
Proof Simulation via Round-based Strategy

Extraction for QBF

Leroy Chew

April 3, 2023

Abstract

The proof complexity of Quantified Boolean Formulas (QBF) relates
to both QBF solving and QBF certification. One method to p-simulate
a QBF proof system is by formalising the soundness of its strategy ex-
traction in propositional logic [7]. In this work we illustrate how to use
extended QBF Frege [4] to simulate LD-Q(Drrs)-Res, a proof system that
combines conflict driven clause learning with dependency schemes [22], us-
ing such a method. The round-based technique is the most common way to
show a QBF proof system has strategy extraction, originally shown for Q-
resolution [11] and later used for LD-Q-Resolution [10], LQU-Resolution
[2], expansion based systems [5] and dependency-scheme based systems
[24]. Many of these proof systems were already shown to be simulated
by extended QBF Frege, but simulation had to use a specialised local
strategy extraction technique. Here we simulate the remaining systems,
by formalising the soundness of LD-Q(Drrs)-Res’s round-based strategy
extraction in propositional logic. This is a positive result for certification,
and further suggests the feasibility of using Extended QU-Resolution or
QRAT to certify QCDCL solvers.

1 Introduction

Logic solvers are powerful tools that can be used to deal with problems from
difficult complexity classes, but we should not automatically trust that they give
a correct result. For certification, we want solvers to output checkable proofs,
and in SAT solving this has been achieved by the adoption of DRAT proofs and
DRAT checkers [27]. It is remarkable that the SAT certification has progressed
to this point, that we have a stable, suitable and universal proof checking for-
mat that works for many different SAT solvers and preprocessors, that continues
to work after developments in SAT solving. A theoretical explanation for the
resilience of DRAT comes from p-simulations, a proof-centric analogue to reduc-
tion: the proof system Extended Frege (which is p-equivalent to DRAT) has a
long history of being able to p-simulate many other propositional proof systems
[9, 15, 17]. The power of Extended Frege comes its ability to represent circuits
using extension variables and cut them out with its binary rules. In fact it was

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 53 (2023)



proven that any propositional proof system can be p-simulated by Extended
Frege or Extended Frege plus a polynomial-time decidable set of tautologies
[18].

Res

AC0-Frege

Frege

eFrege

CPPCR

PC

Figure 1: The p-simulation landscape of propositional logic

We are interested to see if something similar happens outside of the SAT
setting. Quantified Boolean formulas (QBF) extend SAT by adding universal
and existential Boolean quantifiers to form a PSPACE-complete class [25, 1].
Extended Frege is also successful in QBF as long as you add a reduction rule to
make it complete (eFrege+∀red [4]) and it was already shown that eFrege+∀red
augmented with an NP oracle [6] p-simulates every QBF proof system with the
property of strategy extraction [7]. Strategy extraction being a property of proof
systems that means there is an efficient way to compute circuit strategies for a
semantic two-player game.

What is left is to show unconditional eFrege +∀red p-simulations of proof
systems that correspond to QBF solving techniques. Here we are interested in
techniques common in QBF Conflict Driven Clause Learning (CDCL); reduc-
tion [16], long-distance resolution [28] and the relaxation of quantifier depen-
dency [20]. These concepts are all captured in the proof system LD-Q(Drrs)-Res
[22] and our main result is a p-simulation of LD-Q(Drrs)-Res by eFrege +∀red,
thus transitively showing p-simulations for systems weaker than LD-Q(Drrs)-Res.

It has already been shown that eFrege +∀red p-simulates the QBF proof
systems IRM-calc [5] and LQU+-Res[2], using a novel strategy extraction ap-
proach. Firstly, one had to deal with the divergent notation of the proof systems
and take each line and represent it in pure propositional logic, using extension
variables to deal with some technical aspects of the line. Secondly, for each line
one needs a local strategy (or policy) that informs the value of the universal
variable based on the existential variables. The local strategy should affirm the
truth of the line assuming the original formula. It had already been argued that
these strategies were correct [23], the simulation moved to the next step that
the correctness of these strategies could be formalised. The simulation approach
is to inductively prove using Extended Frege in the structure of the proof that
each line is affirmed by the local strategy, until the final line. At the final line
one needs to use a straightforward application of the ∀red rule to show that the
existence of these strategy functions for the universal variables create a QBF
contradiction.

Our approach is similar, here we drop the reliance on local strategies and
instead focus on the more commonly used on round-based strategy extraction

2



theorems [11, 5, 21, 2]. In round based strategy extraction, the idea is that
proof remains a proof after being hit with a restriction, however with enough
restrictions and pruning, universal literals become pure. Therefore we can cal-
culate an assignment for the universal variables, using the proof as a static
object along with an assignment to the prior variables. We can then feed the
universal assignments back into more restrictions on the proof until all vari-
ables are assigned. It is a bit more technical to formalise the soundness of this
strategy extraction into Extended Frege, but in this paper we were able to do
so by creating extension variables that keep track of the restricted proof. Once
we have formally proved the soundness of strategy extraction, we can again use
reduction in a straightforward manner to get a contradiction.

Q-Res

LD-Q-Res

LQU+-Res

eFrege+∀red

QRAT

G

∀Exp+Res

IR-Calc

IRM-Calc

Q(Drrs)-Res

LD-Q(Drrs)-Res Q-Frege

Q-CP

Figure 2: The p-simulation landscape of QBF

2 Preliminaries

A propositional formula uses symbols 0, 1,¬,∧,∨,→,↔ and a countable set of
propositional variables e.g. x1, x2 . . . . For a propositional formula t we use
var(t) to denote the set of propositional variables appearing in the formula. For
singletons, var(t) is the variable appearing in t, rather than the set. A literal is a
propositional variable or its negation. We use l̄ to denote ¬l if l is a variable and
var(l) if l is the negation of var(l). A clause is a set of literals that represents a
disjunction. A conjunctive normal form (CNF) is a set of clauses that represents
a conjunction.

