
Separations between Combinatorial Measures for Transitive
Functions∗

Sourav Chakraborty† Chandrima Kayal‡ Manaswi Paraashar§

Abstract

The role of symmetry in Boolean functions f : {0, 1}n → {0, 1} has been extensively studied in
complexity theory. For example, symmetric functions, that is, functions that are invariant under
the action of Sn is an important class of functions in the study of Boolean functions. A function
f : {0, 1}n → {0, 1} is called transitive (or weakly-symmetric) if there exists a transitive group G of
Sn such that f is invariant under the action of G. In other words, the value of a transitive function
remains unchanged even after the input bits of f are moved around according to some permutation
σ ∈ G. Understanding various complexity measures of transitive functions has been a rich area of
research for the past few decades.

In this work, we study transitive functions in light of several combinatorial measures. The question
that we try to address in this paper is what is the maximum separations between various pairs of
combinatorial measures for transitive functions. Such study for general Boolean functions has been
going on for the past many years. The current best-known results for general Boolean functions have
been nicely compiled by Aaronson et al. (STOC, 2021). But before this paper, no such systematic
study has been done for the case of transitive functions.

The separation between a pair of combinatorial measures is shown by constructing interesting
functions that demonstrate the separation. Over the past three decades, various interesting classes of
functions have been designed for this purpose. In this context, one of the celebrated classes of functions
is the class of “pointer functions”. Ambainis et al. (JACM, 2017) constructed several functions, which
are modifications of the pointer function, first introduced in Göös et al. (SICOMP, 2018 / FOCS,
2015), to demonstrate separation between various pairs of measures. In the last few years, pointer
functions have been used to show separation between various other pairs of measures (for example,
Mukhopadhyay et al. (FSTTCS, 2015), Ben-David et al. (ITCS, 2017), Göös et al. (ToCT, 2018 /
ICALP, 2017)).

However, the pointer functions themselves are not transitive. Based on the various kinds of pointer
functions, we construct new transitive functions whose deterministic query complexity, randomized
query complexity, zero-error randomized query complexity, quantum query complexity, degree, and
approximate degree are similar to that of the original pointer functions. Thus we demonstrate that
even for transitive functions similar separations between pairs of combinatorial measures can be
achieved.

Our constructions of transitive functions depend crucially on construction of particular classes of
transitive groups, whose actions, though involved, helps to preserve certain structural features of the
input strings. The transitive groups we construct may be of independent interest in other areas of
mathematics and theoretical computer science.

We summarize the current knowledge of relations between various combinatorial measures of
transitive functions in a table similar to the table compiled by Aaronson et al. (STOC, 2021) for
general functions.
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1 Introduction

For a Boolean function f : {0, 1}n → {0, 1} what is the relationship between its various combinatorial
measures, like deterministic query complexity (D(f)), bounded-error randomized and quantum query
complexity (R(f) and Q(f) respectively), zero -randomized query complexity (R0(f)), exact quantum
query complexity (QE(f)), sensitivity (s(f)), block sensitivity (bs(f)), certificate complexity (C(f)),
randomized certificate complexity (RC(f)), unambiguous certificate complexity (UC(f)), degree (deg(f)),
approximate degree (d̃eg(f)) and spectral sensitivity (λ(f))1? For over three decades, understanding the
relationships between these measures has been an active area of research in computational complexity
theory. These combinatorial measures have applications in many other areas of theoretical computer
science, and thus the above question takes a central position.

In the last couple of years, some of the more celebrated conjectures have been answered - like the
quadratic relation between sensitivity and degree of Boolean functions [Hua19]. We refer the reader to
the survey [BdW02] for an introduction to this area.

Understanding the relationship between various combinatorial measures involves two parts:

• Relationships - proving that one measure is upper bounded by a function of another measure. For
example, for any Boolean function f , deg(f) ≤ s(f)2 and D(f) ≤ R(f)3.

• Separations - constructing functions that demonstrates separation between two measures. For
example, there exists a Boolean function f with deg(f) ≥ s(f)2. Also there exists another Boolean
function g with D(g) ≥ R(g)2.

Obtaining tight bounds between pairs of combinatorial measures - that is, when the relationship and the
separation results match - is the holy grail of this area of research. The current best-known results for
different pairs of functions have been nicely compiled in [ABK+21].

For special classes of Boolean functions the relationships and the separations might be different
than that of general Boolean functions. For example, while it is known that there exists f such that
bs(f) = Θ(s(f)2) [Rub95], for a symmetric function a more tighter result is known, bs(f) = Θ(s(f)).
The best-known relationship of bs(f) for a general Boolean functions is s(f)4 [Hua19]. How the various
measures behave for different classes of functions has been studied since the dawn of this area of research.

Transitive Functions: One of the most well-studied classes of Boolean functions is that of the transitive
functions. A function f : {0, 1}n → {0, 1} is transitive if there is a transitive group G ≤ Sn such that the
function value remains unchanged even after the indices of the input is acted upon by a permutation from
G. Note that, when G = Sn then the function is symmetric. Transitive functions (also called “weakly
symmetric” functions) has been studied extensively in the context of various complexity measure. This
is because symmetry is a natural measure of the complexity of a Boolean function. It is expected that
functions with more symmetry must have less variation among the various combinatorial measures. A
recent work [BCG+20] has studied the functions under various types of symmetry in terms of quantum
speedup. So, studying functions in terms of symmetry is important in various aspects.

For example, for symmetric functions, where the transitive group is Sn, most of the combinatorial
measures become the same up to a constant 2. Another example of transitive functions is the graph
properties. The input is the adjacency matrix, and the transitive group is the graph isomorphism group
acting on the bits of the adjacency matrix. [Tur84, Sun11, LS17, GMSZ13] tried to obtain tight bounds
on the relationship between sensitivity and block sensitivity for graph properties. They also tried to
answer the following question: how low can sensitivity and block sensitivity go for graph properties?

In [SYZ04, Cha11, Sun07, Dru11] it has been studied how low can the combinatorial measures go
for transitive functions. The behavior of transitive functions can be very different from general Boolean
functions. For example, while it is known that there are Boolean functions for which the sensitivity is as
low as Θ(log n) where n is the number of effective variables3, it is known (from [Sun07] and [Hua19])
that if f is a transitive function on n effective variables then its sensitivity s(f) is at least Ω(n1/12)4.

1We provide the formal definitions of the various measures used in this paper in Section 2.1
2There are still open problems on the tightness of the constants.
3A variable is effective if the function is dependent on it.
4It is conjectured that the sensitivity of a transitive function is Ω(n1/3).
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Similar behavior can be observed in other measures too. For example, it is easy to see that for a transitive
function, the certificate complexity is Ω(

√
n), while the certificate complexity for a general Boolean

function can be as low as O(log n). In Table 3 we have summarize the best-known separations of the
combinatorial measures for transitive functions.

A natural related question is:

What are tight relationships between various pairs of combinatorial measures for transitive functions?

By definition, the known relationship results for general functions hold for transitive functions. But
tighter relationships may be obtained for transitive functions. On the other hand, the existing separations
don’t extend easily since the example used to demonstrate separation between certain pairs of measures
may not be transitive. Some of the most celebrated examples are not transitive. For example some
of the celebrated function construction like the pointer function in [ABB+17], used for demonstrating
tight separations between various pairs like D(f) and R0(f), are not transitive. Similarly, the functions
constructed using the cheat sheet techniques [ABK16] used for separation between quantum query
complexity and degree, or approximate degree, are not transitive. Constructing transitive functions which
demonstrate tight separations between various pairs of combinatorial measures is very challenging.

Our Results: We try to answer the above question for various pairs of measures. More precisely,
our main contribution is to construct transitive functions that have similar complexity measures as the
pointer functions. Hence for those pairs of measures where pointer functions can demonstrate separation
for general functions, we prove that transitive functions can also demonstrate similar separation.

Our results and the current known relations between various pairs of complexity measures of transitive
functions are compiled in Table 1. This table is along the lines of the table in [ABK+21] where the
best-known relations between various complexity measures of general Boolean functions were presented.

Deterministic query complexity and zero-error randomized query complexity are two of the most
basic measures and yet the tight relation between these measures was not known until recently. In [Sni85]
they showed that for the “balanced NAND-tree” function, ∧̃-tree, D(∧̃-tree) ≥ R0(∧̃-tree)1.33. Although
the function ∧̃-tree is transitive, the best-known relationship was quadratic, that is for all Boolean
function f , D(f) = O(R0(f)2). In [ABB+17] a new function, A1, was constructed for which deterministic
query complexity and zero-error randomized query complexity can have a quadratic separation between
them, and this matched the known relationship results. The function in [ABB+17] was a variant of the
pointer functions - a class of functions introduced by [GPW18] that has found extensive usage in showing
separations between various complexity measures of Boolean functions. The function, A1, also gave
(the current best-known) separations between deterministic query complexity and other measures like
quantum query complexity and degree. But the function A1 is not transitive. Using the A1 function we
construct a transitive function that demonstrates a similar gap between deterministic query complexity
and zero-error randomized query complexity, quantum query complexity, and degree.

Theorem 1.1. There exists a transitive function F1.1 such that

D(F1.1) = Ω̃(Q(F1.1)
4), D(F1.1) = Ω̃(R0(F1.1)

2), D(F1.1) = Ω̃(deg(F1.1)
2).

The proof of Theorem 1.1 is presented in Section 4. In [ABB+17, BHT17] various variants of the
pointer function have been used to show separation between other pairs of measures like R0 with R,
QE, deg, and Q, R with d̃eg, deg, QE and sensitivity. Using similar techniques as Theorem 1.1 one can
construct transitive version of other variants of pointer functions(from [ABB+17, BHT17]) which give
matching separations to the best-known separations of general functions. The construction of these
functions, though more complicated and involved, are similar in flavor to that of F1.1.

Using standard techniques, we can also obtain the following theorems as corollaries to Theorem 1.1.

Theorem 1.2. There exists transitive functions F1.2 such that D(F1.2) = Ω̃(s(F1.2)
3).

Our proof techniques also help us make transitive versions of other functions like that used in[ABK16]
to demonstrate the gap between Q and certificate complexity.

Theorem 1.3. There exists a transitive function F1.3 such that Q(F1.3) = Ω̃(C(F1.3)
2).
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Table 1: best-known separations between combinatorial measures for transitive functions.

