t
n/2

)(
n

n/2
)

≤

(7n/8
n/2

)(
n

n/2
) (because t ≥ n/8)

=
n/2−1∏

i=0

7n/8− i

n− i
≤

(
7
8

)n/2
= 2−Ω(n).

With these two observations, we can now obtain the desired lower bound.

4/5 ≤ ρ0 =
∑

v∈L0

Pr
x∼µ0

[x reaches v]

=
∑

v∈L0
|Zv|<⌈n/8⌉

Pr
x∼µ0

[x reaches v] +
∑

v∈L0
|Zv|≥⌈n/8⌉

Pr
x∼µ0

[x reaches v]

≤ 2/5 + κ× (number of 0-leaves).

Hence the number of 0-leaves is at least 2/(5κ) = exp(Ω(n)). ◀

6 More general decision trees

A variable is queried at each node of a decision tree. Generalising the class of permitted
queries gives rise to many variants of decision trees that have been considered in different
contexts. In this section, we consider three such classes.

When the permitted queries are And of a subset of (non-negated) variables, we refer
to such trees as And-decision trees (ADT). We let D∧-dt, psD∧-dt, R∧-dt denote the
deterministic, pseudo-deterministic and randomized query complexity in this model.
When the permitted queries are And of a subset of variables (And query) or an Or of a
subset of variables (Or query), we refer to such trees as (And, Or)-decision trees. We let
D(∧,∨)-dt(·), psD(∧,∨)-dt(·) and R(∧,∨)-dt(·) denote the deterministic, pseudo-deterministic
and randomized query complexity in this model.
When the permitted queries are Parity of a subset of variables, we refer to such trees
as Parity-decision trees (PDT). We let D⊕-dt, psD⊕-dt, R⊕-dt denote the deterministic,
pseudo-deterministic and randomized query complexity in this model.

And, Or and Parity are the most basic Boolean functions. It is thus natural to study the
relationship between determinism, pseudo-determinism and randomized in these interesting
generalisations.

6.1 And-decision trees
Pseudo-determinism can be separated from randomness in And decision trees. To establish
the separation, we first give a technique to prove a pseudo-deterministic lower bound using



A. Chattopadhyay, Y. Dahiya, M. Mahajan 21

monotone block sensitivity. The following theorem generalises Theorem 3.1(2) to And
decision trees. The same relation is proved for Boolean functions in [20], by reduction to a
hard communication problem; here, we give a more direct proof for multi-output functions.

▶ Theorem 6.1. For a multi-output function f , R∧-dt
1/3 (f) ≥ bs0(f)/3.

Proof. Let a be an input with monotone block sensitivity k = bs0(f), and let B1, B2, . . . , Bk

be sensitive disjoint 0-blocks of a. We describe a hard distribution D such that D∧-dt
D,1/3(f) ≥

k/3, thereby showing R∧-dt
1/3 (f) ≥ k/3. The hard distribution is similar to the one used in

Theorem 3.1(2).

D(x) =


1/2 if x = a

1/(2k) if x = a⊕ 1Bi
for i ∈ [k]

0 otherwise

We show that there is an adversary strategy A for responding to And queries such that
for any And-decision tree T , if Depth(T ) < k/3, then the probability that T errs when
following the responses of A is more than 1/3.

The adversary, A, maintains a partial assignment ρ consistent with his answers as follows:
Firstly, the adversary fixes all the variables not part of ∪iBi according to a. Now, if T asks
a query whose answer is already determined by ρ, A answers accordingly. Otherwise, the
query asked must involve variables from at least one of the sensitive blocks not set in ρ yet.
A picks one such block arbitrarily and sets all its variables to 0 in ρ, and returns 0 to T as
the query reply.

It is clear that the ρ maintained by the adversary is consistent with his answers to queries.
Also, at each stage, each of the sensitive blocks is either set entirely to 0s in ρ, or entirely
unset in ρ. Each query results in at most one of the sensitive blocks being set.

If Depth(T ) < k/3, then T asks less than k/3 queries and returns an answer L on a leaf
l. More than 2k/3 blocks thus remain unset when l is reached; w.l.o.g. let B1, B2, ..., Bs be
these blocks, for some s > 2k/3. On all the inputs in the set {a, a⊕ 1B1 , a⊕ 1B2 , ..., a⊕ 1Bs

},
T will reach l and output answer L. However, f(a⊕ 1Bi

) ̸= f(a) for each i ∈ [s]. If L ̸= f(a),
then Prx∼D[T (x) ̸= f(x)] ≥ D(a) = 1/2. On the other hand, if L = f(a), then

Pr
x∼D

[T (x) ̸= f(x)] ≥
∑
i∈[s]

D(a⊕ 1Bi
) = s× 1

2k
>

2k

3
1
2k

= 1
3 .

