
On small-depth Frege proofs for PHP

Johan H̊astad
KTH- Royal Instiute of Techology

April 3, 2023

Abstract

We study Frege proofs for the one-to-one graph Pigeon Hole Principle
defined on the n × n grid where n is odd. We are interested in the case
where each formula in the proof is a depth d formula in the basis given
by ∧, ∨, and ¬. We prove that in this situation the proof needs to be
of size exponential in nΩ(1/d). If we restrict the size of each line in the
proof to be of size M then the number of lines needed is exponential in
n/(logM)O(d). The main technical component of the proofs is to design a
new family of random restrictions and to prove the appropriate switching
lemmas.

1 Introduction

In this paper we study formal proofs of formulas in Boolean variables encoding
natural combinatorial principles. We can think of these as tautologies but it
is often more convenient to think of them as contradictions. When a certain
formula, F , is a contradiction then its negation, F̄ is a tautology and we do
not distinguish the two. In particular in the below discussion we might call
something a tautology that the reader, possibly rightly, thinks of as a contra-
diction. We are equally liberal with usage of the word “proof” which might
more accurately be called “a derivation of contradiction”.

We are given a set of local constraints that we call “axioms”. These are
locally satisfiable but not globally in that there is no global assignment that
satisfies all the axioms. A proof derives consequences of the axioms and it is
complete when it reaches an obvious contradiction such as 1=0 or that an empty
clause contains a true literal.

A key property of such a proof system is the kind of statements that can be
used and in this paper we allow Boolean formulas over the basis ∧, ∨, and ¬
where the alternation depth is d. Here d is a constant independent of the formula
size or a slowly growing function of the size. A fundamental and popular case
is resolution corresponding to d = 1, where each formula is a disjunction of
literals.

It is far from easy to analyze resolution but this proof system has been
studied for a long time and many questions are now resolved. We do not want

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 42 (2023)

to discuss the history of resolution but as it is very relevant for the current paper
let us mention that an early milestone was obtained by Haken [Hak85] in 1985
when he proved that the Pigeon Hole Principle (PHP) requires exponential size
resolution proofs. The PHP states that m + 1 pigeons can fly to m holes such
that no two pigeons fly to the same hole. It has (m + 1)m Boolean variables
xij which is true iff pigeon i flies to the hole j. The axioms say that for each i
there is a value of j such that xij is true and for each j there is at most one i
such that xij is true. This is clearly a contradiction but to prove this counting
is useful and resolution is not very efficient when it comes to counting.

The focus of this paper is the more powerful proof system obtained for larger
values of d and here a pioneering result was obtained by Ajtai [Ajt94] proving
superpolynomial lower bounds for the size of any proof for PHP for any fixed
constant d. The lower bounds of Ajtai were not explicit and [BPU92] gave the
first such bounds, namely that depth Ω(log∗ n) is needed for the size of the
proof to be polynomial. This was greatly improved in two independent works
by Kraj́ıček, Pudlák, and Woods [KPW95] and Pitassi, Beame, and Impagliazzo
[PBI93], respectively. These two papers established lower bounds for the size

of any proof of the PHP of the form exponential in n−c
d

and gave non-trivial
bounds for depths as high as Θ(log log n).

Related questions were studied in circuit complexity where the central ques-
tion is to study the size of a circuit needed to compute a particular function.
Here a sequence of results [FSS84],[Sip83], [Yao85], [H̊as86] established size lower
bounds of the form exponential in nΩ(1/d) and obtained strong lower bounds for
d as large as Θ(log n/ log log n).

A technique used in many of these papers is called “restrictions”. The idea
is simply to, in a more or less clever way, give values to most of the variables
in the object under study and to analyze the effect. One must preserve1 the
function computed (or tautology being proved) while at the same time be able
to simplify the circuits assumed to compute the function or the formulas in the
claimed proof. An important reason that the lower bounds in circuit complexity
were stronger than those in proof complexity is that it is easier to preserve a
single function than an entire tautology with many axioms.

After being stuck at d = O(log log n) for decades we have recently seen
significant progress. The first step was taken by Pitassi et al [PRST16] who
obtained super-polynomial lower bounds for depths up to any o(

√
log n). The

tautology considered was first studied by Tseitin [Tse68] and considers a set
linear equations modulo two defined by a graph. The underlying graph for
[PRST16] is an expander. These results were later extended to depth almost
logarithmic by H̊astad [H̊as20] and in this case the underlying graph is the two-
dimensional grid. The bounds obtained were further improved by H̊astad and
Risse [HR22].

All results mentioned so far only discuss total size. For resolution each
formula derived is a clause and hence of size at most n but for other proof

1One does not really preserve a function or a formula and an object of size n is reduced to
a similar object of size f(n) for some f(n) < n.

2

systems it is interesting to study the number of lines in the proof and the sizes of
lines separately. Pitassi, Ramakrishnan and Tan [PRT21] had the great insight
that a technical strengthening of the used methods yields much stronger bounds
for this measure than implied by the size bounds. They combined some of the
techniques of [H̊as20] with some methods from [PRST16] to establish that if each
line is of size at most M then the number of lines in a proof that establishes the
Tseitin principle over the grid needs to be exponential in n2−d

√
logM . By using

some additional ideas H̊astad and Risse [HR22] fully extended the techniques of
[H̊as20] to this setting improving the bounds to exponential in n/(logM)O(d).

Despite this progress, the thirty year old question whether the PHP allows
polynomial size proof of depth O(log log n) remained open. The purpose of this
paper is to prove that it does not and that lower bounds similar to those for the
Tseitin tautology also apply to the PHP. To build on previous techniques we
study what is known as the graph PHP where the underlying graph is an odd
size two-dimensional grid.

As the side length of the grid is odd, if one colors it as a chess board, the
corners are of the same color and let us assume this is white. In the graph PHP
on the grid, there is a pigeon on each white square and it should fly to one of
the adjacent black squares that define the holes. This graph PHP is the result
of the general PHP where most variables are forced to be 0. Each pigeon is only
given at most four alternatives. Clearly any proof for the general PHP can be
modified to give a proof of the graph PHP. To limit ourselves further we prove
our lower bounds for the one-to-one PHP where we also have the axioms that
each hole receives exactly one pigeon.

Phrased slightly differently, the one-to-one PHP on the grid says that there
is a perfect matching of the odd size grid and we heavily use local matchings.
We can compare this to the Tseitin tautology on the grid studied by [H̊as20,
PRT21, HR22] that states that it is possible to assign Boolean values to the
edges of the grid such that there is an odd number of true variables next to any
node. As a perfect matching would immediately yield such an assignment, the
PHP is a stronger statement and possibly easier to refute. In particular, the
result of the current paper implies a result similar to [HR22], but with slightly
weaker bounds. Our methods are quite similar to those of that paper so this is
not a different proof. Let us discuss the main technical point, namely to prove
a “switching lemma”.

By assigning values to most variables in a formula it is possible to switch
a small depth-two formula from being a CNF to being a DNF and the other
way around. In the basic switching lemma used to prove circuit lower bounds
[FSS84, Yao85, H̊as86], uniformly random constant values are substituted for a
majority of the variables. Such restrictions are the easiest to analyze but are
less useful in proof complexity as they do not preserve any interesting tautology.

To preserve a tautology or a complicated function it is useful to replace
several old variables by the same new variable, possibly negated. It is possible
to be even more liberal and allow old variables to be replaced by slightly more
complicated expressions in the new variable. This technique was first introduced
explicitly by Rossman, Servedio, and Tan [RST15] when studying the depth

3

hierarchy for small-depth circuits but had been used in more primitive form in
earlier papers. We use such generalized restrictions in this paper.