In logic we are concerned with proofs that a formula is always true or always
false (we can call proofs of falsity refutations). Proofs are finite strings in some
alphabet, but are verified with computable functions known as proof systems.
A proof system is a polynomial time function that maps proofs to formula A
proof system is sound if its image is contained in the set of theorems of the
logic. A proof system is complete if the set of theorems of the logic is contained
in the proof system’s image. A proof system F p-simulates proof system G is
there is a polynomial time method to transform proofs in G to proofs in F that

3



preserves the theorem. When two proof systems mutually p-simulate each other
we can call it p-equivalence.

2.1 Quantified Boolean Formulas

A Quantified Boolean Formula (QBF) is a propositional formula augmented
with Boolean quantifiers ∀,∃ that bound propositional variables that range over
the Boolean values 0, 1. The semantics of the quantifiers are that: ∀xφ(x) ≡
φ(0) ∧ φ(1) and ∃xφ(x) ≡ φ(0) ∨ φ(1). In a prenex QBF, all quantifiers appear
outermost in a (quantifier) prefix, and are followed by a propositional formula,
called the matrix. A PCNF is a prenex QBF where the matrix is a CNF and we
usually deal with prenex QBFs that are closed, that is every variable is bound
by some quantifier, this allows us to find an alternative definition of a QBF by
a two-player game, with players ∃ and ∀.

The game is played in order of the prefix Π left to right, whose quantifier
appears gets to assign the quantified variable to 0 or 1. The existential player
is trying to make the matrix φ become true, the universal player is trying to
make the matrix become false. Πφ is true if and only if there winning strategy
for the ∃ player. Likewise, Πφ is false if and only if there winning strategy for
the ∀ player.

The quantifier prefix linearly orders every variable, but what matters more
is the quantifier level which is an integer (starting at 1) which increases each
time the quantifier changes in the prefix moving from left to right. We use lv(x)
to denote the level of variable/literal x. We say that all variables of the same
level form a quantifier block.

2.2 QBF Proof Systems

We define QBF proof systems that are sound and refutationally complete, that
is they can derive the empty clause.

2.2.1 Extended Frege+∀red

Frege systems are “text-book” style proof systems for propositional logic. They
consist of a finite, sound and complete set of axioms and rules where any variable
can be substituted by any formula (such as the Law of Excluded Middle or
Modus Ponens).

Extended Frege (eFrege) takes a Frege system and allows the introduction
of new variables that abbreviate propositional terms. Alternatively one can
consider eFrege as a Frege system where lines are circuits instead of formulas.
Extended Frege systems are very capable systems, and in this paper we take
for granted that they can handle simple case analyses, without having to define
the exact Frege system. Extended Frege can handle the substitutions of bi-
equivalent formulas, which is very helpful in our proofs that make use of bi-
equivalence in definitions. Finally, extended Frege systems have also been known
to handle proofs by induction efficiently, as long as the finite number of steps,

4



1 x1 → (x2 → x1) ((x1 → 0)→ 0)→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))
x1 x1 → x2

x2

Figure 3: A Frege system for connectives →, 0, 1

induction hypothesis, base case and inductive step are all polynomially bounded.
F

The QBF analogue to eFrege is eFrege +∀red, which adds a reduction rule
to all existing eFrege rules [4]: In any line L one may substitute a universal
variable everywhere with 0 or 1, provided var(L) contains no variable x such that
lv(u) < lv(x) with respect to the prefix. eFrege+∀red only work refutationally
and so requires an axiom rule that downloads Since the order matters, extension
variables now must appear in the prefix and must be quantified right of the
variables used to define it. The other way to define this system is to take the
circuit-line version of eFrege and add the reduction rule.

2.2.2 QCDCL Systems

Propositional resolution characterises Conflict Driven Clause Learning (CDCL)
in SAT solving [12], but resolution on its own neither captures QBF CDCL nor
is a complete QBF proof system. Like in eFrege+∀red, we add a reduction rule
that deals with universal literals while respecting the prefix order. The resulting
system is Q-Res, which combines existential resolution and universal reduction.
However Q-Res does not characterise QCDCL. In one direction, QCDCL even
with added non-determinism is not able to use the full power of Q-Res, several
new systems were designed to capture those limitations [3]. On the other hand,
QCDCL solvers can perform steps that are illegal in Q-Res, it is important to
try and simulate steps like these in eFrege +∀red. The illegal steps come from
the use of reduction, normally reduction is a substitute of a universal variable
everywhere with 0 or 1 in some line.

• Dependency Schemes: In Q-Res, reduction cannot be performed on a
literal u if an existential literal x is present with lv(x) > lv(u). However
in some cases we can calculate that a reduction would still be sound by
evaluating the dependency of x on u based on criteria. We call this criteria
dependency schemes which lists for a pair of variables (u, x) that existential
x really does depend on universal u in the context of a given QBF.

• Long Distance Steps: In a clause, reduction as normally defined is
simply removing a universal literal u, but there is a side condition that ū
must not be present, Q-Res handles this by disallowing both u and ū to be
present in a clause as a result of a resolution step. However in some cases

5



u and ū can both be present and simultaneously removed by reduction in
a sound way. And in fact, this is how QCDCL solvers work. This depends
on how u and ū meet in a resolution step. So we can introduce a rule
that allows u and ū to meet in a resolution step known as long-distance
resolution. Furthermore dependency schemes can be used to relax long-
distance resolution further.

An example of dependency is the Drrs scheme which is defined through
resolution paths. For a given QBF with prefix Π and matrix φ, we define
ε(i, C, l) to be the set of literals reachable from l via a connection through a
potential resolution pivot.

x ∈ ε(i, C, l) if

{
x ∈ C, x 6= l, lv(x) > i, x ∈ ∃
x ∈ ε(i, P, p) for some p̄ ∈ ε(i, C, l), p ∈ P, P ∈ φ

.

And for Drrs, (u, x) ∈ DΦ if and only if lv(u) < lv(x) and there are clauses
A and B such that l ∈ ε(lv(u), A, u), l̄ ∈ ε(lv(u), B, ū), var(l) = x. We can use
the dependency in the proof rules of Figure 4.

(Axiom)
C

P (∀red)
P \ {u,¬u}

P0 P1 (Res)
P0 ∪ P1 \ {x, x̄}

C is a clause in the matrix. u is a ∀ variable such that (u, d) /∈ DΦ for every
∃ variable d ∈ var(P ). x is existential. x̄ ∈ P0 and x ∈ P1 and is the only ∃
literal to appear in both polarities in (Res).

