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Abstract

We study the two-party communication complexity of functions with large outputs, and
show that the communication complexity can greatly vary depending on what output model
is considered. We study a variety of output models, ranging from the open model, in which
an external observer can compute the outcome, to the XOR model, in which the outcome of
the protocol should be the bitwise XOR of the players’ local outputs. This model is inspired
by XOR games, which are widely studied two-player quantum games.

We focus on the question of error-reduction in these new output models. For functions
of output size k, applying standard error reduction techniques in the XOR model would
introduce an additional cost linear in k. We show that no dependency on k is necessary.
Similarly, standard randomness removal techniques, incur a multiplicative cost of 2k in the
XOR model. We show how to reduce this factor to O(k).

In addition, we prove analogous error reduction and randomness removal results in the
other models, separate all models from each other, and show that some natural problems –
including Set Intersection and Find the First Difference – separate the models when the
Hamming weights of their inputs is bounded. Finally, we show how to use the rank lower
bound technique for our weak output models.

1 Introduction

Most of the literature on the topic of communication complexity has focused on Boolean func-
tions. The usual definition stipulates that at the end of the protocol, one of the players knows the
value of the function. In the rectangle based lower bounds, the assumption is slightly stronger:
at the end of the protocol, the transcript of the protocol determines a combinatorial rectangle
of inputs that all evaluate to the same outcome. This means that given the transcript (together
with the public coins, in the randomized public-coin setting), an external observer can determine
the output. In the case of Boolean functions, this assumption makes no significant difference
since the player who knows the value of the function can send it in the last message of the pro-
tocol, at an additional cost of at most one bit. When the function has large outputs, however,
sending the value of the function as part of the transcript could cost more than all the prior
communication. When this happens, then what should be considered the “true” communication
complexity of the problem?

When studying functions with large outputs, several fundamental questions and issues emerge.
What lower bound techniques extend to non-Boolean functions? When composing protocols with
large outputs, it may not be useful for both players to know the values of the intermediate func-
tions, and the aggregated cost of relaying the outcome at each intermediate step could exceed
the complexity of the composed problem. These issues are also applicable to information com-
plexity, where the cost is measured in information theoretic terms instead of in number of bits of
communication. Requiring protocols to reveal the outcome as part of the transcript could be an
obstacle to finding very low information protocols. It also raises the following issue: how does
one amplify success when outputs are large? Amplification schemes typically involve repeating
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Figure 1: The various models of communication and problems separating them. An arrow from
A to B indicates that a communication protocol for a task of type A is also a communication
protocol for a task of type B. Details of the separations are provided in Appendices AAppendices A and HH.

a protocol and taking a majority outcome, but finding said majority outcome näıvely incurs a
cost that depends on the length of the output. We explore these issues, and give new models
and amplification schemes.

Well-studied examples of functions with large outputs include asymmetric games, like the
NBA problem [Orl90Orl90, Orl91Orl91] (see also [KN97KN97, Example 4.53, p. 64]), and many problems where
the output is essentially of the same size as the input (e.g., computing the intersection of two
sets [BCK+14BCK+14, BCK+16BCK+16]). A decisional analog of a function with large output may have a
similar communication complexity (e.g., Set Disjointness [KS92KS92, Raz92Raz92, BYJKS04BYJKS04]) or a very
different one (e.g., deciding if the parties’ numbers sum to something greater than a given
constant [Nis93Nis93, Vio15Vio15]). Large output functions also appear when studying whether multiple
instances of the same function exhibit economies of scale, known as direct sum problems, along
with their variants such as agreement and elimination [Aar05Aar05, ABG+01ABG+01, BDKW14BDKW14]. In these
and other problems, computing one bit of the output can be just as hard or significantly easier
than computing the full output, depending on the function and on the model. Finally, simulation
protocols, whose output are transcripts of another protocol, have played a key role in compression
[BR14BR14, Bra15Bra15, Kol16Kol16, She18She18, BK18BK18] as well as structural results [BBK+16BBK+16, GKR16GKR16, GKR21GKR21,
RS18RS18]. The Find the First Difference problem has been instrumental in compression protocols.
Better protocols are known when weaker output conditions are required [BBCR13BBCR13, BMY15BMY15].

1.1 Output models

We put forward several natural alternatives to the model where the transcript and public ran-
domness reveal (possibly without containing it explicitly) the value of the function (we call this
the open model). In the local model, both players can determine the value of the function lo-
cally (but an external observer might not be able to do so – unlike in the open model). In the
unilateral model, one player always learns the answer. In the one-out-of-two model, the player
who knows the answer can vary. In the split model, the bits of the output are split between the
players in an arbitrary way known to both players. Finally, in the XOR model, each player out-
puts a string and the result is the bitwise XOR of these outputs. The models form a hierarchy,
shown in Fig. 1Fig. 1. We defer formal definitions to Appendix AAppendix A.

In the context of protocols, we make a distinction between what the players output and what
the protocol computes. For example, in the XOR model, players output strings a and b but the
result of the protocol is a⊕ b. We will use the word “output” to designate what the players
output at the end of the protocol, and “result” or “outcome” to be the outcome of the protocol
(which should be – either probably or certainly – the value or output of the function). Similarly,
we will use the term “protocol” to designate the full mechanism for producing the result, and
“communication protocol” for the interactive part of the protocol where the players exchange
messages, not including the output mechanism.

Among all the models we propose, the XOR model is perhaps the most interesting. This
model was partly inspired by (quantum) XOR games, where the players do not exchange any
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messages (for example [Bel64Bel64, PV16PV16, BCMdW10BCMdW10]). One interesting property of the XOR model
is that it could be the case, for example, that the output of each player, taken individually, follows
a uniform distribution11, revealing nothing about either of the inputs or even the value of the
function when run as a black box.

Moreover, it is common in communication complexity to consider the complexity of Boolean
functions composed with some “gadget” applied to the inputs. For example, for a Boolean
function f , one can ask what is the communication complexity of F (u, v) = f(u ⊕ v), where
bitwise XOR is applied as a gadget on the inputs. The XOR model can be seen as applying
the XOR gadget to the outputs instead of the inputs: the players output (a, b), and we require
F (u, v) = a⊕ b for the computation to be correct.

1.2 Our contributions

We focus on the XOR model where the players each output a string and the outcome of the
protocol is the bitwise XOR of these strings.

Error reduction. We consider the question of error reduction in Section 5Section 5. Error reduction
is usually a simple task: repeat a computation enough times, and take the majority outcome.
However, in the XOR model, neither of the players knows any of the outcomes, so neither
can compute the majority outcome without additional communication. Sending over all the
outcomes so one of the players can compute the majority would add a prohibitive Θ(k) term,
where k is the length of the output. Removing this dependency on k is possible, however, and
doing so requires quite elaborate protocols that highlight the inherent limitations of the XOR
model (Theorem 5.3Theorem 5.3).

We further improve the dependency on the error parameter ε for direct sum problems
(Theorem 5.8Theorem 5.8), by combining protocols for amortized Equality [FKNN95FKNN95] and Find the First
Difference [FRPU94FRPU94], as well as Gap Hamming Distance [IW03IW03, CR12CR12, Vid12Vid12, She12She12].

Deterministic versus randomized complexity. In Section 6Section 6, we revisit the classical result
that states that for any Boolean function, the deterministic communication complexity is at
most exponential in the private coin randomized complexity. Once again, if the size of the
output is k, then applying existing schemes naively to our weaker models adds a multiplicative
cost of 2k. We show that a dependency of a factor of k suffices (Theorem 6.4Theorem 6.4).

Gap Majority composed with XOR. To prove our results for the XOR model, we consider
the non-Boolean Gap Majority problem composed with an XOR gadget. In the standard major-
ity problem, the input is a set of elements and the goal is to find the element which appears most
often. The gap majority problem adds the promise that the majority element should appear
at least some a fixed fraction (more than half) of the time. Composition with an XOR gadget
turns the problem into a communication complexity problem (see Section 5Section 5 and Appendix GAppendix G).
We show that the communication complexity of this problem is closely related to the problems
of reducing error and removing randomness in the XOR model.

Other models and separations. We define several communication models and give prob-
lems that maximally separate them (Appendix AAppendix A). We revisit error reduction and randomness
removal in other models (Appendices DAppendices D and FF). The randomness removal scheme for the one-
out-of-two model uses a variant of the NBA problem in a subtle way as part of the reconciliation
of the majority candidates of the two players. We reduce the dependency on k to a factor

1Any protocol in this model can be converted into a protocol of same complexity with this property: the
players pick a shared random string r of the same length as the output, and output a⊕ r (b⊕ r), where a, b were
the outputs of the original protocol.
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of log(k) in the one-out-of-two model, and remove this dependency entirely when the error
parameter ε is bounded by 1/3 (Theorem F.4Theorem F.4).

Finally, we study a few additional problems which exhibit gaps between our various com-
munication models. In particular, several common problems exhibit a gap when the Hamming
weights of their inputs are bounded (Appendix HAppendix H).

Rank lower bound. We show how lower bound techniques can be adapted to our weak
output models by revisiting the notion of monochromatic rectangles associated with the leaves
of a protocol tree. We focus on the rank lower bound on deterministic communication and show
that it can be used in all of our models, including the XOR model. (Section 7Section 7)

It is important to note that our results mostly do not apply to large-output relations (such
as the variants of direct sum, elimination and agreement), as many of our proofs crucially rely
on the fact that there is a single correct answer.

2 Related work

Previous works have addressed the question of the output model for large output functions.
Braverman et al. [BRWY13BRWY13] make a distinction between “simulation” and “strong simulation”
of a protocol. In a strong simulation, an external observer can determine the result without any
knowledge of the inputs. In their paper on compression to internal information [BMY15BMY15], Bauer
et al. stress the importance, when compressing to internal information, that the compression
itself need not reveal information to an external observer. They consider two output models
which they call internal and external computation. In external computation (which we call the
open model), an external observer can determine the result of the protocol, whereas in internal
computation (which we call the local model), the players both determine the result at the end
of the protocol.22 They observe that in the deterministic setting, for total functions, the two
models coincide, but they can differ in the distributional setting. They consider a key problem
of finding the first bit where two strings differ, when each player has one of the two strings. This
problem is used in reconciliation protocols to find the first place where transcripts differ. Feige
et al. [FRPU94FRPU94] externally (openly) solve Find the First Difference in O(log(nε )), which was
shown to be tight by Viola [Vio15Vio15]. Bauer et al. [BMY15BMY15] give an internal (local) protocol with
a better complexity, where the improvement depends on the entropy of the input distribution.

3 Preliminaries

An introduction to communication complexity can be found in Kushilevitz and Nisan’s [KN97KN97],
and Rao and Yehudayoff’s [RY20RY20] textbooks.

We denote by X (resp. Y) the set of inputs of Alice (resp. Bob), RA her private randomness
(RB for Bob), and Rpub the public randomness accessible to both players. When |X | = |Y|,
we denote by n the size of the input (so that n = dlog(|X |)e). When computing a function,
we denote by k the length of the output, Z the image of the function and k = dlog(|Z|)e. We
sometimes consider an additional output symbol >.

We define a full protocol as the combination of a communication protocol and an output mech-
anism (this is discussed in Appendix AAppendix A). We define a (two-player) communication protocol Π as
a full binary tree where each non-leaf node v is assigned a player Pv amongst A(lice) and B(ob),
and a mapping N v into {0, 1} whose input space depends on which player the node was assigned
to. When Pv = A (resp. B) then N v’s input space is X × RA × Rpub (resp. Y × RB × Rpub).
Note that the tree and each node’s owner are fixed and do not depend on the input. In an
execution of a communication protocol, the two players walk down the tree together, starting

2 We prefer the terms open and local to avoid any confusion between the notions of internal and external
computation, and internal and external information.
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from the root, until they reach a leaf. Each step down the tree is done by letting the player
who owns the current node v apply its corresponding mapping N v, and sending the result to
the other player. If it is 0, the players replace the current node by its left child, and otherwise
by its right child. The communication cost CC(Π) of a protocol Π is the total number of bits
exchanged for the worst case inputs.

Since an execution of a communication protocol Π is entirely defined by the players’ inputs
((x, y) ∈ X ×Y) and the randomness (the players’ private randomness rA ∈ RA and rB ∈ RB as
well as the public randomness r ∈ Rpub), we also view the communication protocol as a function
Π : X ×Y ×RA ×RB ×Rpub → {0, 1}∗ whose values we call transcripts of Π. For the purposes
of this paper, we do not include the public randomness as part of the transcript. For a given
protocol Π, we denote by Tπ = Π(X,Y,RA, RB, R) the random variable over transcripts of the
protocol that naturally arises from X, Y , RA, RB, and R, taken as random variables. We denote
by Tπ the support of the distribution Tπ. We denote by x, y, z, rA, rB, r, tπ elements of the sets
X ,Y,Z,RA,RB,Rpub, Tπ, respectively, which in turn are the supports of the random variables
X,Y, Z,RA, RB, R, Tπ.

We recall definitions and known bounds of functions that will be used in this paper. For all
of these problems, note that the communication complexity is of the same order of magnitude
whether we require that both players know the output or only one of them, since the size of the
output is no larger than the communication required for one player to know the output. In the
remainder of this section, we denote by Rε(f) the minimal communication cost of a randomized
protocol computing function f with error at most ε when, say, Bob outputs. D(f) = R0(f)
denotes the deterministic communication complexity.

Definition 3.1 (Find the First Difference problem). FtFDn : {0, 1}n ×{0, 1}n → {0, . . . , n} is
defined as FtFDn(x, y) = min({i : xi 6= yi} ∪ {n}).

Proposition 3.2. For any 0 < ε < 1
2 , Rε(FtFDn) ∈ Θ(log(n) + log(1/ε)) [FRPU94FRPU94, Vio15Vio15].

The upper bound uses a walk on a tree where steps are taken according to results from hash
functions. The lower bound is from a lower bound on the Greater Than function GTn, which
reduces to FtFDn. For a good exposition of the upper bound, see Appendix C in [BBCR13BBCR13].

Definition 3.3 (Gap Hamming Distance problem). Let n,L, U be integers such that 0 ≤ L <
U ≤ n. GHDL,U

n : {0, 1}n × {0, 1}n → {0, 1} is a promise problem where the input satis-
fies the promise that the Hamming distance between inputs x, y is either ≥ U or ≤ L. Then
GHDL,U

n (x, y) = 1 in the first case and 0 in the second case.

The bounds on Gap Hamming Distance vary depending on the parameters. In this paper
we use a linear upper bound which is essentially tight in the regime we require. Many other
bounds are known for other regimes [Koz15Koz15, CR12CR12, Vid12Vid12, She12She12, BCW98BCW98, Wat18Wat18].

