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Abstract

Monotonicity testing of Boolean functions on the hypergrid, f : [n]d → {0, 1}, is a classic topic
in property testing. Determining the non-adaptive complexity of this problem is an important open
question. For arbitrary n, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query
complexity Õ(ε−4/3d5/6). This complexity is independent of n, but has a suboptimal dependence on
d. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC
2023] describe Õ(ε−2n3

√
d) and Õ(ε−2n

√
d)-query testers, respectively. These testers have an almost

optimal dependence on d, but a suboptimal polynomial dependence on n.
In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity

O(ε−2d1/2+o(1)), independent of n. Up to the do(1)-factors, our result resolves the non-adaptive com-
plexity of monotonicity testing for Boolean functions on hypergrids. The independence of n yields a non-
adaptive, one-sided O(ε−2d1/2+o(1))-query monotonicity tester for Boolean functions f : Rd → {0, 1}
associated with an arbitrary product measure.
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1 Introduction

Since its introduction more than two decades ago, the problem of monotonicity testing has attracted an
immense amount of attention. In this paper, we focus on the question of monotonicity testing of Boolean
functions f : [n]d → {0, 1} over the d-dimensional hypergrid. The problem was introduced in the semi-
nal paper of Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky [GGL+00] and early results were
achieved by Raskhodnikova [Ras99] and Dodis, Goldreich, Lehman, Raskhodnikova, Ron, and Samorod-
nitsky [DGL+99]. (See §1.3 for more details.)

Each element x ∈ [n]d is represented as a d-dimensional vector with xi ∈ [n] denoting the ith coordi-
nate. The partial order of the hypergrid is defined as: x ⪯ y iff xi ≤ yi for all i ∈ [d]. When n = 2, the
hypergrid [n]d is isomorphic to the hypercube {0, 1}d. A Boolean hypergrid function f : [n]d → {0, 1} is
monotone if f(x) ≤ f(y) whenever x ⪯ y. The distance between two functions f and g, denoted ∆(f, g),
is the fraction of points where they differ. A function f : [n]d → {0, 1} is called ε-far from monotone
if ∆(f, g) ≥ ε for all monotone functions g : [n]d → {0, 1}. Given a proximity parameter ε and query
access to a function, a monotonicity tester is a randomized algorithm which accepts a monotone function
and rejects a function that is ε-far from monotone, each with probability ≥ 2/3. If the tester accepts mono-
tone functions with probability 1, it is said to have one-sided error or simply called one-sided. If the tester
decides its queries without seeing any responses, it is called non-adaptive.

An outstanding open question in property testing is to determine the optimal non-adaptive query com-
plexity of monotonicity testing for Boolean hypergrid functions. Here we mention the current best bounds
and refer the reader to §1.3 for a more extensive background. Black, Chakrabarty, and Seshadhri [BCS18,
BCS20] give a Õ(ε−4/3d5/6)-query tester. Note that the query complexity is independent of n. Building
on seminal work of Khot, Minzer, and Safra [KMS18], Braverman, Khot, Kindler, and Minzer [BKKM23]
and Black, Chakrabarty, and Seshadhri [BCS23] recently give Õ(ε−2n3

√
d) and Õ(ε−2n

√
d) testers, re-

spectively. Chen, Waingarten, and Xie [CWX17] give an Ω̃(
√
d) lower bound for non-adaptive Boolean

monotonicity testing on hypercubes (n = 2). Hence, these last bounds are nearly optimal in d, but are
sub-optimal in n. Can one achieve the optimal

√
d dependence while being independent of n? We answer in

the affirmative, giving a non-adaptive, one-sided monotonicity tester for Boolean functions over hypergrids
with almost optimal query complexity.

Theorem 1.1. Consider Boolean functions over the hypergrid, f : [n]d → {0, 1}. There is a one-sided,
non-adaptive tester for monotonicity that makes ε−2d1/2+O(1/ log log d) queries.

Query complexities independent of n allow for monotonicity testing over continuous spaces. Let µ =∏d
i=1 µi be an associated product Lebesgue measure over Rd. A function f : Rd → {0, 1} is measurable

if the set f−1(1) is Lebesgue-measurable with respect to µ. The µ-distance of f to monotonicity is defined
as infg∈M µ(∆(f, g)), where M is the family of measurable monotone functions and ∆ is the symmetric
difference operator. (Refer to Sec. 6 of [BCS20] for more details.) Domain reduction results [BCS20, HY22]
show that monotonicity testing over general hypergrids and continuous (measurable) spaces can be reduced
to the case where n = poly(ε−1d) via sampling. A direct consequence of Theorem 1.1 is the following
theorem for continuous monotonicity testing.

Theorem 1.2. Consider measurable Boolean functions f : Rd → {0, 1}, with a product measure µ.
There is a one-sided, non-adaptive tester for monotonicity that makes ε−2d1/2+O(1/ log log d) queries.

All o(d) non-adaptive, one-sided monotonicity testers are path testers (also called pair testers) that check
for violations among comparable points at a distance from each other, rejecting if they form a violation.
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Consider the fully augmented directed hypergrid graph defined as follows. Its vertices are [n]d and its edges
connect all pairs x ≺ y that differ in exactly one coordinate. A path tester picks a random point x in [n]d,
performs a random walk in this directed graph to get another point y ≻ x, and rejects if f(x) > f(y).
The whole game is to lower bound the probability that f(x) > f(y) when f is ε-far from being monotone.
Unlike random walks on undirected graphs, these directed random walks are ill-behaved. In particular, one
cannot walk for “too long” and the length of the walk has to be carefully chosen. The approach to analyzing
such path testers has two distinct parts.

• Directed Isoperimetry. A Boolean isoperimetric theorem relates the volume of a subset of the hyper-
grid, in our case the preimage f−1(1), to the edge and vertex expansion properties of this set in the graph. A
directed analogue replaces the volume with the distance to monotonicity, and deals with directed expansion
properties.

• Random walk analysis. The second part is to use the directed isoperimetric theorem to lower bound
the success probability of the path tester. The analogy is: if the (directed) expansion of a set is large, then
the probability of a directed random walk starting from a 1 and ending at a 0 is also large. This analysis
proceeds via special combinatorial substructures in the graph of violations.

The seminal result of Khot, Minzer, and Safra [KMS18] (henceforth KMS) gave near optimal analyses for
both parts, for the hypercube domain. For the first part, they prove a directed, robust version of the Talagrand
isoperimetric theorem. KMS use this directed isoperimetric theorem to construct “good subgraphs” of the
hypercube comprised of violated edges. For the second part mentioned above, KMS relate the success
probability of the directed random walk to properties of this subgraph. Coming to hypergrids, one needs to
generalize both parts of the analysis, and this offers many challenges. For the first part, Black, Chakrabarty,
and Seshadhri [BCS23] generalize the directed Talagrand inequality to the hypergrid domain. Unfortunately,
even with this stronger directed Talagrand isoperimetric bound for hypergrids, the generalization of the KMS
random walk analysis only yields a 1/(n

√
d) lower bound on the success probability.

The main technical contribution of this paper is a new random walk algorithm and analysis
whose success probability is at least ε2d−(1/2+o(1)).

1.1 Algorithm Description

Our algorithm performs directed random walks as all previous monotonicity testers do, but augments these
with coordinated walks. It starts at a random x and performs an “up-walk” of a certain (random) length on
the fully augmented directed hypergrid to reach a point y. The algorithm then “walks down” in a coordinated
fashion from both x and y to get to points w = x − s and z = y − s where s is some random vector. The
main contribution of this paper is to show that the combinatorial properties implied by directed isoperimetry
theorems of [BCS23] can be used to analyze these coordinated tests. We give a formal description of the
algorithm.

Without loss of generality1, we assume that n is a power of 2. We use x ∈R S to denote choosing a
uniform random element x from the set S. We use the notation [n] := {1, 2, . . . , n}. Abusing notation,
we define intervals in Zn by wrapping around. So, if 1 ≤ i ≤ n < j, then the interval [i, j] in Zn is the
set [i, n] ∪ [1, j (mod n)]. The directed (lazy) random walk distribution in [n]d that we consider is defined
as follows. The distribution induced by this directed walk has multiple equivalent formulations, which are
discussed in §2.2.

1See Theorem A.1 of [BCS18]. Note this assumption is not crucial, but we choose to use it for the sake of a cleaner presentation.
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Definition 1.3 (Hypergrid Walk Distribution). For a point x ∈ [n]d and walk length τ , the distribution
Uτ (x) over y ∈ [n]d reached by an upward lazy random walk from x of τ -steps is defined as follows.

1. Pick a uniform random subset R ⊆ [d] of τ coordinates.
2. For each r ∈ R:

(a) Choose qr ∈R {1, 2, . . . , log n} uniformly at random.
(b) Choose a uniform random interval Ir in Zn of size 2qr such that xr ∈ Ir.
(c) Choose a uniform random cr ∈R Ir \ {xr}.

3. Generate y as follows. For every r ∈ [d], if r ∈ R and cr > xr, set yr = cr. Else, set yr = xr.

Analogously, let Dτ (x) be the distribution defined precisely as above, but the >-sign is replaced by the
<-sign in step 3. This is the distribution of the endpoint of a downward lazy random walk from x of τ -steps.

As mentioned earlier, a crucial step of our algorithm involves performing the exact same random walk, but
originating from two different points. We use the notion of shifts.

Definition 1.4 (Shift Distributions). The up-shift distribution from x, denoted USτ (x) is the distribution of
x′−x, where x′ ∼ Uτ (x). The down-shift distribution from x, denoted DSτ (x) is the distribution of x−x′,
where x′ ∼ Dτ (x).

Using Definition 1.3 and Definition 1.4, our tester is defined in Alg. 1.

Algorithm 1 Monotonicity tester for Boolean functions on [n]d

Input: A Boolean function f : [n]d → {0, 1}
1. Choose p ∈R {0, 1, 2, . . . , ⌊log d⌋} uniformly at random and set τ := 2p.
2. Run the upward path test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose x ∈R [n]d and sample y from Uℓ(x).
(b) If f(x) > f(y), then reject.

3. Run the downward path test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose y ∈R [n]d and sample x from Dℓ(y).
(b) If f(x) > f(y), then reject.

4. Run the upward path + downward shift test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose x ∈R [n]d, sample y from Uℓ(x), and sample s from DSτ−1(x).
(b) If f(x− s) > f(y − s), then reject.

5. Run the downward path + upward shift test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose y ∈R [n]d, sample x from Dℓ(y), and sample s from USτ−1(y).
(b) If f(x+ s) > f(y + s), then reject.

Remark 1.5. Given a function f : [n]d → {0, 1}, consider the doubly-flipped function g : [n]d → {0, 1}
defined as g(x) := 1 − f(x̄) where x̄i := n − xi + 1. That is, we swap all the zeros and ones in f ,
and then reverse the hypergrid (the all 1’s point becomes the all n’s point and vice-versa). The distance to
monotonicity of both f and g are the same: a pair (x,y) is violating in f if and only if (x̄, ȳ) is violating
in g. In Alg. 1, Step 2 on f is the same as Step 3 on g, and Step 4 on f is the same as Step 5 on g. In our
analysis, we will construct a violation subgraph between vertex sets X and Y . Points in X are 1-valued
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and points in Y are 0-valued. If |X| ≤ |Y |, then the steps 2, 3, and 4 suffice for the analysis. If |Y | ≤ |X|,
then (by the same analysis) we run steps 2,3, and 4 on the function g. This is equivalent to running steps 2, 3,
and 5 on the function f . So, the tester covers both situations, and we can assume without loss of generality
that |X| ≤ |Y |. This discussion happens in Section 5.1.1.

Our main result is the following lower bound on the rejection probability of Alg. 1.

Theorem 1.6 (Main Theorem). Let n ≤ poly(d) and ε ≥ d−1/2. If f : [n]d → {0, 1} is ε-far from
being monotone, then Alg. 1 rejects f with probability at least ε2 · d−(1/2+O((log lognd)−1)).

Theorem 1.6 is proved in §4. Using Theorem 1.6, our main testing results Theorem 1.1 and Theorem 1.2
follow easily from prior techniques, and so we defer their proofs to Section 8.

1.2 Analysis Overview

We give a leisurely overview of the main ideas that go behind proving Theorem 1.6. We begin with a high-
level overview of the KMS analysis for the hypercube case, sketch certain challenges that hypergrids pose,
and then discuss our ideas that led us to the “shifted walks” view.

The KMS random walk analysis on {0, 1}d in a nutshell. For simplicity, let’s assume ε is a small
constant so that we ignore the dependence on ε. As mentioned earlier, KMS prove a directed, robust version
of the Talagrand isoperimetric theorem. Using this, they extract a large “good subgraph” of violations. A
violation subgraph G = (X,Y , E) is a bipartite graph where ∀x ∈ X, f(x) = 1, ∀y ∈ Y , f(y) = 0,
and all edges in E are hypercube edges. A good subgraph is a violation subgraph that satisfies certain lower
bounds on the total number of edges and has an approximate regularity property. The specifics are a bit
involved (Definition 6.1-6.3, in [KMS18]), but it is instructive to consider the simplest good subgraph: a
matching between X and Y where |X| = |Y | = Ω(2d).

When the good subgraph is a matching, KMS show that a random walk of length τ = Θ̃(
√
d) succeeds

in finding a violation with Ω̃(d−1/2) probability. A key insight in the analysis is the notion of τ -persistence:
a vertex x is τ -persistent if a τ -length directed random walk leads to a point z where f(x) = f(z) with
constant probability. A simple argument shows that there are o(2d) non-persistent vertices (for walk length
< d1/2). We can remove all such vertices from X and Y . We get a matching between subsets X ′ and Y ′

where all points in X ′ and Y ′ are (τ − 1)-persistent, and |X ′| = |Y ′| is still Ω(2d).
With Ω(1) probability, the tester starts from x ∈ X ′. Note that f(x) = 1. Let the matched partner of

x be y. Let i be the dimension of the violated edge (x,y). With probability roughly τ/d = Ω̃(d−1/2), the
directed walk will cross the ith dimension. Let us condition on this event. We can interpret the random walk
as traversing the edge (x,y), and then taking a (τ − 1)-length directed walk from y to reach the destination
y′. (Note that we do not care about the specific order of edges traversed by the random walk. We only care
about the value at the destination.) Since y is (τ − 1)-persistent with Ω(1) probability the final destination
y′ will satisfy f(y′) = f(y) = 0. Putting it all together, the tester succeeds with probability Ω̃(d−1/2).

The challenge in hypergrids. As mentioned earlier, [BCS23] proves an isoperimetric theorem for hyper-
grids generalizing the one in [KMS18]. Using similar techniques to the hypercube case, one can construct
“good subgraphs” of the fully augmented hypergrid. The definition is involved (Theorem 7.8 in [BCS23]),
but the simplest case is again a violation matching of (X,Y , E) of size |X| = |Y | = Ω(nd). Note that the
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matched pairs (x,y) are axis-aligned, that is, differ in exactly one coordinate i. But yi − xi is an integer in
{1, 2 . . . , n− 1}.

In the hypergrid, the directed random walk must necessarily perform “jumps”. At each step, the walk
changes a chosen coordinate to a random larger value. One can generalize the hypercube persistence argu-
ments to show that with constant probability, a τ = Θ̃(

√
d)-step random walk will result in both endpoints

having the same value. And so, like before, we can remove all “non-persistent” points to end up with an
Ω(nd) violation matching (X ′,Y ′) where all vertices are τ -persistent.

The tester picks x ∈ X ′ with Ω(1) probability. Let y be its matched partner, which differs in the ith
coordinate. If the number of steps is τ , then with τ/d ≈ Ω̃(d−1/2) probability, the walk will choose to move
along the ith coordinate. Conditioned on this event, we would like to relate the random walk to a persistent
walk from y. However, there is only a 1/n chance that the length jumped along that coordinate will be
the jump yi − xi. One loses an extra n factor in the success probability, and indeed, this is the high-level
analysis of the Õε(n

√
d)-tester from [BCS23] (at least for the case of the matching).

How does one get rid of this dependence on n? There is no simple way around this impasse. If yi−xi is,
say Θ(n), we cannot relate the walk from x to a (persistent) walk from y without losing this n factor. If one
desires to be free of the parameter n, then one needs to consider the internal points in the segment (x,y).
But all internal points could be non-persistent. Even though most internal points z in the segment (x,y) may
be 0-valued, a (τ−1)-step walk from z could lead to 1-valued points. So the final pair will not be a violation.
One may think that since the matching size was large (≈ nd), the “interior” (the union of the interiors of the
matching segments) would be large, and most of the internal nodes would be persistent. Unfortunately, that
may not be the case, and the following is an illustrative example. We define a Boolean hypergrid function f
and an associated violation matching iteratively. Let n ≤ d/ ln d. Start with all function values undefined.
If x1 = 1, set f(x) = 1. If x1 = n, set f(x) = 0. Take the natural violation matching between these
points. For every undefined point x: if x2 = 1, set f(x) = 1 and if x2 = n, set f(x) = 0. Iterating over all
coordinates, we define the function at all points “on the surface”. In the “interior”, where ∀i, xi /∈ {1, n},
we set f arbitrarily. The interior has size nd · (1−2/n)d ≈ nd exp(−2 ln d) ≤ nd/d2. This is a tiny fraction
of the domain, while the matching has size Ω(nd). Hence, it is possible to have a large violation matching
such that the union of (strict) interiors is vanishingly small.

Mostly-zero-below Points and Red Edges. As mentioned above, we begin with the basic case of a vi-
olation matching G = (X,Y , E) of size Ω(nd) in the fully augmented hypergrid. The general case will
be discussed at the end of this section. We set τ = Θ̃(

√
d). As argued above, using the persistence and

Markov inequality arguments, we can assume that all points in X∪Y are (τ−1)-persistent. Recall that our
algorithm performs both up-walks and down-shifted walks. In particular, it compares a pair (x,w) where
w is τ -steps “above” x, and then also compares (x− s,w − s) where s has (τ − 1) non-zero coordinates.

The following is a key definition: we call a point w mostly-zero-below for length ℓ, or simply ℓ-mzb, if
an ℓ-length down-walk from w leads to a zero with ≥ 0.9 probability (Definition 3.1). Suppose an up-walk
of length τ from a point x ∈ X reaches a (τ − 1)-mzb point w. Then, a random shift (x − s,w − s) has
a constant probability of being a violation. The reason is (i) Pr[f(x − s) = f(x) = 1] ≥ 0.9 because x is
(τ − 1)-persistent, and (ii) Pr[f(w − s) = 0] ≥ 0.9 because w is (τ − 1)-mostly-zero-below. By a union
bound, the tester will find a violation with constant probability (conditioned on discovering the pair (x,w)).

