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Abstract

We continue the investigation on the relations of QCDCL and QBF resolution systems. In
particular, we introduce QCDCL versions that tightly characterise QU-Resolution and (a slight
variant of) long-distance Q-Resolution. We show that most QCDCL variants – parameterised by
different policies for decisions, unit propagations and reductions – lead to incomparable systems for
almost all choices of these policies.

1 Introduction

SAT solving has revolutionised the way we practically handle computationally complex problems [30]
and emerged as a central tool for numerous applications [15]. Modern SAT solving crucially relies on
the paradigm of conflict-driven clause learning (CDCL) [25], on which almost all current SAT solvers are
based.

The main theoretical approach to understanding the success of SAT solving (and its limits) comes
through proof complexity [20]. From seminal results [1, 5, 27] we know that CDCL – viewed as a non-
deterministic procedure – is exactly as powerful as propositional resolution, which is by far the best-
understood propositional proof system [20, 24]. However, we also know that practical CDCL using e.g.
VSIDS is exponentially weaker than resolution [31]. Moreover, any determinist CDCL algorithm will be
strictly weaker than resolution unless P=NP [2]. In any case, the mentioned results of [1,5,27] imply that
all formulas hard for resolution will be intractable for modern CDCL solvers (at least when disabling
preprocessing).

Solving of quantified Boolean formulas (QBF) extends the success of SAT solving to the presum-
ably computationally harder case of deciding QBFs, a PSPACE-complete problem. While QBF solving
utilises quite different algorithmic approaches [14], which build on different proof systems, one of the
central paradigms again rests on CDCL, lifted to QBFs in form of QCDCL [32]. In comparison to the
propositional case, the main changes are (i) different decision strategies using information from the prefix,
(ii) differently implemented unit propagation incorporating universal reductions (i.e., dropping trailing
universal variables in clauses), and (iii) adapted methods for learning clauses using a QBF resolution
system called long-distance Q-Resolution [3].

The advances in QBF solving have also stimulated growing research in QBF proof complexity [6,9,11].
As in the propositional case, QBF resolution systems have received great attention. However, in QBF
there are a number of conceptually different resolution systems of varying strength [4, 8, 12]. The core
system is Q-Resolution, introduced in 1995 in [23]. This system generalises propositional resolution to
QBF by using the resolution rule for existential pivots and handling universal variables by universal
reduction. A stronger calculus QU-Resolution [29] also allows universal pivots in resolution steps (and
this is perhaps the most natural QBF resolution system from a logical perspective [7, 9]). Yet another
generalisation is provided in the form of long-distance Q-Resolution [3] which allows certain merging
steps forbidden in Q-Resolution. As mentioned above, QCDCL traces can be efficiently transformed into
long-distance Q-Resolution proofs and this was in fact the reason for creating that proof system.

A recent line of research has aimed at understanding the precise relationship between QCDCL and
QBF resolution [10,16,17,19,21]. The findings so far reveal both similarities to the tight relation between
CDCL and resolution in SAT as well as crucial differences. While the first work [21] by Janota on this
topic showed that practical (deterministic) QCDCL is exponentially weaker than even Q-Resolution, the
paper [10] demonstrated that QCDCL – even in its non-deterministic version – is incomparable to Q-
resolution. This also implies that (non-deterministic) QCDCL is exponentially weaker than long-distance
Q-Resolution. This is in sharp contrast to the equivalence of SAT and resolution in the propositional
case [1, 5, 27], as explained above.
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These results were strengthened in [16] by developing a lower-bound technique for QCDCL via a
new notion of gauge, by which a number of lower bounds for QCDCL can be demonstrated (which
not necessarily hinge on any QBF resolution hardness). Further, [17, 19] showed that several QCDCL
variants, utilising e.g. cube learning, pure-literal elimination, and different decision strategies give rise
to proof systems of different strength.

1.1 Our contributions

In this paper we continue this recent line of research to try to understand to precisely determine the
relationship of QCDCL variants and different QBF resolution systems. The central quest of our research
here is to find different QCDCL variants that are as strong as QU-Resolution and long-distance Q-
Resolution. While we do not claim that these new algorithms are of immediate practical interest, we
believe it is important to theoretically gauge the full potential of QCDCL. Our results can be summarised
as follows.

(a) New QCDCL versions. We realise that there are at least three crucial QCDCL components that
determine the strength of the algorithm. These are (i) whether decisions are made according to the
prefix or not (policies LEV-ORD or ANY-ORD), (ii) whether unit propagation always or never includes
universal reduction (policies ALL-RED, NO-RED) or whether this can be freely chosen at each propagation
(ANY-RED), and (iii) whether unit propagation can propagate only existential variables (as in practical
QCDCL, policy EXI-PROP) or whether also universal variables can be propagated (ALL-PROP).

While some of these policies were already defined and investigated in earlier works [10, 17, 19], the
policies ANY-RED and ALL-PROP are considered here for the first time. We note that a solver implementing
the strategy ALL-PROP together with LEV-ORD and NO-RED was recently presented by Slivovsky [28]
(in fact this motivated our definition of the policies EXI-PROP and ALL-PROP). We demonstrate that
in principle, all the aforementioned policies can be combined to yield sound and complete QCDCL
algorithms (Proposition 3.9). We denote these as e.g. QCDCLLEV-ORD

ALL-RED,EXI-PROP (this combination models
standard QCDCL).

(b) Characterisation of QBF proof systems. In our main result we tightly characterise the proof

systems QU-Resolution by QCDCLANY-ORD
NO-RED,ALL-PROP as well as (a slight variant of) long-distance Q-Resolution

by QCDCLANY-ORD
ANY-RED,EXI-PROP (Proposition 4.10 and Theorem 5.12). These results are similar in spirit (and

proof method) to the characterisation of propositional resolution by CDCL [27] and Q-Resolution by

QCDCLANY-ORD
NO-RED,EXI-PROP [10]. However, quite some technical care is needed for the simulations to go through

with the modified policies, for which we use the new notion of a blockade (Definition 5.3).
The mentioned variant of long-distance Q-Resolution – called mLD-Q-Res (for modified long-distance

Q-Resolution, Definition 4.9) – is defined such as to contain exactly those steps that are needed for
clause learning in standard QCDCL. The original definition of long-distance Q-resolution also allows
some merging steps that do not occur in clause learning (those that have merged literals left of the pivot
in both clauses). We leave open whether mLD-Q-Res is indeed weaker or equivalent to long-distance
Q-Resolution (cf. Section 6).

(c) Separations between QCDCL variants. We clarify the joint simulation order of QBF resolution
and QCDCL systems (cf. Figure 1 for an overview depicting known and new results). In general, the
emerging picture shows that different choices of policies lead to incomparable systems (and could thus
in principle be exploited for gains in practical solving over currently used QCDCL, cf. [19, 28]).

One set of results that we highlight here concerns the new system QCDCLLEV-ORD
ANY-RED,EXI-PROP, which we show

to be strictly stronger than standard QCDCL, yet still weaker than mLD-Q-Res (and incomparable to Q-

Resolution). To show that the system is strictly stronger than standard QCDCL (� QCDCLLEV-ORD
ALL-RED,EXI-PROP),

we exhibit some new family of QBFs which we show to be hard under the ALL-RED or NO-RED policies,
yet tractable under ANY-RED.

1.2 Organisation

The remainder of this paper is organised as follows. We start by reviewing some notions from QBFs and
QBF resolution systems in Section 2. In Section 3 we review the existing QCDCL models and define our
variants. In Section 4 we investigate the simulation order of the QCDCL proof systems and show various
separations. Section 5 we obtain our main results, the characterisation of the proof systems QU-Res and
mLD-Q-Res. We conclude in Section 6 with some open questions.
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Figure 1: Hasse diagrams of the simulation order of QCDCL with EXI-PROP (above) and ALL-PROP
(below) plus corresponding proof systems. Blue names represent new systems introduced here. Numbers
in brackets are external references, while numbers without brackets are lemmas, propositions or theorems
of this paper.
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2 Preliminaries

Propositional and quantified formulas. Variables x and negated variables x̄ are called literals. We
denote the corresponding variable as varpxq :� varpx̄q :� x.

A clause is a disjunction of literals. A unit clause pℓq is a clause that consists of only one literal. The
empty clause consists of zero literals, denoted pKq. We sometimes interpret pKq as a unit clause with the
‘empty literal’ K. A clause C is called tautological if tℓ, ℓ̄u � C for some literal ℓ. Alternatively, we will
sometimes write ℓ� P C instead of tℓ, ℓ̄u � C. If C is a set of literals with the same property, then we
will also call it tautological.