Definition 3.4 (Equality problem). The function EQn : {0, 1}n × {0, 1}n → {0, 1} is de-
fined as EQn(x, y) = 1x=y. The k-fold Equality problem is EQ⊗kn ((x1, . . . , xk), (y1, . . . , yk)) =
(EQn(x1, y1), . . . ,EQn(xk, yk)), where (xi, yi) ∈ {0, 1}n for all i.

Proposition 3.5. For 0 < ε < 1
2 , Rε(EQ⊗kn ) ∈ Θ(k + log(1/ε)).

The algorithm from [HPZZ21HPZZ21] which achieves optimal communication uses hashing just like
the algorithm for a single instance. It saves on communication compared to k successive uses of
a protocol for equality with error ε/k by having players hash all k instances simultaneously, ex-
change results, and repeat this process, exploiting that they have less and less to communicate
about. Intuitively, the number of unequal instances to discover should decrease as the algo-
rithm runs. Once it has been determined for an instance (xi, yi) that xi 6= yi through unequal
hashes, the players do not need to speak further about this instance. An unequal instance is
unlikely to survive many tests, which means that late in the algorithm the players can exchange
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their hashes using that most of them should agree. The idea was also present in previous algo-
rithms [FKNN95FKNN95] which improved on the trivial algorithm. The lower bound is just from Ω(k)
bits of communication being necessary to send k bits worth of information, even with ε error.

Unless otherwise specified, our protocols use both private and public coins. We use the ‘priv’
superscript when the protocols and mappings do not have access to public randomness.

4 The XOR model

In the XOR model, each player outputs a string and the value of the function is the bitwise
XOR of the two outputs (Definition 4.1Definition 4.1). This model is inspired by XOR games which have
been widely studied in the context of quantum nonlocality as well as unique games.

Definition 4.1 (XOR computation). Consider a function f whose output set is Z = {0, 1}k. A
protocol Π is said to XOR-compute f with ε error if there exist two mappings OA and OB with
OA : Tπ ×Rpub×RA×X → {0, 1}k and similarly OB : Tπ ×Rpub×RB×Y → {0, 1}k such that
for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x)⊕OB(tπ, r, rB, y) = f(x, y)] ≥ 1− ε.

We define Dxor(f) (resp. Rxor
ε (f)) as the best communication cost of any protocol that com-

putes f in the XOR model with error ε = 0 (resp. with error at most ε, for 0 < ε < 1
2). (Notations

are defined similarly for our other models with superscripts open, loc,A,B, uni, spl, 1of2.)

5 Error reduction and the Gap Majority problem

We study the cost of reducing the error of communication protocols in our weaker models of
communication where the outcome of the protocol is not known to both of the players. We
focus on the more interesting case of the XOR model in the main text, and results for the other
models are in Appendix D.2Appendix D.2.

Standard error reduction schemes work by repeating a protocol many times in order to
compute and output the most frequently occurring value among all the executions. Repeating
the protocol enough times ensures that with high probability, the output that appears the most
is correct. One can derive an upper bound on the number of iterations needed from Hoeffding’s
inequality.

Lemma 5.1 (Hoeffding’s inequality). Let (Vi)i∈[N ] be N independent Bernouilli trials of expected

value p. We have Pr
[∣∣ 1
N

∑N
i=1 Vi − p

∣∣ ≥ δ] ≤ 2 · exp
(
− δ2N

2p(1−p)

)
.

The following holds in the setting where Bob outputs the value of the function at the end of
the protocol.

Theorem 5.2. (Folklore, see [KN97KN97]) Let 0 < ε′ < ε < 1
2 , and Cε,ε′ = 2ε(1−ε)

( 1
2
−ε)

2 ln
(

2
ε′

)
. For all

functions f : X × Y → Z, RB
ε′(f) ≤ Cε,ε′ ·RB

ε (f).

Note that it is important here that f is a function, not a relation, so that there is a unique
correct output and the player(s) can compute the majority.

In the XOR model, finding the majority result among some number T of runs is much
more difficult than in the standard model, since neither of the players can identify reasonable
candidates as the majority answer. Exchanging all of the T k-bit outputs would result in a
bound of Rxor

ε′ (f) ≤ Cε,ε′(Rxor
ε (f) + k). We show that this dependence on k is unnecessary.

Theorem 5.3. Let 0 < ε′ < ε < 1
2 , Cε,ε′ = 8ε

(
1
2 − ε

)−2
ln
(

8
ε′

)
. For all f : X × Y → {0, 1}k,

Rxor
ε′ (f) ≤ Cε,ε′ ·Rxor

ε (f) +O
(
Cε,ε′

)
.
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In order to prove this result, we introduce the Gap Majority (GapMAJ) problem, show
how Theorem 5.3Theorem 5.3 reduces to solving GapMAJ◦XOR (Lemma 5.5Lemma 5.5), then give an upper bound
on solving GapMAJ◦XOR (Theorem 5.6Theorem 5.6).

The partial function GapMAJN,k,ε,µ has N strings of length k as input and the promise is
that there is a string z of length k that appears with µ weight at least (1 − ε) among the N
strings, where µ is a distribution over indices in [N ].

Definition 5.4 (Gap Majority). In the Gap Majority problem GapMAJN,k,ε,µ :
(
{0, 1}k

)N
→

{0, 1}k the input is (Z1, . . . , ZN ), and µ is a fixed distribution over the indices [N ]. When
unspecified, µ is understood to be the uniform distribution. The promise is that ∃z ∈ {0, 1}k
such that µ({i ∈ [N ] : Zi = z}) ≥ (1− ε). Then

GapMAJN,k,ε,µ((Zi)i∈[N ]) = z s.t. µ({i : Zi = z}) ≥ (1− ε).

In GapMAJ◦XOR, the players are given N strings of length k and their goal is to compute
GapMAJ on the bitwise XOR of their inputs whenever the GapMAJ promise is satisfied. (No-
tice that when k = 1, this is equivalent to the Gap Hamming Distance problem (Definition 3.3Definition 3.3)
with parameters L = εN , U = (1− ε)N .)

For inputs (X1, . . . , XN ), (Y1, . . . , YN ) to GapMAJN,k,ε,µ◦XOR, we will refer to a pair
(Xi, Yi) as a row, and we call Xi Alice’s ith row, and Yi Bob’s ith row. As a warm-up exercise,
we show that error reduction reduces to solving an instance of GapMAJ◦XOR.

Lemma 5.5. Let 0 < ε′ < ε < 1
2 and Cε,ε′ = 2ε

(
1
2 − ε

)−2
ln
(

4
ε′

)
. For every f : X ×Y → {0, 1}k,

Rxor
ε′ (f) ≤ Cε,ε′ ·Rxor

ε (f) +Rxor
ε′/2

(
GapMAJCε,ε′ ,k,

1
4

+ ε
2
◦XOR

)
.

Proof of Lemma 5.5Lemma 5.5. Let π be a protocol which XOR-computes f(x, y) with ε-error and π′ be
a protocol which computes GapMAJCε,ε′ ,k,

1
4

+ ε
2
◦XOR in the XOR model, with error ε′/2. We

consider the following protocol, which we denote by π̂: first, run π Cε,ε′ times; then, use the
outputs produced by this computation as inputs for π′, run the latter protocol, and output
the result. We analyze the new protocol π̂ as follows. The outputs produced in the first step
are strings X1, · · · , XCε,ε′ on Alice’s side, and Y1, · · · , YCε,ε′ for Bob. A run of π is correct iff
Xi ⊕ Yi = f(x, y). By Hoeffding’s bound (Lemma 5.1Lemma 5.1), applied with N = Cε,ε′ , Vi = 1 if
Xi ⊕ Yi 6= f(x, y) and Vi = 0 otherwise for i = 1, . . . , N , p = E[Vi] ≤ ε, and δ = 1

2(1
2 − ε), we

get that with probability at least 1 − 2e−δ
2N/(2p(1−p)) ≥ 1 − ε′/2, a fraction p + δ ≤ (1

2 + ε)/2
of the N computations err. In other words, with probability at most ε′/2, the above strings fail
to satisfy the promise in the definition of GapMAJCε,ε′ ,k,

1
4

+ ε
2
◦XOR. Conditioned on this not

happening (i.e., on the promise being met), π′ (hence π̂) errs with probability at most ε′/2. The
overall error is at most ε′.

To derive a general upper bound on error reduction using Lemma 5.5Lemma 5.5, it would suffice to have
an upper bound on Rxor

ε′ (GapMAJN,k,ε◦XOR). When the error parameter is large (ε ≤ ε′),
GapMAJ◦XOR in the XOR model is trivial: the players just need to sample a common row
and output according to that row. However, Lemma 5.5Lemma 5.5 requires solving a GapMAJ◦XOR
instance with small error ε′/2, which takes us back to square one: finding an error reduction
scheme that we can apply to GapMAJ◦XOR.

In the remainder of the section, we give a protocol for GapMAJ◦XOR (Section 5.1Section 5.1) fol-
lowed by an error reduction scheme for direct sum functions (Section 5.2Section 5.2). In both cases, we use
the structure of the XOR function and a protocol for Equality on pairs of rows to find a majority
outcome. The error reduction scheme for direct sum functions is a refinement of Lemma 5.5Lemma 5.5 and
is useful in cases where the starting error is very close to 1

2 and where computing one bit of the
output is significantly less costly than computing the full output.
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5.1 Solving GapMAJ◦XOR

Given an instance of GapMAJN,k,ε◦XOR, if Alice and Bob pick a row and output what they
have on this row, they get the correct output with probability ≥ 1− ε. Recall that we would like
to achieve error ε′ < ε without incurring a dependence on parameter k, which in our application
to error reduction corresponds to the length of the output. We show that this is possible.

Theorem 5.6. Let 0 < ε′ < ε < 1
2 , Rxor

ε′ (GapMAJN,k,ε◦XOR) ≤ O
(
N + log

(
1
ε′

))
.

Proof idea. We use the fact that a ⊕ b = a′ ⊕ b′ iff a ⊕ a′ = b ⊕ b′. Therefore, the players
can identify rows that XOR to a same string by solving instances of Equality. This idea alone
is enough to obtain a protocol for GapMAJN,k,ε◦XOR of complexity O

(
N2 + log

(
1
ε′

))
by

computing Equality for all
(
N
2

)
pairs of rows to identify the majority outcome. We improve on

this by reducing the number of computed Equality instances using Erdős-Rényi random graphs
(Lemma 5.7Lemma 5.7).

Lemma 5.7 (Variation of eq. (9.18) in [ER60ER60]). Let G(n, p(n)) be the distribution over graphs
of n vertices where each edge is sampled with independent probability p(n). Let L1(G) be the size
of the largest connected component of G. Then:

∀α ∈ [0, 1], c ∈ R+, Pr[L1(G(n, c/n)) < (1− α)n] ≤ e(ln(2)−α
2 (1−α

2 )c)n.

In particular this probability goes to 0 as n goes to infinity when αc > 4 ln(2).

For completeness, the proof is given in Appendix DAppendix D.

Proof of Theorem 5.6Theorem 5.6. Consider the GapMAJ◦XOR instance as a N × k matrix such that
(Xi)i∈[N ] are the rows of Alice and (Yi)i∈[N ] are the rows of Bob. By the promise of the

GapMAJ◦XOR problem, we know there exists a z ∈ {0, 1}k such that {i : Xi ⊕ Yi = z} ≥
(1− ε)N . The goal is now for Alice and Bob to identify a row belonging to this large set of rows
that XOR to the same k-bit string.

Let i and j be the indices of two rows. The event that the two rows XOR to the same string
is expressed as Xi ⊕ Yi = Xj ⊕ Yj , which is equivalent to Xi ⊕Xj = Yi ⊕ Yj . This means that
we can test whether any two rows XOR to the same bit string with a protocol for Equality.

The protocol goes through the following steps:

1. The players pick rows randomly, enough rows so that with high probability, a constant
fraction of the rows XOR to the majority element z.

2. The players solve instances of Equality to find large sets of rows that XOR to the same
string. In each such large set of rows, they pick a single row. This leaves them with a
constant number of candidate rows that might XOR to the majority element z.

3. The players decide between those candidates by comparing them with all the rows. There
is one candidate row that XORs to the same string as most rows; this row XORs to the
majority element z.

Step 1. Using public randomness, Alice and Bob now pick a multiset S of all their rows of
size |S| = Tε′ = 50 ln

(
10
ε′

)
. Each element of S is picked uniformly and independently.

Using Hoeffding’s inequality (Lemma 5.1Lemma 5.1), with probability ≥ 1− ε′

5 more than 2
5 of those

executions XOR to the majority element z.

Step 2. We now consider S as the vertices V of a random graph G = G(V,E), in which each
edge is picked with a probability c

|V | with c > 0. Consider the subgraph G′ of G induced

on the vertices V ′ ⊆ V that correspond to executions that XOR to the majority element
z. From the previous step, we know that |V ′| ≥ 2

5Tε′ = 20 ln
(

10
ε′

)
. The subgraph G′ is

8



a random graph where each edge was picked with the same probability c
|V | = c′

|V ′| where

c′ = c |V
′|
|V | ≥

2
5c. By Lemma 5.7Lemma 5.7, this subgraph G′ contains a connected component of size

≥ (1 − 1
12)|V ′| ≥ 11

30 |V | with probability ≥ 1 − 2−|V
′| ≥ 1 − ε′

5 for c ≥ 720
143 ln(2) ≈ 3.49 as

|V ′| ≥ 20 ln
(

10
ε′

)
≥ log

(
5
ε′

)
.

At this point, Alice (resp. Bob) computes the bitwise XOR of all pairs of executions that
correspond to an edge in G: (Xi ⊕ Xj)(i,j)∈E,i<j (resp. (Yi ⊕ Yj)(i,j)∈E,i<j). For ε′ small

enough, with high probability (≥ 1 − ε′

5 ), the set of edges of G is smaller than 2c · Tε′
by Hoeffding’s inequality (the players can abort the protocol otherwise). Then, Alice and
Bob solve ≤ 2c · Tε′ instances of Equality with (total) error ≤ ε′

5 to discover a large set of
rows that XOR to a same bit string. We now have groups of rows that we know XOR to
the same bit string, at least one of which represents more than 11

30 of S’s rows because of
the Hoeffding argument combined with the random graph lemma.

Now for each submultiset of rows of S that XOR to the same bit string and represents
more than 11

30 of all of S’s rows, pick an arbitrary row in the submultiset. If there is only
one such submultiset, Alice and Bob can end the protocol here, outputing the content of
the row selected in this submultiset. If there were two such submultisets, then let i1 and
i2 be the indices picked in each submultiset.