The technical strengthening needed by [PRT21] that we discussed above is to
improve the standard switching lemma to what is commonly known as a multi-
switching lemma. This concept was first introduced independently by H̊astad
[H̊as14] and Impagliazzo, Mathews, and Paturi [IMP12] to study the correlation
of small-depths circuits and simple functions such as parity.

In this setting one considers many formulas (F i)mi=1 and the goal is to switch
them all simultaneously in the following sense. There is a small depth (common)
decision tree such that at any leaf of the tree it is possible to represent each F i

by a small formula of the other type. It was the insight that multi-switching
could be used in the proof complexity setting that made it possible for [PRT21]
to derive the strong bounds on the number of lines in a proof when each line is
short.

The techniques used in this paper offer no surprise. We introduce a new
space of restrictions that preserves the grid one-to-one PHP and for which it is
possible to prove a standard switching lemma and then extend it to a multi-
switching lemma. The most novel part is to design this new space of restrictions.
It has many similarities with the space introduced in [H̊as20], but the fact that
we in this paper have to work with augmenting paths and matchings makes the
entire construction a bit more rigid.

Once the space of restrictions is in place, two tasks remain. Namely to prove
the switching lemmas and then use these bounds to derive the claimed bounds
on proof size. This latter part hardly changes and we do not even repeat all
details here. Also the proof of the switching lemmas follow the same pattern
as in [H̊as20] and [HR22] but we need some new combinatorial lemmas and the
fact that we work with matchingsxs calls for some minor modifications.

An outline of the paper is as follows. We start with some preliminaries and
recall some facts from previous papers in Section 2. We introduce our new
space of random restrictions in Section 3. The basic switching lemma is proved
in Section 4 and we use it to establish the lower bound for proof size in Section 5.
We give the multi-switch lemma in Section 6 and use it, in Section 7, to derive
the lower bounds on the number of lines in a proof. We end with some very
brief comments in Section 8.

2 Preliminaries

In this section we give some basic definitions and derive some simple properties.
We also recall some useful facts from related papers.

2.1 The formula to refute

We study the one-to-one PHP on the odd size grid. Nodes are given indexed
by (i, j) where 1 ≤ i, j ≤ n and a node is connected to other nodes where one
of the two coordinates is the same and the other differ by 1. As opposed to

4

some previous papers it is here important that we are on the grid and not on
the torus as we want a bipartite graph. There is one variable for each edge of
the grid and an axiom saying that exactly one of the four variables next to a
node is true.

We assume that there is one more white node than black node and hence
pigeons are white nodes and holes are black nodes. Locally, however, holes and
pigeons are very similar.

2.2 Frege proofs

We consider proofs where each line in the proof is either an axiom or derived
from previous lines. The derivation rules are not important, all we need is
that they are of constant size and sound. We use the same rules as [PRST16],
[H̊as20], [PRT21], and [HR22]. We demand that each formula that appears is of
depth at most d and, as several previous papers, we do not allow ∧ and count
the number of alternations of ¬ and ∨. The ∧ operator simulated by ¬ ∨ ¬.
The rules are as follows.

• (Excluded middle) (p ∨ ¬p)

• (Expansion rule) (p→ p ∨ q)

• (Contraction rule) (p ∨ p)→ p

• (Association rule) p ∨ (q ∨ r)→ (p ∨ q) ∨ r

• (Cut rule) p ∨ q,¬p ∨ r → q ∨ r.

The concept of t-evaluations was introduced by Krajek et al. [KPW95] and
is a very convenient tool for proving lower bounds on proof size. Here we follow
the presentation of Urquhart and Fu [UF96] while using the notation of [H̊as20]
and [HR22]. A t-evaluation is a map from formulas to decision trees of depth
at most t. It is important that values along any branch in such a decision tree
are locally consistent and hence let us first look at decision trees.

2.3 Decision trees and t-evaluations

Normally a decision tree asks for values of variables but we instead allow only
questions of the form

“To which node is i matched?”

Clearly the answer to this question determines the value of any variable next to
i and thus is more powerful than a single variable question. On the other hand
it can be simulated by asking ordinary variable questions for three variables
around i. Thus within a factor of three in the number of questions, this type of
questions is equivalent to variable queries.

We say that a decision tree is a 1-tree if all its leafs are labeled one and
similarly we have 0-trees. It might seem redundant to allow such trees but when

5

doing operations on decision trees such as taking the logical or of a number of
trees, they naturally occur.

We maintain the property that values obtained along any branch in any
decision tree are locally consistent.

Definition 2.1 The matching M of size t is locally consistent if it can be ex-
tended to a complete matching of a larger set S × T . We require that each of S
and T is the union of even size intervals such that the total length of all intervals
in each of the sets is at most 2t.

The reason for the above definition is that locally consistent matchings can
always be extended to include additional vertices.

Lemma 2.2 Given a locally consistent matching, M of size at most n/20− 1,
and a node v not matched by M . It is possible to find a partner, w, of v, such
that M jointly with (u,w) is a locally consistent matching.

Proof: If v is already in S × T we can use the same extension. Suppose
v = (a, b) where a ∈ S and b 6∈ T . It is easy to find b′ such that T ∪ {b, b′} is
a union of even size intervals. Now we can add matchings of S × b and S × b′
using that S is a union of even size intervals.

The case when a 6∈ S and b ∈ T is symmetric and let us handle the case a 6∈ S
and b 6∈ T . We can find b′ as in the previous case enlarging T to T ′ = T ∪{b, b′}
and then proceed by adding a and a suitable a′ to S.

We are interested in collections of formulas (F i)mi=1 and the simultaneous
evaluation of these formulas. We say that these have an ` common decision tree
of depth s if there is a single decision tree of depth s such that at any leaf of
this decision tree, each F i can be represented by a depth ` decision tree.

Remark. In the intuitive notion of “locally consistent” a natural property is
that any sub-assignment of a locally consistent assignment is locally consistent.
This is not obviously true in our definition as the sizes of S and T depend
on the size of the matching. From now on we let the informal notion “locally
consistent” be short for “formally locally consistent or extendable to a formally
locally consistent assignment”.

As stated above, a t-evaluation is a mapping, ϕ, of formulas to decision trees
of depth at most t and we want it to have some properties.

1. The constant true is represented by a 1-tree and the constant 0 is repre-
sented by a 0-tree.

2. If F is an axiom of the Tseitin contradiction then ϕ(F) is a 1-tree.

3. If ϕ(F) = T then ϕ(¬F) is a decision tree with the same topology as T
but where the value at each leaf is negated.

4. Suppose F = ∨Fi. Consider a leaf in ϕ(F) and the assignment, τ leading
to this leaf. If the leaf is labeled 0 then for each i ϕ(Fi)dτ is a 0-tree and
if the leaf is labeled 1 then for some i, ϕ(Fi)dτ is a 1-tree.

6

The key property for t-evaluations is the following lemma.

Lemma 2.3 Suppose we have a derivation using the rules of Section 2.2 start-
ing with the axioms of the one-to-one PHP on the n× n grid. Let Γ be the set
of all sub-formulas of this derivation and suppose there is a t-evaluation whose
range includes Γ where t ≤ n/10. Then each line in the derivation is mapped to
a 1-tree. In particular we do not reach a contradiction.

Proof: We only sketch the proof as it is tedious and the essentially the same as
the proof of the similar lemma in [H̊as20]. We need two properties, namely that
each axiom is represented by a 1-tree, and that the derivation rules preserve
this property. The first property is true by definition. The second property
follows from the fact that the derivation rules are sound and we never “get
stuck” in a decision tree. By this we mean that it always possible to continue a
branch in a decision tree keeping the values locally consistent. This is ensured
by Lemma 2.2.

When studying the number of lines in a proof where each line is short, an
extension of Lemma 2.3 is needed. This was first done in [PRT21] and we rely
on the argument in the full version of [HR22]. We do not repeat the argument
here and just give a short summary. We refer to [HR22] for the full version.