A cube is a conjunction of literals. We define a unit cube of a literal ℓ, denoted by rℓs, and the empty
cube rJs with ‘empty literal’ J. A cube D is contradictory if tℓ, ℓ̄u � D for some literal ℓ. If C is a
clause or a cube, we define varpCq :� tvarpℓq : ℓ P Cu. The negation of a clause C � ℓ1 _ . . . _ ℓm is
the cube  C :� C :� ℓ̄1 ^ . . .^ ℓ̄m. We will sometimes interpret clauses and cubes as sets of literals on
which we can perform set-theoretic operations.

A (total) assignment σ of a set of variables V is a non-tautological set of literals such that for all x P V
there is some ℓ P σ with varpℓq � x. A partial assignment σ of V is an assignment of a subset W � V .
A clause C is satisfied by an assignment σ if C X σ � H. A cube D is falsified by σ if  D X σ � H. A
clause C that is not satisfied by σ can be restricted by σ, defined as C|σ :�

�
ℓPC,ℓ̄Rσ ℓ. Similarly we can

restrict a non-falsified cube D as D|σ :�
�

ℓPDzσ ℓ. Intuitively, an assignment sets all its literals to true.

A CNF (conjunctive normal form) is a conjunction of clauses and a DNF (disjunctive normal
form) is a disjunction of cubes. We restrict a CNF (resp. DNF) ϕ by an assignment σ as ϕ|σ :��

CPϕ non-satisfied C|σ (resp. ϕ|σ :�
�

DPϕ non-falsifiedD|σ). For a CNF (DNF) ϕ and an assignment σ, if
ϕ|σ � H, then ϕ is satisfied (falsified) by σ.

A QBF (quantified Boolean formula) Φ � Q � ϕ consists of a propositional formula ϕ, called the
matrix, and a prefix Q. A prefix Q � Q1

1V1 . . .Q1
sVs consists of non-empty and pairwise disjoint sets of

variables V1, . . . , Vs and quantifiers Q1
1, . . . ,Q1

s P tD,@u with Q1
i � Q1

i�1 for i P rs� 1s. For a variable x
in Q, the quantifier level is lvpxq :� lvΦpxq :� i, if x P Vi. For lvΦpℓ1q   lvΦpℓ2q we write ℓ1  Φ ℓ2, while
ℓ1 ¤Φ ℓ2 means ℓ1  Φ ℓ2 or ℓ1 � ℓ2.

For a QBF Φ � Q �ϕ with ϕ a CNF (DNF), we call Φ a QCNF (QDNF ). We define CpΦq :� ϕ (resp.
DpΦq :� ϕ). Φ is an AQBF (augmented QBF), if ϕ � ψ _ χ with CNF ψ and DNF χ. Again we write
CpΦq :� ψ and DpΦq :� χ. We will sometimes interpret QCNFs, QDNFs and AQBFs as sets of clauses
and cubes. If Φ is a QCNF, QDNF or AQBF, we define varpΦq :�

�
CPΦ varpCq.

We restrict a QCNF (QDNF) Φ � Q �ϕ by an assignment σ as Φ|σ :� Q|σ �ϕ|σ, where Q|σ is obtained
by deleting all variables from Q that appear in σ. Analogously, we restrict an AQBF Φ � Q � pψ_χq as
Φ|σ :� Q|σ � pψ|σ _ χ|σq.

If L is a set of literals (e.g., an assignment), we can get the negation of L, which we define as
 L :� L :� tℓ̄| ℓ P Lu.

(Long-distance) Q-resolution. Let C1 and C2 be two clauses from a QCNF (QDNF) or AQBF Φ.
Let ℓ be an existential literal with varpℓq R varpC1q Y varpC2q. The resolvent of C1 _ ℓ and C2 _ ℓ̄ over ℓ
is defined as

pC1 _ ℓq
ℓ
'Φ pC2 _ ℓ̄q :� C1 _ C2

Let C :� ℓ1 _ . . . _ ℓm be a clause from a QCNF or AQBF Φ such that ℓi ¤Φ ℓj for all i   j,
while i, j P rms. Let k be minimal such that ℓk, . . . , ℓm are universal. Then we can perform a universal
reduction step and obtain

red@ΦpCq :� ℓ1 _ . . ._ ℓk�1.

If it is clear that C is a clause, we can just write redΦpCq or even redpCq, if the QBF Φ is also obvious.
We will write redpΦq � redΦpΦq, if we reduce all clauses of the AQBF Φ according to its prefix.

We can also perform partial universal reduction. Let K is a non-tautological set of literals and let
C :� ℓ1 _ . . ._ ℓm be a clause from a QCNF or AQBF Φ such that

tℓk, . . . , ℓmu � tℓ P C| ℓ P K, ℓ is universal and x  Φ ℓ for all existential x P Cu.

Then we can partially reduce C by K and obtain

red@Φ,KpCq :� ℓ1 _ . . ._ ℓk�1.

Intuitively, we will reduce all reducible literals that are also contained in K.
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As before, we simply write redK instead of red@Φ,K or redDΦ,K if the context is clear.
As defined by Kleine Büning et al. [23], a Q-resolution proof π from a QCNF Φ of a clause C is a

sequence of clauses π � pCiq
m
i�1, such that Cm � C and for each Ci one of the following holds:

� Axiom: Ci P CpΦq;

� Resolution: Ci � Cj

x
'Φ Ck with x existential, j, k   i, and Ci non-tautological;

� Reduction: Ci � red@ΦpCjq for some j   i.

[3] introduced an extension of Q-resolution proofs to long-distance Q-resolution proofs by replacing
the resolution rule by

� Resolution (long-distance): Ci � Cj

x
' Ck with x existential and j, k   i. The resolvent Ci is

allowed to contain tautologies such as u _ ū (resp. u ^ ū), if u is universal. If there is such a
universal u P varpCjq X varpCkq, then we require x  Φ u.

The work [29] presented a further extension for Q-resolution, called QU-resolution, where we can also
resolve over universal literals. Formally, it replaces the resolution rule by

� Resolution (QU-Res): Ci � Cj

x
'Φ Ck with x existential or universal, j, k   i, and Ci non-

tautological.

In [4], long-distance Q-resolution and QU-resolution were combined into a new proof system: long-
distance QU�-resolution. The resolution rule is as follows:

� Resolution (long-distance QU�-Res): Ci � Cj

x
' Ck with x existential or universal and j, k   i.

The resolvent Ci is allowed to contain tautologies such as u_ ū, if u is universal. If there is a such
a universal u P varpCjq X varpCkq, then we require x  Φ u.

A Q-resolution, long-distance Q-resolution, QU-resolution or long-distance QU�-resolution proof
from Φ of the empty clause pKq is called a refutation of Φ. In that case, Φ is called false. We will
sometimes interpret π as a set of clauses.

For the sake of completeness, we note that the above described proof systems are refutational proof
systems that cannot be used to proof the truth of a QBF. For that, we would need analogously defined
proof systems that work on cubes instead of clauses. For these proof systems, it is common to use the
notion consensus instead of resolution, as well as verification instead of refutation. However, as we will
purely concentrate on false formulas in this paper, we omit defining these aspects in more detail.

A proof system P p-simulates a system Q, if every Q proof can be transformed in polynomial time
into a P proof of the same formula. P and Q are p-equivalent (denoted P �p Q) if they p-simulate each
other.

3 Our QCDCL models

First, we need to formalise QCDCL procedures as proof systems in order to analyse their complexity.
We follow the approach initiated in [10,16,17,19].

We store all relevant information of a QCDCL run in trails. Since QCDCL uses several runs and
potentially also restarts, a QCDCL proof will typically consist of many trails.

Definition 3.1 (trails). A trail T for a QCNF or AQBF Φ is a (finite) sequence of pairwise distinct
literals from Φ, including the empty literals K and J. Each two literals in T have to correspond to
pairwise distinct variables from Φ. In general, a trail has the form

T � ppp0,1q, . . . , pp0,g0q;d1, pp1,1q, . . . , pp1,g1q; . . . ;dr, ppr,1q, . . . , ppr,grqq, (1)

where the di are decision literals and ppi,jq are propagated literals. Decision literals are written in
boldface. We use a semicolon before each decision to mark the end of a decision level. If one of the
empty literals K or J is contained in T , then it has to be the last literal ppr,grq. In this case, we say that
T has run into a conflict.

Trails can be interpreted as non-tautological sets of literals, and therefore as (partial) assignments.
We write x  T y if x, y P T and x is left of y in T . Furthermore, we write x ¤T y if x  T y or x � y.
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As trails are produced gradually from left to right in an algorithm, we define T ri, js for i P t0, . . . , ru
and j P t0, . . . , giu as the subtrail that contains all literals from T up to (and excluding) ppi,jq (resp. di,
if j � 0) in the same order. Intuitively, T ri, js is the state of the trail before we assigned the literal at
the point ri, js (which is ppi,jq or di).