Figure 4: The rules of LD-Q(Drrs)-Res [22].

Q-Res: DΦ is trivial, so that (u, x) ∈ DΦ if and only if lv(u) < lv(x). A Res
step cannot result in v and v̄ present in resolvent for any variable v.
Q(Drrs)-Res: DΦ is calculated from Drrs. A Res step cannot result in v and v̄
present in resolvent for any variable v.
LD-Q-Res: DΦ is trivial. (v, x) /∈ DΦ for every ∀ literal such that v ∈ P0 and
v̄ ∈ P1 or vice versa.
LD-Q(Drrs)-Res: DΦ is calculated from Drrs. (v, x) /∈ DΦ for every ∀ literal
such that v ∈ P0 and v̄ ∈ P1 or vice versa.

Without changing proof complexity we can assume all reduction steps are
performed automatically after Resolution.

2.2.3 Other proof systems

Other combinations of rules can exists alongside those seen in Fig 4, one can
relax the restriction on pivots to allow universal pivots in QU-Resolution [26],
LQU-Resolution and LQU+-Resolution [2].

The previous Resolution systems have all been based on QCDCL, but an-
other paradigm- expansion based solvings yields its own QBF systems [14, 5].

6



Finally we have other strong systems. Firstly we have seen proof systems
like eFrege +∀red that add a reduction rule to a line based propositional proof
system, we can do this for other systems like Frege and Cutting Planes.

Other strong systems generalise to QBF in more complicated ways than
simply adding ∀red. QRAT [13] generalises propositional DRAT with an even
stronger reduction rule, taking inspiration from dependency schemes. This ex-
tended universal reduction is powerful enough that QRAT cannot have strategy
extraction unless P = PSPACE [8]. The sequent system G [19] also does not
have strategy extraction because of its quantifier introduction rules.

3 Simulation of LD-Q(Drrs)-Resolution

In this section we will fix a LD-Q(Drrs)-Res proof π for a QBF Πφ with k quan-
tifier levels.

3.1 Round-based Strategy Extraction

Equipped with a LD-Q(Drrs)-Res proof it is feasible for a universal player to
generate responses to an existential player [11, 22]. Assume the outermost
quantifier block is existential and start with π0 = π. After every existential block
of level i, we first restrict the LD-Q(Drrs)-Res proof πi−1 with the existential
assignment. It turns out that after some pruning we have another LD-Q(Drrs)-
Res proof πi, but with at most one polarity of literal present for each variable
in the outermost universal block, negating those literals will be the winning
strategy for the universal player. We can now find πi+1 by restricting the
proof again with the universal assignment from the strategies, thus completing a
round. We can repeat this round based approach until all variables are assigned.

The soundness of the round based strategy can be ascertained by a conjunc-
tion of observations.

• Under restrictions it continues to be a valid proof

• The restricted axioms are implied by the assignment and the original CNF

• The sink clause ⊥ remains unsatisfiable under all restrictions

Proving the strategy extraction is sound also shows the proof system is
sound. We take it a step further, and formalise the strategy extraction in eFrege
proving it can be simulated in eFrege +∀red. The eFrege proof is polynomial
size because most of its steps are based in induction on the DAG structure
of the LD-Q(Drrs)-Res proof, showing the nice properties that give us strategy
extraction and the soundness of strategy extraction.

3.2 Restricted Proof Variables

In order to make a proof in eFrege +∀red, we will use extension variables that
represent components of the restricted proofs πi. For each line in π and for each

7



1 ≤ i ≤ k we have a clause C and its literals, for each of its literals y create an
extension variable [y ∈ Ci]. These will be defined inductively in the structure
of the proof. We will also define another symbol >Ci that indicates whether a
clause is satisfied.
Axiom: For axiom clauses C ∈ φ: y existential, u universal:

[y ∈ Ci] =


1 i < lv(y)

0 i ≥ lv(y) and ȳ true

1 i ≥ lv(y) and y true

[u ∈ Ci] =


1 i < lv(u)

0 i ≥ lv(u) and σ̄u true

1 i ≥ lv(u) and σu true

Here σu is some yet-to-be-defined strategy for universal variable u (if u is the
negative literal ¬ var(u), we just take σu as ¬σvar(u)). Since σu is a strategy for
u it occurs before u in the prefix. We place all [y ∈ Ci] variables immediately
after level i variables in the prefix. For convenience, for each literal y, we denote
eff(y) to be y if y is existential and σy if y is universal. We also use [y /∈ Ci] in

place of ¬[y ∈ Ci]. For axioms, >Ci ↔
∨lv(y)≤i
y∈C eff(y).

Universal Reduction: For a ∀red step from clause P to C over a single
universal literal u we again can define [y ∈ Ci] for each literal y ∈ C. Here
[y ∈ Ci] is defined the same as [y ∈ P i], note that since u does not appear in
C it will still be dropped from Ci whether it appears in P i or not. We define
>Ci ↔ >P i .
Resolution: Consider a resolution step from parents P0, P1 which resolve over
x̄ ∈ P0 and x ∈ P1 to get resolvent C. In a restricted proof we may have to
replace a Resolution step with a selection step [11, 22], which simply copies P0

or P1 instead of resolving. We create 2k extension variables for each resolution

step SelC
i

ON and SelC
i

VAL. Defined by these conditions:

[x̄ /∈ P0
i] ∨ [x /∈ P1

i]→ SelC
i

ON, SelC
i−1

ON → SelC
i

ON

[x̄ /∈ P0
i] ∧ [x ∈ P1

i]→ ¬SelC
i

VAL, [x̄ ∈ P0
i] ∧ [x /∈ P1

i]→ SelC
i

VAL,

[x̄ /∈ P0
i] ∧ >P1

i → ¬SelC
i

VAL, [x̄ ∈ P0
i] ∧ [x /∈ P1

i] ∧ >P0
i → ¬SelC

i

VAL,

SelC
i−1

ON → (SelC
i

VAL ↔ SelC
i−1

VAL ), [x̄ /∈ P0
i] ∧ [x /∈ P1

i] ∧ ¬>P0
i ∧ ¬>P1

i → ¬SelC
i

VAL

Otherwise SelC
i

ON = 0 and SelC
i

VAL = 0. These extension variables will help
decide the [y ∈ Ci] and >Ci variables:

SelC
i

ON ∧ ¬SelC
i

VAL → (>Ci ↔ >P0
i), SelC

i

ON ∧ ¬SelC
i

VAL → ([y ∈ Ci]↔ [y ∈ P0
i])

SelC
i

ON ∧ SelC
i

VAL → (>Ci ↔ >P1
i), SelC

i

ON ∧ SelC
i

VAL → ([y ∈ Ci]↔ [y ∈ P1
i])

¬SelC
i

ON → (>Ci ↔ >P0
i ∨ >P1

i), ¬SelC
i

ON → ([y ∈ Ci]↔ [y ∈ P0
i] ∨ [y ∈ P1

i])

Note that x̄ and x are not considered as possibly in Ci because they are
not in the original C clause. (In cases where [y ∈ Pji] is not defined for some

j ∈ {0, 1} here we substitute it with 0). In the prefix, SelC
i

ON and SelC
i

VAL will be
defined after y ∈ P0

i and [y ∈ P1
i] variables but before [y ∈ Ci] variables.

8



3.3 Connectivity and Inheritance

When we restrict a proof by an assignment, we usually will have to prune the
restricted proof.

Next we will further limit the sets of variables that can be a resolution pivot,
by showing that if lines have a particular ancestor axiom A, the variables must
be in resolution paths from A. But to do this we have to formalise a descendent
relation through extension variables.

Definition 1. We define extension variables diA,C to mean that clause Ci is a

descendent of Ai in the restricted proof on the ith level. diC,C = 1, if C 6= A:

Axiom: diA,C = 0

Reduction: If P is a parent clause that reduces to its child C we have diA,C ↔
diA,P0

Resolution: Clause C is derived from clauses P0 and P1 by resolution:

diA,C = (diA,P0
∨ diA,P0

)∧ (diA,P0
∨¬SelC

i

ON ∨ SelC
i

VAL)∧ (diA,P1
∨¬SelC

i

ON ∨¬SelC
i

VAL)

Note that diA,C is defined using parents of C, instead it could be defined
using children of A. So we also formalise an ancestor relation.

Definition 2. For 1 ≤ i ≤ k and A,C lines in π we define the extension
variable aiA,C . This will be defined inductively backwards in the proof.

Identity : aiC,C is defined as true.
For the non-identity cases:
Sink (⊥) : ai⊥,C is defined as false.
Reduction: For parent A reduced to A′, we consider each reduction step to be
done automatically at the earliest opportunity, so we do not consider P to have
more than one child, therefore aiA,C ↔ aiA′,C .
Resolution: Consider a clause A that is used in many resolution steps and
has a number of children A′. aiA,C is true if any of its children A′ have aiA′,C ∧
condA,A′ .

Note that for any clause A, aiA,⊥ has a special importance in our proofs as it

means the clause will survive pruning. We use the notation Conn(Ai) = aiA,⊥.

We will prove that aiA,C = diA,C for all i, A and C. However, we want to do
this by induction on the number of proofs steps between A and C. However to
make sure all case are covered we first need to prove the special case where C
occurs before A in the proof.

Lemma 1. There are short eFrege proofs that aiA,C = 0 = diA,C when C occurs
before A in π.

Proof. We assume where we can prove bi-equivalence, substitution is no difficult
task for eFrege.
Induction Hypothesis (on structure of π from A = ⊥): When C occurs
before A in π, ¬aiA,C has a short eFrege proof.

9



Base Case (Sink): ai⊥,C = 0.

Inductive Step (Red/Res): aiA,C is defined based on the children of A, for

all of which the induction hypothesis hold and force ¬aiA,C .
Induction Hypothesis (on structure of π from C ∈ φ): When C occurs
before A in π, ¬diA,C has a short eFrege proof.

Base Case (Axiom): diA,C = 0.

Inductive Step (Red/Res): diA,C is defined based on the parents of C, for

all of which the induction hypothesis hold and force ¬diA,C .

Lemma 2. There are short eFrege proofs of aiA,C ↔ diA,C for every pair of lines
A,C ∈ π and 1 ≤ i ≤ k.

Proof. We splits into a product of cases, which rule A is used as a parent in and
which rule is used to derive C. The special “parent” case is when A is used to
derive C. We can consider this the base case of distance 1, if we also deal with
distance 0 and negative distance:
Identity: Suppose C = A then aiA,C = diA,C = 1 by definition.
C before A: Lemma 1.
Now suppose C 6= A and A:
Induction Hypothesis (on distance between A and C in π) aiA,C ↔ diA,C
has a short eFrege proof

Base cases are when A is a parent of C. All other cases are inductive steps.
We will use the induction hypothesis to substitute equivalences where the dis-
tance between the two lines is shorter.
Sink: ai⊥,C = 0.

(Sink) Axiom: If C ∈ φ then di⊥,C = 0 = ai⊥,C .

(Sink) Red: If P reduces to C then di⊥,C = di⊥,P = ai⊥,P = 0 = ai⊥,C .

(Sink) Res: If P0 and P1 resolve to get C then di⊥,C

= (di⊥,P0
∨ di⊥,P1

) ∧ (di⊥,P0
∨ ¬SelC

i

ON ∨ SelC
i

VAL) ∧ (di⊥,P1
∨ ¬SelC

i

ON ∨ ¬SelC
i

VAL)

= (ai⊥,P0
∨ ai⊥,P1

) ∧ (ai⊥,P0
∨ ¬SelC

i

ON ∨ SelC
i

VAL) ∧ (ai⊥,P1
∨ ¬SelC

i

ON ∨ ¬SelC
i

VAL)

= (0 ∨ 0) ∧ (0 ∨ ¬SelC
i

ON ∨ SelC
i

VAL) ∧ (0 ∨ ¬SelC
i

ON ∨ ¬SelC
i

VAL) = 0 = ai⊥,C .

Red: Suppose A is a parent to child A′ via reduction. aiA,C = aiA′,C
(Red) Parent: If C = A′ and P = A then diA,C = diA,A = 1 = aiC,C = aiA,C .