The bottom line is that once we have a multi-switching lemma such as
Lemma 6.1 below we can construct t-evaluations for each line of the proof sep-
arately. If these evaluations admit a t common decision tree of depth s and are
consistent then it is sufficient to obtain a contradiction provided that s+ t ≤ cn
for a sufficiently small constant c.

3 Restrictions

As stated in the introduction we use a slightly more complicated object than
a restriction which normally only gives values to some variables. A restriction
in our setting fixes many variables to constants but also substitutes the same
variable or its negation for some variables. In a few cases an old variable is
substituted by a small logical formula which is a disjunction of size at most
three.

We are given an instance of the PHP on the n×n grid and a restriction, for
a suitable parameter T , reduces it to a smaller instance on the (n/T) × (n/T)
grid.

We divide the grid in to (n/T)2 squares, each with side length T . Inside
each square there are ∆ (for a parameter to be fixed) smaller squares that we
from now on call “mini-squares”. In the end we pick one mini-square inside each
square and let these represent the smaller instance. Each square has a color in
the natural way and exactly as the nodes in the original grid we let the corners
be white.

Between each mini-square, si and any mini-square s′j in an adjacent square
we have 3R (for a parameter to be chosen) edge disjoint paths, each of even

7

length. There is a natural matching of each such path but we are also interested
in a matching of size one more that also includes one node in each of the mini-
squares to which it is attached. We think of this as using the path as an
augmenting path and hence we refer to these paths as “augmenting paths”. A
matching on such a path is of type 0 if it does not include any node from the
attached mini-squares and otherwise it is of type 1. We call the node from the
mini-square included in a type 1 path a “dent” in the mini-square. This possible
dent is also called the point of attachment of the path.

We group the 3R paths in groups of three and within each group two attach
at a node which is the same color as the color as the mini-square, while the
third one attaches to a node of opposite color. Please note that as each path
is of even length, the nodes of attachment are of different colors but so are
the mini-squares to which the path attaches. Hence the attachment points are
either both the same color as the respective mini-square or both the opposite
color. The first two augmenting paths may be of type 0 or 1. The third path is
always of type 1 and as these paths play little role in the argument we mostly
ignore them from now on.

For each augmenting path P we have a corresponding Boolean variables xP
which indicates whether it is of type 0 or type 1. By the R fixed paths of type 1
we can conclude that for any mini-square, if exactly half of its varying paths are
of type 0 (and hence the other half is type 1) then its central area has equally
many white nodes as black nodes remaining.

We set up our restrictions such that it is uniquely determined by the values
for the variables xP . Outside the paths and and the mini-squares we more or
less have a fixed matching and we give details below. Let us start by describing
how to construct a matching inside a square with some dents on the perimeter.

3.1 Matching a square with dents

In this section we prove the following lemma.

Lemma 3.1 Suppose have square with even side length and which has the same
number of white and black dents. Suppose further that there are at most M dents
and no dent is within M of a corner. In this situation there is always a matching
of the square. If we have a square with odd side length with one more white node,
then the similar statement is true assuming we have one more white dent.

We do not explicitly give a bound for the side length of the square. It must
be at least 2M to have any dent at distance M from all corners. On the other
hand a side length of 4M certainly allows for M dents fulfilling the requirement.

Proof: Let us first do the case of even side length. Suppose the side length is
S. Take any dent, and assume for concreteness that it is white. Start matching
nodes along the perimeter starting with the node next to this dent. This is
straightforward until we hit the next dent. If this dent is black we get a perfect
match along the perimeter while if it is white we are forced to create a new
white dent. We continue on the other side of this dent and go all around the

8

square. We get a new square of side length S−2 and some dents. A dent remain
iff it is the same color as the dent preceding it.

As we have both black and white dents, the number of dents has decreased
by at least two and the distance to the corner has decreased by 2. We repeat
this until there are no remaining dents. The rest is easy to match.

If the side length is odd then the process stops when there is only one
white dent on the boundary. Also in this case the remaining square is easy to
match.

We use this lemma on mini-squares but also on small squares called bricks
that we define below.

3.2 Details of mini-squares and paths

Let us specify some details of the construction. It is convenient to use the
concept of brick which is a square of size α× α where α is a small even integer
and the reader might think of it as 20.

All but one mini-square have side length 6α∆R. We think of its interior as
one square where we can apply Lemma 3.1. To the exterior we have 6∆R bricks
on each side and the interesting part is the middle 2∆R bricks. Half of these
are used to route the 3∆R paths to the ∆ mini-square in the square in the given
direction. The bricks next to the corners are only used to get the distance to
the corners needed by Lemma 3.1.

We have a special single mini-square in the top left corner square2. It has
side length 6α∆R+1 which in particular is an odd number but is otherwise like
the other mini-squares. We call this the “designated survivor”.

2This could be any white square and choosing this particular square is just to make some
fixed choice.

9

T

T

Figure 1: The placement of mini-squares and squares and some paths. The
designated survivor is the checkered mini-square. The matchings along top row
and leftmost column are indicated by solid lines.

In the top row, the n − 6αR∆ − 1 nodes outside the designated survivor
are matched in a horizontal matching. Similarly the nodes in the leftmost
column outside the designated survivor are matched in a vertical matching. This
basically eliminates one row and one column and we assume for convenience that
n ≡ 1 modulo α and we cover the rest of the grid with bricks.

A square is a square of bricks of side length 7∆2R bricks and starting in the
top left corner we have ∆ mini-squares along the diagonal. This leaves ∆2R
empty rows of bricks in the bottom of each square and ∆2R empty columns at
the right. By our placement of the designated survivor and the elimination of
the top row and first column also the top left square looks essentially the same
as other squares. Let us describe how to route horizontal paths.

Fix a mini-square si is a square S and let us see how to route paths to mini-
squares s′j in the square to its right. For each pair (i, j) we reserve R columns,

ckij , 1 ≤ k ≤ R, of bricks in the right part of S. This can be done has we have

∆2 pairs of mini-squares and ∆2R empty columns of bricks.
For each j, we reserve R bricks, all with even index, on the right perimeter

of si and the kth brick contains three paths that we route straight right to ckij .
Similarly we route paths straight left from the kth brick in the ith part of s′j to
the same column. This time using odd index bricks. The path is completed by
using the suitable part of ckij to connect the two pieces.

Connecting mini-squares vertically is done completely analogously and we
omit the description.

It is easy to see that in a brick we either have no path going through, one

10

path moving horizontally, one path moving vertically, one path making a bend,
or one horizontal and one vertical path. A path has a point of attachment at
the brick which is included in the path iff the path is of type 1. Making sure
that colors of the points of attachment are the different entering and leaving a
brick and that they are not too close to the corners (that is why we need to
make α larger than four) we can appeal to Lemma 3.1. As long as we maintain
the type of a path throughout it passage, we can always match the interior of
each brick.

We summarize the properties we need from this construction.

Lemma 3.2 The values of the path variables xP uniquely determines a match-
ing on all paths and in any brick outside the mini-squares. In any mini-square
except the designated survivor such that half of its adjacent xP variables are
true we can find a unique matching of the remainder of this mini-square. In the
designated survivor we can, under the same condition match all but one node.

3.3 Almost complete matchings and restrictions

We let an almost complete matching, usually denoted τ , be an assignment to
all variables xP such that exactly half the variables next to any mini-square are
true. Note that many such τ do exist and in particular we can pick half the
paths in any group of 2R paths to be of the each type. There are many other
ways to pick τ but we do not need this explicitly.

Let us describe how to pick a random restriction from our space. We make
uniformly random choices but if some choice is very unlucky we start all over
again. Let π1 be a fixed matching of all squares except that of the designated
survivor in the top left corner. We pick a restriction σ as follows.