D R0 R C RC bs s λ QE deg Q d̃eg

D 2 ; 2 2 ; 3 2 ; 2 2 ; 3 2 ; 3 3 ; 6 4 ; 6 2 ; 3 2 ; 3 4 ; 4 4 ; 4
T:1.1 T:1.1 ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ T:1.2 T:1.1 T:1.1

R0 1,1 2 ; 2 2 ; 2 2 ; 3 2 ; 3 3 ; 6 4 ; 6 2 ; 3 2 ; 3 3 ; 4 4 ; 4
⊕ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨

R
1 ; 1 1 ; 1 2 ; 2 2 ; 3 2 ; 3 3 ; 6 4 ; 6 1.5 ; 3 2 ; 3 2 ; 4 4 ; 4
⊕ ⊕ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ ∧

C
1 ; 1 1 ; 1 1 ; 2 2 ; 2 2 ; 2 2 ; 5 2 ; 6 1.15 ; 3 1.63 ; 3 2 ; 4 2 ; 4
⊕ ⊕ ⊕ [GSS16] [GSS16] [Rub95] ∧ [Amb16] [NW95] ∧ ∧

RC
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1.5 ; 2 2 ; 4 2 ; 4 1.15 ; 2 1.63 ; 2 2 ; 2 2 ; 2
⊕ ⊕ ⊕ ⊕ [GSS16] [Rub95] ∧ [Amb16] [NW95] ∧ ∧

bs
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 2 ; 4 2 ; 4 1.15 ; 2 1.63 ; 2 2, 2 2 ; 2
⊕ ⊕ ⊕ ⊕ ⊕ [Rub95] ∧ [Amb16] [NW95] ∧ ∧

s
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 2 ; 2 1.15 ; 2 1.63 ; 2 2, 2 2 ; 2
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ∧ [Amb16] [NW95] ∧ ∧

λ
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

QE
1 ; 1 1.33 ; 2 1.33 ; 3 2 ; 2 2 ; 3 2 ; 3 2 ; 6 2 ; 6 1 ; 3 2 ; 4 1 ; 4
⊕ ∧̃-tree ∧̃-tree ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ T:1.3 T:1.3 ⊕ ∧ ⊕

deg
1 ; 1 1.33 ; 2 1.33 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 2 1 ; 1 2 ; 2 2 ; 2
⊕ ∧̃-tree ∧̃-tree ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ⊕ ∧ ∧

Q
1 ; 1 1 ; 1 1 ; 1 2 ; 2 2 ; 3 2 ; 3 2 ; 6 2 ; 6 1, 1 1 ; 3 1 ; 4
⊕ ⊕ ⊕ T:1.3 T:1.3 T:1.3 T:1.3 T:1.3 ⊕ ⊕ ⊕

d̃eg
1 ; 1 1 ; 1 1 ; 1 1 ; 2 1 ; 2 1 ; 2 1 ; 2 1 ; 2 1 ; 1 1 ; 1 1 ; 1
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(1 Entry a; b in row A and column B represents: for any transitive function f , A(f) = O(B(f))b+o(1), and there exists a transitive
function g such that A(g) = Ω(B(g))a.
(2 Cells with a green background are those for which we constructed new transitive functions to demonstrate separations that match
the best-known separations for general functions. The previously known functions that gave the strongest separations were not
transitive. The second row (in each cell) gives the reference to the Theorems where the separation result is proved. Although for
these green cells, the bounds match that of the general functions, for some cells (with a light green color), there is a gap between the
known relationships and best-known separations.
(3 Cells with a gray background are those for which transitive functions can be constructed in a similar but generalised fashion of our
construction to demonstrate separations that match the best-known separations for general functions.
(4 In the cells with a white background, the best-known examples for the corresponding separation were already transitive functions.
For these cells, the second row either contains the function that demonstrates the separation or a reference to the paper where the
separation was proved. So for these cells, the separations for transitive functions matched the current best-known separations for
general functions. Note that for some of these cells, the bounds are not tight for general functions.
(5 Cells with a yellow background are those where the best-known separations for transitive functions do not match the best-known
separations for general functions.

All our results are compiled (and marked in green) in Table 1.
One would naturally ask what stops us from constructing transitive functions analogous to the other

functions, like cheat sheet-based functions. In fact, one could ask why to use ad-hoc techniques to
construct transitive functions (as we have done in most of our proofs) and instead why not design a
unifying technique for converting any function into a transitive function that would display similar
properties in terms of combinatorial measures 5. If one could do so, all the separation results for general
functions (in terms of separation between pairs of measures) would translate to separation for transitive
functions. In Section 7 we have discussed why such a task is challenging. We argue the challenges of
making transitive versions of the cheat-sheet functions.

2 Basic definitions and notations

2.1 Complexity measures of Boolean functions

In this work the relation between variously complexity measures of Boolean functions in extensively
studies. We refer the reader to the survey [BdW02] for an introduction to the complexity of Boolean

5In [BCG+20] they have demonstrated a technique that can be used for constructing a transitive partial function that
demonstrates gaps (between certain combinatorial measures) similar to a given partial function that need not be transitive.
But their construction need not construct a total function even when the given function is total.
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functions and complexity measures. Several additional complexity measures and their relations among
each other can also be found in [BHT17] and [ABK+21]. Similar to the above references, we define
several complexity measures of Boolean functions that are relevant to us.

We refer to [BdW02] and [ABB+17] for definitions of deterministic query model, randomized query
model and quantum query model for Boolean functions.

Definition 2.1 (Deterministic query complexity). The deterministic query complexity of f : {0, 1}n →
{0, 1}, denoted by D(f), is the worst-case cost of the best deterministic query algorithm computing f .

Definition 2.2 (Randomized query complexity). The randomized query complexity of f : {0, 1}n → {0, 1},
denoted by R(f), is the worst-case cost of the best randomized query algorithm computing f to error at
most 1/3.

Definition 2.3 (Zero-error randomized query complexity). The zero-error randomized query complexity
of f : {0, 1}n → {0, 1}, denoted by R0(f), is the minimum worst-case expected cost of a randomized query
algorithm that computes f to zero-error, that is, on every input x the algorithm should give the correct
answer f(x) with probability 1.

Definition 2.4 (Quantum query complexity). The quantum query complexity of f : {0, 1}n → {0, 1},
denoted by Q(f), is the worst-case cost of the best quantum query algorithm computing f to error at most
1/3.

Definition 2.5 (Exact quantum query complexity). The exact quantum query complexity of f : {0, 1}n →
{0, 1}, denoted by QE(f), is the minimum number of queries made by a quantum algorithm that outputs
f(x) on every input x ∈ {0, 1}n with probability 1.

Next, we define the notion of partial assignment that will be used to define several other complexity
measures.

Definition 2.6 (Partial assignment). A partial assignment is a function p : S → {0, 1} where S ⊆ [n]
and the size of p is |S|. For x ∈ {0, 1}n we say p ⊆ x if x is an extension of p, that is the restriction of x
to S denoted x|S = p.

Definition 2.7 (Certificate complexity). A 1-certificate is a partial assignment which forces the value
of the function to 1 and similarly a 0-certificate is a partial assignment which forces the value of the
function to 0. The certificate complexity of a function f on x, denoted as C(x, f), is the size of the
smallest f(x)-certificate that can be extended to x.

Also, define 0-certificate of f as C0(f) = max{C(f, x) : x ∈ {0, 1}n, f(x) = 0} and 1-certificate
of f as C1(f) = max{C(f, x) : x ∈ {0, 1}n, f(x) = 1}. Finally, define the certificate complexity of
f : {0, 1}n → {0, 1}, denoted by C(f), to be max{C0(f),C1(f)}.

Definition 2.8 (Unambiguous certificate complexity). For any Boolean function f : {0, 1}n → {0, 1}, a
set of partial assignments U is said to form an unambiguous collection of 0-certificates for f if

1. Each partial assignment in U is a 0-certificate (with respect to f)

2. For each x ∈ f−1(0), there is some p ∈ U with p ⊆ x

3. No two partial assignments in U are consistent.

We then define UC0(f) to be the minimum value of maxp∈U |p| over all choices of such collections
U . We define UC1(f) analogously, and set UC(f) = max{UC0(f),UC1(f)}. We also define the one-sided
version, UCmin(f) = min{UC0(f),UC1(f)}.

Next we define randomized certificate complexity (see [Aar08]).
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Definition 2.9 (Randomized certificate complexity). A randomized verifier for input x is a randomized
algorithm that, on input y in the domain of f accepts with probability 1 if y = x, and rejects with
probability at least 1

2 if f(y) 6= f(x). If y 6= x but f(y) = f(x), the acceptance probability can be arbitrary.
The Randomized certificate complexity of f on input x is denoted by RC(f, x), is the minimum expected
number of queries used by a randomized verifier for x. The randomized certificate complexity of f , denoted
by RC(f), is defined as max{RC(f, x) : x ∈ {0, 1}n}.

Definition 2.10 (Block sensitivity). The block sensitivity bs(f, x) of a function f : {0, 1}n → {0, 1}
on an input x is the maximum number of disjoint subsets B1, B2, . . . , Br of [n] such that for all j,
f(x) 6= f(xBj ), where xBj ∈ {0, 1}n is the input obtained by flipping the bits of x in the coordinates in
Bj. The block sensitivity of f , denoted by bs(f), is max{bs{(f, x)} : x ∈ {0, 1}n}.

Definition 2.11 (Sensitivity). The sensitivity of f on an input x is defined as the number of bits
on which the function is sensitive: s(f, x) = |{i : f(x) 6= f(xi)}|. We define the sensitivity of f as
s(f) = max{s(f, x) : x ∈ {0, 1}n}

We also define 0-sensitivity of f as s0(f) = max{s(f, x) : x ∈ {0, 1}n, f(x) = 0}, and 1-sensitivity of
f as s1(f) = max{s(f, x) : x ∈ {0, 1}n, f(x) = 1}.

Here we are defining Spectral sensitivity from [ABK+21]. For more details about Spectral sensitivity
and it’s updated relationship with other complexity measures we refer [ABK+21].

Definition 2.12 (Spectral sensitivity). Let f : {0, 1}n → {0, 1} be a Boolean function. The sensitivity
graph of f , Gf = (V,E) is a subgraph of the Boolean hypercube, where V = {0, 1}n, and E = {(x, x⊕ei) ∈
V × V : i ∈ [n], f(x) 6= f(x⊕ ei)}, where x⊕ ei ∈ V is obtained by flipping the ith bit of x. That is, E is
the set of edges between neighbors on the hypercube that have different f -value. Let Af be the adjacency
matrix of the graph Gf . We define the spectral sensitivity of f as the largest eigenvalue of Af .

Definition 2.13 (Degree). A polynomial p : Rn → R represents f : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,
p(x) = f(x). The degree of a Boolean function f , denoted by deg(f), is the degree of unique multilinear
polynomial that represents f .

Definition 2.14 (Approximate degree). A polynomial p : Rn → R approximately represents a function
f : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n, |p(x) − f(x)| ≤ 1

3 . The approximate degree of a Boolean
function f , denoted by d̃eg(f), is the minimum degree of a polynomial that approximately represents f .

The following is a known relation between degree and one-sided unambiguous certificate complexity
measure ([BHT17]).

Observation 2.15 ([BHT17]). For any Boolean function f , UCmin(f) ≥ deg(f).

One often try to understand how the complexity measure of composed function compare with respect
to the measures of the individual functions. The following folklore theorem that we will be using multiple
times in out paper.

Theorem 2.16. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}k be two Boolean functions then

1. D(f ◦ g) = Ω(D(f)/k), assuming g is an onto function.

2. Q(f ◦ g) = Ω(Q(f)/k), assuming g is onto.

3. R0(f ◦ g) = O(R0(f) ·m) and if g is onto then R0(f ◦ g) = O(R0(f)/m)

4. R(f ◦ g) = O(R(f) ·m) and if g is onto then R(f ◦ g) = O(R(f)/m).

5. deg(f ◦ g) = O(deg(f) ·m)

6. d̃eg(f ◦ g) = O(d̃eg(f) ·m).

If the inner function g is Boolean valued then we can obtain some tighter results for the composed
functions.
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Theorem 2.17. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions then

1. ([Tal13, Mon14]) D(f ◦ g) = Θ(D(f) · D(g)).

2. ([Rei11, LMR+11, Kim13]) Q(f ◦ g) = Θ(Q(f) · Q(g)).

3. (folklore) deg(f ◦ g) = Θ(deg(f) · deg(g)).

Over the years a number of interesting Boolean functions has been constructed to demonstrate
differences between various measures of Boolean functions. Some of the functions has been referred to in
the Table 1. We describe the various functions in the Subsection 2.2.