For each point ri, js in the trail there must exist a set of literals Kpi,jq which we call the reductive set
at point ri, js. Intuitively, Kpi,jq contains all literals that are reduced directly before the point ri, js. The
sets Kpi,jq depend on the QCDCL variant (i.e., the reduction policy). Note that these sets are non-empty
only if reduction is enabled.

Each propagated literal ppi,jq P T belongs to an antecedent clause (if ppi,jq is existential) or an
antecedent cube (if ppi,jq is universal) from Φ, which we call anteT pppi,jqq. At the point where ppi,jq was
propagated in T , we need that anteT pppi,jqq had become unit, hence redKpi,jq

panteT pppi,jqq|T ri,jsq � pppi,jqq
if ppi,jq is existential, and redKpi,jq

panteT pppi,jqq|T ri,jsq � rp̄pi,jqs, if ppi,jq is universal.

Remark 3.2. In classic QCDCL, all Kpi,jq are set to varpΦq Y varpΦq.

We state some general facts about trails and antecedent clauses/cubes.

Remark 3.3. Let T be a trail, ℓ P T a propagated literal and A :� anteT pℓq.

� If ℓ is existential, then ℓ P A and for each existential literal x P A with x � ℓ we need x̄  T ℓ.

� If ℓ is universal, then ℓ̄ P A and for each universal literal u P A with u � ℓ̄ we need u  T ℓ.

Definition 3.4 (natural trails). We call a trail T natural for formula Φ, if for each i P rrs the formula
redKpi,0q

pΦ|T ri,0sq, contains unit or empty constraints. Furthermore, the formula redKpi,jq
Φ|T ri,js must

not contain empty constraints for each i P rrs, j P rgis, except ri, js � rr, grs. Intuitively, this means
that decisions are only made if there are no more propagations on the same decision level possible. Also,
conflicts must be immediately taken care of.

Remark 3.5. Although it is allowed to define all sets Kpi,jq differently, it might make sense from a
practical perspective to weaken these possibilities. We point out three nuances of partial reduction in
QCDCL that are interesting to consider:

(i) We change the reductive set after each propagation or decision step. That means that all sets Kpi,jq

might be different. This is the strongest possible version of partial reduction.

(ii) We only update the reductive set after backtracking. That means the sets Kpi,jq are constant for
each trail. It will turn out that this version is enough for our characterisation of mLD-Q-Res (cf.
Theorem 5.12). Consequently, this version is as strong as version (i).

(iii) We never change the reductive set. That means that the sets Kpi,jq remain constant throughout the
whole QCDCL proof. This version is enough for the separation between systems with and systems
without partial reduction (cf. Theorem 4.8).

Definition 3.6 (learnable constraints). Let T be a trail for Φ of the form (1) with ppr,grq P tK,Ju.
Starting with anteT pKq (resp. anteT pJq) we reversely resolve with the antecedent clauses (cubes) that
were used to propagate the existential (universal) variables, until we stop at some point. Literals that were
propagated via cubes (clauses) will be interpreted as decisions. If a resolution step cannot be performed
at some point due to a missing pivot, we simply skip that antecedent. The clause (cube) we so derive is
a learnable constraint. We denote the sequence of learnable constraints by LpT q.

We can also learn cubes from trails that did not run into conflict. If T is a total assignment of the
variables from Φ, then we define the set of learnable constraints as the set of cubes LpT q :� tredDΦpDq|D �
T and D satisfies CpΦqu.

Generally, we allow to learn an arbitrary constraint. However, for the characterisations, it suffices to
concentrate on clause learning. Additionally, most of the time we will simply learn the clause which we
obtain after propagation over every available literal in the trail. This clause can only consist of negated
decision literals, and literals that were reduced during unit propagation. Since this is the last clause
we can derive during clause learning in a trail T , we will refer to that clause as the rightmost clause in
LpT q.
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Definition 3.7 (QCDCL proof systems). Let D P tLEV-ORD,ANY-ORDu a decision policy, R P tALL-RED,NO-RED,ANY-REDu
a reduction policy and P P tEXI-PROP,ALL-PROPu a propagation policy (all defined below). A QCDCLDR,P proof
ι from a QCNF Φ � Q � ϕ of a clause or cube C is a (finite) sequence of triples

ι :� rpTi, Ci, πiqs
m
i�1,

where Cm � C, each Ti is a trail for Φi that follows the policies D, R and P, each Ci P LpTiq is one of
the constraints we can learn from each trail and πi is the long-distance QU�-resolution proof from Φi of
Ci we obtain by performing the steps described in Definition 3.6. If necessary, we set πi :� H.

The AQBFs Φi are defined as follows: Φ1 :� Q � pCpΦq _Hq and

Φj�1 :�

"
Q � ppCpΦjq ^ Cjq _DpΦjqq if Cj is a clause,
Q � pCpΦjq _ pDpΦjq _ Cjqq if Cj is a cube,

for j � 1, . . . ,m� 1.
We now explain the three types of policies:

� Decision policies:

– LEV-ORD: For each decision di we have that lvΨ|T ri,0s
pdiq � 1. I.e., decisions are level-ordered.

– ANY-ORD: Decisions can be made arbitrarily in any order.

� Reduction policies:

– ALL-RED: All Kpi,jq are set to varpΦqY varpΦq. This is the classic setting – we have to reduce
all reducible literals during unit propagation.

– NO-RED: All Kpi,jq are set to H. We are not allowed to reduce during unit propagation at all.
There is one exception: Combined with ALL-PROP, we are allowed (but not forced) to reduce
universal unit clauses (existential unit cubes) and immediately obtain a conflict. This is due
to reasons of completeness which will be explained later.

– ANY-RED: The sets Kpi,jq can be set arbitrarily. Hence, we can choose after each propagation
or decisions step which literals are to be reduced next.

� Propagation policies:

– EXI-PROP: Unit clauses (cubes) can only propagate existential (universal) literals. Universal
(existential) unit clauses (cubes) will be reduced to the empty clause (cube) if allowed by the
reduction policy.

– ALL-PROP: Universal (existential) unit clauses (cubes) will lead to the propagation of the uni-
versal (existential) unit literal. This policy is nullified if combined with ALL-RED. If combined
with NO-RED, we are allowed to reduce universal (existential) unit clauses (cubes) instead of
doing a unit propagation. This is due to reasons of completeness.

We require that T1 is a natural S trail and for each 2 ¤ i ¤ m there is a point rai, bis such that
Tirai, bis � Ti�1rai, bis and TizTirai, bis has to be a natural S trail for Φi|Tirai,bis. This process is called
backtracking. If Ti�1rai, bis � H, then this is also called a restart.

If C � Cm � pKq, then ι is called an S refutation of Φ. If C � Cm � rJs, then ι is called an S
verification of Φ. The proof ends once we have learned pKq or rJs.

If C is a clause, we can stick together the long-distance Q-resolution derivations from tπ1, . . . , πmu
and obtain a long-distance Q-resolution proof from Φ of C, which we call Rpιq.

The size of ι is defined as |ι| :�
°m

i�1 |Ti|. Obviously, we have |Rpιq| P Op|ι|q.

Remark 3.8. In contrast to earlier works, we allow (but not force) a QCDCL solver that uses NO-RED
together with ALL-PROP to reduce universal unit clauses to the empty clause instead of using them for
unit propagation. The following example will explain this tweak:

Consider the QBF @u � puq and assume, we would not be allowed to reduce universal unit clauses.
Then we would need to propagate u as this is the only action available. We will not obtain a conflict and
therefore learn the cube rus. After backtracking, we must first propagate ū via rus, followed by a conflict
on puq, which allows us to learn the empty clause.
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However, if we would have first propagated u via puq, we would have got a cube conflict on rus, from
which we would not be able to learn something new. This might lead to unwanted loops, which should be
avoided.

Additionally, this tweak ensures the completeness of the corresponding model on false formulas without
the necessity to perform cube learning, which would be otherwise a very unnatural property.

We can show (cf. the appendix) that all combinations of the above policies lead to sound and complete
proof systems (and algorithms).

Proposition 3.9. All defined QCDCL variants are sound and complete.

Proof. It suffices to show completeness for the weakest combinations. Hence, we can use LEV-ORD and
choose between ALL-RED and NO-RED, as both are subsumed by ANY-RED. For EXI-PROP, completeness
was already shown in [10]. For ALL-PROP, we distinguish two cases:

(i) ALL-RED: Then we will never propagate universal (existential) literals via clauses (cubes), as they
will always be directly reduced to the empty clause (cube). Hence, this system is the same as if we
would have chosen EXI-PROP.

(ii) NO-RED: As described in Remark 3.8, we are not forced to do universal (existential) propagations
via clauses (cubes). Therefore, the version with EXI-PROP is already simulated by this combination
system.