Step 3. To decide between their two candidates, Alice and Bob solve N Equality instances
between Xi1⊕Xj and Yi1⊕Yj for all j ∈ [N ] with error ≤ ε′

5 . If more than half of the N
rows XOR to the same string as the ith1 row, Alice and Bob output their ith1 row. Otherwise,
they output the other candidate row i2.

The complexity of computing GapMAJN,k,ε◦XOR with error ε′ < ε satisfies

Rxor
ε′
(
GapMAJN,k,ε◦XOR

)
≤ Rε′/5

(
EQ

⊗2cTε′
k

)
+Rε′/5

(
EQN

k

)
.

To conclude, we apply an amortized protocol for Equality (Proposition 3.5Proposition 3.5).

Combining Lemma 5.5Lemma 5.5 and Theorem 5.6Theorem 5.6 concludes the proof of Theorem 5.3Theorem 5.3. We will return
to the GapMAJ◦XOR problem in Appendix GAppendix G where we give upper bounds in various models
(Corollary G.2Corollary G.2).

5.2 XOR Error reduction for direct sum functions

The protocol of Theorem 5.3Theorem 5.3 first generates a full instance of GapMAJ◦XOR, then solves this
instance. The generation of this instance might create an implicit dependency on the output
length k of f , which in the regime where ε is very close to 1/2 can be prohibitive. We give
a different protocol in which the players are not required to fully generate these intermediate
results.

For large output functions, generating one bit of the output can be much less costly than
generating all k, for example, when f is a direct sum of k instances of a function g. We state
our stronger amplification theorem for the case of direct sum problems of Boolean functions,
but we note that the protocol could be used for other problems where computing one bit of the
output is less costly than computing the entire output.

Theorem 5.8. Let 0 < ε′ < ε < 1
2 and Cε,ε′ = 8ε

(
1
2 − ε

)−2
ln
(

12
ε′

)
. For any g : X × Y → {0, 1}

and f = g⊗k,

Rxor
ε′ (f) ≤ 50 ln

(
12
ε′

)
·Rxor

ε (f) + Cε,ε′ ·Rxor
ε (g) +O

(
Cε,ε′ + log(k)

)
.

Notice that the Cε,ε′ factor – which scales with
(

1
2 − ε

)−1
– applies to the complexity of g,

not of f .
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Proof idea. Instead of iterating the basic protocol Cε,ε′ times, we will start by iterating it a
smaller number of times which does not depend on ε, but only on log( 1

ε′ ). This number of
iterations suffices to guarantee that the most frequent outcome represents more than a 1/3
fraction of the rows. If no other outcome represents a large fraction of the rows, we output
according to a row from this large fraction. Otherwise, still, at most two outcomes can represent
more than a 1/3 fraction of the rows. We identify a “critical index” of the output function, one
that will help us identify the majority result among the two candidate outcomes. We do so by
solving a Gap Hamming Distance instance on the critical index. In these remaining Cε,ε′ runs,
we only need one of the k bits of the output.

Details of the proof are given in Appendix EAppendix E.

6 Deterministic versus randomized complexity

We now turn to removing randomness from private coin protocols.
The standard scheme to derive a deterministic protocol from a private coin protocol33 pro-

ceeds as follows [KN97KN97, Lemma 3.8, page 31]. The players exchange messages to estimate the
probability of each transcript. They use the fact that the probability of a transcript can be
factored into two parts, each of which can be computed by one of the two players. One of the
players sends all of its factors to the other, up to some precision, and the second player can then
estimate the probability of each transcript. Each transcript determines an output, therefore
from the estimate for the transcripts’ probabilities, this player can derive an estimate for the
probability of each output, and output the majority answer.

Theorem 6.1 (Lemma 3.8 in [KN97KN97], page 31). For any function f : X×Y → Z and 0 < ε < 1
2 ,

let R = Rpriv
ε (f). Then D(f) ≤ 2R

(
R+ log

(
1

1
2
−ε

)
+ 1
)
.

Using this well-known result for our output models (first adding k bits of communication to
the original protocol of cost R to obtain a protocol that works in the unilateral model) would
add 2RR ·2k bits to the complexity. For the XOR model, we reduce the dependency to a O(2Rk)
term. In Appendix FAppendix F, we show some lower dependencies on k in our other models.

We formalize the problem which we call Transcript Distribution Estimation. Let ∆(µ, ν) =
1
2

∑
u∈U |µ(u)−ν(u)| be the total variation distance between two probability distributions µ and

ν over a universe U . For a protocol Π, let Tπ be the set of transcripts of Π, and for (x, y) ∈ X×Y,
let us denote by T x,yπ the distribution over Tπ witnessed when running Π on (x, y).

The key step of the proof of Theorem 6.1Theorem 6.1 is a protocol (in the standard model) for the
following problem.

Definition 6.2 (Transcript Distribution Estimation problem). For any protocol Π and δ < 1
2 ,

we say that a protocol Π̃ solves TDEΠ,δ in model M if, for each input (x, y), Π̃ computes in the

sense of model M a distribution T̃ x,yπ such that ∆(T̃ x,yπ , T x,yπ ) ≤ δ.

Lemma 6.3 (Implicit in [KN97KN97], page 31). Let Π be a private coin communication protocol and

Tπ its set of possible transcripts. For any 0 < δ < 1
2 , D(TDEΠ,δ) ≤ |Tπ| ·

⌈
log
(
|Tπ |
δ

)⌉
.

In their proof, Kushilevitz and Nisan [KN97KN97] require only one of the players to learn an
estimate of the probability of each leaf. Here we require both players to learn the same estimate,
which can be achieved with a factor of two in the communication. Details are given in Lemma F.1Lemma F.1
in Appendix F.1Appendix F.1.

In the XOR model, however, sharing such an estimate is not sufficient to remove randomness.
At each leaf, each player outputs values with some probability (depending on their private
randomness), so there can be as many as |Z| outputs per leaf by each player, making identifying

3For public coins, the exponential upper bounds do not hold, for example in the case of the Equality function,
which has an O(1) public coin randomized protocol, but requires n bits of communication to solve deterministically.
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the majority outcome impossible. We prove the following bound on deterministic communication
in the XOR model.

Theorem 6.4. Let 0 < ε < 1/2 and f : X × Y → Z = {0, 1}k. Let R = Rxor,priv
ε (f), M =

16 ·
(

1
2 − ε

)−2 · 2R, and ε′ = 5
8 −

ε
4 . Then

Dxor(f) ≤ D(TDEΠf ,ε′− 1
2
) +Dxor(GapMAJM,k,ε′,µ◦XOR)

≤
(
2R+1

)
·
(
R+ log

(
8

1
2
−ε

)
+ 1
)

+ k ·
(

5− 2ε

4
M + 1

)
.

Where µ is an unspecified distribution over [M ].

Proof idea. We reduce the problem of finding the majority outcome to a much smaller instance
of GapMAJ◦XOR by discretizing the probabilities of the outputs. This lets us reduce the
dependence on the size of the output to just a factor of k = log(|Z|) (instead of a factor of
22k = |Z|2).

Proof of Theorem 6.4Theorem 6.4. Let Π be an optimal private coin XOR protocol for f . The players
start running the TDEΠ,δ protocol of Lemma F.1Lemma F.1 (Lemma 6.3Lemma 6.3 adapted to the local model, see
Appendix F.1Appendix F.1 for details) with δ = 1

4

(
1
2 − ε

)
, thus learning within statistical distance δ the

probability distribution over leaves that results from the protocol.
Let oA(. | w, x) and oB(. | w, y) be the two independent probability distributions over {0, 1}k

according to which Alice and Bob output, conditioned on reaching leaf w, having received inputs
x and y. To reduce the problem to GapMAJ◦XOR, they discretize oA and oB into dδ−1e events.
Let ȯA denote the discretization of oA with following properties for Alice (Similarly for ȯB for
Bob):

∀z, w : ȯA(z | w, x) · dδ−1e ∈ N and |oA(z | w, x)− ȯA(z | w, x)| ≤ 1

dδ−1e
.

A simple greedy approach to discretization goes like this:

1. Replace all oA(z | w, x) by ȯA(z | w, x) = 1
dδ−1e

⌊
dδ−1eoA(z | w, x)

⌋
.

2. While the probabilities of ȯA sum to less than 1, pick a z s.t. oA(z | w, x)− ȯA(z | w, x) is
maximal. For that z, set ȯA(z | w, x) = 1

dδ−1e
⌈
dδ−1eoA(z | w, x)

⌉
.

The players then construct a distributional GapMAJ◦XOR instance with M rows where
M = dδ−1e2|Tπ| in the following way:

• For each leaf w the players define dδ−1e2 rows. Rows are indexed by (i, j) ∈
[
dδ−1e

]
×[

dδ−1e
]

and are such that:

– For each z, there are exactly
⌈
δ−1
⌉
ȯA(z | w, x) indices iz ∈

[
dδ−1e

]
such that Alice

outputs z on all rows of the form (iz, j),∀j.
– For each z, there are exactly dδ−1eȯB(z | w, y) indices jz ∈

[
dδ−1e

]
such that Bob

outputs z on all rows of the form (i, jz),∀i.

• The probability of the row (i, j) associated to the leaf w under the distribution µ is taken
to be plf(w | x, y) · dδ−1e−2, where plf(w | x, y) is the probability of ending in a leaf w in
the original protocol Π. (µ is the unspecified distribution over [M ] in the statement of
Theorem 6.4Theorem 6.4.)

The players then solve the GapMAJ◦XOR instance and output the result. Clearly, the
above procedure has the previously claimed communication complexity. It remains to show that
the players built a valid GapMAJ◦XOR instance whose result is f(x, y), that is, picking a
random row according to µ from this GapMAJ◦XOR instance gives outputs zA and zB on
Alice and Bob’s sides such that zA ⊕ zB = f(x, y) with probability > 1

2 .
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1. In the original protocol Π, let pout(z | x, y) be the probability of computing z (after the
XOR), pout(z | w, x, y) that same probability conditioned on the protocol ending in leaf
w, and for all w let oA(. | w, x) (resp. oB(. | w, y)) be the distribution according to which
Alice (resp. Bob) outputs once in leaf w. Then pout(z | x, y) can be expressed as:

pout(z | x, y) =
∑
w

plf(w | x, y) · pout(z | w, x, y)

=
∑
w

plf(w | x, y) ·
∑
zA,zB

zA⊕zB=z

oA(zA | w, x) · oB(zB | w, x).

By correctness of the protocol, pout(f(x, y) | x, y) ≥ 1− ε.

2. Consider p′lf(. | x, y), p′out(. | x, y), p′out(. | w, x, y), ȯA(. | w, x) and ȯB(. | w, y) the approxi-
mations of the above quantities encountered when building our instance of GapMAJ◦XOR.
The probability p′out(z | x, y) that a random row of our weighted GapMAJ◦XOR in-
stance corresponds to a given z is:

p′out(z | x, y) =
∑
w

p′lf(w | x, y) ·
∑
zA,zB

zA⊕zB=z

ȯA(zA | w, x) · ȯB(zB | w, x).

3. p′lf(. | x, y) is δ-close to plf(. | x, y) in statistical distance. ȯA(. | w, x) is point-wise δ-close
to oA(. | w, x) (and similarly for ȯB and oB).

Consider oA · oB the distribution over z ∈ {0, 1}k defined by oA · oB(z) =
∑

z′ oA(z′ | w, x) ·
oB(z ⊕ z′ | w, y). Similarly define oA · ȯB and ȯA · ȯB. Point 3Point 3 above implies that ȯA · ȯB is
point-wise δ-close to oA · ȯB, which is itself point-wise δ-close to oA · oB. One can check that
ȯA · ȯB is point-wise 2δ-close to oA · oB.

Using Lemma F.2Lemma F.2 (in the appendix) with V ∼ pout, V ′ ∼ p′out, U ∼ plf , U ′ ∼ p′lf , Vu ∼ oA ·oB

and V ′u ∼ ȯA · ȯB, we get that p and p′ are point-wise 3δ-close. Since δ was taken to be 1
4

(
1
2 − ε

)
,

the probability that the random row of the GapMAJ◦XOR instance corresponds to f(x, y) is:
p′out(f(x, y)) ≥ pout(f(x, y))− 3δ ≥ (1− ε)− 3

4

(
1
2 − ε

)
= 1

2 + 1
4

(
1
2 − ε

)
> 1

2 .

7 Rank lower bounds for weak output models

Since the output requirements are weaker in our new models, standard lower bound techniques
may no longer apply. We adapt the standard rank lower bound to all of our output models
(Theorem 7.1Theorem 7.1). While we do not prove any new lower bound with this result, the main contri-
bution of this section is to show how to adapt an existing lower bound to our new communication
complexity models. Our techniques can also be applied to other lower bound techniques in a
similar fashion.

Reconsidering monochromatic rectangles Let f : X × Y → F where the value of the
function is interpreted as an element of a field F. The communication matrix associated with
f is the matrix whose rows are indexed by elements of X and columns by elements of Y and is
defined as Mf = (f(x, y))x∈X ,y∈Y .

In the open model, since there is a mapping from leaf nodes to outputs, a communication
protocol partitions the communication matrix into monochromatic rectangles. This is not the
case with the other models of computation. In the unilateral and one-out-of-two models, the
rectangles at the leaves are “striped” horizontally or vertically (see Fig. 2Fig. 2 for an illustration),
since a player can change her answer depending on her input. In the unilateral models, the
direction of the stripes is always the same in all rectangles, while the stripes can have differ-
ent directions in the one-out-of-two model, depending on which player produces the output.
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The local model is more subtle: the two players can decide to output different elements of F
depending of their local information (their input and randomness). Whenever the two players
output something different, the result is incorrect, which gives their rectangles a look similar to
permutation matrices.

In the rest of this section we will use the term “leaf rectangle” to designate rectangles
corresponding to leaves of the protocol tree.

Figure 2: Rectangles corresponding to leaves at the end of a protocol in the open model are
monochromatic, while in the unilateral and the one-out-of-two models they have monochromatic
“stripes”, by which we mean that they are further partitioned into monochromatic subrectangles
by partitioning the rows (for horizontal stripes) or the columns (for vertical stripes) according
to what is output by the player responsible for outputting the function value. The direction
(horizontal or vertical) depends on which player outputs the value of the function.

The situation of the split and the XOR models is somewhat different, as their leaf rectangles
have a more complicated structure. In the XOR model, the leaf rectangles generated by a XOR
protocol are similar to the communication matrix for the XOR function XORk.

Rank lower bound In order to derive rank lower bounds for our models, we study the ranks
of the leaf rectangles. The ranks of the leaf rectangles for the various models imply the following
theorem.