To formalize this analysis, we define an edge (x,y) of our large matching to be red if it satisfies the
following condition: for a constant fraction of the points z in the segment (x,y), a (τ − 1)-length up-walk
ends at a (τ − 1)-mzb point with constant probability (Definition 3.2). If there are Ω(nd) red matching
edges, we can argue that the tester succeeds with the desired probability. Firstly, with probability Ω(1),
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the tester starts the walk at an endpoint x of a red edge. Let the matched edge be (x,y). With probability
τ/d ≈ d−1/2, the walk will cross the dimension corresponding to (x,y). Conditioned on this event, we
can interpret the walk as first moving2 to a random interior point z in the segment (x,y) and then taking
a (τ − 1)-length up-walk from z to get to the point z′. (Refer to Fig. 1.) Since the edge was red, with
constant probability, z′ is τ -mzb. Consider a random shift of (x, z′), shown as (x− t, z′ − t) in Fig. 1. As
discussed in the previous paragraph, this shifted pair is a violation with constant probability. All in all, the
tester succeeds with Ω(d−1/2) probability.

𝑥 𝑦𝑧

𝑥′ 𝑦′ 𝑧′ 

𝑠

𝑡

𝑥 − 𝑡

𝑧′ − 𝑡

Figure 1: This figure shows the key argument that either up-walks + downshifts, or down-walks find vio-
lations. The edge (x,y) is in the initial violation matching. Parallel curves of the same shape denote the
same shift. So x′ = x+ s, y′ = y + s, and z′ = z+ s. Similarly, we see both x and z′ shifted below by t.
The 1-valued points are colored black and the 0-valued points are colored white. Gray points do not have
an a priori guarantee on function value. If z′ is mzb, then f(z′ − t) = 0 with high probability. In this case,
(x− t, z′ − t) is a likely violation. If not, then (z′ − t,y′) is a likely violation.

But what if there are no red edges? This takes us to the next key idea of our paper: translations of violation
subgraphs.

Translations of violation subgraphs, and blue edges. Suppose most of the matching edges edges (x,y)
are not red. So, for most points z in the segment (x,y), a (τ − 1)-length walk does not reach a (τ − 1)-mzb
point. Fix one such walk, which can be described by an “up-shift” s. So the walk from z reaches z′ := z+s.

Consider the corresponding shift of the full edge (x,y) to (x′,y′), where x′ = x + s and y′ = y + s.
Refer to Fig. 1. What can we say about this edge? Since both x and y are up-persistent, with good probability
both f(x′) = f(x) = 1 and f(y′) = f(y) = 0. Observe that most internal points z′ in (x′,y′) are not
mostly-zero-below. Consider a (τ − 1)-length downward walk from such a point z′, whose destination can
be represented as z′ − t (for a downshift t). With probability ≥ 0.1, f(z′ − t) = 1.

Recall, the tester performs a downward random walk (Algorithm 1, Step 3) as well. Suppose this walk
starts at y′. With probability ≈ τ/d ≈ d−1/2, the walk moves (downward) in the ith coordinate. Conditioned

2There is an annoying edge-case: the point x may itself contribute to the “redness” of the edge (x,y). In this case, we do not
move along that dimension but rather take a (τ − 1) length walk from x. This is why Alg. 1 takes walks of both lengths, τ and
τ − 1.
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on this, the walk ends up at a point z′ − t. As discussed above, z′ is likely to be not mostly-zero-below.
Hence f(z′ − t) = 1 with constant probability, and the tester discovers the violating pair (z′ − t,y′).

Fig. 1 summarizes the above observations. If (x,y) is red, then the pair (x − t, z′ − t) is likely to a
violation. If (x,y) is not red, then the pair (z′ − t,y′) is a likely violation. This motivates the definition of
our blue edges. We call a violating edge blue, if for a constant fraction of points in the interior, a downward
walk of length (τ − 1) leads to a 1-point with constant probability (Definition 3.3). We argued above that if
the edge (x,y) in the violation matching was not red, then a random shift or translation up to (x′,y′) leads
to a blue edge. If most edges in our original violation matching were not red, then we could translate “all
these edges together” to get a (potentially) new large violation subgraph. If most of these new edges are
blue, then the downward walk would catch a violation with ≈ d−1/2 probability.

What does it mean to translate “all edges together”? In particular, how do we pin down this new violation
matching? We use ideas from network flows. Through the random translation, every non-red edge (x,y) in
the original violation matching leads to a distribution over blue edges (x′,y′). We treat this as a fractional
flow on these blue edges. If the original matching had few red edges, we can construct a large collection
of blue edges sustaining a large flow. Integrality of flow implies there must be another large violation
matching in the support of this distribution whose edges are blue. This is the essence of the “red/blue”
lemma (Lemma 5.12).

Putting it together, suppose G = (X,Y , E) is a large violation matching. Either the up-walk with a
shift (Step 4) or the down-walk (Step 3) succeeds with probability ≈ d−1/2.

Lopsided violation subgraphs and translation again. We have discussed the situation of a large vio-
lation matching G = (X,Y , E) with |X| = |Y | = Ω(nd). However, such a large matching may not
exist. Instead, the directed isoperimetric theorems imply the existence of a “good subgraph” with bounded
maximum degree and many edges. These graphs G = (X,Y , E) may be lopsided with |X| ≪ |Y |. This
causes a significant headache for our algorithm, and once again, the issue is persistence. The good subgraph
could have |X| ≈ nd/

√
d, |Y | ≈ nd, and edges that are structured as follows. All edges incident to an

individual y ∈ Y are aligned along the same dimension. For the path tester to find a violation starting from
any y ∈ Y , it must take a walk of length τ = Ω̃(

√
d).

Unlike in [KMS18] or in [BCS23], the tester must run both the up-walk and down-walk. In the situation
of Fig. 1, it is critical that both up-walks and down-walks have the same length. In the lopsided good
subgraph indicated above, the walk length is Ω̃(

√
d). For this length, the fraction of non-persistent points

could be Ω̃(1). In particular, all the vertices in X could be non-persistent with respect to this length. Thus,
the upward walk + downward shift is no longer guaranteed to work. (In Fig. 1, we are no longer guaranteed
that f(x − t) = 1. To ensure that, the walk must be much shorter. But in that case, the walk from y′ is
unlikely to cross the ith dimension.)

To cross this hurdle, we use the translation idea again. Suppose we had a lopsided violation subgraph
G = (X,Y , E) with |X| ≪ |Y |. For the walk length τ determined by Y , most vertices in X are not down
persistent. However, the vertices in X must be up persistent for otherwise the upward walk would succeed
(Claim 5.6). Therefore, we can take upward translations of G and again using network flow arguments
alluded to in the previous paragraph, we are able to construct another violation subgraph G′ = (X ′,Y ′, E′)
that satisfies the following properties. Firstly, G′ is “structurally” similar to G, in terms of degree bounds
and the number of edges. Either vertices in X ′ are τ -down persistent or |X ′| ≥ 2|X|. We refer to this as
the ‘persist-or-blow-up’ lemma (Lemma 5.7). The argument is somewhat intricate and requires a delicate
balance of parameters. An interesting aspect is that we can either beat the usual Markov upper bound for
persistent vertices, or improve the parameters of the violation graph. By iterations of the lemma, we can
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argue the existence of a violation subgraph with all the desired persistent properties. Then, the analysis akin
to the matching case generalizes to give the desired result.

Thresholded degrees, peeling, and the do(1) loss. Another gnarly issue with hypergrids is the distinction
between degree and “thresholded degree”. The relevant “degree” of a vertex x (for the path tester analysis) in
a violation subgraph is not the number of edges incident on it, but rather the number of different dimensions
i so that there is an i-edge incident on it. We refer to this quantity as the “thresholded degree”, and it
is between 0 and d. Note that the standard degree could be as large as (n − 1)d. It is critical one uses
thresholded degree for the path tester analysis, to avoid the linear dependence on n in our calculations.
Observe that for the matching case, these degrees are identical, making the analysis easier.

While the path tester analysis works with thresholded degree, the flow-based translation arguments
alluded to above need to use normal degrees. In particular, we can use flow-arguments to relate the bound
the standard degree of the new violation subgraphs. But we cannot a priori do so for the thresholded degree.

To argue about the thresholded degree, we begin with a stronger notion of a good subgraph called the
seed regular violation subgraph (Lemma 5.1). This subgraph satisfies specific conditions for both thresh-
olded and standard degrees of the vertices. It is in the construction of the seed graph where we lose the do(1)

factor.

Road map. Section 2 contains technical preliminaries about the hypergrid and defining random walk dis-
tributions. Section 3 has the main definitions of red/blue edges, and provides the terminology for the main
ideas. The analysis begins in Section 4, and is broken up into the remaining sections. We use the isoperimet-
ric theorem in [BCS23] to prove the existence of the seed regular graph G (Lemma 5.1). This graph may not
have the desired persistence properties, so we apply the persist-or-blow-up lemma, Lemma 5.7, to obtain a
more robust graph G′. In particular, if Step 2 of Algorithm 1 does not succeed with good probability, then
G has good up-persistence properties, allowing us to apply Lemma 5.7, obtaining G′ with the needed down-
persistence properties. This graph G′ may have lots of red edges, in which case it is a “nice red subgraph”
(Definition 3.4), and then the up-walk + down-shift (Step 4 in Algorithm 1) succeeds with good probability.
Otherwise, we apply the “red/blue” lemma to obtain a “nice blue subgraph” (Definition 3.5), and then the
down-walk (Step 3 in Algorithm 1) succeeds with good probability. Of course, the lopsidedness in the seed
graph can be |X| ≫ |Y | in which case the argument is analogous, but with the roles of Steps 2 and 3 being
exchanged, and the roles of Steps 4 and 5 being exchanged. In particular, in this case one of Step 2 or Step
5 in Algorithm 1 succeed with good probability.

1.3 Related Work

Monotonicity testing, and in particular that of Boolean functions on the hypergrid, has been studied ex-
tensively in the past 25 years [Ras99, EKK+00, GGL+00, DGL+99, LR01, FLN+02, HK03, AC06,
HK08, ACCL07, Fis04, SS08, Bha08, BCSM12, FR10, BBM12, RRS+12, BGJ+12, CS13, CS14, CST14,
BRY14a, BRY14b, CDST15, CDJS17, KMS18, BB21, CWX17, BCS18, BCS20, BKR20, HY22, BKKM23,
BCS23]. The problem was first considered by [GGL+00] for the special case of n = 2 (the hypercube) and
for general n ≥ 2 (the hypergrid) by [DGL+99]. Most of the early works focused on the hypercube domain,
{0, 1}d. Early works defined the problem and described a O(d) tester [Ras99, GGL+00]. This was im-
proved by [CS14] to give an Õε(d

7/8) tester and this paper introduced the connection to directed isoperime-
try. Subsequently, [KMS18] described their Õε(

√
d) non-adaptive, one-sided tester via the directed ro-

bust version of Talagrand’s isoperimetric theorem, and this dependence on d is tight even for two-sided
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testers [FLN+02, CDST15, CWX17]. The best lower bound for adaptive testers is Ω(d1/3) [CWX17, BB21].
Dodis, Goldreich, Lehman, Raskhodnikova, Ron, and Samorodnitsky [DGL+99] were the first to de-

fine the problem of monotonicity testing on general hypergrids, and they gave a non-adaptive, one-sided
O((d/ε) log2(d/ε))-query tester for the Boolean range. Thus, it was known from the beginning that inde-
pendence of n is achievable for Boolean monotonicity testing. Berman, Raskhodnikova, and Yaroslavtsev
improved the upper bound to O((d/ε) log(d/ε)) [BRY14a]. They also show a non-adaptive lower bound of
Ω(log(1/ε)/ε) and prove an adaptivity gap by giving an adaptive O(1/ε)-query tester for constant d.

The first o(d) tester for hypergrids was given by Black, Chakrabarty, Seshadhri [BCS18]. Using a di-
rected Margulis inequality, they achieve a Õε(d

5/6 log n) upper bound. In a subsequent result, they introduce
the concept of domain reduction and show that n can be reduced to poly(dε−1) by sub-sampling the hy-
pergrid [BCS20]. Harms and Yoshida gave a substantially simpler proof of the domain reduction theorem,
though their result is not “black-box” [HY22].

Most relevant to our work are the independent, recent results of Black, Chakrabarty, Seshadhri, and
Braverman, Kindler, Khot, Minzer [BCS23, BKKM23]. These results give Õ(poly(n)

√
d) query testers, but

with different approaches. The former follows the KMS path, and proves a new directed Talagrand inequality
over the hypergrid. This theorem is a key tool in our result. The result of [BKKM23] follows a different
approach, via reductions to hypercube monotonicity testing. This is a tricky and intricate construction; naive
sub-sampling approaches to reduce to the hypercube are known to fail (see Sec. 8 of [BCS20]). Instead,
their result uses a notion of “monotone” embeddings that embed functions over arbitrary product domains
to hypercube functions, while preserving the distance to monotonicity. However, these embeddings increase
the dimension by poly(n), which appears to be inherent.

1.4 Discussion

It is an interesting question to see if the do(1) dependence can be reduced to polylogarithmic in d. As men-
tioned above, the loss arises due to our need for a stronger notion of a “good subgraph”. Nevertheless,
we feel one could obtain an Õ(ε−2

√
d)-tester. In Section 8 of their paper, [BCS23] conjecture a stronger

“weighted” isoperimetric theorem which would imply a Õ(ε−2
√
d)-tester. Our work currently has no bear-

ing on that conjecture, and that is still open.
At a qualitative level, our work and the result in [BCS23] indicates the Boolean monotonicity testing

question on the hypergrid seems more challenging than on the hypercube. Is there a quantitative separation
possible? It is likely that non-adaptive monotonicity testing for general hypergrids is harder than hypercubes
by “only” a log d factor. The gap between the non-adaptive upper and lower bounds even for hypercubes is
poly(log d). So, achieving this separation between hypergrids and hypercubes seems quite challenging, as
it would require upper and lower bounds of far higher precision.

2 Technical Preliminaries

In this section, we list out preliminary definitions and notations. Throughout the section, we fix a function
f : [n]d → {0, 1} that is ε-far from monotone. For ease of readability, most proofs of this section are in the
appendix.

2.1 Violation Subgraphs and Isoperimetry

The fully augmented hypergrid is a graph whose vertex set is [n]d where edges connect all pairs that differ
in exactly one coordinate. We direct all edges from lower to higher endpoint. The edge (x,y) is called an

9



i-edge for i ∈ [d] if x and y differ in the ith coordinate. We use I(x,y) = {z : x ⪯ z ⪯ y} to denote
the points z in the segment [x,y], that is, they are the points which differ from x and y only in the ith
coordinate, and xi ≤ zi ≤ yi. Given a function f : [n]d → {0, 1} the edge (x,y) of the fully augmented
hypergrid is a violating/violated edge if f(x) = 1 and f(y) = 0.

Definition 2.1. A violation subgraph is a subgraph of the fully augmented hypergrid all of whose edges are
violations.

Note that any violation subgraph is a bipartite subgraph, where the bipartition is given by the 1-valued
and 0-valued points. We henceforth always express a violation subgraph as G = (X,Y , E) such that
∀x ∈ X , f(x) = 1 and ∀y ∈ Y , f(y) = 0. There are a number of relevant parameters of violation
subgraphs that play a role in our analysis.

Definition 2.2. Fix a violation subgraph G = (X,Y , E) and a point x ∈ X .

• The degree of x in G is the number of edges in E incident to x and is denoted as DG(x).
• For any coordinate i ∈ [d], the i-degree of x in G is the total number of i-edges in E incident to x

and is denoted as ΓG,i(x). Note DG(x) =
∑d

i=1 ΓG,i(x).
• The thresholded degree of x in G is the number of coordinates i ∈ [d] with ΓG,i(x) > 0 and is denoted

as ΦG(x).

Whenever G is clear from context, for brevity, we remove it from the subscript.

Note that Φ(x) is an integer between 0 and d, Γi(x) is an integer between 0 and (n − 1), and D(x) is an
integer between 0 and (n− 1)d. We next define the following parameters of a violation subgraph G.

Definition 2.3. Consider a violation subgraph G = (X,Y , E).
• D(X) is the maximum degree of a vertex in X , that is, D(X) = maxx∈X D(x).
• For i ∈ [d], Γi(X) is the maximum i-degree in X , that is, Γi(X) = maxx∈X Γi(x).
• Γ(X) is the maximum value of Γi(X), that is, Γ(X) = maxdi=1 Γi(X).
• Φ(X) is the maximum thresholded degree in X , that is, Φ(X) = maxx∈X Φ(x).
• m(G) is the number of edges in G.

(We analogously define these parameters for Y .)

We recall the notion of thresholded influence of a function f : [n]d → {0, 1} as defined in [BCS23,
BKKM23]. For any x ∈ [n]d and i ∈ [d], Φf (x; i) is the indicator for the existence of a violating i-edge
incident to x. The thresholded influence of f at x is Φf (x) =

∑d
i=1Φf (x; i). We use the same Greek letter

Φ both for thresholded influence and thresholded degree. In the graph G0 = (X0,Y0, E) consisting of all
violating edges of the fully augmented hypergrid, Φf (x) is indeed ΦG0(x).

For applications to monotonicity testing, we require colored/robust versions of the thresholded influence.
For hypercubes this was suggested by [KMS18], and for hypergrids this was generalized by [BCS23]. Let
χ : E → {0, 1} be an arbitrary coloring of all the edges of the fully augmented hypergrid to 0 or 1. Given
a point x and i ∈ [d], Φf,χ(x; i) is the indicator of a violating i-edge e incident to x with χ(e) = f(x). The
colored thresholded influence of x with respect to χ is simply Φf,χ(x) =

∑d
i=1Φf,χ(x; i). The Talagrand

objective of f is defined as

Tal(f) := min
χ:E→{0,1}

∑
x∈[n]d

√
Φf,χ(x).

The main result of [BCS23] is the following.
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Theorem 2.4 (Theorem 1.4, [BCS23]). If f : [n]d → {0, 1} is ε-far from monotone, then Tal(f) = Ω( εnd

logn).

