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Abstract

We give new bounds on the cosystolic expansion constants of several families of high dimensional
expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric
lattices, including the spherical building of SLn(Fq). The improvement applies to the high dimensional
expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and Oppenheim.

Our new expansion constants do not depend on the degree of the complex nor on its dimension, nor
on the group of coefficients. This implies improved bounds on Gromov’s topological overlap constant, and
on Dinur and Meshulam’s cover stability, which may have applications for agreement testing.

In comparison, existing bounds decay exponentially with the ambient dimension (for spherical buildings)
and in addition decay linearly with the degree (for all known bounded-degree high dimensional expanders).
Our results are based on several new techniques:

– We develop a new “color-restriction” technique which enables proving dimension-free expansion by
restricting a multi-partite complex to small random subsets of its color classes.

– We give a new “spectral” proof for Evra and Kaufman’s local-to-global theorem, deriving better
bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic
expansion of a complex using coboundary expansion and spectral expansion of the links.

– We derive absolute bounds on the coboundary expansion of the spherical building (and any order
complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.
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1 Introduction

High dimensional expansion, which is a generalization of graph expansion to higher dimensional objects, is an
active topic in recent years. The importance of graph expansion across many areas of computer science and
mathematics, suggests that high dimensional expansion may also come to have significant impact. So far we
have seen several exciting applications including analysis of convergence of Markov chains [Ana+19], and
constructions of locally testable codes and quantum LDPC codes [Din+22; PK22].

Several notions of expansion that are equivalent in graphs, such as convergence of random walks, spectral
expansion, and combinatorial expansion, turn out to diverge into two main notions in higher dimensions.

The first is the notion of local link expansion which has to do with the expansion of the graph underlying
each of the links of the complex; where a link is a sub-complex obtained by taking all faces that contain
a fixed lower-dimensional face. This notion is qualitatively equivalent to convergence of random walks, it
implies agreement testing, and it captures a spectral similarity between a (possibly sparse) high dimensional
expander and the dense complete complex. It allows a spectral decomposition of functions on the faces of
the complex in the style of Fourier analysis on the Boolean hypercube, see [Dik+18; KO20; GLL22; Baf+22;
Gai+22].

The second notion is coboundary and cosystolic expansion. Here we look at the complex not only as a
combinatorial object but also as a sequence of linear maps, called coboundary maps, defined by the incidence
relations of the complex. The i-th coboundary map δi maps a function on the i-faces to a function on the
i+ 1-faces,

C0 δ0→ C1 δ1→ · · ·
δd−1→ Cd

where Ci = Ci(X, F2) = {f : X(i) → F2} is the space of functions on i faces with coefficients in F2 (we will
consider general groups of coefficients, beyond F2). The coboundary map δi is defined in a very natural way:
the value of δf(s) for any s ∈ X(i+ 1) is the sum of f(t) for all s ⊃ t ∈ X(i) (the precise definition is in
Section 2).

Coboundary (or cosystolic1) expansion captures how well the coboundary map tests its own kernel, in the
sense of property testing. Given f ∈ Ci such that δf ≈ 0, coboundary expansion guarantees existence of
some g ∈ ker δi such that f ≈ g. More precisely, a complex is a β coboundary (or cosystolic) expander if

wt(δf) ⩾ β · min
g∈Kerδ

dist(f , g)

where wt(δf) is the hamming weight of δf . We denote by hi(X) the largest value of β that satisfies the
above inequality for all f .

Whereas for i = 0 coboundary expansion coincides with the combinatorial definition of edge expansion,
for larger i, it may appear at first glance to be quite mysterious. However, this definition is far from being
a merely syntactical generalization of the i = 0 case and turns out to provide a rich connection between
topological and cohomological concepts and between several important concepts in TCS, which we describe
briefly below.

The study of coboundary and cosystolic expansion was initiated independently by Linial, Meshulam and
Wallach [LM06], [MW09] in their study of connectivity of random complexes, and by Gromov [Gro03] in
his work on the topological overlapping property. Kaufman and Lubotzky [KL14] were the first to realize

1The difference between coboundary and cosystolic expansion is just whether the cohomology is 0 or not (i.e. whether
Kerδi+1 = Imδi). This distinction is not important for this exposition and the expansion inequality is the same in both cases.
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the connection between this definition and property testing. This point of view is important in the recent
breakthroughs constructing locally testable codes and quantum LDPC codes [Din+22; PK22] (see also earlier
works [EKZ20]).

Moreover, the coboundary maps come from a natural way to associate a (simplicial) complex to a constraint
satisfaction problem. Attach a Boolean variable to each i-face, and view the (i+ 1)-faces as parity constraints.
The value that an assignment f : X(i) → F2 on gives on s ∈ X(i+ 1) is δf(s). This connection to CSPs has
been harnessed towards showing that the CSPs derived from certain cosystolic expanders are hard to refute
for resolution and for the sum of squares hierarchy, [Din+; HL22].

In addition, cosystolic expansion of 1-chains (with non-abelian coefficients) of a complex has been
connected to the stability of its topological covers [DM22]. Informally, a complex is cover-stable if slightly
faulty simplicial covers are always “fixable” to valid simplicial covers. Surprisingly, this is related to agreement
testing questions, particularly in the small 1% regime, which is a basic PCP primitive and part of the
initial motivation for this work. Along this vein, very recently Gotlib and Kaufman [GK22] use coboundary
expansion of 1-chains to construct a variation of agreement tests that they call list-agreement testing.

In light of all of the above, we believe that cosystolic expansion is a fundamental notion that merits a
deeper systematic study. Along with the aim of exploring its various implications, a more concrete research
goal would be to give strong bounds, and ultimately nail down exactly, the correct expansion values for the
most important and well-studied high dimensional expanders. We mention that to the best of our knowledge
even for the simplest cases, such as expansion of k-chains in the n-simplex, exact expansion values are not
yet completely determined.

In this work we provide new bounds for the coboundary expansion of the spherical building, and the
cosystolic expansion of known bounded-degree high dimensional expanders including the complexes of [LSV05b;
LSV05a; KO21].

Two of the most celebrated results in this area are the works of [KKL14] and [EK16] showing that
the bounded-degree families of Ramanujan complexes of [LSV05a] are cosystolic expanders. These works
introduce an elegant local-to-global criterion, showing that if the links are coboundary expanders, and further
assuming spectral expansion, then the entire complex is a cosystolic expander.

The estimates proven by [KKL14; EK16] for the coboundary expansion parameters are roughly

hk(X) ⩾ min( 1
Q

, (d!)−O(2k)).

(where X is a d dimensional LSV complex and Q is the maximal degree of a vertex which is roughly equal to
1/λO(d2) in these complexes, where λ is the spectral bound on the expansion of the links). We completely
get rid of the dependence on the ambient dimension d and on the maximal degree Q, and prove

Theorem 1.1. For every integer d > 1 and every small enough λ > 0 let X be a d-dimensional LSV complex
whose links are λ-one-sided expanders. For every group 2 Γ, every small enough λ > 0 and every integer
k < d− 1, hk(X, Γ) ⩾ exp(−O(k6 log k)).

Our bounds for hk only depend on the dimension k of the chains, so for k = 1 they are absolute constants.
For larger k we still suffer an exponential decay, although not doubly exponential. We do not know what the
correct bound should be and whether dependence on k is at all necessary.

2The theorem holds for every group Γ for which cohomology is defined, namely, abelian groups for k > 1 and any group for
k = 1.
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The case of k = 1 is interesting even in complexes whose dimension is d ≫ 1, because h1 controls the
cover stability of the complex, as shown in [DM22]. Our bounds also immediately give an improvement for
the topological overlap constants, when plugged into the Gromov machinery [Gro10; DKW18; EK16]. We
elaborate on both of these applications later below.

The result is proven by enhancing the local-to-global criterion of [EK16], and introducing a variant of the
local correction algorithm that makes local fixes only if they are sufficiently cost-effective. This is inspired by
and resembles the algorithms in [EK16; Din+22; PK22].

Our analysis is novel and departs from previous proofs: instead of relying on the so-called “fat machinery”
of [EK16], our proof is 100% fat free and relies on the up/down averaging operators on real-valued functions.
Our main argument is to show that, for a function h that is the indicator of the support of a (locally minimal)
k-chain,

∥D · · ·Dh∥2 ≳ · · · ≳ ∥DDh∥2 ≳ ∥Dh∥2 ≳ ∥h∥2,

where D is the down averaging operator, and we write a ≳ b whenever a ⩾ Ω(b). From here we easily derive
a lower bound on ∥h∥2 showing that either the correction algorithm has found a nearby cocycle, or else the
coboundary of our function was initially very large to begin with.

This method gives universal bounds on the cosystolic expansion of any complex whose links have both
sufficient coboundary-expansion and sufficient local spectral expansion,

Theorem 1.2. Let β,λ > 0 and let k > 0 be an integer. Let X be a d-dimensional simplicial complex for
d ⩾ k+ 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be any group. Assume that for
every non-empty r ∈ X, Xr is a coboundary expander and that hk+1−|r|(Xr, Γ) ⩾ β. Then

hk(X, Γ) ⩾
βk+1

(k+ 2)! · 4 − eλ.

Here e ≈ 2.71 is Euler’s number.

Armed with an improved local-to-global connection, we derive Theorem 1.1 from Theorem 1.2 by further
strengthening the coboundary expansion of the links of the LSV complexes, namely spherical buildings.
The best previously known bound on coboundary expansion of k-cochains in spherical buildings is due to
[Gro10] and [LMM16]. They proved a lower bound of

(
(d+1
k+1)(d+ 2)!

)−1
. This decays exponentially with

the ambient dimension d, and with the cochain level k. We remove the dependence on d by developing a
new technique which we call “color-restriction”. The d-dimensional spherical buildings are colored, namely,
they are d+ 1-partite. For a set of ℓ colors F ⊂ [d+ 1], the color restriction XF is the complex induced on
vertices whose color is contained in F . The restriction to the the colors of F reduces the dimension of X from
d to ℓ− 1. We say that a color restriction XF is a β-local coboundary expander, if XF is a β-coboundary
expander, and the same holds for the intersection of XF with links (neighbourhoods) of faces whose color is
disjoint from F . We show that if a typical color-restriction is a local coboundary expander, then the entire
complex is a coboundary expander, and the expansion is independent of the dimension. Namely,

Theorem 1.3. Let k, ℓ, d be integers so that k+ 2 ⩽ ℓ ⩽ d and let β, p ∈ (0, 1]. Let X be a (d+ 1)-partite
d-dimensional simplicial complex so that

P
F ∈([d+1]

ℓ )

[
XF is a β-locally coboundary expander

]
⩾ p.
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Then hk(X) ⩾ pβk+1

e(k+2)! .

Finally, to prove that the spherical building satisfies the conditions of this theorem, we need to show that
a typical random color-restriction is a good coboundary expander. For this we rely on the “cone machinery”
developed by Gromov [Gro10], Kozlov and Meshulam [KM19], and Kaufman and Oppenheim [KO21]. We
construct in Section 5, a novel family of short cones, thus proving the following.

Theorem 1.4. Let k ⩾ 0. There is an absolute constant βk = exp(−O(k5 log k)) ⩾ 0 so that the following
holds. Let X be the SLn(Fq)-spherical building for any integer n ⩾ k+ 1 and prime power q. Let Γ be any
group. Then X is a coboundary expander with constant hk(X, Γ) ⩾ βk.

In fact, we prove a more general version of this theorem, that holds for the order complex of any
homogeneous geometric lattice, see Theorem 5.1.

Most earlier works on cosystolic expansion focus on F2 coefficients (see [KM18] and [DM22] for two
exceptions). This is an important case especially in light of Gromov’s result connecting F2-expansion and
topological overlap. However, expansion (of 1-chains) with respect to more general coefficients is necessary for
results on topological covers and in turn for agreement testing. The theorems stated above show expansion of
k-chains with respect to coefficients not only in F2 but in general abelian groups Γ, and when k = 1 also for
non abelian groups Γ. In other words, the theorems hold for all groups of coefficients where the cohomology
is defined.

Finally, we end with an upper bound. While most of our work is focused on lower bounds for coboundary
and cosystolic expansion, we show in Appendix B that families of dense simplicial complexes cannot have
cosystolic expansion greater than 1+ o(1). This implies that high degree, in some weak sense, limits cosystolic
expansion. It is interesting to compare this to a result of Kozlov and Meshulam that shows upper bounds on
coboundary expansion of complexes with bounded degree [KM19].

1.1 Applications of cosystolic expansion

We describe two applications of cosystolic expansion for deriving topological properties of simplicial complexes.

Topological overlap. Cosystolic expansion was studied by [Gro10] to give a combinatorial criterion for
the topological overlapping property. Let f : X → Rk be continuous mapping (with respect to the natural
topology on X), i.e. f realizes X in Rk. A point p ∈ Rk is called c-heavily covered if

P
s∈X(k)

[p ∈ f(s)] ⩾ c.

A well known result by [FK81] showed that for every affine map from the complete 2-dimensional complex to
the plane, there exists a 1

27 -heavily covered point. Gromov’s greatly generalized this theorem to all continuous
functions (instead of only affine functions), all dimensions k (instead of k = 2) and complexes that are
cosystolic expanders (instead of the complete complex), with c that depends on the dimension of the map k,
as well as the cosystolic expansion constant. For a precise statement, see Section 6.

The motivation for [EK16] was to show that there exists families of bounded degree simplicial complexes
which have this property. They use [LSV05a] complexes and achieve a lower bound of c ⩾ min( 1

Q , (d!)−O(2k)),
which comes from their bound on cosystolic expansion. Here again, d is the dimension of X, which may be
much larger than k, and Q is the maximal degree of a vertex in X.
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Plugging in our bounds into Gromov’s theorem gives an improved bound c ⩾ exp(−O(k7 log k)) for the
topological overlapping property. This bound is also free of the ambient dimension and of the degree.

Cover stability. [DM22] studied a topological locally testable property called cover stability. This property
is equivalent to cosystolic expansion of 1-chains. A covering map between two simplicial complexes X,Y is
a surjective t-to-1 simplicial map3 ρ : Y (0) → X(0) such that for every ũ ∈ Y (0) and ρ(ũ) = u ∈ X(0), it
holds that the links of ũ,u are isomorphic Yũ � Xu.

Graph covers (also known as lifts) have been quite useful in construction of expander graphs. Bilu and
Linial showed that random covers of Ramanujan graphs are almost Ramanujan [BL06]. A celebrated result
by [MSS15] used these techniques to construct bipartite Ramanujan graphs of every degree. Recently, [Dik22]
showed that random covers could also be applied for constructing new simplciail complexes that are local
spectral expanders.

Dinur and Meshulam [DM22] show that there exists a test that for any simplicial complex X and an
alleged cover given by a simplicial map ρ : Y → X samples q points (ui, ρ(ui)) and measures how close ρ is
to an actual covering map. The query complexity of the test is q = 3t points. Its soundness is affected by the
cosystolic expansion of 1-chains. Using our new bounds on cosystolic expansion, we show that the complexes
constructed in [LSV05a] or in [KO21] are cover-stable, i.e. that there exists some universal constant c > 0,
such that for every ρ : Y (0) → X(0)

P
(ui,ρ(ui))

q
i=1

[test fails] ⩾ c · min {dist(ρ,ψ) | ψ : Y (0) → X(0) is a cover} ,

where the distance is Hamming distance.
Kaufman and Gotlib recently used cover stability to analyze new agreement tests on high dimensional

expanders [GK22].

1.2 Related work

Coboundary and Cosystolic expansion was defined indpendently by Gromov [Gro10], and by Linial, Meshulam
and Wallach [LM06], [MW09]. Gromov studied cosystolic expansion as a proxy for showing the topological
overlapping property. Linial, Meshulam and Wallach were interested in analyzing high dimensional connectivity
of random complexes.

Kaufman, Kazhdan and Lubotzky [KKL14] introduced an elegant local to global argument for proving
cosystolic expansion of 1-chains in the bounded-degree Ramanujan complexes of [LSV05b; LSV05a]. This
was significantly extended by Evra and Kaufman [EK16] to cosystolic expansion in all dimensions, thereby
resolving Gromov’s conjecture about existence of bounded degree simplicial complexes with the topological
overlapping property in all dimensions. Kaufman and Mass [KM18] generalized the work of Evra and Kaufman
from F2 to other groups as well, and used this to construct lattices with good distance.

Following ideas that appeared implicitly in Gromov’s work, Lubotzky Mozes and Meshulam analyzed the
expansion of many “building like” complexes [LMM16]. Kozlov and Meshulam [KM19] abstracted the main
lower bound in [LMM16] to the definition of cones (which they call chain homotopies), in order to analyze
the coboundary expansion of geometric lattices and other complexes. Their work also connects coboundary
expansion to other homological notions, and gives an upper bound to the coboundary expansion of bounded
degree simplicial complexes. In [KO21], Kaufman and Oppenheim defined the notion of cones in order to

3simplicial means that every i-face in Y is sent to an i-face in X.
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analyze the cosystolic expansion of their high dimensional expanders (see [KO18]). In addition, they also
come up with a criterion for showing that complexes admit short cones. They prove lower bounds on the
cosystolic expansion of their complexes for 0- and 1-chains. The case of k-chains with k ⩾ 2 is still open.

Several works tried to define quantum LDPC codes as cohomologies of simplicial complexes. Cosystolic
expansion is used for analyzing the distance of the quantum code. Works by Evra, Kaufman and Zémor
[EKZ20] and by Kaufman and Tessler [KT21] used cosystolic expansion in Ramanujan complexes to construct
quantum codes that beat the

√
n-distance barrier. This sequence of works culminated in the breakthrough

work of [PK22] that construct quantum LDPC codes with constant rate and distance. This later code is a
cohomology of a certain chain complex, albeit not a simplicial complex; and it is analyzed essentially through
the cosystolic expansion. Developing new techniques for cosystolic expansion can be potentially useful in this
domain as well.

1.3 Open questions

The works by [LMM16], [KM19] and [KO21] analyze a variety of symmetric complexes (that support a
transitive group action). Could one combine our “color restriction” technique with the cone machinery to
get lower bounds independent of degree and dimension on these complexes as well? There are a number
of concrete constructions of local spectral high dimensional expanders that have excellent local spectral
properties [CLY20; LMY20; Gol21; OP22; Dik22]. Are any of them cosystolic expanders?

Another intriguing direction of research is to develop more techniques for analyzing coboundary or
cosystolic expansion. The current techniques are limited to complexes that either have a lot of symmetry, or
have excellent local expansion properties. Are there other complexes with these properties?