1. Pick a uniformly random τ respecting the condition that half the variables
next to any mini-square are true. If any group of 2R variables between two
fixed mini-squares has fewer than R/2 variables of either value, restart.
We denote this event as “lopsided group”.

2. Pick a random mini-square from each square, except the square of the
designated survivor. Match these mini-squares according to π1. Hopefully
without causing confusion we keep the name π1 for this matching of mini-
squares. These nodes jointly with the designated survivor are the chosen
mini-squares and we call this set U .

3. For each pair of mini-squares (s1, s2) matched in π1 pick one augmenting
path of type 1 and convert it to type 0. These are called chosen paths.
The choice is based on an advice string B and discussed below.

4. For each pair of mini-squares (s1, s2) in U in adjacent squares but not
matched in π1 pick one augmenting path of type 0 and make it a chosen
path. The choice of the path is based on the advice string. This is also
done with s1 being the designated survivor.

Let us see that this defines a smaller instance of PHP.

11

3.4 The reduced instance

The nodes of the new instance are given by the elements in U . They naturally
form a (n/T)×(n/T) grid. We have chosen paths that are of type 0 that connect
any two adjacent elements in U while for any other path P , the value of xP is
now fixed.

For each chosen path, P , we introduce a new variable, which we call yP ,
indicating whether it should be switched to type 1. By Lemma 3.2 if exactly
one variable on a path next to a mini-square in U is true, then it is possible to
find a matching of this min-square. Thus the local conditions of a mini-square
turn in to an axiom of the new instance of PHP. Let us see how to replace the
old variables in a supposed proof with these new variables.

Old variables not on edges in chosen mini-squares or in bricks with at least
one chosen path are now fixed in a way respecting the corresponding axioms.

Consider a brick with at least one chosen path going through. There is only
one chosen path between any two adjacent squares and it is not difficult to see
that at most one chosen path goes through any brick. There are two possible
matchings of this brick depending on the value of the corresponding variable
yP . If an edge e is present in neither we replace xe by 0 and if it is present in
both we replace it by 1. If e is present in only one we replace it by yP or ȳP in
the natural way. It is easy to see that any axiom related to a node in the brick
becomes true.

Similarly in a mini-square we have four (or fewer if it is on the perimeter)
chosen paths next to it. These are controlled by four new variables that we here
locally call yi for 1 ≤ i ≤ 4. The new local axiom is that exactly one of these
four variables is true.

We have four different matchings of the mini-square depending on which yi
is chosen to be true. Look at an edge, e and suppose it appears in the matchings
corresponding to y2 and y3 being true. In such a case we replace xe by y2 ∨ y3

and similarly in other cases. If e is in none of the four matchings we replace xe
by the constant 0 and if it is in all four we replace it by the constant 1.

It is easy to check that any original axiom inside the mini-square either
reduces to true or that exactly one of the four yi is true. Indeed looking at the
disjunctions replacing the four variables xe around any node, each yi appears
in exactly one. We summarize this the discussion of this section as follows.

Lemma 3.3 A restriction σ reduces an axiom in the PHP in the grid of size
n× n either to the constant true or an axiom in the PHP of the new variables
yP . Each variable xe is substituted by a conjunction of up to three literals.

We do make a composition of restrictions and let us note that even after a
sequence of compositions and original variable is only the conjunction of three
variables in the restricted PHP. This follows from the fact that any local area
is only affected by the local variables in the PHP.

As in previous papers these full restrictions are not used in the main argu-
ment and we work with partial restrictions that we now turn to.

12

3.5 Partial restrictions

A full restriction is a very rigid object with exactly one live mini-square in each
square and we proceed to make a more random looking object.

Let k be a parameter equal to C log n(n/T)2 for a sufficiently large constant
C. After we have completed the construction of σ we add the following steps.

1. Pick, without replacement of mini-squares, k uniformly random pairs of
mini-squares in adjacent squares. This yields a matching π2. If this pick
is unbalanced as defined below redo this step.

2. Change the type of one augmenting path between any pairs of nodes in
π2 from 1 to 0. The choice of which of the at least R/2 paths of type 1 is
based on the advice string and discussed below.

As we pick 2k mini-squares we expect roughly3 2C log n live mini-squares
in any square. If this number is larger than 4C log n for any square then we
consider the pick unbalanced and we restart. For any two adjacent squares S1

and S2 we expect C log n/2 pairs (s1, s2) picked such that si ∈ Si. If this number
is smaller than C log n/4 for any pair (S1, S2) we consider this unbalanced and
restart.

We call the resulting restriction ρ. The mini-squares picked by π1 and π2

jointly with the designated survivor are called “live”. Note that for any mini-
square that is not live we have fixed the matching in this mini-square perma-
nently. Outside the mini-squares the matching is also fixed except in bricks with
at least one live path going through.

3.6 Changing types of augmenting paths

In the above procedure, in two places we need to select an augmenting path and
(possibly) change its type. This happens when changing a path from type 1 to
type 0 because its end-points are matched in π1 or π2 and when opening up for
changing the type from 0 to 1 by making it a chosen path.

We could accept to make this choice arbitrary by loosing some factors of R
in our bounds, but as it is always nice to avoid unnecessary loss let us describe
a more efficient choice.

The choices of the 2R variables in a group corresponds to a vector in {0, 1}2R
and we want to modify one coordinate in order to change the Hamming weight
from t to either t+ 1 or t− 1 and let us suppose the latter. We want the choice
to be limited and as invertible as possible. As the number of strings of weights
t and t − 1 are different we cannot achieve perfect invertability. Suppose first
that t ≤ R.

3The reason this is not exactly true is squares at the perimeter have only two or three
neighboring squares. Such squares are less likely to have many live mini-squares. This results
in a factor (1 +o(1)) more mini-squares in other squares but this small factor does not matter
and we ignore it.

13

Definition 3.4 Suppose t ≤ R. A mapping f mapping
(

2R
t

)
to
(

2R
t−1

)
and which

maps each set to a subset, is a k-almost bijection if it is surjective and |f−1(x)| ≤
k for any x.

The following below lemma is probably well known but as the proof is not
difficult we prove it. It is likely that 4 can be improved to 3 but this does not
matter greatly for us, as this only affects unspecified constants.

Lemma 3.5 If R/2 ≤ t ≤ R then there is a 4-almost bijection.

Proof: Consider a bipartite graph where the the left hand side elements are
subsets of size t − 1 and the right hand side elements are subsets of size t.
Connect two sets iff one is a subset of the other. It is well known (see for
instance Corollary 2.4 in [Bol86]) that this graph has a matching, M1, of size(

2R
t−1

)
.

Modify the construction by making three copies of each left hand side node.
Each copy is again connected to any set that contains it. It follows by the LYM
inequality (stated as Theorem 3.3 in [Bol86]) that this graph has a matching
M2 of size

(
2R
t

)
.

Now define f(x) as follows. If x is matched in M1 let it be its partner in this
matching. If x is not matched in M1 define f(x) to be the partner under M2.

Due to the first condition f is onto. The property that |f−1(y)| ≤ 4 for
follows as a preimage of y is either its partner under M1 or a partner of one of
its three copies under M2.

Taking the complement of both input and output we define a 4-almost bi-
jection, g mapping

(
2R
t

)
to
(

2R
t+1

)
for R ≤ t ≤ 3R/4. We use f and g to guide

our choices and in addition we have two bits of advice for each group.
When we want to convert a path from type 1 to type 0 between si and s′j

we look the types of all paths between the two mini-squares. This is a vector,
v, in {0, 1}2R which by the non-lopsidedness has Hamming weight t which is in
the interval [R/2, 3R/2]. If t > R we look at g−1(v) and consider the two bits
of advice, b1 and b2. All we need to do is to ensure that each choice in g−1(v)
is possible but to be explicit we can proceed as follows.