The soundness follows from the soundness of long-distance QU�-resolution (long-distance QU�-
consensus) proofs, which can be extracted from all QCDCL variants defined here.

4 The simulation order of QCDCL proof systems

While the policies ALL-RED and NO-RED were already introduced in work (cf. [10]), in which an in-
compatibility between these two models was shown, it is natural to analyse their relation to our new
policy ANY-RED. Obviously, ANY-RED covers (hence: simulates) both ALL-RED an NO-RED, as we can
simply choose to reduce everything or nothing. We want to prove now that both ALL-RED and NO-RED
are exponentially worse than ANY-RED on some family of QBFs. I.e., we want to show that there exist
formulas where we need to reduce some but not all literals during unit propagation.

These formulas will be hand-crafted, consisting of two already well-known QCNFs, named MirrorCRn,
which is a modified version of the Completion Principle [22], and QParityn [12].

Definition 4.1 ([17]). The QCNF MirrorCRn consists of the prefix DT@uDT , where X :� txp1,1q, . . . , xpn,nqu
and T :� ta1, . . . , an, b1, . . . , bnu, and the matrix

xpi,jq _ u_ ai ā1 _ . . ._ ān xpi,jq _ ū_ āi a1 _ . . ._ an
x̄pi,jq _ ū_ bj b̄1 _ . . ._ b̄n x̄pi,jq _ u_ b̄j b1 _ . . ._ bn for i, j P rns.

The reason why we use MirrorCRn instead of CRn is because its matrix is unsatisfiable. That means
that cube learning, which might have a positive effect on CRn (note that there are false QCNFs that
become easy with cube learning [17]) is now completely unavailable. Additionally, we can now guarantee
to always get a conflict once all variables from MirrorCRn got assigned.

Lemma 4.2 ([17]). The matrix CpMirrorCRnq of MirrorCRn is unsatisfiable as a propositional formula.

As MirrorCRn is simply an extension of the Completion Principle (CRn), which is known to be easy
for Q-resolution [22], we can simply reuse the exact same refutation from [22]. Note that we do not need
all axiom clauses to refute the formula.

Proposition 4.3 ([17]). The QBFs MirrorCRn have polynomial-size Q-resolution refutations.

Definition 4.4 ([12]). The QCNF QParitynpY,w, Sq consists of the prefix DY @wDS, where Y :�
ty1, . . . , ynu and S :� ts2, . . . , snu, and the matrix

y1 _ y2 _ s̄2 y1 _ ȳ2 _ s2 ȳ1 _ y2 _ s2 ȳ1 _ ȳ2 _ s̄2
yi _ si�1 _ s̄i yi _ s̄i�1 _ si ȳi _ si�1 _ si ȳi _ s̄i�1 _ s̄i
sn _ w s̄n _ w̄.

for i P t2, . . . , nu,
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When introduced in [17], it was shown that MirrorCRn is hard for all QCDCL models with level-
ordered decisions considered in [17]. We generalize this result and show that the lower bound for
MirrorCRn indeed only depends on the decision policy used and also holds for our new models introduced
here.

Proposition 4.5. The QBFs MirrorCRnpX,u, T q need exponential-sized refutations in all our QCDCL
variants with the LEV-ORD policy.

Proof. (Sketch) We recall the hardness results of MirrorCRn for classical QCDCL in [18], which were
independent of the reduction policy. One can also show that it is impossible to propagate universal
literals, therefore the propagation policies do not matter, either.

With the QBFs QParityn one obtains one direction of the incompatibility between classical QCDCL

(here called QCDCLLEV-ORD
ALL-RED,EXI-PROP) and Q-resolution, being easy for the former and hard for the latter

system.

Theorem 4.6 ([10, 13]). The QBFs QParityn need exponential-sized Q-resolution and QU-resolution
refutations, but admit polynomial-sized QCDCLLEV-ORD

ALL-RED,EXI-PROP refutations.

We combine the MirrorCR and QParity formulas into a new one, using auxiliary variables.

Definition 4.7. The QBF MiPan consists of the prefix @zDX@uDT@pDY @wDS@vDr such that X, u, T are
the variables for MirrorCRnpX,u, T q, and Y , w, S are the variables for QParitynpY,w, Sq. The matrix
of MiPan contains the clauses

z _ r̄, z̄ _ r̄

C _ p_ v _ r
C _ p_ v̄ _ r
C _ p̄_ v _ r
C _ p̄_ v̄ _ r

,//.
//-

for C P CpMirrorCRnpX,U, T qq,

p_D
p̄_D

*
for D P CpQParitynpY,w, Sqq.

We show next that MiPan needs indeed ANY-RED in order to admit polynomial-size refutations in
QCDCL. The idea is that ALL-RED will always lead to refutations of MirrorCRn, and NO-RED will
alternatively lead to Q-resolution refutations of QParityn, which are both of exponential size.

Theorem 4.8. The QBFs MiPan

(i) need exponential-size QCDCLLEV-ORD
ALL-RED,EXI-PROP refutations,

(ii) need exponential-size QCDCLLEV-ORD
NO-RED,EXI-PROP refutations,

(iii) but have polynomial-size QCDCLLEV-ORD
ANY-RED,EXI-PROP refutations.

Proof. For (i), since the formula has no unit clauses, we have to start by deciding the variable z. Because
z occurs symmetrically in MiPan, we can assume that we set z to true. This always triggers the unit
propagation of r̄ via the clause z̄_ r̄. After that, we are forced to assign the variables from X, U :� tuu
and T along the quantification order. Since the matrix of MirrorCRn is unsatisfiable, and we need to
reduce all literals if possible, we will detect a conflict at the same time as we would get the conflict in
MirrorCRn itself. The proof we can extract from the trails is essentially a QCDCLLEV-ORD

ALL-RED,EXI-PROP refutation
of MirrorCRn, except that it additionally contains the variables z, p, v and r in some polarities. However,
this does not change the fact that we can still not resolve two clauses that contain X-, U -, and T -variables
over any X-variable. Therefore, if we shorten the proof by assigning r to false and z to true, we get
a refutation of MirrorCRn, in which we never resolve two clauses that contain X-, U -, and T -variables
over an X-variable. This property is called primitive (cf. [16]). Also in [16], it was shown that primitive
Q-resolution refutations of MirrorCRn need exponential size.

For (ii), we start in the same way as in (i), but we do not get a conflict once we assigned all variables
of MirrorCRn. Next, we need to decide p in some polarity, but nothing will happen for the moment. We
then start assigning the variables of QParityn along the quantification order. Now we have to distinguish
two cases:
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Case 1: We get a conflict in QParityn. But then, because of NO-RED, we can only extract Q-resolution
derivations of learned clauses. And if we get enough conflicts in QParityn, we can essentially extract a
Q-resolution refutation of QParityn, which has exponential size.

Case 2: We do not get a conflict in QPartityn. This might happen when the universal player assigns
the variable w the “wrong” way. Then the only unassigned variable is v. After deciding it in any polarity,
we will always get a conflict in MirrorCRn. If we find enough conflicts in MirrorCRn, we can essentially
extract an exponential-size fully reduced primitive Q-resolution refutation of MirrorCRn as in (i).

Note that it is possible to get both kind of conflicts. However, it is only important with what kind
of conflicts we were able to derive the empty clause.

Finally, for (iii), we can construct a polynomial-size QCDCLLEV-ORD
ANY-RED,EXI-PROP proof by only reducing the

literals w and w̄. After deciding z, propagating r̄, assigning all variables from X, u and T and deciding
p arbitrarily, we can simply copy the polynomial-size QCDCLLEV-ORD

ALL-RED,EXI-PROP proof of QParityn (note that
ALL-RED only applies to w and w̄). At some point, we will derive the clause ppq or pp̄q, which can be
reduced to the empty clause.

One of the initial motivations of this paper was to find a way to p-simulate long-distance Q-resolution
refutations of QCNFs by certain variants of QCDCL. However, it appears that not all resolution steps
that are allowed in long-distance Q-resolution can be recreated with QCDCL proofs. In long-distance
Q-resolution proofs that are extracted from QCDCL, one can easily observe that for each resolution step

C1

ℓ
' C2, at least one parent clause Ci has to be an antecedent clause for ℓ or ℓ̄ in the corresponding

trail. In particular, there must be a partial assignment τ and a set of literals K such that redKpCi|τ q
becomes unit, i.e. redKpCi|τ q � pℓq (resp. pℓ̄q). This is not possible if there are tautologies left of ℓ in
Ci that cannot be reduced.

Motivated by this observation, we introduce a new proof system similar to long-distance Q-resolution,
but with the restriction that such a situation as described above is not allowed.

Definition 4.9. A long-distance Q-resolution proof is called a mLD-Q-Res proof, if it does not contain

a resolution step between two clauses D and E, such that C � D
x
' E for an existential variable x and

there are universal variables u,w such that u� P D, w� P E and lvΦpuq, lvΦpwq   lvΦpxq.

