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Abstract

We study the randomized communication complexity of the following problem. Alice receives
the integer coordinates of a point in the plane, and Bob receives the integer parameters of a
half-plane, and their goal is to determine whether Alice’s point belongs to Bob’s half-plane.

This communication task corresponds to determining whether x1y1 + y2 ≥ x2, where the
first player knows (x1, x2) ∈ [n]2 and the second player knows (y1, y2) ∈ [n]2. We prove that its
randomized communication complexity is Ω(log n).

Our lower bound extends a recent result of Hatami, Hosseini, and Lovett (CCC ’20 and
ToC ’22) regarding the largest possible gap between sign-rank and randomized communication
complexity.

1 Introduction

We study the randomized communication complexity of the following communication task. Let
P be a finite set of points in the plane, and let H be a finite set of half-planes. Alice receives a
point in P, and Bob receives a half-plane in H, and their goal is to determine whether Alice’s point
belongs to Bob’s half-plane. We refer to this communication problem as the half-plane membership
problem.

We represent every point in P by its coordinates (x1, x2) ∈ R2. Similarly, we represent every
half-plane in H by a pair (y1, y2) ∈ R2, corresponding to the half-plane

Hy1,y2 := {(z1, z2) ∈ R2 : y1z1 + y2 ≥ z2}.

We show that the randomized communication complexity of the half-plane membership problem
is large, even if the points and half-planes are chosen from [n]2, where [n] := {1, . . . , n}.

Theorem 1.1. The randomized communication complexity of the half-plane membership problem
is Ω(log n) when

P := {(x1, x2) : (x1, x2) ∈ [n]2} and H := {Hy1,y2 : (y1, y2) ∈ [n]2}. (1)

Note that the lower bound of Theorem 1.1 matches the trivial upper bound of O(log n), which
is witnessed by the (deterministic) protocol where Alice sends her input to Bob, and Bob replies
with the output.
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1.1 Connection to Hatami, Hosseini, and Lovett [HHL22]

A recent work by Hatami, Hosseini, and Lovett [HHL22] considers the following communication
problem based on points and half-spaces in dimension three: Alice receives (x1, x2, x3) ∈ [n]3 and
Bob receives (y1, y2) ∈ [n]2, and their goal is to determine whether x1y1 + x2y2 ≥ x3. They prove
that the randomized communication complexity of this problem is Ω(log n).

We can translate the above problem into a half-plane membership problem as follows: x1y1 +
x2y2 ≥ x3 iff the point p = (x1/x2, x3/x2) belongs to the half-plane Hy1,y2 . Therefore, the result
of [HHL22] says that the randomized communication complexity of the half-plane membership
problem is large when

P = {(x1/x2, x3/x2) : (x1, x2, x3) ∈ [n]3} and H = {Hy1,y2 : (y1, y2) ∈ [n]2}. (2)

Theorem 1.1 extends this lower bound to the more natural setting where the points and half-
planes are chosen from the integer lattice. A few remarks are in order.

• The half-plane membership problem of Theorem 1.1 corresponds to determining whether
x1y1 + y2 ≥ x2, where Alice knows (x1, x2) ∈ [n]2 and Bob knows (y1, y2) ∈ [n]2.

Theorem 1.1 is an extension of the result of [HHL22] as the set of points and half-planes in
Theorem 1.1 are subsets of those in Eq. (2). Indeed the half-plane membership problem of
Eq. (1) is obtained by restricting to x2 = 1 in x1y1 + x2y2 ≥ x3.

• The proof of Theorem 1.1 follows the general proof strategy of [HHL22]. Both proofs use
Fourier analysis of the cyclic group and various estimates of partial exponential sums. How-
ever, a key step of bounding the discrepancy of Q in [HHL22] relies crucially on the mixing
property of the function x1y1+x2y2. For the matrix P , the corresponding function x1y1+ y2
lacks those desirable properties, and this key step fails when applied to our problem.

The differences between the mixing properties of x1y1 + x2y2 and x1y1 + y2 initially seemed
a serious barrier to extending the proof of [HHL22] to Theorem 1.1, and raised some doubts
among the authors that perhaps the randomized communication complexity of the half-plane
membership problem of Eq. (1) is small. Eventually, we circumvented the broken step in the
proof of [HHL22] by an averaging argument based on the fact that the L1 sum of the Fourier
coefficients of the convolution of two Boolean functions is always at most 1.