2.2 Some Boolean functions and their properties

In this section we define some standard functions that are either mentioned in the Table 1 or used
somewhere in the paper. We also state some of their properties that we need for our proofs. We start by
defining some basic Boolean functions.

Definition 2.18. Define PARITY : {0, 1}n → {0, 1} to be the PARITY(x1, . . . , xn) =
∑
ximod 2. We

use the notation ⊕ to denote PARITY.

Definition 2.19. Define AND : {0, 1}n → {0, 1} to be the AND(x1, . . . , xn) = 0 if and only if there exists
an i ∈ [n] such that xi = 0. We use the notation ∧ to denote AND.

Definition 2.20. Define OR : {0, 1}n → {0, 1} to be the OR(x1, . . . , xn) = 1 if and only if there exists
an i ∈ [n] such that xi = 1. We use the notation ∨ to denote OR.

Definition 2.21. Define MAJORITY : {0, 1}n → {0, 1} as MAJORITY(x) = 1 if and only if |x| > n
2 .

We need the following definition of composing iteratively with itself.

Definition 2.22 (Iterative composition of a function). Let f : {0, 1}n → {0, 1} a Boolean function. For
d ∈ N we define the function fd : {0, 1}nd → {0, 1} as follows: if d = 1 then fd = f , otherwise

fd(x1, . . . , xnd) = f
(
fd−1(x1, . . . , xnd−1), . . . , fd−1(xnd−n+1, . . . , xnd)

)
.

Definition 2.23. For d ∈ N define NAND-tree of depth d as NANDd where NAND : {0, 1}2 → {0, 1} is
defined as: NAND(x1, x2) = 0 if and only if x1 6= x2. We use the notation ∧̃-tree to denote NAND-tree.

The now define a function that gives a quadratic separation between sensitivity and block sensitivity.

Definition 2.24 (Rubinstein’s function ([Rub95])). Let g : {0, 1}k → {0, 1} be such that g(x) = 1 iff
x contains two consecutive ones and the rest of the bits are 0. The Rubinstein’s function, denoted by
RUB : {0, 1}k2 → {0, 1} is defined to be RUB = ORk ◦ g.

Theorem 2.25. [Rub95] For the Rubinstein’s function in Definition 2.24 s(RUB) = k and bs(RUB) =
k2/2. Thus RUB witnesses a quadratic gap between sensitivity and block sensitivity.

[NS94] first introduced a function whose deg is significantly smaller than s or bs. This appears in
the footnote in [NW95] that E. Kushilevitz also introduced a similar function with 6 variables which
gives slightly better gap between s and deg. Later Ambainis computed QE of that function and gave a
separation between QE and D [Amb16]. This function is fully sensitive at all zero input, consequently
this gives a separation between QE and s.

Definition 2.26 ([NS94]). Define NW as follows:

NW(x1, x2, x3) =

{
1 iff xi 6= xj for some i, j ∈ {1, 2, 3}
0 otherwise.

Now define the d-th iteration NWd on (x1, x2, . . . , x3d) as Definition 2.22 where d ∈ N.
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Definition 2.27 (Kushilevitz’s function). Define K as follows:

K(x1, x2, x3, x4, x5, x6) = Σxi + Σxiyi + x1x3x4 + x1x4x5 + x1x2x5 + x2x3x4 + x2x3x5 + x1x2x6

+x1x3x6 + x2x4x6 + x3x5x6 + x4x5x6.

Now define the d-th iteration Kd on (x1, x2, . . . , x6d) as Definition 2.22 where d ∈ N.

Next we will describe two example that was introduced in [GSS16] and gives the separation between
C vs. RC and RC vs. bs respectively . They also have introduces some new complexity measures for
iterative version of a function and how to use them to get the critical measure between two complexity
measures. For more details we refer to [GSS16].

Definition 2.28 ([GSS16]). Let n be an even perfect square, let k = 2
√
n and d =

√
n. Divide the n

indices of the input into n/k disjoint blocks. Define GSS1 : {0, 1}n → {0, 1} as follows: GSS1(x) = 1 if
and only if |x| ≥ d and all the 1’s in x are in a single group. Define GSSd1 with GSS1

1 = f .

Definition 2.29 ([GSS16]). Define GSS2 : {0, 1}n → {0, 1} where n is of the form
(
t
2

)
for some integer

t. Identify the input bits of GSS2 with the edges of the complete graph Kt. An input x ∈ {0, 1}n induces
a subgraph of Kt consisting of edges assigned 1 by x. The function GSS2(x) is defined to be 1 iff the
subgraph induces by x has a star graph.

Definition 2.30. For Σ = [nk] the function k-sum : Σn → {0, 1} is defined as follows: on input
x1, x2, . . . , xn ∈ Σ, if there exists k element xi1 , . . . , xik , i1, . . . , ik ∈ [n], that sums to 0 (mod |Σ|) then
output 1, otherwise output 0.

Theorem 2.31 ([ABK16, BS13]). For the function k-sum : Σn → {0, 1}, if |Σ| ≥ 2
(
n
n

)
then

Q(k-sum) = Ω(nk/(k+1)/
√
k).

Next, we define the cheat sheet version of a function from [ABK16].

Definition 2.32. We define cheat sheet version of f as follows: the input to fCS consist of log n inputs to
f , each of size n , followed by n blocks of bits of size C(f)× log n each. Let us denote the input to fCS as
X = (x1, x2, . . . , xlogn, Y1, Y2, ..., Yn), where xi is an input to f , and the Yi are the aforementioned cells
of size C(f)× log n. The first part x1, x2, . . . , xlogn of the string, we call them as input section and the rest
of the part we call as certificate section of the whole input. Define fCS : {0, 1}n×logn+n×(C(f) logn → {0, 1}
to be 1 if and only if the following conditions hold:

• For all i, xi is in the domain of f . If this condition is satisfied, let l be the positive integer
corresponding to the binary string (f(x1), f(x2), ..., f(xlogn)).

• Yl certifies that all xi are in the domain of f and that l equals the binary string formed by their
output values, (f(x1), f(x2), ..., f(xlogn)).

Finally, we present the pointer functions and its variants introduced in [ABB+17]. They are used
for demonstrate separation between several complexity complexity measures like deterministic query
complexity, Randomized query complexity, Quantum query complexity etc. These functions was originally
motivated from [GPW18] function. The functions that we construct for many of our theorems is a
composition function whose outer function is these pointer function, or a slight variant of these. In the
next section we present the formal definition of pointer functions.

2.2.1 Pointer function

For the sake of completeness first we will describe the “pointer function" introduced in [ABB+17] that
achieves separation between several complexity complexity measures like Deterministic query complexity,
Randomized query complexity, Quantum query complexity etc. This function was originally motivated
from a function in [GPW18]. There are three three variants of the pointer function that have some
special kind of non-Boolean domain, which we call pointer matrix. Our function is a special “encoding” of
that non-Boolean domain such that the resulting function becomes transitive and achieves the separation
between complexity measures that matches the known separation between the general functions. Here
we will define only the first variant of the pointer function.
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Definition 2.33 (Pointer matrix over Σ). For m,n ∈ N, let M be a (m× n) matrix with m rows and n
columns. We refer to each of the m×n entries of M as cells. Each cell of the matrix is from a alphabet set
Σ where Σ = {0, 1}×P̃×P̃×P̃ and P̃ = {(i, j)|i ∈ [m], j ∈ [n]}∪{⊥}. We call P̃ as set of pointers where,
pointers of the form {(i, j)|i ∈ [m], j ∈ [n]} pointing to the cell (i, j) and ⊥ is the null pointer. Hence,each
entry x(i,j) of the matrix M is a 4-tuple from Σ. The elements of the 4-tuple we refer as value, left pointer,
right pointer and back pointer respectively and denote by Value(x(i,j)), LPointer(x(i,j)), RPointer(x(i,j))
and BPointer(x(i,j)) respectively where Value ∈ {0, 1}, LPointer,RPointer,BPointer ∈ P̃ . We call this
type of matrix as pointer matrix and denote by Σn×n.

A special case of the pointer-matrix, which we call Type1 pointer matrix over Σ, is when for each cell
of M , BPointer ∈ {[n]∪ ⊥} that is backpointers are pointing to the columns of the matrix.

Also, in general when, BPointer ∈ {(i, j)|i ∈ [m], j ∈ [n]} ∪ {⊥}, we call it a Type2 pointer matrix
over Σ.

Now we will define some additional properties of the domain that we need to define the pointer
function.

Definition 2.34 (Pointer matrix with marked column). Let M be an m× n pointer-matrix over Σ. A
column j ∈ [n] of M is defined to be a marked column if there exists exactly one cell (i, j), i ∈ [m], in
that column with entry x(i,j) such that x(i,j) 6= (1,⊥,⊥,⊥) and every other cell in that column is of the
form (1,⊥,⊥,⊥). The cell (i, j) is defined to be the special element of the marked column j.

Let n be a power of 2. Let T be a rooted, directed and balanced binary tree with n-leaves and (n− 1)
internal vertices. We will use the following notations that will be used in defining some functions formally.

Notation 2.35. Let n be a power of 2. Let T be a rooted, directed and balanced binary tree with n-leaves
and (n− 1) internal vertices. Labels the edges of T as follows: the outgoing edges from each node are
labeled by either left or right. The leaves of the tree are labeled by the elements of [n] from left to right,
with each label used exactly once. For each leaf j ∈ [n] of the tree, the path from the root to the leaf j
defines a sequence of left and right of length O(log n), which we denote by T (j).

When n is not a power of 2, choose the largest k ∈ N such that 2k ≤ n, consider a complete balanced
tree with 2k leaves and add a pair of child node to to each n− 2k leaves starting from left. Define T (j) as
before.

Now we are ready to describe the Variant 1 of the pointer function.

Definition 2.36 (Variant 1 [ABB+17]). Let Σm×n be a Type1 pointer matrix where BPointer is a pointer
of the form {j|j ∈ [n]} that points to other column and LPointer, RPointer are as usual points to other
cell. Define A1(m,n) : Σm×n → {0, 1} on a Type1 pointer matrix such that for all x = (xi,j) ∈ Σm×n, the
function A1(m,n)(xi,j) evaluates to 1 if and only if it has a 1- cell certificate of the following form:

1. there exists exactly one marked column j? in M ,

2. There is a special cell, say (i?, j?) which we call the special element in the the marked column j?

and there is a balanced binary tree T rooted at the special cell,

3. for each non-marked column j ∈ [n] \ {j?} there exist a cell lj such that Value(lj) = 0 and
BPointer(lj) = j? where lj is the end of the path that starts at the special element and follows the
pointers LPointer and RPointer as specified by the sequence T (j). lj exists for all j ∈ [n] \ {j?} i.e.
no pointer on the path is ⊥. We refer lj as the leaves of the tree.

The above function achieves the separation between D vs. R0 and D vs. Q for m = 2n. Here we will
restate some of the results from [ABB+17] which we will use to prove the results for our function:

Theorem 2.37 ([ABB+17]). The function A1(m.n) in Definition 2.36 satisfies

D = Ω(n2) for m = 2n where m,n ∈ N,

R0 = Õ(m+ n) for any m,n ∈ N,

Q = Õ(
√
m+

√
n) for any m,n ∈ N.
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Figure 1: Example of 1-instance of A1 function on 8× 8 grid

Though [ABB+17] gives the deterministic lower bound for the function A1 precisely for 2m ×m
matrices following the same line of argument it can be proved that D(Ω(n2)) holds for n× n matrices
also. For sake of completeness, we give a proof for n× n matrices.

Theorem 2.38. D(A1(n,n)) = Ω(n2).