• If g−1(v) is of size one we pick the unique element.

• If g−1(v) is of size two we use b1 to make the choice.

• If g−1(v) is of size three then b1 = b2 we pick the lexicographically first
path and otherwise we use b1 to choose between the other two paths.

• If g−1(v) is of size four then use the pair (b1, b2) to make the choice.

The reason for the advice string is to get a pure counting argument when we
later analyze probabilities. It would have worked to pick a random element from
g−1(v).

14

To make the situation uniform we have two advice bits for any pair of mini-
squares in adjacent squares. Thus most of these bits are never used. We let B
denote the values of all these bits.

If t ≤ R we instead consider f(v) and change the type of the corresponding
path. Finally if we want to allow to change the weight from t to t+1 we reverse
the two cases.

3.7 Analyzing the probability of a restart

We make a restart either because of a lopsided group or an unbalanced pick of
π2 and we analyze these separately.

3.7.1 The probability of lopsided group

The goal of this section is to prove the below lemma.

Lemma 3.6 The probability that uniformly random τ has lopsided group is
O(n22−cR) for a positive constant c.

Based on this lemma we fix R to be C log n for a sufficiently large constant
C such that the probability of having a lopsided group is o(1). Let us prove
Lemma 3.6.

Proof: The almost complete matching τ is defined by the variables xP which
we in this section choose to take values 1 and −1. For a uniformly random
assignment to all variables, let Z be the vector of all mini-square sums. Let us
denote the number of mini-squares by d making Z an integer vector of length
d. When constructing τ we are conditioning on the event Z = 0d.

Fix any two mini-squares s1 and s2 and let g be the group of 2R variables
associated with paths between s1 and s2. Let Xg be sum of the variables in this
group. We want to estimate the probability that Xg = x where x is either at
least R or at most −R. Let Z ′g be the set of mini-square sums when the paths
between s1 and s2 are removed. As these two mini-squares also have other
adjacent augmenting paths this is still a vector length d. Let vx we the vector
of length d that has x at positions s1 and s2 and is otherwise 0. We want to
estimate

Pr[Xg = x | Z = 0d] = Pr[Xg = x ∧ Z = 0d]/Pr[Z = 0d]

which equals

Pr[Xg = x ∧ Z ′g = −vx]/Pr[Z = 0d] = Pr[Xg = x]Pr[Z ′g = −vx]/Pr[Z = 0d]

as the two events are independent. We have the following lemma of which we
postpone the proof.

Lemma 3.7 For any outcome v ∈ Zd we have Pr[Z ′g = v] ≤ Pr[Z ′g = 0d]. The
similar statement is true for any multi-graph where each edge appear an even
number of times.

15

In view of the lemma we get the upper bound

Pr[Xg = x]Pr[Z ′g = 0d]/Pr[Z = 0d]

for the probability we want to estimate. Clearly Pr[Z = 0d] ≥ Pr[Xg =
0]Pr[Z ′g = 0d] and substituting this into the equation we get the upper bound

Pr[Xg = x]/Pr[Xg = 0]. When |x| ≥ R this probability is 2−cR for some
explicit c and since there are at most n2 pairs of mini-squares the lemma fol-
lows.

Let us prove Lemma 3.7.

Proof: Let f(v) be the probability that Z ′g = v. As v is the vector sum of
contributions of single xP , f(v) is a giant convolution. A typical term, f0, is a
probability distribution that give weight 1

2 to the vector v1 and weight 1
2 to the

vector −v1 where v1 is similar to the vector vx in the above proof. Consider the
corresponding Fourier expansion

f̂0(x) =
∑
v

f0(v)e2πi(v,x)

where (v, x) is the inner product of v and x and x belongs to the d-dimensional

torus. As f0 is symmetric under negation, f̂0 is real-valued. Summing all
variables in a given group gives a distribution function which is a 2R-fold con-
volution of f0. Its Fourier expansion represents f̂2R

0 which is a positive function.
Summing the contribution from all edges corresponds, on the Fourier side, of
taking the product. We conclude that

f̂(x) =
∑
v

f(v)e2πi(v,x)

is a real-valued positive function. The largest Fourier coefficients of such a func-
tion is the constant coefficient and this is exactly what we wanted to prove.

Let us next discuss the balance condition when picking π2.

3.7.2 Balance of live centers

In this section we prove the following lemma.

Lemma 3.8 The probability that π2 is unbalanced is O(n−2) provided C > C0

for some fixed constant C0.

Proof: As this is a very standard argument let us only sketch it. If we picked
the pairs of mini-squares with replacement the lemma would be completely
standard. Let us analyze the dynamic process. To see that we do not pick
more than 4C log n mini-squares in any square with high probability we note
two facts.

16

• As we only pick an o(1) fraction of all mini-squares, at each point in time
a fraction (1− o(1) of all pairs are available.

• In view of this the probability that any single mini-square is picked is only
a (1 + o(1)) factor larger compared to the procedure with replacement.

That we are unlikely to pick many mini-squares in a single square now follows
from the corresponding result for the process of picking with replacement.

We turn to the condition that we have at least C log n/4 pairs in any two
adjacent squares. Also this analysis is completely standard if edges are picked
with replacement. If we condition on not picking more than 4C log n mini-
squares in any square the probability that a picked edge is between two given
squares does not decrease by more than a factor 1−o(1). Hence the probability
of picking very few edges between two given squares in the process without
replacement is not so different compared to the probability of the same event in
the process with replacement. We leave it to the reader to fill in the details.

4 The switching lemma

In this section we establish the following basic switching lemma.

Lemma 4.1 There is a constant A such that the following holds. Suppose there
is a t-evaluation that includes Fi, 1 ≤ i ≤ m in its range and let F = ∨mi=1Fi.
Let σ be a random restriction from the space of restrictions defined in Section 3.
Then the probability that F dσ cannot be represented by a decision tree of depth
at most 2s is at most

∆(A(log n)3t∆−1)s.

Proof: We are interested in a σ that gives a long path in the decision tree.
As in previous papers [H̊as20], [HR22] we explore the canonical decision tree
under the partial restriction ρ which we from now on call simply “a restriction”
dropping the word “partial”.

The restriction ρ determines the values of many variables. In fact values are
unknown only in central areas of the live mini-squares and in bricks that contain
an augmenting path between two live mini-squares.

For any variable xe we define its influential mini-square(s). This is either
a single mini-squares or two mini-squares. We want the property that if we
know the values of all xP around the influential mini-squares then this uniquely
determines the value of xe. If e is within a mini-square then this mini-square is
its influential mini-square. If e is in a brick outside the mini-squares then the
influential mini-squares are the closest end point(s) of the live path(s) in this
brick. We do not consider the value of xe known unless we completely know
the situation at its influential mini-square(s). Such information is supplied by
something we call matched pairs.

17

Definition 4.2 A matched pair (s1, s2) is the information that s1 and s2 should
be matched by changing the type of an augmenting path from 0 to 1 between the
two mini-squares.

Once we have the pair to match we need to select which augmenting path
to change. We keep this information implicit. In the case of π2 this is the path
that it type changed when going from τ to ρ and in the case of a pair of chosen
mini-squares it is the identity of the chosen path.

The above discussion says that if we want to know the value of xe we look
at its influential mini-squares. If there is no live influential mini-square its value
is determined and otherwise we need additional information in the form of a
matched pair containing the influential mini-square.

We now proceed to define the canonical decision tree. The process is guided
by ρ and a set I of matched pairs. The support of the set I is the mini-squares
appearing in any matched pair and this is initially empty.

Letting Ti denote ϕ(Fi), we go over the branches of Ti for increasing values
of i and a fixed order for each tree. The forceable branch is the first branch
leading to a one that can be followed given the current I and ρ. Let us be
formal.