Thus, either way, if Depth(T ) < k/3 = bs0(f)/3 then Prx∼D[T (x) ̸= f(x)] > 1/3. It
follows that D∧-dt

D,1/3(f) ≥ bs0(f)/3. By Proposition 2.1, R∧-dt
1/3 (f) ≥ bs0(f)/3. ◀

From this theorem and the definition of pseudo-determinism, we obtain the following corollary.

▶ Corollary 6.2. For a total search problem S, psD∧-dt
1/3 (S) ≥ minf∈sS bs0(f)/3.

Using this result, we can now separate randomized and pseudo-deterministic complexity
for And decision trees.

▶ Theorem 6.3. Let S be the search problem ApproxHamWt = {(x, v) : |wt(x) − v| ≤
n/10}, where wt(x) is the Hamming weight of x. Then R∧-dt(S) = Rdt(S) = O(1), while
psD∧-dt(S) ∈ Ω(n).



22 Query Complexity of Search Problems

Proof. It is easy to see, and already noted in Corollary 4.2 of [14], that Rdt(S) = O(1).
To show psD∧-dt(ApproxHamWt) = Ω(n), we will show that any f solving ApproxHamWt

must have 0-sensitivity of at least 4n/5. This too follows the proof outline from Corollary 4.2
of [14], where a lower bound on psDdt was obtained. But using Corollary 6.2, we draw the
stronger conclusion that psD∧-dt(ApproxHamWt) ≥ 4n/5.

Suppose that for some f solving ApproxHamWt, s0(f) < 4n/5. We start with x0 = 0n

and create a sequence of inputs ⟨xi⟩ such that wt(xi) = i and f(xi) = f(0n). Because f

solves ApproxHamWt, n/10 ≥ f(0n) = f(x1) = f(x2) = . . . = f(xl) ≥ l − n/10. Thus if
we are able to create such a sequence of length at least l = n/5 + 1, then we already have a
contradiction.

The only thing left is to create the sequence xi. For 0 ≤ i ≤ n/5, given xi with
f(xi) = f(0n), we need to find a suitable xi+1. Note that xi has exactly n− i 0-bit positions,
of which at most s0(f) are sensitive, so at least s = n − i − s0(f) 0-bit positions are not
sensitive. Since s0(f) < 4n/5 and i ≤ n/5, s > 0, so xi has at least one non-sensitive
0-bit position. Pick any such position, say j, and define xi+1 = xi ⊕ 1{j}. Note that
xi+1 satisfies the desired properties we are looking for i.e. f(xi+1) = f(xi) = f(0n) and
wt(xi+1) = i + 1. ◀

The same separation also holds for the search problem BalancedFind1, by the same
sensitivity argument as described in the proof of Proposition 4.1 along with Corollary 6.2.

Recently it was shown in [9] that the deterministic And query complexity and randomized
And query complexity for total boolean functions are polynomially related, ignoring polylog
factors.

▶ Proposition 6.4 ([9, Theorem 4.5]). For every total Boolean function f : {0, 1}n → {0, 1},
D∧-dt(f) = O(R∧-dt(f)3 log4(n)).

Using this with Proposition 5.1, we get a polynomial relationship between psD∧-dt and D∧-dt.

▶ Theorem 6.5. For a total search problem S ⊆ {0, 1}n × [m], we have

D∧-dt(S) = O(psD∧-dt(S)3 · log4(n) ·min(log m, psD∧-dt(S))).

6.2 (And, Or)-decision trees
For (And, Or)-decision trees, for total Boolean functions, it was observed in [9] that the
logarithm of ordinary decision tree size is closely related to the query complexity in (And, Or)-
decision tree model.

▶ Proposition 6.6 ([9, Lemma 4.2]). For every Boolean function f : {0, 1}n → {0, 1},

log DSizedt(f)/(2 log n) ≤ D(∧,∨)-dt(f) ≤ 4 log DSizedt(f), (1)

log RSizedt(f)/(2 log n) ≤ R(∧,∨)-dt(f) ≤ 4 log RSizedt(f). (2)

The same relations hold for multi-output functions as well.