We stress that the RHS above only loses a log n factor, which allows for domain reduction (setting
n = poly(d)). This is what yields the nearly optimal

√
d dependence and independence on n in the tester

query complexity.
We extend the definition of Tal(f) to arbitrary violation subgraphs as follows. Given a violation sub-

graph G = (X,Y , E) and a bicoloring χ : E → {0, 1} of its edges, for z ∈ X ∪ Y and i ∈ [d]
let ΦG,χ(z; i) = 1 if there is a violating i-edge e ∈ E(G) incident to z such that χ(e) = f(z), and
ΦG,χ(z; i) = 0 otherwise. Define ΦG,χ(x) =

∑d
i=1ΦG,χ(x; i). Note, if χ ≡ 1, that is every edge is

colored 1, then ΦG,χ(x) = ΦG(x) for x ∈ X and ΦG,χ(y) = 0 for all y ∈ Y . Similarly, if χ ≡ 0, then
ΦG,χ(y) = ΦG(y) for y ∈ Y and ΦG,χ(x) = 0 for x ∈ X .

Definition 2.5. Given a violation subgraph G = (X,Y , E), we define Tal(G) := minχ
∑

z∈X∪Y [
√
ΦG,χ(z)],

where the min is taken over all edge bicolorings χ : E(G) → {0, 1}.

If G0 is the subgraph of all violations in the fully augmented hypergrid, then Theorem 2.4 states
Tal(G0) = Ω(εnd/ log n). We make a couple of observations.

Observation 2.6. For any violation subgraph G = (X,Y , E),

• D(X) ≤ Γ(X)Φ(X) and D(Y ) ≤ Γ(Y )Φ(Y ).

• m(G) ≥ Tal(G).

Proof. For any x ∈ X , we have D(x) =
∑d

i=1 Γi(x) =
∑

i:Γi(x)>0 Γi(x) ≤ (maxi Γi(x)) · Φ(x) ≤
Γ(X)Φ(X). The proof is analogous for Y . For the second bullet, observe that m(G) =

∑
x∈X D(x) ≥∑

x∈X Φ(x) ≥
∑

x∈X
√

Φ(x) =
∑

z∈X∪Y
√
ΦG,χ≡1(z) ≥ Tal(G).

Remark 2.7. Since we assume that n is at most a polynomial in d, we fix a constant c such that nd ≤ dc.
Throughout the remainder of the paper, we consider d to be at least a large constant and fix δ = 1

⌊log lognd⌋ .

As a result, we use bounds such as “dδ ≥ poly log d” or “d − C
√
d ≥ d/3” without explicitly reminding

the reader that d is large. We use Θ(δ) to denote C · δ for some unspecified, but fixed constant C.

2.2 Equivalent Formulations of the Random Walk Distribution

Recall the random walk distribution described in Definition 1.3. It is useful to think of this walk as first
sampling a random hypercube and then taking a random walk on that hypercube. The following definition
describes the appropriate distribution over sub-hypercubes in [n]d.

Definition 2.8 (Hypercube Distribution). We define the following distribution Hn,d over sub-hypercubes in
[n]d. For each coordinate i ∈ [d]:

1. Choose qi ∈R {1, 2, . . . , log n} uniformly at random.

2. Choose a uniform random interval Ii of size 2qi in Zn.

3. Choose a uniform random pair ai < bi from Ii.

Output H =
∏d

i=1{ai, bi}. When n and d are clear from context, we abbreviate H = Hn,d.
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It will also be useful for us to think of our random walk distribution as first sampling x ∈R [n]d, then
sampling a random hypercube which contains x, and then taking a random walk from x in that hypercube.
The appropriate distribution over hypercubes containing a point x is defined as follows.

Definition 2.9 (Conditioned Hypercube Distribution). Given x ∈ [n]d, we define the conditioned sub-
hypercube distribution Hn,d(x) as follows. For each i ∈ [d]:

1. Choose qi ∈R {1, 2, . . . , log n} uniformly at random.

2. Choose a uniform random interval Ii in Zn of size 2qi such that xi ∈ Ii.

3. Choose a uniform random ci ∈R Ii \ {xi}.

4. Set ai = min(xi, ci) and bi = max(xi, ci).

Output H =
∏d

i=1{ai, bi}. When n and d are clear from context we will abbreviate H(x) = Hn,d(x).

The random walk distribution in a hypercube H is defined as follows.

Definition 2.10 (Hypercube Walk Distribution). For a hypercube H =
∏d

i=1{ai, bi}, a point x ∈ H , and
a walk length τ , we define the upward random walk distribution UH,τ (x) over points y ∈ H as follows.

1. Pick a uniform random subset R ⊆ [d] of τ coordinates.

2. Generate y as follows. For every r ∈ [d], if r ∈ R and xr = ar, set yr = br. Else, set yr = xr.

Analogously, the downward random walk distribution DH,τ (x) is defined precisely as above, but instead in
step 2 if r ∈ R and xr = br, we set yr = ar, and otherwise yr = xr.

We observe that the following walk distributions are equivalent and defer the proof to the appendix §A.1.

Fact 2.11. The following three distributions over pairs (x,y) ∈ [n]d × [n]d are all equivalent.

1. x ∈R [n]d, y ∼ Uτ (x).

2. H ∼ H, x ∈R H , y ∼ UH,τ (x).

3. x ∈R [n]d, H ∼ H(x), y ∼ UH,τ (x).

The analogous three distributions defined using downward random walks are also equivalent.

It is also convenient to define the shift distribution for hypercubes.

Definition 2.12 (Shift Distributions for Hypercube Walks). Given a hypercube H , the up-shift distribution
from x ∈ H , denoted USH,τ (x) is the distribution of x′ − x, where x′ ∼ UH,τ (x). The down-shift
distribution from y ∈ H , denoted DSH,τ (y) is the distribution of y − y′, where y′ ∼ DSH,τ (y).
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2.3 Influence and Persistence

We define the following notion of influence for our random walk distribution Definition 1.3.

Definition 2.13. The total and negative influences of f : [n]d → {0, 1} are defined as follows.

• Ĩf = Ex∈[n]d
[
d · Pry∼U1(x)[f(x) ̸= f(y)]

]
• Ĩ−f = Ex∈[n]d

[
d · Pry∼U1(x)[f(x) > f(y)]

]
The probability of the tester (Alg. 1) finding a violation in step (2b) when τ = 1 is precisely Ĩ−f /d.

Recall the definition of the distribution H in Definition 2.8. For brevity, for a hypercube H =
∏d

i=1{ai, bi}
sampled from H, we abbreviate IH := If |H and I−H := I−f |H . That is, IH(x) is the number of coordinates
i for which xi = ai, and f(x1, . . . ,xi−1, bi,xi+1, . . . ,xd) ̸= f(x). If f(x) = 1, then I−H(x) is the
number of coordinates i for which xi = ai, and f(x1, . . . ,xi−1, bi,xi+1, . . . ,xd) = 0, and if f(x) = 0,
then I−H(x) = 0. Note that these definitions are such that influential edges are always charged to the
endpoint with ai in the i’th coordinate so that we do not double count. Then, IH = Ex∈H [IH(x)] and
I−H = Ex∈H [I−H(x)].

Claim 2.14. Ĩf = EH∼H [IH ] and Ĩ−f = EH∼H
[
I−H

]
.

Proof. By Fact 2.11, the distribution (x ∈R [n]d,y ∼ U1(x)) is equivalent to first sampling H ∼ H, then
sampling (x ∈R H,y ∼ UH,1(x)). Recalling Definition 2.10, observe that Pry∼UH,1(x)[f(x) ̸= f(y)] =
IH(x)/d. Putting these observations together yields

Ĩf = Ex∈[n]d

[
d · Pr

y∼U1(x)
[f(x) ̸= f(y)]

]
= EH∼HEx∈H [IH(x)] = EH∼H[IH ]

An analogous argument proves the statement for negative influence.

The following claim states that if the normal influence is (very) large, then so is the negative influence.
This is a simple generalization of, and indeed easily follows from, Theorem 9.1 in [KMS18]. The proof can
be found in §A.2.

Claim 2.15. If Ĩf > 9
√
d, then Ĩ−f >

√
d.

Next, we define the notion of persistent points. This is similar to that in [KMS18] with a parameterization
that we need for our purpose.

Definition 2.16. Given a point x ∈ [n]d, a walk length τ , and a parameter β ∈ (0, 1), we say that x is
(τ, β)-up-persistent if

Pr
y∼Uτ (x)

[f(y) ̸= f(x)] ≤ β.

Similarly, x is called (τ, β)-down-persistent if the above bound holds when y is drawn from the downward
walk distribution, Dτ (x). If both bounds hold, then we call x (τ, β)-persistent.

The following claim upper bounds the fraction of non-persistent points. This is a generalization of
Lemma 9.3 in [KMS18]. The proof is deferred to §A.2.

Claim 2.17. If Ĩf ≤ 9
√
d, then the fraction of vertices that are not (τ, β)-persistent is at most Cper

τ
β
√
d

where Cper is a universal constant.
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We make another simple but technical assumption used later on. If there are a “lot” of points x with
f(x) = 1 that are not up-persistent, it is easy to show that the algorithm succeeds with high probability. The
interesting case is when this does not occur, which is codified in Assumption 2.19. Recall the definition of
δ, c from Remark 2.7.

Claim 2.18. If there exists a τ which is a power of 2 such that the number of points x with f(x) = 1 and
which are not (τ − 1, log−5 d)-up-persistent is ≥ εnd

d1/2+7cδ , then Algorithm 1 succeeds with probability at
least ε2d−1/2+Θ(δ).

Proof. By the definition of persistence and the tester definition, Alg. 1 rejects with the desired probability
when it runs the upward path tester with walk length τ − 1 (step (2) of Alg. 1).

Assumption 2.19. For any power of two, τ = 2p, the number of points x with f(x) = 1 and which are not
(τ − 1, log−5 d)-up-persistent is < εnd

d1/2+7cδ .

2.4 The Middle Layers, Typical Points, and Walk Reversibility

All proofs in this section are deferred to §A.3.

Definition 2.20. In a hypercube {0, 1}d, the c-middle layers consist of all points with Hamming weight
in the range [d/2 ±

√
4cd log(d/ε)]. Given a d-dimensional hypercube H , we let Hc ⊆ H denote the

c-middle layers of H .

We state a bound on the number of points in the hypercube which lie in the middle layers. This follows
from a standard Chernoff bound argument.

Claim 2.21. For a d-dimensional hypercube H and c ≥ 1, we have |Hc| ≥ (1− (ε/d)c) · 2d.

We now define the notion of typical points in [n]d. Recall the distribution Hn,d (Definition 2.8) over
random sub-hypercubes in [n]d and the distribution Hn,d(x) (Definition 2.8) over random sub-hypercubes
in [n]d that contain x. A point x is c-typical if for most sub-hypercubes containing x, the point x is present
in their c-middle layers.

Definition 2.22 (Typical Points). Given c ≥ 1, a point x ∈ [n]d is called c-typical if

Pr
H∼H(x)

[x ∈ Hc] ≥ 1− (ε/d)5.

Claim 2.23. For any ε ∈ (0, 1) and c ≥ 6,

Pr
x∈R[n]d

[x is c-typical] ≥ 1− (ε/d)c−5.

Intuitively, a short random walk from a typical point will always lead to point that is almost as typical.
This is formalized as follows.

Claim 2.24 (Translations of Typical Points). Suppose x ∈ [n]d is c-typical. Then for a walk length τ ≤
√
d,

every point x′ ∈ supp(Uτ (x)) ∪ supp(Dτ (x)) is (c+ τ√
d
)-typical.

Recall the three equivalent ways of expressing the walk distribution in Fact 2.11. We define the random
walk probabilities only on points in the middle layers. This setup allows for the approximate reversibility of
Lemma 2.26.
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Definition 2.25. Consider two vertices x ≺ x′ ∈ [n]d and a walk length τ . We define

px,τ (x
′) = EH∼H(x)

[
1
(
x ∈ H100 ∧ x′ ∈ H100

)
· Pr
z∼UH,τ (x)

[z = x′]

]
(1)

to be the probability of reaching x′ by a random walk from x, only counting the contribution when the
random walk is taken on a hypercube that contains x and x′ in the 100-middle layers. We analogously
define px′,τ (x) using the downward random walk distribution in H .

Consider x ≺ x′ are two points in the middle layers. The following lemma asserts that the probability
of reaching from x to x′ via an upward walk of length ≪

√
d is similar to the probability of reaching from

x′ to x via downward walk of the same length.

Lemma 2.26 (Reversibility Lemma). For any points x ≺ x′ ∈ [n]d and walk length ℓ ≤
√
d/ log5(d/ε),

we have
px,ℓ(x

′) = (1± log−3 d)px′,ℓ(x).

3 Red Edges, Blue Edges, and Nice Subgraphs

We now set the stage to prove Theorem 1.6. The first definition is that of mostly-zero-below points. These are
points from which a downward random walk (Definition 1.3) leads to a point where the function evaluates
to 0 with high probability.

Definition 3.1. A point z is called ℓ-mostly-zero-below, or ℓ-mzb, if Prz′∼Dℓ(z)[f(z
′) = 0] ≥ 0.9.

To appreciate the utility of ℓ-mzb points, consider the following scenario. Suppose x is a point with
f(x) = 1 and is (ℓ, β)-down-persistent (Definition 2.16) for some small β. Next suppose an upward random
walk from x reaches an ℓ-mzb point z. Then, we claim that Step 4 of Alg. 1 would succeed with constant
probability in finding a violated edge. An ℓ-length downward walk from x, due to down-persistence, would
lead to a x′ with f(x′) = 1 with probability at least 1 − β. The same ℓ-length downward walk from z
would lead to a z′ with f(z′) = 0 with ≥ 0.9 probability, since z is mostly-zero-below. Since (x, z) are
comparable, so would be (x′, z′). By a union bound, (x′, z′) is a violation with probability at least 0.9− β.

The next definition describes edges (x,y) of the violation subgraph most of whose internal vertices
lead to mzb-points via an upward random walk. Rather un-creatively, we call such edges red. Recall that
I(x,y) = {z : x ⪯ z ⪯ y} denotes the closed interval of points from x to y.

Definition 3.2. A violated edge (x,y) is called red for walk length ℓ if

Pr
z∈I(x,y), z′∼Uℓ(z)

[z′ is ℓ-mzb] ≥ 0.01.

When ℓ is clear by context, we call the edge red.

There may be no ℓ-mzb points for the lengths we choose, that is, a downward walk from any point leads
to a point where the function evaluates to 1. In that case, Step 3 of Alg. 1 is poised to succeed; for any
violating edge (x,y), if we start from y then the downward walk should give a violation. This motivates the
next definition which recognizes violated edges (x,y) most of whose internal vertices lead to points where
the function evaluates to 1 via a downward random walk. We call such edges blue.
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Definition 3.3. A violated edge (x,y) is called blue for walk length ℓ if

Pr
z∈I(x,y), z′∼Dℓ(z)

[f(z′) = 1] ≥ 0.01.

When ℓ is clear by context, we simply call the edge blue.

We note that a violating edge (x,y) may be both red and blue, or perhaps more problematically, neither red
nor blue. The next two definitions capture certain “nice” violation subgraphs consisting of either red or blue
edges. In §4, we show that if either of these subgraphs exist then we can prove the tester works with the
desired probability. In §5 we show that one of these subgraphs must exist. Recall, ΦH(x) is the thresholded
degree of x in the subgraph H and δ > (log log nd)−1 is fixed (Remark 2.7).

Definition 3.4 ((σ, τ)-nice red violation subgraph). Given a parameter σ ∈ (0, 1) and a walk length τ , a
violation subgraph H(A,B, E) is called a (σ, τ)-nice red violation subgraph if the following hold.

(a) All edges in H are red for walk length τ − 1.

(b) All vertices in A are (τ − 1, 0.6)-down-persistent.

(c) σΦH(x) ≤ d1/2 for all x ∈ A.

(d) σ
∑

x∈AΦH(x) ≥ ε2 · nd · d−Θ(δ).

(e) d1/2−Θ(δ) ≥ τ ≥ σ · d1/2−Θ(δ).

The first two conditions dictate that the subgraph is nice with respect to the length of the walk. In
particular, the edges are red with respect to this length and furthermore the 1-vertices are down-persistent.
As explained before the definition of red edges, this property is crucial for the success of Step 4 of Alg. 1.
The fourth condition says that the total thresholded degree of the 1-vertices in H is large. I.e. for an average
vertex x ∈ A, there will be many coordinates i for which there is an i-edge in H incident to x. The third
condition says that the max thresholded degree of vertices in A is not too large and so the total thresholded
degree from the fourth condition must be somewhat spread among the vertices in A. The final condition
shows that the length of the walk is large compared to σ. Note, if σ = Θ(1) and the third bullet point’s right
hand side was 1 instead of

√
d, we would be in the case of a large matching of violated edges, which was

the “simple case” discussed in §1.2.
The next definition is the analogous case of blue edges. When this type of subgraph exists we argue that

Step 3 of Alg. 1 succeeds. Note that Step 3 is the downward path test (without a shift) and so we do not need
a persistence property like condition (b) in the previous definition. This definition has the same conditions
on the thresholded degree as the previous definition, but with respect to the 0-vertices of the subgraph.

Definition 3.5 ((σ, τ)-nice blue violation subgraph). Given a parameter σ ∈ (0, 1) and a walk length τ , a
violation subgraph H(A,B, E) is called a (σ, τ)-nice blue violation subgraph if the following hold.

(a) All edges in H are blue for walk length τ − 1.

(b) σΦH(y) ≤ d1/2 for all y ∈ B.

(c) σ
∑

y∈B ΦH(y) ≥ ε2 · nd · d−Θ(δ).

(d) d1/2−Θ(δ) ≥ τ ≥ σ · d1/2−Θ(δ).
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The following lemma captures the utility of the above definitions. Its proof can be found in §4.

Lemma 3.6 (Nice Subgraphs and Random Walks). Suppose for a power of two τ ≥ 2, there exists a (σ, τ)-
nice red subgraph or a (σ, τ)-nice blue subgraph. Then Alg. 1 finds a violating pair, and thus rejects f , with
probability at least ε2 · d−(1/2+Θ(δ)).

The following lemma shows that one of the two nice subgraphs always exists. Its proof can be found in §5.

Lemma 3.7 (Existence of nice subgraphs). Let ε ≥ d−1/2 and let c be a constant such that nd ≤ dc. Suppose
f : [n]d → {0, 1} is ε-far from monotone , Ĩf ≤ 9

√
d, and Assumption 2.19 holds for δ = 1

⌊log lognd⌋ . There
exist 0 < σ1 ≤ σ2 < 1, a violation subgraph H(A,B, E), and a power of two τ ≥ 2, such that H is either
a (σ1, τ)-nice red subgraph or a (σ2, τ)-nice blue subgraph.

4 Tester Analysis

In this section we prove Theorem 1.6. First, in §4.1 we prove Lemma 3.6 which is the main tester analysis.
Then in §4.2 we combine Lemma 3.6, Lemma 3.7 (which will be proven in §5), and Claim 2.15 to prove
Theorem 1.6.