(Red) Axiom: If C ∈ φ then diA,C = 0 = diA′,C = aiA′,C = aiA,C .
(Red) Red: If P reduces to C then
diA,C = diA,P = aiA,P = aiA′,P = diA′,P = diA′,C = aiA′,C = aiA,C .

(Red) Res: If P0 and P1 resolve to get C then diA,C

= (diA,P0
∨ diA,P0

) ∧ (diA,P0
∨ ¬SelC

i

ON ∨ SelC
i

VAL) ∧ (diA,P1
∨ ¬SelC

i

ON ∨ ¬SelC
i

VAL)

= (aiA,P0
∨ aiA,P0

) ∧ (aiA,P0
∨ ¬SelC

i

ON ∨ SelC
i

VAL) ∧ (aiA,P1
∨ ¬SelC

i

ON ∨ ¬SelC
i

VAL)

= (aiA′,P0
∨ aiA′,P0

)∧ (aiA′,P0
∨¬SelC

i

ON ∨ SelC
i

VAL)∧ (aiA′,P1
∨¬SelC

i

ON ∨¬SelC
i

VAL)

= (diA′,P0
∨ diA′,P0

)∧ (diA′,P0
∨¬SelC

i

ON ∨ SelC
i

VAL)∧ (diA′,P1
∨¬SelC

i

ON ∨¬SelC
i

VAL)

= diA′,C = aiA′,C = aiA,C .

10



Res: Suppose A is a parent to resolution children labelled A′. For line C, we
define αiA′,C to be aiA′,C ∧ condA,A′ and δiA′,C to be diA′,C ∧ condA,A′ .

(Res) Axiom: Suppose C ∈ φ then aiA,C =
∨
αiA′,C =

∨
δiA′,C = 0 = diA,C .

(Res) Red: Suppose P reduces to C then
aiA,C =

∨
αiA′,C =

∨
δiA′,C =

∨
δiA′,P =

∨
αiA′,P = aiA,P = diA,P = diA,C .

(Res) Res: Suppose C is resolution child of P0 6= A and P1 6= A.
aiA,C =

∨
αiA′,C =

∨
δiA′,C

=
∨

((diA′,P0
∨diA′,P1

)∧(diA′,P0
∨¬SelC

i

ON∨SelC
i

VAL)∧(diA′,P1
∨¬SelC

i

ON∨¬SelC
i

VAL)∧
condA,A′)

= (
∨
δiA′,P0

∨
∨
δiA′,P1

)∧ (
∨
δiA′,P0

∨¬SelC
i

ON ∨ SelC
i

VAL)∧ (
∨
δiA′,P1

∨¬SelC
i

ON ∨
¬SelC

i

VAL)

= (
∨
αiA′,P0

∨
∨
αiA′,P1

)∧ (
∨
αiA′,P0

∨¬SelC
i

ON∨SelC
i

VAL)∧ (
∨
αiA′,P1

∨¬SelC
i

ON∨
¬SelC

i

VAL)

= (aiA,P0
∨ aiA,P1

) ∧ (aiA,P0
∨ ¬SelC

i

ON ∨ SelC
i

VAL) ∧ (aiA,P1
∨ ¬SelC

i

ON ∨ ¬SelC
i

VAL)

= (diA,P0
∨ diA,P1

)∧ (diA,P0
∨¬SelC

i

ON ∨ SelC
i

VAL)∧ (diA,P1
∨¬SelC

i

ON ∨¬SelC
i

VAL) =

diA,C .
(Red) Parent: Without loss of generality assume A is the left parent (P0)

to C.
aiA,C =

∨
αiA′,C = (¬SelC

i

ON ∨ ¬SelC
i

VAL) ∨
∨
A′ 6=C δ

i
A′,C .

= (¬SelC
i

ON ∨ ¬SelC
i

VAL) ∨
∨
A′ 6=C δ

i
A′,P1

∧ (¬SelC
i

ON ∨ SelC
i

VAL).

= (¬SelC
i

ON ∨ ¬SelC
i

VAL) ∨
∨
A′ 6=C α

i
A′,P1

∧ (¬SelC
i

ON ∨ SelC
i

VAL).

= (¬SelC
i

ON ∨ ¬SelC
i

VAL) ∨ (aiA,P1
∧ (¬SelC

i

ON ∨ SelC
i

VAL)).

= (diA,A ∧ (¬SelC
i

ON ∨ ¬SelC
i

VAL)) ∨ (diA,P1
∧ (¬SelC

i

ON ∨ SelC
i

VAL)) = diA,C .

Corollary 1. There is a short eFrege proof that diA,⊥ ↔ Conn(Ai) for every
line A ∈ π and 1 ≤ i ≤ k.

In the following lemma, we broadly want to say that inherited properties of
a line find root in an axiom ancestor and that we can find short eFrege proofs
of these.

Lemma 3. Suppose B is a line in π and 1 ≤ i ≤ k. Suppose y ∈ B. The
following have short proofs in eFrege:

• [y ∈ Bi]→
∨y∈B
A∈φ d

i
A,B

• Conn(B) ∧ [y ∈ B]→
∨y∈A
A∈φ Conn(A) ∧ [y ∈ A]

• ¬>Bi →
∨
A∈φ ¬>Bi

Proof. Consider LD-Q(Drrs)-Res proof π to be a sequence of lines. Let πC be
the set of lines of π up to the clause C.
Induction Hypothesis (in reserve π order for C): If we have C ∈ πB ,
the following have short proofs in eFrege

11



1. [y ∈ Bi]→
∨y∈B
A∈φ∪πC a

i
A,B ∧ [y ∈ A]

2. Conn(B) ∧ [y ∈ B]→
∨y∈A
A∈φ∪πC Conn(A) ∧ [y ∈ A]

3. ¬>Bi →
∨
A∈φ∪πC ¬>Ai

Base Cases:

1. aiB,B is true and assuming [y ∈ B],
∨y∈B
A∈φ∪πB a

i
A,B∧ [y ∈ A] is true because

it contains aiB,B ∧ [y ∈ B] as a disjunct.

2. Assuming Conn(B) and [y ∈ B],
∨y∈B
A∈φ∪πB Conn(A) ∧ [y ∈ A] is true

because it contains Conn(B) ∧ [y ∈ B] as a disjunct.