(In [9], only total Boolean functions are considered. The proof there is based on a syntactic
argument, where the upper bound relies on a tree-balancing argument and the lower bound
is obtained by opening up And and Or queries. Since the proof is syntactic, it naturally
extends to multi-output functions and search problems.)

By using Proposition 6.6, we obtain the following relationship between psDSizedt and
psD(∧,∨)-dt.



A. Chattopadhyay, Y. Dahiya, M. Mahajan 23

▶ Lemma 6.7. For a total search problem S ⊆ {0, 1}n × [m], we have

log psDSizedt(S)/(2 log n) ≤ psD(∧,∨)-dt(S) ≤ 4 log psDSizedt(S).

Proof. For S, let f and g be multi-output function solving S, with psDSizedt(S) = RSizedt(f)
and psD(∧,∨)-dt(S) = R(∧,∨)-dt(g) respectively. Then

4 log psDSizedt(S) = 4 log RSizedt(f)

≥ R(∧,∨)-dt(f) (by Proposition 6.6, (2))

≥ psD(∧,∨)-dt(S)

= R(∧,∨)-dt(g)
≥ log RSizedt(g)/(2 log n) (by Proposition 6.6, (2))
≥ log psDSizedt(S)/(2 log n).

◀

Using the relationship above and the size separation from Theorem 5.6, we get a separation
between randomized and pseudo-deterministic query complexity in (And, Or)-decision trees.

▶ Theorem 6.8. Let S be the search problem ApproxHamWt. Then R(∧,∨)-dt(S) = O(1)
and psD(∧,∨)-dt(S) = Ω(n/ log n).

For total Boolean functions, deterministic and randomized (And, Or) query complexity were
also shown to be polynomially related in [9], upto polylog factors.

▶ Proposition 6.9 ([9, Theorem 4.1]). For every total Boolean function f : {0, 1}n → {0, 1},

D(∧,∨)-dt(f) = O(R(∧,∨)-dt(f)4 log7(n)).

Using the above proposition along with Proposition 5.1, we get that pseudo-determinism and
determinism are polynomially related, upto polylog factors, in (And, Or)-decision trees.

▶ Theorem 6.10. For a total search problem S ⊆ {0, 1}n × [m], we have

D(∧,∨)-dt(S) = O(psD(∧,∨)-dt(S)4 · log7(n) ·min(log m, psD(∧,∨)-dt(S))).

6.3 Parity-decision trees
For Parity decision trees, for total Boolean functions, the randomized and deterministic
Parity query complexities are linearly separated: for the And and Or functions, the
deterministic PDT complexity is Ω(n), whereas the randomized PDT complexity is O(1).
The search analogue of the Or function gives an almost linear separation between determinism
and pseudo-determinism in the PDT model.

▶ Theorem 6.11. Let S be the search problem

SearchOR = {(x, v) : (xv = 1) or (x = 0n ∧ v = n + 1)}.

Then D⊕-dt(S) = n whereas psD⊕-dt(S) = O(log n log log n).



24 Query Complexity of Search Problems

Proof. D⊕-dt(S) ≤ n is trivial; we show D⊕-dt(S) ≥ n. Let T be any parity decision tree
solving S. Consider the left-most path P in the tree, i.e. the path where all the queries are
reported to be 0, and let it terminate at the leaf ℓ. We claim that this path must be of
length n. Suppose not. Let L1, L2, ..., Lk, for k < n, be the set of parities queried by T on
the path P . Now, note that all the inputs on which T reaches leaf ℓ form an affine subspace
A of co-dimension at most k defined by L1 = 0, L2 = 0, . . . , Lk = 0. Since k < n, it contains
at least 2n−k ≥ 2 points. Clearly, 0n is in A, but it must contain at least one more point, x,
other than 0n. Since S(0)∩S(x) = ∅, T must err on either x or 0 (or both). Thus, Depth(T )
must be at least n. Hence D⊕-dt(S) = n.