4.1 Main Analysis: Proof of Lemma 3.6

There are two cases depending on whether we have a nice red subgraph or a nice blue subgraph. In Case
1, Step 4 of Alg. 1 proves the lemma while in Case 2, Step 3 of Alg. 1 proves the lemma. The proofs are
similar, but we provide both for completeness.

4.1.1 Case 1: there exists a (σ, τ)-nice red subgraph

Suppose there exists a (σ, τ)-nice red subgraph, H(A,B, E), where τ ≥ 2 is a power of two. In Step 1,
the tester in Alg. 1 chooses τ as the walk length with probability at least log−1 d. Thus, in the rest of the
analysis we will condition on this event.

Given x ∈ A, let Cx ⊆ [d] denote the set of coordinates for which x has an outgoing edge in H . Note
|Cx| = ΦH(x). Now recall Step 4 of Alg. 1. We choose x uniformly at random and sample y from Uℓ(x)
for ℓ ∈ {τ − 1, τ}. Let these two samples of y be called y′ and y, respectively. The reason for choosing the
two different walk lengths (as alluded to in Footnote 2) will be made clear below.

We first lower bound the probability that the sampled x lies in A and R ∩ Cx ̸= ∅ where R ⊆ [d] is a
random set of τ coordinates. Let E1 denote this event. The main calculation is to lower bound the probability
of this event as follows.

Pr[E1] =
1

nd

∑
x∈A

Pr[R ∩ Cx ̸= ∅] ≥ 1

nd

∑
x∈A

[
1−

(
1− |Cx|

d

)τ ]
≥ 1

nd

∑
x∈A

[
1− exp

(
−τ |Cx|

d

)]
The RHS can only decrease if we replace τ with its lower bound (Definition 3.4, (e)) of σ · d1/2−Θ(δ). Also,
observe that σd1/2−Θ(δ)|Cx|

d = σΦH(x)

d1/2+Θ(δ) ≤ 1 using our upper bound, σΦH(x) ≤ d1/2 (Definition 3.4, (c)).

Now, using e−x ≤ 1− x
2 for x ≤ 1, the exponential term in the RHS is at most 1− σΦH(x)

2d1/2+Θ(δ) , yielding

Pr[E1] ≥
σ

2d1/2+Θ(δ)
· 1

nd

∑
x∈A

ΦH(x) ≥︸︷︷︸
(Definition 3.4, (d))

ε2

d1/2+Θ(δ)
(2)
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The event E1 asserts that the tester has chosen a point x ∈ A and there is at least one r ∈ R for which
there exists a red edge (x,x + aer) ∈ E for some integer a > 0 in the subgraph H . Fix the smallest such
r ∈ R ∩ Cx and the corresponding edge in H .

Recall the random walk process in Definition 1.3. We define the following good events.

• E2: Step (2a) chooses qr satisfying: if a ≤ n/4, then 2qr ∈ [2a, 4a]; if a > n/4, then 2qr = n.

• E3: Step (2b) chooses the interval Ir ⊇ [xr + 1,xr + a].

• E4: Step (2c) chooses cr uniformly from [xr + 1,xr + a].

• E5: y or y′ is (τ − 1)-mostly-zero-below as per Definition 3.1.

• E6: f(y − s) = 0 or f(y′ − s) = 0 for s chosen in Step 4 of Alg. 1 from DSτ−1(x).

• E7: f(x− s) = 1 for s chosen in Step 4 of Alg. 1 from DSτ−1(x).

Firstly, note that Pr[E2] = log−1 n for both cases of the edge length, a. Now, suppose a ≤ n/4. Then,
Pr[E3 | E2] ≥ 1/2 by the condition 2qr ≥ 2a and Pr[E4 | E2, E3] ≥ 1/4 by the condition 2qr ≤ 4a. If
a > n/4, then Pr[E3 | E2] = 1, since in this case Ir = [n] and again Pr[E4 | E2, E3] ≥ 1/4 since (xr,xr +a]
is at least a fourth of the entire line, [n].

Now, the edge (x,x+ aer) is red for walk length τ − 1. Recall Definition 3.2; we get that if we sample
z ∈ [x,x+aer] uniformly at random and then sample z′ ∼ Uτ−1(z), then z′ is (τ−1)-mzb with probability
≥ 0.01. Note that the interval z is drawn from is a closed interval containing x. On the other hand cr above
is chosen from [xr + 1,xr + a]. To account for this, we branch into two possibilities. Either z′ ∼ Uτ−1(x)
is (τ − 1)-mzb with probability ≥ 0.01, and in this case y′ is (τ − 1)-mostly-zero-below. Or z′ ∼ Uτ−1(z)
where z itself is sampled from z ∼ [x + er,x + aer] is (τ − 1)-mzb with probability ≥ 0.01, and in this
case y is (τ − 1)-mostly-zero-below. In sum, we have Pr[E5 | E4] ≥ 0.01.

If y is (τ − 1)-mostly-zero-below, then if we sample ŝ from DSτ−1(y) we get f(y − ŝ) = 0 with
probability ≥ 0.9. Now note that DSτ−1(y) and DSτ−1(x) differ only when the set R ⊆ [d] chosen
in Definition 1.3 contains a coordinate in supp(y−x). Since |supp(y−x)| ≤ τ , |R| ≤ τ , and τ = o(

√
d),

we have PrR[R ∩ supp(y − x) ̸= ∅] ≤ τ2/d = o(1). Therefore, when s is drawn from DSτ−1(x), we get
f(y − s) = 0 with probability ≥ 0.9(1 − o(1)) ≥ 0.8. Analogously, if y′ is (τ − 1)-mostly-zero-below,
then f(y′ − s) = 0 with probability ≥ 0.8. In sum, we get that Pr[E6 | E5] ≥ 0.8.

Finally, all points in A are (τ − 1, 0.6)-down-persistent (Definition 2.16) and so Pr[E7 | x ∈ A] ≥ 0.4.
Now, let’s put everything together. The final success probability of the tester is at least Pr[E6 ∧ E7], which
by a union bound and the reasoning above, is at least

(1− Pr[¬E6 | E5]− Pr[¬E7 | x ∈ A]) · Pr

[
5∧

i=1

Ei

]

≥ (1− 0.2− 0.6) · ε2

d1/2+Θ(δ)
· 1

log n
· 1
2
· 1
4
· 1

100
≥ ε2

d1/2+Θ(δ)

where in the last inequality we used n ≤ poly(d). This completes the proof when the nice subgraph is red.
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4.1.2 Case 2: there exists a (σ, τ)-nice blue subgraph

Suppose there exists a (σ, τ)-nice blue subgraph, H(A,B, E), where τ ≥ 2 is a power of two. As in Case
1, in Step 1, the tester in Alg. 1 chooses τ as the walk length with probability at least log−1 d. Thus, in the
rest of the analysis we will condition on this event. Now recall Step 3 of Alg. 1. We choose y uniformly
at random and sample x from Dℓ(y) for ℓ ∈ {τ − 1, τ}. Let these two samples of x be called x′ and x,
respectively.

Given y ∈ B, let Cy ⊆ [d] denote the set of coordinates for which y has an incoming edge in H . Note
|Cy| = ΦH(y). We first lower bound the probability that y ∈ B and R∩Cy ̸= ∅ where R ⊆ [d] is a random
set of τ coordinates. Let E1 denote this event. The main calculation is to lower bound the probability of this
event as follows.

Pr[E1] =
1

nd

∑
y∈B

Pr[R ∩ Cy ̸= ∅] ≥ 1

nd

∑
y∈B

[
1−

(
1− |Cy|

d

)τ ]
≥ 1

nd

∑
y∈B

[
1− exp

(
−τ |Cy|

d

)]
As in Case 1, the RHS can only decrease if we replace τ with its lower bound (Definition 3.5, (d)) of
σ · d1/2−Θ(δ), and a similar argument as in Case 1 gives

Pr[E1] ≥
σ

d1/2+Θ(δ)
· 1

nd

∑
y∈B

ΦH(y) ≥︸︷︷︸
(Definition 3.5, (c))

ε2

d1/2+Θ(δ)
(3)

As in Case 1, the event E1 says that the tester has chosen a point y ∈ B and there exists r ∈ R such
that there exists an edge (y − aer,y) ∈ E in the subgraph H for some integer a > 0. Fix the smallest
r ∈ R ∩ Cy and the corresponding edge in H . Now define the following good events for the remainder of
the tester analysis.

• E2: Step (2a) chooses qr satisfying: if a ≤ n/4, then 2qr ∈ [2a, 4a]; if a > n/4, then 2qr = n.

• E3: Step (2b) chooses the interval Ir ⊇ [yr − a,yr − 1].

• E4: Step (2c) chooses cr uniformly from [yr − a,yr − 1].

• E5: f(x) = 1 or f(x′) = 1.

The final success probability of the tester is at least Pr[∧5
i=1Ei]. Firstly, note that Pr[E2] = log−1 n for

both cases of the edge length, a. Suppose a ≤ n/4. Then, Pr[E3 | E2] ≥ 1/2 by the condition 2qr ≥ 2a
and Pr[E4 | E2, E3] ≥ 1/4 by the condition 2qr ≤ 4a. If a > n/4, then Pr[E3 | E2] = 1, since in this case
Ir = [n] and again Pr[E4 | E2, E3] ≥ 1/4.

Now, the edge (y−aer,y) is blue for walk length τ −1. Recall Definition 3.3; we get that if we sample
z ∈ [y − aer,y] uniformly at random and then sample z′ ∼ Dτ−1(z), then f(z′) = 1 with probability
≥ 0.01. We split in cases depending on whether the contribution to the probability comes primarily from
z = y. This is equivalent to splitting the interval [y − aer,y] into [y − aer,y − er] and the singleton
y. Either z′ ∼ Dτ−1(y) satisfies f(z′) = 1 with probability ≥ 0.01 or the following occurs. When
z ∈ [y − aer,y − er] is chosen uniformly at random, z′ ∼ Dτ−1(z) satisfies f(z′) = 1 with probability
≥ 0.01. In the former case, the distribution of z′ is the same as x′ and in the latter it is same as x. So, we
have Pr[E5 | E4] ≥ 0.01. Putting everything together, we have

Pr

[
5∧

i=1

Ei

]
≥ ε2

d1/2+Θ(δ)
· 1

log n
· 1
2
· 1
4
· 1

100
≥ ε2

d1/2+Θ(δ)
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where in the last step we used n ≤ poly(d) and this completes the proof when the nice subgraph is blue.
Together, the cases complete the proof of Lemma 3.6.

4.2 Tying it Together: Proof of Theorem 1.6

Suppose f : [n]d → {0, 1} is ε-far from being monotone with n ≤ poly(d) and ε ≥ d−1/2. In particular, we
have constant c such that nd ≤ dc. Recall δ = 1/⌊log lognd⌋ = o(1). By Claim 2.18, we may assume As-
sumption 2.19 holds for otherwise we are done. Also recall the definitions of Ĩf , Ĩ−f in Definition 2.13.

By Claim 2.15, if Ĩf > 9
√
d, then Ĩ−f >

√
d and so the tester (Alg. 1) finds a violation in step (2) when

τ = 1 with probability Ω(d−1/2). Thus, we will assume Ĩf ≤ 9
√
d. Therefore, we may invoke Lemma 3.7

which gives us either a nice red subgraph or a nice blue subgraph. Lemma 3.6 then proves that Alg. 1 finds
a violating pair and rejects with probability at least ε2 · d−(1/2+Θ(δ)). This proves Theorem 1.6.

5 Finding Nice Subgraphs

In this section we prove Lemma 3.7 which we restate below.

Lemma 3.7 (Existence of nice subgraphs). Let ε ≥ d−1/2 and let c be a constant such that nd ≤ dc. Suppose
f : [n]d → {0, 1} is ε-far from monotone , Ĩf ≤ 9

√
d, and Assumption 2.19 holds for δ = 1

⌊log lognd⌋ . There
exist 0 < σ1 ≤ σ2 < 1, a violation subgraph H(A,B, E), and a power of two τ ≥ 2, such that H is either
a (σ1, τ)-nice red subgraph or a (σ2, τ)-nice blue subgraph.

The proof proceeds over multiple steps and constitutes a key technical contribution of the paper. We
give a sketch of what is forthcoming.

• In §5.1 we describe the construction of a seed regular violation subgraph G. This uses the directed
isoperimetric result Theorem 2.4 proved in [BCS23] and a “peeling argument” not unlike that present
in [KMS18]. At the end of this section, we will fix the parameters σ1, σ2 and the walk length τ . In
particular, the length τ will be defined by the larger side of this violating bipartite graph.

• In §5.2, we obtain a regular violating graph H that has persistence properties with respect to the walk
length τ . In [KMS18] and [BCS23], one obtained this violating graph by simply deleting the non-
persistent points from the seed violation subgraph. In our case, since we choose the walk length de-
pending on the larger side, we need to be careful. We use the idea of “translating violation subgraphs”
on G (repeatedly) to find a different violation subgraph H with the desired persistence properties.

• In §5.3, we use the graph H to obtain either a nice red subgraph H1 or a nice blue subgraph H2. If
most of the edges in H were red, then a simple surgery on H itself gives us H1. On the other hand,
if H has few red edges (but has the persistence properties as guaranteed), then we apply the red/blue
lemma (Lemma 5.12) to obtain the desired nice blue-subgraph H2. The proof of the red/blue lemma,
which is present in §6, uses the translating violation subgraphs idea as well.

Recall, we assume f : [n]d → {0, 1} is ε-far from monotone, Ĩf ≤ 9
√
d, and Assumption 2.19 holds.
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5.1 Peeling Argument to Obtain Seed Regular Violation Subgraph

Recall the definition of the Talagrand objective (Definition 2.5) Tal(G) of a violation subgraph G =
(X,Y , E). Let G0 denote the violation subgraph formed by all violating edges in the fully augmented hy-
pergrid. Theorem 1.4 in [BCS23] (paraphrased in this paper as Theorem 2.4) is that Tal(G0) = Ω(εnd/ log n).
Also recall the definitions in Definition 2.2. The following lemma asserts that there exists a subgraph of G0

whose Talagrand objective is not much lower, but satisfies certain regularity properties.

Lemma 5.1 (Seed Regular Violation Subgraph). There exists a violation subgraph G(X,Y , E) satisfying
the following properties.3

(a) Tal(G) ≥ ε · d−cδ · nd.

(b) m(G) ≥ d−3cδ max(|X| · Φ(X) · Γ(X), |Y | · Φ(Y ) · Γ(Y )).

(c) All vertices in X ∪ Y are 98-typical.

(d) |X|, |Y | ≥ ε
d1/2+cδ · nd.

Let us make a few comments before proving the above lemma. Condition (a) shows that the Talagrand
objective degrades only by a do(1) factor. Condition (b) shows that the graph is nearly regular since the RHS
term without the d−o(1) term is the maximum value of m(G). This is because Φ(X)Γ(X) is an upper bound
on the maximum degree of any vertex x ∈ X . Indeed, if one can prove a stronger lemma which replaces
the do(1) terms in (a) and (b) by polylog(d)’s, then the remainder of our analysis could be easily modified
to give a Õ(ε−2

√
d) tester.

We need a few tools to prove this lemma. Our first claim is a consequence of the subadditivity of the
square root function.

Claim 5.2. Consider a partition of (the edges of) a violation subgraph G into H1, H2, . . . ,Hk. Then∑
j≤k Tal(Hj) ≥ Tal(G).

Proof. Let χj denote the coloring of the subgraph Hj that obtains the minimum Tal(Hj). Since the
H1, . . . ,Hk form a partition, we can aggregate the colors to get a coloring χ of G.

Consider any z ∈ X ∪ Y . Let ΦHj ,χj (z) be the thresholded degree of z, restricted to the edges colored

by χj . By the subadditivity of the square root function,
∑

j≤k

√
ΦHj ,χj (z) ≥

√∑
j≤k ΦHj ,χj (z). Observe

that thresholded degrees are also subadditive, so
∑

j≤k ΦHj ,χj (z) ≥ ΦG,χ(z). Hence,∑
j≤k

Tal(Hj) =
∑
j≤k

∑
z∈X∪Y

√
ΦHj ,χj (z) =

∑
z∈X∪Y

∑
j≤k

√
ΦHj ,χj (z) ≥

∑
z∈X∪Y

√
ΦG,χ(z) ≥ Tal(G) (4)

Remark 5.3. The proof of Claim 5.2 crucially uses the fact that in the definition of Tal(), we minimize over
all possible colorings χ’s of the edges. In particular, if we had defined Tal(G) only with respect to the all
ones or the all zeros coloring, then the above proof fails. In the remainder of the paper, we will only be
using the χ ≡ 1 or χ ≡ 0 colorings, and the curious reader may wonder why we need the definition of
Tal(G) to minimize over all colorings. This is exactly the point where we need it. We make this remark
because the “uncolored” isoperimetric theorem is much easier to prove than the “colored” version, but the
colored/robust version is essential for the tester analysis.

3We remark that this lemma in particular does not rely on Ĩf ≤ 9
√
d or Assumption 2.19. That is, it holds as long as f : [n]d →

{0, 1} is ε-far from monotone.
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Our next step is a simple bucketing argument.

Claim 5.4. Consider a violation subgraph G = (X,Y , E). Both of the following are true.

1. There exists a subgraph G′ = (X ′,Y ′, E′) of G such that Tal(G′) ≥ δ2Tal(G) and m(G′) ≥
(nd)−δ|X ′|ΦG′(X ′)ΓG′(X ′).

2. There exists a subgraph G′ = (X ′,Y ′, E′) of G such that Tal(G′) ≥ δ2Tal(G) and m(G′) ≥
(nd)−δ|Y ′|ΦG′(Y ′)ΓG′(Y ′).

Proof. We prove item (1) and the proof of item (2) is analogous.
For convenience, we assume that δ is the reciprocal of a natural number. For each x ∈ X , we bucket the

incident edges as follows. First, for each a ∈ [1/δ], let Sa be the set of dimensions i, such that the i-degree
of x is in the range [n(a−1)δ, naδ). Note that S1, . . . , S1/δ forms a partition of the set of coordinates, [d].
Now, for each a, b ∈ [1/δ], let the (a, b) edge bucket of x, denoted Ea,b,x, be defined as follows. If |Sa| ∈
[d(b−1)δ, dbδ), then Ea,b,x is the set of all edges incident to x along dimensions in Sa. If |Sa| /∈ [d(b−1)δ, dbδ),
then Ea,b,x = ∅. Observe that {Ea,b,x : a, b ∈ [1/δ]} partitions the edges incident to x.