3. Assuming ¬>Bi ,
∨y∈B
A∈φ∪πB ¬>Ai is true because it contains ¬>Bi as a

disjunct.

Inductive Step (Red): Suppose P reduces to clause C. aiC,B , Conn(C), [y ∈
C] and >Ci are all equivalent to aiP,B , Conn(P ), [y ∈ P ] and >P i , respectively.
Therefore the rightmost disjunct can be removed from the disjunctions as P
occurs before C in the proof.
Inductive Step (Res): Suppose P0 and P1 resolve to get C. In each case
in order to remove the last disjunct we need to show the disjunction of the
disjuncts for P0 and P1 are implied by the disjunct for C. And since P0 and P1

occur prior in the proof.
We can observe all the cases based on C and see this is true and provable

by combining implications:

y ∈ P0 and y /∈ P1

SelC
i

ON ∧ ¬SelC
i

VAL → ([y ∈ Ci]↔ [y ∈ P0
i]),

SelC
i

ON ∧ ¬SelC
i

VAL → ([y /∈ Ci]),

¬SelC
i

ON → ([y ∈ Ci]↔ [y ∈ P0
i]),

y ∈ P0 and y ∈ P1

SelC
i

ON ∧ ¬SelC
i

VAL → ([y /∈ Ci]→ [y ∈ P0
i]),

SelC
i

ON ∧ SelC
i

VAL → ([y ∈ Ci]→ [y ∈ P1
i]),

¬SelC
i

ON → ([y ∈ Ci]→ [y ∈ P0
i] ∨ [y ∈ P1

i]).

SelC
i

ON ∧ ¬SelC
i

VAL → (aiC,B → aiP0,B), SelC
i

ON ∧ ¬SelC
i

VAL → (¬>Ci → ¬>P0
i),

SelC
i

ON ∧ SelC
i

VAL → (aiC,B → aiP1,B), SelC
i

ON ∧ SelC
i

VAL → (¬>Ci → ¬>P1
i),

¬SelC
i

ON → (aiC,B → aiP0,B ∧ a
i
P1,B), ¬SelC

i

ON → (¬>Ci → ¬>P0
i ∧ ¬>P1

i),

12



After the induction proof, we can use Lemma 2 to replace a with d.

3.4 The Universal Strategy

The Drrs property of simplicity means that from the pruned proof it was at
most one polarity of a universal variable u was left in the proof, when it came
to the level of u. We will prove this again in Section 3.5.

Definition 3. σu is defined as the function
∧u∈A
A∈φ[u ∈ Alv(u)−1]→ ¬Conn(Alv(u)−1)

In other words, we set σu to true if and only if ¬u is a pure literal in the
connected part of the restricted proof.

3.5 Proving the Effect of Drrs

We will inevitably need to use the properties of resolution paths and Drrs to
prove the soundness of this strategy extraction, but first we need a technical
lemma on restricted proofs.

Lemma 4. For i ≥ lv(y) for some literal y, eff(y) → [ȳ /∈ Ci], where the
variable [ȳ /∈ Ci] is defined, can be proved in a short eFrege proof.

Proof. We prove the lemma by induction on the structure of the proof from top
to bottom.
Base Case (Axiom): Axioms Ci takes eff(y)→ [ȳ /∈ Ci] by definition.
Inductive Step (∀red): Clause C is derived from clause P by ∀red. Here Ci

is defined as a subset of P i, so eff(y) → [ȳ /∈ Ci] is derived from the induction
hypothesis. Substitution is easy in eFrege.
Inductive Step (Res): Clause C is derived from clauses P0 and P1 by Res.
However C in all cases is a subset of P0 ∪ P1 so unless [ȳ ∈ P0

i] or [ȳ ∈ P1
i]

then [ȳ /∈ Ci]. Our additional eFrege lines form a constant-size case analysis for
each resolution, for each i and each y.

Instead of creating a property which defines when a literal is on a resolution
path and proving it, we prove every literal not on the resolution path has the
negation of that property.

Lemma 5. Let a be any literal in an axiom clause A, and let y be an ∃ literal
such that y 6= a. Let i < lv(y) then if y /∈ ε(i, A, a), [y ∈ Ci] → ¬diA,C is

provable in eFrege, wherever [y ∈ Ci] is a variable.

Proof. Induction Hypothesis (on proof depth d): For any (y, a,A,C, i)
such that A is an axiom clause for our QBF, a is a literal in A, 1 ≤ i ≤ k, C is
a line in π of depth ≤ d, y is a literal in C, y existential, lv(y) < i, y 6= a and
y /∈ ε(i, A, a), then we can find a short eFrege proof of [y ∈ Ci]→ ¬diA,C .
Base case (Axiom): Literal y /∈ ε(i, A, a) only occurs in axioms C 6= A where
¬diA,C . diA,C only occurs when A = C in which case y ∈ ε(i, A, a).
Inductive step (∀red): ∀red only removes literals, so if we start with parent
clause P and get child clause C, [y ∈ Ci] would mean [y ∈ P i] and diA,C = diA,P .

13



So for any literals y /∈ ε(i, A, a) we can prove the induction step by substituting
into the induction hypothesis.

Inductive step (Res): C is the resolvent of P0 and P1. If SelC
i

ON is true and
then diA,C inherits from the same parent it gets all its literals from. In all cases

¬diA,P0
∧ ¬diA,P1

→ ¬diA,C . But when x̄ /∈ ε(i, A, a) and x /∈ ε(i, A, a), then

diP0,C
∨ diP1,C

→ [x̄ /∈ P0
i] ∨ [x /∈ P1

i] and [x̄ /∈ P0
i] ∨ [x /∈ P1

i] → SelC
i

ON. This

leaves the only interesting case: if SelC
i

ON is false, and one of x̄ ∈ ε(i, A, a) or
x ∈ ε(i, A, a).

If both x̄ ∈ ε(i, A, a) and x ∈ ε(i, A, a) we assume with loss of generality
diA,P0

is true. Otherwise, without loss of generality we take x̄ ∈ ε(i, A, a) as true

and x ∈ ε(i, A, a) as false. In that case if ¬diA,P0
and diA,P1

we get [x /∈ P1
i] which

contradicts ¬SelC
i

ON. So we now only have the case of diA,P0
and x̄ ∈ ε(i, A, a).