• Finally, we simplify some parts of the proof that are common to both Theorem 1.1 and
[HHL22]. In this sense, Theorem 1.1 not only strengthens the result of [HHL22] but also
provides a shorter and simpler proof. We explain the differences between the two proofs in
more detail in Section 4.

1.2 Discrepancy

We prove the lower bound of Theorem 1.1 by employing the discrepancy method, one of the most
commonly used lower bound methods in communication complexity theory.

A sign matrix is a matrix with ±1 entries. The discrepancy of a sign matrix measures how
balanced its submatrices are. Formally, the discrepancy of a sign matrix FX×Y with respect to a
probability distribution µ on X × Y is

Discµ(F ) := max
A⊆X
B⊆Y

DiscA×B
µ (F ), (3)
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where
DiscA×B

µ (F ) :=
∣∣E(x,y)∼µ[F (x, y)1A(x)1B(y)]

∣∣ .
The discrepancy of F , denoted by Disc(F ), is the minimum of Discµ(F ) over all probability distri-
butions µ.

The combinatorial parameter of discrepancy is closely related to the complexity of randomized
communication protocols. Chor and Goldreich [CG88] proved that for every 0 < ϵ < 1/2,

Rϵ(F ) ≥ log
1− 2ϵ

Disc(F )
, (4)

where Rϵ(F ) denotes the randomized communication complexity of F with error ϵ in the shared
randomness model (See [KN97, Section 3] for the precise definition).

Every n × n sign matrix F satisfies Rϵ(F ) ≤ 1 + log n and Disc(F ) ≥ Ω(1/
√
n). The first

inequality follows from the trivial (deterministic) protocol where Alice sends her input to Bob, and
Bob replies with the output. We refer readers to [LS09, Observation 1.1] for the second inequality.

The following theorem, which immediately implies Theorem 1.1, shows the half-plane member-
ship problem of Theorem 1.1 essentially matches these worst-case bounds.

Theorem 1.2 (Main theorem). Let n = m3 be positive integers and consider the matrix Pn×n,
whose rows and columns are indexed by [m]× [m2], and

P ([x1, x2], [y1, y2]) =

{
1 if x1y1 + y2 ≥ x2

−1 otherwise
. (5)

We have
Disc(P ) = O(n−1/6 log3/2 n) and R1/3(P ) = Θ(log n).

In view of the equivalence of discrepancy and margin, proved by Linial and Shraibman [LS09],
Theorem 1.2 has a geometric interpretation: while the matrix P is representable in dimension two
as points and half-planes, the normalized margin of the point-halfspace representation of P in any
dimension is small. We refer the reader to [HHL22, Section 1.1] and [LS09] for the definition of
margin and more details on this interpretation.

We remark that it is essential to have the half-planes in H not limited to homogeneous half-
planes, which are the half-planes defined by lines that pass through the origin. Indeed, limiting to
homogeneous half-planes results in the communication problem x1y1 ≥ x2, which is equivalent to
y1 > x2/x1. Since Alice has full information of x2/x1 and Bob has full information of y1, this reduces
to an instance of the so-called Greater-than communication problem. Nisan [Nis93] showed that the
randomized communication complexity of the n×n Greater-than problem is O(log log n). Moreover,
Braverman and Weinstein [BW16] proved that the discrepancy of this matrix is Ω(1/

√
log n).

1.3 Sign-rank versus Discrepancy

The sign-rank of a sign matrix Am×n, denoted by rank±(A), is the smallest rank of a real matrix
Bm×n such that the entries of B are nonzero and have the same signs as their corresponding entries
in A. The notion of sign-rank was introduced in 1986 in connection with randomized communication
complexity in the unbounded-error model of Paturi and Simon [PS86]. This fundamental notion
arises naturally in areas as diverse as learning theory, discrete geometry and geometric graphs,
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communication complexity, circuit complexity, and the theory of Banach spaces (see [HHP+22]
and the references therein).

The pioneering paper of Babai, Frankl, and Simon [BFS86], which introduced communication
complexity classes, initiated a line of research investigating the gap between two fundamental
notions in communication complexity, namely sign-rank and discrepancy. This separation question
was posed in [BFS86] in the equivalent form of separating the two communication complexity classes
PPcc and UPPcc, i.e., weakly-unbounded-error and unbounded-error communication complexity
classes. We will not define the complexity classes and the related measures here, and we refer the
reader to [HHL22] for a more comprehensive discussion of these connections.