Now, let Ga,b denote the subgraph formed by the edge set ∪x∈XEa,b,x. Let Xa,b be the set of vertices
in X with non-zero degree in Ga,b. Observe that ΦGa,b

(Xa,b) ≤ dbδ and ΓGa,b
(Xa,b) ≤ naδ. Moreover,

the degree of each x ∈ Xa,b is at least d(b−1)δ × n(a−1)δ ≥ (nd)−δΦGa,b
(Xa,b)ΓGa,b

(Xa,b). Hence,
m(Ga,b) ≥ (nd)−δ|Xa,b|ΦGa,b

(Xa,b)ΓGa,b
(Xa,b).

Finally, by construction, the Ga,b subgraphs partition the edges of G. Hence, by Claim 5.2 we have∑
a,b∈[1/δ]Tal(Ga,b) ≥ Tal(G). By averaging, there exists some choice of a, b such that Tal(Ga,b) ≥

δ2Tal(G). This gives the desired subgraph G′.

Claim 5.4, part 1 above gives the regularity condition only with respect to X , and part 2 gives the
analogous guarantee with respect to Y , but the trouble is in getting both simultaneously. We do an iterative
construction using Claim 5.4 to get the simultaneous guarantee.

Proof. (Conditions (a) and (b) of Lemma 5.1.) By the robust directed Talagrand theorem for hypergrids
(Theorem 2.4), there is a violation subgraph G0 = (X0,Y0, E0) such that Tal(G0) = Ω(εnd/ log n). We
construct a series of subgraphs G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr as follows.

Let i ≥ 1. If i is odd, we apply item (1) of Claim 5.4 to Gi−1 to get Gi(Xi,Yi, Ei) with the regularity
condition on Xi. If i is even, we apply item (2) of Claim 5.4 to Gi−1 to get Gi(Xi,Yi, Ei) with the regularity
condition on Yi. If i > 1 and m(Gi) ≥ (nd)−δm(Gi−1), then we terminate the series. By Claim 5.4, the
series satisfies the following three properties for all i ≥ 1.

• Tal(Gi) = Ω(δ2iεnd/ log n).

• If i is odd, m(Gi) ≥ (nd)−δ|Xi|ΦGi(Xi)ΓGi(Xi). If i is even, m(Gi) ≥ (nd)−δ|Yi|ΦGi(Yi)ΓGi(Yi).

• If the series has not terminated by step i, then m(Gi) < (nd)−δm(Gi−1).

The first two statements hold by the guarantees of Claim 5.4 and the fact that Tal(G0) = Ω(εnd/ log n).
The third statement holds simply by the termination condition for the sequence. The trivial bound on the
number of edges is m(G0) ≤ nd · nd. The third bullet point yields m(Gi) < (nd)−iδ · nd · nd, if the series
has not terminated by step i.

Claim 5.5. The series terminates in at most 3/δ steps.
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Proof. Suppose not. Noting that m(Gi) ≥ Tal(Gi) (Observation 2.6), we get the following chain of in-
equalities using the properties of our subgraph graph G3/δ.

(nd)−(3/δ)·δ · nd · nd > m(Gi) ≥ Tal(Gi) = Ω(δ6/δεnd/ log n) =⇒ (nd)−2 = Ω(δ6/δε/ log n)

Note that we may assume ε ≥ 1/d and so Cε/ log n ≥ (nd)−1 for any constant C. Thus we have (nd)−1 ≥
δ6/δ. Given that δ > 1/ log lognd, this inequality is a contradiction.

By the previous claim the series terminates in some r ≤ 3/δ steps, producing Gr(Xr,Yr, Er), which
we claim has the desired properties to prove conditions (a) and (b) of Lemma 5.1. Since r ≤ 3/δ, Tal(Gr) =
Ω(δ6/δεnd/ log n). Note that since δ > 1/ log log nd, we have

δ6/δ > (log log nd)−
6
δ = (nd)

− 6
δ
· log log lognd

lognd > (nd)−δ2 > (nd)−δ · log n > d−cδ log n

where the second to last step holds because 6 log log lognd
log d ≪

(
1

log lognd

)3
< δ3. The last inequality used

nd ≤ dc. This proves condition (a). Towards proving condition (b), note that Cδ6/δ/ log n ≥ (nd)−δ for
any constant C.

Let’s assume without loss of generality that r is even. Thus we have m(Gr) ≥ (nd)−δ|Yr|ΦGr(Yr)ΓGr(Yr)
by the second bullet point above. Next, since the series terminated at step r, we have

m(Gr) ≥ (nd)−δm(Gr−1) ≥ (nd)−2δ|Xr−1|ΦGr−1(Xr−1)ΓGr−1(Xr−1) ≥ (nd)−2δ|Xr|ΦGr(Xr)ΓGr(Xr)

where the second inequality is again by the second bullet point above and the fact that i − 1 is odd and the
third inequality is simply because Gr is a subgraph of Gr−1. Again using nd ≤ dc, we have (nd)−δ ≥ d−cδ

and so we get that Gr satisfies conditions (a) and (b) of Lemma 5.1.

Proof. (Conditions (c) and (d) of Lemma 5.1.) To obtain condition (c), we simply remove the non-typical
points. Recall the definition of c-typical points (Definition 2.22). By Claim 2.23, the number of points that
are not 98-typical is at most (ε/d)93nd. Thus, removing all such vertices can decrease Tal(G) by at most
(ε/d)93nd ·

√
d which is negligible compared to the RHS in condition (a). Thus, we remove all such vertices

from G and henceforth assume that all of X ∪ Y is 98-typical.
Condition (d) follows from condition (a). Consider the constant coloring χ ≡ 1 and observe that

|X|
√
d ≥ Talχ≡1(G) ≥ Tal(G) ≥ ε · d−cδ · nd.

where the first inequality follows from the trivial observation that the maximum ΦG(x) can be is d. Using
the coloring χ ≡ 0 proves the same lower bound for |Y |.

5.1.1 Choice of the walk length

We end this section by specifying what the parameters σ1, σ2 and τ are going to be in Lemma 3.7. We now
make the assumption |X| ≤ |Y |. Given Remark 1.5, this is without loss of generality; this fact would be
true either in f or in g, and running steps 2, 3, 5 on f is equivalent to running steps 2, 3, 4 on g. The violation
subgraphs for f and g are isomorphic. Then,

σ1 = σX :=
|X|
nd

and σ2 = σY :=
|Y |
nd
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and set τ to be the unique power of two such that

1

2
⌈σY · d1/2−7cδ⌉ < τ − 1 ≤ ⌈σY · d1/2−7cδ⌉.

We conclude the subsection by establishing the following upper bounds on the number of vertices which
are not up-persistent.

Claim 5.6. The following are true.

• The number of vertices x ∈ [n]d where f(x) = 1 that are not (τ −1, log−5 d)-up-persistent is at most
d−6cδ · |X|.

• The number of vertices y ∈ [n]d where f(y) = 0 that are not (τ −1, log−5 d)-up-persistent is at most
d−6cδ · |Y |.

Proof. Suppose that the first item does not hold. Then, by item (d) of Lemma 5.1, the number of vertices
x ∈ [n]d where f(x) = 1 that are not (τ − 1, log−5 d)-up-persistent is at least d−6cδ · |X| ≥ ε

d1/2+7cδ · nd,
violating Assumption 2.19 which is a premise of Lemma 3.7. For the second item, note that by Claim 2.17,
the total number of (τ−1, log−5 d)-non-persistent vertices is at most Cperτ ·log5 d· 1√

d
·nd ≤ σY ·d−6cδ ·nd,

where we have simply used log5 d ≪ dcδ and our definition of τ .

5.2 Using ‘Persist-or-Blow-up’ Lemma to Obtain Down-Persistence

Lemma 5.1 provides a seed violation subgraph which has a large Talagrand objective and has regularity
properties. Claim 5.6 shows that we may assume these vertices are up-persistent with respect to walk length
of τ − 1. However, we may not have down persistence. In particular, it could be |X| ≪ |Y | and if we try to
apply Claim 2.17 and remove all nodes from X which are not (τ − 1, 0.6)-down-persistent, we may end up
removing everything. To obtain a subgraph with down-persistence properties, we need to apply a translation
procedure which is encapsulated in the lemma below. The proof of the lemma is deferred to §7. The reader
should recall the definitions in Definition 2.2 and Definition 2.3.

Lemma 5.7 (Persist-or-Blow-up Lemma). Consider a violation subgraph G = (X,Y , E) such that all
vertices in G are c-typical where c ≤ 99 and (ℓ, log−5 d)-up persistent where 1 ≤ ℓ ≤

√
d/ log5(d/ε).

Then, there exists a violation subgraph G′ = (X ′,Y ′, E′) where all vertices are (c + ℓ√
d
)-typical and

satisfying one of the following conditions.

1. Down-persistent case:

(a) All vertices in X ′ are (ℓ, 0.6)-down persistent.

(b) m(G′) ≥ ⌊m(G)/ log5 d⌋.

(c) DG′(X ′) ≤ DG(X), and ∀i ∈ [d],ΓG′,i(X
′) ≤ ΓG,i(X)

(d) DG′(Y ′) ≤ DG(Y ), and ∀i ∈ [d], ΓG′,i(Y
′) ≤ ΓG,i(Y ).

2. Blow-up case:

(a) m(G′) ≥ ⌊2(1− 3 log−4 d) ·m(G)⌋.

(b) DG′(X ′) ≤ DG(X), and ∀i ∈ [d],ΓG′,i(X
′) ≤ ΓG,i(X)

(c) DG′(Y ′) ≤ 2DG(Y ), and ∀i ∈ [d], ΓG′,i(Y
′) ≤ 2ΓG,i(Y ).
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That is, the application of the above lemma either gives the violation subgraph we need, or it gives us
a violation subgraph with around double the edges. In the remainder of this section we use Lemma 5.7 and
the graph G(X,Y , E) derived in the previous section to prove the following lemma.

Lemma 5.8 (Down-Persistent Violation Subgraph). Let G(X,Y , E) be the subgraph asserted in Lemma 5.1.
There exists a natural number s ≤ log3 d and a violation subgraph H(A,B, E) with the following proper-
ties.

1. m(H) ≥ 2s m(G)

log7 d
.

2. ΓH(A) ≤ ΓG(X) and ΓH(B) ≤ 2sΓG(Y ).

3. DH(A) ≤ DG(X) and DH(B) ≤ 2sDG(Y ).

4. All vertices in A ∪B are (τ − 1, log−5 d)-up-persistent and 99-typical.

5. All vertices in A are (τ − 1, 0.6)-down-persistent.

Proof. We use Lemma 5.7 to define the following process generating a sequence of violation subgraphs. The
initial graph is G0 = (X0,Y0, E0) which is the seed regular violation subgraph obtained from Lemma 5.1.

For each i ≥ 1:

1. Obtain G′
i−1 by removing all vertices from Xi−1∪Yi−1 that are not (τ−1, log−5 d)-up-persistent.

2. Invoke Lemma 5.7 with walk length τ − 1 on G′
i−1 to obtain Gi = (Xi,Yi, Ei).

3. If Gi satisfies the down persistence condition of Lemma 5.7 then halt and return Gi.

4. If Gi satisfies the blowup condition of Lemma 5.7, then continue.

By Lemma 5.7, if the process does not halt on step i, then we have the following recurrences. (Recall
that by Observation 2.6 we have m(G) ≥ Tal(G) and so using item (a) of Lemma 5.1 and our assumption
that ε ≥ d−1/2 we have m(G) ≥ d−1/2−cδnd. Thus, ⌊2(1− 3 log−4 d) ·m(G)⌋ ≥ 2(1− 3 log−3 d) ·m(G)
clearly holds.)

• m(Gi) ≥ 2(1− 3 log−3 d) ·m(G′
i−1),

• DGi(Xi) ≤ DGi−1(Xi−1), ΓGi(Xi) ≤ ΓGi−1(Xi−1), and

• DGi(Yi) ≤ 2DGi−1(Yi−1), ΓGi(Yi) ≤ 2ΓGi−1(Yi−1).

Furthermore, we have the following claim that bounds the number of edges lost in step (1).

Claim 5.9. For every i ≥ 1, we have m(G′
i−1) ≥ m(Gi−1)− d−2cδ · 2i−1 ·m(G).
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Proof. By Claim 5.6, the number of vertices we remove from Xi−1 in step (1) is at most d−6cδ · |X| and
by Claim 5.6 the number of vertices we remove from Yi−1 in step (1) is at most d−6cδ · |Y |. The number of
edges we remove by deleting these vertices from Yi−1 is at most

d−6cδ|Y |DGi−1(Yi−1) ≤ d−6cδ2i−1|Y |DG(Y ) ≤ d−3cδ2i−1m(G) (5)

where in the second inequality we used DG(Y ) ≤ ΦG(Y )ΓG(Y ) and the regularity property on G (item
(b) of Lemma 5.1).

An analogous argument bounds the number of removed edges when we delete non-persistent vertices
from Xi−1. Thus the total number of edges removed is at most d−2cδ2i−1m(G).

Claim 5.10. If i ≤ log3 d and the process has not halted by step i, then m(Gi) ≥ Ω(2im(G)).

Proof. For brevity, let α = 2(1 − 3 log−3 d) and β = d−2cδm(G). Using the above bounds, we get the
recurrence

m(Gi) ≥ α ·m(G′
i−1) ≥ α(m(Gi−1)− β2i−1).

Expanding this recurrence yields m(Gi) ≥ αim(G) − β
∑i

j=1 α
j · 2i−j . Observe that the subtracted term

can be bounded as

β

i∑
j=1

αj · 2i−j = d−2cδ2im(G)

i∑
j=1

(1− 3 log−3 d)j ≤ d−cδ2im(G)

simply using the fact that i ≤ log3 d ≪ dcδ. The first term is

αim(G) = 2i(1− 3 log−3 d)im(G) ≥ C · 2im(G)

for some constant C. Combining the above two bounds completes the proof.

Claim 5.11. The above process halts in s ≤ log3 d iterations.

Proof. Suppose that the above process has not halted by step i = log3 d. By the previous claim, the number
of edges in Gi is at least C · 2im(G) = C · dlog2 dm(G) for some constant C. By Observation 2.6, note that
m(G) ≥ Tal(G) and thus is ≥ ε · d−cδ · nd by item (a) of Lemma 5.1. Thus, the number of edges in Gi is
at least C · ε · dlog2 d−cδnd. Note that the total number of edges in the fully augmented hypergrid is at most
nd · nd. Moreover, recall that we are assuming nd ≤ dc and ε ≥ d−1/2. Therefore, m(Gi) ≫ nd · nd and
this is a contradiction.

By Claim 5.11 and Lemma 5.7, the process halts in some s ≤ log3 d number of steps producing
Gs(Xs,Ys, Es) with the following properties. (Recall that by Observation 2.6 we have m(G) ≥ Tal(G)
and so using item (a) of Lemma 5.1 and our assumption that ε ≥ d−1/2 we have m(G) ≥ d−1/2−cδnd.
Thus, ⌊m(G)

log5 d
⌋ ≥ m(G)

log6 d
clearly holds.)

• m(Gs) ≥ 2s · m(G)

log6 d
.

• All vertices in Xs are (τ − 1, 0.6)-down-persistent.

• ΓGs(Xs) ≤ ΓG(X) and ΓGs(Ys) ≤ 2sΓG(Y ).
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• DGs(Xs) ≤ DG(X) and DGs(Ys) ≤ 2sDG(Y ).

Note that by Lemma 5.7 and item (c) of Lemma 5.1, all vertices in G1, . . . , Gs are (98 + sτ√
d
)-typical.

Moreover, by our choice of τ , we have sτ ≪
√
d and so all vertices in G1, . . . , Gs are 99-typical.

One last time, we remove all vertices in Xs ∪ Ys that are not (τ − 1, log−5 d)-up-persistent and obtain
our final graph H(A,B, E). Using a similar argument made above in (5), the number of edges that are
removed by deleting the non-persistent vertices from Ys is at most

d−6cδ|Y |DGs(Ys) ≤ 2sd−6cδ|Y |DG(Y ) ≤ 2sd−3cδm(G) ≤ d−3cδm(Gs) log
6 d ≤ d−2cδm(Gs)

and an analogous argument bounds the number of edges lost when we remove the non-persistent vertices
from Xs. Thus we have m(H) ≥ m(Gs)(1−2d−2cδ) ≥ 2s m(G)

log7 d
and this completes the proof of Lemma 5.8.

5.3 Using Red/Blue Lemma to Obtain the Final Red or Blue Nice Subgraph

In this section, we prove Lemma 3.7 using the violation subgraph H(A,B, E) obtained in the previous
section (Lemma 5.8).

We need a key “ red/blue lemma” that shows the existence of a violation subgraph with sufficiently many
colored edges. If we have our hands on a large violation subgraph G with few red edges (but has some other
properties), then we can find another comparable sized violation subgraph H all of whose edges are blue,
and whose maximum degrees are bounded by those in G. The precise statement is given below. We defer
the proof of this lemma to §6.

Lemma 5.12 (Red/Blue Lemma). Let G(X,Y , E) be a violation subgraph and 1 ≤ ℓ ≤
√
d/ log5(d/ε)

be a walk length such that the following hold.
1. At most half the edges are red for walk length ℓ.
2. All vertices in X ∪ Y are (ℓ, log−5 d)-up-persistent.
3. All vertices in X ∪ Y are 99-typical.

Then there exists another violation subgraph H(L,R, E′) such that
1. All edges are blue for walk length ℓ and m(H) ≥ ⌊m(G)/6⌋.
2. ΓH(L) ≤ ΓG(X) and ΓH(R) ≤ ΓG(Y ).
3. DH(L) ≤ DG(X) and DH(R) ≤ DG(Y ).4

We apply the above lemma to construct the final nice red or blue subgraph. We split into two cases
depending on how many edges in H are red.