Here diA,C is true.

Since SelC
i

ON is false, [x ∈ P1
i], so there must be some axiom Bi where x

originates and diB,P1
and we can use Lemma 3 to prove it. Since y /∈ ε(i, A, a),

y /∈ ε(i, B, x) as ε(i, B, x) ⊆ ε(i, A, a) by x̄ ∈ ε(i, A, a). Hence [y /∈ P1
i] by the

induction hypothesis since the (y, x,B, P1, i) case still has shorter proof depth.
But it cannot be true that [y ∈ P0

i] by induction hypothesis in the (y, a,A, P0, i)
case either, meaning [y /∈ Ci].

Lemma 6. For u a ∀ literal and i ≥ lv(u) − 1, if u ∈ C, ¬σu ∨ [u /∈ Ci] ∨
¬Conn(Ci) has a short eFrege proof. And if ū ∈ C, σu ∨ [ū /∈ Ci] ∨ ¬Conn(Ci)
has a short eFrege proof.

Proof. Let j = lv(u)− 1, σu is defined as true if and only if no axiom clause A
with u ∈ A that has Conn(Aj) true. This means that σu∨ [ū /∈ Ci]∨¬Conn(Ci)
is true by definition. It remains to prove ¬σu∨[u /∈ Ci]∨¬Conn(Ci). This could
potentially create an asymmetry between u and ū, so we need to show that if
there is some axiom clause A with ū ∈ A and Conn(Aj) then σu is also forced to
be true. So we assume the counterexample, that we have two connected clauses,
Aj , Bj in πj that contain u and ū between them. What we want to show is that
Conn(Aj) ∧ Conn(Bj) ∧ [u ∈ Aj ] ∧ [ū ∈ Bj ]→ ¬djA,C ∨ ¬d

j
B,C .

We can prove this in eFrege by induction, the only case not using equivalence
being non-trivial Resolution. Suppose P0

j resolves with P1
j to get Cj , with

pivot [x̄ ∈ P0
j ] and [x ∈ P1

j ]. We know that lv(x) > i by Lemma 4. Suppose
djA,C ∧ d

j
B,C with djA,P0

∧ ¬djB,P0
and ¬djA,P1

∧ djB,P1
, i.e. it is the first case in

the proof: eFrege can handle this since the following formula (and formulas of
its kind that involve ordered disjunctions) have short proofs in Frege:

(
∨
djA,C ∧ d

j
B,C)↔ (

∨
djA,C ∧ d

j
B,C ∧

∧
C′<πC

¬(djA,C′ ∧ d
j
B,C′))

If either x̄ /∈ ε(j, A, u) or x /∈ ε(j, B, ū) then our eFrege proof only needs Lemma 5
to contradict [x̄ ∈ P0

j ] ∧ [x ∈ P1
j ].

14



This is why C being obtained by a long distance step in the original proof
is impossible, hence without loss of generality assume u is ∀red on a clause P
on a path from A to P0. However, for every literal l ∈ P ; if it is left of u, if in
P i it cannot be resolved away by Lemma 4 and if l is right of u and existential,
then if l̄ ∈ ε(j, B, ū), by Drrs then l /∈ ε(j, A, u) and then [l /∈ P i], by Lemma 5.
For every E descending from P , we inductively prove in eFrege that [l /∈ Ei]
whenever l̄ ∈ ε(j, B, ū). When introducing any l s.t. l̄ ∈ ε(j, B, ū) (incl. x̄)
originating in axiom X by non-trivial Res on pivot p, either p̄ ∈ ε(j,X, l) ⊂
ε(j, B, ū) or p̄ /∈ ε(j,X, l) and dX,E , either leads to a pivot missing and thus
SelON. Hence [x̄ /∈ P0

j ].
We finally need that Conn and d agree for the sink clause ⊥ (Corollary 1).

With the definition of σu this shows the Lemma for axioms when i = j. For
axioms when i > j we simply prove that increasing i removes more literals. For
non-axioms C if u ∈ Ci then it has some (connected) axiom ancestor A such that
u ∈ Ai. To see this explicitly in an eFrege proof we prove Conn(Ci)∧ [u ∈ Ci]→∨u∈A
A∈φ Conn(Ai) ∧ [u ∈ Ai] using the definition of Conn and the [∈] variables

(see Lemma 3).

3.6 Soundness of Restricted Proofs

Lemma 7. >Ci → ¬Conn(Ci) ∨
∨lv(y)≤i
y∈C eff(y) ∧ [y ∈ Ci] has a short eFrege

proof.

Proof. We show this by induction on the structure of the proof.
Base Case (Axiom): >Ci can only happen in an axiom if some eff(y) is
already satisfied and eff(y) proves [y ∈ Ci] for axioms by definition.
Inductive Step (∀red): This is the case where we use the fact that LD-Q(Drrs)-
Res is simple. Suppose P is reduced to C, reducing the literal u. Conn(P i) and
Conn(Ci) are equivalent. If lv(u) > i both big disjunctions are equal. For
lv(u) ≤ i the only case we have to worry about is if u ∈ P i and u /∈ Ci. The
disjunct eff(u) ∧ [u ∈ P i] proves ¬Conn(P i) from Lemma 6.

Inductive Step (Res): We have the SelC
i

ON and the ¬SelC
i

ON case. SelC
i

ON makes
exactly one parent connected which Ci inherits all its literals from that parent

and the induction hypothesis transfers to the inductive step. ¬SelC
i

ON means a
genuine resolution happens. The pivot x has to be such that lv(x) > i because
of Lemma 4, so any of disjuncts in the disjunction for Ci appear in the induction
hypotheses of one of the parents.

Corollary 2. ¬>⊥i has a short eFrege proof

3.7 From Winning Strategies to a Refutation

Theorem 1. eFrege +∀red p-simulates LD-Q(Drrs)-Res.

Proof. Suppose we have a QBF with prefix Π and matrix φ and a LD-Q(Drrs)-
Res proof π. We first use an eFrege proof to derive ¬>⊥i using Corollary 2.
We observe that every non-tautological connected line Ck has at least one

15



non-tautological connected parent P k, and we combine implications to gives
us ¬>⊥k →

∨
A∈φ ¬>Ak (see Lemma 3). Thus

∨
A∈φ ¬>Ak , furthermore since

we can take all clauses from φ we use the definition of >Ak to get
∨
u∈∀(u↔ σu).