Our expansion bounds still have a dependence on the level (k) of the chains. In the complete complex,
for instance, this is not necessary. The complete complex is a β = 1 + o(1) coboundary expander for all
k-chains [LMM16]. It is not clear whether a dependence on k is necessary even in the spherical building.
Which complexes have coboundary expansion that does not decay with the size of the chains?

Finally, the notion of coboundary and cosystolic expansion is closely related to locally testable codes and
quantum LDPC codes. They also have connections to agreement expanders. It is interesting to find more
applications for these expanders.

1.4 Overview of the proof of Theorem 1.1

We start with a complex X that is a finite quotient of the affine building, as constructed by [LSV05a]. Our
goal is to lower bound the cosystolic expansion of X. The proof has three components:

– (Theorem 1.2) A new local-to-global argument that derives cosystolic expansion of the complex from
coboundary and spectral expansion of its links.

– (Theorem 1.3) A general color restriction technique that reduces the task of analyzing the coboundary
expansion of a partite complex, to that of analyzing the local coboundary expansion of random color
restrictions of it.

– (Theorem 1.4) Bounds on random color restrictions of (links of) the spherical building. Towards this
end we construct a novel family of short cones for the spherical building (not based on apartments as in
previous works [LMM16]).
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Below we give a short overview of each of these steps. For simplicity we assume in this subsection that
Γ = F2, which captures the main ideas.

The local to global argument, Theorem 1.2. Let X be our simplicial complex. We describe a correction
algorithm, that takes as input a k-chain f : X(k) → F2, with small coboundary P [δf , 0] = ε and outputs a
k-chain f̃ : X(k) → F2 close to f that has no coboundary, i.e. δf̃ = 0. For this overview, we focus on k = 1,
i.e. f is a function on edges, which already exhibits the main ideas.

Let η > 0 be some predetermined parameter. Our algorithm locally fixes “stars” of lower dimensional
faces, that is, sets Ar = {s ∈ X(k) | s ⊇ r} for r ∈ X(j) (when j ⩽ k). The fix takes place only if it is
sufficiently useful: whenever it decreases the weight of δf by at least ηP [Ar]. In the case at hand, k = 1, so
r is either a vertex or an edge, so

1. If r ∈ X(1), Ar = {r} and a fix just means changing the value of f(r).

2. If r ∈ X(0), Ar = {ru}u∼r are all edges adjacent to r. Here a fix means changing the values of all
{f(ru) | u ∼ r} simultaneously.

Algorithm 1.5.

1. Set f0 := f . Set i = 0.

2. While there exists a vertex or edge r ∈ X(0) ∪X(1) so that Ar has an assignment that satisfies a
ηP [Ar]-fraction of faces more than the current assignment.

– Let fixr : Ar → Γ be an optimal assignment to Ar.

– Set fi+1(s) =

fi(t) r ⊈ s

fixr(s) r ⊆ s
.

– Set i:=i+1.

3. Output the final function f̃ := fi.

The fact that we correct f locally only if the fix satisfies η fraction more triangles will promise that
dist(f , f̃) ⩽ 1

ηwt(δf). The output of the algorithm, f̃ , is not necessarily locally minimal in the sense of
[KKL14; EK16], but it is “η-locally-minimal”.

Notation: For functions g,h : X(ℓ) → R we denote by ⟨g,h⟩ = Er∈X(ℓ) [g(r)h(r)] the usual inner product.
For ℓ = 1, 2, denote by Dℓ the down operator that takes h : X(2) → R and outputs Dℓh : X(2 − ℓ) → R via
averaging. Namely Dℓh(r) is the average of h(s) over s ⊇ r, Es⊇r [h(s)].

Let h : X(2) → R indicate the support of a δf̃ , so h(t) = 1 iff δf̃ , 0. Our main argument is to show

∥D3h∥2 ≳ ∥D2h∥2 ≳ ∥Dh∥2 ≳ ∥h∥2.

Eventually D3h = E[h]2 is just a constant function. This shows that (E[h])2 = const · E[h] which implies
that either the algorithm corrected f to a cosystol, i.e. h = 0, or that h has large weight, which implies that
δf had large weight to begin with.

Let us show for example that ∥D3h∥2 ≳ ∥D2h∥2 given that ∥D2h∥2 ≳ ∥Dh∥2 ≳ ∥h∥2. To do so, we define
an auxiliary averaging operator N based on a random walk from vertices to triangles, and use the fact that
in local spectral expanders,

∥D3h∥2 ≈ ⟨Nh,D2h⟩. (1.1)
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The operator N : ℓ2(X(2)) → ℓ2(X(0)) is defined by Nh(v) = Es [h(s)], where s is sampled according to
the following walk: Given v ∈ X(0), sample some t ∈ X(3) such that v ∈ t, and then go to the triangle
s = t \ {v}. The proof of (1.1) follows by localizing the expectation to the links and relying on the link
expansion as in [Opp18], [Dik+18, Claim 8.8] and in [KO20].

The key lemma in the proof shows that if there are many faces s′ ⊇ v0 such that h(s′) = 1, then there
are many s such that v < s, {v} ∪ s = t ∈ X(3), where h(s) = 1. More precisely, we will show that for every
v ∈ X(0) it holds that

Nh(v) ≳ β(D2h(v) − η). (1.2)

This immediately implies that

⟨Nh,D2h⟩ = E
v

[
D2h(v)Nh(v)

]
(1.2)
≳ β(E

v

[
(D2h(v))2]

− ηE
v

[
D2h(v)

]
)

≳ β∥D2h∥2 − βη∥h∥2

≳ β∥D2h∥2.

The second inequality follows from Ev

[
D2h(v)

]
= Es [h(s)] = ∥h∥2. The last inequality follows from the

assumption that ∥h∥2 = O(∥D2h∥2). Combining this with (1.1) gives us the desired inequality.
Let us understand what is written in (1.2). On the right-hand side, D2h(v) = Pxy∈Xv(1) [h(vxy) = 1]

is the fraction of triangles vxy containing v, such that δf̃(vxy) , 0. On the left-hand side, Nh(v) is the
fraction of s that complete v to some t = v ∪ s ∈ X(3), so that δf̃(s) , 0. For such an s = uxy,

0 = δδf̃(vuxy) = δf̃(uxy) + (δf̃(vux) + δf̃(vuy) + δf̃(vxy)). (1.3)

Set g : Xv(1) → F2 to be g(xy) = δf̃(vxy), and note that g has the following properties:

1. By (1.3), δf̃(uxy) = 1 ⇐⇒ δg(uxy) = 1.

2. P [g , 0] = Ps∋v

[
δf̃(s) , 0

]
= D2h(v).

3. η-local-minimality: dist(g,B1(Xv)) ⩾ P [g , 0]− η, where B1(Xv) = {δψ | ψ : Xv(0) → F2} is the set
of coboundaries.

We explain the third item. Assume towards contradiction that dist(g,B1(Xv)) < P [g , 0] − η and let δψ be
a coboundary closest to g. Then by changing the values of f̃ on Av to be f̃ ′(vu) := f̃(vu) + ψ(u), we have
that whenever g(xy) = δψ(xy), then the fixed function satisfies δf̃ ′(vxy) = 0. I.e.

dist(g, δψ) = P
vxy

[
δf̃ ′(vxy) = 0

]
< P

vxy

[
δf̃(vxy) = 0

]
− η.

This is a contradiction to the η-local minimality of f̃ which is guaranteed by the algorithm.
Here is where the coboundary expansion of Xv comes into play. By coboundary expansion, we have that

P [δg(uxy) = 1] ⩾ β dist(g,B1(Xv)). By combining the above we will get that

Nh(v) = P
uxy∈Xv(2)

[
δf̃(uxy) , 0

]
⩾ β( P

xy∈Xv(1)
[g(xy) , 0] − η) = β(D2h(v) − η).
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The “color restriction” technique, Theorem 1.3. For this overview, assume that k = 2 The full details
are in Section 4. Let Y be a d-dimensional (d+ 1)-partite complex so that a p-fraction of its color restrictions
Y F are β-local-coboundary expanders. We begin with a 2-chain f : Y (2) → F2 with small coboundary,
namely Ps∈Y (3) [δf(s) , 0] = ε. We need to find a 1-chain g : Y (1) → F2 so that dist(f , δg) ⩽ O( ε

β3p
).

We first select a random color restriction, i.e. a set of colors so that Y F is a local coboundary expander,
that the weight of δf when restricted to triangles whose colors are in F is close to weight of δf on all Y .
Averaging arguments guarantee that such F exists. Using this F , we construct g in three steps. In the first
step we define g on edges with both endpoints colored in F , uv ∈ Y F . In the second step we define g on
edges with one endpoint colored in F , i.e. uv ∈ Y (1) where u ∈ Y F and v < Y F . In the third step we define
g on edges uv ∈ X(1) with neither endpoints colored in F , i.e. where u, v < Y F . Every step uses the values
of g that were constructed in the step before. For k > 2 the (k− 1)-chain is constructed following a similar
sequence of k+ 1 steps.

1. We start with the values of g on edges vu ∈ Y F (1). By the choice of F , the weight of δf inside Y F

is roughly ε. Local coboundary expansion implies that there exists a 1-chain g0 whose coboundary is
close to f on Y F . We set g(uv) = g0(uv) for all uv ∈ Y F (1).

2. Next we define g on edges vu so that v < Y F and u ∈ Y F . Fix some v < Y F . Let Y F
v ={

s ∈ Y F
∣∣ s∪ v ∈ Y

}
. This is the color restriction of the link of v. We wish to set values for g(vu) for

all edges vu such that u ∈ Y F
v (0). We describe a system of equations that we use to set the values of g

on the edges vu so as to satisfy a maximal number of equations. For every u1u2 ∈ Y F
v (1), the triangle

vu1u2 defines an equation:

f(vu1u2) + g(u1u2) = g(u1v) + g(u2v). (1.4)

Note that the left-hand side of the equation is known since we have the values of f on all triangles, and
we already constructed g for edges u1u2 ∈ Y F (1). So the above is an equation with two unknowns. We
set g(vu) simultaneously for all u ∈ Y F

v (1) to be an assignment that satisfies the largest fraction of
equations (ties broken arbitrarily).

The idea behind this step is the following. Obviously, we’d like that f(vu1u2) = g(u1u2) + g(u1v) +

g(u2v) for as many triangles as possible, so it makes sense to define g to satisfy the largest amount of
equations (1.4). Let hv : Y F

v (1) → F2 be the left-hand side of (1.4), i.e. hv(u1u2) = f(vu1u2)+ g(u1u2).
We want to find an assignment gv : Y F

v (0) → F2 so that hv(u1u2) = gv(u1) + gv(u2) for as many
equations (1.4) as possible (and set g(vu) = gv(u)). Finding a solution gv : Y F

v (0) → F2 that satisfies
(1.4) is equivalent finding gv so that hv(u1u2) = δgv(u1u2). Hence, to find an assignment that satisfies
most of the equations is the same showing that hv is close to a coboundary. In the analysis we show that
δhv ≈ 0. This together with the local coboundary expansion of Y F (which says that h1(Y F

v , F2) ⩾ β)
will show that indeed we can find satisfying {gv}v<Y F so that f ≈ δg where the distance is over edges
uv where v < Y F ,u ∈ Y F .

3. Finally we need to define the values of g on edges vu so that v,u < Y F . Let vu be such an edge. Every
triangle uvw where w ∈ Y F

vu(0) defines a constraint on g(vu):

f(uvw) + g(uw) + g(vw) = g(uv). (1.5)

As in the previous case, f(uvw) is known, and g(uw), g(vw) were determined in step 2. We set
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Figure 1: Tiling a cycle

g(vu) = maj
{
f(uvw) + g(uw) + g(vw)

∣∣ w ∈ Y F
uv(0)

}
. Ties are broken arbitrarily. Here we use the

local coboundary expansion of Y F in a way similar to the previous step, to show that indeed f ≈ ∂g.

New bounds on color-restrictions of the spherical building via cones, Theorem 1.4. In order to
apply the color restriction technique we need to show that for a d-dimensional spherical building, many color
restrictions are coboundary expanders4. For this overview we assume that k = 1 and |F | = 5. Let us see how
to bound coboundary expansion by constructing short cones.

It turns out easier to do so when the set of colors is a set of colors that are geometrically increasing (e.g.
for k = 1 we need colors F = {i1, i2, ..., i5} so that ij ⩾ 10ij−1). The fraction of such sets of colors F is a
constant that doesn’t depend on d (it may depend on k). For example, there is a constant probability that
we select colors F so that for j = 1, 2, .., 5, d

1016−3j ⩽ ij <
2d

1016−3j , since each of these intervals are a constant
fraction of the interval [1, 2, ..., d]. When these inequalities hold then ij ⩾ 10ij−1.

Denote by Y the SLd(Fq)-spherical building. Let Y F be a complex induced by the subspaces of dimensions
(i.e., colors) F = {i1, i2, ..., i5} so that ij ⩾ 10ij−1). Using the cone technology described in Section 5, showing
the Y F is a coboundary expander reduces to showing that there is a short 1-cone on Y F . A 1-cone consists
of three things:

1. A vertex v ∈ X(0) (sometimes called the apex).

2. For every u, a path pu from the apex v to u in Y F (1).

3. For every edge uw ∈, a tiling by triangles tuw ⊂ Y F (2) of the cycle that consists of the path pu from v

to u, the edge uw and the path pw from w back to v. Denote this cycle by pu ◦ uw ◦ pw. Here a tiling
is a set of triangles whose boundary is the edges of the cycle.

We give a formal and general definition of cones in Section 5. The radius of a cone is
rad((v, {pu}u∈Y F (0), {tuw}uw∈Y F (1))) = maxuw∈X(1)|tuw|.

We start by choosing an apex v = v0 of dimension i1 arbitrarily. Next we choose our paths to be as short
as possible, and to consist of subspaces of dimension as low as possible. Explicitly we do the following.

1. For u adjacent to v0, set pu = (v0,u).
4In fact, we need to show that the links of the color restrictions are also coboundary expanders, but we ignore this point in

the overview for brevity.
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2. For u of the same dimension as v0 we find some w of dimension i2 so that w is a neighbour of v0 and u,
and set pu = (v0,w,u). This is always possible since the dimension of u+ v0 is at most 2i1, so we can
take any w of dimension i2 ⩾ 2i1 that contains the sum of spaces. (Notice how the fact that dimensions
are geometrically increasing is important here).

3. For other u ∈ Y F (0), we first take some w2 ⊆ u of dimension i1. Then we find some w1 who is a
neighbour of v0 and of w2 and we set pu = (v0,w1,w2,u).

Constructing tw1w2 requires more care. Let us first consider the easier case. If dim(w1), dim(w2) ⩽ i4

then the cycle pw1 ◦w1w2 ◦ pw2 contains at most 7 vertices, all of dimension ⩽ i4. In particular, the sum
of all the vertices/subspaces is of dimension at most 7i4 ⩽ i5, so there is a vertex u∗ of dimension i5 that
contains all the vertices in the cycle. The set of triangles u∗xy for all edges xy in the cycles is indeed a tiling
of the cycle.

In the general case, it could be that the dimension of (say) w1 is i5. For example, assume that
dim(w1) = i5, dim(w2) = i4 (in particular w2 ⊆ w1. It is useful to read this description while looking at
Figure 1. In this case, we first find a tiling that “shifts” the cycle to a cycle of low dimension vertices. More
explicitly, we find some w′

2 ⊆ w2 of dimension i3, that is also connected to w’s neighbours in the cycle. These
neighbours are w1 (and any subspace of w2 is connected to it), and some u′

2 of dimension ⩽ i2, so we can
indeed find some w′

2 that is connected to u and u′
2 of dimension i3. We tile the cycle with w2w′

2u
′
2,w2w′

2w1.
This exchanges w2 with w′

2 in the untiled cycle. We perform a similar vertex-switch, for w1 as well, finding
some w′

1 of dimension i4 that is connected to w1 neighbours in the untiled cycle. After these two steps, we
can find a u∗ that is connected to all the (now low-dimensional) cycle as in the previous case.

1.5 Organization of this paper

Section 2 contains preliminaries. We prove Theorem 1.2 that connects coboundary expansion in links to
cosystolic expansion in Section 3 via the local correction algorithm. We develop the “color restriction”
technique and prove Theorem 1.3 in Section 4. We analyze the expansion of the spherical building and other
homogeneous geometric lattices in Section 5. We tie everything up and prove Theorem 1.1 in Section 6. In
this section we present applications of our new bounds for better cover stability and topological overlap. In
Appendix B we show an upper bound on the cosystolic expansion of dense complexes.

2 Preliminaries and notation

Simplicial complexes. A pure d-dimensional simplicial complex X is a set system (or hypergraph)
consisting of an arbitrary collection of sets of size d+ 1 together with all their subsets. The sets of size i+ 1
in X are denoted by X(i), and in particular, the vertices of X are denoted by X(0). We will sometimes omit
set brackets and write for example uvw ∈ X(2) instead of {u, v,w} ∈ X(2). As convention X(−1) = {∅}.
Unless it is otherwise stated, we always assume that X is finite. Let X be a d-dimensional simplicial complex.
Let k ⩽ d. We denote the set of oriented k-faces in X by

→
X(k) = {(v0, v1, ..., vk) | {v0, v1, ..., vk} ∈ X(k)}.

For s = (v0, v1, ..., vk) ∈
→
X(k) we denote set(s) = {vi}k

i=0, but when its clear from context we abuse notation
and write s for its underlying set instead of set(s). For an oriented face s ∈

→
X(k) and an index i ∈ {0, 1, ..., k},

we denote by si the face obtained by removing the i-th vertex of s.
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Probability over simplicial complexes. Let X be a simplicial complex and let Pd : X(d) → (0, 1] be a
density function on X(d) (i.e.

∑
s∈X(d) Pd(s) = 1). This density function induces densities on lower level

faces Pk : X(k) → (0, 1] by Pk(t) =
1

(d+1
k+1)

∑
s∈X(d),s⊃t Pd(s). We can also define a probability over directed

faces, where we choose an ordering uniformly at random. Namely, for s ∈
→
X(k), Pk(s) =

1
(k+1)! Pk(set(s)).

When it’s clear from the context, we omit the level of the faces, and just write P[T ] or Pt∈X(k) [T ] for a set
T ⊆ X(k).

2.1 Coboundary and cosystolic expansion

Asymmetric functions. Let X be a d-dimensional simplicial complex. Let −1 ⩽ k ⩽ d be an integer.
Let Γ be a group. A function f :

→
X(k) → Γ is asymmetric if for every (v0, v1, ..., vk) ∈

→
X(k), and every

permutation π : [k] → [k] it holds that

f(v0, v1, ..., vk) = f(vπ(0), vπ(1), ..., vπ(k))
sign(π).