Adversary Strategy for A1(n,n): We describe an adversary strategy that ensures that the value of
the function is undetermined after Ω(n2) queries. Assume that deterministic query algorithm queries a
cell (i, j). Let k be the number of queried cell in the column j. If k ≤ n

2 adversary will return (1,⊥,⊥,⊥).
Otherwise adversary will return (0,⊥,⊥, n− k).

Claim 2.39. The value of the function A1(n,n) will be undetermined if there is a column with at most
n/2 queried cells in the first n

2 columns {1, 2, . . . , n2 } and at least 3n unqueried cells in total.

Proof. Adversary can always set the value of function to 0 if the conditions of the claim are satisfied.
Adversary can also set the value of the function to 1: If s ∈ [n2 ] be the column with at most

n
2 queried cell, then all the queried cells of the column are of the form (1,⊥,⊥,⊥). Assign (1,⊥,⊥,⊥) to
the other cell and leave one cell for the special element ap,s(say).

For each non-marked column j ∈ [n] s define lj as follows: If column j has one unqueried cell then
assign (0,⊥,⊥, s) to that cell. If all the cells of the column j were already queried then the column
contains a cell with (0,⊥,⊥, s) by the adversary strategy. So, in either case we are able to form a leave
lj in each of the non-marked column.

Now using the cell of special element ap,s construct a rooted tree of pointers isomorphic to tree T as
defined in Definition 2.36 such that the internal nodes we will use the other unqueried cells and assign
pointers such that l(j)’s are the leaves of the tree and the special element ap,s is the root of the tree.
Finally assign anything to the other cell. Now the function will evaluates to 1.

To carry out this construction we need at most 3n number of unqueried cells. Outside of the marked
column total n− 2 cells for the internal nodes of the tree, atmost n− 1 unqueried cell for the leaves and
the all − 1 unique marked column contains total n cell, so total 3n unqueried cell will be sufficient for
our purpose.

Now there are total n number of columns and to ensure that each of the column in {1, 2, . . . , n2 }
contains at least n

2 queried cell we need at least n2

4 number of queries. Since n2 − 3n ≥ n2

4 for all n ≥ 6.
Hence D(A1(n,n)) = Ω(n2).

Hence Theorem 2.38 follows.
Also [GPW18]’s function realises quadratic separation between D and deg and the proof goes via

UCmin upper bound. But A1(n,n) exhibits the same properties corresponding to UCmin. So, from the
following observation it follows that A1(n,n) also achieves quadratic separation between D and deg.

Observation 2.40. UCmin(A1(n,n)) = O(n) which implies deg(A1(n,n)) is also O(n) for any n ∈ N.

Another important observation that we need is the following:
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Observation 2.41 ([ABB+17]). For any input Σn×n to the function A1(n,n) (in Definition 2.36) if we
permute the rows of the matrix using a permutation σr and permute the columns of the matrix using a
permutation σc and we update the pointers in each of the cells of the matrix accordingly then the function
value does not change.

2.3 Some useful notations

We use [n] to denote the set {1, . . . , n}. {0, 1}n denotes the set of all n-bit binary strings. For any
X ∈ {0, 1}n the Hamming Weight of X (denoted |X|) will refer to the number of 1 in X. 0n and 1n

denotes all 0’s string of n-bit and all 1’s string of n-bit, respectively.
We denote by Sn the set of all permutations on [n]. Given an element σ ∈ Sn and a n-bit string

x1, . . . , xn ∈ {0, 1}n we denote by σ[x1, . . . , xn] the string obtained by permuting the indices according
to σ. That is σ[x1, . . . , xn] = xσ(1), . . . , xσ(n). This is also called the action of σ on the x1, . . . , xn.

Following are a couple of interesting elements of Sn that will be used in this paper.

Definition 2.42. For any n = 2k the flip swaps (2i − 1) and 2i for all 1 ≤ i ≤ k. The permutation
Swap 1

2
swaps i with (k + i), for all 1 ≤ i ≤ k. That is,

flip = (1, 2)(3, 4) . . . (n− 1, n) & Swap 1
2
[x1, . . . , x2k] = xk+1, . . . , x2k, x1 . . . , xk.

Every integer ` ∈ [n] has the canonical log n bit string representation. However the number of 1’s and
0’s in such a representation is not same for all ` ∈ [n]. The following representation of ` ∈ [n] ensures
that for all ` ∈ [n] the encoding has same Hamming weight.

Definition 2.43 (Balanced binary representation). For any ` ∈ [n], let `1, . . . , `logn be the binary
representation of the number ` where `i ∈ {0, 1} for all i. Replacing 1 by 10 and 0 by 01 in the
binary representation of `, we get a 2 log n-bit unique representation, which we call Balanced binary
representation of ` and denote as bb(`).

In this paper all the functions considered are of form F : {0, 1}n → {0, 1}k. By Boolean functions we
would mean a Boolean valued function that is of the form f : {0, 1}n → {0, 1}.

An input to a function F : {0, 1}n → {0, 1}k is a n-bit string but also the input can be thought of as
different objects. For example, if the n = NM then the input may be thought of as a (N ×M)-matrix
with Boolean values. It may also be thought of as a (M ×N)-matrix.

If Σ = {0, 1}k then Σ(n×m) denotes an (n × m)-matrix with an element of Σ (that is, a k-bit
string) stored in each cell of the matrix. Note that Σ(n×m) is actually {0, 1}mnk. Thus, a function
F : Σ(n×m) → {0, 1} is actually a Boolean function from a {0, 1}nmk to {0, 1}, where we think of the
input as an (n×m)-matrix over the alphabet Σ.

One particular nomenclature that we use in this paper is that of 1-cell certificate.

Definition 2.44 (1-cell certificate). Given a function f : Σ(n×m) → {0, 1} (where Σ = {0, 1}k) the 1-cell
certificate is a partial assignments to the cells which forces the value of the function to 1. So a 1-cell
certificate is of the form (Σ ∪ {∗})(n×m). Note the here we assume that the contents in any cell is either
empty or a proper element of Σ (and not a partial k-bit string).

Another notation that is often used is the following:

Notation 2.45. If A ≤ Sn and B ≤ Sm are groups on [n] and [m] then the group A × B act on the
cells on the matrix. Thus for any (σ, σ′) ∈ A×B and a M ∈ Σ(n×m) by (σ, σ′)[M ] we would mean the
permutation on the cell of M according to (σ, σ′) and move the contains in the cells accordingly. Note
that the relative position of bits within the contents in each cell is not touched.

Next, we define the composition of two Boolean functions.

Definition 2.46 (Composition of functions). Let f : {0, 1}nk → {0, 1} and g : {0, 1}m → {0, 1}k
be two functions. The composition of f and g, denoted by f ◦ g : {0, 1}nm → {0, 1}, is defined to
be a function on nm bits such that on input x = (x1, . . . , xn) ∈ {0, 1}nm, where each xi ∈ {0, 1}m,
f ◦ g(x1, . . . , xn) = f(g(x1), . . . , g(xn)). We will refer f as outer function and g as inner function.
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2.4 Transitive groups and transitive functions

The central objects in this paper are transitive Boolean function. We first define transitive groups.

Definition 2.47. A group G ≤ Sn is transitive if for all i, j ∈ [n] there exists a σ ∈ G such that σ(i) = j.

Definition 2.48. For f : An → {0, 1} and G ≤ Sn we say f is invariant under the action of G, if for
all α1, . . . , αn ∈ A.

f(α1, . . . , αn) = f(ασ(1), . . . , ασ(n)).

The following observation proves that composition of transitive functions is also a transitive function.

Observation 2.49. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be transitive functions. Then
f ◦ g : {0, 1}nm → {0, 1} is also transitive.

Proof. Let Tf ⊆ Sn and Tg ⊆ Sm be the transitive groups corresponding to f and g, respectively. On
input x = (X1, . . . , Xn), Xi ∈ {0, 1}m for i ∈ [n], the function f ◦ g is invariant under the action of the
group Tf o Tg - the wreath product of the Tf with Tg. The group Tf o Tg acts on the input string through
the following permutations:

1. any permutation π ∈ Tf acting on indices {1, . . . , n} or

2. any permutations (σ1, . . . , σn) ∈ (Tg)
n acting on X1, . . . , Xn i.e. (σ1, . . . , σn) sends X1, . . . , Xn to

σ1(X1), . . . , σn(Xn).

Observation 2.50. If A ≤ Sn and B ≤ Sm are transitive groups on [n] and [m] then the group A×B
is a transitive group acting on the cells on the matrix.

There are many interesting transitive groups. The symmetric group is indeed transitive. The graph
isomorphism group (that acts on the adjacency matrix - minus the diagonal - of a graph by changing the
ordering on the vertices) is transitive. The cyclic permutation over all the points in the set is a transitive
group. The following is another non-trivial transitive group on [k] that we will use extensively in this
paper.

Definition 2.51. For any k that is a power of 2, the Binary-tree-transitive group Btk is a subgroup
of Sk. To describe its generating set we think of group Btk acting on the elements {1, . . . , k} and the
elements are placed in the leaves of a balanced binary tree of depth log k - one element in each leaf. Each
internal node (including the root) corresponds to an element in the generating set of Btk. The element
corresponding to an internal node in the binary tree swaps the left and right sub-tree of the node. The
permutation element corresponding to the root node is called the Root-swap as it swaps the left and right
sub-tree to the root of the binary tree.

n1

n3

1 2

n2

3 4

Figure 2: Induced group actions for Bt4 group

Claim 2.52. The group Btk is a transitive group.
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Proof. For any i, j ∈ [k], we have to show that there exists a permutation π ∈ Btk such that π(i) = j.
Let us form a complete binary tree of height log k in the following way:

• (Base case:) Start from root node, label the left and right child as 0 and 1 respectively.

• For every node x, label the left and right child as x0 and x1 respectively.

Note that our complete binary tree has k leaves, where each of the leaf is labeled by a binary string of
the form x1x2 . . . xlog k, which is the binary representation of numbers in [k]. Similarly any node in the
tree can be labeled by a binary string x1x2 . . . xt, where 0 ≤ t ≤ log k and t is the distance of the node
from the root.

Now for any i, j ∈ [k], let the binary representation of i be (x1x2 . . . xlog k) and that of j be
(y1y2 . . . ylog k). Now we will construct the permutation π ∈ Btk such that π(i) = j. Without loss of
generality, we can assume i 6= j.

Find the least positive integer ` ∈ [log k] such that x` 6= y`, then go to the node labeled x1x2 . . . x`−1
and swap it’s left and right child. Let πx1...x`−1

∈ Sk be the corresponding permutation of the leaves of
the tree, in other words on the set [k]. Note that, by definition, the permutation πx1...x`−1

∈ Sk is in Btk.
Also note that the permutation πx1...x`−1

acts of the set [k] as follows:

• πx1...x`−1
(z1 . . . zlog k) = z1 . . . zlog k if z1 . . . z`−1 6= x1 . . . x`−1

• πx1...x`−1
(x1 . . . x`−10z`+1 . . . zlog k) = (x1 . . . x`−11z`+1 . . . zlog k)

• πx1...x`−1
(x1 . . . x`−11z`+1 . . . zlog k) = (x1 . . . x`−10z`+1 . . . zlog k)

Since i = x1 . . . x`−1x` . . . xlog k and j = y1 . . . y`−1y` . . . ylog k with x1 . . . x`−1 = y1 . . . y`−1 and x` 6= y`,
so

πx1...x`−1
(i) = y1 . . . y`−1y`x`+1 . . . ylog k

So the binary representation of πx1...x`−1
(i) and j matching in the first ` positions which is one more

that the number of positions where the binary representation of i and j matched. By doing this trick
repeatedly, that is by applying different permutations from Btk one after another we can map i to j.