The question of Babai, Frankl and Simon [BFS86] remained unanswered for over two decades.
Finally, Buhrman et al. [BVdW07] and independently Sherstov [She08b] showed that there are

n × n sign matrices with rk±(F ) = O(log n) but Disc(F ) = 2− logΩ(1)(n). This separation was
enhanced along a subsequent line of works [She11, She13, Tha16, She19] to rk±(F ) = O(log n) and
Disc(F ) = n−Ω(1) of [She19].

Recently, [HHL22] improved the separation to rk±(F ) = 3 and Disc(F ) = O(n−1/8 log n). The
sign-rank 3 of this separation is tight since every sign matrix of sign-rank 2 consists of a few copies
of the Greater-Than matrix, and thus, by the result of Braverman and Weinstein [BW16], has
discrepancy Ω(1/

√
log n).

Notice that the matrix P in Theorem 1.2 also has sign-rank 3 and it provides a slightly stronger
upper bound on the discrepancy.

1.4 Discrepancy with respect to product measures

Sign matrices with sub-logarithmic sign-rank inherit interesting structural properties from low di-
mensional geometry. For example, Alon, Pach, Pinchasi, and Sharir [APP+05, Theorem 1.3] proved
that if Fn×n is a matrix with sign-rank d, then F contains a large monochromatic rectangle. It
follows that for such a matrix, for every product measure λ× ν (where λ and ν are probability
measures over rows and columns, respectively), we have

Discλ×ν(F ) ≥ 1

22d+2
.

This is a meaningful lower bound when d = o(log n). It is particularly interesting to contrast this
result with Theorem 1.2. As the matrix P of Theorem 1.2 has sign-rank 3, it satisfies that

inf
λ×ν

Discλ×ν(P ) ≥ 2−8,

while Theorem 1.2 shows if we allow the infimum to include non-product measures, then

inf
µ

Discµ(P ) ≤ O(n−1/6 log3/2 n).

From the communication complexity perspective, the above observations lead to another example
that separates (general) distributional complexity and product distributional complexity.

For a distribution µ, the µ-distributional complexity of F , denoted by Dµ
ϵ (F ), is the least cost

of a deterministic protocol that computes F on input sampled from µ with error probability at
most ϵ. Yao’s minimax principle [Yao83] states that the randomized communication complexity is
exactly the maximum distributional complexity. Therefore, by Theorem 1.2, one has

max
µ

Dµ
1/3(P ) = Θ(log n).
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On the other hand, for any sign matrix F and product distribution λ× ν, [KNR95] proved that

Dλ×ν
ϵ (F ) = O

(
1

ϵ
VC(F ) log

1

ϵ

)
,

where VC(F ) denotes the Vapnik-Chervonenkis (VC) dimension of F . It is well known that the
sign-rank upper bounds the VC dimension (see [HHP+22]). Therefore, in the case of the constant
sign-rank matrix P , one can deduce that

max
λ×ν

Dλ×ν
1/3(P ) = O(1).

Consequently, Theorem 1.1 recovers the O(1)-versus-Ω(log n) separation between general distribu-
tional complexity and product distributional complexity proven by Sherstov [She08a].

2 Preliminaries

Notations. To simplify the presentation, we often use ≲ or ≈ instead of the big-O notation
whenever the constants are unimportant. That is, x ≲ y means x = O(y), and x ≈ y means
x = Θ(y). For integers s < t, we denote [s, t] = {s, . . . , t}, and we shorthand [s] = [1, s].

For a random variable r, we denote µ = µr the distribution of r. For a finite set S, we write
r ∼ S to indicate that r is uniformly sampled from S.

Fourier analysis. We introduce the relevant notations and fundamental results in Fourier anal-
ysis over cyclic groups, the primary tool for the proof of our main result. Let p be a prime. For
f, g : Zp → C, define the inner product by

⟨f, g⟩ = 1

p

∑
x∈Zp

f(x)g(x).

Let ep : Zp → C denote the exponentiation by a p-th root of unity, that is ep : x 7→ e2πix/p.
For a ∈ Zp, define the character function χa : x 7→ ep(−ax). Note that {χa : a ∈ Zp} forms an
orthonormal basis with respect to the inner product defined above.