We denote the set of these functions by Ck(X, Γ). We note that by fixing some order to the vertices
X(0) = {v0, v1, ..., vn}, there is a bijection between functions f : X(k) → Γ and asymmetric functions
→
f :

→
X(k) → Γ. Given f : X(k) → Γ and a set s = {vi0 , vi1 , ..., vik

} so that i0 < i1 < ... < ik, we set
→
f (vπ(i0), vπ(i1), ..., vπ(ik)

) = f(s)sign(π).
We record the following useful relation.

Claim 2.1. Let s ∈ X(j). For every x ∈ Xs and every asymmetric function g : X(k) → Γ it holds that∑j
i1=0

∑j−1
i2=0(−1)i1+i2g((si1)i2 ◦ x) = 0.

Let f :
→
X(k) → Γ. The weight of f is wt(f) = Pt∈X(k) [f(t) , 0]. For two functions f , g :

→
X(k) → Γ the

distance between f and g is dist(f , g) = wt(f − g) = Pt∈X(k) [f(t) , g(t)].

Cohomology. Let Γ be an abelian group. The coboundary operator δk : Ck(X, Γ) → Ck+1(X, Γ) is defined
by

δkf(s) =
k∑

i=0
(−1)if(si).

It is a direct calculation to verify that δkf is indeed an asymmetric function, and that δk+1 ◦ δk = 0.
Let Bk(X, Γ) = Im(δk−1) be the space of coboundaries. Let Zk(X, Γ) = Ker(δk) be the space of cosystols.

As δk+1 ◦ δk = 0, it holds that Bk(X, Γ) ⊆ Zk(X, Γ). The k-cohomology is Hk(X, Γ) = Zk(X, Γ)/Bk(X, Γ).

Coboundary expansion. For a function f :
→
X(k) → Γ let dist(f ,Bk) = ming∈Ck−1 dist(f , δg), be the

minimal distance between f and a coboundary. The k-th coboundary constant of a complex X (with respect
to an abelian group Γ) is

hk(X, Γ) = min
f∈Ck\Bk

wt(δf)

dist(f ,Bk)
.

where Bk = Bk(X, Γ). Note that hk(X, Γ) > 0 if and only if Hk = 0.
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Cosystolic expansion. A very related high dimensional notion of expansion is cosystolic expansion. The
k-th cosystolic expansion constant of X (with respect to an abelian group Γ) is

hk(X, Γ) = min
f∈Ck\Zk

wt(δf)

dist(f ,Zk)
,

where Zk = Zk(X, Γ). Notice that when Bk(X, Γ) = Zk(X, Γ), namely, when Hk = 0, this coincides
with the definition of coboundary expansion, and this justifies using the same notation hk, where the term
coboundary expansion (as opposed to cosystolic expansion) is taken to indicate Hk = 0.

Another useful way to understand the constant is the following. hk(X, Γ) ⩾ β if and only if for every
f :

→
X(k) → Γ there is some h ∈ Zk(X, Γ) so that β dist(f ,h) ⩽ wt(δf). We note that in the work of [EK16]

cosystolic expanders were also required to have no small weight f ∈ Zk(X, Γ) \Bk(X, Γ). We don’t focus on
this notion in our work.

Non abelian coboundary and cosystolic expansion. For k = 0, 1 we can define the cohomology with
respect to non abelian groups as well. Let Γ be a non abelian group. As before, for every k we can define
Ck(X, Γ). We define the coboundary operators as follows:

1. δ−1 : C−1(X, Γ) → C0(X, Γ) is δ−1h(v) = h(∅).

2. δ0 : C0(X, Γ) → C1(X, Γ) is δ0h(vu) = h(v)h(u)−1.

3. δ1 : C1(X, Γ) → C2(X, Γ) is δ1h(vuw) = h(vu)h(uw)h(wv).

It is easy to check that δk+1 ◦ δkf = e where e ∈ Γ is the unit. The definitions for hk(X, Γ) and coboundary
expansion are the same as in the abelian case for k = 0, 1.

Edge expander graphs.

Definition 2.2. Let G = (V ,E) be a graph and let λ > 0. We say that G is a λ-edge expander if for every
S ⊆ V so that 0 < P [S] ⩽ 1

2 , it holds that P [E(S,V \ S)] ⩾ λP [S].

It is well known that any λ-one-sided spectral expander is a 1−λ
2 -edge expander. The following claim

shows that every λ-edge expander graph G also has h0(G, Γ) ⩾ λ
2 for any group Γ.

Claim 2.3. Let G = (V ,E) be a λ-edge expander. Let S1,S2, ...,Sm ⊆ V be mutually disjoint sets so
that V =

⋃m
j=1 Sj and so that < ε edges cross between the sets for ε ⩽ λ

2 . Then there exists j so that
P [Sj ] ⩾ 1 − ε/λ.

For any group Γ and h : X(0) → Γ, we take as sets Sg = h−1(g). Edges so that δh , 0 are edges that
cross between Sg,Sg′ for some g , g′. By Claim 2.3, when there are ε-edges crossing the cut, then there
exists some g : X(−1) → Γ so that P [Sg ] ⩾ 1 − ε

λ . Then P [h , δg] ⩾ ε
λ .

Proof of Claim 2.3. Denote by E′ ⊆ E the edges that cross between sets. We first show that there must
exist some j so that P [Sj ] >

1
2 .

Assume that every Si has measure less than 1
2 . Then

ε > P [E] =
1
2

m∑
j=1

P [E(Sj ,V \ Sj)] ⩾
λ

2

m∑
j=1

P [Sj ] ⩾
λ

2 .
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This contradicts the assumption that ε ⩽ λ
2 .

Hence P [Sj ] >
1
2 . Thus

ε ⩾ P [E(Sj ,V \ Sj)] ⩾ λP [V \ Sj ] = λ(1 − P [Sj ])

and P [Sj ] ⩾ 1 − ε
λ . □

2.2 Local properties of simplicial complexes

Links of faces. Let X be a d-dimensional simplicial complex. Let k < d and s ∈ X(k). the link of s is a
d− k− 1-dimensional simplicial complex defined by Xs = {t \ s | t ∈ X, t ⊇ s}. We point out that the link
of the empty set is X∅ = X.

Let s ∈ X(k) for some k ⩽ d. The density function Pd on X induces on the link is Ps
d−k−1 : X(d−k− 1) →

(0, 1] where Ps
d−k−1[t] =

P[t∪s]

P[s](d+1
k+1)

. We usually omit s in the probability, and for T ⊆ Xs(k) we write

Pt∈Xs(k) [T ] instead.

High dimensional local spectral expanders. Let X be a d-dimensional simplicial complex. Let k ⩽ d.
The k-skeleton of X is X⩽k =

⋃k
j=−1 X(j). In particular, the 1-skeleton of X is a graph.

Definition 2.4 (high dimensional local spectral expander). Let X be a d-dimensional simplicial complex.
Let λ ⩾ 0. We say that X is a λ-one sided (two sided) local spectral expander if for every s ∈ X⩽d−2, the
1-skeleton of Xs is a λ-one sided (two sided) spectral expansion.

Partite complexes. A (d+ 1)-partite simplicial complex is a d-dimensional complex that has a partition
X(0) = V0 ·∪ V1 ·∪ ... ·∪ Vd so that for every s ∈ X(d) and every i = 0, 1, ..., d it holds that |s∩ Vi| = 1. Let X
a (d+ 1)-partite simplicial complex. A color of a face t ∈ X(k) is col(t) = {i ∈ [d] | t∩ Vi , ∅}. Let F ⊆ [d].
We denote by X [F ] = {s ∈ X | col(s) = F}, and by XF = {s ∈ X | col(s) ⊆ F}. A probability density on
X induces a probability density on XF , PF : XF (|F | − 1) → (0, 1] by PF (s) =

∑
t∈X(d) P[t].

2.3 Complexes of interest

The SLd(Fq)-spherical building. We do not define here spherical buildings in full generality; for a general
definition see e.g. [Bjö84]. Let q be a prime power, and let Fq be the field with q elements. Let d > 1 be
integers. The SLd(Fq)-spherical building is the following d− 1-partite simplicial complex

X(0) =
{
W ⊆ Fd

q

∣∣∣ W is a vector subspace and W , {0}, Fd
q

}
.

X(d− 2) = {{W1,W2, ...,Wd−1} | W1 ⊊W2 ⊊ ... ⊊Wd−1} .

The probability over X(d− 2) is uniform. The color of every vertex is its dimension.

Geometric lattices. Let (P , ⪯) be a finite poset. The order complex of P , denoted XP , is the simplicial
complex on the vertex set P whose faces are all {v0, ..., vd} so that v0 ≺ v1 ≺ ... ≺ vd, see [Koz08]. A
poset (P , ⪯) is a lattice if any two elements x, y ∈ P have a unique minimal upper bound x ∨ y and a
unique maximal lower bound x ∧ y. Let P be a lattice with minimal element 0̂ and maximal element 1̂.
Then it has a rank function rk : P → N, with rk(0̂) = 0 and rk(y) = rk(x) + 1 whenever y is a minimal
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element of {z : z ≻ x}. P is a geometric lattice if rk(x) + rk(y) ⩾ rk(x ∨ y) + rk(x ∧ y) for any x, y ∈ P ,
and any element in P is a join of atoms (i.e., rank 1 elements). An example for a geometric lattice is the
lattice whose elements are all subspaces of Fd

q , with the containment partial order. It’s order complex is the
SLd(FQ)-spherical building.

Let P be a geometric lattice, we denote by P̄ = P \ {0̂, 1̂}. It is known (see [Koz08]) that if P is
a geometric lattice, then XP̄ is pure and d-partite, where d = rk(1̂) − 1. The color of every vertex is
its rank. A homogeneous lattice P is a lattice so that Aut(P ) act transitively on XP̄ (d) (by the action
π(s) = {π(v) | v ∈ s}). We show in Section 5 that homogeneous geometric lattices have constant coboundary
expansion.

Geometric lattices have spectral expansion properties.

Claim 2.5. Let P be a homogeneous geometric lattice of of rank ⩾ 2. Then for every i and j ⩾ 2i it holds
that the bipartite graph between XP [i],XP [j] is a 1√

2 -one sided spectral expander.

Proof of Claim 2.5. Note that every u, v ∈ XP [i] there is a path of length 2 of the form (u,wv) where
w ⩾ u∨ v. This is because rk(u∨ v) ⩽ 2i ⩽ j, and because in a rank d geometric lattice we can always embed
any chain in a chain of length d (i.e. we can always find w ⪰ u∨ v of rank j). Moreover, by homogeneity,
the degree of every w is some constant D ⩾ 2. Thus the operator of taking two steps in this graph (starting
at XP [i]) is equal to 1

D Id+ (1 − 1
D )C where C is the operator of the complete graph. The second largest

eigenvalue of this operator is 1
D ⩽

1√
2 . As this is a 2-step walk according to the bipartite graph’s operator, it

follows that the second largest eigenvalue of the original graph is at most 1√
2 . □

[LSV05a] complexes. Lubotzky, Samuels and Vishne constructed the first bounded degree high dimensional
expanders. They construct them by taking quotients of Bruhat-Titz buildings.

Theorem 2.6 ([LSV05a]). For any prime power q and integer d > 1, there is a family Xq,d = {Xn}∞
n=1 of

connected complexes whose links are (isomorphic copies of) the SLd(Fq)-spherical building. In particular,
For every λ > 0 there is some q0 so that every Xn is a λ-one sided high dimensional expander when q ⩾ q0.

[KO21] complexes. Kaufman and Oppenheim created give another construction of bounded degree partite
high dimensional expanders, by a technique called group development [KO21]. We state the properties in
their construction that are necessary for our needs.

Theorem 2.7 ([KO21]). For every λ > 0 there exists a family of 4-partite complexes Yλ = {Yn}∞
n=1 so that

1. Yn is a λ-one sided high dimensional expander.

2. There exists a constant β > 0 (independent of λ) so that for every abelian group Γ and every s ∈ Yn(0),
the link of s has h1(Ys, Γ) ⩾ β.

3 Cosystolic expansion

In this section we prove that local spectral expanders whose links are coboundary expanders are cosystolic
expanders.

Theorem (Restatement of Theorem 1.2). Let β,λ > 0 and let k > 0 be an integer. Let X be a d-dimensional
simplicial complex for d ⩾ k+ 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be any
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group. Assume that for every non-empty r ∈ X, Xr is a coboundary expander and that hk+1−|r|(Xr, Γ) ⩾ β.
Then

hk(X, Γ) ⩾
βk+1

(k+ 2)! · 4 − eλ.

Here e ≈ 2.71 is Euler’s number.

In fact, we prove a slightly more general statement, allowing for different coboundary expansion in every
level.

Theorem 3.1. Let k > 0 be an integer and let β0,β1,β2, ...,βk ∈ (0, 1] and λ > 0. Let X be a d-dimensional
simplicial complex for d ⩾ k+ 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be any group.
Assume that for every 0 ⩽ ℓ ⩽ k and r ∈ X(ℓ), Xr is a coboundary expander and that hk−ℓ(Xr, Γ) ⩾ βk−ℓ.
Then

hk(X, Γ) ⩾
∏k

ℓ=0 βℓ

(k+ 2)! · 4 − eλ.

Here e ≈ 2.71 is Euler’s number.

Obviously, Theorem 1.2 follows from Theorem 3.1 by setting βℓ = β for every ℓ = 0, 1, 2, ..., k.
The following proposition, that is important for the topological overlapping property will also be proven

via similar arguments.

Proposition 3.2. Let k > 0 be an integer and let β0,β1,β2, ...,βk−1 ∈ (0, 1] and λ > 0. Let X be a
d-dimensional simplicial complex for d ⩾ k+ 1 and assume that X is a λ-one-sided local spectral expander.
Let Γ be any group. Assume that for every 0 ⩽ ℓ ⩽ k− 1 and r ∈ X(ℓ), Xr is a coboundary expander and

that hk−ℓ(Xr, Γ) ⩾ βk−ℓ−1. Then every g ∈ Zk(X, Γ) \Bk(X, Γ), has wt(g) ⩾
∏k−1

ℓ=0 βℓ

(k+1)! − eλ.

We remark that the when Γ is non abelian, these statements make sense only when k = 1.
Turning back to Theorem 3.1, we present a correction algorithm. We will show that when f ∈ Ck(X, Γ)

has a small coboundary, then the algorithm below returns some f̃ ∈ Zk(X, Γ) that is close to f .

Algorithm 3.3. Input: A function f :
→
X(k) → Γ, a parameter η ⩽ 1. Output: A function f̃ :

→
X(k) → Γ.

1. Set f0 := f . Set i = 0.

2. While there exists ℓ ⩽ k, and a face s ∈
→
X(ℓ) so that Ar = {s ∈ X(k) | r ⊆ s} has an assignment that

satisfies a ηP [Ar]-fraction of faces more than the current assignment, do:

– Let fixr : Ar → Γ be an optimal assignment to Ar, satisfying the maximal number of k+ 1-faces
containing s.

– Set fi+1(s) =

fi(s) r ⊈ s

fixr(s) r ⊆ s
.

– Set i:=i+1.

3. Output f̃ := fi.

3.1 Properties of Algorithm 3.3

Before proving Theorem 3.1 we record some properties of Algorithm 3.3.
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Claim 3.4. Algorithm 3.3 halts on every input.

Claim 3.5. Let f :
→
X(k) → Γ and let η ⩽ 1. Let f̃ :

→
X(k) → Γ be the output of Algorithm 3.3 on (f , η).

Then η dist(f , f̃) ⩽ wt(δf).

Proof of Claim 3.4. Denote by εj = Pt∈X(k+1) [δfj(t) , 0]. If we show that εj+1 < εj , then as X is finite
the algorithm must halt. Indeed, fix j and let r be the face that was fixed in the j-th step. If t ∈ X(k+ 1)
doesn’t contain r then it holds that δfj(t) = δfj+1(t) so

P
t∈X(k+1)

[
δfj(t) , 0

∣∣ t ⊉ r
]
= P

t∈X(k+1)

[
δfj+1(t) , 0

∣∣ t ⊉ r
]

.

For faces containing t, Algorithm 3.3 changed the values of fj to satisfy more of the k+ 1-faces containing
t, so all in all εj+1 < εj . □

Proof of Claim 3.5. Let i be so that Algorithm 3.3 returned f̃ = fi. By the triangle inequality dist(f , fi) ⩽∑i−1
j=0 dist(fj , fj+1). Following the notation of Claim 3.4, let εj = wt(δfj). If we show that

η dist(fj , fj+1) ⩽ εj − εj+1

then

η dist(f , fi) ⩽
i−1∑
j=0

εj − εj+1 = ε0 − εi = wt(δf) − εi ⩽ wt(δf).

Indeed, fix j and let r be the ℓ-face that was selected in the j-th step of the algorithm. Recall that Ar is the
set of k-faces that contain r. Then dist(fj , fj+1) ⩽ P [Ar], since the change between fj , fj+1 was only on
faces in Ar. However, the difference between εj − εj+1 ⩾ ηP [Ar], since otherwise the algorithm wouldn’t
change anything. Combine the two inequalities:

η dist(fj , fj+1) ⩽ ηP [Ar] ⩽ εj − εj+1.

□

3.2 Local minimality

Definition 3.6 (Restriction). Let g ∈ Ck(X, Γ) and let r ∈ X of size 0 < |r| ⩽ k. The restriction of g to r is
the function gr ∈ Ck−|r|(Xr, Γ) is defined by gr(p) = g(r ◦ p).

Definition 3.7 (Local minimality). Let η ⩾ 0 and let g ∈ Ck(X, Γ). We say that g is η-locally minimal, if
for every r ∈ X, r , ∅, and every h ∈ Ck−|r|−1(Xr, Γ) it holds that

wt(gr) ⩽ wt(gr + δh) + η.

The non-abelian case. If Γ is non-abelian we need the correct analogy to adding coboundaries. The
definition of η-minimality is as follows. If k = 1, we say that g is η-locally minimal if for every v ∈ X(0), and
every γ ∈ Γ, it holds that

wt(gv) ⩽ wt(γ · gr) + η.

If k = 2, we say that g is locally minimal if:
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1. For every edge uv and every γ ∈ Γ, it holds that wt(guv) ⩽ wt(γ · guv) + η.

2. For every vertex v and every function h : Xv(0) → Γ, it holds that wt(gv) ⩽ wt(gh
v ) + η, where

gh
v (uw) = h−1(u)gv(uw)h(w).