With this definition in place, we can show that mLD-Q-Res proofs can be extracted from runs of
most variants of QCDCL that we defined. Further, for some QCDCL paradigms, stricter simulations
hold.

Proposition 4.10. The following holds on false QCNFs:

(i) Q-resolution p-simulates QCDCLANY-ORD
NO-RED,EXI-PROP.

(ii) QU-resolution p-simulates QCDCLANY-ORD
NO-RED,ALL-PROP.

(iii) mLD-Q-Res p-simulates QCDCLANY-ORD
ANY-RED,EXI-PROP.

Proof. Item (i) was already shown in [10].
For (ii), because of ALL-PROP, we might propagate (and resolve) over universal literals, which can

be handled by QU-resolution. It remains to show that NO-RED prevents the derivation of tautological
clauses. This holds because we only use antecedent clauses for clause learning. Let us assume we learn
a tautological clause C from a QCDCLANY-ORD

NO-RED,ALL-PROP trail T . Then there would be two antecedent clauses
D :� anteT pℓ1q and E :� anteT pℓ2q such that there exists a universal literal u with u � ℓ1, ū � ℓ2, u P D
and ū P E. We need ū P T for D to become unit and at the same time we need u P T for E to become
unit, which is not possible. Therefore, we will never derive tautological clauses.

Let us now prove (iii). By definition, we can extract long-distance Q-resolution proof from QCDCLANY-ORD
ANY-RED,EXI-PROP

trails (note that we only propagate existential literals, hence we also only resolve over existential vari-
ables during clause learning). It remains to show that the kind of resolution step that is forbidden in
mLD-Q-Res (but allowed in long-distance Q-resolution) will never occur during clause learning.

Assume it does. Then we have derived a clause C by resolving two clauses D and E over some literal

x (hence C � D
x
' E), such that there exists universal tautologies u� P D and w� P E with u� � w�

and lvpu�q, lvpw�q   lvpxq. Then at least one of these parent clauses needs to be an antecedent clause
for a trail T , say D � anteT pxq. But then D can never become the unit clause pxq, because we cannot
reduce u� since it is blocked by x, and we cannot falsify it by the previous trail assignment since it is
a tautology. This is a contradiction that shows that all resolution and reduction steps are allowed in
mLD-Q-Res.

10



We could formulate analogous results on true QCNFs using the notation of consensus proofs. However,
we will omit this as all separations and characterisations will be performed on false QCNFs and resolution
proofs.

One can easily show that the separation between Q-resolution and long-distance Q-resolution trans-
fers to a separation between Q-resolution and mLD-Q-Res.

Corollary 4.11. mLD-Q-Res p-simulates and is exponentially stronger than Q-resolution.

Proof. The simulation follows by definition. The separation follows by Theorem 4.6 and Proposition 4.10
(iii).

In fact, all currently known upper bounds for long-distance Q-resolution can be easily transformed
into mLD-Q-Res upper bounds. However, we leave open the question whether long-distance Q-resolution
is stronger than or equivalent to mLD-Q-Res.

5 Characterisations of QU-resolution and mLD-Q-Res
In this section, show that all the simulations in Proposition 4.10 can be tightened to equivalences. For this
we will characterise both mLD-Q-Res and QU-resolution by the specific variants of QCDCL mentioned
in Proposition 4.10. Characterising Q-resolution by QCDCLANY-ORD

NO-RED,EXI-PROP was already undertaken in [10].
However, we leave open, whether we can extend these characterisations to long-distance Q-resolution.
This will depend on whether it is possible to polynomially transform the ‘forbidden’ resolution steps that
can occur in long-distance Q-resolution, but cannot be created by QCDCL, into mLD-Q-Res steps.

The characterisations follow the same idea as in [10], in which Q-resolution was characterised. One
crucial difference is that we now want to use the ANY-RED policy, i.e., in each step we have to decide
what literals to reduce.

As already mentioned in Remark 3.5, it suffices to update the reductive sets only after a conflict.
That means that for characterising mLD-Q-Res, it is enough to fix the literals that are going to be
reduced throughout the whole trail. Thus, we introduce the notion of L-reductive trails.

Definition 5.1 (L-reductive trails). Let L be a set of literals. A trail T is called L-reductive, if for
each propagation step in T the literals that were selected to be reduced are exactly the literals in L.
Formally, this means that for each ppi,jq there is an antecedent clause (resp. cube) anteT pppi,jqq such that
redLpanteT pppi,jqq|T ri,jsq � pppi,jqq (resp. rp̄pi,jqs).

Before starting with a new L-reductive trail, we always need to consider the choice of the reductive set
L. As we know from [10] and Proposition 4.10, tautologies can only be created when the corresponding

literal got reduced somewhere in the trail. In fact, since QCDCLANY-ORD
NO-RED,EXI-PROP already characterises Q-

resolution [10], we can conclude that in some sense the only purpose of reductions during unit propagation
is to create tautological clauses. Therefore we will distinguish between the tautological and the non-
tautological part of a clause.

Definition 5.2. Let C be a clause. Let GpCq :� tu P C : u is universal and ū P Cu. This set is the
tautological part of C. The non-tautological part HpCq of C is defined as HpCq :� CzGpCq.

For each QU-resolution proof π and C P π we have GpCq � H.
Our next notion is similar to the concepts of unreliable [10] and 1-empowering [27].

Definition 5.3 (Blockades). Let S P tQCDCLANY-ORD
ANY-RED,EXI-PROP,QCDCL

ANY-ORD
NO-RED,ALL-PROPu and C be a clause. A

tuple pU , α, ℓ,Kq, where U is a trail, ℓ is a literal, α is a non-tautological set of literals and K is a set of
universal literals, is called a blockade of C with respect to S for a QCNF Φ � Q �ϕ, if U is a K-reductive
S trail with decisions α, such that ℓ P C, α � Cztℓ̄u, K � GpCq and αXK � H.

For S � QCDCLANY-ORD
ANY-RED,EXI-PROP, we additionally require that ℓ is an existential literal and α consists of

only existential literals.

Example 5.4. Blockades occur when we are not able to choose all decisions from a pre-defined non-
tautological set α. For example, consider the QCNF

Dx, y@u, vDz pȳ _ z̄q ^ px̄_ ū_ zq ^ px_ y _ v _ zq ^ py _ v̄ _ zq.
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Assume that we use QCDCLANY-ORD
ANY-RED,ALL-PROP. Then the clause C :� x̄ _ ȳ _ u _ ū _ z has a blockade

pU , α, ℓ,Kq with U :� py, z̄, x̄q, where anteU pz̄q � ȳ _ z̄, anteU px̄q � x̄_ ū_ z, as well as ℓ :� x̄ P C,
α :� tyu � Cztℓ̄u and K :� tūu.

Intuitively, this means that although the clause C is not directly contained in the formula, we are still
able to detect the implication pα ^ K Ñ ℓq � py ^ uq Ñ x̄ (which is equivalent to ȳ _ ū _ x̄ � C) as
a composition of decisions and unit propagations. It turns out that, instead of learning C directly, it is
enough to detect a blockade in order to make use of C for unit propagations in later trails.

Remark 5.5. Let Φ � Q � ϕ be a QCNF and L be a set of universal literals. Let α be a non-tautological
set of literals. Then we can construct a trail T for Φ by choosing α in a specific order as decision literals
and propagating literals as soon as the corresponding antecedent clauses become L-reductive unit clauses.
We are allowed to update the set L after each propagation. We can even undertake these automatic
construction steps after backtracking. However, it is possible that we propagate a literal from α in the
same polarity before deciding it. In this case we have to skip the decision. Also, we could reach a conflict
before deciding all literals, then we abort the trail as usual.

If we propagate a literal from ᾱ, then we also abort.

The following theorem will be presented first, followed by a proof that draws on the later Lemmas
5.6 to 5.11. We will then outline the proof strategy for the theorem, incorporating the results obtained
from the aforementioned lemmas. Finally, the theorem will be proven in full.

Theorem 5.12. It holds the following:

� QCDCLANY-ORD
ANY-RED,EXI-PROP p-simulates mLD-Q-Res.

� QCDCLANY-ORD
NO-RED,ALL-PROP p-simulates QU-resolution.

In detail: Let Φ � Q � ϕ be a QCNF in n variables and π � D1, . . . , Dm be a mLD-Q-Res (QU-
resolution) refutation of Φ. Then we can construct a QCDCLANY-ORD

ANY-RED,EXI-PROP (QCDCLANY-ORD
NO-RED,ALL-PROP) refuta-

tion ι of Φ with |ι| P Opn � |π|q.