The following claim describes how the group Btk acts on various encoding of integers. Recall the
balance-binary representation (Definition 2.43).

Claim 2.53. For all γ̂ ∈ Bt2 logn there is a γ ∈ Sn such that for all i, j ∈ [n], γ̂[bb(i)] = bb(j) iff γ(i) = j.

Proof. Recall the group Bt2 logn: assuming that the elements of [2 log n] are placed on the leaves of the
binary tree of depth log(2 log n), the group Bt2 logn is generated by the permutations of the form “pick a
node in the binary tree of and swap the left and right sub-tree of the node”. So it is enough to prove that
for any elementary permutation γ̂ of the form “pick a node in the binary tree and swap the left and right
sub-tree of the node” there is a γ ∈ Sn such that for all i, j ∈ [n], γ̂[bb(i)] = bb(j) iff γ(i) = j.

Any node in the binary tree of depth log(2 log n) can be labeled by a 0/1-string of length t, where
0 ≤ t ≤ log(2 log n) is the distance of the node from the root. We split the proof of the claim into two
cases depending on the value of the t - the distance from the root.

If t = log(2 log n): This is the case when the node is at the last level - just above the leaf level. Let the
node be u and let s be the number of whose binary representation is the label of the node u. Let the
numbers in the leaves of the tree corresponds to the bb(i) - the balanced binary representation of i ∈ [n].
Note that because of the balanced binary representation the children of u are

• 0 (left-child) and 1 (right-child) if the s-th bit in the binary representation of i is 0

• 1 (left-child) and 0 (right-child) if the s-th bit in the binary representation of i is 1

So the permutation (corresponding to swapping the left and right sub-trees of u) only change the order
of 0 and 1 - which corresponds to flipping the s-th bit of the binary representation of i. And so in
this case the γ acting on the set [n] is just collection transpositions swapping i and j iff the the binary
representation of i and j are same except for the s-th bit.

So in this case for all i, j ∈ [n], γ̂[bb(i)] = bb(j) iff γ(i) = j.
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If t < log(2 log n): Let the node be v. Note that in this case since the node keeps the order of the
2r − 1 and 2r bits unchanged (for any 1 ≤ r ≤ log n), so it is enough we can visualise the action
by an action of swapping the left and right sub-trees of the node v on the binary representation of i
(instead of the balance binary representation of i). And so we can see that the action of the permutation
(corresponding to swapping the left and right sub-trees of v) automatically gives a permutation of the
binary representations of numbers between 1 and n, as was discussed in the proof of Claim 2.52. And
hence we have for all i, j ∈ [n], γ̂[bb(i)] = bb(j) iff γ(i) = j.

Now let us consider another encoding that we will using for the set of rows and columns of a matrix.

Definition 2.54. Given a set R of n rows r1, . . . , rn and a set C of n columns c1, . . . , cn we define the
balanced-pointer-encoding function E : (R× {0}) ∪ ({0} × C)→ {0, 1}4 logn, as follows:

E(ri, 0) = bb(i) · 02 logn, and, E(0, cj) = 02 logn · bb(j).

The following is a claim is easy to verify.

Claim 2.55. Let R be a set of n rows r1, . . . , rn and C be a set of n columns c1, . . . , cn and consider the
balanced-pointer-encoding function E : (R×{0})∪({0}×C)→ {0, 1}4 logn. For any elementary permutation
σ̂ in Bt4 logn (other than the Root-swap) there is a σ ∈ Sn such that for any (ri, cj) ∈ (R×{0})∪({0}×C)

σ̂[E(ri, cj)] = E(rσ(i), cσ(j)),

where we assume r0 = c0 = 0 and any permutation of in Sn sends 0 to 0.
If σ̂ is the root-swap then for any (ri, cj) ∈ (R× {0}) ∪ ({0} × C)

σ̂[E(ri, cj)] = Swap 1
2
(E(ri, cj)) = E(cj , ri).

3 High level description of our techniques

Pointer functions are defined over a special domain called pointer matrix, which is a m× n grid matrix.
Each cell of the matrix contains some labels and some pointers that point either to some other cell or to
a row or column 6. For more details, refer to Appendix 2.2.1. As described in [GPW18], the high level
idea of pointer functions is the usage of pointers to make certificates unambiguous without increasing the
input size significantly. This technique turns out to be very useful to give separations between various
complexity measures as we see in [MS15], [GJPW18] and [ABB+17].

Now we want to produce a new function that possesses all the properties of pointer functions, along
with the additional property of being transitive. To do so, first, we will encode the labels so that we can
permute the bits (by a suitable transitive group) while keeping the structure of unambiguous certificates
intact so that the function value remains invariant. One such natural technique would be to encode the
contents of each cell in such a way that allows us to permute the bits of the contents of each cell using a
transitive group and permute the cells among each other using another transitive group, and doing all
of these while ensuring the unambiguous certificates remains intact 7. This approach has a significant
challenge: namely how to encode the pointers.

The information stored in each cell (other than the pointers) can be encoded using fixed logarithmic
length strings of different Hamming weights - so that even if the strings are permuted and/or the bits in
each string are permuted, the content can be “decoded". Unfortunately, this can only be done when the
cell’s contents have a constant amount of information - which is the case for pointer functions (except
for the pointers). Since the pointers in the cell are strings of size O(log n) (as they are pointers to

6We naturally think of a pointer pointing to a cell as two pointers - one pointing to the row and the other to the column.
7Here, we use the word “encode" since we can view the function defined only over codewords, and when the input is

not a codeword, then it evaluates to 0. In our setting, since we are trying to preserve the one-certificates, the codewords
are those strings where the unambiguous certificate is encoded correctly. At the same time, we must point out that the
encoding of an unambiguous certificate is not necessarily unique.
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other columns or rows), if we want to use the similar Hamming weight trick, the size of the encoding
string would need to be polynomial in O(n). That would increase the size of the input compared to the
unambiguous certificate. This would not give us tight separation results.

Also, there are three more issues concerning the encodings of pointers:

• As we permute the cells of the matrix according to some transitive group, the pointers within each
cell need to be appropriately changed. In other words, when we move some cell’s content to some
other cell, the pointers pointing to the previous cell should point to the current cell now.

• If a pointer is encoded using a certain t-bit string, different permutations of bits of the encoded
pointer can only generate a subset of all t-bit strings.

For example: if we encode a pointer using a string of Hamming weight 10 then however we permute
the bits of the string, the pointer can at most be modified to point to cells (or rows or columns) the
encoding of whose pointers also have Hamming weight 10. (The main issue is that permuting the
bits of a string cannot change the Hamming weight of a string).

The encoding of all the pointers should have the same Hamming weight.

• The encoding of the pointers has to be transitive. That is, we should be able to permute the bits of
the encodings of the pointer using a transitive group in such a way that either the pointer value
does not change or as soon as the pointer values changes, the cells gets permuted accordingly - kind
of like an “entanglement".

The above three problems are somewhat connected. Our first innovative idea is to use binary balance
representation (Definition 2.43) to represent the pointers. This way, we take care of the second issue. For
the first and third issues, we define the transitive group - both the group acting on the contents of the
cells (and hence on the encoding of the pointers) and the group acting on the cells itself - in a “entangled"
manner. For this we induce a group action acting on the nodes of a balanced binary tree and generate a
transitive subgroup in Sn and S2 logn with the same action which will serve our purpose (Definition 2.51,
Claim 2.53). This helps us to permute the rows (or columns) using a permutation while updating the
encoding of the pointers accordingly.

By Claim 2.53, for every allowed permutation σ acting on the rows (or columns), there is a unique σ̂
acting on the encodings of the pointers in each of the cells such that the pointers are updated according
to σ. This still has a delicate problem. Namely, each pointer is either pointing to a row or column. But
the permutation σ̂ has no way to understand whether the encoding on which it is being applied points to
a row or column. To tackle this problem, we think of the set of rows and columns as a single set. All of
them are encoded by a string of size (say) 2t, where for the rows, the second half of the encoding is all
0 while the columns have the first t bits all 0. This is the encoding described in Definition 2.54 using
binary balanced representation. However, this adds another delicate issue about permuting between the
first t bits of the encoding and the second t bits.

To tackle this problem, we modify the original function appropriately. We define a slightly modified
version of existing pointer functions called ModA1. This finally helps us obtain our “transitive pointer
function," which has almost the same complexities as the original pointer function.

We have so far only described the high-level technique to make the 1st variation of pointer functions
(Definition 2.36) transitive where there is the same number of rows and columns. The further variations
need more delicate handling of the encoding and the transitive groups - though the central idea is similar.

4 Separations between deterministic query complexity and some other
complexity measures

4.1 Transitive pointer function F1.1 for Theorem 1.1

Our function F1.1 : Γn×n → {0, 1} is a composition of two functions - an outer function ModA1(n,n) :

Σ̄n×n → {0, 1} and an inner function Dec : Γ→ Σ̄. We will set Γ to be {0, 1}96 logn.
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The outer function is a modified version of the A1(n,n) - pointer function described in [ABB+17] (see
Definition 2.36 for a description). The function A1(n,n) takes as input a (n× n)-matrix whose entries are
from a set Σ and the function evaluates to 1 if a certain kind of 1-cell-certificate exists. Let us define a
slightly modified function ModA1(n,n) : Σ̄n×n → {0, 1} where Σ̄ = Σ× {`,a}. We can think of an input
A ∈ Σ̄n×n as a pair of matrices B ∈ Σn×n and C ∈ {`,a}n×n. The function ModA1(n,n) is defined as

ModA1(n,n)(A) = 1 iff


Either, (i) A1(n,n)(B) = 1, and, all the cells in the

1-cell-certificate have ` in the corresponding cells in C
Or, (ii) A1(n,n)(B

T ) = 1, and, all the cells in the
1-cell-certificate have a in the corresponding cells in CT

Note that both the two conditions (i) and (ii) cannot be satisfied simultaneously. From this it is easy
to verify that the function ModA1(n,n) has all the properties as A1(n,n) as described in Theorem 2.37.

The inner function Dec (we call it a decoding function) is function from Γ to Σ̄, where Γ = 96 log n.
Thus our final function is

F1.1 :=
(
ModA1(n,n) ◦ Dec

)
: Γn×n → {0, 1}.

4.1.1 Inner function Dec

The input to A1(n,n) is a Type1 pointer matrix Σn×n. Each cell of a Type1 pointer matrix contains a 4-tuple
of the form (Value,LPointer,RPointer,BPointer) where Value is either 0 or 1 and LPointer,RPointer are
pointers to the other cells of the matrix and BPointer is a pointer to a column of the matrix (or can be
a null pointer also). Hence, Σ = {0, 1} × [n]2 × [n]2 × [n]. For the function A1(n,n) it was assumed (in
[ABB+17]) that the elements of Σ is encoded as a k-length8 binary string in a canonical way.

The main insight for our function F1.1 :=
(
ModA1(n,n) ◦ Dec

)
is that we want to maintain the basic

structure of the function A1(n,n) (or rather of ModA1(n,n)) but at the same time we want to encode the
Σ̄ = Σ× {`,a} in such a way that the resulting function becomes transitive. To achieve this, instead of
having a unique way of encoding an element in Σ̄ we produce a number of possible encodings9 for any
element in Σ̄. The inner function Dec is therefore a decoding algorithm that given any proper encoding
of an element in Σ̄ will be able to decode it back.