Claim 3.8. Let f :
→
X(k) → Γ and let η ⩽ 1. Let f̃ :

→
X(k) → Γ be the output of Algorithm 3.3 on (f , η).

Then δf̃ is η-locally minimal.

Proof of Claim 3.8. Assume towards contradiction that there is some r ∈ X(j) and a h ∈ Ck−|r|−1(Xr, Γ)
so that wt((δf̃)r) > wt((δf̃)r + δh) − η. We define fixr : X(k) → Γ to be fixr(t) = h(p) if t = r ◦ p, and
zero if r ⊈ t.

By definition
wt((δf̃)r) = P

t∈X(k+1),t⊇r

[
δ(̃t) , 0

]
(3.1)

and
wt((δf̃)r + δh) = P

t∈X(k+1),t⊇r

[
δ(f̃ + fixr)(t)

]
.

But then Algorithm 3.3 would have added fixr to f̃ (or another even better function), and wouldn’t return
f̃ , a contradiction.

We remark that the same idea holds in the non-abelian case where δf̃ ∈ C2(X, Γ), even though the case
analysis is cumbersome. Equation (3.1) is still true. Thus,

1. Let γ ∈ Γ and r = uv ∈ X(1). For every triangle uvw ∈ X(2), the value of γ(δf̃)r(w) = (γ ·
f̃(uv))f̃(vw)f̃(wu). By Algorithm 3.3, changing the value of f̃(uv) to γ · f̃(uv) cannot decrease the
weight of δf̃ by more than η.

2. If r ∈ X(0) and h : Xr(0) → Γ. Then for every triangle rvw ∈ X(2), it holds that

(δf̃)h
r (vw) = h(v)f̃(rv)f̃(vw)f̃(wr)h(w)−1 = (h(v)f̃(rv))f̃(vw)(h(w)f̃(rw))−1.

By Algorithm 3.3, changing the values of {f̃(rx)} for the edges rx adjacent to r, to the values h(x)f̃(rx)
cannot decrease the weight of δf̃ by more than η.

□

3.3 Locally minimal cosystols are heavy

The following lemma states that non-zero functions that are locally minimal must have large weight.

Lemma 3.9. Let β0, ...,βk−1 and λ be as in Theorem 3.1. Let X be such that for every 0 ⩽ ℓ ⩽ k− 1 and
every s ∈ X(ℓ) it holds that Xs is a coboundary expander and hk−ℓ−1(Xs, Γ) ⩾ βk−ℓ−1. Assume further that
X is a λ-local spectral expander. Let g ∈ Zk(X, Γ) be non-zero and η-locally minimal. Then

wt(g) ⩾

∏k−1
ℓ=0 βℓ

(k+ 1)! − e(η+ λ).

This lemma implies Theorem 1.2 and Proposition 3.2 directly.
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Proof of Theorem 3.1, given Lemma 3.9. Fix η =

∏k

ℓ=0 βℓ

4((k+2)!) . Let f̃ be the output of Algorithm 3.3 for some

function f and η. If wt(δf) ⩾
∏k

ℓ=0 βℓ

4(k+2)! − eλ there is nothing to prove, so we assume that wt(δf) <
∏k

ℓ=0 βℓ

4(k+2)! − eλ.
Then δf̃ ∈ Zk+1(X, Γ) is an η-locally minimal function so that wt(δf̃) ⩽ wt(δf). Hence by Lemma 3.9
(applied with k+ 1 instead of k), δf̃ = 0 and f̃ is a cosystol. By Claim 3.5, η dist(f , f̃) ⩽ wt(δf), and we are
done. □

Proof of Proposition 3.2, given Lemma 3.9. For every r ∈ X(j) and h ∈ Ck−j−1(Xr, Γ), we define h↑ :
X(k) → Γ by

h↑(t) =

h(p) s = r ◦ p

0 r ⊈ s.
.

It is easy to see that gr + δh = (g+ δh↑)r.
Now let 0 , g ∈ Zk(X, Γ) \Bk(X, Γ) be a cosystol that has the minimal among all Zk(X, Γ) \Bk(X, Γ).

By the above, g is also 0-locally minimal (since otherwise we could have found some non-zero coboundary

δh↑ to add to g and decrease its weight). Thus wt(g) ⩾
∏k−1

ℓ=0 βℓ

(k+1)! − eλ as required.
We remark that the case where Γ is non-abelian and k = 1 is similar. Given g ∈ Z1(X, Γ) \B1(X, Γ)

that is non-zero and has minimal weight over all such functions. First we establish that it is locally minimal.
Indeed, assume towards contradiction that there is some vertex v ∈ X(0) and γ ∈ Γ so that wt(gv) < wt(γgv).
Then the function

g′(xy) =


γg(xy) x = v

g(xy)γ−1 y = v

g(xy) otherwise

.

is also a cosystol. Taking some triangle vuw ∈ X(2) that contains v, the value of

δg′(vuw) = γδg(vuw)γ−1 = e

(the identity in Γ). For any triangle uwx that doesn’t contain v we have that δg′(uwx) = δg(uwx) = e. On
the other hand, wt(g′) < wt(g) so g′ is trivial, which implies that g = δh where h(v) = γ and h(u) = e. A
contradiction to the fact that g < B1(X, Γ). □

The remainder of this section is devoted to proving Lemma 3.9. For this we need to define averaging
operators that play a crucial role in the theory behind local-spectral expanders. We will only define what we
need so for a more thorough exposition see e.g. [Dik+18]. Let ℓ2(X(j)) be the Hilbert space of all functions
f : X(j) → R where the inner product is ⟨f , g⟩ = Er∈X(j) [f(r)g(r)]. Let Dk : ℓ2(X(k)) → ℓ2(X(k− 1)) be
the following operator

Dkf(s) = E
t⊇s

[f(t)] .

This operator’s adjoint is Uk−1 : ℓ2(X(k− 1)) → ℓ2(X(k)) that is defined by

Uk−1f(t) = E
s⊆t

[f(s)] .

As a shorthand we write Dℓ
k = Dk−ℓ+1Dk−ℓ+2...Dk for ℓ ⩾ 1 (and the same for U). For ℓ = 0 D0

k = U0
k = Id.

We record that Dℓ
kf is a function whose domain is X(k− ℓ), and that U ℓ

kf is a function whose domain is
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X(k+ ℓ).
Let j ⩽ k < d. The operator Nk→j : ℓ2(X(k)) → ℓ2(X(j)) is defined by

Nk→jf(r) = E
t∈X(k+1),t⊇r

[
E

s⊆t,r⊈s
[f(s)]

]
.

Let us spell out this expression. We average over f(s) where s is chosen according to the following rule. We
first sample some t ⊇ r in X(k+ 1), and then we sample s ⊆ t given that it does not contain r.

When j, k is clear from the context we simply write D,U ,N .
The following is an operator norm inequality that is similar to [Dik+18], but for the one-sided case. We

prove it in the end of this section.

Claim 3.10. Let X be a λ-one-sided local spectral expander. Then Uk−j
j Nk→j ⪯ Uk−j+1

j−1 Dk−j+1
k + λId for

every j ⩽ k.

Proof of Lemma 3.9. Let h = 1g,0. We will prove that wt(g) = E[h] ⩾

∏k−1
ℓ=0 βℓ

(k+1)! − e(η+ λ). We do this by
showing that

1. ∥Dkh∥2 ⩾ 1
k+1∥h∥2 − λ∥h∥2.

2. For 0 ⩽ j < k, ∥Dk−j+1
k h∥2 ⩾

βk−j−1
j+1 · ∥Dk−j

k h∥2 −
(

βk−j−1η
j+1 + λ

)
∥h∥2.

We note that Dk+1h is a constant - the average of h on all faces. Hence ∥Dk+1h∥2 = E[h]2. By iteratively
applying these inequalities we get that

E[h]2 = ∥Dk+1h∥2

⩾ βk−1∥Dkh∥2 − (βk−1η+ λ) ∥h∥2

⩾
βk−1βk−2

2 ∥Dk−1h∥2 − βk−1

(
βk−2η

2 + λ

)
∥h∥2 − (βk−1η+ λ) ∥h∥2

...

⩾ ∥h∥2 ·

∏k−1
ℓ=0 βℓ

(k+ 1)! − η

k−1∑
j=0

βj

(k− j + 1)! − λ

1 +
k−1∑
j=0

βj

(k− j + 1)!

 .

By assuming βj ⩽ 1, we upper bound
∑k−1

j=0
βj

(k−j+1)! ⩽
∑∞

j=0
1
j! = e, and get E[h]2 ⩾ ∥h∥2 ·

∏k−1
ℓ=0 βℓ

k! − e(η+

λ). As ∥h∥2 = E[h] the lemma follows.

Let us begin with the first item. we call s ∈ X(k) active if h(s) = 1. By assumption, g ∈ Zk(X, Γ), i.e.

δg(t) =
k+1∑
i=0

(−1)ig(ti) = 0.

Thus if t ∈ X(k + 1) contains an active s = ti1 , then it must also contain a second active s′ = ti2 . This
implies that Nk→kh(s) ⩾

1
k+1h(s), and so

⟨h,Nk→kh⟩ = E
t
[h(t)Nk→kh(t)] ⩾

1
k+ 1∥h∥2.
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By Claim 3.10 Nk→k ⪯ UD+ λId, so

1
k+ 1∥h∥2 ⩽ ⟨Nk→kh,h⟩ ⩽ ⟨UDh,h⟩ + λ∥h∥2 = ∥Dh∥2 + λ∥h∥2

so the first item is proven.
Next, we will prove the second item. As before, we will show that

⟨Uk−jNk→jh,h⟩ ⩾
βk−j−1
j + 1 · (∥Dk−jh∥2 − η∥h∥2). (3.2)

Then we rely on Claim 3.10

∥Dk−j+1h∥2 ⩾ ⟨Uk−j+1Nk→jh,h⟩ − λ∥h∥2. (3.3)

Combining these inequalities completes the proof.
We now state the following claim, which is proven using the coboundary expansion of Xr where r is a

j-face.

Lemma 3.11 (Key lemma). Let r ∈ X(j). Then

Nk→jh(r) ⩾
βk−j−1
j + 1 (Dj−1h(r) − η).

From this pointwise inequality, (3.2) follows easily:

⟨Uk−jNk→jh,h⟩ = ⟨Nk→jh,Dk−jh⟩ ⩾ E
r

[
Dk−1h(r) ·

βk−j−1
j + 1 · (Dk−1h(r) − η)

]
=
βk−j−1
j + 1 · (∥Dk−1h∥2 − η∥h∥2)

(3.4)

□

We will prove Lemma 3.11 under the assumption that Γ is abelian since additive notation is more
convenient. For non-abelian groups, see Remark 3.12.

Proof of Lemma 3.11. First, let us understand the meaning of the inequality in Lemma 3.11. Recall that
Nk→jh(r) is an average of h(s) over faces s ∈ X(k) so that r, s ⊆ t for some t ∈ X(k+ 1) and r ⊈ s. As h is
an indicator function this is the same as writing

Nk→jh(r) = P
t,s

[h(s) = 1] ,

where t, s are as above. On the other side of the inequality there is Dk−jh(r) = Ps⊇r [h(s) = 1]. Hence, we
need to show that if there are many active faces that contain r, there must also be many active faces that
“complete” r to a (k+ 1)-face.

We first note that

Nk→jh(r) = P
t,s

[h(s) = 1] ⩾ 1
j + 1 P

t
[∃s ⊆ t h(s) = 1 and r ⊈ s] , (3.5)

so we shall actually lower bound Pt [∃s ⊆ t h(s) = 1 and r ⊈ s].
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As g ∈ Zk(X, Γ), for every t = r ◦ p ∈ X(k+ 1)

0 = δg(r ◦ p) =
j∑

i=0
(−1)ig(ri ◦ p) + (−1)j

k−1−j∑
i=0

(−1)ig(r ◦ pi). (3.6)

And in particular

k−1−j∑
i=0

(−1)ig(r ◦ pi) , 0 ⇐⇒
j∑

i=0
(−1)ig(ri ◦ p) , 0. (3.7)

Recall that the restriction of g is gr : Xr(k− j − 1) → Γ, defined by gr(p) = g(r ◦ p). As we can see, δgr(p)

is the left-hand side of (3.7). Thus

P
t
[∃s ⊆ t h(s) = 1 and r ⊈ s] ⩾ P

t=r◦p

k−1−j∑
i=0

(−1)ig(r ◦ pi) , 0

 = P
p∈Xr(k−j+1)

[δgr , 0] . (3.8)

By assumption Xr is a βk−j−1-coboundary expander, this is at most βk−j−1 · dist(gr,Bk−j−1(Xr, Γ)).
To conclude we need to show that

dist(gr,Bk−j−1(Xr, Γ)) ⩾ P
s⊇r

[g(s) , 0] − η. (3.9)

But
dist(gr,Bk−j−1(Xr, Γ)) = min

f∈Ck−j−2(Xr ,Γ)
{wt(gr + δf)} ⩾ wt(gr) − η. (3.10)

where the inequality follows from η-minimality of g. As wt(gr) = Ps⊇r [h(s) = 1] we have proven

Nk→jh(r) ⩾
βk−j−1
j + 1 dist(gr,Bk−j−1(Xr, Γ)) ⩾

βk−j−1
j + 1

(
P

s⊇r
[h(s) = 1] − η

)
.

□

Remark 3.12 (The non-abelian case). The first place where we need to accomodate for the non-abelianity is
in (3.5) which implies (3.6). We note that the same relations hold in the non-abelian case. For example, if
r ∈ X(0) and g ∈ Z1(X, Γ), and ruw ∈ X(2) we can write

e = δg(ruw) = g(ru)g(uw)g(wr)

instead of (3.6). This implies that

g(uw) = g(ur)g(rw) = δgr(uw),

and in particular g(uw) , 0 ⇐⇒ δgr(uw) , 0. This is the same conclusion as we get in (3.6). The case
where r ∈ X(1) is similar.

The second equality we need to modify is (3.10). For example, assume that r ∈ X(0), and δh ∈ B1(Xr, Γ)
is a closest coboundary to gr. Then

dist(gr, δh) = P
[
gr(vu) , h(v)h(u)

−1]
= wt(gh

r ) ⩾ wt(gr) − η.
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The case where r ∈ X(1) is similar.

Proof of Claim 3.10. We begin by showing the following inequality for operators on ℓ2(X(k − 1)) on a
d-dimensional simplicial complex for d ⩾ k:

Uk−1Sk−1 ⪯ UkDk
k−1 + λId. (3.11)

where Sk−1 : ℓ2(X(k− 1)) → ℓ2(X(0)) is defined by Sk−1f(v) = Es∈X(k−1),s ·∪{v}∈X(k) [f(s)].
Note that UkDk

k−1 is the operator that averages a function on all k− 1 faces (independently of the starting
face), so it is sends the constant function to itself, and it sends everything perpendicular to the constant
function to 0. The operator Uk−1Sk−1 also sends the constant to itself, and the functions perpendicular to
the constant functions are an Uk−1Sk−1-invariant subspace.

Hence, to show (3.11) need to show that the second largest eigenvalue of Uk−1Sk−1 is less or equal to λ.
Recall that for every two linear operators Y : A → B and Z : B → A the eigenvalues of Y Z : B → B are
equal to the eigenvalues of ZY : A → A (up to the multiplicity of the 0 eigenvalue). Therefore, applying this
to Sk−1 : ℓ2(X(k− 1)) → ℓ2(X(0)) and Uk−1

0 : ℓ2(X(0)) → ℓ2(X(k− 1)),

λ(Uk−1
0 Sk−1) = λ(Sk−1U

k−1
0 )

and we will easily bound the right-hand side. The operator Sk−1U
k−1
0 is nothing but the random walk on

the 1-skeleton of the graph: indeed start with a vertex v ∈ X(0), go up to t ⊃ v, t ∈ X(k − 1) and then
traverse to u so that u ·∪ s ∈ X(k). This is the same as choosing u ∼ v a random neighbor of v (and s ·∪ {u}
a random k face containing this edge). By spectral expansion of the 1-skeleton of X, λ(Sk−1,0U

k−1) ⩽ λ and
(3.11) is proven.

Now let us prove the claim. Fix some f ∈ ℓ2(X(k)). We need to show that

⟨f ,Uk−jNk→jf⟩ ⩽ ⟨f ,Uk−j+1Dk−j+1f⟩ + λ⟨f , f⟩

The lefthand side is equal to Es

[
f(s) · (Uk−jNk→jf)(s)

]
= Es,s′ [f(s)f(s′)] where s′ is chosen according to

the distribution of Uk−jNk→j .
We localize this expectation using p = r ∩ s. Namely, the above random process of choosing an pair s, s′

is equivalent to the following:

1. Choose p ∈ X(j − 1).

2. Choose v ∈ Xp(0) and set r = {v} ∪ p.

3. Choose s′ ⊇ r.

4. In Xp walk from v to q ∈ Xp(k − j) so that {v} ·∪ q ∈ Xp(k − j + 1) (Namely, apply the swap walk
Sk−j,0 in the link of p, which takes a (k− j)-face to a vertex). Set s = p∪ q ∈ X(k).

Thus we can write

⟨f ,Uk−jNk→jf⟩ = E
(s,t,r,p,s′)

[
f(s)f(s′)

]
= E

p

[
E

(v,q,s′)

[
f(p∪ q)f(p∪ (s′ \ p))

]]
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= E
p

[
E

(v,q,s′)

[
fp(q)fp(s

′ \ p)
]]

,

where fp : Xp(k− j) → R is defined by fp(x) = f(p ·∪ x). For a fixed p, the choice of q, s′ \ p is just using
the random walk U ℓSℓ,0 in the link of p, with ℓ = k− j. This is equal to

E
p

[
⟨fp, (U ℓSℓ,0)pfp⟩

] (3.11)
⩽ E

p

[
⟨fp, (Uk−j+1Dk−j+1)pfp⟩

]
+ E

p
[λ⟨fp, fp⟩] (3.12)

= ⟨f ,Uk−j+1Dk−j+1f⟩ + λ⟨f , f⟩. (3.13)

The last equality holds since

⟨f ,Uk−j+1Dk−j+1f⟩ = E
p

[
E

s⊇p
[f(s)]2

]
= E

p

[
E

s\p∈Xp(j−k)
[fp(s)]

2
]
= E

p

[
⟨fp, (Uk−j+1Dk−j+1)pfp⟩

]
.

Hence the claim is proven. □

4 Coboundary expansion via color restriction

In this section we develop a technique for bounding coboundary expansion in partite complexes with large
dimension.