5.3.1 Case 1: At least half the edges of H are red

In this case, we consider the graph H1(A,B, E′) obtained by simply removing all the non-red edges from
H . We claim that H1 makes progress towards a (σ1, τ)-nice red subgraph (Definition 3.4). Condition (a)
holds by definition. Condition (b) is satisfied due to Lemma 5.8, condition (5). Condition (e) is satisfied
because ⌈σY d0.5−7cδ⌉ ≥ τ − 1 ≥ 0.5⌈σY d0.5−7cδ⌉ (recall Section 5.1.1) and 1 ≥ σY ≥ σX = σ1. We
need to establish condition (c) and (d). That is, we need to establish

(c) σX · ΦH1(x) ≤
√
d for all x ∈ A

4We remark that the inequalities ΓH(L) ≤ ΓG(X) and DH(L) ≤ DG(X) are not used later in our proof, but are still stated
for the purpose of providing useful context to the reader.
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(d) σX
∑

x∈AΦH1(x) ≥ ε2 · nd · d−6cδ

Let A′ ⊆ A be the set of vertices x ∈ A for which ΦH1(x) >
√
d

σX
. If |A′| ≥ d−5cδ|X|, then consider

H ′
1(A

′,B, E′′) obtained by deleting all vertices not in A′ from A, then for each x ∈ A′, removing out-
going edges from x so that ΦH′

1
(x) =

√
d

σX
. Conditions (a) and (b) still hold, and (c) holds by construction

of A′ and H ′
1. Note that condition (e) clearly still holds since we have not modified σ1 or τ . Furthermore,

∑
x∈A′

ΦH′
1
(x) ≥ d−5cδ|X| ·

√
d

σX
⇒ σX

∑
x∈A′

ΦH′
1
(x) ≥ d−5cδ · ε

d1/2+cδ
· nd ·

√
d = ε · nd · d−6cδ

where we used Lemma 5.1, part (d) for the lower bound on |X|. Note that this implies something slightly
stronger than condition (d) above (the exponent of ε is 1).

Therefore, we may assume |A′| ≤ d−5cδ|X|. In this case, let H1 = (A \A′,B, E′) where we simply
remove the A′ vertices. The number of edges this destroys is at most

d−5cδD(A)|X| ≤ d−5cδD(X)|X| ≤ d−2cδm(G) ≤ d−cδm(H)

where in the second inequality we used D(X) ≤ Φ(X)Γ(X) and the regularity property (Lemma 5.1,
property (b)) of G. Thus, the number of edges we have discarded is negligible, and condition (c) holds. In
particular, the number of edges in H1 is at least m(H)/3. We now prove condition (d) also holds.

Claim 5.13. σX
∑

x∈A\A′ ΦH1(x) ≥ ε2 · nd · d−6cδ.

Proof. For any x ∈ A \ A′, we have ΦH1(x) ≥ D(x)
Γ(x) and thus

∑
x∈A\A′ ΦH1(x) ≥ m(H)/3

Γ(A) . Since
Γ(A) ≤ Γ(X) we have

∑
x∈A\A′

ΦH1(x) ≥
m(H)

3Γ(A)
≥ 2s ·m(G)

3Γ(X) log7 d
≥ d−3cδ|X|Φ(X)Γ(X)

3Γ(X) log7 d

≥ d−4cδ|X|Φ(X) ≥ d−4cδ
∑
x∈X

ΦG(x). (6)

where in the second inequality we used Lemma 5.8, property (1) to lower bound the number of edges in
H with that of G. In the third inequality we used the regularity property (property (b) of Lemma 5.1), in
the fourth we used dcδ ≫ 2 log7 d for large enough d, and the fifth inequality uses the trivial upper bound
Φ(X) ≥ ΦG(x) for all x ∈ X .

Now we apply the fact (Item (a) of Lemma 5.1) that Tal(G) is large. Using the coloring χ ≡ 1 for edges
in G, we get ∑

x∈X

√
ΦG(x) ≥ Tal(G) ≥ ε · d−cδ · nd ⇒ Ex∈X [

√
ΦG(x)] ≥

ε · d−cδ

σX

Jensen’s inequality gives

Ex∈X [ΦG(x)] ≥
ε2 · d−2cδ

σ2
X

⇒
σ2
X

|X|
∑
x∈X

ΦG(x) ≥ ε2d−2cδ ⇒ σX
∑
x∈X

ΦG(x) ≥ ε2d−2cδnd

Plugging into (6) proves the claim.
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5.3.2 Case 2: At most half the edges of H are red

In this case we invoke the Red/Blue lemma, Lemma 5.12 to obtain a violation subgraph H2 = (L,R, E′)
with the following key properties. (Recall that by Observation 2.6 we have m(G) ≥ Tal(G) and so us-
ing item (a) of Lemma 5.1 and our assumption that ε ≥ d−1/2 we have m(G) ≥ d−1/2−cδnd. Thus,
⌊m(G)/6⌋ ≥ m(G)/7 clearly holds.)

(P1) All edges are blue and m(H2) ≥ 2s m(G)

7 log7 d
.

(P2) Γ(R) ≤ Γ(B) ≤ 2s · Γ(Y ).

(P3) D(R) ≤ D(B) ≤ 2s ·D(Y ).

We claim that H2 makes progress towards a (σ2, τ)-nice blue subgraph (Definition 3.5). Condition (a) holds
by definition. Condition (d) is satisfied because τ ≥ 0.5σY d0.5−7cδ and σY = σ2. We need to establish
condition (b) and (c). That is, we need to establish

(b) σY · ΦH2(y) ≤
√
d for all y ∈ R

(c) σY
∑

y∈RΦH2(y) ≥ ε2 · nd · d−6cδ

As in Case 1, we begin by removing high degree vertices. Let R′ ⊆ R be the vertices y ∈ R which have
ΦH2(y) >

√
d

σY
. If |R′| ≥ d−5cδ|Y |, then we would just focus on H ′

2(R
′,L, E′′) obtained by removing all

vertices not in R′ from R, then for each y ∈ R′, removing in-coming edges so that ΦH′
2
(y) =

√
d

σY
. Then,

H ′
2 satisfies (b) and (c) for a very similar reason as in Case 1, and after these modifications (a) and (d) still

hold as well. Thus, we may assume |R′| is smaller than d−5cδ|Y | and we define H2(L,R \ R′, E′), and
this leads to a negligible decrease in the number of edges. Condition (b) holds by design, and the proof that
condition (c) holds is similar. We provide it for completeness.

Claim 5.14. σY
∑

y∈R\R′ ΦH2(y) ≥ ε2 · nd · d−6cδ.

Proof. For any y ∈ R \ R′, we have ΦH2(y) ≥ D(y)
Γ(y) and thus

∑
y∈R\R′ ΦH2(y) ≥ m(H)/3

Γ(R) . Since
Γ(R) ≤ 2s · Γ(Y ) we have∑

y∈R\R′

ΦH(y) ≥ m(H)

3Γ(R)
≥ 2s ·m(G)

2s · 21Γ(Y ) log7 d
≥ d−3cδ|Y |Φ(Y )Γ(Y )

21Γ(Y ) log7 d

≥ d−4cδ|Y |Φ(Y ) ≥ d−4cδ
∑
y∈Y

ΦG(y). (7)

where in the second inequality we used Lemma 5.8, part 1, to lower bound the number of edges in H with
that of G, the original seed graph from Lemma 5.1. In the third inequality we used the regularity property
(property 2 of Lemma 5.1), in the fourth we used dcδ ≫ 21 log7 d for large enough d, and the fifth inequality
uses the trivial upper bound Φ(Y ) ≥ ΦG(y) for all y ∈ Y .

The rest of the proof is the same as Case 1 except we apply the coloring χ ≡ 0 for edges in G. We omit
this very similar calculation.

These two cases conclude the proof of Lemma 3.7. All that remains is to prove the Red/Blue lemma, Lemma 5.12
and the Persist-or-Blow-up lemma, Lemma 5.7. We prove these in the subsequent two sections, and both of
these use the translation of violation subgraphs idea.
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6 Proof of the Red/Blue Lemma, Lemma 5.12

Let us recall the red/blue lemma.

Lemma 5.12 (Red/Blue Lemma). Let G(X,Y , E) be a violation subgraph and 1 ≤ ℓ ≤
√
d/ log5(d/ε)

be a walk length such that the following hold.
1. At most half the edges are red for walk length ℓ.
2. All vertices in X ∪ Y are (ℓ, log−5 d)-up-persistent.
3. All vertices in X ∪ Y are 99-typical.

Then there exists another violation subgraph H(L,R, E′) such that
1. All edges are blue for walk length ℓ and m(H) ≥ ⌊m(G)/6⌋.
2. ΓH(L) ≤ ΓG(X) and ΓH(R) ≤ ΓG(Y ).
3. DH(L) ≤ DG(X) and DH(R) ≤ DG(Y ).5

Proof. We first recall the definition of px,ℓ(x′) in Definition 2.25. For a fixed x, consider the process of
sampling a hypercube H ∼ H(x) and then sampling z ∼ UH,ℓ(x). Recall from Fact 2.11 that this is one of
three equivalent ways of expressing our random walk distribution. Given x,x′, ℓ, we have

px,ℓ(x
′) = Pr

[
x,x′ ∈ H100 and z = x′] .

Since these are probabilities, we trivially obtain

For any x,x′,
∑
x′∈X

px,ℓ(x
′) ≤ 1 and

∑
x∈X

px′,ℓ(x) ≤ 1 (8)

We use these probabilities to set up a flow problem as follows. Recall the definition of red and blue
edges (Definition 3.2 and Definition 3.3). Let B denote the set of all edges in the fully augmented hypergrid
that are blue for walk length ℓ. For every non-red edge (x,y) of G and every shift s ∈ supp(USℓ(x)), if
the edge e = (x + s,y + s) is blue, then we put flow(e) := px,ℓ(x + s) units of flow on e. Note that this
value is also equal to py,ℓ(y+ s) since both x and y are 99-typical and any choice that takes x to x+ s can
be coupled with one which takes y to y + s.

Claim 6.1. Every non-red edge of G inserts at least 0.93 units of flow on the edges in B.

Proof. Fix a non-red edge (x,y), and let i denote its dimension. Generate H ∼ H(x) and s ∼ USH,ℓ(x).
Note that it is equivalent to directly sample s ∼ USℓ(x). We then consider the random edge e = (x +
s,y + s). We set x′ = x + s and y′ = y + s. Let us define the following series of events. (i) E1: si = 0.
(ii) E2: f(x′) = 1. (iii) E3: f(y′) = 0. (iv) E4: at least half of I(x′,y′) is not ℓ-mostly-zero-below, (v)
E5: x,x′ ∈ H100. We will show that whenever E2, E3, and E4 occur, the edge (x′,y′) is blue by definition.
Therefore, recalling the definition of px,ℓ(x′), the edge (x,y) inserts at least Pr[∧5

j=1Ej ] units of flow in B.
Subsequently, we will show that the probability of this event is at least 0.95 and this will prove the claim.

Since ∥s∥0 ≤ ℓ ≤
√
d, we have Pr[E1] ≥ 1 − 1/

√
d. Since x is (ℓ, log−5 d)-up-persistent, Pr[E2] ≥

1− log−5 d. Since y is (ℓ, log−5 d)-up-persistent, Pr[E3] ≥ 1− log−5 d. By a union bound we have

Pr[¬E1 ∨ ¬E2 ∨ ¬E3] ≤ Pr[¬E1] + Pr[¬E2] + Pr[¬E3 | E1] ≤
1√
d
+

1

log5 d
+

1

log5 d
≤ 3 log−5 d

5We remark that the inequalities ΓH(L) ≤ ΓG(X) and DH(L) ≤ DG(X) are not used later in our proof, but are still stated
for the purpose of providing useful context to the reader.
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and so

Pr[E1 ∧ E2 ∧ E3] ≥ 1− 3 log−5 d. (9)

To deal with E4, we bring in the non-redness of our edge (x,y). By definition,

Pr
z∈I(x,y)

Pr
z′∼Uℓ(z)

[z′ is not ℓ-mzb] ≥ 0.99

In terms of shifts, we can express this bound as

Pr
z∈I(x,y)

Pr
s∼USℓ(z)

[z+ s is not ℓ-mzb] ≥ 0.99

Since the probability of E1 is at least 1− o(1), we have

Pr
z∈I(x,y)

Pr
s∼USℓ(z)

[z+ s is not ℓ-mzb | E1] ≥ 0.98

Note that conditioned on E1, the distributions USℓ(z) and USℓ(x) are identical. Hence,

Pr
s∼USℓ(x)

Pr
z∈I(x,y)

[z+ s is not ℓ-mzb | E1] ≥ 0.98

Let Xs be the fraction of points in I(x + s,y + s) that are not ℓ-mzb. By linearity of expectation,
Es[Xs | E1] ≥ 0.98. Hence Es[1−Xs | E1] ≤ 0.02 and by Markov’s inequality, Prs[1−Xs > 0.5 | E1] ≤
2/50. Hence, Prs[Xs ≥ 0.5 | E1] ≥ 48/50 = .96. Since Pr[E1] = 1 − o(1), we have Pr[E4] = Prs[Xs ≥
0.5] ≥ 0.95.

Combining with (9), we have Pr[∧4
j=1Ej ] ≥ 0.94. When ∧4

j=1Ej occurs, the edge (x′,y′) is a vio-
lated edge and at least half of I(x′,y′) is not ℓ-mzb. For z′ ∈ I(x′,y′) that is not ℓ-mzb, by definition
Prw∼Dℓ(z′)[f(w) = 1] ≥ 0.1. Hence,

Pr
z′∈RI(x′,y′)

Pr
w∼Dℓ(z′)

[f(w) = 1] ≥ 0.5× 0.1 ≥ 0.01

We conclude that (x′,y′) is blue, whenever ∧4
j=1Ej occurs.

Stepping back, with probability at least 0.94 over the shift s ∼ USℓ(x), the edge (x+ s,y + s) is blue.
Finally, since all points in X are 99-typical, we have Pr[x ∈ H99] ≥ 1 − (ε/d)5, and conditioned on this
event we have x′ ∈ H100 since ℓ ≪

√
d. Together, we get Pr[E5] ≥ 1 − (ε/d)5 ≥ 0.99. Thus, by a union

bound Pr[∧5
j=1Ej ] ≥ 0.93 and so the amount of flow that (x,y) inserts is at least 0.93.

Let E′ ⊆ B denote the set of blue edges which receive non-zero flow. Let H(L,R, E′) denote the
bipartite graph on these edges. Since ℓ ≤

√
d/ log5(d/ε), by the reversibility Lemma 2.26, px,ℓ(x′) ≤

2px′,ℓ(x) for any x ∈ X , x′ ∈ L and py,ℓ(y
′) ≤ 2py′,ℓ(y) for any y ∈ Y , y′ ∈ R. Using this bound we’re

able to establish the desired capacity constraints on the flow as follows6

Claim 6.2 (Edge Congestion). The total flow on an edge (x′,y′) ∈ B is at most 2.

Proof. By construction, the total flow on an edge (x′,y′) is at most∑
x∈X

px,ℓ(x
′) ≤ 2

∑
x∈X

px′,ℓ(x) ≤ 2

since by (8) we have
∑

x∈X px′,ℓ(x) ≤ 1.
6We replaced the upper bound 1 + 1

log3 d
by “2” as that serves our purpose; hopefully, the reader is not confused.
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Claim 6.3 (Vertex Congestion). The following hold.
1. The total amount of flow through a vertex x′ ∈ L is at most 2DG(X).
2. The total amount of flow through a vertex y′ ∈ R is at most 2DG(Y ).
3. For all i ∈ [d], the total amount of i-flow through a vertex x′ ∈ L is at most 2ΓG,i(X).
4. For all i ∈ [d], the total amount of i-flow through a vertex y′ ∈ R is at most 2ΓG,i(Y ).

Proof. Fix a vertex x′ ∈ L and consider the edges (x′,y′
t) of E′ = E(H) incident on it with t = 1, . . . , d′.

For (x′,y′
t) to receive flow, there must exist edges of the form (x,y) ∈ E(G) such that x′ = x + s and

y′
t = y + s for some shift s. Call such an (x,y) parallel to (x′,y′

t) and denote it as (x,y) || (x′,y′
t). Note

that the same (x,y) ∈ E(G) can be parallel to at most one edge incident on x′ since fixing x,y and x′ fixes
the y′

t. The total flow through vertex x′ ∈ L is therefore

flow(x′) =
d′∑
t=1

flow(x′,y′
t) =

d′∑
t=1

∑
(x,y)∈E || (x′,y′

t)

px,ℓ(x
′) ≤

∑
(x,y)∈E(G)

px,ℓ(x
′)

This can be upper-bounded as follows∑
(x,y)∈E

px,ℓ(x
′) ≤ DG(X)

∑
x∈X

px,ℓ(x
′) (since degree of x ∈ X in G is ≤ DG(X))

≤ 2DG(X)
∑

x∈[n]d
px′,ℓ(x) (since px,ℓ(x

′) ≤ 2px′,ℓ(x))

≤ 2DG(X) (since
∑

x∈[n]d
px′,ℓ(x) ≤ 1 due to (8))

Analogous arguments prove all the rest. To see (2), we work from the “right” side. For completeness, fix
y′ ∈ R and consider the edges (x′

t,y
′) of E′ incident on it. For such an edge to receive flow, there must

exist edges of the form (xt,y) ∈ E(G) with y′ = y+s and x′
t = xt+s. The total flow coming into y′ ∈ R

is therefore

flow(y′) =
d′∑
t=1

flow(x′
t,y

′) =
d′∑
t=1

∑
(xt,y)∈E || (x′

t,y
′)

py,ℓ(y
′) ≤

∑
(x,y)∈E(G)

py,ℓ(y
′)

The rest of the argument is same as above. For (3) and (4), we restrict the above argument only to i-edges
and note that any edge parallel to an i-edge is also an i-edge.

By Claim 6.1 and the fact that at least half the edges in G are not red, the total amount of flow is at least
m(G)/3 and this flow satisfies the constraints listed in Claim 6.2 and Claim 6.3. Thus, dividing by 2 yields
a flow of value m(G)/6 satisfying the following.

C1. The flow on every edge is at most 1.

C2. The total flow through any vertex in L is at most DG(X). The total i-flow through any vertex in L is
at most ΓG,i(X).

C3. The total flow through any vertex in R is at most DG(Y ). The total i-flow through any vertex in R is
at most ΓG,i(Y ).

By integrality of flow, there exists an integral flow of at least ⌊m(G)/6⌋ units satisfying the same capacity
constraints. By item (C1) above, the integral flow is a subgraph containing at least ⌊m(G)/6⌋ edges and
satisfying the desired constraints listed in the lemma statement.
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7 Proof of the ‘Persist-or-Blow-Up’ Lemma, Lemma 5.7

Let us recall the ‘Persist-or-Blow-Up’ lemma.

Lemma 5.7 (Persist-or-Blow-up Lemma). Consider a violation subgraph G = (X,Y , E) such that all
vertices in G are c-typical where c ≤ 99 and (ℓ, log−5 d)-up persistent where 1 ≤ ℓ ≤

√
d/ log5(d/ε).

Then, there exists a violation subgraph G′ = (X ′,Y ′, E′) where all vertices are (c + ℓ√
d
)-typical and

satisfying one of the following conditions.

1. Down-persistent case:

(a) All vertices in X ′ are (ℓ, 0.6)-down persistent.

(b) m(G′) ≥ ⌊m(G)/ log5 d⌋.