For the ease of understanding we start by describing the possible “encodings” of Σ̄, that is by describing
the pre-images of any element of Σ̄ in the function Dec.

“Encodings” of the content of a cell in Σ̄n×n :

We will encode any element of Σ̄ using a string of size 96 log n bits. Recall that, an element in Σ̄ is of
the form (V, (rL, cL), (rR, cR), (cB), T ), where V is the Boolean value, (rL, cL), (rR, cR) and cB are the
left pointer, right pointers and bottom pointer respectively and T take the value ` or a. The overall
summary of the encoding is as follows:

• Parts: We will think of the tuple as 7 objects, namely V , rL, cL, rR, cR, cB and T . We will use
16 log n bits to encode each of the first 6 objects. The value of T will be encoded in a clever way.
So the encoding of any element of Σ̄ contains 6 parts - each a binary string of length 16 log n.

• Blocks: Each of 6 parts will be further broken into 4 blocks of equal length of 4 log n. One of the
blocks will be a special block called the “encoding block”.

Now we explain, for a tuple (V, (rL, cL), (rR, cR), (cB), T ) what is the 4 blocks in each part. We will
start by describing a “standard-form” encoding of a tuple (V, (rL, cL), (rR, cR), (cB), T ) where T =`.
Then we will extend it to describe the standard for encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =a.
And finally we will explain all other valid encoding of a tuple (V, (rL, cL), (rR, cR), (cB), T ) by describing
all the allowed permutations on the bits of the encoding.

8For the canonical encoding k = (1 + 5 logn) was sufficient
9We use the term “encoding” a bit loosely in this context as technically an encoding means a unique encoding. What we

actually mean is the pre-images of the function Dec.
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. . . B1 “encoding”-block B2 B3 B4 Hamming weight
P1 `1`2, where |`1| = 2 log n, and 4 log n 2 log n+ 1 2 log n+ 2 12 log n+ 2− V

|`2| = 2 log n− 1− V
P2 E(rL, 0) 2 log n+ 3 2 log n+ 1 2 log n+ 2 7 log n+ 6

P3 E(0, cL) 2 log n+ 4 2 log n+ 1 2 log n+ 2 7 log n+ 7

P4 E(rR, 0) 2 log n+ 5 2 log n+ 1 2 log n+ 2 7 log n+ 8

P5 E(0, cR) 2 log n+ 6 2 log n+ 1 2 log n+ 2 7 log n+ 9

P6 E(0, cB) 2 log n+ 7 2 log n+ 1 2 log n+ 2 7 log n+ 10

Table 2: Standard form of encoding of element (V, (rL, cL), (rR, cR), cB ,`) by a 96 logn bit string that is broken into 6
parts P1, . . . , P6 of equal size and each Part is further broken into 4 Blocks B1, B2, B3 and B4. So all total there are 24
blocks each containing a 4 logn-bit string. For the standard form of encoding of element (V, (rL, cL), (rR, cR), cB ,a) we
encode (V, (rL, cL), (rR, cR), cB ,`) in the standard form as described in the table and then apply the Swap 1

2
on each block.

The last column of the table indicates the Hamming weight of each Part.

Standard-form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =`: For the standard-form
encoding we will assume that the information of V, rL, cL, rR, cR, cB are stored in parts P1, P2, P3, P4, P5
and P6 respectively. For all i ∈ [6], the part Pi with have blocks B1, B2, B3 and B4, of which the block
B1 will be the encoding-block. The encoding will ensure that every parts within a cell will have distinct
Hamming weight. The description is also compiled in the Table 2.

• For part P1 (that is the encoding of V ) the encoding block B1 will store `1 · `2 where `1 be the
2 log n bit binary string with Hamming weight 2 log n and `2 is any 2 log n bit binary string with
Hamming weight 2 log n− 1− V . The blocks B2, B3 and B4 will store a 4 log n bit string that has
Hamming weight 4 log n, 2 log n+ 1 and 2 log n+ 2 respectively. Any fixed string with the correct
Hamming weight will do. We are not fixing any particular string for the blocks B2, B3 and B4 to
emphasise the fact that we will be only interested in the Hamming weights of these strings.

• The encoding block B1 for parts P2, P3, P4, P5 and P6 will store the string E(rL, 0), E(0, cL),
E(rR, 0), E(0, cr) and E(0, CB) respectively, where E is the Balanced-pointer-encoding function
(Definition 2.54). For part Pi (with 2 ≤ i ≤ 6) block B2, B3 and B4 will store any 4 log n bit string
with Hamming weight 2 log n+ 1 + i, 2 log n+ 1 and 2 log n+ 2 respectively.

Standard form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =a: For obtaining a standard-
form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =a, first we encode (V, (rL, cL), (rR, cR), (cB), T )
where T =` using the standard-form encoding. Let (P1, P2, . . . , P6) be the standard-form encoding of
(V, (rL, cL), (rR, cR), (cB), T ) where T =`. Now for each of the block apply the Swap 1

2
operator.

Valid permutation of the standard form: Now we will give a set of valid permutations to the bits
of the encoding of any element of Σ̄. The set of valid permutations are classified into into 3 categories:

1. Part-permutation: The 6 parts can be permuted using any permutation from S6

2. Block-permutation: In each of the part, the 4 blocks (say B1, B2, B3, B4) can be permuted is two
ways. (B1, B2, B3, B4) can be send to one of the following

(a) Simple Block Swap: (B3, B4, B1, B2) (b) Block Flip: (B2, B1, flip(B3), flip(B4))

The “decoding" function Dec : {0, 1}96 logn → Σ̄:

• Identify the parts containing the encoding of V , rL, cL, rR, cR and cB. This is possible because
every part has a unique Hamming weight.

• For each part identify the blocks. This is also possible as in any part all the blocks have distinct
Hamming weight. Recall, the valid Block-permutations, namely Simple Block Swap and Block Flip.
By seeing the positions of the blocks one can understand if flip was applied and to what and using
that one can revert the blocks back to the standard-form (recall Definition 2.43).
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• In the part containing the encoding of V consider the encoding-block. If the block is of the
form {(`1`2) such that |`1| = 2 log n, |`2| ≤ 2 log n − 1} then T = {`}. If the block is of the form
{(`2`1) such that |`1| = 2 log n, |`2| ≤ 2 log n− 1} then T = {a}.

• By seeing the encoding block we can decipher the original values and the pointers.

• If the 96 log n bit string doesn’t have the form of a valid encoding, then decode it as (0,⊥,⊥,⊥).

4.2 Proof of transitivity of the function

We start with describing the transitive group for which F1.1 is transitive.

The Transitive Group: We start with describing a transitive group T acting on the cells of the matrix
A. The matrix has rows r1, . . . , rn and columns c1, . . . , cn. And we use the encoding function E to encode
the rows and columns. So the index of the rows and columns are encoded using a 4 log n bit string.
A permutation from Bt4 logn (see Definition 2.51) on the indices of a 4 log n bit string will therefore
induce a permutation on the set of rows and columns which will give us a permutation on the cells
of the matrix. We will now describe the group T acting on the cells of the matrix by describing the
permutation group T̂ acting on the indices of a 4 log n bit string. The group T̂ will be the group Bt4 logn
acting on the set [4 log n]. We will assume that log n is a power of 2. The group T with be the resulting
group of permutations on the cells of the matrix induced by the group T̂ acting on the indices on the
balanced-pointer-encoding. Note that T is acting on the domain of E and T̂ is acting on the image of E .
Also T̂ is a transitive subgroup of S4 logn from Claim 2.52.

Observation 4.1. For any 1 ≤ i ≤ 2 log n consider the permutation “ith-bit-flip” in T̂ that applies the
transposition (2i− 1, 2i) to the indices of the balanced-pointer-encoding. Since the E-encoding of the row
(rk, 0) uses the balanced binary representation of k in the first half and all zero sting in the second half,
the jth bit in the binary representation of k is stored in the 2j − 1 and 2j-th bit in the E-encoding of ri.
So the j-th-bit-flip acts on the sets of rows by swapping all the rows with 1 in the j-th bit of their index
with the corresponding rows with 0 in the j-th bit of their index. Also, if i > log n then there is no effect
of the i-th-bit-flip operation on the set of rows. Similarly for the columns.

Using Observation 4.1 we have the following claim.

Claim 4.2. The group T acting on the cells of of the matrix is a transitive group. That is, for all
1 ≤ i1, j1, i2, j2 ≤ n there is a permutation σ̂ ∈ T̂ such that σ̂[E(i1, 0)] = E(i2, 0) and σ̂[E(0, j1)] = (0, j2).
Or in other words, there is a σ ∈ T acting on the cell of the matrix that would take the cell corresponding
to row ri1 and column cj1 to the cell corresponding to row ri2 and column cj2.

From the Claim 4.2 we see the group T acting on the cells of of the matrix is a transitive. But it
does not touch the contents within the cells of the matrix. But the input to the function F1.1 contains
element of Γ = {0, 1}96 logn in each cell. So we now need to extend the group T to a group G that acts
on all the indices of all the bits of the input to the function F1.1.

Recall that the input to the function F1.1 is a (n× n)-matrix with each cell of matrix containing a
binary string of length 96 log n which has 6 parts of size 16 log n each and each part has 4 blocks of size
4 log n each. We classify the generating elements of the group G into 4 categories:

1. Part-permutation: In each of the cells the 6 parts can be permuted using any permutation from S6

2. Block-permutation: In each of the Parts the 4 blocks can be permuted in the following ways.
(B1, B2, B3, B4) can be send to one of the following

(a) Simple Block Swap: (B3, B4, B1, B2)

(b) Block Flip (#1): (B2, B1, flip(B3), flip(B4))

(c) Block Flip (#2)10: (flip(B1), flip(B2), B4, B3)

10Actually this Block flip can be generated by a combination of Simple Block Swap and Block Flip (#1)
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3. Cell-permutation: for any σ ∈ T the following two action has to be done simultaneously:

(a) (Matrix-update) Permute the cells in the matrix according to the permutation σ. This keeps
the contents within each cells untouched - it just changes the location of the cells.

(b) (Pointer-update) For each of blocks in each of the parts in each of the cells permute the indices
of the 4 log n-bit strings according to σ, that is apply σ̂ ∈ T̂ corresponding to σ.

We now have the following theorems that would prove that the function F1.1 is transitive.

Theorem 4.3. G is a transitive group and the function F1.1 is invariant under the action of the G.

Proof of Theorem 4.3. To prove that the group G is transitive we show that for any indices p, q ∈
[96n2 log n] there is a permutation σ ∈ G that would take p to q. Recall that the string {0, 1}96n2 logn

is a matrix Γ(n×n) with Γ = {0, 1}96 logn and every element in Γ is broken into 6 parts and each part
being broken into 4 block of size 4 log n each. So we can think of the index p as sitting in kpth position
(1 ≤ kp ≤ 4 log n) in the block Bp of the part Pp in the (rp, cp)-th cell of the matrix. Similarly, we can
think of q as sitting in kqth position (1 ≤ kq ≤ 4 log n) in the block Bq of the part Pq in the (rq, cq)-th
cell of the matrix.

We will give a step by step technique in which permutations from G can be applied to move p to q.

Step 1 Get the positions in the block correct: If kp 6= kq then take a permutation σ̂ from T̂ that
takes kp to kq. Since T̂ is a transitive so such a permutation exists. Apply the cell-permutation
σ ∈ T corresponding to σ̂. As a result the index p can be moved to a different cell in the matrix
but, by the choice of σ̂ its position in the block in which it is will be kq. Without loss of generality,
we assume the the cell location does not change.