Recall that for a d-partite complex X, and some F ⊆ [d] the complex XF = {s ∈ X | col(s) ⊆ F}. We
call these complexes color restrictions of X. Fix a group Γ and integer k. We say that a color restriction XF

is (k,β)-locally coboundary expanding (with Γ coefficients) if Hk(XF , Γ) = 0, hk(XF , Γ) ⩾ β and for every
face s ∈ X(j) so that col(s) ∩ F = ∅, it holds that Hk(XF

s , Γ) = 0 and hk−|s|(XF
s , Γ) ⩾ β (for j ⩽ k). The

next theorem states that when a color restriction XF is β-locally coboundary expanding for typical F , then
X itself is an Ω(βk+1)-coboundary expander.

Theorem 4.1. Let k, ℓ, d be integers so that k+ 2 ⩽ ℓ ⩽ d and let β, p ∈ (0, 1]. Let Γ be some group (that is
abelian if k > 1). Let X be a d-partite simplicial complex so that

P
F ∈([d]ℓ )

[
XF is a (k,β)-locally coboundary expander

]
⩾ p.

Then X is a coboundary expander with hk(X, Γ) ⩾ pβk+1

e(k+2)! . Here e ≈ 2.71 is Euler’s number.

We use this theorem in Section 5 to show the coboundary expansion of homogeneous geometric lattices.
The reason we need this theorem is that lower bounds obtained in other techniques usually depend on the
dimension of the complex (e.g. the cone technique in Section 5). Color restricting XF reduces the dimension
to |F |, which allows us to use the dimension dependent techniques on XF , as long as |F | is a function of k
and not of d. Hence, this theorem allows us to overcome the dependence on dimension.

Remark 4.2. We shall write this section in additive notation, i.e. we assume that Γ is an abelian group.
However, the same proof holds for non-abelian groups when k = 1 also. See Remark 4.5 after the proof of
Theorem 4.1.
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4.1 Additional notation

Averaging out real valued functions. Let X be a (d+ 1)-partite complex and let I ⊆ J ⊆ [d]. Let
A ⊆ X(k) be a set with relative size ε. For a face s ∈ X(k) we denote by εs = Pt∈X(k) [A | t ⊇ s]. We
denote by εJ ,I = Pt∈X(k) [A | col(t) ∩ J = I ], the probability of A given that we sampled t ∈ X(k) so that
col(t) ∩ J = I. We denote by εJ ,j = Pt∈X(k) [A | |col(t) ∩ J | = j].

Conditional distances. Let f1, f2 :
→
X(k) → Γ be two asymmetric functions. The distance between f1, f2

is
dist(f1, f2) = P

t∈
→
X(k)

[f1(t) , f2(t)] .

For a fixed set F of colors in a partite complex X, we denote by

distF̄ ,i(f1, f2) = P

t∈
→
X(k)

[f1(t) , f2(t) | |col(t) ∩ F̄ | = i] .

That is, the relative hamming distance between f1 and f2 on the set of k-faces so that exactly i-of the vertices
have colors outside of F . When the set is clear from the context we omit F̄ and denote this by disti(f1, f2).

4.2 Proof of Theorem 4.1

Proof. Fix Γ and let f :
→
X(k) → Γ be an asymmetric function. Assume that wt(δf) = P [δf , 0] = ε.

We need to find some g :
→
X(k − 1) → Γ so that pβk+1

e(k+2)! dist(f , δg) ⩽ ε. We start by finding a set of
colors F ∈ F so that most (k + 1)-faces with F -colored vertices are satisfied. We recall that εF ,j =

Pt∈X(k+1) [δf(t) , 0 | |col(t) ∩ F | = j].

Claim 4.3. There is some F ∈ F of size k+ 2 so that for any j = 1, ..., k+ 2, εF ,j ⩽ (k+ 2)p−1ε.

The claim follows by standard averaging and will be proven later below. Now construct g :
→
X(k− 1) → Γ

in (k+ 1) steps as follows. Fix some global order on the vertices X(0) = {v0, v1, ..., vn}.

1. In the first step we define g for (k− 1)-faces whose colors are contained in F . Note that XF has no
cohomology, hk(XF , Γ) ⩾ β and εF ,k+2 = εF ,F ⩽ (k + 2)p−1ε by Claim 4.3. Coboundary expansion

of XF implies that there exists a function g0 :
→
X

F

(k− 1) → Γ so that β distk+1(f , δg0) ⩽ εF ,F which
implies

pβ

(k+ 2) dist0(f , δg0) ⩽ ε 5 (4.1)

We set g = g0 on faces s ∈
→
X(k− 1) so that col(s) ⊆ F .

2. Let i > 1. In the i-th step, we define g on faces t so that |col(t) ∩ F | = k− (i− 1) as follows. Assume
that g was defined for all faces t so that |col(t) ∩ F | = k− i. Every face t with i− 1 colors outside F

can be viewed as t = s ◦ r for s ∈
→
X

[d]\F

(i− 2) and r ∈
→
Xs

F

(k− i).

Fix s and let us define g(r ◦ s) for all r. We assume s = (vj0 , vj1 , ..., vji) for j0 < j1 < ... < ji, and
5Here we recall that dist0(f , δg0) is the distance between f and δg0 over k − 1-faces in F . See Section 4.1.
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defining g for other s follows directly by asymmetry. Let us define hs :
→
X

F

s (k− i+ 1) → Γ by

hs(a) = f(a ◦ s) − (−1)|a|
i−2∑
ℓ=0

(−1)ℓg(a ◦ sℓ).

Here we use the fact that g has been defined for all the a ◦ sℓ. Next we find (an arbitrary) gs
0 :

→
X

F

s (k− i) → Γ that minimizes dist(h, δgs
0). We set g(r ◦ s) = gs

0(r).

As alluded to in the overview, the motivation behind defining hs for every s ∈ X(i− 2) this way is because

for every element in
{
a ◦ s

∣∣∣∣ a ∈
→
X

F

s (k− i)

}
, we have an equation

δg(a ◦ s) = f(a ◦ s)

which translates to

f(a ◦ s) − (−1)|a|
i−2∑
ℓ=0

(−1)ℓg(a ◦ sℓ) =
k−i∑
ℓ=0

(−1)ℓg(aℓ ◦ s). (4.2)

We consider the set of equations (4.2) one per a. The left hand side (which is hs(a)) has the values we have
defined in the (i− 1)-th step, and the right hand side are the “unknowns”, that is, the values of g we wish to
define in the i-th step. Translating this to the language of coboundaries:

1. hs(a) is the “free coefficient” in every equation.

2. Assignments to the “unknowns”, i.e. g(aℓ ◦ s) are functions gs
0 :

→
X

F

s (k− i− 1) → Γ, so that g(r ◦ s) =
gs

0(r).

3. The equation that a defines (4.2) is satisfied by a solution g0 if and only if hs(a) = δgs
0(a). That is, we

want to find some gs
0 that minimizes dist(h, δgs

0) in the link of s (and as discussed before, we will do
this by showing that δhs ≈ 0 and using coboundary expansion).

We need to prove we indeed constructed a function g so that δg is close to f .

Lemma 4.4.
pβk+1

e(k+ 2)! dist(f , δg) ⩽ ε.

□

Remark 4.5. When Γ is non-abelian and k = 1, we construct g :
→
X(0) → Γ in a similar manner to the abelian

case. First, we find the values of g on
→
X

F

(0) using coboundary expansion as in the first step of the abelian

case. Next, for every v whose color isn’t in f , we define hv :
→
X

F

v (0) → Γ by hv(u) = f(vu)g(u) (where g(u)
has been previously defined since col(u) ∈ F ). Then we find γ ∈ Γ = C−1(X, Γ) so that dist(hv, δγ) and set
g(v) = γ.

The proof in this case is identical to the abelian case, so we won’t repeat it.

Proof of Lemma 4.4. Recall that disti is the hamming distance on k-faces where i out of k+ 1 vertices are
not in F . We show that for i ⩽ k

disti(f , δg) = P
t∈X(k)

[f(t) , δg(t) | |col(t) ∩ F | = i] ⩽ (k+ 2)(i!)β−(i+1)p−1ε
i∑

j=0

1
j!

, (4.3)
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and that for i = k+ 1

distk+1(f , δg) ⩽ (k+ 2)!β−(k+1)p−1ε
k+1∑
j=1

1
j!
⩽
e(k+ 2)!
pβk+1 ε. (4.4)

Since

dist(f , δg) = P
t∈X(k)

[f(t) , δg(t)] =
k+1∑
i=0

P
t∈X(k)

[|col(t) ∩ F̄ | = i] disti(f , δg),

it holds that dist(f , δg) ⩽ maxi disti(f , δg) and the lemma follows. We show (4.3) by induction over i. When
i = 0, by the definition of g in the first step, see (4.1), it follows that dist0(f , δg) ⩽ (k+ 2)β−1p−1ε. Let us
assume that (4.3) holds for i, and show it for i+ 1.

We want to bound the fraction of t = r ◦ s ∈
→
X(k), where |s| = i+ 1, col(r) ⊆ F and col(s) ∩ F = ∅, so

that

f(r ◦ s) , δg(r ◦ s) =
k−i−1∑

j=0
(−1)jg(rj ◦ s) +

k∑
j=k−i

(−1)|r|+ig(r ◦ sj).

Claim 4.6. For i ⩽ k,
f(r ◦ s) , δg(r ◦ s) ⇔ δgs

0(r) , hs(r),

where gs
0(r) = g(r ◦ s).

Thus we wish to bound Ps,r [δgs
0(r) , hs(r)]. As hk−|s|(XF

s , Γ) ⩾ β, it is enough to bound the probability
that δh , 0 (up to multiplying by a factor of β−1). That is, we need to show that

wt(δhs) ⩽ (k+ 2)(i+ 1)!β−(i+1)p−1ε
i+1∑
j=0

1
j!

. (4.5)

Combining (4.5) with β-coboundary expansion (in the link of every s) we have that

P
s,r

[gs
0(r) , hs(r)] = E

s

[
P
r
[gs

0(r) , hs(r)]
]
⩽ β−1 E

s
[wt(δhs)] ⩽ (k+ 2)(i+ 1)!β−(i+2)p−1ε

i+1∑
j=0

1
j!

,

since when i+ 1 ⩽ k, gs
0 was chosen to minimize the distance between hs and any coboundary. Towards this

end, we claim the following:

Claim 4.7. Let s, r so that δhs(r) , 0. Then

1. Either r ◦ s has some sub-face r ◦ sj so that f(r ◦ sj) , δg(r ◦ sj).

2. Or δf(r ◦ s) , 0.

When s, r are chosen at random so that |s| = i+ 1, col(r) ⊆ F and col(s) ∩ F = ∅, the probability that
the first item in Claim 4.7 occurs is bounded by

(i+ 1) · P
t∈X(k)

[f(t) , δg(t) | |col(t) ∩ F̄ | = i] = (i+ 1) disti(f , δg),

since sampling r ◦ s as above, and then sampling a random t = r ◦ sj in it, has the same marginal distribution
as just sampling t ∈ X(k− 1) so that |col(t) \ F | = i. By the induction hypothesis this is bounded by
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(i+ 1) · (i!)(k+ 2)β−(i+1)p−1ε
i∑

j=0

1
j!

. (4.6)

The probability that the second item in Claim 4.7 occurs is εF ,k−(i−1) which is less or equal to (k+ 2)p−1ε

by Claim 4.3. In conclusion

P
s,r

[δhs(r) , 0]
Claim 4.7
⩽ (i+ 1) P

si,r
[g(si ◦ r) , f(si ◦ r)] + (k+ 2)p−1ε

(4.6)
⩽ (k+ 2)(i+ 1)!β−(i+1)p−1ε

i∑
j=0

1
j!

+ (i+ 1)! 1
(i+ 1)! (k+ 2)p−1ε

⩽ (k+ 2)(i+ 1)!β−(i+1)p−1ε
i+1∑
j=0

1
j!

.

Here the last inequality is just simplification.
Proving (4.4) is similar to the above (assuming for (4.3) holds for i = k). We need to bound the probability

that f(s) , δg(s). Similar to Claim 4.7 we note that f(s) − δg(s) , 0 implies that for every w ∈ XF
s (0):

1. Either there is some i so that f(w ◦ si) , g(w ◦ si).

2. Or δf(w ◦ s) , 0.

Otherwise take some w ∈ XF
s (0) so that δf(w ◦ s) = 0 and so that f(w ◦ si) = g(w ◦ si) for all i. We have

that
0 = δf(w ◦ s)

f(s) +
k+1∑
i=1

(−1)if((w ◦ s)i) =

f(s) +
k+1∑
i=1

(−1)iδg((w ◦ s)i) =

f(s) − δg(s) +
k+1∑
i=0

δg((w ◦ s)i) =

f(s) − δg(s) + δδg(s) =

f(s) − δg(s).

(4.7)

Hence

distk+1(f , δg) ⩽ E

s∈
→
X(k)

[
P

w∈XF
s (0)

[δf(w ◦ s) , 0] +
k∑

i=0
P

w∈XF
s (0)

[f(w ◦ si) , δg(w ◦ si)]

]
.

As

E

s∈
→
X(k)

[
P

w∈XF
s (0)

[δf(w ◦ s) , 0]
]
= εF ,1 ⩽ (k+ 2)p−1ε

and

E

s∈
→
X(k)

[
P

w∈XF
s (0)

[f(w ◦ si) , δg(w ◦ si)]

]
= distk(f , δg).
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This is less or equal to

⩽ (k+ 2)p−1ε+ (k+ 1) distk(f , δg)

⩽(k+ 2) (k+ 1)!
(k+ 1)!p

−1β−(k+1)ε+ (k+ 2)(k+ 1)(k!)p−1β−(k+1)ε
k∑

j=0

1
j!

=(k+ 2)!β−(k+1)p−1ε
k+1∑
j=0

1
j!

.

and (4.4) follows. □

4.3 Proof of remaining claims

Proof of Claim 4.3. Consider the distribution where we sample some (i,F , I) ∈ {1, 2, ..., k+ 2} × ( [d]
k+2)× ([d]ℓ ),

so that F is uniform, i is uniform, and I ⊆ F is uniform given that |I| = i. Let ψ : X(k+ 1) → R be the
indicator of the set {δf , 0}. Denote by ε = E[ψ]. Then E(i,F ,I) [εF ,I ] = ε (where εF ,I is the expectation
of ψ over faces t so that col(t) ∩ F = I). Let F be the set of colors F so that XF is locally coboundary
expanding as defined in Theorem 4.1. By assumption P [F ] ⩾ p. Thus we have that

E
(i,F ,I):F ∈F

[εF ,I ] ⩽ p
−1ε.

In particular,

E
F ∈F

[
k+2∑
i=1

εF ,i

]
⩽ (k+ 2)p−1ε,

where εF ,i = EI⊆F ,|I|=i [εF ,I ] . We conclude by taking some F ∈ F so that the sum of εF ,i is less than the
expectation. This is the F we need. □

Proof of Claim 4.6. Recall that by definition g(r′ ◦ s) = gs
0(r

′) for some gs
0 so that δgs

0(a) =
∑k−i

ℓ=0(−1)ℓgs
0(aℓ)

is the closest coboundary to the function hs. The function hs was defined by

hs(a) = f(a ◦ s) − (−1)|a|
i−2∑
ℓ=0

(−1)ℓg(a ◦ sℓ).

δgs
0(a) = h(a) if and only if

δg(a ◦ s) =
k∑

j=0
(−1)jg((a ◦ s)j) =

δgs
0(a) +

k∑
j=k−i+1

(−1)jg((a ◦ s)j)
δgs

0(a)=h(a)
=

hs(a) +
k∑

j=k−i

(−1)jg((a ◦ s)j) =

f(s ◦ r) −
i−1∑
ℓ=0

(−1)ℓ+(k−i+1)g(a ◦ sℓ) +
k∑

j=k−i+1
(−1)jg((r ◦ s)j) = f(r ◦ s).
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The last equality is due to a change of variables in
∑i−2

ℓ=0(−1)ℓ+(k−i+1)g(a ◦ sℓ) from ℓ to j := ℓ+ (k− i+

1). □

Proof of Claim 4.7. Let s, r be so that |s| = i+ 1, both δf(r ◦ s) = 0 and for every sj ⊆ s, it holds that
δg(r ◦ sj) = f(r ◦ sj).

Observe that,

δhs(r) =
k−i∑
j=0

(−1)jhs(rj) =
k−i∑
j=0

(−1)jf(rj ◦ s) − (−1)k−i
k−i∑
j=0

i∑
ℓ=0

(−1)j+ℓg(rj ◦ sℓ)

where the second equality is by the definition of hs. By Claim 2.1 this is equal to

k−i∑
j=0

(−1)jf(rj ◦ s) − (−1)k−i
k−i∑
j=0

i∑
ℓ=0

(−1)j+ℓg(rj ◦ sℓ) − (−1)k−i
i∑

j=0

i−1∑
ℓ=0

(−1)(k−i)+1+j+ℓg(r ◦ (sℓ)j).

Note that in change of variables above we are using the fact that r ◦ (sℓ) is equal to (r ◦ s)ℓ+|r| We change
variables in the rightmost sum ℓ := ℓ+ (k− i+ 1), so this is equal to

k−i∑
j=0

(−1)jf(rj ◦ s) − (−1)k−i
k−i∑
j=0

i∑
ℓ=0

(−1)j+ℓg(rj ◦ sℓ) − (−1)k−i
i∑

j=0

k∑
ℓ=k−i+1

(−1)j+ℓg((r ◦ sj)ℓ).

Rearranging, we get that this is equal to

k−i∑
j=0

(−1)jf((r ◦ s)j) −
i∑

j=0
(−1)j+(k−i)δg(r ◦ sj) =

k−i∑
j=0

(−1)jf((r ◦ s)j) +
k∑

j=k−i+1
(−1)jδg((r ◦ s)j).

If for all r ◦ sj we have that δg(r ◦ sj) = f(r ◦ sj), then this is equal to

k∑
j=0

(−1)jf((r ◦ s)j) = δf(r ◦ s).

Finally, if δf(r ◦ s) = 0 then indeed δhs(r) = 0. □

5 k-coboundary expansion of order complexes of geometric lattices

In this section we analyze the coboundary expansion of k-chains in a d-dimensional spherical building, and
prove lower bounds that depend on k but are independent of the ambient dimension d. Our analysis holds
for any d-dimensional order complex of a homogeneous geometric lattice (see Section 2.3), a setting that
generalizes the spherical building.

Theorem 5.1. Let k+ 2 < d. There exists constants βk = exp(−O(k5 log k)) > 0 so that for every group Γ
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and every order complex of a homogeneous geometric lattice X, X is a coboundary expander with constant

hk(X, Γ) ⩾ βk.