Theorem 7.1. Let f be a total function. Then

Dopen(f) = Dloc(f) ≥ Duni(f) ≥ D1of2(f) ≥ log rank(Mf )

Dspl(f) ≥ log rank(Mf )− 1

Dxor(f) ≥ log rank(Mf )− log(k + 1)

Proof. Let us call rank of a rectangle of Mf the rank of the submatrix of Mf obtained by
restricting Mf to the rectangle. If there exists a partition of Mf into C rectangles such that
the rank of each rectangle is bounded by R, then rank(Mf ) ≤ C × R. Since for every model

M, Mf is covered by at most 2D
M(f) rectangles of type M, we only need to bound the rank of

rectangles of type M for each model M.

Open, local, unilateral, and one-out-of-two leaf rectangles. Leaf rectangles of these
types are of rank at most 1, because of their striped structure. Also note that open and local
leaf rectangles are similar for total functions in the deterministic setting.

Split leaf rectangles. Leaf rectangles of this type are of rank at most 2. Intuitively, this
is because the leaf rectangles in this model are of the following form: there exists numbers
a1, . . . , as and b1, . . . , bt such that the value of the cell (i, j) of the rectangle of size s × t, is
ai+ bj . The rectangle is then the product of the following two rank-2 matrices: the s×2 matrix
containing the values a1 to as in the first column and the value 1 in all cells of the second column
and the 2 × t matrix containing only the value 1 in its first line and the values b1 to bt in the
second line, as shown in Fig. 3Fig. 3.
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1ai ai + bj
1

bj

=

Figure 3: A matrix whose cells Mi,j can be expressed as the sum of the ith entry of a first vector
and the jth entry of another one is of rank at most 2. Split rectangles follow this pattern.

More formally: consider how the k bits of the output are split between the two players: let
us consider the k bit string (si)1≤i≤k such si = 1 iff Alice outputs the ith bit of the output.

Let us now define the 1× 1 matrix S0 =
[
0
]
, and let Hc and Vc the matrix transformations

defined by:

• Hc(A) =
[
A A+ c · J

]
• Vc(A) =

[
A

A+ c · J

]
Now we define three series of matrices S1 . . . Sk, U0 . . . Uk and V0 . . . Vk such that Si = Ui×Vi

for all i, which will prove that Sk has rank at most 2:

• Let Si+1 =

{
H2i(Si) if si = 0

V2i(Si) if si = 1
.

• Let U0 =
[
0 1

]
and V0 =

[
1
0

]
.

• Let Ui+1 =



Ui if si = 0
Ui

Ui +


2i 0
...

...

2i 0


 if si = 1

• Let Vi+1 =


[
Vi Vi +

[
0 . . . 0

2i . . . 2i

]]
if si = 0

Vi if si = 1

To see that the property Si = Ui × Vi is true for all i ∈ [k], notice that the second column
of Ui and the top row of Vi only contain 1’s, since this is true for i = 0 and the property is
preserved as i increases. Adding a constant c to the second half of the second line of Vi, this
constant gets multiplied by the second column of Ui, that only contains 1’s. The end result is
that we add a c · J matrix to half of the matrix, which is exactly what we want.

Finally, notice that Sk is a matrix containing all that Alice and Bob can output in the split
model given a specific split. A leaf rectangle in the split model is a submatrix of a matrix of
this form, where some lines and columns have possibly been permuted or duplicated. Therefore,
leaf rectangles in the split model have rank at most 2.

XOR leaf rectangles We prove that leaf rectangles produced by XOR protocols have rank
at most (k + 1).

Consider the communication matrix of the XORk function. An XOR leaf rectangle can be
obtained as a submatrix of this communication matrix, possibly after permuting or duplicating
some rows and columns. Thus, it suffices to show that MXORk

has rank k + 1. We do this by
directly giving a rank k + 1 decomposition of MXORk

. Consider the following 2k × 1 vectors:
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• vk is the all-one vector.

• For 0 ≤ i < k, uk,i is such that uk,ij = (−1)1+ji (for 0 ≤ j < 2k). Such vectors are
sometimes called Hadamard vectors.

Let Sk be the following 2k × (k + 1) matrix:

Sk =
[√

2k−1 − 2−1 · v
√

2−1 · uk,0 . . .
√

2k−2 · uk,k−1
]

11
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Figure 4: The MXOR3 communication matrix can be obtained by a linear combination of those
matrices.

We have that Sk
tSk = MXORk

. Figure 4Figure 4 gives an intuition of how the MXORk
matrix is

obtained.

8 Conclusion and open questions

We have presented output models that are tailored for non-Boolean functions. We hope that
these will find many applications, including extensions to information complexity, a better un-
derstanding of direct sum problems, simulation protocols, new lower bounds tailored to these
models, to name just a few.

The Gap Majority composed with XOR problem (Definition 5.4Definition 5.4) is closely related to the
Gap Hamming Distance, extended to a large alphabet but with an additional promise, so lower
bounds for GHD do not apply. We conjecture that its deterministic communication complexity
is Ω(εNk), matching the trivial upper bound. If true, this would indicate that our randomness
removal scheme (Theorem 6.4Theorem 6.4) is close to tight.
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A Models for large-output functions

One standard definition of communication complexity requires that at the end of the commu-
nication protocol, the output of the computation can be determined from the transcript of
the communication and the public randomness (it is the model used in rectangle bounds). It
is easy to find examples where such a definition makes it necessary to exchange much more
communication than seems natural. For example,

Example A.1. Consider the function f : {0, 1}n × {0, 1}n → {0, 1}n, f(x, y) = x, and assume
we want to compute it with the promise x = y.

A protocol for f requires n bits of communication if the result of the protocol has to be
apparent from the communication and the public randomness, even though both players know
f(x, y) right from the start.

In this section, we formally define the output models and prove separation results. The most
interesting models are arguably the weakest ones: the one-out-of-two (Definition A.9Definition A.9), the split
(Definition A.13Definition A.13), and the XOR models (Definition 4.1Definition 4.1).

A.1 The open model

We start with the formal definition of our model which reveals the most information regarding
the outcome of the computation. We call it the open model.

This is the model for which the partition bounds [JK10JK10], in the form in which they appear
in the literature, give lower bounds.

Definition A.2 (Open computation). A protocol Π is said to openly compute f with ε error if
there exists a mapping O : Tπ ×Rpub → Z such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[O(tπ, r) = f(x, y)] ≥ 1− ε.

A.2 The local model

In the previous model, protocols are revealing, in the sense that the result of the computation
can not be a secret only known to the players. In the local model, we only require that both
players, at the end of the protocol, can output the value of the function (or the same valid
output, in the case of a relation).

Definition A.3 (Local computation). A protocol Π is said to locally compute f with ε error
if there exist two mappings OA and OB with OA : Tπ × Rpub × RA × X → Z and similarly
OB : Tπ ×Rpub ×RB × Y → Z such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x) = OB(tπ, r, rB, y) = f(x, y)] ≥ 1− ε.

Bauer et al. [BMY15BMY15] remarked that for total functions and relations, the deterministic open
and local communication complexities are the same. Example A.1Example A.1 shows a separation between
the deterministic complexities of computing a function with a promise.

For randomized communication, the local model is separated from the open model by the
following total function, as seen in Theorem A.5Theorem A.5:

Definition A.4 (Equality with output problem). EQout
n : {0, 1}n × {0, 1}n → {0, 1}n ∪ {>} is

defined as

EQout
n (x, y) =

{
x if x = y

> otherwise
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Figure 5: The communication matrix of EQout
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Theorem A.5. ∀f : X × Y → Z with k = dlog|Z|e and ε > 0,

Rloc
ε (f) ≤ Ropen

ε (f) ≤ Rloc
ε (f) + k, and

Rloc
1/4(EQout

n ) ≤ 4, Ropen
1/4 (EQout

n ) ∈ Ω(n).

We provide a full proof of this theorem, but because all the results of the form RM1
ε (f) ≤

RM2
ε (f) or RM1

ε (f) ≤ RM2
ε (f) + k for two modelsM1 andM2 can be proved by essentially the

same proof, we will omit them in proofs of later similar theorems, only proving the separation
result.

Proof of Theorem A.5Theorem A.5. Proof of Rloc
ε (f) ≤ Ropen

ε (f): An open protocol for a function f is also
a local protocol for f , as the players can take as mappings OA and OB the mapping O of
the open protocol (ignoring both players’ randomness and input).

Proof of Ropen
ε (f) ≤ Rloc

ε (f) + k: Let Π be a local protocol for computing f with error at
most ε. Consider Π′, the protocol that consists of first running the protocol Π, and then
Alice sends OA(tπ, r, rA, x) – what she would output at the end of Π to locally compute
f – over the communication channel. This only requires k additional bits of communica-
tion. Now Π′ is an open protocol, since an external observer can use the last k bits of the
transcript as probable f(x, y).

Both the lower bound and the upper bound on EQout directly follow from propositions and
theorems previously seen in this manuscript.

Local model upper bound: The players apply the standard protocol for EQ (Proposition 3.5Proposition 3.5).
If the strings are different, they output >, otherwise Alice outputs x and Bob outputs y.

Open model lower bound: Consider the mapping O of the open protocol Π and notice that
for all x, Prr[O(Π(x, x, r), r) = x] ≥ 3/4. Consider that the players have a public ran-
domness source Rpub that is the uniformly random distribution over {0, 1}k. Then the
above statement implies |O−1(x)| ≥ 3

4 · 2
k. Since ∪xO−1(x) ⊆ Tπ × {0, 1}k, we have that

3
4 · 2

k · 2n ≤ 2CC(Π) · 2k hence CC(Π) ≥ n + log
(

3
4

)
∈ Ω(n). This is also true when the

source of public randomness is not a uniform distribution over {0, 1}k because of the fact
that any non-uniform source of randomness can be simulated with arbitrary precision by
a uniform source of randomness.

In Appendix CAppendix C we generalize this to show that any open protocol for a problem requires
Ω(k) communication. This result follows from a lower bound known as the weak partition
bound [FJK+16FJK+16].
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A.3 The unilateral models

In this section, we consider models of communication complexity where we require that at the
end of the protocol, one player can output the value of the function (or a valid output, in the
case of a relation). One-way problems are usually stated in this model.

Definition A.6 (Unilateral computation). A protocol Π is said to Alice-compute f with ε error
if there exists a mapping OA : Tπ ×Rpub ×RA ×X → Z such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x) = f(x, y)] ≥ 1− ε.

Bob-computation is defined in a similar manner.
A protocol is said to unilaterally compute f if it Alice-computes or Bob-computes f .

Our definition of the unilateral model corresponds to a minimum of two models, each assigned
to a player.

Definition A.7 (Unilateral identity problems). idA
n : {0, 1}n × {0, 1}n → {0, 1}n is defined as

idA
n(x, y) = x

idB
n is defined similarly, with opposite roles for Alice and Bob.
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Figure 6: The communication matrix of idA
3 and idB
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Theorem A.8. ∀f : X × Y → Z with k = dlog|Z|e, λ ∈ [0, 1] and ε > 0

Runi
ε (f) ≤ Rloc

ε (f) ≤ Ropen
ε (f) ≤ Runi

ε (f) + k,

Dloc(f) ≤ DA(f) +DB(f), Rloc
ε (f) ≤ RA

λε(f) +RB
(1−λ)ε(f), and

Duni(idA
n) = DA(idA

n) = DB(idB
n) = 0, Rloc

1/4(idA
n) = Rloc

1/4(idB
n) ∈ Ω(n).

The first line also holds for relations, but the second line does not: consider as counterexample
the relation f : {0, 1}n × {0, 1}n → 2{0,1}

n
, f(x, y) = {x, y}. This problem does not require any

communication in both unilateral models (DA(f) = DB(f) = 0), but in the local model, the
fact that the players need to agree on a single output makes the communication of order Ω(n)
in both the deterministic and the randomized setting (Dloc(f) ≥ Rloc

ε (f) ∈ Ω(n)).

Proof of Theorem A.8Theorem A.8. We omit the proof of the first two lines, that are only based on using
the same protocol with the different proper mappings, or sending what one would output in a
lower model over the communication channel.

We prove a slightly stronger result for the separation: that RB
1/4(idA

n) ∈ Ω(n).

Alice model upper bound: Alice outputs her x, which requires no communication.

21



Bob model lower bound: Let us consider DB
1/4(idA

n , µ) where µ is the uniform distribution.
Bob has to output one of 2n equiprobable answers. With communication C, Bob can only
have 2C different answers, so Bob is wrong with probability ≥ 1 − 2C−n. Since Bob is
supposed to make less than 1

4 error, we have: C ≥ n+ log
(

3
4

)
, so RB

1/4(idA
n) ∈ Ω(n).

A.4 The one-out-of-two model

In the unilateral models, the player that outputs the result at the end of the protocol is fixed. In
particular, it does not depend on the inputs. In the one-out-of-two model, we relax this condition:
correctly computing a function in the one-out-of-two model corresponds to an execution such
that at the end of the protocol:

• one player outputs a special symbol > 6∈ Z (which corresponds to silence)

• the other players outputs f(x, y).

Intuitively, we not only require that one of the players outputs the correct answer, but also
that she knows that her output is probably correct, while the other knows that other player has
a good answer to output. If we were only requiring that one player gives the correct answer,
then all Boolean functions would be solved with zero communication in this model. In contrast,
our model does not trivialize the communication complexity of Boolean functions.

Definition A.9 (One-out-of-two computation). A protocol Π is said to one-out-of-two compute
f with ε error if there exist two mappings OA and OB with OA : Tπ×Rpub×RA×X → Z ∪{>}
and similarly OB : Tπ ×Rpub ×RB × Y → Z ∪ {>} such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[(OA(tπ, r, rA, x),OB(tπ, r, rB, y)) ∈ {(f(x, y),>), (>, f(x, y))}] ≥ 1− ε.

The next proposition shows that any one-out-of-two protocol can be transformed into another
one-out-of-two protocol of lesser or equal error and using only one additional bit of communica-
tion, such that at the end of the protocol it is always the case that exactly one player outputs
a value in Z and the other stays silent (outputs >).

Proposition A.10. Consider a function f : X × Y → Z and Π a one-out-of-two protocol for
f with error ε > 0 of communication cost C. Then there exists a one-out-of-two protocol Π′ of
communication cost (C + 1) that computes f with the same error but with mappings such that
it is always the case that only one of them speaks at the end:

∀x, y, rA, rB, r, tπ′ = Π′(x, y, rA, rB, r) :(
O′A(tπ′ , r, rA, x),O′B(tπ′ , r, rB, y)

)
∈ (Z × {>}) ∪ ({>} × Z).