Before stage j we have information set Ij in the form of some matched pairs.
It contains some pairs from π2 and some pairs based on answers in the decision
tree. In stage j we have forcing information Jj that makes us follow the forceable
branch and it contains.

1. A set of matched pairs from π2.

2. A set of matched pairs of chosen mini-squares, compatible with the infor-
mation set Ij .

By “compatible” we mean that the resulting partial matching on chosen mini-
squares is locally consistent in the sense of Definition 2.1.

For any chosen mini-square mentioned in Jj we ask for its partner in the
decision tree. This information, jointly with the matched pairs from π2 in Jj ,
forms the jth information set, Ij , and we set Ij+1 = Ij ∪ Ij .

Given Ij+1 we can determine whether the forceable branch is followed. If it
is, we answer 1 in the canonical decision tree and halt the process. Otherwise we
go to the next stage and look for the next forceable branch. If there is no more
forceable branch we halt with answer 0. Let T be the resulting decision tree.
To see that this is a an acceptable choice for ϕ(F), we have a pair of lemmas.

Lemma 4.3 Let γ be a set of answers in the decision tree. If there is no
forceable branch given this information, then, for each i, Tidσγ is a 0-tree.

Proof: Suppose there is a locally consistent branch in Tidσγ that leads to a leaf
labeled one. The information used to follow this branch can be used as forcing
information.

18

Lemma 4.4 Let γ be a set of answers in the decision tree. If we answer 1 then
there is an i such that Tidσγ is a 1-tree.

Proof: In fact for Ti used for the construction of the forceable path we have
now reached a leaf that is labeled 1.

We use Razborov’s labeling argument [Raz95] to analyze the probability
that we make 2s queries in the canonical decision tree. Take any branch of this
length and suppose it was constructed during g stages using information sets Jj .
Let J∗ = ∪gj=1Jj and as any query is a result of including an element in J∗ we
know that it contains at least s pairs and for notational convenience we assume
that this number is exactly s. We proceed to analyze the probability that the
process results in a J∗ of this size. Let us start with an easy observation.

Lemma 4.5 The support sets of Jj are disjoint. The support of Jj is also
disjoint with the support of Ii as long as i 6= j.

Proof: The parts coming from π2 are clearly disjoint as π2 is a matching.
The pairs of chosen nodes are also disjoint as any mini-square included in Jj is
included in Ij and later Jj′ are disjoint from Ij .

In the spirit of [H̊as20] and [HR22] we want to find a restriction ρ∗ with
fewer live centers and then show how to reconstruct ρ from ρ∗ and some external
information. As we need to be careful with counting we construct a quadruple
τ∗, U∗, π∗2 , B

∗ yielding ρ∗ and use this together with external information to
reconstruct τ, U, π2, B that was used to define ρ.

Define ρ∗ to be ρ joint with the information set J∗. In other words for a
matched pair in J∗ we change the type of one augmenting path between the
two mini-squares and now consider the two endpoints to be dead. We proceed
to find a quadruple that gives this restriction.

Initially we let π∗2 be π2 with all matched pairs in J∗ removed and U∗ = U .
For any edge in J∗ between two chosen mini-squares s1 and s2 remove these two
mini-squares from U∗. If there is a pair (s′1, s

′
2) in π∗2 where s′i is in the same

square as si then remove this pair from π∗2 and put s′1 and s′2 in to U∗. If there
is no such edge we allow for two “holes” of two empty squares in U∗.

After we have constructed U∗ and π∗2 we construct τ∗ and B∗ to complete
the quadruple. Initially set τ∗ to equal ρ∗ and B∗ to equal B.

We use the fixed matching of squares that defined π1 to create matching π∗1
on U∗. Consider pairs of mini-squares matched in π∗1 or π∗2 . Any pair matched
in π∗2 is also matched in π2 and most pairs in π∗1 come from π1 and some might
come from π2. In such a case we restore the augmenting path used to go from
τ to ρ to its original type. We also keep the same values of the corresponding
advice bits.

For pairs in π1 not matched in π1 or π2 we find some possible preimage in the
form of one augmenting path to change and some advice bits. By the original
τ not being lopsided and the choice of how to use the advice bits this is always
possible. This gives almost an almost complete matching τ∗ and a set of advice
bits B∗ such that the tuple τ∗, U∗, π∗2 and B∗ produces ρ∗.

19

The reason that is not quite an almost complete matching is due to holes in
U∗ and the square of the designated survivor. If the designated survivor was
included in J∗ then the sum of the variables around this mini-square is +2 and
the sum around the mini-square that replaced it is −2. The sum around any
hole and any unmatched mini-center in U∗ (due to hole) is also −2.

We continue to define a process that, using external information, recon-
structs τ , U , π2 and B from τ∗, U∗, π∗2 and B∗ and the trees Ti.

The important process is to reconstruct all forceable branches used in the
construction of the canonical decision tree. The collection of information sets
Ii and Jj might not all be consistent and we need the concept of a signature to
make sure that this does not confuse the reconstruction process.

Definition 4.6 The signature of a live center determines whether it is chosen
and in such a case which direction it is matched in its forceable branch.

The reconstruction is now as follows. We start with ρ∗ and we reconstruct
Ii and Ji in order. We let ρ∗j be the restriction obtained from ρ jointly with Ii
for i < j and Ji for i ≥ j. Thus ρ∗1 is simply ρ∗ which is the starting point.
We have a set E of prematurely found chosen mini-squares jointly with their
signatures. This is initially the empty set. We proceed as follows.

1. Find the next branch forced to one in any of the Ti by ρ∗j .

2. Find, if any, mini-square of E whose information is used to follow this
path. If this information would not have been consistent with Ij−1 go to
the next branch.

3. Read a bit to determine whether there are more live variables to be found
on this branch. In such a case, read a number in [t] to determine its
position. If this variable has two influential mini-squares read another
two bits to determine which of these two mini-squares are alive. For any
alive influential mini-square, retrieve the corresponding signature(s) from
external information and, if chosen, include the mini-squares in E. Go to
step 2.

4. Reconstruct Ij and Jj . Details below.

5. Remove any chosen center included in Jj from E.

We need a lemma.

Lemma 4.7 If the information in E is consistent with the information in Ij−1

then we found have the forceable branch.

Proof: Suppose v ∈ E. As it is in E it is a chosen mini-square and was included
in Jj′ for some j′ ≥ j. As the current path is forced to one it must have been
a potential forceable branch. If it was not the actual forceable branch it must
be that at least one of the matched pairs needed was not allowed. Forcing
information from π2 is always allowed and thus the only problem could have

20

been consistency on the chosen mini-squares. If none of the elements used on
the current path gives any conflict with Ij−1, it was allowed and hence we must
have the forceable branch.

We need to discuss how to reconstruct Ij and Jj and start with the latter. For
each matched pair in Jj we have recovered at least one end-point. If needed we
use external information to recover the other end-point. This costs at most ∆.
Whenever we recover a pair of adjacent mini-squares we use external information
to recover the advice bits. This only costs 2 bits and thus we below focus on
identifying mini-squares and do not mention the reconstruction of advice bits.

For each element in Jj we need to discover whether it is chosen (this is O(1)
external information) and to which node is is matched in Ij . If it is not chosen
then the information in Ij is the same as the one in Jj . If it is chosen then the
partner is either the same as in Jj and we are done or it is live in ρ∗j . In the
latter case, at cost 2C log n, we can find its identity. Once we have identified the
two partners in a matching, at cost O(1) we can reconstruct which augmenting
path was used.