The Fourier expansion of f : Zp → C is given by

f(x) =
∑
a∈Zp

f̂(a)χa(x),

where f̂(a) = ⟨f, χa⟩. Note that by definition,

f̂(a) =
1

p

∑
x∈Zp

f(x)ep(ax).

A fundamental identity of Fourier analysis is Parseval’s identity:∑
a∈Zp

|f̂(a)|2 = E
x∈Zp

|f(x)|2.
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The convolution of two functions f, g : Zp → C is defined to be

f ∗ g(z) = 1

p

∑
a∈Zp

f(a)g(z − a).

From the orthonormality of characters, it follows that

f ∗ g(z) =
∑
a∈Zp

f̂(a)ĝ(a)χa(z),

in other words, f̂ ∗ g(a) = f̂(a)ĝ(a). In particular, if x1, . . . , xk are independent random variables
taking values in Zp, and then the Fourier coefficient of the distribution of the random variable
x := x1 + . . .+ xk is

µ̂x(a) = pk−1
k∏

i=1

µ̂xi(a).

Number theory estimates. Fix a prime p. For x ∈ Z, denote by |x|p the minimum distance of
x to a multiple of p, that is

|x|p = min{|x− pk| : k ∈ Z}.

We will often use the estimate
4|x|p
p

≤ |ep(x)− 1| ≤ 8|x|p
p

,

which follows from the easy estimate that 4|y| ≤ |e2πiy − 1| ≤ 8|y| for y ∈ [−1/2, 1/2].

3 Proof of Theorem 1.2

Let m be sufficiently large and set X = [m]× [m2]. The matrix P is an X × X matrix.

Construction of hard distribution. We introduce a distribution µ on X × X by sampling
(x1, x2, y1, y2) ∈ X × X as follows.

• Select x1, y1 ∼ [m/2], y2 ∼
[
m2/4,m2/2

]
uniformly and independently.

• Let t = ⌊10 logm⌋. Select k1, . . . , kt ∼ [20m] uniformly and independently and set k =
k1 + · · ·+ kt. Set x2 = x1y1 + y2 + k or x2 = x1y1 + y2 + k− 20mt, each with probability 1/2.

Assuming m is sufficiently large, we have 0 < x2 ≤ m2 and thus µ is indeed supported on X × X .
To make the presentation cleaner, instead of analyzing µ directly, we work with a similar measure

on the extended domain Z2 × Z2. We also extend the definition of P in Eq. (5) to Z× Z.
We introduce a distribution ν on Z2 × Z2 by sampling (x1, x2, y1, y2) as follows:

• Select x1, y1 ∼ [m], y2 ∼ [m2] uniformly and independently.

• Select k1, . . . , kt ∼ [20m] uniformly and independently and set k = k1 + . . . + kt. Set x2 =
x1y1+y2+k or x2 = x1y1+y2+k−20mt, each with probability 1/2. Note that in the former
case, x1y1 + y2 < x2 and in the latter case, x1y1 + y2 ≥ x2.
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Let (x1, x2, y1, y2) ∼ ν and consider the event

S :=
{
(x1, x2, y1, y2) | x1, y1 ∈ [m/2] and y2 ∈

[
m2/4,m2/2

]}
.

The distribution µ, defined earlier, is ν conditioned on S.
Consider A,B ⊆ X , and let A′ and B′ be A and B restricted to S, that is

A′ = {(x1, x2) ∈ A | x1 ≤ m/2} ⊆ A,

and
B′ =

{
(y1, y2) ∈ B | y1 ≤ m/2 and y2 ∈

[
m2/4,m2/2

]}
⊆ B.

We shorthand x = (x1, x2) and y = (y1, y2). By the definition of µ, we have

DiscA×B
µ (P ) = |E(x,y)∼µ[P (x,y)1A′(x)1B′(y)]| = 1

Prν [S]
|E(x,y)∼ν [P (x,y)1A′(x)1B′(y)]|

= 16|E(x,y)∼ν [P (x,y)1A′(x)1B′(y)]| = 16DiscA
′×B′

ν (P ).

Therefore, it suffices to show that for every A,B ⊆ X , we have

DiscA×B
ν (P ) = O(m−1/2 log3/2m).

The rest of the proof of Theorem 1.2 is dedicated to proving this bound.