Step 2 Get the cell correct: Using a cell-permutation that corresponds to a series of “bit-flip” operations
change rp to rq and cp to cq. Since one bit-flip operations basically changes one bit in the binary
representation of the index of the row or column such a series of operations can be made.

Since each bit-flip operation is executed by applying the bit-flips in each of the blocks so this might
have once again changed the position of the index p in the block. But, even if the position in the
block changes it must be a flip operation away. Or in other word, since in the beginning of this
step kp = kq, so if kq is even (or odd) then after the series bit-flip operations the position of p in
the block is either kq or (kq − 1) (or (kq + 1)).

Step 3 Align the Part: Apply a suitable permutation to ensure that the part Pp moves to part Pq. Note
this does not change the cell or the block within the part or the position in the block.

Step 4 Align the Block: Using a suitable combination of Simple Block Swap and Block Flip ensures
the Block number gets matched, that is Bp goes to Bq. In this case the cell or the Part does not
change. But depending on whether the Block Flip operation is applied the position in the block
can again change. But, the current position in the block kp is at most one flip away from kq.

Step 5 Apply the final flip: It might so happen that already we a done after the last step. If not we
know that the current position in the block kp is at most one flip away from kq. So we apply the
suitable Block-flip operation. Thus will not change the cell position, Part number, Block number
and the position in the block will match.

Hence we have proved that the group G is transitive. Now we show that the the function F1.1 is invariant
under the action of G, i.e., for any elementary operations π from the group G and for any input Γ(n×n)

the function value does not change even if after the input is acted upon by the permutation π.
Case 1: π is a Part-permutation: It is easy to see that the decoding algorithm Dec is invariant

under Part-permutation. This was observed in description of the decoding algorithm Dec in Section 4.1.1.
So clearly that the function F1.1 is invariant under any Part-permutation.
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Case 2: π is a Block-permutation: Here also it is easy to see that the decoding algorithm Dec is
invariant under Block-permutation. This was observed in description of the decoding algorithm Dec in
Section 4.1.1. Thus F1.1 is also invariant under any Block-permutation.

Case 3: π is a Cell-permutation From Observation 2.41 it is enough to prove that when we
permute the cells of the matrix we update the points in the cells accordingly.

Let π ∈ T be a permutation that permutes only the rows of the matrix. By Claim 2.55, we see that
the contents of the cells will be updated accordingly. Similarly if π only permute the columns of the
matrix we will be fine.

Finally, if π swaps the row set and the column set (that is if π makes a transpose of the matrix) then
for all i row i is swapped with column i and it is easy to see that π̂[E(i, 0)] = E(0, i). In that case the
encoding block of the value part in a cell also gets swapped. This will thus be encoding the T value as a.
And so the function value will not be affected as the T =a will ensure that one should apply the π that
swaps the row set and the column set to the input before evaluating the function.

4.3 Properties of the function

Claim 4.4. Deterministic query complexity of F1.1 is Ω(n2).

Proof. The function ModA1(n,n) is a “harder” function than A1(n,n). So D(ModA1(n,n)) is at least
that of D(A1(n,n)). Now since, F1.1 is

(
ModA1(n,n) ◦ Dec

)
so clearly the D(F1.1) is at least D(A1(n,n)).

Theorem 2.38 proves that D(A1(n,n)) is Ω(n2). Hence D(F1.1) = Ω(n2).

The following Claim 4.5 follows from the definition of the function ModA1(n,n).

Claim 4.5. The following are some properties of the function ModA1(n,n)

1. R0(ModA1(n,n)) ≤ 3R0(A1(n,n))

2. Q(ModA1(n,n)) ≤ 3Q(A1(n,n))

3. deg(ModA1(n,n)) ≤ 3deg(A1(n,n))

Finally, from Theorem 2.16 we see that the R0(F1.1), Q(F1.1) and deg(F1.1) are at mostO(R0(ModA1(n,n)·
log n), O(Q(ModA1(n,n) · log n) and O(deg(ModA1(n,n) · log n), respectively. So combining this fact with
Claim 4.4, Claim 4.5 and Theorem 2.37 (from [ABB+17]) we have Theorem 1.1.

5 Separation between sensitivity and randomized query complexity

[BHT17] showed that functions that witness a gap between deterministic query complexity (or randomized
query complexity), and UCmin can be transformed to give functions that witness separation between
deterministic query complexity (or randomized query complexity) and sensitivity. We observe that
transformation the [BHT17] described preserves transitivity. Our transitive functions from Theorem 1.1
along with the transformation from [BHT17] gives the cubic separations between R and s

We start by defining desensitisation transform of Boolean functions as defined in [BHT17].

Definition 5.1 (Desensitized Transformation). Let f : {0, 1}n → {0, 1}. Let U be a collection of
unambiguous 1-certificates for f , each of size at most UC1(f). For each x ∈ f−1(1), let px ∈ U be the
unique certificate in U consistent with x. The desensitized version of f is the function fDT : {0, 1}3n →
{0, 1} defined by fDT(x1x2x3) = 1 if and only if f(x1) = f(x2) = f(x3) = 1 and px1 = px2 = px3 .

Observation 5.2. If f : {0, 1}n → {0, 1} is transitive, then fDT : {0, 1}3n → {0, 1} is also transitive.

Proof. Let Tf ⊆ Sn be the transitive group corresponding to f and let x1x2x3 ∈ {0, 1}3n be the input to
fDT. Consider the following permutations acting on the input x1x2x3 to fDT:

1. S3 acting on the indices {1, 2, 3} and

2. {(σ, σ, σ) ∈ S3n|σ ∈ Tf} acting on (x1, x2, x3).
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Observe that the above permutations act transitively on the inputs to fDT. Also from the definition of
fDT the value of the function fDT is invariant under these permutations.

Next, we need the following theorem from [BHT17]. The theorem is true for more general complexity
measures. We refer the reader to [BHT17] for a more general statement.

Theorem 5.3 ([BHT17]). For any k ∈ R+, if there is a family of function with D(f) = Ω̃(UCmin(f)1+k),
then for the family of functions defined by f̃ = OR3UCmin(f) ◦ fDT satisfies D(f̃) = Ω̃(s(f̃)2+k). Also, if
we replace D(f) by R(f), Q(f) or C(f), we will get the same result.

Proof of Theorem 1.2. Let us begin with the transitive functions F1.1 from Section 4.1 which will de-
sensitize to get the desired claim. From Theorem 2.38 and Observation 2.40 we have D(F1.1) ≥
Ω̃(UCmin(F1.1)

2).
Let F1.2 be the desensitize F1.1. From Theorem 5.3, Observation 5.2 we have the theorem.

6 Separation between quantum query complexity and certificate com-
plexity

[ABK16] constructed functions that demonstrated quadratic separation between quantum query com-
plexity and certificate complexity. Their function was not transitive. We modify their function to obtain
a transitive function that gives similar separation.

We start this section by constructing an encoding scheme for the inputs to k-sum function such that
the resulting function ENC-k-Sum is transitive. We then, similar to [ABK16], define ENC− Block-k-Sum
function. Composing ENC-k-Sum with ENC− Block-k-Sum as outer function gives us F1.3.

6.1 Function definition

Recall that, from Definition 2.30, for Σ = [nk], the function k-sum : Σn → {0, 1} is defined as follows: on
input x1, x2, . . . , xn ∈ Σ, if there exists k element xi1 , . . . , xik , i1, . . . , ik ∈ [n], that sums to 0 (mod |Σ|)
then output 1, otherwise output 0. We first define an encoding scheme for Σ.

6.1.1 Encoding scheme

Similar to Section 4.1.1 we first define the standard form of the encoding of x ∈ Σ and then extend it by
action of suitable group action to define all encodings that represent x ∈ Σ where Σ is of size nk for some
k ∈ N.

Fix some x ∈ Σ and let x = x1x2 . . . xk logn be the binary representation of x. The standard form of
encoding of x is defined as follows: For all i ∈ [k log n] we encode xi with with 4(k log n+ 2) bit Boolean
string satisfying the following three conditions:

1. xi = xi1xi2xi3xi4 where each xij , for j ∈ [4], is a (k log n+ 2) bit string,

2. if xi = 1 then |xi1| = 1, |xi2| = 0, |xi3| = 2, |xi4| = i+ 2, and

3. if xi = 0 then |xi1| = 0, |xi2| = 1, |xi3| = 2, |xi4| = i+ 2.

Having defined the standard form, other valid encodings of xi = (xi1xi2xi3xi4) are obtained by the action
of permutations (12)(34), (13)(24) ∈ S4 on the indices {i1, i2, i3, i4}. Finally if x = {(xij |i ∈ [k log n], j ∈
[4]}, then {(xσ(i)γ(j))|σ ∈ Sk logn, γ ∈ T ⊂ S4} is the set of all valid encoding for x ∈ Σ.

The decoding scheme follows directly from the encoding scheme. Given y ∈ {0, 1}k logn(4k logn+8), first
break y into k log n blocks each of size 4k log n+ 8 bits. If each block is a valid encoding then output the
decoded string else output that y is not a valid encoding for any element from Σ.
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6.1.2 Definition of the encoded function

ENC-k-Sum is a Boolean function that defined on n-bit as follows: Split the n-bit input into block of size
4k log n(k log n+ 2). We say such block is a valid block iff it follows the encoding scheme in Section 6.1.1
i.e. represents a number from the alphabet Σ. The output value of the function is 1 iff there exists k
valid block such that the number represented by the block in Σ sums to 0 (mod |Σ|).

ENC−Block-k-Sum is a special case of the ENC-k-Sum function. We define it next. ENC−Block-k-Sum
is a Boolean function that defined on n-bit as follows: The input string is splits into block of size
4k log n(k log n+2) and we say such block is a valid block iff it follows the encoding scheme of Section 6.1.1
i.e. represents a number from the alphabet Σ. The output value of the function is 1 iff there exists k
valid block such that the number represented by the block in Σ sums to 0(mod |Σ|) and the number of 1
in the other block is at least 6× (k log n). Finally, similar to [ABK16] define F1.3 : {0, 1}n2 → {0, 1} to
be ENC− Block-k-Sum ◦ ENC-k-Sum, with k = log n.

The proof of Theorem 1.3 is same as that of [ABK16]. We give the proof here for completeness.

Proof of Theorem 1.3. We first show that the certificate complexity of F1.3 is O(4nk2 log n(k log n+ 2).
For this we show that every input to ENC − Block-k-Sum, the outer function of F1.3, has a certificate
with Õ(k × (4k log n(k log n + 2))) many 0’s and O(n) many 1’s. Also the inner function of F1.3, i.e.
ENC-k-Sum, has 1-certificate of size O(4k2 log n(k log n + 2) and 0-certificate of size O(n). Hence, the
F1.3 function has certificate of size O(4nk2 log n(k log n+ 2)).

Every 1-input of ENC− Block-k-Sum has k valid encoded blocks such that the number represented
by them sums to (0 mod |Σ|). This can be certified using at most Õ(k × (4k log n(k log n+ 2))) number
of 0’s and all the 1’s from every other block.

There are two types of 0-inputs of ENC− Block-k-Sum. First type of 0-input has at least one block
in which number of 1 is less than 6 × (k log n) and the zeros of that block is a 0-certificate of size
Õ(4k log n(k log n+ 2)). The other type of 0-input is such that every block contains at least 6× (k log n)
number of 1’s. This type of 0-input can be certified by providing all the 1’s in every block, which is at
most O(n). This is because using all the 1’s we can certify that even if the blocks were valid, no k-blocks
of them is such that the number represented by them sums to 0 (mod |Σ|).