Proof of Proposition A.10Proposition A.10. Let Π be a one-out-of-two protocol for f and OA,OB the associated
mappings. We define the protocol Π′ to be a protocol that first behaves as Π (getting a transcript
tπ) and when we hit a leaf in the protocol for Π, Alice sends a bit of communication to Bob
following this rule:

• If OA(tπ, r, rA, x) = >, Alice sends 0 to Bob.

• Otherwise Alice sends 1 to Bob.

Let cA be this control bit, sent by Alice in the last round of the new protocol Π′. Then, Alice
keeps the same mapping OA whereas Bob’s new mapping O′B is such that:
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O′B(tπ′ , r, rB, y) =


> if ca = 1,

OB(tπ, r, rB, y) if ca = 0 and OB(tπ, r, rB, y) 6= >,

z picked u.a.r. in Z, otherwise.

Intuitively, Alice tells Bob whether to speak or not, and he obeys. Since the only cases where
this changes what the players output is when they were going to both speak or both stay silent,
the error does not increase in the process.

Definition A.11 (Conditional identity problem). The function CondIdn : {0, 1}n×{0, 1}n →
{0, 1}n is defined as

CondIdn(x, y) =

{
x if x0 = y0,

y otherwise,

where x0 is the fist bit of x, similarly for y.
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Figure 7: The communication matrix of CondId3

Theorem A.12. ∀f : X × Y → Z with k = dlog|Z|e and ε > 0

R1of2
ε (f) ≤ Runi

ε (f) ≤ Rloc
ε (f) ≤ Ropen

ε (f) ≤ R1of2
ε (f) + k + 1, and

D1of2(CondIdn) ∈ O(1), Runi
ε (CondIdn) ∈ Ω(n).

Proof of Theorem A.12Theorem A.12. Again, we focus on the separation result.

One-out-of-two model upper bound: Alice and Bob send each other x0 and y0. If x0 = y0,
Alice outputs x, otherwise Bob outputs y. This only takes 2 bits of communication.

Unilateral model lower bound: Let us consider DB
1/4(CondIdn, µ) where µ is the uniform

distribution over (x, y) such that x0 = y0. Having received any given x, Bob has to output
one of 2n−1 equiprobable answers. With communication C, Bob can only have 2C different
answers, so Bob is wrong with probability ≥ 1− 2C−n+1. Since Bob is supposed to make
less than 1

4 error, we have: C ≥ n− 1 + log
(

3
4

)
, so RB

1/4(CondIdn) ∈ Ω(n). By symmetry,

we also have RA
1/4(CondIdn) ∈ Ω(n), so Runi

1/4(CondIdn) ∈ Ω(n).

A.5 The split model

In our next model, we allow the answer to be split between the two players. In the one-out-of-
two model, one of the player had to output the full output, while the other stayed fully silent.
In contrast, in the split model we allow both players to output part of the result. We only
require that any given bit is output by exactly one player (the other player stays silent on this
particular bit). In a valid split computation, it may be that the first bit of f(x, y) is output by
Alice, while the second one is output by Bob.
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Definition A.13 (Split computation). A protocol Π is said to split compute f with ε error if
there exist two mappings OA and OB with OA : Tπ ×Rpub ×RA × X → {0, 1, ∗} and similarly
OB : Tπ ×Rpub ×RB × Y → {0, 1, ∗} such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x) xxOB(tπ, r, rB, y) = f(x, y)] ≥ 1− ε.

where (a xx b)i


ai if bi = ∗,
bi if ai = ∗,
∗ otherwise.

We call weave the binary operator xx : {0, 1, ∗}k×{0, 1, ∗}k → {0, 1, ∗}k described at the end
of Definition A.13Definition A.13, that recombines the parts split among the players.

To separate this model from the one-out-of-two model, we introduce a problem where the
information about the output is naturally split between the two players. We do so in a manner
which makes computing this problem in the split model trivial, while the fact that one of the
players must aggregate complete information about the output in the one-out-of-two model leads
to a large amount of communication.

Definition A.14 (Split identity problem). SplitIdn : {0, 1}n × {0, 1}n → {0, 1}n is defined as

SplitIdn(x, y)i =

{
xi if i = 0 mod 2,

yi otherwise.
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Figure 8: The communication matrix of SplitId3

Theorem A.15. ∀f : X × Y → Z with k = dlog|Z|e and ε > 0

Rspl
ε (f) ≤ R1of2

ε (f) ≤ Rspl
ε (f) + bk/2c+ 1, and

Dspl(SplitIdn) ∈ O(1), R1of2
ε (SplitIdn) ∈ Ω(n).

Proof of Theorem A.15Theorem A.15. There is a small subtlety here, that the players may make the error
of having too many or too few ∗ symbols at the end of the split protocol. Our proof that
R1of2
ε (f) ≤ Rspl

ε (f) + bk/2c+ 1 must not rely on this assumption: we can not, for instance, say
“the player with fewer ∗ symbols speaks first”, as this could result in an ambiguous protocol.

Proof of R1of2
ε (f) ≤ Rspl

ε (f) + bk/2c+ 1: Let Π be an optimal split protocol. At the end of Π,
Alice counts how many ∗ symbols she would output in the split protocol. She sends a 1
bit if that number is greater than bk/2c, 0 otherwise. If she sent a 0, she then sends bk/2c
bits, the first of which are, in order, the non-∗ symbols she would have output, in order,
in the split protocol. If she sent a 1, it is Bob that sends the first bk/2c non-∗ bits that
he would have output in the split protocol. In both cases, if there are not enough bits to
send, the players append 0’s as needed to reach bk/2c bits.
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If it is Alice that is sending the non-∗ symbols of her split output, then Bob will replace
the ∗ symbols in his split output by the bits sent by Alice before outputting it as final step
of the one-out-of-two protocol. The situation is symmetric if Bob is sending his non-∗ bits.
If there are too many or not enough bits to replace the ∗ symbols, the bits are discarded
or we just put 0.

This protocol is unambiguous (it does not rely on Alice and Bob not having exactly k
stars together) and is correct in the one-out-of-two model whenever the original protocol
was correct in the split model.

The separation result again bounds the size of rectangles that do not make too many errors.

Split model upper bound: Alice replaces odd positions in x by ∗, Bob replaces even positions
of y by ∗. They then each output their resulting string, which computes SplitIdn(x, y) in
the split model. This requires no communication.

One-out-of-two model lower bound: Consider D1of2
1/4 (SplitIdn, µ), where µ is the uniform

distribution over (x, y) such that xi = 0 for odd i and yi = 0 for even i, and consider the

communication matrix M̃SplitIdn of this reduced (but still total) problem. This reduces
the number of inputs to 2n. Let Π be an optimal deterministic one-out-of-two protocol of
communication C = D1of2

1/4 (SplitIdn, µ).

Π partitions the communication matrix M̃SplitIdn with striped rectangles: in any given
rectangle, the output of the one-out-of-two protocol can depend on either the row or on
the column, but not both. But for our problem, every cell of the communication matrix
has a different output, so any rectangle of width and height both at least 2 makes an error
in at least half its cells.

A rectangle of width or height at most 1 contains at most 2n/2 elements, therefore at most
2C+n/2 elements are covered by a rectangle that makes less than half error on its elements.
Therefore at least 2n − 2C+n/2 inputs are covered by rectangles with at least 1/2 error, so
Π makes error at least 2−n · 1

2

(
2n − 2C+n/2

)
. This error has to be less than 1

4 , so:

1

4
≥ 2−n · 1

2

(
2n − 2C+n/2

)
⇒ C ≥ n/2− 1

Which completes our proof that R1of2
1/4 (SplitIdn) ≥ D1of2

1/4 (SplitIdn, µ) ∈ Ω(n).

A.5.1 The XOR model

In our final model, the players both output a k bit string at the end of the protocol. A compu-
tation correctly computes the value of f(x, y) when the bit-wise XOR of the two strings is equal
to f(x, y).

Definition 4.1 (XOR computation). Consider a function f whose output set is Z = {0, 1}k. A
protocol Π is said to XOR-compute f with ε error if there exist two mappings OA and OB with
OA : Tπ ×Rpub×RA×X → {0, 1}k and similarly OB : Tπ ×Rpub×RB×Y → {0, 1}k such that
for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x)⊕OB(tπ, r, rB, y) = f(x, y)] ≥ 1− ε.

The XOR model is separated from the one-out-of-two model by the following function:

Definition A.16. XORn : {0, 1}n×{0, 1}n → {0, 1}n is defined by XORn(x, y) = (xi⊕yi)i∈[n].
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Figure 9: The communication matrix of XOR3

Theorem A.17. ∀f : X × Y → Z with k = dlog|Z|e and ε > 0 ,

Rxor
ε (f) ≤ Rspl

ε (f) ≤ R1of2
ε (f) ≤ Runi

ε (f) ≤ Rxor
ε (f) + k, and

Dxor(XORn) = 0, Rspl
ε (XORn) ∈ Ω(n).

Proof of Theorem A.17Theorem A.17. XOR model upper bound: Alice and Bob can just each output their
input, which requires no communication.

Split model lower bound: Let us consider Dspl
1/4(XORn, µ) where µ is the uniform distri-

bution. Let Π be an optimal deterministic one-out-of-two protocol of communication
C = Dspl

1/4(XORn, µ).

Π partitions the communication matrix MXORn into 2C rectangles. Let us first assume
that in each rectangle, each bit of the output is output by a fixed player. We will see later
that our argument still holds without this assumption.

In each of the 2C rectangles, one of the players has to output less than n/2 bits of the
output. Let us consider a rectangle where Bob outputs at most half the bits of the output.
Then, on a given row of this rectangle, there can be at most 2n/2 different outputs. But
the XORn problem is such that on a given row, all cells have a different output. We will
argue that this bounds the size of the rectangles that do not make a lot of error.

Let a rectangle contain at least 23n/2+1 elements. Since a row or column contains at most
2n elements, such a rectangle contains at least 2n/2+1 rows and columns. Therefore, the
player that outputs at most half the bits of the output in the split model will output
at most 2n/2 different strings on a given row or column that contains more than 2n/2+1

different values, so the rectangle has error on at least half of its elements.

If the players do not always split the outputs bits in the same way, consider the largest
set of rows such that Alice outputs a given subset of the output bits, and the largest set
of columns such that Bob outputs a given subset of the output bits. If the sets of output
bits that Alice and Bob output on those rows and columns are not the complement of
each other, the rectangle is in error on at least half of its elements. If the sets correctly
partition the output bits, we do the same argument as before: let us assume that Bob
outputs at most half the bits in the subrectangle we defined. Then no more than 2n cells
can be correct in any row of this subrectangle, and rows outside of the subrectangle are
also mostly error, therefore the rectangle has error on at least half of its elements.

At most 2C+3n/2+1 elements are in rectangles with error strictly less than half, so the error
made by the protocol is at least 1

2 · 2
−2n
(
22n − 2C+3n/2+1

)
. The error has to be less than

1
4 , so:

C ≥ n/2− 2

Which completes our proof that Rspl
1/4(XORn) ≥ Dspl

1/4(XORn, µ) ∈ Ω(n).
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A.6 Relations between models

The next proposition summarizes the relations between models seen in Theorems A.5Theorems A.5, A.8A.8, A.12A.12,
A.15A.15 and A.17A.17.

Proposition A.18. ∀f : X × Y → Z with k = dlog|Z|e and ε > 0 we have:

Ropen
ε (f) ≥ Rloc

ε (f) ≥ max
(
RA
ε (f), RB

ε (f)
)

(1)

≥ min
(
RA
ε (f), RB

ε (f)
)

= Runi
ε (f)

≥ R1of2
ε (f) ≥ Rspl

ε (f) ≥ Rxor
ε (f)

Rloc
2ε (f) ≤ RA

ε (f) +RB
ε (f) (2)

Ropen
ε (f) ≤ Runi

ε (f) + k (3)

Ropen
ε (f) ≤ R1of2

ε (f) + k + 1 (4)

R1of2
ε (f) ≤ Rspl

ε (f) + dk/2e+ 1. (5)

Runi
ε (f) ≤ Rxor

ε (f) + k. (6)

The same statements hold for deterministic communication and communication with private
randomness only. All statements except subproposition 2subproposition 2 also hold for relations and nondeter-
ministic communication.

Proposition A.18Proposition A.18 shows that the models form a natural hierarchy and can be ordered from
most to least communication intensive. We also summarize this hierarchy in Fig. 1Fig. 1, in the main
text. This figure also displays separating problems other than those in this section, in Appendix.

B Summary of our results

In this section, we summarize the results in this paper. Table 1Table 1 summarizes the problems we
have studied which show gaps between the different output models. Table 2Table 2 summarizes the
bounds on GapMAJ◦XOR in various models. Table 3Table 3 summarizes error reduction bounds
and derandomization.

open local unilateral 1-out-of-2 XOR

EQout
n RM1/3 ∈ Θ(n) RM1/3 ∈ Θ(1)

t− INTn RM1/3 ∈
Θ(t · log(n))

RM1/3 ∈ Θ(t)

idA
n RM1/3 ∈ Θ(n) DM = 0

CondIdn RM1/3 ∈ Θ(n) DM = 2

MAXn RM1/3 ∈ Θ(n) RM1/3 ∈ Θ(log(n)

t− FtFDn RM1/3 ∈ Θ(log(n)) RM1/3 ∈ Θ(log(t) + log log(n))

XORn RM1/3 ∈ Θ(n) DM = 0

GapMAJN,k,1/3◦XOR RM1/3 ∈ Θ(k) RM1/3 = 0

GapMAJN,k,2/5◦XOR RM1/3 ∈ Θ(k) RM1/3 ∈ O(1)

Table 1: Summary of the communication complexities of our separating problems in all models.
The definitions of the problems and the proofs are in Appendices AAppendices A and HH. In this table, n is the
input length, k is the output length,M is an output model,M∈ {open, loc,A,B, uni, 1of2, xor},
and t is the Hamming weight of an instance.

The upper bounds on the Gap Majority problem, are summarized in Table 2Table 2. We conjec-
ture a matching lower bound to our stated deterministic O(εNk) upper bound. Studying the
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Upper bounds

ε′ ≥ ε

Rxor
ε′ 0

Rxor,priv
ε′ log(N)

Ropen
ε′ 2k

Ropen,priv
ε′ 2k + log(N)

0 < ε′ < ε Rxor
ε′ O

(
min

(
Cε,ε′ , N + log

(
1
ε′

)))
ε′ = 0 Duni (2εN + 1)k

Table 2: Upper bounds on GapMAJ◦XOR, proofs in Appendix GAppendix G. In this table, N, k, ε are
the parameters of the Gap Majority problem, and ε′ is the error parameter.