We did not try to optimize the constants βk.
Recall that hk(X, Γ) is defined for abelian groups Γ for all k ⩾ 1, and for k = 0, 1 for all groups Γ. In

this section we assume that Γ is abelian. Section A treats the case of non-abelian Γ and k = 1. The case for
k = 0 is straightforward. Claim 2.5 establishes that geometric lattices are edge expanders, and Claim 2.3
asserts that edge expansion implies constant coboundary expansion.

Note that an order complex of a d− 1-graded lattice is naturally d-partite. For any F ⊆ [d], we defined
the restriction of X to the colors of F to be the complex XF = {s ∈ X | col(s) ⊆ F}. A color restriction
XF is said to be (k,β)-locally coboundary expanding (with respect to Γ) if hk(XF , Γ) ⩾ β and for every face
s ∈ X(j) so that col(s) ∩ F = ∅, hk−|s|(XF

s , Γ) ⩾ β (for j ⩽ k).
Our main effort will be to show that XF is a local coboundary expander for many possible sets of colors

F . Theorem 4.1 will then imply a lower bound on the coboundary expansion of X itself.

Lemma 5.2. Let ck = k2+5k+4
2 . Let d ⩾ ck and let X be a d-dimensional homogeneous geometric lattice.

There are constants pk = exp(−O(k5 log k)) and β′
k = exp(−O(k2 log k)) depending only on k so that for

every abelian group Γ,

P
F ∈([d+1]

ck
)

[
XF is a (k,β′

k)-locally coboundary expander with respect to Γ
]
⩾ pk.

The proof of Theorem 5.1 is direct given this lemma and Theorem 4.1. We have it explicitly at the end of
this section.

To prove this lemma, we use the cone machinery developed by [Gro10; LMM16; KM19; KO21]. We take a
detour to define and explain their machinery in the next subsection.

Throughout the proof, we shall assume that d ≫ k (in particular, d ⩾ k2+5k+4
2 ). The work of [KM19]

gives constant coboundary expansion when d is smaller (see [KM19, Section 3.3] ).

5.1 Boundaries and cones

We fix X to be a d-dimensional simplicial complex for d ⩾ k. We consider Ck(X, Z). It will be convenient
to write members of Ck(X, Z) as a formal sum, so we prepare some conventions first. We identify

→
X(k) ⊆

Ck(X, Z) where t ∈
→
X(k) is identified with the function

ft(s) =


1 s = π(t) for some permutation π with an even sign

−1 s = π(t) for some permutation π with an odd sign

0 otherwise

.

These functions span Ck(X, Z) 6. Thus we can write every f ∈ Ck(X, Z) as f =
∑

t∈
→
X(k)

αtt.

The support of a function supp(f) ⊆ X(k) is the set of all t ∈ X(k) so that f(
→
t ) , 0 (for any ordering

→
t of t). The vertex support vs(f) ⊆ X(0) is the set of all vertices that are contained in some t ∈ supp(f).

6by choosing an ordering
→
t for every t ∈ X(k), the functions

{→
t

∣∣∣ t ∈ X(k)

}
are a basis for Ck(X, Z).
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The boundary operator. Let ∂k : Ck(X, Z) → Ck−1(X, Z) be the operator defined by

∂f =
∑

t∈
→
X(k)

αt

k∑
i=0

(−1)iti.

This is the k-th boundary operator. It is a direct calculation to verify that this is well defined, i.e. that it
does not depend on the choice of orientations of the faces in the sum of f .

Restriction to a vertex. Let w ∈ X(0) and let f ∈ Ck(X, Z) be f =
∑

t∈X(k) αtt. The restriction to w
is the following function fw :=

∑
t∈X(k),t∋w αtt.

Appending a vertex. Let w ∈ X(0) and let f ∈ Ck(X, Z) be a function that is supported in the link of
w. Namely, f =

∑
t∈Xw(k) αtt. We denote by fw ∈ Ck+1(X, Z) the function fw =

∑
t∈Xw(k) αt(w ◦ t). We

note that this too does not depend on the representation of f . We record the following equality that will be
useful later.

∂k+1(f
w) = f − (∂kf)

w (5.1)

For example, if f = uv, and w is some vertex, then fw = wuv and

∂fw = uv−wu+wv

= f − ((u− v)w) = f − (∂f)w.

Cones. Let ℓ < d. An ℓ-cone ψ = (ψi : Ci(X, Z) → Ci+1(X, Z))ℓ
i=−1 is a sequence of functions so that:

1. Every ψi is Z-linear, that is ψ(a · s+ b · s′) = aψ(s) + bψ(s′).

2. The main property: for every j ⩽ ℓ and every s ∈ X(j), it holds that

∂ψj(s) = s−
j∑

i=0
(−1)iψj−1(si).

We illustrate the first levels of cones.

1. A (−1)-cone is just given by a single vertex ψ−1 : C−1(X, Z) → C0(X, Z); ψ−1(∅) = v ∈ X(0) (up to
multiplying by an integer).

2. Let v0 = ψ−1(∅). To extend ψ to a 0-cone we choose walks (v0, v1, ..., vm = u) from v0 to u for every
u ∈ X(0) and set ψ(u) =

∑m−1
i=0 vivi+1. It is direct that ∂ψ(u) = u− v0 = u−ψ−1(∅). We note that

it is always possible to add a cycle to ψ(u) (i.e. any R ∈ C2(X, Z) so that ∂R = 0).

3. To extend ψ to a 1-cone, we need to find some ψ(uw) ∈ C2(X, Z) such that ∂ψ(uw) = uw−ψ(w) +

ψ(u). By the above, this is a cycle containing v0 and the edge uw, so we need to “fill” this cycle with
triangles.

When it is clear from context, we omit the index and just write ψ(s). We note (and later use) the
following.
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Claim 5.3. Let ψ be any cone and let s ∈ X(j). Then

∂(s−
j∑

i=0
(−1)iψ(si)) = 0. (5.2)

□

The reader may prove this by computing directly.
For ℓ′ < ℓ and an ℓ-cone ψ = (ψi : Ci(X, Z) → Ci(X, Z))ℓ

i=−1, the partial sequence ψℓ′ = (ψi :
Ci(X, Z) → Ci(X, Z))ℓ′

i=−1 is an ℓ′-cone.
The radius of a cone is

rad(ψ) := max
s∈X

|supp{ψ(s)}|.

The following theorem connects cones with small radius to coboundary expansion.

Theorem 5.4 ([KO21] Theorem 3.8, see also [KM19], Theorem 2.5). Let X be a k dimensional simplicial
complex so that there exists a group G that acts transitively on its k-dimensional faces. Assume that the
ℓ+ 1-skeleton has an ℓ cone with radius B. Then X is a coboundary expander and hℓ(X, Γ) ⩾ 1

B(k+1
ℓ+1)

for
any abelian group Γ.

Remark 5.5. In previous works this theorem was proven for Γ = F2. Following the same steps for arbitrary Γ
gives exactly the same statement. We omit it from the paper.

Let X = XP be the order complex of a homogeneous geometric lattice P , and let F any set of ℓ colors.
Then Aut(P ) acts transitively on the ℓ-faces of XF . The same is true for top-level faces of color restrictions
of links XF

s . Hence Lemma 5.2 will follow from Theorem 5.4 if we show there are enough colors F so that
XF and its local views XF

s have small radius k-cones.

5.2 Proof of Lemma 5.2

Let P be a homogeneous geometric lattice, and let X be its d-dimensional order complex.
Recall that the colors in an order complex of a graded lattice correspond to the ranks of the elements.

We will construct cones for certain sets of colors that correspond to ranks that are roughly exponentially
increasing. For i = 0, . . . , k we will keep track of the parameters ci,ni,Di which we now define inductively.

– ci is the number of colors we need for constructing an i-dimensional cone,

c0 = 2 and ci = ci−1 + (i+ 2) = i2 + 5i+ 4
2 .

– Di upper bounds the radius of the i-cones,

D0 = 3 and Di = (i+ 2)(i+ 1)(Di−1 + 1).

We record that Di = exp(O(i2 log i)).

– ni upper bounds the size of the vertex support of the i-cones,

n0 = 4 and ni = 2(i+ 2) − (i+ 1)2 + (i+ 1)ni−17.
7One can show by induction that ni ⩾ i + 1 and in particular that this sequence is positive.
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We record that ni = exp(O(i log i)).

Let ℓ ⩾ ck. A set of colors F = {i1 < i2 < ... < iℓ} is called k-suitable if the following holds i2 ⩾ 2i1, and for
every j = 0, 1, ..., k− 1 and m = 1, 2, ..., j + 2 it holds that icj+m ⩾ nj · icj +

∑m−1
m′=1 icj+m′ . While the exact

inequalities may seem opaque, intuitively F is k-suitable if every ij+1 is sufficiently larger than its previous
color ij . For example, if for every j, ij+1 > (k+ 3)nkij then F is k-suitable.

Proposition 5.6 (Key Proposition). Let F = {i1 < i2 < ... < iℓ} be a set of k-suitable colors. Let X be
either an order complex of a geometric lattice, or a link of said complex. Then XF has a k-cone of radius
⩽ Dk.

Proof of Lemma 5.2 (given Proposition 5.6). By Proposition 5.6, for every k-suitable set of colors F that has
size ck, and every s ∈ X(j− 1) so that col(s)∩F = ∅, it holds that XF

s has a (k− j)-cone of radius Dk−j ⩽ Dk.
It follows from Theorem 5.4 that that hk−j(XF

s , Γ) ⩾ 1
(ck+1

k+1 )Dk
:= β′

k. Note that Dk = exp(O(k2 log k)) and

( ck
k+1) ⩽ (k2

k ) = exp(O(k log k)) so indeed β′
k = exp(−O(k2 log k)).

We need to show that the set of suitable colors F ⊆ ( d
ck
) is a constant fraction of all colors (that depends

on k only). The intuitive idea is that a set is suitable if each color is in a strip [αd,βd) that guarantees
they satisfy a sequence of inequalities of the form ij+1 ⩾ B · ij . The probability that this happens for a
random set of colors is sufficient for our purpose. Indeed, let F = {i1 < i2 < ... < ick

} be a set of colors. Let
B = (k+ 3)nk. If for every j = 1, 2, ..., ck it holds that

ij ∈
[

d

(2B)ck+1−j
, 2d
(2B)ck+1−j

)
,

then in particular ij+1 ⩾ B · ij . One can easily verify that this implies that F is k-suitable, since i2 ⩾ Bi1 ⩾ 2i1
and icj+m ⩾ (k+ 3)nk · icj+m−1 ⩾ njicj +

∑m−1
m′=1 icj+m′ . On the other hand, there are at least

ck∏
j=1

(
2d

(2B)ck+1−j
− d

(2B)ck+1−j

)
= dck · 1

(2B)
c2

k
+ck−

∑ck
j=1 j

.

such sets F . As ( d
ck
) ⩽ dck , it holds that P

F ∈([d]ck
)
[F ] ⩾ 1

(2B)
c2
k
+ck−

∑ck
j=1 j

:= pk as required.

Finaly, we draw our readers attention to the fact that B = exp(O(k log k)) and ck = O(k2) so pk =

exp(−O(k5 log k)). □

It remains to prove Proposition 5.6. We will prove a stronger statement that is amenable to an inductive
proof:

Proposition 5.7. Let F = {i1 < i2 < ... < iℓ} be a set of k-suitable colors. Let X be either an order complex
of a geometric lattice, or a link of said complex. Then XF has a k-cone of radius ⩽ Dk. Denote this cone ψ.
It has the following properties:

1. For every j ⩽ k and s ∈ X(j), it holds that |vs(ψj(s))| ⩽ nj .

2. For every j ⩽ k and s ∈ X(j) and every u ∈ vs(ψj(s)) \ s, it holds that col(u) ⩽ icj .

The proof of Proposition 5.7 will use the following properties of our complex.

Claim 5.8. Let X be either an order complex of a geometric lattice, or a link in said order complex. Then X
has the following properties.
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1. The bipartite graph (X [i1],X [i2]) has diameter 2.

2. If col(v) > col(u) and v ∼ u then Xv [{i ⩽ col(u)}] ⊇ Xu[{i ⩽ col(u)}].

3. (Bound on join rank) For every j = 0, 1, ..., k − 1 and m = 1, 2, ..., j + 2 the following holds. Let
D ⊆ X(0) be a set of at most nj vertices of colors ⩽ icj . Let M = {v1, v2, ..., vr} be so that
icj+1 ⩽ col(v1) < col(v2) < ... < col(vr) ⩽ icj+m−1. Then there exists a vertex w ∈ X [icj+m] so that
the complex induced by D ∪M is contained in Xw.

4. The property in item 3 holds in Xs for every s ∈ X so that all colors in s are all greater than icj+m.

We prove this claim after proving the proposition.

Proof of Proposition 5.7. We construct a cone ψ inductively. We note that as all the ψj are Z-linear and
Ck(X, Z) is generated by X(k) ⊆ C(X, Z), it is enough to define ψj on s ∈

→
X(k) so that it respects

anti-symmetry (i.e. ψj(π(s)) = sign(π)ψj(s)).
The first two steps of our construction, corresponding to ℓ = −1, 0, are as follows:

1. ψ−1(∅) = v0, where v0 ∈ X [i1] is chosen arbitrarily.

2. For u ∈ X(0) we construct ψ0(u).

– If u = v0 then ψ0(v0) = 0.

– If v0u ∈ X(1) then ψ0(u) = v0u.

– If u ∈ X [i1] then by the assumption that (X [i1],X [i2]) has diameter 2, they have a common
neighbor w ∈ X [i2]. We assign ψ0(u) = v0w+wu.

– Finally, for other u ∈ X [ij ] first find a neighbor of u w1 ∈ X [i1]. Select some w2 ∈ X [i2] that is a
common neighbour of v0 and w1. Finally we set ψ0(u) = v0w2 +w2w1 +w1u.

As we can see from the description above, there are many choices for ψ, so we choose arbitrarily. Notice that
the first two parts of the cone ψ0 = {ψ−1,ψ0} have radius D0 = 3. The number of vertices in ψ(u) is at
most n0 = 4. Finally, the vertices participating in ψ(u) are either u or vertices whose colors are i1, i2.
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For ℓ ⩾ 1 given ψℓ we construct ψℓ+1, as described in the algorithm appearing in Figure 2.

Algorithm 5.9. Input: s ∈ X(ℓ+ 1)

1. Set

R0 = s−
ℓ+1∑
i=0

(−1)iψ(si),

s0 =
{
v ∈ s

∣∣ col(v) > icj

}
,

2. Order the vertices in s0 = (v0, v2, ..., vt) so that col(v1) < col(v2) < ... < col(vt).

3. (Shifting step) For j = 0 to t:

(a) If col(vj) , icℓ+j+1:

i. Find a vertex v′
j so that supp((Rj)vj ) ⊆ Xv′

j
and so that col(v′

j) = icℓ+j+1.

ii. Set Tj = ((Rj)vj )
v′

j , and set Rj+1 = Rj − ∂Tj .

(b) Else: set Tj = 0 and set Rj+1 = Rj .

4. (Star step) Find some u ∈ X [icℓ+1 ] so that Rt+1 is in the link of u.

5. Output ψ(s) = Ru
t+1 +

∑t
r=0 ∂Tr.

Figure 2: Constructing ψ(s)

Fix s ∈
→
X(ℓ+ 1) and let R0 = s−

∑ℓ
i=0(−1)iψ(si). Before constructing ψ formally, we describe the

main idea.
We will first find a sequence of “shifted chains” R0,R1, ...,Rt+1 so that all vertices in the support

of Rt+1 are of colors < icℓ+1 and each Rj is Rj−1 “shifted” by Tj−1. Namely, there is a sequence of
T0,T1, ...,Tt ∈ Cℓ+1(X, Z) where Rj+1 = R0 −

∑j
r=0 ∂Tr. We will explain below how to construct such

chains.
Next we will use item three in Claim 5.8 to argue that due to the fact that Rt+1 is supported only on

vertices of colors < icℓ+1 , there exists some u ∈ X [icℓ+1 ] so that the complex induced by the vertices of Rt+1

is contained in Xu. Finally we will set

ψ(s) :=
t∑

r=0
Tr +Ru

t+1. (5.3)

A direct calculation shows that ∂ψ(s) = R0:

∂ψ(s) = ∂(
t∑

r=0
Tr +Ru

t+1)

(5.1)
=

t∑
r=0

∂Tr +Rt+1 + (∂Rt+1)
u

=
t∑

r=0
∂Tr +R0 −

t∑
r=0

∂Tr + (∂R0 +
t∑

r=0
∂∂Tr)

u
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= R0 + (∂R0 +
t∑

r=0
∂∂Tr)

u

∂∂=0
= R0 + (∂R0)

u = R0.

The last equality is due to Claim 5.3 which states ∂R0 = 0.
Let us understand how to perform the shifting step. Note that by the assumption on ψℓ any vertex in

vs(R0) of color > icℓ
must come from s itself. So let v0, v1, ..., vt ⊆ s be the vertices in vs(R0) of colors > icℓ

(the vertices of color ⩾ icℓ+1 are a subset of these vertices). The sets Tj we want will have the property that
vs(Rj+1) = vs(Rj − ∂Tj) = (vs(Rj) \ {vj})∪ {v′

j}, where the replacing vertices v′
0, v′

1, ..., v′
t are of low-colors

(col(v′
j) = icℓ+j+1).

We construct Tj as follows. Assume without loss of generality that v0 ≺ v1 ≺ ... ≺ vt according to the order
of the lattice. This implies that col(vj) ⩾ icℓ+j+1. If col(vj) = icℓ+j+1 then by setting Tj = 0 we are done.
Otherwise, col(vj) > icℓ+j+1. We will find a vertex v′

j of color icℓ+j+1 so that for every face s′ ∈ supp(Rj)

that contains vj , s′ ∪ {v′
j} ∈ X. Then we take Tj = ((Rj)vj )

v′
j (i.e. Tj takes all faces that contain vj in Rj

and adds v′
j to them). We will show below that vj is no longer in the support of Rj+1 = Rj − ∂Tj .

The reason we can find such a v′
j is the fourth item of Claim 5.8; this item promises us existence of some

v′
j ≺ vj so that all the vertices in vs((Rj)vj ) of color < col(vj) are also neighbors of v′

j . Moreover, as v′
j ≺ vj

it also holds that v′
j ≺ vj+1 ≺ ... ≺ vt, this promises us that all vs((Rj−1)vj ) are also neighbors of v′

j . Thus
(Rj−1)vj is contained in the link of v′

j and Tj is well defined as a chain in X.
We summarize this process in the following claim. Its proof, which technically formalizes this discussion,

is given below.