Next, we show that psD⊕-dt(S) = O(log n log log n). Let f be the multi-output function
which returns n + 1 on input 0n, and on all other inputs it returns the bit position of the
first 1. Note that f solves SearchOR. We give a randomized algorithm for f making
O(log n log log n) queries, thereby showing that psD⊕-dt(S) = O(log n log log n). The main
idea for the randomized algorithm is to perform binary search for the bit position of the first
1. The algorithm is as follows:
1. Initialise the search space C to [1, 2, ..., n]. C is an ordered set.
2. Repeat until the search space C contains exactly one bit position: Let C = [p, p+1, ..., p+s]

at the current stage. For k = 2 log log n, sample k random parities L1, L2, . . . , Lk

independently over the variables xp, xp+1, ..., xp+⌊s/2⌋. That is, for i ∈ [k] and p ≤ j ≤
p + ⌊s/2⌋, each Li independently contains xj with probability 1/2. Query L1, . . . , Lk,
and if any one of them evaluates to 1, update the search space C to [p, p + 1., , p + ⌊s/2⌋].
Otherwise update C to [p + ⌊s/2⌋+ 1, p + ⌊s/2⌋+ 2, ..., p + s].

3. Let p be the only bit position in C at this stage. If xp = 0 return n + 1 otherwise return p.
First, note that the algorithm makes at most O(log n log log n) queries, since the search space
reduces by half in each iteration of step 2 and each iteration of step 2 makes 2 log log n

queries. We now show the correctness.
On the all-zero input 0n, with probability 1 the algorithm is correct (since it reaches step

3 with p = n).
Let x be an input which contains at least one bit set to 1, and let q be the first such bit

position. The algorithm performs a binary search trying to find q. It maintains in C the
potential search space which should contain q. Certainly, in the beginning, C contains q.
The algorithm reduces the search space to half by querying random parities over variables
from the first half of the search space. We argue that with good enough probability, the
algorithm reduces the search space correctly i.e. if C contained q before an iteration of step
2, then with the good probability it contains q after the operation. Observe that if the
first half of the search space contains q, then each Li independently evaluates to 1 with
probability 1/2. Since we query k = 2 log log n parities, with probability 1− 1

2k = 1− 1
(log n)2 ,

the algorithm detects the correct half of the search space containing q. If the first half
of the search space does not contain q, then all queries report 0, and so with probability
1, the algorithm detects the correct half of the search space containing q. Thus any one
iteration erroneously discards q from the search space with probability at most 1

(log n)2 . If
the algorithm reduces the search space correctly in each of the log n iterations of step 2, then
it will return the correct answer for x. By the union bound, the algorithm is correct on x

with probability at least 1− 1
log n . ◀

Establishing a super-polynomial separation between randomness and pseudo-determinism
remains open for Parity decision trees.



A. Chattopadhyay, Y. Dahiya, M. Mahajan 25

7 A combinatorial proof of a combinatorial problem

In [15], the authors studied the pseudo-deterministic query complexity of a promise problem
(PromiseFIND1). Here the input bit string has 1s in at least half the positions, and the task
is to find a 1. They observed that PromiseFIND1 is a complete problem for easily-verifiable
search problems with randomized query algorithms (see Theorem 3 in [15]), and proved a
Ω(
√

n) lower bound on its pseudo-deterministic query complexity. They conjectured that
the pseudo-determinisitic query lower bound for PromiseFIND1 can be improved to Ω(n).
Towards understanding the PromiseFIND1 problem better, they introduced a natural
colouring problem on hypercubes which states that any proper coloring of the hypercube
contains a point with many 1s and with high block sensitivity.

▶ Definition 7.1. A proper coloring of the n-dimensional hypercube is any function ϕ :
{0, 1}n − {0n} −→ [n] such that for all β ∈ {0, 1}n − {0n}, βϕ(β) = 1.

We say a proper coloring ϕ is d-sensitive if there exists a β ∈ {0, 1}n such that |β|1 ≥ n/2
and β has block sensitivity at least d with respect to ϕ. That is, there are d disjoint blocks
of inputs, B1, ..., Bd such that for all i ∈ [d], ϕ(β) ̸= ϕ(β ⊕ 1Bi). The hypercube coloring
problem is about proving lower bound on the (block) sensitivity of every proper coloring. In
[15] it was shown that every proper coloring is Ω(

√
n)-sensitive.

▶ Proposition 7.2 (Restated from Theorem 14 [15]). Every proper coloring of the Boolean
cube is Ω(

√
n)-sensitive.

The hypercube coloring problem is closely related to the pseduodeterministic query complexity
of PromiseFIND1. It is a straightforward observation that showing every proper coloring
is d-sensitive implies a lower bound of d on the pseudo-deterministic query complexity of
PromiseFIND1. To prove Proposition 7.2, [15] converted their sensitivity lower bound for
the search problem associated with a random unsat k-XOR formula into a block sensitivity
lower bound for the hypercube coloring problem.