Invariance under shift. For every x1 ∈ [m], define Ax1 = {x2 : (x1, x2) ∈ A}. We have

DiscA×B
ν (P ) =

∣∣Ex1∼[m] Ey∼[m]×[m2]

[
1B(y)Ex2|x1,y[P (x,y)1Ax1

(x2)]
]∣∣

=
|B|
m3

∣∣Ex1∼[m] Ey∼B Ex2|x1,y[P (x,y)1Ax1
(x2)]

∣∣
=

|B|
2m3

∣∣Ex1∼[m],y∼B,k[1Ax1
(x1y1 + y2 + k)− 1Ax1

(x1y1 + y2 + k − 20mt)]
∣∣ .

Here, the last line follows from the definition of x2 and ν.
Let νBx1

denote the distribution of x1y1 + y2 + k conditioned on the value of x1 and the event
(y1, y2) ∈ B. Note that νBx1

is supported on [0, 3m2]. We embed this distribution into Zp for some
prime p ∈ [4m2, 5m2]. With this notation, we can rewrite

DiscA×B
ν (P ) =

|B|
2m3

∣∣∣Ex1 Ew∼νBx1
[1Ax1

(w)− 1Ax1
(w − 20mt)]

∣∣∣
=

|B|
2m3

∣∣∣∣∣Ex1

∑
w∈Z

[1Ax1
(w)νBx1

(w)− 1Ax1
(w − 20mt)νBx1

(w)]

∣∣∣∣∣
=

|B|
2m3

∣∣∣∣∣Ex1

∑
w∈Z

[1Ax1
(w)νBx1

(w)− 1Ax1
(w)νBx1

(w + 20mt)]

∣∣∣∣∣
≤ |B|

2m3
Ex1

∑
w∈Z

∣∣νBx1
(w)− νBx1

(w + 20mt)
∣∣

=
|B|
2m3

Ex1

∑
w∈Zp

∣∣νBx1
(w)− νBx1

(w + 20mt)
∣∣

≲
|B|
m

Ex1 Ew∼Zp

∣∣νBx1
(w)− νBx1

(w + 20mt)
∣∣ .
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The above analysis shows that in order to prove that DiscA×B
ν (P ) is small, we need to show that

typically νBx1
is almost invariant under a shift of 20mt.

Fourier Expansion of νBx1
. In order to analyze the shift-invariance of νBx1

, we examine the Fourier
expansion of νBx1

(w) as a function on Zp.

Lemma 3.1. For a fixed x1, for every a ∈ Zp \ {0},

ν̂Bx1
(a) =

1

p
ep(ta)

(
1

20m

ep(20ma)− 1

ep(a)− 1

)t

Ey∼B[ep(x1y1 + y2)].

Proof. For the fixed x1, denote by η the distribution of x1y1 + y2 for random y ∼ B. For j ∈ [t],
denote by µj the distribution of kj . Note that

η̂(a) =
1

p

∑
u∈Zp

η(u)ep(au) =
1

p
Ey∼B[ep(a(x1y1 + y2)],

and for every j, by the partial sum formula of a geometric series,

µ̂j(a) =
1

p

20m∑
u=1

1

20m
ep(au) =

ep(a)

20mp
· ep(20ma)− 1

ep(a)− 1
.

Since νBx1
= x1y1+y2+k1+. . .+kt, we have ν̂Bx1

(a) = ptη̂(a)µ̂1(a) . . . µ̂t(a), and the result follows.

Invariance via Fourier expansion. Our earlier upper bound on DiscA×B
ν (P ) translates to

DiscA×B
ν (P ) ≲

|B|
m

Ex1,w |νBx1
(w)− νBx1

(w + 20mt)|

=
|B|
m

Ex1,w

∣∣∣∣∣∣
∑
a∈Zp

ν̂Bx1
(a)(χa(w)− χa(w + 20mt))

∣∣∣∣∣∣
=

|B|
m

Ex1,w

∣∣∣∣∣∣
∑
a∈Zp

ν̂Bx1
(a)(1− ep(−20mta))χa(w)

∣∣∣∣∣∣ .
We now square both sides and apply Cauchy-Schwarz, then Parseval’s identity, to obtain

DiscA×B
ν (P )2 ≲

(
|B|
m

)2

Ex1

∑
a∈Zp

|ν̂Bx1
(a)|2|1− ep(−20mta)|2.