Error reduction

model Upper bounds (condition)

open
Rε′(f) ≤ Cε,ε′ ·Rε(f)local

unilateral

1-out-of-2 Rε′(f) ≤ Cε,ε′(Rε(f) + 1) + C ′ε,ε′

split Rε′(f) ≤ Cε,ε′Rε(f) +O
(
Cε,ε′

)
XOR

Rε′(f) ≤ Cε,ε′Rε(f) +O
(
Cε,ε′

)
Rε′(f) ≤ 50 ln

(
12
ε′

)
Rε(f) + Cε,ε′Rε(g) +O

(
Cε,ε′ + log(k)

)
(f = g⊗k)

Derandomization

model Upper bounds (condition)

open
D(f) ∈ O

(
2R
(
R+ log

(
1

1
2
−ε

)))
local

unilateral D(f) ∈ O
(

2R
(
R+ log

(
1

1
2
−ε

)))
1-out-of-2

D(f) ∈ O
(

2R
(
R+ log

(
1

1
2
−ε

)))
D(f) ∈ O

(
2R
(
R+ log

(
1

1
2
−ε

))
+ log(k)

)
split

D(f) ∈ O
(

2R
(
R+ log

(
1

1
2
−ε

))
+ k
)

D(f) ∈ O
(

2R
(
R+ log

(
1

1
2
−ε

))
+ 2R

(
1
2 − ε

)−2
k
)

XOR D(f) ∈ O
(

2R
(
R+ log

(
1

1
2
−ε

))
+ 2R

(
1
2 − ε

)−2
k
)

Table 3: Summary of our error reduction and derandomization schemes. In all statements above,
f is a function whose output length is k, ε is the starting error parameter, ε′ is the target error

parameter, R = RMε (f), Cε,ε′ ∈ O
(
ε
(

1
2 − ε

)−2
log
(

1
ε′

))
and C ′ε,ε′ ∈ O

(
log
(

1
ε′

)
+ log

(
1

1
2
−ε

))
.
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communication complexity of this problem is of theoretical interest, as we have seen in this
paper that fundamental results in communication complexity, namely error reduction and de-
randomization, are related to the GapMAJ◦XOR problem in the XOR model. Improving the
deterministic upper bound on GapMAJ◦XOR would yield a better derandomization result
through Theorem 6.4Theorem 6.4. Similarly, improving the randomized upper bounds could improve error
reduction through Lemma 5.5Lemma 5.5. Conversely, considering that we have an upper bound of log(N)
on the private coin XOR communication complexity of GapMAJ◦XOR, proving a Ω(Nk) lower
bound on its deterministic communication complexity would indicate that our derandomization
theorem in the XOR model (Theorem 6.4Theorem 6.4) is close to tight.

C The weak partition bound

The weak partition bound can be used to obtain lower bounds on the open model. We use it
to show that this model is very sensitive to the number of “non-trivial” or “typical” outputs,
those that occur frequently enough, in a sense that is made precise in Definition C.3Definition C.3.

Definition C.1 (Weak partition bound [FJK+16FJK+16]). We define (using the notation β =
∑

x,y βx,y)

wprtµε (f) = max
α≥0, βxy≥0

(1− ε)α− β

subject to : αµ(R ∩ f−1(z))− β(R) ≤ 1 ∀R, z, (7)

αµxy − βxy ≥ 0 ∀(x, y). (8)

The non-distributional weak partition bound of f is wprtε(f) = maxµ wprtµε (f).

Note that the definition we have here is slightly different from the one given by Fontes et
al [FJK+16FJK+16]. The two formulations are equivalent for Boolean functions, which was the setting
considered in that paper.

Proposition C.2 ([JK10JK10, FJK+16FJK+16]). Let 0 < ε < 1/2 and let f : X × Y → Z be a function.
Then,

log(wprtε(f)) ≤ log(prtε(f)) ≤ Ropen
ε (f).

The right-hand side is from [JK10JK10] and the left-hand side from [FJK+16FJK+16].

We then introduce the notion of ε-Minimum set of outputs with respect to a distribution µ.
Let us abuse notation and write µ(z) for µ(f−1(z)) when there is no need to specify which f we
are implicitly referring to.

Definition C.3. Let Z be the set of outputs of a function f : X × Y → Z.
Let us further consider that Z = {z1, z2, . . . , zn} is sorted with respect to µ, that is :

i ≤ j ⇒ µ(zi) ≥ µ(zj).

Then ξµε (f) is defined as:

ξµε (f) = min

{
k
∣∣∣ k∑
i=1

µ(zi) ≥ 1− ε

}
.

Theorem C.4. Let 0 < ε < 1/2, let f : X × Y → Z be a function and let µ be a distribution
over X × Y. Then,

ξµε (f)− 1 ≤ wprtµε (f).
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Proof of Theorem C.4Theorem C.4. Sort the set of outputs with respect to µ (i.e., z1 ≤ z2 ≤ . . . ≤ zn) and
set zmin = zξµε (f). Consider the following assignment of variables :

α =
1

µ(zmin)
, βxy = max

(
0, µxy ·

(
α− 1

µ(f(x, y))

))
.

Then the first constraint of wprtµε is satisfied. Indeed, let z be s.t. µ(z) ≤ µ(zmin) (and so
βxy = 0 for all (x, y) ∈ f−1(z)). Then for all for all R:

α · µ(R ∩ f−1(z))− β(R)

≤ α · µ(R ∩ f−1(z))− β(R ∩ f−1(z))

= α · µ(R ∩ f−1(z)) ≤ αµ(z) =
µ(z)

µ(zmin)
≤ 1.

When z is s.t. µ(z) > µ(zmin), for all R:

α · µ(R ∩ f−1(z))− β(R)

≤ α · µ(R ∩ f−1(z))− β(R ∩ f−1(z))

= α · µ(R ∩ f−1(z))−
(
α− 1

µ(z)

)
µ(R ∩ f−1(z))

=
µ(R ∩ f−1(z))

µ(z)
≤ 1.

The second constraint is satisfied as well:

∀x, y : αµxy − βxy = αµxy −max

(
0, µxy

(
α− 1

µ(zxy)

))
≥ 0.

And the value of this feasible solution is:

(1− ε)α− β = (1− ε) 1

µ(zmin)
−

∑
z:z=zi, i<ξ

µ
ε (f)

β(zi)

=

1− ε−
∑

z:z=zi, i<ξ
µ
ε

µ(zi)

 1

µ(zmin)
+ ξµε (f)− 1

≥ ξµε (f)− 1.

D Error reduction

D.1 Proof of the random graph lemma

The proof of the random graph lemma stated in Section 5.1Section 5.1 and used to solve GapMAJ◦XOR
is a simple variation of a result of Erdős and Rényi [ER60ER60]. The result they proved is in a model
of random graphs where a fixed number of edges are picked randomly from the set of all possible
edges, while we are interested in a model of random graphs where each edge is picked with a
fixed probability p independently of other edges. The two models are known to have essentially
similar asymptotic behaviours. Readers interested in the theory of random graphs might refer
to [Bol01Bol01].

Proof of Lemma 5.7Lemma 5.7. We observe as in [ER60ER60] that if no connected component of more than
(1− α)n vertices exists, then we can partition the vertices into two disconnected sets of size n0

and n1 such that α
2n ≤ n0 ≤ n1 ≤

(
1− α

2

)
n.
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Given a partition of the vertices into sets of size n0 and n1, the probability that those two
sets are disconnected is (1− p(n))n0n1 . With p(n) = c

n , and since there are less than 2n possible
partitions, the probability that there is no connected component of more than (1−α)n vertices
is bounded by:

2n
(

1− c

n

)n0n1

≤ 2ne−c
n0n1
n ≤ 2ne−c

α
2 (1−α

2 )n = e(ln(2)−α
2 (1−α

2 )c)n

D.2 Error reduction up to the XOR model

D.2.1 Error reduction in the one-out-of-two model

The one-out-of-two model is already non-trivial. If we repeat the protocol, in some runs Alice
will output, and in others, Bob will output, and it is possible that on both sides, the majority
output is incorrect. A trivial way to reduce error in this model would be to convert the one-out-
of-two protocol to the unilateral model (Proposition A.18Proposition A.18) and apply Theorem 5.2Theorem 5.2, to obtain
R1of2
ε′ (f) ≤ Cε,ε′ · (R1of2

ε (f) + k).
We prove that the additional dependency on the output length k can be removed. We show

that the players can narrow down the number of candidates for the majority outcome to at most
four. Hashing is used to single out the winning outcome with high probability.

Theorem D.1. Let 0 < ε′ < ε < 1
2 , Cε,ε′ = 2ε(1−ε)

( 1
2
−ε)

2 ln
(

4
ε′

)
and C ′ε,ε′ ≤ 18+4 log

(
1
ε′

)
+4 log

(
Cε,ε′

)
.

For all functions f : X × Y → Z,

R1of2
ε′ (f) ≤ Cε,ε′(R1of2

ε (f) + 1) + C ′ε,ε′ .

Proof of Theorem D.1Theorem D.1. Fix a one-out-of-two protocol for f with error at most ε and apply
Proposition A.10Proposition A.10 so that we now have a one-out-of-two communication protocol and mappings
such that exactly one player speaks at the end in any execution. Using Hoeffding’s inequality
(Lemma 5.1Lemma 5.1), if the players make T = d8ε(1− ε)

(
1
2 − ε

)−2
ln
(

4
ε′

)
e executions, then with proba-

bility at least 1− ε′

2 , in at least 1
2 + 1

2

(
1
2 − ε

)
> 1

2 of the player’s executions, one of them outputs
f(x, y) (and the other remains silent).

The players want to identify the correct output. We argue that they can do it with very
little extra communication and error. Observe that if a value is output in strictly more than
half of the above executions, it must have been output strictly more than T/4 times by one of
the two players. Thus each player only needs to consider outputs that appear stricly more than
T/4 times on its side. Let us call (zA

i )i∈[nA] and (zB
j )j∈[nB] the outputs identified as candidates

for f(x, y) respectively on Alice’s and Bob’s side, nA and nB being the number of candidates on
each side. Since there are T executions, each candidate is output strictly more than T/4 times
and one value is output stricly more than T/2 times, there are at most 3 candidates and nA ≤ 2
and nB ≤ 2.

The players use their public randomness to pick a random hash function h : Z → [m]
where m is to be chosen so that, with high probability, there are no collisions among the
candidates (zA

i )i∈[nA] and (zB
j )j∈[nB] selected by the players. Since the probability of a given

collision is 1
m and there are nA +nB ≤

(
4
2

)
pairs of candidates, taking m =

⌈
12
ε′

⌉
≥ 12

ε′ guarantees

that such a collision only occurs with probability ≤ ε′

2 .The players then exchange the hashes
h1, . . . , hnA+nB

of their candidates (corresponding to h(zA
i ) and h(zB

j ) for i ∈ [nA] and j ∈ [nB])

with 4dlog(m)e bits of communication. For each k, Alice computes αk = |{i : h(zA
i ) = hk}|

and Bob computes |{j : h(zB
j ) = hk}|. Alice sends her counts (αk)k=1,...,nA+nB

to Bob (with
communication ≤ 4dlog(T )e). Bob replies with k ∈ [nA +nB] such that hk is the hash that most
outputs hash to through h. If that hash is the hash of a candidate zA

i of Alice, she outputs this
candidate, otherwise it is Bob who outputs his corresponding candidate. Adding the errors due
to deviation (Hoeffding) and to collisions, this protocol makes at most ε′ error.
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D.2.2 Error reduction in the split model

Remarkably, error reduction in the split model can be achieved very similarly to the scheme
for the XOR model. Notice that it is not sufficient to apply the XOR scheme by replacing
stars with zeros, since the output should be split as well (whereas the output in the XOR
scheme is not necessarily of this form). More precisely, applying Theorem 5.3Theorem 5.3 would show

Rxor
ε′ (f) ≤ Cε,ε′ ·Rspl

ε (f) +O
(
Cε,ε′

)
.

The key observation we used to reduce error in the XOR model was that when two rows i
and j of the GapMAJ◦XOR matrix XORed to the same string, i.e., Xi ⊕ Yi = Xj ⊕ Yj , we
observed that Xi ⊕ Xj = Yi ⊕ Yj . This allowed us to test whether two rows XORed to the
same string by making one equality test on two locally-computable strings. We call this local
operation a “compatibility gadget”, that is, a function g that the players apply locally to pairs
of rows, such that the problem of testing Xi⊕ Yi = Xj ⊕ Yj reduces to testing equality between
g(Xi, Xj) and g(Yi, Yj). In the XOR model, the compatibility gaget g was just a bit-wise XOR.
The bitwise compatibiklity gadget is illistrated in Fig. 10aFig. 10a.

0

0

1

1

0 1

0

1

(a) XOR gadget

=A

0

0

1

1 *

*

6=A 0A0B

=A
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0B0A

1A1B

1B1A

(b) Alice’s split gadget gA

0

0
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6=B
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0B0A

0A0B

1B1A

1A1B

(c) Bob’s split gadget gB

Figure 10: The matrices of the compatibility gadgets for the XOR and the split models.

It turns out that we can do the something similar in the split model, with a slight change.
Instead of both players applying the same gadget on pairs of rows before testing for equality,
they each apply a different gadget. The functions they apply bit-wise to pairs of rows are the
transformations gA and gB represented in Figs. 10bFigs. 10b and 10c10c. The functions are chosen so that
the following property holds.

Proposition D.2. For all Xi, Xj, Yi, and Yj ∈ {0, 1, ∗}k, and gA, gB described in Figs. 10bFigs. 10b
and 10c10c,

Xi xx Yi = Xj xx Yj ⇔ gA(Xi, Xj) = gB(Yi, Yj)

These functions capture when a pair of rows output the same result: if Alice outputs two
stars in some position of Xi and Xj , then Bob needs to be outputting two 0s or two 1s in the
same position in his strings (Yi and Yj). Similarly, if at some index Alice outputs a star in row
Xi and a 0 in row Xj , then at this same index, Bob needs to output a 0 in Yi and a star in Yj
so that the two rows yield the same result.

Proposition D.2Proposition D.2 implies that error-reduction in the split model reduces to solving GapMAJ
combined with the weave gadget (xx), in the same way that error reduction in the XOR model
reduced to solving GapMAJ◦XOR. We obtain the following similar result Theorem D.3Theorem D.3.

Theorem D.3. Let 0 < ε′ < ε < 1
2 , Cε,ε′ = 8ε

(
1
2 − ε

)−2
ln
(

4
ε′

)
. For all f : X × Y → {0, 1}k,

Rspl
ε′ (f) ≤ Cε,ε′ ·Rspl

ε (f) +O
(
Cε,ε′

)
.