We give a self-contained combinatorial solution to the coloring problem. Our solution
shows that every proper coloring of hypercube has a β ∈ {0, 1}n with Hamming weight ≥ n/2
and with block sensitivity Ω(n1/3). In fact, we show that either the 1-block sensitivity or the
0-block sensitivity (or both) is Ω(n1/3). Thus this appears incomparable with the bound
from [15].

Our solution is constructive: we describe an algorithm that finds the required high-weight
high-block-sensitivity point, by querying ϕ at various points. It is not an efficient algorithm,
since it involves computing block-sensitivity at various points. But it finds the required point,
hence proving that such a point exists. On the other hand, the solution in [15] independently
proves the existence of such a point, and so a brute-force search algorithm can find one.

▶ Theorem 7.3. Every proper coloring ϕ of the Boolean hypercube has a β ∈ {0, 1}n with
|β| ≥ n/2 satisfying bs0(ϕ, β) = Ω(n1/3) or bs1(ϕ, β) = Ω(n1/3).

In particular, this implies a Ω(n1/3) lower bound on the block sensitivity of the hypercube
coloring problem and on the pseudo-deterministic query complexity of PromiseFIND1.
While our bound is not as strong as the lower bound of Ω(

√
n) from [15], it is simple

and self-contained, and we hope that it will add to our understanding of PromiseFIND1
problem.

Proof. In Algorithm 1, we describe a procedure to find the required point β. To prove
that the algorithm is correct, we need to prove that if it returns β ∈ {0, 1}n and blocks
D1, D2, . . . , Dr, then



26 Query Complexity of Search Problems

Algorithm 1 Algorithm to find the sensitive point

Require: A proper coloring ϕ. i.e. For X = {x ∈ {0, 1}n |
∑

i xi ≥ n/2}, ϕ : X → [n]
satisfying ∀x ∈ X , xϕ(x) = 1.

1: t← ⌊(n/2)1/3⌋
2: C0 ← ∅
3: for i from 1 to t do
4: βi ← 0Ci−1 ▷ Reference input for

which we try to find t

sensitive 1-blocks.
5: ℓ← ϕ(βi)
6: s← bs1(ϕ, βi) ▷ {ℓ} is a 1-sensitive

block of βi, so s ≥ 1
7: Bi,1, Bi,2, ..., Bi,s: disjoint, minimally-sensitive
8: 1-blocks achieving the 1-block sensitivity s.
9: Bi ← ∪s

j=1Bi,j ▷ ℓ is a sensitive bit
of βi and s is maximum
number of disjoint
1-sensitive blocks, ℓ ∈ Bi

.
10: if s ≥ t then
11: return βi and {Bi,1, Bi,2, ..., Bi,s} ▷ bs1(ϕ, βi) ≥ t

12: end if
13: if maxj∈[s] |Bi,j | ≥ t then
14: Pick any such j ∈ [s] with |Bi,j | ≥ t.
15: return βi ⊕ 1Bi,j

and {{k} | k ∈ Bi,j} ▷ s0(ϕ, βi ⊕ 1Bi,j
) ≥ t

16: end if
17: Ci ← Ci−1 ∪Bi ▷ We show: Ci forms a

ϕ-certificate for βi

18: end for
19: βt+1 ← 0Ct

20: return βt+1 and {B1, B2, ..., Bt} ▷ bs0(ϕ, βt+1) ≥ t



A. Chattopadhyay, Y. Dahiya, M. Mahajan 27

1. β ∈ X (i.e. β has Hamming weight at least n/2),
2. D1, D2, . . . , Dr are disjoint sensitive blocks of ϕ at β, and
3. either all these blocks are 1-blocks of β or all these blocks are 0-blocks.
4. r ∈ Ω(n1/3),

Observe that by construction, for each i ∈ [t+1] where βi is constructed by the algorithm,
βi has 0s in Bj for j < i and 1s in Bi (in fact, 1s elsewhere); hence the blocks B1, . . . , Bi−1
are disjoint.

Further, by construction, each complete iteration of the for loop adds fewer than t2

positions to C: there are fewer than t blocks (otherwise the algorithm would terminate at
line 11) and each block has size less than t (otherwise the algorithm would terminate at
line 15). Thus, since |C0| = 0, if the algorithm reaches line 17 in iteration i, then Ci has size
less than i · t2. Hence βi+1 has hamming weight n−|Ci| > n− it2 ≥ n− t3 > n−n/2 ≥ n/2
and is in X .