Claim 5.10.

1. The shifting step is always possible. That is, there exists v′
j so that supp((Rj)vj ) ⊆ Xv′

j
and so that

col(v′
j) = icℓ+j+1. Moreover,

2. If Rj , Rj−1 then vs(Rj) ⊆ (vs(Rj−1) ∪ {v′
j}) \ {vj} and

3. |supp(Rj)| ⩽ |supp(Rj−1)| ⩽ ... ⩽ |supp(R0)|.

Note that the last item will be necessary when we will bound |ψ(s)|.
As alluded to in the discussion, after obtaining Rt+1 we need to show that there exists some u ∈ X [icℓ+1 ]

so that Rt+1 ⊆ Xu.
Let M ⊆ vs(Rt+1) be the vertices of colors > icℓ

. By the shifting step there is at most one vertex of
each color in M . Let B ⊆ vs(Rt+1) be the rest of the vertices, all of which are of color ⩽ icℓ

. By the last
item of Claim 5.10 there are at most |vs(Rt+1)| ⩽ |vs(R0)| vertices in B. This is at most nℓ+1 by induction
hypothesis on the cone already constructed. Hence by item 3 in Claim 5.8, there exists some u ∈ X [icℓ+1 ] so
that the complex induced by M ∪B = vs(Rt+1) is in the link of u. This shows that ψ(s) is well defined.

Now that we established that ψ is a cone, we bound its radius and verify its other properties.

The radius. Obviously |supp(Rt+1)u| = |supp(Rt+1)|, and by last item in Claim 5.10, this is ⩽ | suppR0|.
By the inductive assumption on ψℓ,

|supp(R0)| ⩽ 1 +
ℓ+1∑
i=0

|supp(ψ(si))| ⩽ (ℓ+ 2)rad(ψℓ) + 1 ⩽ (ℓ+ 2)(1 +Dℓ).
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Moreover, in every iteration of the shifting step we added Tj to ψ(s). The faces in Tj = ((Rj)vj )
v′

j , the
support of this function is again of size at most (ℓ+ 2)(1+Dℓ) (since by the last item of the size of Claim 5.10,
the support of Rj is less or equal to the size of R0’s support). There are at most ℓ+ 2 iterations in the
shifting step. So the support of

∑t
j=0 Tj is at most (ℓ+ 2)2(1 +Dℓ). In total, for every s ∈ X(ℓ+ 1),

|supp(ψ(s))| = |supp

(Rt+1)
u +

t∑
j=0

∂Tj

| ⩽ (ℓ+ 3)(ℓ+ 2)(1 +Dℓ) = Dℓ+1.

Colors of vs(ψ(s)) \ s. The vertices in (vs(ψ(s)) \ s that come from R0 = s−
∑ℓ+1

i=0 ψ(si) have colors
⩽ icℓ

by the induction hypothesis on ψℓ. The other vertices in vs(ψ(s)) \ s either come from the shifting
step, in which case these are the v′

j that have colors ⩽ icℓ+1+j+1, or the vertex of color icℓ+1 from the star
step. To conclude, all vertices of vs(ψ(s)) \ s have colors ⩽ icℓ+1 .

The size of vs(ψ(s)). The vertex support of every Tj consists only of the vertex support of R0 and the
new v′

j that we added. There are at most ℓ+ 2 vertices v′
j introduced by the sets Tj . The vertex support of

(Rt+1)u is u together with the vertex support of (Rt+1). Thus vs(ψ(s)) ⊆ vs(R) ∪ {v′
1, ..., v′

m} ∪ {u}. The
vertex support of R0 satisfies

|vs(R0)| = |vs(s−
j∑

i=0
ψ(si))| ⩽ |s| + 1 +

ℓ+1∑
i=0

(|vs(ψ(si))| − |si| − 1) .

Here we subtract |si| + 1 from the sums since we need to count the vertices of s and u0 only once. Hence
|vs(R0)| ⩽ ℓ+ 3 − (ℓ+ 2)2 + (ℓ+ 2)nℓ. Plugging this back in we get that

|vs(ψ(s))| ⩽ ℓ+ 3 − (ℓ+ 2)2 + (ℓ+ 2)nℓ + (ℓ+ 3) = nℓ+1.

□

Proof of Claim 5.8. Here when we write u ⩽ v we mean by the order of the lattice, and when we write
col(u) > col(v) we mean the usual order of integers.

1. Let u1,u2 ∈ X [i1] the join u1 ∨ u2 has rank ⩽ 2i1. By properties of the lattice, there exists some
v ∈ X [i2] so that v ⪰ u1 ∨ u2 ⪰ u1,u2. In particular, there is a path u1, v,u2 and the diameter is 2.

2. If col(v) > col(u) and v ∼ u this implies that v ⪰ u. In particular, w ∈ Xu[{i ⩽ col(u)}] if and only if
w ⪯ u ⪯ v and thus w ∈ Xv [{i ⩽ col(u)}].

3. Let u be the join of all the elements in M ∪D. The rank of u is at most the sum of the ranks
of the elements in M ∪D. That is, col(u) ⩽ nj · icj +

∑m−1
m′=1 icj+m′ . By assumption on the colors

icj+m ⩾ col(u). Therefore, there is some w ∈ X [icj+m] that contains u (if col(u) < icj+m we can
always add atoms to u one by one, each increasing the rank by 1, until we reach some w ≻ u whose
color is icj+m as required). In particular the complex induced by M ∪D is in the link of w.

4. Let v ∈ s be the vertex with the smallest rank. By the second property proven above, it holds that
Xs[{i1, ..., icj+m}] = Xv [{i1, ..., icj+m}]. Note that Xv [{i1, ..., icj+m}] is a partially ordered set whose
elements are strictly less than v in the order of the lattice. This is also a geometric lattice (or a link of
said lattice), thus the proof for item 3 holds there as well.

38



□

This following claim shall be used in the proof of Claim 5.10.

Claim 5.11. Let R ∈ Ck(X, Z) so that ∂R = 0. Then w < vs(∂Rw) or equivalently (∂Rw)w = 0.

Proof of Claim 5.11. We write R = Rw + R′ =
∑

w∈t αtt + R′ and get that 0 = ∂R = ∂Rw + ∂R′. In
particular (∂Rw)w = (−∂R′)w. As w < vs(R′) it is also not in vs(∂R′), so (∂R′)w2 = 0. In conclusion
(∂Rw)w = 0. □

Proof of Claim 5.10. We prove this by strong induction on j. Assume that the claim holds for all j′ < j.
Let us begin with the first item. Our goal is to show that the conditions in the last item of Claim 5.8

hold on (Rj−1)vj . By the induction hypothesis, we note that the vertex support of (Rj−1)vj is contained in
the union of:

1. The vertices of s′ =
{
v ∈ s

∣∣ col(v) ⩾ col(vj)
}

⊆ s.

2. A subset M ⊆ {v′
1, ..., v′

j−1} which were added to the support in one of the previous steps.

3. Other vertices D that came from the support of R0. There are at most nℓ of those, and they all have
colors ⩽ icj by our assumption on the cone in the previous steps.

Let Q =
{
t \ s′ ∣∣ t ∈ supp((Rj−1)vj )

}
. Q, is a subcomplex of the complex induced by M ∪D, and is contained

in Xvj [{i ⩽ col(vj)}]. Also, we note that by item 2 in Claim 5.8, this is equal to Xs′ [{i ⩽ col(vp)}] (since vj

is the vertex that has the smallest color out of s′). By the last item in Claim 5.8, there indeed exists some
v′

j ∈ Xs′ so that the complex induced by M ∪D is contained in Xv′
j∪s′ . In particular, this implies that the

support of Q is contained in the Xv′
j
. As all vertices v ∈ s′ that are not vj are greater than vj (in the lattice

order), it also holds that the support of (Rj)vj is in Xv′
j
.

We turn towards the second item. Assume that Rj , Rj−1. By construction, vs(Rp) ⊆ vs(Rj−1) ∪ {v′
j}.

So to show that vs(Rp) ⊆ (vs(Rj−1) ∪ {v′
j}) \ {vj} we need to show that vj < vs(Rj).

Rj = Rj−1 − ∂Tj

= Rj−1 − ∂(((Rj−1)vj )
v′

j )

(5.1)
= Rj−1 − (Rj−1)vj + (∂((Rj−1)vj )

v′
j .

In particular, restricting both sides to the support of vj we have that

(Rj)vj = (Rj−1)vj − (Rj−1)vj + (∂(Rj−1)vj )
v′

j
vj = (∂(Rj−1)vj )

v′
j

vj .

Note that the right-hand side is equal to ((∂(Rj−1)vj )vj ))
v′

j , i.e. we can first restrict to vj and then append
v′

j . However, this is 0 by Claim 5.11 (and the fact that ∂Rj−1 = ∂R0 −
∑j−1

r=0 ∂∂Tr = 0). So in conclusion
we have that (Rj)vj = 0 and vj < vs(Rj).

Finally we explain why the last item holds. Indeed, we notice that supp(Rj−1) \ supp(Rj) contains
all faces in supp((Rj−1)vj ). On the other hand, the faces in supp(Rj) \ supp(Rj−1) are faces of the form
(s \ vj) ∪ {vj′} for faces s ∈ supp((Rj−1)vj ). This is because faces in supp(Rj) \ supp(Rj−1) can come from
∂Tj . Faces in ∂Tj that are not of the form (s \ vj) ∪ {vj′} for faces s ∈ supp((Rj−1)vj ), must contain vj

(since Tj = ((Rj−1)vj )
v′

j and thus all its faces contain vj) but as we saw vj < vs(Rj) so all these faces are
not in the support of Rj . Hence |supp(Rj)| ⩽ |supp(Rj−1)|. □
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5.3 Proof of Theorem 5.1

Proof. Lemma 5.2 says that the homogeneous geometric lattice satisfies the assumptions of Theorem 4.1, with
β = β′

k = exp(−O(k2 log k)) and p = pk = exp(−O(k5 log k)). Thus concluding that X is a coboundary
expander and that

hk(X, Γ) ⩾
pkβ

′k+1
k

e(k+ 2)! = exp(−O(k5 log k)).

□

6 Applications to known bounded degree complexes

6.1 Cosystolic expansion of known complexes

6.1.1 [LSV05a] complexes

We now put everything together and show that complexes constructed by Lubotzky, Samuels and Vishne have
degree and dimension independent cosystolic expansion. Recall the following properties of their construction.

Theorem (Restatement of Theorem 2.6). For any prime power q and integer d > 1, there is a family
Xq,d = {Xn}∞

n=1 of connected complexes whose links are (isomorphic copies of) the SLd(Fq)-spherical
building. In particular, For every λ > 0 there is some q0 so that every Xn is a λ-one sided high dimensional
expander when q ⩾ q0.

Theorem 6.1. For every k > 0 there is some constant βk = exp(−O(k6 log k)) > 0 and integer q0 so that
for every prime power q > q0, integer d > k+ 2, group Γ, and X ∈ Xq,d it holds that

hk(X, Γ) ⩾ βk.

Proof of Theorem 6.1. We wish to apply Theorem 1.2 to the complexes of Theorem 2.6. By Theorem 5.1 there
is a sequence of constants {βℓ = exp(−O(ℓ5 log k))}k

ℓ=0 so that for every q, d the spherical building SLd(Fq)

satisfies hℓ(SLd(Fq), Γ) ⩾ βℓ for every group Γ. There is some q0 so that for every q > q0, Xn are also
λ-expanders for λ = exp(−O(k6 log k)). Applying Theorem 1.2, we get that hℓ(Xn, Γ) ⩾ exp(−O(ℓ6 log ℓ))
for every ℓ ⩽ k, and in particular, this holds for hk as claimed. □

Observe that our theorem (as well as previous bounds of [KKL14; EK16]) holds only for LSV complexes
Xq,d with sufficiently large q > q0. It seems reasonable that even for q = 2 the theorem should hold, but we
leave this as an open question.

6.1.2 [KO21] complexes

Kaufman and Oppenheim showed that links of their complexes are spectral expanders, and also coboundary
expanders for 1-chains.

Theorem (Restatement of Theorem 2.7). For every λ > 0 there exists a family of 4-partite complexes
Yλ = {Yn}∞

n=1 so that

1. Yn is a λ-one sided high dimensional expander.
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2. There exists a constant β > 0 (independent of λ) so that for every abelian group Γ and every s ∈ Yn(0),
the link of s has h1(Ys, Γ) ⩾ β.

Applying our Theorem 1.2 implies stronger bounds on the cosystolic expansion of Yn:

Theorem 6.2. For every d there exists some λ > 0 and some β′ = β2

2 (1 −O(λ)) so that for every abelian
group Γ and every Yn ∈ Yλ,d

h1(Yn, Γ) ⩾ β′.

The proof of Theorem 6.2 is just applying Theorem 1.2 on every Yn ∈ Yλ,d, and is therefore omitted.

6.2 Topological overlap of LSV complexes

Let X be d-dimensional simplicial complex. X is also a topological space constructed by taking a d-simplex
for every t ∈ X(d) and gluing two simplexes t1, t2 over their intersection t1 ∩ t2.

Definition 6.3. Let X be a d-dimensional simplicial complex and let c > 0. We say that X has (c, k)-
topological overlap if for every continuous map f : X → Rk there exists a point p ∈ Rk so that

P
t∈X(d)

[p ∈ f(t)] ⩾ c.

We call such a point p a c-heavily covered point (with respect to f), since if the measure on X(d) is
uniform, this is proportional to the number of d-faces covering p.

Theorem 6.4 ([Gro03]). Let X be a simplicial complex so that

1. For every ℓ ⩽ k, hℓ(X, F2) ⩾ β.

2. For every ℓ ⩽ k and every g ∈ Zk(X, F2) \Bk(X, F2), wt(g) ⩾ ν.

3. maxv∈X(0) P [v] ⩽ ε.

Then the k-skeleton of X has (c, k)-topological overlap (i.e. for continuous functions to Rk) for c =
νβk+1

2(k+1)! − εk2β−(2k+1).

The constant c was estimated by [DKW18]. In addition, it turns out that one can replace Rk with any
k-dimensional manifold that admits a piecewise-linear triangulation, and this theorem still holds.

The work by [EK16] used this theorem to show that [LSV05a] complexes have the topological overlap
properties. Namely, they showed that these complexes have

hk(X,β) = Ω(min{ 1
Q

, (d!)−O(2k)}),

where d is the dimension of the complex, and Q is the maximal number of edges adjacent to a vertex. They
also show that g ∈ Zk(X, F2) \Bk(X, F2) has weight at least ν = (d!)−O(2k). Plugging this in Theorem 6.4
gives a topological overlap constant of c = Q−k exp(−O(2kd log d)).

A direct application of our cosystolic expansion bounds, together with Proposition 3.2, gives us bounds
that are independent of the degree of the vertices, and the ambient dimension of the complex. In addition, it
gives a better dependence in k (exponential instead of doubly exponential).
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Corollary 6.5. Let {Xn} be the simplicial complexes in Theorem 6.1. Then Xn have the (c, k)-topological
overlap with c = exp(−O(k7 log k)) − ε · exp(O(k7 log k)), where ε = 1

|Xn(0)| (and goes to 0 independent of
k).

We note that a similar corollary holds for the spherical building and other homogenuous lattices.

Proof. The corollary follows from plugging in the parameters of the complexes in Theorem 6.1, to Theorem 6.4.
Theorem 6.1 gives us hk(X, F2) = exp(−O(k6 log k)) cosystolic expansion. Proposition 3.2 give us a bound
of ν = exp(−O(k6 log k)) on the weight of all g ∈ Zk(X, F2) \Bk(X, F2). □

Our bounds also directly imply that the 2-skeletons of all complexes constructed in [KO21] have Ω(1)-
topological overlap (where previously the bound depended on the maximal degree of a vertex). We omit the
direct proof.

Corollary 6.6. Let {Y ′
n} be the two skeletons of complexes in Theorem 6.2 with a sufficiently large number

of vertices. Then every Yn is a (c, 1)-topological overlap for some universal constant c > 0. □

6.3 Cover stability

Dinur and Meshulam studied local testability of covers [DM22], and showed that covering maps of a simplicial
complex X are locally testable if and only if X is a cosystolic expander on 1-chains. We briefly describe their
result below, and show that our new bounds on cosystolic expansion of 1-chains of [LSV05a] and [KO21]
complexes, show that covering maps to these complexes are locally testable.

Definition 6.7 (covering map). Let X,Y be pure simplicial complexes. A covering map is a surjective
simplicial map8 ρ : Y (0) → X(0) such that for every ũ ∈ Y (0) that maps to ρ(ũ) = u ∈ X(0), it holds that
ρ|Yũ(0) : Yũ(0) → Xu(0) is an isomorphism. If there exists such a map ρ we say that Y is a cover of X.

While covering maps are described combinatorially in simplicial complexes, they are a well-known
topological notion in general topological spaces. They are classified by the fundamental group of the complex
X [Sur84]. This is an interesting example for a non-trivial topological property that is locally testable.

The one-dimensional case, i.e. graph covers, have been useful in construction of expander graphs. Bilu
and Linial showed that random covers of Ramanujan graphs are almost Ramanujan [BL06]. A celebrated
result by [MSS15] used these techniques to construct bipartite Ramanujan graphs of every degree. Recently,
[Dik22] showed that random covers could also be applied for constructing new local spectral expanders.

Local testability of covering maps. Given a map ρ : Y (0) → X(0), we wish to test whether (Y , ρ) is
close to a covering map (in Hamming distance), while querying only a few of the values (u, ρ(u)).

To describe such a test restrict ourselves to the following family of maps. Fix X to be some pure
d-dimensional simplicial complex. Let S be a set, and Γ ⩽ Sym(S) be a group acting on S. The family of
functions we consider are M (Γ,S) (suppressing X in the notation). These are all (ρ,Y ) such that

1. Y (0) = X(0) × S,

2. ρ(u, s) = u and

3. For every uv ∈ X(1) the complex induced by the vertices {(u, s), (v, s) | s ∈ S} ⊆ Y (0) is a perfect
matching where (u, s) ∼ (v, γuv.s) for some γuv ∈ Γ.