E Error reduction for direct sum problems

This section gives the full proof of Theorem 5.8Theorem 5.8 which gives an error reduction scheme for
functions of the form f = g⊗k.

32



Proof of Theorem 5.8Theorem 5.8. Consider an XOR protocol for f = g⊗k with error at most ε, together
with a protocol for g with error at most ε. The protocol to achieve error ε′ proceeds as follows.

Step 1: [Restrict to at most two candidates.] The players run the XOR protocol for f for a
total of Tε′ = 50 ln

(
12
ε′

)
iterations. Let (ai, bi) be what Alice and Bob would have output

on the ith iteration. As in Step 1Step 1 of the proof of Theorem 5.6Theorem 5.6, with high probability,
|{i : ai ⊕ bi = f(x, y)}| ≥ 2

5Tε′ .

As in Step 2Step 2 of the proof of Theorem 5.6Theorem 5.6, the players then solve random EQ instances
to find large subsets of iterations with the same computed value. With high probability
(≥ 1− ε′

6 ), they compute at most O(Tε′) instances of EQ, with ε′

6 error.

With high probability (≥ 1 − 3 · ε′6 ), the players should have identified either one or two
sets of at least 11

30Tε′ iterations such that all iterations in a set computed the same value.
If only one such large set was found, the players output ai and bi where i is the index
of an arbitrary iteration in this large set. Otherwise, let i1 and i2 be indices, each one
representing one of the two large sets.

Step 2: [Find a critical index l.] The players will either output as in the ith1 or the ith2 iteration.
To decide between the two, they find the first difference between ai1 ⊕ ai2 and bi1 ⊕ bi2 .
This yields an index l ∈ [k] where the two possible outputs differ. We call this a critical
index.

Step 3. [Solve GHD on the critical index l.] We XOR-compute the lth bit of f Cε,ε′ times. This
gives an instance of Gap Hamming Distance of size Cε,ε′ whose solution determines the lth

bit of the correct output, with high probability. The players determine which iteration, i1
or i2, was correct on the lth bit, and output according to that iteration.

Altogether, we get the following upper bound on computing f with error ε′.

Rxor
ε′ (f) ≤

(
50 ln

(
12

ε′

))
·Rxor

ε (f) +Rloc
ε′/6

(
EQ

⊗O(Tε′ )
k

)
+Rloc

ε′/6(FtFDk)

+ Cε,ε′ ·Rxor
ε (g) +Rloc

ε′/6

(
GHD

Cε,ε′

(1/4+ε/2)Cε,ε′ ,(3/4−ε/2)Cε,ε′

)
.

We conclude by applying known upper bounds for Find the First Difference [FRPU94FRPU94]
(Proposition 3.2Proposition 3.2), for solving many instances of Equality [FKNN95FKNN95, Part 6] (Proposition 3.5Proposition 3.5),
and Gap Hamming Distance is solved by exchanging the complete inputs which is essentially
optimal [CR12CR12, Vid12Vid12, She12She12].

F Removing randomness

F.1 Transcript Distribution Estimation

In this section we prove Lemmas 6.3Lemmas 6.3 and F.1F.1.

Proof of Lemma 6.3Lemma 6.3. Let Π be a communication protocol, and γ = δ|Tπ|−1. Given (x, y), the
players consider the protocol tree of Π :

Each node of this tree represents a partial execution of the protocol, and so we label each
node of this tree by the word w ∈ {0, 1}∗ that is the communication that happened between
Alice and Bob to reach this node. In particular, leaves are labeled by full transcripts, i.e., words
w ∈ Tπ. We will use the notation w<i to refer to the prefix of w of size (i − 1). Each internal
node belongs to either Alice or Bob, and that property determines who must send the next
message when at this specific point of the execution of the protocol. It has |Tπ| leaves.

To each internal node w, we can assign a probability distribution pw that corresponds to
which message (0 or 1) is sent next. This distribution is fully determined by x if the node belongs
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ε

0 1

00 1001 11

Figure 11: A tree representing the possible executions of the protocol Π on a given (x, y).

to Alice, by y otherwise. Its randomness comes from the private randomness of the players, and
its support is the set of next messages (0 or 1 here). The probability that Alice sends 1 as her
next message when on node w in the protocol tree is denoted by pw(1 | x).

ε

0 1

00 1001 11

p0(1|x)p0(0|x)
p1(0|y) p1(1|y)

pε(1|x)pε(0|x)

A A

B

B B

A

A

p11(1|y)p00(0|x)

Figure 12: The same tree as in Fig. 11Fig. 11 with nodes labeled depending on their owners, and the
probability distributions. Note that pw(0 | x) + pw(1 | x) = 1.

For a leaf of label w, on input (x, y), the probability that an execution of the protocol ends
up in w is:

p(w | x, y) =

 ∏
1≤i≤|w|
w<i∈Alice

pw<i(wi | x)


︸ ︷︷ ︸

α(w|x)

×

 ∏
1≤i≤|w|
w<i∈Bob

pw<i(wi | y)


︸ ︷︷ ︸

β(w|y)

.

For each w ∈ Tπ, Alice has full knowledge of α(w | x) and Bob has full knowledge of β(w | y).
We now describe the actual protocols in the Bob and in the open model.

Step 1. For each w ∈ Tπ, Alice sends the smallest non-negative integer dw <
⌈

1
γ

⌉
such that:

γ · dw ≤ α(w | x) ≤ γ · (dw + 1).

This is done with communication |Tπ| ·
⌈
log 1

γ

⌉
.

Bob now knows an approximation α′(w | x) := γ · dw of Alice’s α(w | x) for all w such
that:

α′(w | x) ≤ α(w | x) ≤ α′(w | x) + γ.

Since β(w | y) ∈ [0, 1] for all w, p′(w | x, y) := α′(w | x)β(w | y) (known to Bob) is such
that:

∀w ∈ Tπ : p′(w | x, y) ≤ p(w | x, y) ≤ p′(w | x, y) + γ.
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That is, Bob has an estimation of the true probabilities of p(. | x, y) that never overesti-
mates the true value and is pointwise γ-close to it.

Step 2. Bob cannot simply output p′(. | x, y) since it might not be a probability distribution.
However, p(. | x, y) is a probability distribution, so:

1− γ|Tπ| ≤
∑
w

p′(w | x, y) ≤ 1.

Let us define C := 1−
∑

w p
′(w | x, y) and p′′(w | x, y) = p′(w | x, y) + C

|Tπ | for all w. Since

0 ≤ C ≤ γ|Tπ|, p′′(. | x, y) is a distribution which is also a point-wise γ-approximation of
p(. | x, y). Our choice of γ = δ|Tπ|−1 makes p′′(. | x, y) δ-close to p(. | x, y) in statistical
distance, so Bob can output it. Therefore

DB(TDEΠ,δ) ≤ |Tπ| ·
⌈

log
|Tπ|
δ

⌉
.

which concludes the proof of Lemma 6.3Lemma 6.3.

We will show a similar statement in the local and open models that we will use in proving
other derandomization results.

Lemma F.1. Let Π be a private coin communication protocol and Tπ its set of possible tran-

scripts. For any 0 < δ < 1
2 , Dloc(TDEΠ,δ) ≤ Dopen(TDEΠ,δ) ≤ 2|Tπ| ·

⌈
log 2|Tπ |

δ

⌉
.

Note that in the local model, we require that both players output the same approximation
of the distribution on the leaves. In the original protocol of Lemma 6.3Lemma 6.3, it was enough for one
player to send estimates and the other to use its exact values, but here, the second player must
also send back the result. Hence, the protocol for TDE has slightly higher communication
complexity in the local model than in the unilateral model.

In the local model, after running the protocol for TDE, both players have the same estimate
for the distribution over the leaves. Each player additionally knows her output distribution on
each leaf, making the majority answer clear for both players. The situation is similar for an
external observer in the open model after openly computing TDE. Therefore, following, e.g.,
the proof of [KN97KN97, Lemma 3.8], Lemma F.1Lemma F.1 implies Theorem F.3Theorem F.3.

Proof of Lemma F.1Lemma F.1. Let γ = δ
2 |Tπ|

−1. We proceed as in the proof of Lemma 6.3Lemma 6.3 but we replace
the second step by the following one.

Step 2’. Instead of outputting directly after the first step, Bob sends back an approximation

of p′(. | x, y) to Alice. More precisely, for all w, he sends d′w, 0 ≤ d′w <
⌈

1
γ

⌉
such that:

γ · d′w ≤ p′(w | x, y) ≤ γ · (d′w + 1).

This again takes communication |Tπ| ·
⌈
log( 1

γ )
⌉
. Hence an external observer knows p′′(w |

x, y) := γ · d′w for all w, which satisfies:

∀w ∈ Tπ : p′′(w | x, y) ≤ p(w | x, y) ≤ p′′(w | x, y) + 2 · γ.

Let us define C := 1−
∑

w p
′′(w | x, y) and p′′′(w | x, y) = p′′(w | x, y)+ C

|Tπ | for all w. This

p′′′(. | x, y) is a distribution, and a 2 · γ point-wise approximation of p(. | x, y), and can be
computed by an external observer. By our choice of γ = δ

2 |Tπ|
−1, we get the output we

want and so

Dopen(TDEΠ,δ) ≤ 2|Tπ| ·
⌈

log
2|Tπ|
δ

⌉
,

which concludes the proof of Lemma F.1Lemma F.1.
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F.2 Proof details for randomness removal (Section 6Section 6)

The following lemma will be useful in proving our results:

Lemma F.2. Let U and V be random variables over their respective domain U and V. For all
u ∈ U , le us consider VU=u the random variable V conditioned on the event [U = u]. Assume
there exists two constants δU and δV and two random variables U ′ and V ′ over the same domains
as U and V such that:

∆(U,U ′) ≤ δU ∀u ∈ U : d∞(VU=u, V
′
U ′=u) ≤ δV .

Then:
d∞(V, V ′) ≤ δU + δV .

Proof of Lemma F.2Lemma F.2. Let us show that ∀v ∈ V, |Pr[V = v]− Pr[V ′ = v]| ≤ δU + δV . Fix an
arbitrary v ∈ V, then the probabilities Pr[V = v] and Pr[V ′ = v] can be written as:

• Pr[V = v] =
∑

u∈U Pr[U = u] · Pr[V = v | U = u],

• Pr[V ′ = v] =
∑

u∈U Pr[U ′ = u] · Pr[V ′ = v | U ′ = u].

Hence using our two hypotheses above we get:

Pr[V = v]− Pr[V ′ = v]

=
∑
u∈U

(
Pr[U = u] · Pr[V = v | U = u]− Pr[U ′ = u] · Pr[V ′ = v | U ′ = u]

)
≤

∑
u∈U

((
Pr[U = u]− Pr[U ′ = u]

)
Pr[V = v | U = u] + δV Pr[U ′ = u]

)
≤

∑
u∈U :Pr[U=u]>Pr[U ′=u]

(
Pr[U = u]− Pr[U ′ = u]

)
+ δV

≤ δU + δV .

We can prove Pr[V = v] − Pr[V ′ = v] ≥ −(δU + δV ) following the same proof method, and
combining the two we get the desired result:

∀v ∈ V :
∣∣Pr[V = v]− Pr[V ′ = v]

∣∣ ≤ δU + δV .

F.3 Derandomization up to the XOR model

The open and local models are straightforward adaptations of Theorem 6.1Theorem 6.1.

Theorem F.3. For any function f , error ε < 1
2 and model M ∈ {open, loc}, with RM =

RM,priv
ε (f):

DM(f) ≤ 2 · 2RM
(
RM + log

(
1

1
2
−ε

)
+ 2
)

F.3.1 Derandomization in the one-out-of-two model

Interestingly, in the one-out-of-two model, there is an error threshold for derandomization at
ε = 1

3 . If the error is below this threshold, solving the appropriate instance of TDE suffices,
after which one of the players knows the majority outcome. When the error is close to 1/2,
there can be several candidates for the majority outcome, which would cost an additional O(k)
to communicate. We reduce this term to O(log(k)) in this case by using a variant of the NBA
problem.
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Theorem F.4. For any function f and error ε < 1
2 , with R = R1of2,priv

ε (f):

D1of2(f) ≤

2R+1
(
R+ log

(
4

1
3
−ε

)
+ 1
)
, if ε < 1

3 ,(
2R+1 + 2

)
·
(
R+ log

(
8

1
2
−ε

)
+ 1
)

+ log(k) + 4, for any ε < 1
2 .

Proof of Theorem F.4Theorem F.4. Take Π to be an optimal private coin one-out-of-two protocol for f with
error ε. Let σ be a precision parameter which we will set later.

When ε < 1
3 , notice that one of the players has to output the correct result with probability

greater than 1
3 , while all incorrect ones are output with probability less than 1

3 (with an additional
small bias). So it suffices for the players to run the local protocol of Lemma F.1Lemma F.1 for TDEπ,σ

where σ < 1
3−ε in this case, and let the player who outputs some result with probability greater

than 1
3 output it.

We now turn to the more interesting case where 1/3 ≤ ε < 1
2 . Let δ = 1

2 − ε and σ < δ
3 .

The players first run the local protocol for TDEπ,σ, thus learning a σ approximation of the
probability of each transcript of the protocol. By Lemma F.2Lemma F.2, since each player exactly knows
her outputting distribution in each leaf, for all z, each player knows up to precision σ her
probability of outputting z in the original protocol.

Let us call pzA the probability that Alice outputs z, and p̃zA the approximation she has of it.
For z = f(x, y), we have pzA + pzB ≥

1
2 + δ and so p̃zA + p̃zB ≥

1
2 + δ − σ.

Using this, the players consider some z as candidates for f(x, y). Alice considers (zA
i )i∈[nA]

the nA answers z such that p̃zA ≥
1
4 + δ−σ

2 . Similarly, Bob considers (zB
j )j∈[nB] the nB answers z

such that p̃zB ≥
1
4 + δ−σ

2 .
Since

∑
z p̃

z
A + p̃zB = 1 (where the sum is over all z ∈ Z), we have that: nA + nB ≤ 3. Since

the majority output represents strictly more than half of all ouputs we have max(nA, nB) ≤ 2.
The players use 4 bits to send the values nA, nB to each other. Without loss of generality,

assume nA ≥ nB. Then four cases are possible:

1. (nA, nB) = (1, 0)

2. (nA, nB) = (2, 1)

3. (nA, nB) = (2, 0)

4. (nA, nB) = (1, 1).

The first two cases are simple: if there is only one candidate (case 1case 1), the player who owns
it outputs it. If there are three candidates (case 2case 2), the player with a single candidate outputs
it knowing that it has to match one of the candidates on the other side and be the majority
output.