Next, we prove Ω(n2) lower bound on quantum query complexity of F1.3. From Theorem 2.17,
Q(F1.3) = Ω(Q(ENC− Block-k-Sum)Q(ENC-k-Sum)). Since ENC-k-Sum reduces to ENC− Block-k-Sum,

from Theorem 2.31 the quantum query complexity of the ENC− Block-k-Sum function is Ω

(
n

k
k+1

k
3
2 logn(k logn+2)

)
.

Thus

Q(F1.3) = Ω

(
n

2k
k+1

k3 log n(k log n+ 2)

)
.

Hence, Q(F1.3) = Ω̃(n2), taking k = log n.

7 Challenges with making transitive versions of “cheat sheet” based
functions

In this section we show that it is not possible to give a quadratic separation between degree and quantum
query complexity for transitive functions by modifying the cheat sheet function using the techniques
in [ABK16] which go via unambiguous certificate complexity.

Let us start by recalling the cheat sheet framework from [ABK16]. Let f : {0, 1}n → {0, 1} be a
total Boolean function. Let C(f) be its certificate complexity and Q(f) be its bounded-error quantum
query complexity. We consider the following cheat sheet function (also see Definition 2.32 for a formal
definition), which we denote by fCS,t : {0, 1}n×log t+t×log t×C(f)×logn → {0, 1}:

• There are log t copies of f on disjoint sets on inputs denoted by f1, . . . , flog t.

• There are t cheat sheets: each cheat sheet is a block of (log t× C(f)× log n) many bits
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• Let x1, . . . , xlog t ∈ {0, 1}n denote the input to the log t copies of f and let Y1, . . . , Yt denote the t
cheat sheets.

• Let ` = (f(x1), . . . , f(xlog t)). fCS,t evaluates to 1 if and only if Y` is a valid cheat sheet (see
Definition 2.32)

[ABK16] showed separations between several complexity measures using the cheat sheet framework.
In [ABK16], the separations that lower bound bounded-error quantum query complexity in terms of
other complexity measures, for example degree, are obtained as follows:

1. Start with a total function f : {0, 1}n → {0, 1} that has quadratic separation between quantum
query complexity and certificate complexity: Q(f) = Ω̃(n) and C(f) = Õ(

√
n). Consider the cheat

sheet version of this function fCS,t, with t = n10.

2. Lower bound Q(fCS,t), for t = n10 by Q(f). This uses the hybrid method ([BBBV97]) and strong
direct product theorem ([LR13].

3. Upper bound degree of fCS,t by using the upper bound on the unambiguous certificate complexity
of fCS,t.

Instead of degree, one might use approximate degree in the second step above for a suitable choice of f
(see [ABK16] for details).

A natural approach to obtain a transitive function with gap between a pair of complexity measures
is to modify the cheat sheet framework to make it transitive. One possible modification is to allow a
poly-logarithmic blowup in the input size of the resulting transitive function while preserving complexity
measures of the cheat sheet function that are of interest (upto poly logarithmic factors). We show,
however, that it is not possible to show a quadratic separation between degree and quantum query
complexity for transitive functions by modifying the cheat sheet function using the techniques in [ABK16]
which go via unambiguous certificate complexity. The reason for this is that the unambiguous certificate
complexity of a transitive cheat sheet function on N -bits is Ω(

√
N) (see Observation 7.1) whereas the in

Lemma 7.2 we show that the quantum query complexity of such a function is o(N).
Note that this does not mean that cheat sheet framework can not be made transitive to show such a

quadratic gap. If the cheat sheet version of a function that is being made transitive has a better degree
upper bound than that given by unambiguous certificate complexity then a better gap might be possible.

We now formalize the above discussion. First, we need the following observation that lower bounds
the certificate complexity of any transitive function.

Observation 7.1 ([SYZ04]). Let f : {0, 1}N → {0, 1} be a transitive function, then C(f) ≥
√
N .

The cheat sheet version of f , fCS,t, is a function on Θ̃(n + C(f)t) many variables, where t is
polynomial in n. From the cheat sheet property the unambiguous certificate complexity of fCS,t, denoted
by UC(fCS,t), is Θ̃(C(f)). In Section 7 we show that Q(fCS,t) is at most Õ(C(f)

√
t). Thus in order to

achieve quadratic separation between UC and Q, t has to be at least Ω̃(C(f)2).
Let f̃CS,t be a modified transitive version of fCS,t that preserves the quantum query complexity and

certificate complexity of fCS,t upto poly logarithmic factors, respectively. From Observation 7.1 it follows
that UC(f̃CS,t) = Ω̃(

√
n+ C(f)t) = Ω̃(C(f)3/2). On the other hand, since f̃CS,t preserves the certificate

complexity upto poly logarithmic factors, UC(f̃CS,t) = Õ(C(f)).

Upper bound on quantum query complexity of cheat sheet function

We use quantum amplitude amplification ([BHMT02]) in this section. Given a classical or quantum
algorithm with success probability p, quantum amplitude amplification amplifies the success probability
to 2/3 (or some constant greater than 1/2) by repeating the original algorithm O(1/

√
p) many times.

Classically, such amplification requires Ω(1/p) repetitions (this is also sufficient).

Lemma 7.2. The quantum query complexity of fCS,t is O(
√
t× log t×

√
n× log n).
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Proof. Consider the following randomized query algorithm for fCS,t:

• Choose i ∈ [t] uniformly at random

• Check the ith cheat sheet: if the certificates in ith cheat sheet evaluate to i then proceed, otherwise
return 1 and stop.

• Query the inputs of the functions to verify certificates. If the certificates match then return −1,
otherwise return 1.

If the cheat sheet criteria is not satisfied, then the above algorithm makes no error. On the other hand, if
the cheat sheet criteria is satisfied then there exists i ∈ [t] that returns −1 when chosen in the first step
of the above algorithm. Thus, the probability of algorithm being correct is at least 1/t. Also, the number
of queries made by the above algorithm is log t×

√
n× log n.

Thus, by amplitude amplification, O(
√
t) repetitions of the above algorithm gives us a bounded-error

quantum query algorithm which makes O(
√
t× log t×

√
n× log n) many queries.

We end this section by giving a concrete approach towards showing separation between unambiguous
certificate complexity and quantum query complexity for a transitive functions using the cheat sheet
method. We believe the it is possible to start with fCS,t, for transitive function f and t =

√
n and convert

it to a transitive function that preserves the unambiguous certificate complexity and quantum query
complexity upto poly logarithmic factors, while incurring a poly logarithmic blowup in the input size.
However, we do not know how to prove quantum query complexity lower bound matching our upper
bound from Lemma 7.2 for t =

√
n. We make the following conjecture towards this end.

Conjecture 7.3. There exists a transitive function f : {0, 1}n → {0, 1} with C(f) = Õ(
√
n) and

Q(f) = Ω̃(n). Let fCS,√n be the cheat sheet version of f with
√
n cheat sheets. Then

Q(fCS,
√
n) = Ω(n3/4).

If true, the above conjecture should implies that for a transitive function f , Q(f) = Ω̃(deg(f)4/3).
[ABK16] showed the for the quantum query complexity of the cheat function fCS,t, i.e. Q(fCS,t),

is lower bounded by Q(f), when t = n10. Their proof goes via he hybrid method ([BBBV97]) and
strong direct product theorem ([LR13]. Is is interesting to find the the constant smallest c such that
Q(fCS,nc) = Ω(Q(f)). We know that such a c must be at least than 1 (from Lemma 7.2) and is at most
10 (from [ABK16]). We state this formally beow:

Question 7.4. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function and let fCS,nc be its cheat
sheet version with nc cheat sheets. What is the smallest c such that the following is true:

Q(fCS,nc) = Ω(Q(f)).

8 Conclusion

As far as we know, this is the first paper that presents a thorough investigation on the relationships
between various pairs of complexity measures for transitive function.

The current best-known relationships and best-known separations between various pairs of measures
for transitive functions are summarized in the Table 1. Unfortunately, a number of cells in the table are
not tight. In this context, we would like to point out some important directions:

• For some of these cells, the separation results for transitive functions are weaker than that of the
general functions. A natural question is the following: why can’t we design a transitive version of
the general functions that achieve the same separation? For some cases, like the cheat sheet-based
functions, we discuss the difficulties and possible directions in Section 7. Thus following is a natural
question.
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Open Problem 8.1. For a pair of complexity measures for Boolean functions whose best-known
separations are achieved via cheat sheets, obtain similar separations for transitive Boolean functions.

• A total function was constructed in [BT20] that demonstrates quadratic separations between
approximate degree with sensitivity and several other complexity measures. It is thus natural to
investigate the following open problem.

Open Problem 8.2. Come up with transitive functions that achieve similar separations for those
pair of measures whose best-known separations are shown by [BT20].

• Recently [BDGJK21], [Bal21] and [BBDG+22] came up with new classes of Boolean functions,
starting with the HEX (see [BDGJK21]) and EAH (see [BBDG+22]) functions, that exhibit
improved separations between certificate complexity and other complexity measures using the.

In light of these recent developments is important to ask whether similar separations can be shown
for transitive functions. Following open problem is a natural starting point.

Open Problem 8.3. Can the HEX and EAH functions be modified to a transitive functions, while
preserving its desired complexity measures upto poly-logarithmic factors?

• While we have been concerned only with lower bounds in this paper, it is an exciting research
direction to bridge the gap between complexity measures of transitive Boolean functions by providing
improved upper bounds.

Open Problem 8.4. Bridge the gaps in Table 1 by coming up with better upper bounds on
complexity measures for transitive functions.

Even with the recent results of [Hua19] and [ABK+21], there are significant gaps between the best-known
lower and upper bounds in this case which gives another set of open problems to investigate in the study
of combinatorial measures of transitive Boolean functions.
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A Known lower bounds for complexity measures for the class of tran-
sitive function

The following table represents the individual known separations and the known example for different
complexity measures for the class of transitive function:

Measure known lower bounds Known example
D Ω(

√
N) O(

√
N)

[SYZ04] [SYZ04]
R0 Ω(

√
N) O(

√
N)

[SYZ04] [SYZ04]
R Ω(N

1
3 ) O(

√
N)

bs(f) = O(R(f)) [SYZ04]
C Ω(

√
N) O(

√
N)

Tribe(
√
N,
√
N)

RC Ω(N
1
3 ) O(

√
N)

bs(f) = O(RC(f)) Tribe(
√
N,
√
N)

bs Ω(N
1
3 ) Õ(N

3
7 )

[Sun07] [Sun07], [Dru11]
s Ω(N

1
8 ) Θ(N

1
3 )

deg(f) = O(s(f))2 [Cha11]
λ Ω(N

1
12 ) Θ(N

1
3 )

C(f) = O(λ(f))6 [Cha11]
QE Ω(N

1
4 ) O(

√
N)

Q(f) = O(QE(f)) [SYZ04]
deg Ω(N

1
4 ) O(

√
N)

deg(f) = Ω(d̃eg(f)) [SYZ04]
Q Ω(N

1
4 ) Õ(N

1
4 )

[SYZ04] [SYZ04]
d̃eg Ω(N

1
4 ) Õ(N

1
4 )

[KT16] [SYZ04]

Table 3: In each row, for the measure A, the two entries a, b represents: (1) (Known lower bound) for all
transitive Boolean function f , A(f) = Ω(a), and (2) (Known example) there exists a transitive function
g such that A(g) = O(b), where a and b are some polynomial in N .
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