(c) DG′(X ′) ≤ DG(X), and ∀i ∈ [d],ΓG′,i(X
′) ≤ ΓG,i(X)

(d) DG′(Y ′) ≤ DG(Y ), and ∀i ∈ [d], ΓG′,i(Y
′) ≤ ΓG,i(Y ).

2. Blow-up case:

(a) m(G′) ≥ ⌊2(1− 3 log−4 d) ·m(G)⌋.

(b) DG′(X ′) ≤ DG(X), and ∀i ∈ [d],ΓG′,i(X
′) ≤ ΓG,i(X)

(c) DG′(Y ′) ≤ 2DG(Y ), and ∀i ∈ [d], ΓG′,i(Y
′) ≤ 2ΓG,i(Y ).

The proof strategy of this lemma is similar to the proof of Lemma 5.12 described in Section 6. We first recall
the definition of px,ℓ(x′) in Definition 2.25. For a fixed x, consider the process of sampling a hypercube
H ∼ H(x) and then sampling z ∼ UH,ℓ(x). Recall from Fact 2.11 that this is one of three equivalent ways
of expressing our random walk distribution. Given x,x′, ℓ, we have

px,ℓ(x
′) = Pr

[
x,x′ ∈ H100 and z = x′] .

We use these values to set up a flow problem as follows. For every edge (x,y) of G and s ∈ supp(USℓ(x)),
if e = (x+s,y+s) is a violation, then we put flow(e) := px,ℓ(x+s) units of flow on the edge e. As argued
in Section 6, this is the same as py,ℓ(y + s). Upon processing every edge of G, we get a fractional flow
supported on edges of another bipartite violation subgraph G′ = (X ′,Y ′, E′). Note that by Claim 2.24, we
have that all vertices in G′ are (c+ ℓ√

d
)-typical.

The next two claims are analogous to Claim 6.1, Claim 6.2 and Claim 6.3, respectively.

Claim 7.1. Every edge (x,y) ∈ E(G) inserts at least 1− log−4 d units of flow.

Proof. The proof of this claim is similar to that of Claim 6.1. Fix an edge (x,y) ∈ E(G) and let this be an
i-edge. Generate H ∼ H(x) and a shift s ∼ USH,ℓ(x), and let x′ = x + s and y′ = y + s. Consider the
events: (i) E1: si = 0, (ii) E2: f(x′) = 1, (iii) E3: f(y′) = 0, (iv) E4: x,x′ ∈ H100. Note that the total flow
inserted by (x,y) is at least Pr[∧4

i=1Ei]. Pr[E1] ≥ 1 − 1/
√
d, since ∥s∥0 ≤ ℓ ≤

√
d. Since x,y are both

(ℓ, log−5 d)-up-persistent and f(x) = 1, f(y) = 0, we get Pr[E2],Pr[E3 | E1] ≥ 1− 1
log5 d

. Finally, since x

is 99-typical, with probability 1− (ε/d)5 we have x ∈ H99 which implies x′ ∈ H100 since ℓ ≪
√
d. Thus

by a union bound, Pr[∧4
i=1Ei] ≥ 1− 2 log−5 d− 1/

√
d− (ε/d)5 ≥ 1− log−4 d.

Claim 7.2 (Edge Congestion). The flow on any edge (x′,y′) is at most
∑

x∈X px,ℓ(x
′) ≤ (1 + log−3 d).
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Proof. Consider an edge (x′,y′) ∈ E(G′), which receives flow from some (x,y) in G. Flow is inserted by
translations of edges, so y − x = y′ − x′. Hence, for a given x, there exists a unique y such that (x,y)
inserts flow on (x′,y′). By construction, the flow inserted is px,ℓ(x

′). Thus, the total flow that (x′,y′)
receives is at most

∑
x∈X px,ℓ(x

′). The RHS bound holds by Lemma 2.26 and the observation (8) that∑
x∈X px′,ℓ(x) ≤ 1

Claim 7.3 (Vertex Congestion). The following hold.
1. For any x′ ∈ X ′, the total flow on edges incident to x′ is at most

DG(X)
∑
x∈X

px,ℓ(x
′) ≤ DG(X)(1 + log−3 d).

2. For any x′ ∈ X ′, the total i-flow on edges incident to x′ is at most

ΓG,i(X)
∑
x∈X

px,ℓ(x
′) ≤ ΓG,i(X)(1 + log−3 d).

3. For any y′ ∈ Y ′, the total flow on edges incident to y′ is at most

DG(Y )
∑
y∈Y

py,ℓ(y
′) ≤ DG(Y )(1 + log−3 d).

4. For any y′ ∈ Y ′, the total i-flow on edges incident to y′ is at most

ΓG,i(Y )
∑
y∈Y

py,ℓ(y
′) ≤ ΓG,i(Y )(1 + log−3 d).

Proof. Consider x′ ∈ X ′. All the i-flow inserted on edges incident to x′ comes from i-edges (x,y) in
G. Every i-edge in G inserts flow on at most a single edge incident to x′ and there are at most ΓG,i(X)
i-edges incident to any vertex x ∈ X . Hence, the total i-flow inserted by a x ∈ X through x′ is at most
ΓG,i(X) · px,ℓ(x′). Thus, summing over all x ∈ X and using the reversibility Lemma 2.26 shows that the
total i-flow on edges incident to x′ is at most

ΓG,i(X)
∑
x∈X

px,ℓ(x
′) ≤ (1 + log−3 d)ΓG,i(X)

∑
x∈X

px′,ℓ(x) ≤ (1 + log−3 d)ΓG,i(X)

and this proves (2). The proof of (1) is identical, with DG(X) replacing ΓG,i(X), and statements (3)
and (4) have analogous proofs where we work with py,ℓ(y

′)’s instead. All this is analogous to the proof
of Claim 6.3.

Next we require a definition of heavy vertices. Recall, we now have a flow flow on G′ = (X ′,Y ′, E′).

Definition 7.4 (Heavy Vertices). A vertex x′ ∈ X ′ is called heavy if it satisfies any of the following.
H1. There is an edge e′ = (x′,y′) ∈ E′ with flow(e′) ≥ 1/2.
H2. The total flow on edges incident to x′ is at least DG(X)/2.
H3. There exists i ∈ [d] such that the total i-flow on edges incident to x′ is at least ΓG,i(X)/2.

Note that heavy vertices are defined only in X and not in Y . Note that by Claim 7.1 and Claim 7.3, the upper
bounds on (H1), (H2) and (H3) are at most 1 + log−3 d, DG(X)(1 + log−3 d) and ΓG,i(X)(1 + log−3 d),
respectively, and so a vertex is heavy if any of these upper bounds are reached up to “factor 2”.
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Claim 7.5. All heavy vertices are (ℓ, 0.6)-down persistent.

Proof. Consider a heavy vertex x′. That is, x′ satisfies one of the three conditions listed in Definition 7.4.
Suppose it satisfies the first condition: there is some violated edge (x′,y′) receiving at least 1/2 units of
flow. By Claim 7.2, the total flow on (x′,y′) is at most

∑
x∈X px,ℓ(x

′). Hence,
∑

x∈X px,ℓ(x
′) ≥ 1/2.

In fact, observe that we can prove the exact same inequality if x′ satisfies the second or third condition of
Definition 7.4, by using the upper bound given by the LHS of items (1) and (2), respectively, of Claim 7.3.
Now, applying the reversibility Lemma 2.26, we have (1 + log−3 d)

∑
x∈X px′,ℓ(x) ≥ 1/2. Note that

f(x) = 1 for all x ∈ X . Hence,

Pr
z∼Dℓ(x′)

[f(z) = 1] ≥
∑
x∈X

px′,ℓ(x) ≥
1

2(1 + log−3 d)
≥ 0.4 (10)

and so x′ is (ℓ, 0.6)-down-persistent.

We are now set up to complete the proof. For convenience, we use m to denote m(G). We refer to the
flow on edges incident to heavy vertices as the heavy flow. We let X ′

H ⊆ X ′ be the subset of heavy vertices,
and let X ′

L := X ′ \ X ′
H be the subset of non-heavy vertices. We let GH = (X ′

H ,Y ′
H , E′

H) denote the
bipartite graph of all edges incident to heavy vertices. We refer to the flow on edges incident to non-heavy
vertices as the light flow. We let GL = (X ′

L,Y
′
L, E

′
L) denote the bipartite graph of all edges incident to

non-heavy vertices. We split into two cases based on the amount of heavy flow.

7.1 Case 1: The total amount of heavy flow is at least m
log4 d

Note that by Claim 7.5, all vertices in X ′
H are (ℓ, 0.6)-down persistent. By Claim 7.2 and Claim 7.3, the

heavy flow satisfies the following capacity constraints.

A1. The flow on every edge is at most (1 + log−3 d).

A2. For every x′ ∈ X ′
H , the total flow on edges incident to x′ is at most DG(X)(1 + log−3 d) and the

total i-flow on edges incident to x′ is at most ΓG,i(X)(1 + log−3 d).

A3. For every y′ ∈ Y ′
H , the total flow on edges incident to y′ is at most DG(Y )(1+ log−3 d) and the total

i-flow on edges incident to y′ is at most ΓG,i(Y )(1 + log−3 d).

Recall that X and Y were the bipartitions of the original graph G and not of G′.
Let us divide the flow by (1 + log−3 d). Thus, we now have at least m

(1+log−3 d) log4 d
≥ m

log5 d
units of

flow satisfying the following capacity constraints.

A’1. The flow on every edge is at most one.

A’2. For every x′ ∈ X ′
H , the total flow on edges incident to x′ is at most DG(X) and the total i-flow on

edges incident to x′ is at most ΓG,i(X).

A’3. For every y′ ∈ Y ′
H , the total flow on edges incident to y′ is at most DG(Y ) and the total i-flow on

edges incident to y′ is at most ΓG,i(Y ).

By integrality of flow, there is an integral flow of at least ⌊ m
log5 d

⌋ units satisfying the above constraints. By
condition (A’1) above, this integral flow is a subgraph of GH with at least ⌊ m

log5 d
⌋ edges, and satisfying

the degree bounds listed in (1c) and (1d) of the lemma statement. Thus, this subgraph satisfies case (1)
(“down-persistence case”) of the lemma statement.
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7.2 Case 2: The total amount of heavy flow is at most m
log4 d

By Claim 7.1, the total flow is at least m(1 − log−4 d) units. Thus, after removing the heavy flow, the
remaining light flow is at least m(1 − 2 log−4 d) units. The light flow satisfies the following capacity
constraints.

B1. Every edge in GL = (X ′
L,Y

′
L, E

′
L) has at most 1/2 units of flow.

B2. For every x′ ∈ X ′
L, the total flow on edges incident to x′ is at most DG(X)/2 and the total i-flow on

edges incident to x′ is at most ΓG,i(X)/2.

B3. For every y′ ∈ Y ′
L, the total flow on edges incident to y′ is at most (1+ log−3 d)DG(Y ) and the total

i-flow on edges incident to y′ is at most (1 + log−3 d)ΓG,i(Y ).

Once again, recall that X and Y were the bipartitions of the original graph G and not of G′, and thus item
(B1) above does not imply (B2) or (B3). Items (B1) and (B2) are simply by Definition 7.4 since all vertices
in X ′

L are not heavy. Item (B3) follows from the RHS bound on the vertex congestion in Claim 7.3.

We now re-scale the flow by multiplying it by 2
1+log−3 d

. We now have 2m (1−2 log−4 d)

1+log−3 d
≥ 2m(1 −

2 log−3 d) units of flow with the following capacity constraints:

B’1. Every edge has at most one unit of flow.

B’2. For every x′ ∈ X ′
L, the total flow on edges incident to x′ is at most DG(X) and the total i-flow on

edges incident to x′ is at most ΓG,i(X).

B’3. For every y′ ∈ Y ′
L, the total flow on edges incident to y′ is at most 2DG(Y ) and the total i-flow on

edges incident to y′ is at most 2ΓG,i(Y ).

By integrality of flow, we obtain an integral flow of at least ⌊2m(1 − 3 log−4 d)⌋ units satisfying the
same constraints listed above. In particular, the flow on any edge is at most one and so the integral flow is a
violation subgraph with at least ⌊2m(1 − 3 log−4 d)⌋ edges and satisfying the degree bounds listed in case
(2) of the lemma statement.

8 Proof of Theorem 1.1 and Theorem 1.2

In this section we prove Theorem 1.1 and Theorem 1.2 using our main result Theorem 1.6 combined with
the domain reduction theorem of [BCS20] and the Õ(ε−1d) tester of [DGL+99] and [BRY14a]. First, ob-
serve that by Theorem 1.6, repeating Alg. 1 ε−2d1/2+O((log lognd)−1) times immediately gives the following
corollary.

Corollary 8.1 (Corollary of Theorem 1.6). Let n ≤ poly(d). There is a tester which, given a parameter
ε ∈ (0, 1) where ε ≥ d−1/2, and a function f : [n]d → {0, 1}, makes ε−2 · d1/2+O((log log d)−1) non-adaptive
queries to f and (a) accepts when f is monotone, and (b) rejects with probability at least 2/3 when f is
ε-far from monotone.

We will refer to the tester of Corollary 8.1 as the path-tester. We will also use the tester of
[BRY14a] with query-complexity O(dε log

d
ε ), which we will refer to as the line-tester. Note that

this tester is also non-adaptive and has one-sided error (see [BRY14a], Theorem 1.3). To prove Theorem 1.1
using path-tester and line-tester, we use Theorem 1.3 of [BCS20] (domain reduction for [n]d),
which we state here for ease of reading.
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Theorem 8.2 (Domain Reduction Theorem 1.3, [BCS20]). Let d be at least a sufficiently large constant,
and suppose f : [n]d → {0, 1} is ε-far from being monotone. If T = T1×· · ·×Td is a randomly chosen sub-
grid, where for each i ∈ [d], Ti is a (multi)-set formed by taking ⌈(ε−1d)8⌉ independent, uniform samples
from [n], then ET [εfT ] ≥ ε/2.7

Analogously, to prove our Theorem 1.2 we use Theorem 1.4 of [BCS20] (domain reduction for Rd).

Theorem 8.3 (Domain Reduction Theorem 1.4, [BCS20]). Let d be at least a sufficiently large constant.
Let f : Rd → {0, 1} be any measurable function and let D =

∏d
i=1Di be a (Lebesgue integrable) product

distribution such that the distance to monotonicity of f w.r.t. D is εf ≥ ε. If T = T1×· · ·×Td is a randomly
chosen sub-hypergrid, where for each i ∈ [d], Ti ⊂ R is formed by taking ⌈(ε−1d)8⌉ i.i.d. samples from Di,
then ET [εfT ] ≥ ε/2.8

We can now define our tester Alg. 2, using path-tester , line-tester and the domain reduction
theorems. The only difference between our testers for proving Theorem 1.1 and Theorem 1.2 is that they
use Theorem 8.2 and Theorem 8.3, respectively. Thus, we state them as one tester in Alg. 2 and prove both
theorems together.

Algorithm 2 Monotonicity tester for f : Dd → {0, 1} where D = [n] or D = R. Inputs: f and ε ∈ (0, 1).
1: let L = ⌈log(2/ε)⌉.
2: for all ℓ ∈ [L+ 1]:
3: set Qℓ := ⌈32ℓ2

2ℓε
⌉ and εℓ := 1/2ℓ.

4: repeat Qℓ times:
5: if D = [n], sample T = T1 × · · · × Td as in Theorem 8.2.
6: if D = R, sample T = T1 × · · · × Td as in Theorem 8.3.
7: if ε < d−1/2, then run line-tester(fT , εℓ) and if it rejects, then return REJECT.
8: if ε ≥ d−1/2, then run path-tester(fT , εℓ) and if it rejects, then return REJECT.
9: return ACCEPT.

Remark 8.4. We note that [HY22] obtain a more efficient domain reduction result. However, the domain
reduction from [BCS20] can be used in a black-box fashion, resulting in a simpler tester.

Our tester (Alg. 2) uses Levin’s work investment strategy (see [Gol17], Section 8.2.4) to optimize the
dependence on ε. We remark that if one only cares about achieving a dependence of poly(1/ε), then the
following simpler tester suffices: invoke Step 5, Step 6, Step 7, and Step 8 (with εℓ replaced by ε/4) of Alg. 2
16/ε times. By Markov’s inequality and the fact that ET [εfT ] ≥ ε/2, with high probability at least one of
the calls to Step 5 or Step 6 will yield a reduced hypergrid T satisfying εfT ≥ ε/4. Step 7 or Step 8 will
then reject the restriction fT , and thus reject f , with high probability. This leads to an ε−3 dependence on
ε, as opposed to the ε−2 achieved by Alg. 2.

In Step 5 or Step 6 of Alg. 2 we sample a sub-hypergrid T =
∏d

i=1 Ti, where each Ti is of size
⌈(ε−1d)8⌉. By Theorem 8.2 or Theorem 8.3, ET [εfT ] ≥ ε/2. Now, refer to Step 3 of Alg. 2. We prove

Claim 8.5 below, which asserts that there exists ℓ∗ ∈ [L + 1] such that PrT [εfT ≥ εℓ∗ ] ≥ 2ℓ
∗
ε

8(ℓ∗)2 ≥ 4/Qℓ∗ .
Thus when ℓ is set to ℓ∗ in Alg. 2 at least one of the Qℓ∗ iterations of Step 5 or Step 6 returns T satisfying
εfT ≥ εℓ∗ with probability ≥ 1 − (1 − 4/Qℓ∗)

Qℓ∗ ≥ 1 − (1/e)4 ≥ 15/16. Thus, Alg. 2 rejects in either

7Note that fT denotes the restriction of f to T , and εfT denotes its distance to monotonicity.
8Note that εfT denotes the distance to monotonicity of the restriction fT with respect to the uniform distribution over T .
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Step 7 or Step 8 with probability > 15
16 · 2

3 = 5/8. On the other hand, if f is monotone, then fT is always
monotone and so Alg. 2 accepts with probability 1. (Since the tester has one-sided error, we can boost the
rejection probability in the former case to at least 2/3 by simply repeating the tester twice and rejecting if
either iteration rejects. The rejection probability becomes at least 1− (3/8)2 > 2/3.)