We reconstruct Ij and Jj and compute ρ∗j+1 and proceed to the next stage.
At the end of this process we have reconstructed ρ and in the process we have
also identified all the sets Ij and Jj and we know which pairs in Jj are chosen
and which belong to π2. For the pairs of chosen mini-squares we put them
back in to U and any replacements are moved back to π2. At cost O(1) we
can identify the advice bits of all mini-squares involved in a single move. This
way we recover U , the full π2, and B. Once we have these we can read off the
original τ .

Let us calculate how much information was used. For each edge in J∗ at
least one end-point is discovered at cost at most t and the other at cost at most
∆. On top of this we have information such as the whether it is chosen and
the signature at cost O(1). This gives a total cost of at most 2O(s)(t∆)s. In
reconstructing Ii we might incur an additional cost of O(log n) per mini-square
for an additional factor of 2O(s)(logn)2s and finally a factor 2O(s) to get advice
bits for nodes that move out and into U . Thus the total cost for the external
information is bounded by 2O(s)(logn)2s(t∆)s.

We proceed to compare the number of quadruples τ, U, π2, B to the number
of quadruples τ∗, U∗, π∗2 , B

∗, and let us first assume that there are no holes. Both
U and U∗ contain one mini-square from each square but there is a difference
that U contains the designated survivor while U∗ might contain a different mini-
square from this square. Thus the number of possibilities for U∗ is a factor ∆
larger than the number of possibilities for U .

Both τ and τ∗ are essentially almost complete matchings. We do not allow τ
to be lopsided but this only reduces the number of possibilities, by Lemma 3.6,
by a factor 1 + o(1). It is the case that τ∗ is only slightly more general but we
only need an upper bound on the number of possibilities. On the other hand
if U∗ does not contain the designated survivor there are two mini-squares in τ∗

where the sum is not zero. This is the designated survivor and its replacement
in U∗ in the same square. The number of τ∗ with these fixed sums is, however,

21

smaller by Lemma 3.7. There is no difference between B and B∗ and thus the
number of alternatives is the same. We conclude that if we denote the number
of different τ, U and B by N , then the number of triples τ∗, U∗, and B∗ is
bounded by ∆N(1 + o(1)).

The big difference is in the number of matchings π2 and π∗2 . The former
contains k edges and the latter only k − s. The former is also not unbalanced,
but as this, by Lemma 3.8, only changes the number of possibilities by a factor
(1 + o(1)) we from now on ignore this condition. Let Tk′ be the number of
matchings of k′ pairs of mini-squares picked without repeated mini-squares.
The non-replacement makes it difficult to count exactly but we only need an
approximate number and this is easier.

Lemma 4.8 For k′ ≤ (n/T)2∆/4 we have Tk′−1 ≤ Tk′k′∆−2(n/T)−2.

Proof: Let us make a bipartite graph where on one side we have matchings
of size k′ and the other side matchings of size k′ − 1. There is an edge between
two matchings iff the smaller matching is a subset of the larger one. The degree
on the k′-side is clearly k′.

Now take any matching of size k′ − 1. This involves 2(k′ − 1) mini-squares.
As this is fewer than a quarter of all mini-squares, at most half of all edges are
disqualified from being added due to intersecting with an existing edge. We have
∆(n/T)2 mini-squares to start with and each has at least 2∆ possible partners.
We conclude that there are at least ∆2(n/T)2 edges to add and hence this is
the minimal degree on the k′ − 1-side. Double-counting edges we conclude that

k′Tk′ ≥ ∆2(n/T)2Tk′−1

and this proves the lemma.

By a repeated application of the above lemma and using k = Θ(log n(n/T)2)
we conclude that that Tk−s ≤ 2O(s)(log n)s∆−2sTk. Recalling that we have
2O(s)(∆t)s(log n)2s possibilities for the external information, and ∆N(1 + o(1))
possibilities for U∗, τ∗, B we conclude that, ignoring the (1 + o(1)) factors, that
the number of quadruples reconstructed is

2O(s)(∆t)s(log n)2s∆N(log n)s∆−2sTk = 2O(s)(t(log n)3∆−1)s∆NTk.

As the total number of quadruples isNTk, this completes the proof of Lemma 4.1
in the case when there are no holes.

If we allow r holes then the number of possibilities of U∗ increases by a
factor at most n2r. The number of τ∗ is different as some sums are no longer
0, but the sum at each mini-square is uniquely determined by U∗. Once this is
fixed the number of τ∗ is at most the number of almost complete matchings by
Lemma 3.7.

For there to be a hole, by the balance condition, all the at least C log n/8
edges between two squares must be present in J∗. This implies that r =
O(s/ log n) and the factor nO(r) can be absorbed in the factor 2O(s). This
completes the proof also in this case.

22

5 The lower bound for formula size

In this section we establish one of the two main theorems of the paper.

Theorem 5.1 Assume that d ≤ O(logn
log logn) and let n be an odd integer. Then

any depth-d Frege proof of the one-to-one PHP on the n× n grid requires size

exp(Ω(n1/(2d−1)(log n)O(1))).

Proof: The proof follows the standard path. We use a sequence of restrictions
and after the ith restriction any sub-formula of the proof of original depth at
most i is in the range of the t-evaluation.

In particular after d restrictions, any sub-formula of the proof is in the
range of the t-evaluation. By Lemma 3.3 what remains is a smaller one-to-one
PHP instance and by Lemma 2.3, provided the size of the remaining grid is
significantly larger than t, the proof cannot derive contradiction. We just need
to specify the parameters to make sure that the switching lemma can be applied
to all formulas simultaneously.

If the proof is of size 2S and we ensure that the base of the exponential is
at most 1

4 in each iteration, we apply the switching lemma with s = Θ(S). For
the first iteration we have t = 1 while for later iterations t = s.

To get the base of the exponential small it is sufficient to set ∆ = Ω((log n)3)
in the first iteration and ∆ = Ω((log n)3S) in later operations. Using that
T = Θ(∆2R) we get that after d iterations the side length of the grid has
shrunk from n to

n2−O(d)(log n)−7dS2−2d.

Provided that this is larger than 10s we get a contradiction and we this is true
if

S2d−1 ≤ cn2−O(d)(log n)−7d

for a sufficiently small constant c. This concludes the proof of the theorem.

Next we turn to the multi-switching lemma.

6 Multi-switching

The extension to multi-switching only requires minor modifications and we start
by stating the lemma.

Lemma 6.1 There is a constants A such that the following holds. Consider
formulas Fmi , for m ∈ [M] and i ∈ [nm], each associated with a decision tree
of depth at most t and let Fm = ∨nm

i=1F
m
i . Let σ be a random full restriction

from the space of restrictions defined in Section 3. Then the probability that
(Fm)Mm=1 cannot be represented by an ` common partial decision tree of depth
at most 4s is at most

∆M4s/`
(
A(log n)7t∆−1

)s
.

23

Proof: We need to construct an ` common decision tree and we treat the
formulas for increasing values of m. We have counter j, starting at 0, indicating
the number of times we have found a long branch in a decision tree. We have
an information set I+ which initially is empty.

If a formula Fm admits a decision tree of depth at most ` under ρ and the
current I+ then there we proceed to the next formula. If not we set mj = m
and execute the process of forming a canonical decision tree. Its discovers a
branch of length at least ` in this tree and constructs the corresponding sets Jji
for i = 1, 2 . . . gj . We also have the information sets Iji .

After this branch has been discovered we ask, now in the ` common decision
tree, for the partner of any chosen element in Ij∗ = ∪gji=1I

j
i . The answers jointly

with the matching pairs from π2 in Ij∗ forms a new information set Ij∗+. This
information set is added to I+ and we look for the next formula that needs a
decision tree of depth at least `. It might be the same formula Fmj , but in such
a case a later branch.

The Jji again have independent supports and there is no problem to construct

ρ∗ which is defined by ρ jointly with ∪i,jJji . Let Jj∗ = ∪iJji be the information
set obtained during the jth stage. It contains at least ` matched pairs but let
us assume that the true number is sj .