Going through a given mLD-Q-Res (QU-resolution) refutation π, starting at the axioms, for each

C P π we create specific natural trails (where some of them will later be part of the QCDCLANY-ORD
ANY-RED,EXI-PROP

or QCDCLANY-ORD
NO-RED,ALL-PROP proof) in which all decisions are negated literals from C, until one of the following

events occur:

� We get a conflict and learn a subclause of C.

� We obtain a blockade of C.

When this happens, we either assign the label “subclause” or the label “blockade” to C. When a clause
was derived via a resolution or reduction step in π, we simply recall the blockades of its parent clauses
by applying Lemma 5.6 to create a blockade for the resolvent or a conflict. If a parent clause does not
have a blockade, the clause itself (or a subclause) must have been learned directly and can therefore be
used as an antecedent clause for the trail that either becomes a blockade for the resolvent, or that runs
into a conflict from which we can learn a subclause of the resolvent.

Since a clause C P π can be derived via resolution (say C � D ' E) or reduction (say C � redpDq),
we have to consider all possible cases:

� resolution, both D and E are labelled “blockade” (cf. Lemma 5.7)

� resolution, D is labelled “blockade”, E is labelled “subclause”, or vice versa (cf. Lemma 5.8)

� resolution, both D and E are labelled “subclause” (cf. Lemma 5.9)

� reduction, D is labelled “blockade” (cf. Lemma 5.10)

� reduction, D is labelled “subclause” (cf. Lemma 5.11)

At the end, each clause in π is either labelled “subclause” or “blockade”. In particular, this holds
for the empty clause. Because, by definition, there cannot be a blockade of the empty clause (we need
at least one literal), the empty clause must be labelled “subclause”, which means we have learned the
empty clause.
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The next lemma shows, that we can recall trails (and blockades in particular), that were detected and
stored at an earlier point, and restore all propagations they contained. This will be important for the
characterisations, as we will go through the given proof, find blockades or conflicts for all clauses in that
proof, and recall the corresponding trails (by using this Lemma) an all their containing propagations
whenever the clauses are needed for another resolution step. In that way, we can virtually store previous
trails and recall them later again as natural trails.

Lemma 5.6. Let Φ � Q � ϕ and Ψ � Q � ψ be QCNFs such that ψ � ϕ.
Let U be a K-reductive trail (for NO-RED we set K � H) for the QCNF Ψ with decisions β. Let T

be a natural L-reductive trail (L � H for NO-RED) with decisions α for the QCNF Φ such that K � L,
β � T and αX L � H. If T does not run into a clause conflict, then all propagated literals from U are
also contained in T .

Proof. Assume that T does not run into a clause conflict, but there are some propagated literals from U
that are not contained in T . Let ppa,bq be the literal that is leftmost in U with this property and define
A :� anteU pppa,bqq. Since there are no cubes present, we conclude that A must be a clause, regardless of
whether ppa,bq is existential or universal.

Because ppa,bq is leftmost, all other propagated literals before ppa,bq in U are already contained in T .
Since U was K-reductive, we know that redKpA|Ura,bsq � pppa,bqq. Because of K � L and Ura, bs � T we
have either redLpA|T q P tpppa,bqq, pKqu, or A|T becomes true. Note that we can set K :� L :� H for the
rest of our argumentation in the case where ppa,bq is universal.

The first case would contradict our assumption (since T is natural), therefore we have to assume that
A|T becomes true. This means that we can find a literal ppa,bq � u P AXT . If u was existential, then we
would need ū P Ura, bs. But this would also imply ū P T which contradicts the fact that u P T . Hence u
must be universal.

If u was a decision in T , then we would have u P α. Because of α X L � H we conclude u R L and
also u R K. In order to make u vanish in redKpA|Ura,bsq, we need ū P Ura, bs, hence also ū P T . However,
this is a contradiction because we already assumed u P T .

Therefore, u must have been propagated by an antecedent clause anteT puq. But then we haveK � H,
hence u R K and ū P Ura, bs � T , which is a contradiction again because of u P T .

For the next lemmas, we will construct natural trails from a given set α of decision literals. Our
goal will be receiving a blockade or a conflict. We will always assume that we start with all existential
literals from α before deciding universal literals. In particular, for the simulation of mLD-Q-Res, where
we use EXI-PROP instead of ALL-PROP, all blockades pU , α, ℓ,Kq will consist of existential decisions α,
but universal reductions K. Therefore we can guarantee αXK � H.

Lemma 5.7. Let Φ � Q � ϕ be a QCNF. Let further C _ x and D _ x̄ two clauses such that C _D �

C_x
x
' D_ x̄ is a valid mLD-Q-Res (QU-resolution) step. Suppose that there exists a blockade of C_x

for Ψ � Q�ψ and a blockade of D_x̄ for Γ � Q�γ with ψ, γ � ϕ. Then there exists a QCDCLANY-ORD
ANY-RED,EXI-PROP

(QCDCLANY-ORD
NO-RED,ALL-PROP) proof

ι � rpTi, Ci, πiqs
c
i�1

from Φ with a constant c, such that Cc � C_D or there exists a blockade of C_D for Q�pϕYtC1, . . . , Ccuq.

Proof. Let the blockade of C_x for Ψ be pU1, α1, ℓ1,K1q. Analogously let pU2, α2, ℓ2,K2q be the blockade
of D _ x̄ for Γ with respect to corresponding QCDCL model.

Case 1: ℓ1 � x and ℓ2 � x̄.
We construct a natural GpC _ Dq-reductive trail T with decisions α :� α1 Y α2 � C _D. If we

receive a blockade, we are done. Note that the set of decisions that were actually made and GpC _Dq
is always disjoint.

If we run into a conflict, then we can start clause learning and learn the rightmost clause E in LT .
Then E can only contain literals from ᾱ � C _D or GpC _Dq � C _D. In this case we are also done.

Suppose that we do not get a blockade and do not run into a conflict. Then we have α � T . By Lemma
5.6, each propagation from U1 as well as U2 is contained in T . Note that we have K1YK2 � GpC _Dq.
But then we would have x, x̄ P T , which is a contradiction.

Case 2: ℓ1 � x and ℓ2 � x̄ (or analogously ℓ1 � x and ℓ2 � x̄).
We construct a natural GpC_Dq-reductive trail T with decisions α :� pα1Yα2Ytℓ̄2uqztxu � C _D

(note that x might be contained in α2). Similar to Case 1, we are done if we get a blockade or run into
a conflict.
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Otherwise we would have α � T . By Lemma 5.6, we conclude ℓ1 � x P T . This means α2 � T .
Again, by Lemma 5.6 we would get ℓ2 P T , which is a contradiction to ℓ̄2 P T . Hence we always get a
blockade or a conflict.

Case 3: ℓ1 � x and ℓ2 � x̄.
W.l.o.g. let C not contain a universal tautology u _ ū with lvpuq   lvpxq. We can make this

assumption because the resolution step is valid for mLD-Q-Res (and also for QU-resolution).
We construct a natural K1-reductive trail T with decisions α :� α1 Y tℓ̄1u, but we will decide x̄ at

the end (if x or x̄ does not get propagated before). If we run into a conflict without deciding x̄, then
we can again learn the rightmost clause E in LT which is a subclause of C and therefore a subclause of
C _D. Assume we get a blockade of C _ x with a literal ℓ P ᾱ � C _ x. If ℓ � x, then this is a blockade
of C (and also a blockade of C _D) since x̄ was not decided, yet. If ℓ � x, then we have propagated x
before deciding x̄. But then we can go to Case 2 with the trails T and U2.

If we do not get a blockade and do not run into a conflict without deciding x̄, and if we actually
decide x̄ at the end, we will show that we will run into a conflict afterwards. Assume not. Then we have
α1 � α � T . By Lemma 5.6, we conclude that ℓ1 P T , which is a contradiction to ℓ̄1 P α � T . Therefore
we run into a conflict.

Then we again learn the rightmost clause E in LT , which is now a subclause of ᾱ_K1 � ᾱ_GpCq
with x P E (because x̄ was the last decision and the last decision always contributes to the conflict). If
x̄ was the rth decision, we backtrack back to T rr, 0s (right before the decision x̄ was made). Because x̄
was the last decision, we have αztx̄u � T rr, 0s.

Our precondition at the beginning was that C does not contain a universal tautology left of x. In
particular, for all u P GpCq we have lvpuq ¥ lvpxq. We conclude

redK1
pE|T rr,0sq � pxq.

Finally, we propagate x, receive the new trail T 1 (which is T rr, 0s plus x) and go into Case 2 again. Note
that T 1 is still a K1-reductive trail, even after backtracking.

The number of backtracking steps and restarts are obviously bounded, hence fn P Op1q.
Note that for QU-resolution, we construct H-reductive trails because GpC _Dq � H, which means

that we can activate NO-RED.