If the algorithm terminates at line 11 in the ith iteration of the for loop, then by the
choice in line 8 the returned blocks are disjoint 1-sensitive blocks of β = βi, and there are at
least t of them. Similarly, if the algorithm terminates at line 15 in the ith iteration of the for
loop, then by minimality of the sensitive block Bi,j chosen in line 14, each position in Bi,j is
a 0-sensitive location in β = βi ⊕ 1Bi,j

, and there are at least t of them.
If the algorithm terminates at line 20, then each Bi is a 0-block of β = βt+1 and there

are t such blocks. It remains to prove that each Bi is sensitive for β = βt+1. To show this,
we will first show that each Ci is a certificate for βi, and then show that this implies each Bi

is sensitive for β.
For the first part, suppose for some i ∈ [t], Ci is not a certificate for βi. Then there exists

an α ∈ X such that ∀j ∈ Ci, αj = βi
j , but ϕ(α) ̸= ϕ(βi). Let B be the set of positions where

α and βi differ i.e. α = βi ⊕ 1B. Since α and βi agree on Ci, B must be disjoint from Ci.
Since ϕ(βi) ̸= ϕ(α) = ϕ(βi ⊕ 1B), B is a 1-sensitive block of ϕ at βi. By the choice in line 8
at the ith iteration, βi has no 1-sensitive blocks disjoint from the blocks Bi,1, . . . , Bi,s. But
Bi is precisely the union of the these blocks, and is contained in Ci, so B is disjoint from Bi,
a contradiction. Hence Ci is indeed a ϕ-certificate for βi.

For the second part, note that for each i ∈ [t], β and βi agree on Ci−1 and β ⊕ Bi and
βi agree on Ci. Since Ci is a certificate for βi, ϕ(β ⊕ Bi) = ϕ(βi) = ℓ, say. By the definition
of proper coloring, {ℓ} is a 1-sensitive block of βi, and since the blocks chosen in line 8 are
the maximum possible 1-sensitive blocks, ℓ ∈ Bi. But ϕ(β) ̸= ℓ because β = 0Ct and has
only 0s in Bi. Thus ϕ(β) ̸= ϕ(β ⊕ Bi), and hence Bi is a 0-sensitive block for β.

Finally, by choice of t, we see that r ∈ Ω(n1/3). This completes the proof of correctness
of the algorithm. ◀

References
1 Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:

Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science FOCS,
pages 190–199. IEEE Computer Society, 2001.

2 Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution
and Davis–Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002.

3 Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Random
Structures & Algorithms, 23(1):92–109, 2003.

4 Eli Ben-Sasson*, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like
and general resolution. Combinatorica, 24(4):585–603, 2004.



28 Query Complexity of Search Problems

5 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J.
ACM, 48(2):149–169, 2001.

6 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resolution
size. Information Processing Letters, 113(18):666–671, 2013.

7 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002.

8 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267–289, 2001.

9 Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S Mande, Jaikumar Radhakrishnan, and
Swagato Sanyal. Randomized versus deterministic decision tree size. In Proceedings of the
55th Annual ACM Symposium on Theory of Computing, pages 867–880, 2023.

10 Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM, 35(4):759–
768, 1988.

11 Daniel Dadush and Samarth Tiwari. On the Complexity of Branching Proofs. In Shubhangi
Saraf, editor, 35th Computational Complexity Conference (CCC 2020), volume 169 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:35, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

12 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 902–911, 2018.

13 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., page 136, 2011.

14 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In Robert D. Kleinberg, editor, Innovations in Theoretical
Computer Science ITCS, pages 127–138. ACM, 2013. See also ECCC Vol. 19, T.R. 12-101,
2012.

15 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the
pseudo-deterministic query complexity of NP search problems. In Valentine Kabanets, editor,
36th Computational Complexity Conference CCC, volume 200 of LIPIcs, pages 36:1–36:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

16 Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs. In 39th Annual
Symposium on Foundations of Computer Science FOCS, pages 648–652. IEEE Computer
Society, 1998.

17 Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. CoRR,
abs/1907.00847, 2019.

18 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012.

19 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Guest column: Models
of computation between decision trees and communication. ACM SIGACT News, 52(2):46–70,
2021.

20 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for
and-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 197–208, 2021.

21 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision
tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.

22 Noam Nisan. Crew prams and decision trees. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing, pages 327–335, 1989.

23 Rahul Santhanam, April 2023. personal communication.
24 Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract). In

24th Annual Symposium on Foundations of Computer Science FOCS, pages 420–428. IEEE
Computer Society, 1983.

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