8that is, for every i ⩽ d and every s ∈ Y (i), ρ(s) ∈ X(i).
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The distance between two maps is

dist((Y1, ρ1), (Y2, ρ2)) = P
uv∈X(1)

[
γY1

uv , γ
Y2
uv

]
,

where γYi
uv is the member in Γ that describes the bipartite graph induced by {(u, s), (v, s) | s ∈ S} ⊆ Yi. We

note that when S is finite this is proportional to the Hamming distance between Y (1),Y (2).
While this restriction seems arbitrary, it turns out that for every pair (Y , ρ : Y (0) → X(0)) where ρ is a

covering map, there exists some Γ,S and an identification Y (0) � X(0) × S such that ρ(u, s) = u [Sur84].
However, being in M(Γ,S) is not sufficient to being a covering map. A map in M (Γ,S) above is a covering
map if and only if for every uvw ∈

→
X(2),

γuvγvwγwu = e. (6.1)

We denote by M0(Γ,S) ⊆ M (Γ,S) the family of covering maps (Y , ρ) satisfying (6.1).
The local condition (6.1) gives rise to a local test.

Test 6.8. Input: (Y , ρ) ∈ M (Γ,S).

1. Sample uvw ∈
→
X(2).

2. Accept if (6.1) holds for uvw.

We note that this test could be realized by sampling 3|S| points in Y (0) and their values. We denote by
c(Y , ρ) = Puvw∈X(2) [test fails] , and for a complex X we define its (G,S)-cover-stability to be

C(X, Γ,S) = min
(Y ,ρ)∈M(Γ,S)\M0(Γ,S)

C(Y , ρ)
dist((Y , ρ),M0(Γ,S)) .

We say that X is c-cover stable, if for all Γ,S it holds that C(X, Γ,S) ⩾ c.

Theorem 6.9 ([DM22]). Let X be a d-dimensional simplicial complex for d ⩾ 2. Then C(X, Γ,S) = h1(X, Γ).

This test has been used as a component in the agreement test by [GK22, Lemma 3.26]9. Our results show
directly that the complexes of [LSV05a] and [KO21] are cover-stable.

Corollary 6.10. There exists some absolute constant c > 0, such that

– Order complexes of homogenuous lattices,

– the complexes in Theorem 6.1,

– and the complexes in Theorem 6.2.

are all c-cover stable. □

We point out in particular the meaning of this theorem for the case of the spherical building. The
fundamental group of the spherical building is trivial, so it has no non-trivial covers. In other words, any
cover is just a bunch of disjoint copies of the original complex. The theorem says that any approximate cover
of the spherical building must approximately split into a bunch of disjoint copies.

9While they don’t use this language to define their test, one may verify that their test is equivalent to this one.
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A Non-abelian 1-coboundary expansion in geometric lattices

In this appendix we give a proof that geometric lattices have constant 1-coboundary expansion, that applies
to coefficients coming from non-abelian groups.

Theorem A.1. Let d ⩾ 3 be and integer. Let X be the poset complex for some non-abelian homogeneous
lattice P of rank d. Let Γ be any group. Then H1(X, Γ) = 0 and

h1(X, Γ) ⩾
1

324
(

2 + 28
6−3

√
2

) .

For this theorem we need the following lemma, whose proof is elementary (although it uses ideas that also
appear in Theorem 4.1).

Lemma A.2. Let i, j, k ∈ [d] so that j > 3i, k > 3j, or i = 1, j = 2, k = 3. Then H1(X{i,j,k}, Γ) = 0 and
h1(X{i,j,k}, Γ) ⩾

(
2 + 28

6−3
√

2

)−1
for any group Γ.

Proof of Theorem A.1. Let F ⊆ ([d]3 ) be the set of all {i, j, k} so that j > 2i, k > 3j or so that i =

1, j = 2, k = 3. It is easy to see that P [F ] ⩾ 1
54 . By Lemma A.2, For every F ∈ F it holds that

h1(XF , Γ) ⩾
(

2 + 28
6−3

√
2

)−1
. It is also true that for every F and v so that col(v) < F it holds that

h0(XF
v , Γ) ⩾

(
2 + 28

6−3
√

2

)−1
(recall that Claim 2.5 implies that every link is an edge expander, which by

Claim 2.3 says h0 of the link is bounded). By Theorem 4.1, we get that

h1(X) ⩾
1

324
(

2 + 28
6−3

√
2

) .

□

Proof of Lemma A.2. Fix i, j, k as in the lemma statement and set Y = X{i,j,k}. Let f : Y (1) → Γ and
denote by T = {t ∈ Y (2) | δf(t) , 0}. Let ε = P [T ]. We need to find some g : X(0) → Γ so that

1(
2+ 28

6−3
√

2

) dist(f , δg) ⩽ ε or equivalently dist(f , δg) ⩽
(

2 + 28
6−3

√
2

)
ε.

To do so, we exploit the short cycle structure of the graph between Y [i],Y [j].
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Claim A.3. There is a distribution over (w, c) where w ∈ Y [k] and c = (u0, v0,u1, v1,u2, v2) is a 6-cycle, that
has the following properties:

1. For every ℓ ∈ {0, 1, 2}, uℓ ∈ Y [ℓ], vℓ ∈ Y [j].

2. The vertices and edges of the cycle c is contained in Yw.

3. Moreover, for every ℓ = 0, 1, 2, the marginals (w,uℓ, vℓ) and (w, vℓ,uℓ+1) has the distribution of triangles
in Y . That is, the uniform distribution. Here the index ℓ is taken modulo 3.

4. The choice of the vertex u0 and the edge v1u2 are uniformly random given that u0 , u2.

5. Given u0, v1,u2 in c, that is c = (u0, ∗, ∗, v1,u2, ∗), the path between u0 and v1 and the path between
u0 and u2 are chosen independently from one another.

Next we define a randomized labeling g to the vertices of Y {i,j}(0) based on the cycle distribution above.
We’ll show that the expected distance between f and δg over Y {i,j}(0) is ⩽ 6ε. We’ll take some g whose
distance is less or equal to the expectation. Then we’ll show, using a similar argument to that of Theorem 4.1
that we can extend g to Y [k] so that its distance to f is still O(ε).

We define a randomized labeling g to Y [i] ∪ Y [j] as follows.

1. We choose some û ∈ Y [i]. Set g(û) = 0.

2. For v ∈ Y [j] We choose some cycle c = (u0, ..., v2) so that u0 = û and v1 = v. We set g(v) =

f(u0v0) · f(v0u1) · f(u1v1).

3. For u ∈ Y [i] \ {û} We choose some cycle c = (u0, ..., v2) so that u0 = û and u2 = u. We set
g(u) = f(u0v2) · f(v2u2).

Claim A.4. Eg

[
Pvu

[
f(vu) , g(u)−1 · g(v)

]]
⩽ 6ε.

Let g : Y {i,j}(0) → Γ be some labeling so that

P
vu

[
f(vu) , g(u)−1 · g(v)

]
⩽ E

g

[
P
vu

[
f(vu) , g(u)−1 · g(v)

]]
⩽ 6ε.

We extend g to Y [k] in a similar way as in Theorem 4.1. For every r ∈ Y [k] we set

g(w) = maj
{
g(x)f(wx)−1 ∣∣ w ∈ Yr(0)

}
.

To complete the proof we bound the distance between f and δg over edges wx where w ∈ Y [k].
Note that f(wx) , g(w)−1g(x) if and only if x doesn’t agree with the majority vote on g(w). Fix w ∈ Y [k]

and partition Yw(0) to sets Sr =
{
x ∈ Yw(0)

∣∣ g(x)f(wx)−1 = r
}

. By Claim 2.5 Yw is a
1− 1√

2
2 -edge-expander,

ergo by Claim 2.3, it holds for r′ = g(w) that

P
x∈Yw(0)

[
g(w) , g(x)f(wx)−1]

= P [V \ Sr′ ] ⩽

√
2√

2 − 1
P

xy∈Yr(1)

[
g(x)f(wx)−1 , g(y)f(wy)−1]

,

that is,
√

2√
2−1 times the probability that an edge xy crosses between two sets Sr1 ,Sr2 .
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Taking expectation over w, we get that

P
w∈Y [k],wx∈Y (1)

[
f(wx) , g(x)−1g(w)

]
⩽ E

w

[
P

x∈Yw(0)

[
f(wx) , g(x)−1g(w)

]]
⩽

√
2√

2 − 1
P

wxy∈Y (2)

[
g(x)f(wx)−1 , g(y)f(wy)−1]

.
(A.1)

When δf(wxy) = e and f(xy) = g(x)−1g(y) then it holds that g(x)f(wx)−1 = g(y)f(wy)−1 since

[g(y)−1 · g(x)]f(wx)−1 · f(wy) =

f(yx)f(wx)−1f(wy) = f(yx)f(xw)f(yw) = δf(yxw) = e.

Hence
P

wxy∈Y (2)

[
g(x)f(wx)−1 , g(y)f(wy)−1]

⩽

P
xy∈Y ij (0)

[
f(xy) , g(x)−1g(y)

]
+ P

wxy∈Y (2)
[δf(wxy) , e] ⩽ 7ε.

Plugging this back in (A.1), we get that

P
wx∈Y (1),w∈Y [k]

[
f(wx) , g(x)−1g(w)

]
⩽

7
√

3√
3 − 1

ε.

Combining this with the distance of f , δg on Y ij we have that

dist(f , δg) = 1
3 · 6ε+ 2

3 · 7
√

2√
2 − 1

ε =

(
2 + 28

6 − 3
√

2

)
ε.

□

Proof of Claim A.3. First let us ignore w, and describe the choice of c = (u0, v0,u1, v1,u2, v2):

1. We choose u0 ∈ Y [i].

2. We choose an edge v1u2 ∈ Y {i,j}(1) (where v1 ∈ Y [j],u2 ∈ Y [i]), given that u2 , u0.

3. We choose a random neighbour u1 ∼ v1.

4. We choose v0, v2 ∈ Y [j] independently and uniformly at random given that u0 ∨ u1 ⊆ v0 and u0 ∨ u2 ⊆
v2.

Recall that every uℓ is has color i, and every vℓ has color j ⩾ 2i (since rk(a∨ b) ⩽ rk(a) + rk(b) = 2i).
It is easy to see that For every ℓ ∈ {0, 1, 2}, uℓ ∈ Y [ℓ], vℓ ∈ Y [j]. Also, by definition the choice of u0

and the edge v1u2 is independent given that u0 , u2, and done according to the distribution over Y [i] and
Y {i,j}(1) respectively.

Moreover, note that every edge in the cycle is indeed distributed uniformly over all edges (i.e. a random
j-colored element and i-colored element less or equal to it). For example, let us consider the edge u0v0. The
vertex u0 is a random i-element. The vertex u1 is also random (since we chose it by choosing a random v1

and then choosing a random element less or equal to it). Thus the choice of v1 is also uniformly at random
over elements that contain u0, i.e. the edge u0v0 is chosen uniformly at random.
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It is also apparent from the construction that given c = (u0, ∗, ∗, v1,u2, ∗) (which is determined in the
first two steps), the path between u0 and v1 and the path between u0 and u2 are chosen independently from
one another.

Finally, the distribution of (w, c) is done choosing c and then choosing uniformly some w ∈ Y [k] that is
greater or equal to vertices in c.

1. If k ⩾ 3j then this is possible since rk(v0 ∨ v1 ∨ v2) ⩽ 3j and since this join is randomly chosen, then
we can just choose some c that contains this join.

2. If i = 1, j = 2, k = 3 then we explain why rk(v0 ∨ v1 ∨ v2) ⩽ 3. If all u0,u1,u2 are distinct, then
vℓ = uℓ ∨ uℓ+1 and in particular v0 ∨ v1 ∨ v2 = u0 ∨ u1 ∨ u2 (and this has rank at most 3 since every
element has rank 1). Otherwise, either u0 = u1 , u2 or u0 , u1 = u2. Let’s consider the case where
u0 = u1 , u2 (the second case is similar). Then v2 = v1 = u0 ∨ u2. The element v0 = u0 ∨ u∗ for some
u∗ of rank one. It follows that v0 ∨ v1 ∨ v2 = u0 ∨ u2 ∨ u∗ and the join has rank 3.

It needs to be verified for every ℓ = 0, 1, 2, the marginals (w,uℓ, vℓ) and (w, vℓ,uℓ+1) has the distribution of
triangles in Y . But this holds since by the above, the distribution of (uℓ, vℓ) and (vℓ,uℓ+1) is the distribution
of edges in Y

{i,j}
w (1), and w is chosen uniformly given that w ⩾ vℓ. □

Proof of Claim A.4.

E
g

[
P
vu

[
f(vu) , g(u)−1 · g(v)

]]
= E

g,vu

[
1f (vu),g(u)−1·g(v)

]
(A.2)

Fix and edge vu so that v ∈ Y [j],u ∈ Y [i]. The marginal of the values of g(u), g(v) could be described
as follows:

1. Choose u0.

2. Choose (w, c) as in Claim A.3 given that c = (u0, ∗, ∗, v1 = v,u2 = u, ∗) (or if u0 = u2 given that
c = (00, ∗, ∗, v1 = v, ∗, ∗)).

3. Set g(v) = f(u0v0) · f(v0u1) · f(u1v1) and set g(u) = f(u0v2) · f(v2u2) (or if u0 = u2 then g(u2) = e).

The reason we can choose one cycle and not two in the second step in the common case where u0 , u2, is
because given that c = (u0, ∗, ∗, v1 = v,u2 = u, ∗), the paths from u0 to v1 and from u2 to u2 are independent.

Let us analyze the more common case where u2 , u0 first. In this case (A.2) is equal to

P
c

[
f(v1u2) , g(u2)

−1 · g(v1)
−1 ∣∣ u2 , u0

]
=

P
c
[f(v1u2) , [f(u2v2) · f(v2u0)] · [f(u0v0) · f(v0u1) · f(u1v1)]] =

P
c
[f(u0v0) · f(v0u1) · f(u1v1) · f(v1u2) · f(u2v2) · f(v2u0) , e]

(A.3)
Suppose there is some w ∈ Y [k] that contains c so that for every (uℓ, vℓ) and every (vℓ,uℓ+1) it holds that
δf(wuℓvℓ) = δf(wvℓuℓ+1) = e. By multiplying by e = f(uℓw)f(wuℓ) = f(vℓw)f(wvℓ) between the original
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edges we get that

f(u0v0) · f(v0u1) · f(u1v1) · f(v1u2) · f(u2v2) · f(v2u2) =

f(u0w)[f(wu0)f(u0v0)f(v0w)]·

· [f(wv0)f(v0u1)f(u1w)]

· ... · [f(wv2)f(v2u0)f(u0w)]f(wu0) =

f(u0w) · δf(wu0v0) · ... · δf(wv2u0) · f(wu0) =

e

(A.4)

Thus the probability in (A.3) is upper bounded by P(w,c) [∃uv ∈ c δf(wuv) , 0]. As the marginal of every
wuv for uv ∈ c is the probability of sampling a uniform triangle, and there are 6 edges in c, by union bound

E
g

[
P
vu

[
f(vu) , g(u)−1 · g(v)

]]
⩽ P

(w,c)
[∃uv ∈ c δf(wuv) , 0] ⩽ 6ε.

The case where u0 = u2 is even simpler. In this case, f(u0v1) , g(u0)−1g(v2) = f(u0v0)f(v0u1)f(u1v1).
Here again, if there is a w ∈ Y [k] that contains c so that the coboundaries

δf(wu0v0) = δf(wv0u1) = δf(wu1v1) = δf(wv1u0) = 0

then the same analysis above (where we multiply by elements of the form f(wx)f(xw)) shows that f(u0v1) =

g(u0)−1g(v2). This happens with probability ⩽ 4ε. □

B Cosystolic expansion of dense complexes is at most 1 + o(1)
In this section we give a simple upper bound on cosystolic expansion of dense complexes.

Proposition B.1. Let ε > 0. Let X be a d-dimensional simplicial complex for d ⩾ k+ 1. Assume that for
every j, the probability of s ∈ X(j) is 1

|X(j)| . Let ε = max(
√

8|X(k−1)|
|X(k)| ,

√
9

|X(k+1)| ) and assume that ε ⩽ 1
2 .

Then hk(X, F2) ⩽ 1 + 8ε.

For example, this proposition implies the following. If a {Xn} are a family of simplicial complexes whose
vertex set is growing to infinity, and so that limn→∞

|X(k−1)|
|X(k)| = 0 then for every ε > 0, all but finitely many

Xn have that hk(Xn, F2) ⩽ 1 + ε.
There are many complexes so that these conditions hold. For example, the complete complex, the complete

bipartite complex, and the spherical building (when d > k
2 ).

Proof. We sample f ∈ Ck(X, F2) uniformly at random (i.e. we fix some global order of the vertices. For every
s ∈

→
X(k) that is ordered according to this global order we sample f(s) ∈ F2, and extend this asymmetrically).

We note that every s was chosen independently.
Fixed some g ∈ Ck−1(X, F2). Let Xg(f) = Ps∈X(k) [f(s) = δg(s)]. Obviously, Xg(f) =∑

s∈X(k) P [s] 1f (s)=δg(s). As all the random variables 1f (s)=g(s) are independent, and have expectation 1
2 it

holds by Chernoff’s bound that

P
f

[
Xg(f) ⩾

1
2 + ε

]
⩽ e− ε2

1+ε |X(k)|.
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There are |Bk(X, F2)| ⩽ |Ck−1(X, F2)| ⩽ 2|X(k−1)| possible coboundaries. Hence, the probability that there
exists some g so that Xg(f) ⩾

1
2 + ε is at most

e|X(k−1)| ln 2e− ε2
1+ε |X(k)|,

which is less than 1
2 by the assumption on ε. Note that when Xg(f) ⩽

1
2 + ε for all g this implies that

dist(f ,Zk(X, F2)) ⩾
1
2 − ε.

On the other hand, let Y (f) = Pt∈X(k+1) [f(t) = 0]. As above it holds that E[Y ] = 1
2 . Further-

more, Y =
∑

t∈X(k+1) P [t] 1δf (t)=0 where the set {1δf (t)=0}t∈X(k+1) are pairwise independent. This is
because any two distinct t, t′ ∈ X(k + 1) share only one k-face. By pairwise independence, V ar(Y (f)) =∑

t∈X(k+1) V ar(P [t] 1δf (t)=0) =
1

4|X(k+1)| . In particular,

P
f

[
Y (f) ⩽

1
2 − ε

]
⩽

1
4|X(k+ 1)|ε2 .

Which is also strictly less than 1
2 by assumption.

In particular, as the events {∀g;Xg(f) ⩾
1
2 + ε} and {Y (f) ⩽ 1

2 − ε} happen with probability less than
1
2 , there exists some f so that for every g ∈ Ck−1(X, Γ), dist(f , δg) ⩾ 1

2 − ε but wt(δf) ⩾ 1
2 + ε. Hence

hk(f , Γ) ⩽
1
2+ε
1
2 −ε
⩽ 1 + 8ε. □
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