Lemma 5.8. Let Φ � Q � ϕ be a QCNF. Let further C _ x and D _ x̄ two clauses such that C _D �

C_x
x
' D_ x̄ is a valid mLD-Q-Res (QU-resolution) step. Suppose that there exists a blockade of C_x

for Ψ � Q � ψ with ψ � ϕ. Suppose also there exists a subclause D1 � D _ x̄ with D1 P ϕ. Then there
exists a QCDCLANY-ORD

ANY-RED,EXI-PROP (QCDCLANY-ORD
NO-RED,ALL-PROP) proof

ι � rpTi, Ci, πiqs
c
i�1

from Φ with a constant c, such that Cc � C_D or there exists a blockade of C_D for Q�pϕYtC1, . . . , Ccuq.

Proof. Let the blockade of C _ x be pU1, α1, ℓ1,K1q.
Case 1: ℓ1 � x.
Construct a natural GpC _Dq-reductive trail T with decisions α :� pα1 Y D̄qzGpC _Dq such that

we decide existential literals first (again, this is only important for mLD-Q-Res). If we get a blockade,
we are done, as for mLD-Q-Res we could have only decided existential literals from αY D̄ � C _D. If
we run into a conflict, we can learn the rightmost clause E in LT which is a subclause of C _D.

Assume now that we do not get a blockade and not run into a conflict. Then we have α � T . By
Lemma 5.6, all propagations from U1 are contained in T , in particular ℓ1 � x P T . Consider the clause

A :� redGpC_DqpD
1|T q.

The negations of all literals from DzGpC _Dq are contained in T . Hence A can only consist of literals
from GpC_Dq. But these literals can be reduced away. Therefore A � pKq and we would be able to run
into a conflict, which is a contradiction. All in all we run into a conflict or receive a blockade of C _D.

Case 2: ℓ1 � x.
Case 2.1: C _ x does not contain a universal tautology u _ ū with lvpuq   lvpxq (we are always in

this case if we consider QU-resolution).
Note that in this case for all literals w P GpCq we have lvpwq ¡ lvpxq. This case is similar to Case 3

of the previous Lemma. We construct a natural GpCq-reductive trail T with decisions α :� α1 Y tℓ̄1u,
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whereby we decide x̄ at the end (if x̄ P α1). If we run into a conflict before deciding x̄, we can learn
the rightmost clause E in LT , which is a subclause of C. Assume we get a blockade with a literal
ℓ P ᾱ � C _ x. If ℓ � x, then this is a blockade of C and also C _D. However, if ℓ � x, then we can go
to Case 1 and replace the blockade that consists of U1 with the blockade consisting of T .

Suppose we do not run into a conflict or get a blockade before deciding x̄. If we somehow propagate
x̄, we have α1 � α � T and by Lemma 5.6 we conclude ℓ1 P T . However, this contradicts ℓ̄1 P T .

By not running into a conflict or getting a blockade before deciding x̄, we are able to actually decide
x̄ at the end. We would run into a conflict by the same argument as above. We learn the rightmost
clause E in LT , which is a subclause of ᾱ_GpCq with x P E. We backtrack back to T rr, 0s (right before
deciding x̄). As above, we have αztx̄u � T rr, 0s.

By our precondition, we conclude

redGpCqpE|T rr,0sq � pxq.

We propagate x and receive another blockade of C _ x such that we can go into Case 1 again.
Case 2.2: D _ x̄ does not contain a universal tautology u_ ū with lvpuq   lvpxq.

We can assume that we only consider mLD-Q-Res and QCDCLANY-ORD
ANY-RED,EXI-PROP.

Now we have lvpvq ¡ lvpxq for all v P GpDq. We construct a natural GpDq-reductive trail T with
decisions

α :� pα1 Y tℓ̄1u YHpDqqztx̄u

such that we decide the existential literals first. Note that α is non-tautological because α1 Y tℓ̄1u
consists of existential literals only and C _D � α can only have universal tautologies. Also, we still
have αX L � H because of GpDq XHpDq � H.

If we run into a conflict or get a blockade, we are done again. Otherwise, we have decided or
propagated all literals from α. I.e., α � T . Consider the clause

A :� redLpD
1|T q.

Because of x̄ R HpDq, we have HpDq � α � T and therefore A � GpDq_ x̄. By our precondition (all
literals from GpDq are right of x), we conclude A � px̄q since we can reduce all universal literals from
D1|T . That means we have to propagate x̄ in T , hence x̄ P T . But then we have α1 � T . By Lemma
5.6, all propagated literals from U1 have to be contained in T , in particular ℓ1 P T . However, this is a
contradiction to ℓ̄1 P T .

That means we always have to run into a conflict or get a blockade, as we desired.

Lemma 5.9. Let Φ � Q�ϕ be a QCNF. Let further C_x and D_x̄ two clauses such that C_D � C_x
x
'

D_ x̄ is a valid mLD-Q-Res (QU-resolution) resolution step. Suppose there exist subclauses C 1 � C _x

and D1 � D _ x̄ with C 1, D1 P ϕ. Then there exists a QCDCLANY-ORD
ANY-RED,EXI-PROP (QCDCLANY-ORD

NO-RED,ALL-PROP) proof

ι � rpTi, Ci, πiqs
c
i�1

from Φ with a constant c, such that Cc � C_D or there exists a blockade of C_D for Q�pϕYtC1, . . . , Ccuq.

Proof. We construct a natural GpC _ Dq-reductive trail T with decisions α :� HpC _Dq such that
existential decisions are made first. If we get a blockade or run into a conflict, we are done. So suppose
we neither get a blockade, nor run into a conflict. Then we have α � T . W.l.o.g. let C _ x not contain
a universal tautology u_ ū with lvpuq   lvpxq. Consider the clause

A :� redGpC_DqpC
1|T q.

The clause C 1|T can only consist of x or universal literals from GpC _Dq since the rest got negated by
α. We now want to prove that all universal literals in C 1|T can be reduced. In detail, for all universal
literals w P C 1|T we need lvpwq ¡ lvpxq. Suppose we have a universal literal v P C 1|T � C _ x with
lvpvq   lvpxq. We already concluded that this literal v has to be contained in GpC _ Dq. Because we
do not have universal tautologies in C left of x, we conclude v̄ R C. But then we need v̄ P D since
v P GpC _Dq. However, such a resolution step is not allowed in mLD-Q-Res (not even in long-distance
Q-resolution).

That means all universal literals from C 1|T can be reduced, hence A P tpxq, pKqu. The case A � pKq
is impossible because we assumed we do not run into a conflict. Therefore A � pxq and we have to
propagate x in T . I.e., x P T .
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Now, we consider the clause

B :� redGpC_DqpD
1|T q.

Similarly to the situation before, B can only consist of universal literals from GpC _Dq. Note that the
x̄ that was potentially contained in D1 is now vanished. All literals from D1|T can be reduced, hence
B � pKq. Then T would run into a conflict, which is a contradiction.

Lemma 5.10. Let Φ � Q � ϕ be a QCNF. Let D � C _ u1 _ . . . _ us such that redpDq � C is a valid
reduction step in mLD-Q-Res (QU-resolution). Suppose there exists a blockade of D for Ψ � Q � ψ with

ψ � ϕ. Then there exists a QCDCLANY-ORD
ANY-RED,EXI-PROP (QCDCLANY-ORD

NO-RED,ALL-PROP) proof

ι � rpTi, Ci, πiqs
c
i�1

from Φ with a constant c, such that Cc � C or there exists a blockade of C for Q � pϕY tC1, . . . , Ccuq.

Proof. Let the blockade of D be pU1, α1, ℓ1,K1q. In the case of mLD-Q-Res, we demand that α1 and ℓ1
is existential, hence this is also a blockade for C and we are done.

In the case for QU-resolution, we construct a naturalK1-reductive trail T with decisions α :� α1Ytℓ̄1u
such that the literals ūi are decided last for those contained in α. If we get a conflict, we can learn the
clause redpᾱq � redpDq � C and we are done. So suppose we get a blockade pT , β, ℓ,K1q with β � α. If
ℓ � ui for each i � 1, . . . ,m, then we also have ūi R β for each i because the ūi can only be decided last.
But then we have a blockade of C and we are done. However, if ℓ � ui for some i P t1, . . .mu, then instead
of propagating ui, we can simply run into a conflict and learn a subclause of redpβ̄_uq � redpC_uq � C.

If we neither get a blockade, nor run into a conflict, then we have α � T and we can make all
propagations from U1 by Lemma 5.6, hence we get β P T . This is a contradiction to ℓ̄ P α � T .