Substituting ν̂Bx1
(a) for its value from Lemma 3.1 yields

DiscA×B
ν (P )2 ≲

(
|B|
pm

)2 ∑
a∈Zp

E
x1

∣∣∣∣ E
y∼B

ep(a(x1y1 + y2))

∣∣∣∣2 ∣∣∣∣ 1

20m

ep(20ma)− 1

ep(a)− 1

∣∣∣∣2t |1− ep(−20mta)|2 .

(6)
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Since 4m2 ≤ p ≤ 5m2, for a ̸= 0, it follows from the trivial bound |ma|p ≤ m|a|p that

|ep(20mta)− 1| ≈ |20mta|p
p

≲ min

{
1,

mt|a|p
p

}
≲ min

{
1,

t|a|p
m

}
,

and ∣∣∣∣ 1

20m

ep(20ma)− 1

ep(a)− 1

∣∣∣∣ ≤ min

{
1,

1

20m
× 8|20ma|p

4|a|p

}
≤ min

{
1,

p

10m|a|p

}
≤ min

{
1,

m

2|a|p

}
.

Denote Ea(B) := Ex1 |Ey∼B ep(a(x1y1 + y2))|2, and note that Ea(B) ≤ 1. We can split our sum in
Eq. (6) as

DiscA×B
ν (P )2 ≲

(
|B|
pm

)2
 ∑

|a|p≥m

Ea(B)

∣∣∣∣ 1

20m

ep(20ma)− 1

ep(a)− 1

∣∣∣∣2t + ∑
|a|p<m

Ea(B) |1− ep(−20mta)|2


≲

(
|B|
pm

)2 ∑
|a|p≥m

Ea(B)

(
m

2|a|p

)2t

+

(
|B|
pm

)2 ∑
|a|p<m

Ea(B)

(
t|a|p
m

)2

≤ p

2t
+

(
|B|
pm

)2 ∑
|a|p<m

Ea(B)

(
t|a|p
m

)2

. (7)

Here in the last line, we use |B| ≤ pm and the fact that there are at most p terms in the sum.

Key estimates, analyzing Ea(B): The only mysterious term in (7) is Ea(B). In this part of the
proof, we obtain the required upper bounds on this quantity.

Lemma 3.2. Let 0 < L < U < m. Then∑
a∈[L,U ]

Ea(B) ≲
p2m2 logm

|B|2L
.

Proof. For y1 ∈ [m], define By1 : Zp → {0, 1} as By1(y) = 1 iff (y1, y) ∈ B. Considering the Fourier
expansion of By1 , for each y, we have

By1(y) =
∑
b∈Zp

B̂y1(b)ep(by).

9



Now we can rewrite the sum of Ea(B):∑
a∈[L,U ]

Ea(B) =
∑

a∈[L,U ]

Ex1∼[m] |Ey∼B ep(ax1y1 + ay2)|2

=

(
pm

|B|

)2 ∑
a∈[L,U ]

E
x1∼[m]

∣∣∣∣ E
y1∼[m]

E
y2∼Zp

By1(y2)ep(ax1y1 + ay2)

∣∣∣∣2

=

(
pm

|B|

)2 ∑
a∈[L,U ]

E
x1∼[m]

E
y1,y′1∼[m]

E
y2,y′2∼Zp

By1(y2)By′1
(y′2)ep(ax1(y1 − y′1) + a(y2 − y′2))

=

(
pm

|B|

)2 ∑
a∈[L,U ]

E
y1,y′1∼[m]

(
E

x1∼[m]
ep(ax1(y1 − y′1))

)
E

y2,y′2∼Zp

By1(y2)By′1
(y′2)ep(a(y2 − y′2))

=

(
pm

|B|

)2 ∑
a∈[L,U ]

E
y1,y′1∼[m]

(
E

x1∼[m]
ep(ax1(y1 − y′1))

)
B̂y1(−a)B̂y′1

(a).

By the Cauchy-Schwarz inequality and Parseval’s identity, one has

∑
a∈[L,U ]

|B̂y1(−a)B̂y′1
(a)| ≤

 ∑
a∈[L,U ]

|B̂y1(−a)|2
1/2 ∑

a∈[L,U ]

|B̂y′1
(a)|2

1/2

≤

∑
a∈Zp

|B̂y1(−a)|2
1/2∑

a∈Zp

|B̂y′1
(a)|2

1/2

= |Ey By1(y)|1/2|Ey By′1
(y)|1/2 ≤ 1.