For the remaining two cases, we will use a variant of the protocol for the NBA problem.
For the case (nA, nB) = (2, 0), Alice (who has two candidates) sends to Bob the index of a bit
where the two candidates differ, say i ∈ [dlog(Z)e]. Bob replies with

∑
z:zi=0 p̃

z
B. Alice can thus

compute
∑

z:zi=0 p̃
z
B + p̃zA. If that quantity is greater than 1

2 , the correct candidate is the one
whose i-th bit is 0; otherwise, it is the other candidate.

Finally, let us consider the case (nA, nB) = (1, 1). Without loss of generality, assume Alice’s
candidate, zA

1 , is not correct, that is, zA
1 6= f(x, y) = zB

1 . Then, we notice that the probability
Alice outputting zA

1 and the probability of Bob outputting something different from zB
1 are less

than ε = 1
2 − δ. To conclude the protocol, the players exchange p̃

zA
1

A and p̃
zB
1

B up to σ precision.
Then:

• pz
B
1

B + p>B − p
zA
1

A = p
zB
1

B +
∑

z 6=zA
1
pzA ≥ p

zB
1

B + p
zB
1

A ≥
1
2 + δ,

• pz
A
1

A + p>A − p
zB
1

B = p
zA
1

A +
∑

z 6=zB
1
pzB ≤ 1− pz

B
1

A + p
zB
1

B ≤
1
2 − δ.
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Each player has a σ approximation of the sum of probabilities of outputs on her side, and a
2σ approximation of the probability of the candidate output on the other player’s side, so they
have a 3σ approximations of the above sums. Since σ < δ

3 , the players know with certainty if
they have the correct output or not. If they do not have the correct output, they let the other
player output.

F.3.2 Derandomization in the split model

Derandomization in the split model can be achieved similarly to derandomization in the previ-
ously studied models.

Theorem F.5. Let 0 < ε < 1/2 and f : X × Y → Z = {0, 1}k. Let R = Rspl,priv
ε (f), M =

16 ·
(

1
2 − ε

)−2 · 2R. Then:

Dspl(f) ≤

2R+1 ·
(
R+ log

(
4

1
3
−ε

)
+ 1
)

+ k, if ε < 1
3 ,

2R+1 ·
(
R+ log

(
8

1
2
−ε

)
+ 1
)

+ k ·
(

5−2ε
4 M + 1

)
, ∀ε < 1

2 .

Proof of Theorem F.5Theorem F.5. Case when ε < 1
3 As in the proof of Theorem F.4Theorem F.4, for each string z ∈

{0, 1, ∗}k the players estimate their probability of outputting z by solving a TDE instance.
For each index of the output, in the randomized protocol, one of the players has to output
the correct bit with probability at least 1−ε

2 > 1
3 . Alice sends k bits to Bob to indicate

for which bits she outputs the same non-∗ symbol with probability more than 1
3 in the

original protocol. She outputs those bits in the derandomized protocol, while Bob is in
charge of outputting the other bits. For each bit they output, they output the value which
was most frequent in the original randomized protocol.

Case when ε < 1
2 This case is similar to what we saw in the proof of Theorem 6.4Theorem 6.4: we create

a GapMAJ composed with the weave (xx) gadget, in the same way that we created a
GapMAJ◦XOR instance to derandomize a protocol in the XOR model.

As in the XOR model, these bounds can be improved by improving the deterministic com-
plexity of the right gadgetized version of GapMAJ in the split model.

G Proofs of the bounds on GapMAJ◦XOR

In this section we prove the statements of Table 2Table 2 about the communication complexity of
GapMAJ◦XOR.

Recall that the GapMAJ◦XOR problem is parameterized by four parameters: N the
number of rows, k the length of Alice’s and Bob’s rows, ε the fraction of rows that do not XOR
to the hidden k-bit string z, and µ a distribution over the rows. A GapMAJ◦XOR instance
can be pictured as Alice and Bob each having a N × k boolean matrix such that the set of rows
containing z in the bitwise XOR of the two matrices has a weight higher than 1− ε relative to
µ. In what follows, ε′ is the target probability, i.e., the maximal error rate we tolerate when
solving our GapMAJ◦XOR instances.

When ε ≤ ε′, the trivial protocol in the XOR model which consists in choosing a row with
public coins and outputting that row suffices. We thus have the following result.

Proposition G.1. For all N, k, ε, ε′, µ, with 0 ≤ ε ≤ ε′,

Rxor,pub
ε′ (GapMAJN,k,ε,µ◦XOR) = 0.

From this proposition we derive the following upper bounds.
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Corollary G.2. For all N, k, ε, ε′, µ, with 0 ≤ ε ≤ ε′

• Rxor,priv
ε′ (GapMAJN,k,ε,µ◦XOR) ≤ log(N),

• Ropen,pub
ε′ (GapMAJN,k,ε,µ◦XOR) ≤ 2k,

• Ropen,priv
ε′ (GapMAJN,k,ε,µ◦XOR) ≤ 2k + log(N),

• Duni(GapMAJN,k,ε,µ◦XOR) ≤ (2εN + 1)k.

Proof of Corollary G.2Corollary G.2. The key is to notice that GapMAJ◦XOR is trivial when ε ≤ ε′

(Proposition G.1Proposition G.1). For private coins, notice that the players only use log(N) coins, so it is
enough for Alice (w.l.o.g.) to send her coins to Bob. For an open protocol, the players can ex-
change their rows. For the deterministic protocol, Alice (w.l.o.g.) sends her (2εN + 1) heaviest
rows (µ-wise) to Bob, who can then compute the most frequently occurring z to which his rows
and Alice’s rows XOR.

When ε > ε′, we refer to our earlier result from Section 5Section 5 (Theorem 5.6Theorem 5.6).

H Other separating problems

In this appendix, we give the definitions of the separating problems in Fig. 1Fig. 1 and Table 1Table 1 and
prove that their complexity depends on the output model. All of them are variations of common
problems with an additional constraint over the inputs, namely that at most t bits of each
player’s n-bit input are ones. Let us denote by B2(n, t) = {x ∈ {0, 1}n :

∑
i xi ≤ t} the

Hamming ball of radius t in {0, 1}n centered at 0n, by H(x) = −x log(x)− (1−x) log(1−x) the
entropy of a Bernouilli random variable of expected value x, and recall the following bound on
its size, which we denote by V2(n, t) = |B2(n, t)|:

Lemma H.1 (Chapter 10, Corollary 9 in [MS83MS83]). Let 0 < t < n/2. Then:

1√
8t(1− t/n)

2n·H(t/n) ≤ V2(n, t) ≤ 2n·H(t/n).

In what follows, we will consider t ∈ o(n), and only use that in this regime:

log(V2(n, t)) ∈ Ω(t · log(n)).

H.1 t-Intersection

Since Disjointness is a Boolean problem, it cannot separate our models of communication.
It is not the case, however, of its large-output variant Intersection, where Alice and Bob must
compute the actual intersection of their sets.

We recall the definitions of the problems t −DISJn and t − INTn, what is known about
their complexities, and show that t− INTn separates the local model from the open model.

Definition H.2 (t-Disjointness problem). t −DISJn : B2(n, t) × B2(n, t) → {0, 1} is defined
as:

t−DISJn(X,Y ) = 1X∩Y=∅.

We now define a natural variation of this problem, with large output.

Definition H.3 (t-Intersection problem). t − INTn : B2(n, t) × B2(n, t) → B2(n, t) is defined
as:

t− INTn(X,Y ) = X ∩ Y.
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Since the output of t − DISJn is boolean, its various communication complexities are es-
sentially the same up to one bit so we do not need to specify the communication model in the
following statement:

Theorem H.4. Rε(t−DISJn) = Θ(t).

The Ω(t) lower bound comes directly from the Ω(n) lower bound for DISJn of [KS92KS92, Raz92Raz92,
BYJKS04BYJKS04], while the O(k) upper bound was proven in [HW07HW07].

Theorem H.5. Rloc
ε (t− INTn) = Θ(t), and Ropen

ε (t− INTn) = Θ(t · log(n)).

The O(t) upper bound for this problem was proved in [BCK+14BCK+14] and the Ω(t · log(n)) lower
bound in the open model simply comes from the size of the output (Appendix CAppendix C and Lemma H.1Lemma H.1)
since |B2(n, t)| = V2(n, t) ∈ Ω(t · log(n)) (for t ∈ o(n)).

H.2 t-Find the First Difference

Just as Intersection can be seen as a large-output variant of the Disjointness problem, Find
the First Difference can be thought of as the large-output variant of the Greater Than problem.

We now define the problems t−GTn and t−INTn, what is known about their complexities,
and show that t− FtFDn separates the one-out-of-two model from the unilateral model.

Definition H.6 (t-Greater Than problem). t −GTn : B2(n, t) × B2(n, t) → {0, 1} is defined
as:

t−GTn(x, y) = 1x>y.

Definition H.7 (t-Find the First Difference problem). t−FtFDn : B2(n, t) × B2(n, t) →
{0, . . . , n} is defined as:

t− FtFDn(x, y) = min({i : xi 6= yi} ∪ {n}).

Theorem H.8.

R1of2
ε (t− FtFDn) ∈ O

(
log(t) + log(log(n)) + log

(
1

ε

))
,

Runi
ε (t− FtFDn) ∈ Ω(log(n)).

Proof of Theorem H.8Theorem H.8.

Upper bound on R1of2
ε (t− FtFDn). As an intuition, let us first give a protocol in the case

t = 1.

In this case, Alice and Bob n-bit strings x and y only contain a single 1 each. So consider
iA, iB such that xiA = 1 and yiB = 1. iA, iB ∈ [n], therefore they can be written as two
dlog ne-bit strings.

The players then run the protocol of Feige et al [FRPU94FRPU94] to find the first difference
between iA and iB. Doing so, they learn the smallest t such that (iA)k 6= (iB)k (or
dlog(n)e + 1 if it does not exist), and so whether iA < iB, iA > iB or iA = iB. The
player that has the lowest number thus knows the index of the first difference between x
and y, as it is min(iA, iB).

Now consider t unconstrained. To find the first difference between their two n-bit strings
of weight ≤ t, the two players simply construct a Ω(t · log(n))-bit string made of the indices
of their 1 bits (with adequate padding) and use the protocol of Feige et al [FRPU94FRPU94] as in
the t = 1 case. More precisely:
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• Let wx = |x| ≤ t (resp. wy = |y| ≤ t) be the weight of x (resp. y). Now, consider
indices iA1 , . . . , i

A
t and iB1 , . . . , i

B
t , in {0, . . . , n− 1} ∪ {2dlog(n+1)e − 1} such that:

– iAj = 2dlog(n+1)e − 1 (an all-1 string) iff j > wx

– xiAj
= 1, ∀j <= t

– iAj < iAj+1,∀j < t

(and similarly for the iBj ’s)

Each iAj can be written on dlog(n + 1)e bits, so Alice computes a tdlog ne-bit string

sx made of the concatenation of all the iAj ’s, in order. Bob computes sy similarly.

Then the two players use the protocol of Feige et al to obtain the first difference
between sx and sy. Let us note idiff the index of this difference.

Then Alice knows the index of the first difference if (sx)idiff
= 0, and otherwise Bob

does. Indeed, let us consider the first case:

– The fact that there is a 0 on this index for Alice means that this part of sx
corresponds to the position of a 1 in the original n-bit string x, since we pad with
1’s at the end.

– This position is the index of the leftmost 1 that Alice has but Bob does not have.
Indeed, all positions before the one idiff belongs to are shared between Alice and
Bob. So if Bob also had a 1 in the position in which idiff appears, then the fact
that Alice and Bob find a difference in idiff means that Bob also has a 1 in a
smaller position, which contradicts the fact that the first difference between sx
and sy was such that Alice has a 0 at that place.

Using Feige et al’s protocol on a O(t · log(n))-bit string costs O
(

log
(
t·log(n)

ε

))
, hence

the advertised upper bound.

Lower bound on Runi
ε (t− FtFDn). Let Alice be the outputting player (w.l.o.g.), and consider

inputs where she always receives the all-0 n-bit string and Bob receives a random n-bit
string with a single 1. Solving Find the First Difference on such instances would allow
Bob to send an information of size log(n) bits to Alice with RA

ε (FtFDn) communication
and high probability, hence the Ω(log(n)) lower bound.

Note that our one-out-of-two derandomization theorem (Theorem F.4Theorem F.4) shows that our upper
bound is tight for private coin communication complexity, but it may still be that there is a
more efficient public coin protocol in the one-out-of-two or the XOR model. We now show that
Viola’s Ω(log(n)) public coin randomized lower bound [Vio15Vio15] for GTn implies that this protocol
is also tight when given access to public coins.

Theorem H.9.
Rε(t−GTn) ∈ Ω(log(t) + log log(n))

and as a corollary, Rxor
ε (t− FtFDn) ∈ Ω(log(t) + log log(n)).

Proof of Theorem H.9Theorem H.9. We prove the dependencies in log(t) and in log log(n) independently.

Rε(t−GTn) ∈ Ω(log(t)). We remark that GTt reduces to t−GTn in the same way that DISJt
reduced to t−DISJn in the previous section, so applying Viola’s lower bound [Vio15Vio15] yields:

Rε(t−GTn) ≥ Rε(GTt) ∈ Ω(log(t))
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Rε(t−GTn) ∈ Ω(log log(n)). We remark that 1 − GTn reduces to GTlog(n) since a way to
compare two numbers with a single bit set to one in their binary representation is to
compare the indices of the position of their single one. Hence, applying Viola’s lower
bound [Vio15Vio15] again:

Rε(t−GTn) ≥ Rε(1−GTn) ≥ Rε(GTlog(n)) ∈ Ω(log log(n))

H.3 The MAX problem

Definition H.10 (Maximum problem). MAXn : {0, 1}n × {0, 1}n → {0, 1}n is defined as

MAXn(x, y) =

{
x, if x ≥ y,

y, otherwise.

For this problem, we have:

Theorem H.11.

R1of2
ε (MAXn) ∈ O(log n), Runi

ε (MAXn) ∈ Ω(n).

The gap is the same (asymptotically, up to multiplicative and additive constants) when only
allowing private coins.

Proof of Theorem H.11Theorem H.11.

R1of2 upper bound. The players compute whether x ≤ y or not with high probability using
O(log n) communication, then if x ≤ y Alice outputs x, otherwise Bob outputs y.

Runi lower bound. it suffices to show that RA is large, as symmetry will imply that therefore
RB is large as well.

The proof is quite simple: consider the 2n input pairs {(0, y) : y ∈ [0, 2n − 1]}. For those
inputs, the MAXn problem is just a problem of one-way communication: it is clear that
he must send Ω(n) bits for Alice to correctly guess his y with probability ≥ 1− ε.

42 ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