We now analyze the query complexity. First, suppose ε < d−1/2 and recall that the query complexity of
Step 7 is O( d

εℓ
log d

εℓ
). Thus, the query complexity of Alg. 2 in this case is at most

L+1∑
ℓ=1

Qℓ ·O
(
d

εℓ
log

d

εℓ

)
≤

L+1∑
ℓ=1

ℓ2

2ℓε
·O(2ℓd · log(2ℓd)) ≤ L3 ·O

(
d

ε
log

d

ε

)
≤ O

(
d

ε
log4

d

ε

)
where in the second to last step we used 2ℓ ≤ 2L+1 = O(1/ε) inside the logarithm, and in the last step
we simply used L = O(log 1/ε). Now, suppose that d−2 < ε < d−1/2. Then, using the lower bound on
ε, the log-term simplifies to O(log4 d). Using the upper bound on ε yields d/ε <

√
d/ε2. Thus, the query

complexity in this case is at most O(ε−2
√
d log4 d), satisfying the desired bound. On the other hand, if

ε ≤ d−2, then we have d ≤ ε−1/2 and so d/ε ≤ ε−3/2. Moreover, the log-term simplifies to O(log4 1/ε)
and so the query complexity is bounded by O(ε−3/2 log4 1/ε) = O(ε−2), again satisfying the desired bound.
Here we used ε−1/2 ≥ log4 1/ε since ε−1/2 ≥ d, and we assume that d is a sufficiently large constant.

Now, suppose ε ≥ d−1/2 and let q(ε, n, d) denote the query complexity of path-tester with pa-
rameters ε, n, and d. In particular,

q(ε, ⌈(ε−1d)8⌉, d) ≤ ε−2 · d1/2+O((log log d)−1)

and so the query complexity of Alg. 2 in this case is

L+1∑
ℓ=1

Qℓ · q(εℓ, ⌈(ε−1d)8⌉, d) =
L+1∑
ℓ=1

⌈
32ℓ2

2ℓε

⌉
· 22ℓ · d1/2+O((log log d)−1)

≤ ε−1 · d1/2+O((log log d)−1)
L+1∑
ℓ=1

ℓ2 · 2ℓ

≤ ε−1 · d1/2+O((log log d)−1)O(L3 · 2L) ≤ ε−2 · d1/2+O((log log d)−1) (11)

where in the last step we used the fact that L = Θ(log(1/ε)) and ε ≥ d−1/2. In particular, these facts imply

L3 = O(log3(1/ε)) = d
O(

log log(1/ε)
log d

)
= d

O( log log d
log d

)
= do(1/ log log d)

and so this factor of L3 is absorbed by the dO((log log d)−1) term in (11).

Claim 8.5. If ET [εfT ] ≥ ε/2, then there exists ℓ∗ ∈ [L+ 1] such that Pr
[
εfT ≥ 2−ℓ∗

]
≥ 2ℓ

∗
ε

8(ℓ∗)2 .

Proof. We have
∫ 1
0 Pr [εfT ≥ t] dt = E[εfT ] ≥ ε/2 and so

∫ 1
ε/4 Pr [εfT ≥ t] dt ≥ ε/4. Thus,

ε

4
≤

∫ 1

ε/4
Pr [εfT ≥ t] dt ≤

L∑
ℓ=0

∫ 1/2ℓ

1/2ℓ+1

Pr [εfT ≥ t] dt

≤
L∑

ℓ=0

1

2ℓ+1
Pr

[
εfT ≥ 1/2ℓ+1

]
=

L+1∑
ℓ=1

1

2ℓ
Pr

[
εfT ≥ 1/2ℓ

]
. (12)
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For the sake of contradiction, assume Pr
[
εfT ≥ 1/2ℓ

]
< 2ℓε

8ℓ2
for all ℓ ∈ [L+ 1]. Using (12), we have

ε ≤ 4

L+1∑
ℓ=1

1

2ℓ
Pr

[
εfT ≥ 1/2ℓ

]
<

ε

2

L+1∑
ℓ=1

1

ℓ2
<

ε

2
· π

2

6
< ε.

This is a contradiction.
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A Deferred Proofs

A.1 Equivalence of the Walk Distributions: Proof of Fact 2.11

Proof. Fix a pair (u, v) in [n]d where u ⪯ v. We will show that the probability of sampling this pair from
each distribution is the same. Let S = {i ∈ [d] : vi > ui}. Note that uj = vj for all j ̸= S. The probability
of sampling the pair (u, v) from the distribution described in item (1) of Fact 2.11 is computed as follows.

Pr
x∈R[n]d, y∼Uτ (x)

[(x,y) = (u, v)] =
1

nd

∑
R⊇S : |R|=τ

(
d

τ

)−1 ∏
i∈S

Pr[ci = vi | x = u]
∏

i∈R\S

Pr[ci ≤ ui | x = u].

(13)

41



Recall the distribution of qi, Ii, ci from Definition 1.3. Consider i ∈ S and let di := min(vi − ui, n −
(vi − ui)). Note that conditioned on qi, the total number of intervals Ii ∋ ui is 2qi and the number of such
intervals that contain vi is max(0, 2qi − di). Thus, we have

i ∈ S =⇒ Pr[ci = vi | x = u] = Eqi

[
Pr
Ii
[vi ∈ Ii] Pr

ci∈Ii
[ci = vi | vi ∈ Ii]

]
=

1

log n

∑
q : 2qi≥di

2qi − di
2qi

· 1

2qi − 1
=

1

2
· Eqi

[
max(0, 2qi − di)(

2qi
2

) ]
.

(14)

For an interval Ii ∋ ui, let Ii,ui denote the prefix of Ii preceding (not including) ui. Note that conditioned
on an interval Ii ∋ ui, the probability of choosing ci ≤ ui is |Ii,ui |/(2qi − 1). Thus, we have

i ∈ R \ S =⇒ Pr[ci ≤ ui | x = u] = Eqi

[
1

2qi − 1
· EIi∋ui [|Ii,ui |]

]
(15)

We now compute the probability of sampling (u, v) from the distribution described in item (2) of
Fact 2.11. Recall the distribution of qi, Ii, ai, bi from Definition 2.8. For i ∈ [d], let Ei be the event that
ai = ui or bi = ui. Note that

Pr[Ei] = Eqi

[
Pr
Ii
[Ii ∋ ui] Pr

ai<bi∈Ii
[ui ∈ {ai, bi} | ui ∈ Ii]

]
= Eqi

[
2qi

n
· 2

2qi

]
=

2

n

Let Eu denote the event that x = u. We have

Pr[Eu] =
d∏

i=1

Pr[Ei] ·
1

2d
=

(
2

n

)d 1

2d
=

1

nd
. (16)

Let Ev denote the event that y = v. We have

Pr [Ev | Eu] =
∑

R⊇S : |R|=τ

(
d

τ

)−1 ∏
i∈S

Pr[ai = ui and bi = vi | Eu] ·
∏

i∈R\S

Pr[bi = ui | Eu] (17)

Fix an i ∈ S and recall di := min(vi − ui, n− (vi − ui)). We have

Pr[ai = ui and bi = vi | Eu] = Pr[ai = ui and bi = vi | Ei] =
Pr[ai = ui and bi = vi]

Pr[Ei]

where the numerator is

Pr[ai = ui and bi = vi] = Eqi

[
Pr
Ii

[
Ii ⊇ [ui, vi]

]
·
(
2qi

2

)−1
]
= Eqi

[
max(0, 2qi − di)

n ·
(
2qi
2

) ]
and so

i ∈ S =⇒ Pr[ai = ui and bi = vi | Eu] =
1

2
· Eqi

[
max(0, 2qi − di)(

2qi
2

) ]
(18)
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which is equal to the probability computed in (14).
Now fix an i ∈ R \ S. Recall the definition of Ii,ui . We have

Pr[bi = ui | Eu] = Pr[bi = ui | Ei] =
Pr[bi = ui]

Pr[Ei]

where

Pr[bi = ui] = EqiEIi

[
1(ui ∈ Ii)

|Iui |(
2qi
2

)] = Eqi

 1

n

∑
Ii∋ui

|Ii,ui |
(
2qi

2

)−1
 =

2

n
Eqi

[
1

2qi−1
· EIi∋ui [|Ii,ui |]

]

and so recalling that Pr[Ei] = 2/n we have

i /∈ R \ S =⇒ Pr[bi = ui | Eu] = Eqi

[
1

2qi−1
· EIi∋ui [|Ii,ui |]

]
(19)

which is equal to the probability computed in (15). Combining (13), (14), (15), (16), (17), (18), (19), we
have

Pr
H∼H

Pr
x∈RH , y∼UH,τ (x)

[(x,y) = (u, v)] = Pr[Eu] · Pr[Ev | Eu] = Pr
x∈R[n]d, y∼Uτ (x)

[(x,y) = (u, v)]

and this proves that (1) and (2) of Fact 2.11 are equivalent.
To show equivalence of (1) and (3), note that we only need to show that

Pr
H∼H(u), y∼UH,τ (u)

[y = v] = Pr
y∼Uτ (u)

[y = v] (20)

This is proven by an analogous calculation. The expression for Pry∼Uτ (u)[y = v] is given by dropping
the 1

nd factor from (13) and then plugging in the expressions obtained in (14) and (15). The quantity
PrH∼H(u), y∼UH,τ (u)[y = v] is precisely Pr[Ev | Eu], and an expression for this is obtained by (17) and
plugging in the expressions obtained in (18) and (19). Thus, (1) and (3) are equivalent and this completes
the proof.

A.2 Influence and Persistence Proofs

Claim 2.15. If Ĩf > 9
√
d, then Ĩ−f >

√
d.

Proof. Theorem 9.1 of [KMS18] asserts that for any H , if IH > 6
√
d, then I−H > IH/3. (This holds for

any Boolean hypercube function.) If Ĩf > 9
√
d, then by Claim 2.14, EH [IH ] > 9

√
d. Hence,

9
√
d < EH [IH ] = Pr[IH ≤ 6

√
d] EH [IH |IH ≤ 6

√
d] + Pr[IH > 6

√
d] EH [IH |IH > 6

√
d]

< 6
√
d+ Pr[IH > 6

√
d]EH [3I−H |IH > 6

√
d] ≤ 6

√
d+ 3EH [I−H ]

Hence, EH [I−H ] >
√
d. By Claim 2.14, Ĩ−f >

√
d.

Claim 2.17. If Ĩf ≤ 9
√
d, then the fraction of vertices that are not (τ, β)-persistent is at most Cper

τ
β
√
d

where Cper is a universal constant.
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Proof. We will analyze the random walk using the distributions described in the first and second bullet
point of Fact 2.11 and leverage the analysis that [KMS18] use to prove their Lemma 9.3. Let αup denote the
fraction of vertices in the fully augmented hypergrid that are not (τ, β)-up-persistent. Using the definition
of persistence and Fact 2.11, we have

αup · β < Pr
x∈R[n]d, y∼Uτ (x)

[f(x) ̸= f(z)] = EH∼H

[
Pr

x∈RH , y∼UH,τ (x)
[f(x) ̸= f(z)]

]
. (21)

Let ÛH,τ (x) denote the same distribution as UH,τ (x) except with the set R being a uar subset of the 0-
coordinates of x. I.e. ÛH,τ (x) is the non-lazy walk distribution on H . Let x = x0,x1, . . . ,xτ = z be the
τ steps taken on the walk sampled by UH,τ (x) and let x = x̂0, x̂1, . . . , x̂τ = z be the τ steps taken on the
walk sampled by ÛH,τ (x). For a fixed H we have

Pr
x∈RH , y∼UH,τ (x)

[f(x) ̸= f(z)] ≤
τ−1∑
ℓ=0

Pr
[
f(xℓ) ̸= f(xℓ+1)

]
≤

τ−1∑
ℓ=0

Pr
[
f(x̂ℓ) ̸= f(x̂ℓ+1)

]
. (22)

The first inequality is by a union bound and the second inequality holds because the first walk is lazy and
the second is not. More precisely, we can couple the τ ′ ≤ τ steps of the lazy-random walk where the point
actually moves to the first τ ′ steps of the second non-lazy walk, and the remaining τ − τ ′ terms of the
non-lazy walk can only increase the RHS.

By Lemma 9.4 of [KMS18], the edge (x̂ℓ, x̂ℓ+1) is distributed approximately as a uniform random
edge in H . In particular, this implies Pr

[
f(x̂ℓ) ̸= f(x̂ℓ+1)

]
≤ C · 2IH/d for an absolute constant C.

(Note 2IH/d is the probability of a uniform random edge in H being influential.) Putting (21) and (22)
together yields αup ≤ 4Cτ

βd EH [IH ] and an analogous argument gives the same bound for αdown. Thus,

by Claim 2.14 we have EH [IH ] ≤ 9
√
d and the fraction of (τ, β)-non-persistent vertices is at most 72Cτ

β
√
d

.
Therefore, setting Cper := 72C completes the proof.

A.3 Typical Points and Reversibility Proofs

Claim 2.21. For a d-dimensional hypercube H and c ≥ 1, we have |Hc| ≥ (1− (ε/d)c) · 2d.

Proof. Consider a uniform random point x in the hypercube. The Hamming weight ∥x∥1 is
∑d

i=1 xi, where

each xi is an iid unbiased Bernoulli. By Hoeffding’s theorem, Pr[
∣∣∣∥x∥1 − d/2

∣∣∣ ≥ t] ≤ 2 exp(−2t2/d). We

set t =
√
4cd log(d/ε). The probability of not being in the c-middle layers is at most

2 exp(−2t2/d) = 2 exp(−8c log(d/ε)) = 2(ε/d)8c ≤ (ε/d)c.

Hence, the probability of being in the c-middle layers is at least (1− (ε/d)c).

Claim 2.23. For any ε ∈ (0, 1) and c ≥ 6,

Pr
x∈R[n]d

[x is c-typical] ≥ 1− (ε/d)c−5.

Proof. Given x ∈ [n]d and a hypercube H ∋ x, let χ(x,H) = 1(x ∈ H \ Hc). By Fact 2.11 and
Claim 2.21, we have

Ex∈R[n]dEH∼H(x) [χ(x,H)] = EH∼HEx∈RH [χ(x,H)] ≤ (ε/d)c
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Let us set qx := EH∼H(x)[χ(x,H)], so Ex[qx] ≤ (ε/d)c. By Markov’s inequality, Prx[qx ≥ (ε/d)5] ≤
(ε/d)c−5. Note that when qx < (ε/d)5, x is c-typical. Hence, at least a (1 − (ε/d)c−5)-fraction of points
are c-typical.

Claim 2.24 (Translations of Typical Points). Suppose x ∈ [n]d is c-typical. Then for a walk length τ ≤
√
d,

every point x′ ∈ supp(Uτ (x)) ∪ supp(Dτ (x)) is (c+ τ√
d
)-typical.

Proof. We prove the claim for x′ ∈ supp(Uτ (x)). The argument for points in supp(Dτ (x)) is analogous.
Let H be any hypercube containing x and x′ and let ∥x∥H , ∥x′∥H denote the Hamming weight of these
points in H . Observe that ∥x′∥H ≤ ∥x∥H + τ and so if x ∈ Hc, then ∥x′∥H ≤ d/2+

√
4cd log(d/ε) + τ

and since τ ≤
√
d, we have

√
4cd log(d/ε) + τ ≤

√
4cd log(d/ε) + τ

√
d log d =

√(
c+

τ√
d

)
d log d.

To see that the first inequality, observe that

τ2 + 2τ
√
4cd log(d/ε) ≤ τ

√
d log d ⇐⇒ τ ≤

√
d(log d− 4

√
c log(d/ε))

which clearly holds by our upper bound on τ . Thus, if x ∈ Hc, then x′ ∈ Hc+ τ√
d

. Therefore, the number of
hypercubes H for which x′ ∈ Hc+ τ√

d
is at least the number of hypercubes H for which x ∈ Hc. Therefore

x′ is (c+ τ√
d
)-typical.

Lemma 2.26 (Reversibility Lemma). For any points x ≺ x′ ∈ [n]d and walk length ℓ ≤
√
d/ log5(d/ε),

we have
px,ℓ(x

′) = (1± log−3 d)px′,ℓ(x).

Proof. If t := ∥x− x′∥0 > ℓ, then px,ℓ(x
′) = px′,ℓ(x) = 0. So assume t ≤ ℓ. Fix any H containing x and

x′ such that x,x′ ∈ H100 and let x and x′ denote the corresponding hypercube (bit) representations of x,x′

in H . Let px,ℓ(x′) = Prz∼UH,ℓ(x)[z = x′] and px′,ℓ(x) = Prz∼DH,ℓ(x′)[z = x]. By definition of px,ℓ(x′)

(recall Definition 2.25) it suffices to show that px,ℓ(x′) = (1± log−3 d)px′,ℓ(x).
Let S be the set of t coordinates where x and x′ differ. Let Z(x) be the set of zero coordinates of the

point x; analogously, define Z(x′). Recall that the directed upward walk making ℓ steps might not flip ℓ
coordinates. The process (recall Definition 2.10) picks a uar set R of ℓ coordinates, and only flips the zero
bits in x among R. Hence, an ℓ-length walk leads from x to x′ iff R ∩ Z(x) = S.

Let the Hamming weight of x be represented as d/2 + ex, where ex denotes the “excess”. Since x is
in the 100-middle layers, |ex| ≤

√
400d log(d/ε). The sets R that lead from x to x′ can be constructed by

picking any ℓ− t coordinates in Z(x) and choosing all remaining coordinates to be S. Hence,

px,ℓ(x
′) =

(d/2+ex
ℓ−t

)(
d
ℓ

)
Analogously, consider the downward ℓ step walks from x′. This walk leads to x iff R ∩ Z(x′) = S. The
sets R that lead from x′ to x can be constructed by picking any ℓ− t coordinates in Z(x′) and choosing all
remaining coordinates to be S. The size of Z(x′) is precisely |Z(x)| − t = d/2− ex − t. Hence,

px′,ℓ(x) =

(d/2−ex−t
ℓ−t

)(
d
ℓ

)
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Taking the ratio,

px,ℓ(x
′)

px′,ℓ(x)
=

(d/2+ex
ℓ−t

)(d/2−ex−t
ℓ−t

) =

∏ℓ−t−1
i=0 (d/2 + ex − i)∏ℓ−t−1

i=0 (d/2− ex − t− i)
=

ℓ−t−1∏
i=0

d/2 + ex − i

d/2− ex − t− i

=
ℓ−t−1∏
i=0

(
1 +

2ex + t

d/2− ex − t− i

)
Recall that |ex| ≤

√
400d log(d/ε), t ≤ ℓ <

√
d/ log5(d/ε). For convenience, let b :=

√
400d log(d/ε).

So 2ex + t ≤ 3b. Also, d/2− ex − t− i ≥ d/3 for all i < ℓ. Applying these bounds,

px,ℓ(x
′)

px′,ℓ(x)
≤

ℓ−1∏
i=0

(
1 +

3b

d/3

)
≤ exp

(9ℓb
d

)
= exp

(√d ·
√

400d log(d/ε)

d log5(d/ε)

)
≤ 1 + log−3 d

An analogous calculation proves that px,ℓ(x
′)

px′,ℓ(x)
≥ 1− log−3 d.
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