Lemma 5.11. Let Φ � Q � ϕ be a QCNF. Let D � C _ u1 _ . . . _ um be non-tautological such that
redpDq � C. Suppose D P ϕ. Then there exists a QCDCLANY-ORD

ANY-RED,EXI-PROP (QCDCLANY-ORD
NO-RED,ALL-PROP) proof

ι � rpTi, Ci, πiqs
c
i�1

from Φ with a constant c, such that Cc � C or there exists a blockade of C for Q � pϕY tC1, . . . , Ccuq.

Proof. We construct a natural (H-reductive) trail T with decisions α � D̄, such that all the ūi are
decided last. If we run into a conflict, we can learn a subclause of redpᾱq � redpDq � C.

Assume that we get a blockade pT , β, ℓ,Hq. If ℓ � ui for each i, then we also have ūi R β for each
i because the ūi are decided last. In that case, this is also a blockade for C and we are done. In the
case where ℓ � ui for some i, we can again simply run into a conflict instead of propagating ui, hence
learning a subclause of redpᾱq � redpDq � C.

Suppose that none of this occurs. Then we have α � T . But then we would falsify D, hence we
would have the opportunity to run into a conflict with the aid of D, which is a contradiction.

Theorem 5.12. It holds the following:

� QCDCLANY-ORD
ANY-RED,EXI-PROP p-simulates mLD-Q-Res.

� QCDCLANY-ORD
NO-RED,ALL-PROP p-simulates QU-resolution.

In detail: Let Φ � Q � ϕ be a QCNF in n variables and π � D1, . . . , Dm be a mLD-Q-Res (QU-
resolution) refutation of Φ. Then we can construct a QCDCLANY-ORD

ANY-RED,EXI-PROP (QCDCLANY-ORD
NO-RED,ALL-PROP) refuta-

tion ι of Φ with |ι| P Opn � |π|q.

Proof. Let S P tQCDCLANY-ORD
ANY-RED,EXI-PROP,QCDCL

ANY-ORD
NO-RED,ALL-PROPu. The procedure for both simulations is the

same. The plan is going through the whole proof π for each clause D in π either find a blockade, or learn
a subclause of D during the construction of S-trails.

Suppose we already considered the clauses D1, . . . , Di�1 for an i P rms and constructed S proofs

ι1, . . . , ιi�1. In detail, we have ιj � rpT pjq
q , C

pjq
q , π

pjq
q qs

cj
q�1 for each j P ri � 1s and some constants cj .

Define

ϕj :� ϕY
j�1¤
k�1

tC
pkq
1 , . . . , Cpkq

ck
u.
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One could interpret ϕj as the knowledge base right before considering the clause Dj in π (and right after
going through Dj�1, if j ¡ 1). In particular, we want to show that if for each h P ri� 1s there exists a
blockade of Dh for Q �ϕh�1 or there exists a subclause D1

h � Dh with D1
h P ϕh�1, then we can construct

an S proof ιi � rpT piq
q , C

piq
q , π

piq
q qs

ci
q�1 from Q � ϕi such that there exists a blockade of Di for Q � ϕi�1 or

there exists a subclause D1
i � Di with D

1
i P ϕi�1. Note that we will only add the trail to our S proof if

we learned a clause. The blockade itself will never actually be added to the proof.
If Di was an axiom (for example if i � 1), then we already have a subclause of Di which is contained

in ϕi (in fact, Di itself). In this case we set ϕi�1 :� ϕi and do nothing. The proof ιi�1 can be defined
as the empty proof (or simply left out).

Suppose Di was the resolvent of two previous clauses Da and Db. By induction, we know that

� there exists a blockade of Da for Q � ϕa�1 or there exists a subclause D1
a � Da with D1

a P ϕa�1,
and

� there exists a blockade of Db for Q � ϕb�1 or there exists a subclause D1
b � Db with D1

b P ϕb�1.

Each possibility is covered by some earlier Lemma: Lemma 5.7 or Lemma 5.8 or Lemma 5.9. In each

case we can construct an S proof ιi from Q �ϕi such that D1
i :� C

piq
ci � Di or we get a blockade of Di for

Q � ϕi�1. Note that we always have ϕa�1 � ϕi and ϕb�1 � ϕi.
Now suppose Di was derived by a reduction of some previous clause Da, i.e., Di � redpDaq. By

induction, we either know that

� there exists a blockade of Da for Q � ϕa�1, or

� there exists a subclause D1
a � Da with D1

a P ϕa�1.

The first case is covered by Lemma 5.10. In the second case either D1
a is non-tautological (this case is

covered by Lemma 5.11), or D1
a is tautological and hence actually a previously learned clause.

In the latter case we already have D1
a � redpD1

aq � redpDaq � Di by the definition of clause learning.
Hence we do not have to construct any trails and therefore ιi can again be viewed as the empty proof.

Finally we construct proofs ιi as long as we have not learned the empty clause, yet. In the worst case
we will learn pKq during ιm since it is impossible to find a blockade of Dm � pKq and therefore we will
always learn a subclause of Dm.

We receive a refutation ι by sticking together all constructed subproofs ιi. As usual, we restart
between two subproofs ιi and ιi�1. Note that all ιi have, by construction, linear size and therefore
|ι| P Opn � |π|q.

Proposition 4.10 and Theorem 5.12 yield the following characterisations:

Corollary 5.13. QCDCLANY-ORD
ANY-RED,EXI-PROP �p mLD-Q-Res and QCDCLANY-ORD

NO-RED,ALL-PROP �p QU-Res.

Remark 5.14. Note that our simulations require a particular learning scheme, in which we almost
always restart after each conflict. This is also the reason why we get an improved simulation complexity
of Opn � |π|q compared to Opn3 � |π|q from [10], in which arbitrary (asserting) learning schemes were
allowed (where we do not necessarily restart every time).

Performing our simulation under arbitrary asserting learning schemes might require some additional
analysis on asserting clauses under the ANY-ORD and ANY-RED rules, as a clause learned from a K1-
reductive trail might not be asserting in K2-reductive trails anymore. However, if it was clear how to
guarantee asserting clauses in our systems, we would be able to obtain similar results as in [10], that is:

� For each clause C in the given mLD-Q-Res (QU-resolution) refutation and an arbitrary asserting
learning scheme, we need Opn2q trails and backtracking steps until we either learn a subclause of
C, or we receive a blockade for C.

� Under any arbitrary asserting learning scheme, we can perform the simulation in time Opn3 � |π|q.
In particular, we do not need to restart after each conflict.

6 Conclusion

Proving theoretical characterisations of QCDCL variants successfully used in practice is an important
and compelling endeavour. While we contributed to this line research, a number of open questions
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remain, both theoretically and practically. In particular, in light of Figure 1, it seems worthwhile to
explore whether some of the QCDCL models shown to be theoretically better than standard QCDCL
can be used for practical solving.

In our quest to modify QCDCL to match the strength of its underlying system long-distance Q-
resolution, we introduced the new proof system mLD-Q-Res, which not only characterises a strong
version of QCDCL, but also simulates all related variants. This allows to use proof-theoretic results
for mLD-Q-Res whenever considering the strength of QCDCL solvers. Yet, we leave open whether
mLD-Q-Res is strictly weaker than or equivalent to long-distance Q-resolution. Both possible outcomes
would be interesting, as either long-distance Q-resolution does not characterise QCDCL, or there are
modifications of QCDCL that unleash the full strength of long-distance Q-resolution.

Additionally, we exhibited a QCDCL version characterising QU-resolution. One could try to combine
these two characterisations to obtain an even stronger family of QCDCL variants in the spirit of LDQU�-
resolution. Further, cube learning, which can hugely impact the running time even on false formulas [17],
was not considered here. Hence, verifying true formulas as well as the proof-theoretic characterisation
of modifications to QCDCL such as dependency learning [26] are further topics for future research.

References

[1] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.

[2] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. In IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pages 498–509. IEEE Computer Society, 2019.

[3] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications. Form.
Methods Syst. Des., 41(1):45–65, 2012.

[4] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and their proof
complexities. In Proc. Theory and Applications of Satisfiability Testing (SAT), pages 154–169, 2014.

[5] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. (JAIR), 22:319–351, 2004.

[6] Olaf Beyersdorff. Proof complexity of quantified Boolean logic – a survey. In Marco Benini, Olaf
Beyersdorff, Michael Rathjen, and Peter Schuster, editors, Mathematics for Computation (M4C),
pages 353–391. World Scientific, 2022.

[7] Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, cost, and capacity: A semantic technique
for hard random QBFs. In Proc. Conference on Innovations in Theoretical Computer Science
(ITCS’18), pages 9:1–9:18, 2018.

[8] Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strategies into QBF proofs. J.
Autom. Reason., 65(1):125–154, 2021. doi:10.1007/s10817-020-09560-1.

[9] Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, and Tomás Peitl. Hardness characterisations
and size-width lower bounds for QBF resolution. ACM Transactions on Computational Logic, 2022.
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