Now getting a contradiction follows the normal form technique found in [4] and
[7]. We start by reduction on the rightmost u in both 0 and 1 and then we can
remove a conjunct by resolution (see Figure 5). We can continue this until we
get the empty clause. ∨n

i=1 ui ↔ σui

(
∨n−1
i=1 ui ↔ σui) ∨ (0↔ σui) (

∨n−1
i=1 ui ↔ σui) ∨ (1↔ σui)∨n−1

i=1 ui ↔ σui

Figure 5: Eliminating the rightmost universal variable in eFrege +∀red using
∀red.

4 Conclusion

The result simplifies the QBF proof complexity landscape and we have a large
number of systems under the umbrella of eFrege +∀red. This is similar to the
situation in propositional logic, however in propositional logic those simulations
have now been lowered to be by Frege instead of Extended Frege.

We now have a number of positive results for simulation of weak QBF proof
systems by strong QBF proof systems. This is good news for certification,
and suggests, in theory, that finding a widely applicable checking format, at
least for QCDCL, is possible. In practice, there will need to be additional
considerations; the degree of the polynomial simulation, the format of the proof
and the practicality of the checker. A suggestion for practicality is to build
off of DRAT, one could either use QRAT, a QBF generalisation of DRAT, or
use DRAT to prove the soundness of QBF strategies, both of which p-simulate
eFrege+∀red.

References

[1] Arora, S., Barak, B.: Computational Complexity: A Modern Approach.
Cambridge University Press (2009)

[2] Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their
proof complexities. In: SAT 2014. pp. 154–169 (2014)

[3] Beyersdorff, O., Böhm, B.: Understanding the relative strength
of QBF CDCL solvers and QBF resolution. In: Lee, J.R.

16



(ed.) 12th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2021, January 6-8, 2021, Virtual Conference. LIPIcs,
vol. 185, pp. 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPIcs.ITCS.2021.12,
https://doi.org/10.4230/LIPIcs.ITCS.2021.12

[4] Beyersdorff, O., Bonacina, I., Chew, L., Pich, J.: Frege systems for quan-
tified Boolean logic. J. ACM 67(2) (Apr 2020)

[5] Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi
and their proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42
(2019)

[6] Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF
proof systems. In: 37th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science,
FSTTCS 2017, December 11-15, 2017, Kanpur, India. LIPIcs,
vol. 93, pp. 14:1–14:15. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik (2017). https://doi.org/10.4230/LIPIcs.FSTTCS.2017.14,
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.14

[7] Chew, L.: Hardness and optimality in QBF proof systems modulo NP. In:
SAT 2021. pp. 98–115. Springer, Cham (2021)

[8] Chew, L., Clymo, J.: How QBF expansion makes strategy extraction hard.
In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning -
10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12166,
pp. 66–82. Springer (2020). https://doi.org/10.1007/978-3-030-51074-9 5,
https://doi.org/10.1007/978-3-030-51074-9 5

[9] Cook, W.J., Coullard, C.R., Turán, G.: On the complexity of cutting-plane
proofs. Discrete Applied Mathematics 18(1), 25–38 (1987)

[10] Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation
and strategy extraction in search-based QBF solving. In: McMillan, K.L.,
Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. pp. 291–308. Springer
(2013)

[11] Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for gen-
erating proofs and strategies for both true and false QBF formulas. In:
Walsh, T. (ed.) IJCAI 2011. pp. 546–553. IJCAI/AAAI (2011)

[12] Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can
effectively p-simulate general propositional resolution. In: AAAI (2008)

[13] Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF prepro-
cessing. In: 7th International Joint Conference on Automated Reasoning
(IJCAR). pp. 91–106 (2014)

17



[14] Janota, M., Marques-Silva, J.: On propositional QBF expansions and
Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT. pp. 67–82.
Springer (2013)

[15] Kiesl, B., Rebola-Pardo, A., Heule, M.J.: Extended resolution simulates
drat. In: Automated Reasoning: 9th International Joint Conference, IJ-
CAR 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings. pp. 516–531. Springer (2018)

[16] Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified
Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

[17] Krajek, J., Pudlk, P.: Propositional proof systems, the consistency of first
order theories and the complexity of computations. The Journal of Symbolic
Logic 54(3), 10631079 (1989). https://doi.org/10.2307/2274765

[18] Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity
Theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cam-
bridge University Press, Cambridge (1995)

[19] Kraj́ıček, J., Pudlák, P.: Quantified propositional calculi and fragments of
bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik 36, 29–46 (1990)

[20] Lonsing, F., Biere, A.: Integrating dependency schemes in search-based
QBF solvers. In: SAT 2010. Lecture Notes in Computer Science, vol. 6175,
pp. 158–171. Springer (2010)

[21] Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif.
Intell. Res. 65, 180–208 (2019)

[22] Peitl, T., Slivovsky, F., Szeider, S.: Long-distance Q-Resolution with de-
pendency schemes. J. Autom. Reason. 63(1), 127–155 (2019)

[23] Schlaipfer, M., Slivovsky, F., Weissenbacher, G., Zuleger, F.: Multi-linear
strategy extraction for QBF expansion proofs via local soundness. In: SAT
2020. Lecture Notes in Computer Science, vol. 12178, pp. 429–446. Springer
(2020)

[24] Slivovsky, F., Szeider, S.: Variable dependencies and Q-Resolution. Inter-
national Workshop on Quantified Boolean Formulas (2013)

[25] Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time.
Proc. 5th ACM Symposium on Theory of Computing pp. 1–9 (1973)

[26] Van Gelder, A.: Contributions to the theory of practical quantified Boolean
formula solving. In: Principles and Practice of Constraint Programming.
pp. 647–663. Springer (2012)

18



[27] Wetzler, N., Heule, M., Jr., W.A.H.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: SAT 2014. Lecture Notes in
Computer Science, vol. 8561, pp. 422–429. Springer (2014)

[28] Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean sat-
isfiability solver. In: ICCAD 2002. pp. 442–449 (2002)

19

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