Combining this fact with the previous calculations, we obtain

∑
a∈[L,U ]

Ea(B) ≤
(
pm

|B|

)2

E
y1,y′1∼[m]

max
a∈[L,U ]

∣∣∣∣ E
x1∼[m]

ep(ax1(y1 − y′1))

∣∣∣∣ .
Observe that for any y1, y

′
1 ∈ [m], we have y1− y′1 ∈ [−m,m], and moreover, for every y ∈ [−m,m],

we have Pry1,y′1∼[m][y1 − y′1 = y] ≤ 1
m . Therefore,

∑
a∈[L,U ]

Ea(B) ≤ p2m

|B|2
m∑

y=−m

max
a∈[L,U ]

∣∣∣∣ E
x1∼[m]

ep(ax1y)

∣∣∣∣ = p2m

|B|2

1 + 2
∑
y∈[m]

max
a∈[L,U ]

∣∣∣∣ E
x1∼[m]

ep(ax1y)

∣∣∣∣
 .

Substituting ∣∣∣∣ E
x1∼[m]

ep(ax1y)

∣∣∣∣ = ∣∣∣∣ 1m ep(may)− 1

ep(ay)− 1

∣∣∣∣ ≲ |may|p
m|ay|p

≲
p

m|ay|p
≲

m

|ay|p
,

we obtain ∑
a∈[L,U ]

Ea(B) ≲
p2m

|B|2

1 +
∑
y∈[m]

max
a∈[L,U ]

m

|ay|p

 .
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Since |x|p = x for x ∈ [0, p/2], together with the assumptions of L < m and p > 2m2, we have

∑
a∈[L,U ]

Ea(B) ≲
p2m

|B|2

1 +
∑
y∈[m]

m

Ly

 ≲
p2m2 logm

|B|2L
.

With Lemma 3.2, we can bound the sum in Eq. (7) as(
|B|
pm

)2 ∑
|a|p<m

Ea(B)

(
t|a|p
m

)2

≈
(
|B|
pm

)2 t2

m2

logm∑
c=1

∑
|a|p∈[2c−1,2c]

|a|2pEa(B)

≲

(
|B|
pm

)2 t2

m2

logm∑
c=1

22c · p
2m2 logm

|B|22c−1

≈ t2

m2
logm

logm∑
c=1

2c

≈ t2 logm

m
.

Since t ≥ 10 logm, we have 2−t ≤ m−10 and hence

DiscA×B
ν (P ) ≲

√
max

{
p

2t
,
t2 logm

m

}
≈

√
log3m

m
= m−1/2 log3/2m.

4 Concluding remarks

A key step of the proof of [HHL22] relies on the mixing properties of x1y1 + x2y2, thus resulting in
a strong upper bound on

E(x1,x2)∼[m]2
∣∣E(y1,y2)∼B ep(a(x1y1 + x2y2))

∣∣2 ,
for every |a|p < m and every B ⊆ [m]2. However, the analogous quantity

Ea(B) = Ex1∼[m] |Ey∼B ep(a(x1y1 + y2))|2

that arises in the proof of Theorem 1.2 can generally be large even when |a|p < m. This seemingly
presented a serious obstacle to extending the proof of [HHL22] to Theorem 1.2 at first. Ultimately,
we bypassed this issue in Lemma 3.2, by using the fact that the L1 sum of the Fourier coefficients
of the convolution of two Boolean functions is always at most 1. This allowed us to show that
while individual Ea(B) can be large, their average over the interval [L,U ] is small (when L and U
are small). In this sense, Lemma 3.2 is the major novel component of the proof that allowed us to
extend the result of [HHL22].

Another key technical difference with [HHL22] is the choice of the random variable k in con-
structing the hard distribution. In this work, we choose k as a sum of Θ(logm) independent uniform
random variables in setting x2 in the hard distribution µ. By taking k as a sum of a super-constant
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number of uniform elements, we remove the need for a strong bound on Ea(B) when |a|p ≥ m and
hence simplify and shorten the proof in [HHL22].

Finally, we mention an open problem regarding the sharpness of the bound of Theorem 1.2.
Recall that every sign matrix An×n satisfies Disc(A) ≥ Ω(1/

√
n). Can a matrix of sign-rank 3

match this bound?

Question 4.1. Are there sign matrices An×n with sign-rank 3 and

Disc(A) ≤ n− 1
2
+o(1)?
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