The external information determines which formulas where processed in the
` common decision tree. There are at most M4s/` possibilities and this gives an
extra factor in the cost of the external information.

Once we know the value of mj we can run the reconstruction process based
on Fmj exactly as in the single switching lemma and in particular reconstruct
the sets Iji and Jji . The first element of each edge in Jji is identified at cost at
most O(t) and the second at cost at most O(∆). To specify their partners inside
Iji costs at most another factor O(log n)2. For each element in Iji we need to
later specify a partner inside I∗j+ and thus for the four mini-squares just found
this gives an extra factor of O(log n)4. This implies that the total external cost
at stage j is at most 2O(sj)(log n)6sj (t∆)sj .

As any edge in Jji might result in four queries in the common decision tree, if
we have 4s questions in the this tree, then

∑
sj ≥ s and let us for convenience

assume we have equality. The total cost of external information is in such
a case 2O(s)(log n)6s(t∆)s. By the same argument as in the single switching
lemma case, the ratio of the number of matching with k − s elements and the
number with k elements is 2O(s)(log n/∆2)s.

We conclude that the fraction of quadruples τ , U π2, B that can recon-
structed for a single choice of which formulas to process is bounded by

∆2O(s)((log n)7t∆−1)s.

This combined the the above claimed bound M4s/` for the number of possible
choices of 4s/` formulas to process completes the proof of the lemma.

24

7 The lower bound for number of lines

We finally arrive at our second main theorem.

Theorem 7.1 Assume that d ≤ O(logn
log logn) and let n be an odd integer and M

a parameter. Then any depth-d Frege proof of the one-to-one PHP on the n×n
grid where each line is of size M requires at least

exp

(
Ω

(
n

(logM)2d−1(log n)O(1)

))
lines.

Proof: The proof is analogous to the proof in the full version of [HR22] and let
us only sketch it, mostly giving parameters. We have t = 1 in the first iteration
but in later iterations we use t = ` = Θ(logM) and hence the first factor M4s/`

turns in to 2O(s) and can be included in the constant.
We have ∆ = Θ((log n)7t) to ensure that the base of the exponent (including

the contribution from the M4s/` factor) is bounded by 1
4 . In the ith iteration

we use si = 2i logN where N is the number of lines in the proof. In the ith

iteration we need to apply the switching lemma N2
∑i−1

j=0 sj = N2i

times. In each
of the lines and in each leaf of the common decision tree that we have created
so far and which is of depth

∑i−1
j=0 sj .

After d rounds of restrictions we have reduced the size of the PHP from n
to n/(log n)O(d)(logM)2d−2. If this is larger than 10(

∑d
j=0 sj + logM) we can

conclude that there is no proof and this gives the bound of the theorem.

8 Final words

It seems that to be able to prove a switching lemma for a space of restrictions one
essential property is that for any given variable, the probability of setting it to
either constant should be significantly higher than keeping it undetermined. In
the unrestricted PHP the probability that any variable is true is about 1

n and to
make the probability of the variables remaining undetermined smaller we must
go from size n to a size smaller than

√
n. With such a quick decrease in size

we can only apply the switching lemma O(log log n) times. In the graph PHP
on the grid the probability of a variable being true to about 1

4 and at the same
time the probability of keeping a variable undetermined is about log n/∆. It is
harder to preserve a graph PHP, but this is made possible by using augmenting
paths as the new variables. Thus it seems that both decision were forced upon
us but certainly there might be other possibilities and it would be interesting
to see alternative proofs for a switching lemma for a space of restrictions that
preserve the PHP.

In this paper we have proved yet another switching lemma and it might
not even be the last one. There are many remaining questions in both proof
complexity and circuit complexity and some might be attackable by these types

25

of techniques. It would be very interesting, however, to find a different technique
to attack questions of Frege proofs where each formula is relatively simple.

While proofs of switching lemmas are non-trivial, the properties of the proof
we use are rather limited. In the assumed proof of contradiction, after the
restrictions, the proof, more or less, only contain formulas of constant size. It
is not difficult to see that such a proof cannot find a contradiction for a set of
axioms that are locally consistent. It would be interesting with a reasoning that
used more interesting properties of being a proof.

Acknowledgment. I am deeply grateful to Svante Janson for suggesting the
proof of Lemma 3.6. I am also very grateful to Per Austrin, Kilian Risse, Ben
Rossman, and Aleksa Stanković for a sequence of discussions that lead to the
start of the ideas for this paper. This research leading to this publication was
supported by the Knut and Alice Wallenberg foundation.

References

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combina-
torica, 14(4):417–433, 1994. Preliminary version in FOCS ’88.

[Bol86] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of
Vectors, and Combinatorial Probability. Cambridge University Press,
1986.

[BPU92] Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Ap-
proximation and small-depth frege proofs. SIAM J. Comput.,
21:1161–1179, 1992.

[FSS84] M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits and the
polynomial-time hierarchy. Mathematical Systems Theory, 17:13–27,
1984.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer
Science, 39:297 – 308, 1985.

[H̊as86] J. H̊astad. Almost optimal lower bounds for small depth circuits. In
Proceedings of the eighteenth annual ACM symposium on Theory of
computing, STOC ’86, pages 6–20, New York, NY, USA, 1986. ACM.

[H̊as14] J. H̊astad. On the correlation of parity and small-depth circuits.
SIAM Journal on Computing, 43:1699–1708, 2014.

[H̊as20] J. H̊astad. On small-depth frege proofs for tseitin for grids. Journal
of the ACM, 68:1–31, 2020.

[HR22] J. H̊astad and K. Risse. On bounded depth proofs for tseitin
formulas on the grid; revisited. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages

26

1138–1149, 2022. Full version is available at ArXiv:2209.05839
https://arxiv.org/abs/2209.05839.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi.
A satisfiability algorithms for AC0. In Proceeding of the 23rd An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 961–972,
2012.

[KPW95] Jan Krajek, Pavel Pudlk, and Alan Woods. An exponential lower
bound to the size of bounded depth frege proofs of the pigeonhole
principle. Random Structures & Algorithms, 7(1):15–39, 1995.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential
lower bounds for the pigeonhole principle. Computational Complex-
ity, 3:97–140, 1993. Preliminary version in STOC ’92.

[PRST16] Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang
Tan. Poly-logarithmic frege depth lower bounds via an expander
switching lemma. In Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, STOC 16, page 644657, New
York, NY, USA, 2016. Association for Computing Machinery.

[PRT21] T. Pitassi, P. Ramakrishnan, and L. Tan. Tradeoffs for small-depth
frege proofs. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 445–456, Los Alamitos, CA,
USA, feb 2021. IEEE Computer Society.

[Raz95] A. A. Razborov. Bounded Arithmetic and Lower Bounds in Boolean
Complexity, pages 344–386. Birkhäuser Boston, Boston, MA, 1995.
Editors Peter Clote and Jeffrey Remmel.

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An
average-case depth hierarchy theorem for boolean circuits. In IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1030–1048,
2015.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, STOC
’83, pages 61–69, New York, NY, USA, 1983. ACM.

[Tse68] G. S. Tseitin. On the complexity of derivation in the proposistional
calculus. In A. O. Slisenko, editor, Studies in constructive mathe-
matics and mathematical logic, Part II, 1968.

[UF96] Alasdair Urquhart and Xudong Fu. Simplified lower bounds
for propositional proofs. Notre Dame Journal of Formal Logic,
37(4):523–544, 1996.

27

[Yao85] A. C-C. Yao. Separating the polynomial-time hierarchy by oracles.
In Foundations of Computer Science, 1985., 26th Annual Symposium
on, pages 1 –10, oct. 1985.

28

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

