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Abstract

In this paper we study functions on the Boolean hypercube that have the property that after applying
certain random restrictions, the restricted function is correlated to a linear function with non-negligible
probability. If the given function is correlated with a linear function then this property clearly holds.
Furthermore, the property also holds for low-degree functions as low-degree functions become a constant
function under a random restriction with a non-negligible probability. We show that this essentially is the
only possible reason. More specifically, we show that the function must be correlated to a product of a
linear function and a low-degree function. One of the main motivations of studying this question comes
from the recent work of the authors [BKM22b] towards understanding approximability of satisfiable
Constraint Satisfaction Problems.

Towards proving our structural theorem, we analyze a 2-query direct product test for the table F :(
[n]
qn

)
→ {0, 1}qn where q ∈ (0, 1). We show that, for every constant ε > 0, if the test passes with

probability ε > 0, then there is a global function g : [n] → {0, 1} such that for at least δ(ε) fraction of
sets, the global function g agrees with the given table on all except α(ε) many locations. The novelty of
this result lies in the fact that α(ε) is independent of the set sizes. Prior to our work, such a conclusion
(in fact, a stronger conclusion with α = 0) was shown by Dinur, Filmus, and Harsha [DFH19] albeit
when the test accepts with probability 1− ε for a small constant ε > 0. The setting of parameters in our
direct product tests is fundamentally different compared to [DG08, IKW12, DS14, DFH19] and hence
our analysis involves new techniques, including the use of the small-set expansion property of graphs
defined on multi-slices. Such expansion property was recently shown in [BKLM22].

As one application of our structural result, we give a 4-query linearity test under the p-biased distri-
bution. More specifically, for any p ∈ ( 1

3 ,
2
3 ), we give a test that queries a given function f : {0, 1}n →

{0, 1} at 4 locations, where the marginal distribution of each query is µ⊗n
p . The test has perfect complete-

ness and soundness 1
2 + ε – in other words, for every constant ε > 0, if the test passes with probability

at least 1
2 + ε, then the function f is correlated to a linear function under the µ⊗n

p measure. This qualita-
tively improves the results on the linearity testing under the p-biased distribution from the previous work
[KS09, DFH19] in which the authors studied the test with soundness 1− ε, for ε close to 0.

1 Introduction

Analysis of Boolean functions plays a crucial role in many areas of mathematics and computer science, in-
cluding complexity theory, hardness of approximation, coding theory, additive combinatorics, social choice,
etc. Among the set of Boolean functions, linear functions are among the simplest class of functions and
hence linearity testing, i.e., checking whether a given Boolean function is a linear function or far from it, is
one of the most fundamental and well-studied problems in the analysis of Boolean functions. In this paper,
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we study certain problems in the analysis of Boolean functions and problems in property testing, including
linearity testing and agreement testing.

The main motivation for studying these set of problems comes from the recent work by the authors
and this work can be thought of as a continuation of the line of research from the previous work by the
authors [BKM22a, BKM22b]. The primary focus in this paper is to understand the structure of a boolean
function under a random restriction. Fix a distribution ν on {0, 1} and a constant η ∈ (0, 1). Given a
function f : {0, 1}n → {0, 1}, consider the process of randomly restricting a subset of the variables as
follows. First choose a random subset I ⊆ [n] by including i ∈ I with probability η independently for each
i ∈ [n] and then select z ∈ {0, 1}|I| from the distribution νI . The function f under the restriction (I, z)
is defined as fI→z : {0, 1}n−|I| → {0, 1} where fI→z(x) = f(x, z|I), i.e., we fix the variables from I
according to z. In this work, we study the properties of f if fI→z is correlated with a linear function with
noticeable probability. In order prove the structural result, we also study the direct product testing under a
different regime of parameters that was not studied before. Finally, we use our structural result to analyze
linearity tests under a biased distribution.

We now formally describe these problems and the main results that we prove in this work.

1.1 Problem 1: Large Fourier coefficient after a random restriction

Let µ be a distribution over {0, 1} in which the probability of each atom is at least α > 0, and write µ =
βU + (1−β)µ′ where U is the uniform distribution over {0, 1}, µ′ is some distribution over {0, 1} with full
support, and 0 < β < α/2 is thought of as a constant. We denote I ∼p [n] the choice a random subset of [n]
that results from including each element from [n] in it with probability p. Suppose that f : ({0, 1}n, µ⊗n)→
R is a function with 2-norm at most 1 satisfying that

Pr
I∼1−β [n]

z∼µ′I

[
∃S ⊆ I,

∣∣∣f̂I→z(S)
∣∣∣ > δ

]
> η. (1)

In words, with noticeable probability, after a suitable random restriction and looking at the underlying
measure of the restricted function as the uniform distribution, the restricted function has a significant Fourier
coefficient. What can we say about the structure of the function f in that case?

The most natural guess would be that the function f itself has to be correlated with some linear function
χS(x) =

∏
i∈S

(−1)xi . Inspecting, it is indeed clear that any function f that is correlated with some χS

indeed satisfies (1), however it turns out that there are other examples. If f is a low-degree function, say a
function of degree much smaller than 1/β, then we expect the random restriction to fix the value of f with
considerable probability, and hence we expect

∣∣∣f̂I→z(∅)∣∣∣ to be large with considerable probability. More
generally, it is enough that f is correlated with a low-degree function for the above to occur with noticeable
probability.

More generally, one could combine the two examples above and show that any function f that is cor-
related with a function of the form χS(x) · g(x), where g is a low-degree function, satisfies (1) provided
that deg(g) is significantly smaller than 1/β. Indeed, after such random restriction, the restriction of χS is a
different character (up to a sign), and the restriction of g is close to being a constant function with significant
probability. Hence we would get that after random restriction f is correlated with a function of the form
aχS′ for some real number a ∈ R, and in particular it has a significant Fourier coefficient.

Our first result asserts that this structure in fact captures all functions f satisfying (1).
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Theorem 1.1. For all α, β > 0 and δ, η > 0, there are δ′(δ) > 0, d(α, δ) ∈ N such that if a function
f : ({0, 1}n, µ⊗n)→ R with 2-norm at most 1 as in the above set-up satisfies (1), then there is S ⊆ [n] and
a function g : {0, 1}n → R of 2-norm at most 1 of degree at most d, such that∣∣∣∣ E

x∼µ⊗n
[f(x)χS(x)g(x)]

∣∣∣∣ > δ′.

Moreover, the function g is given as g = (χSf)6d.

Motivation. Besides being a natural question to consider, we are motivated to study the above problem
and prove Theorem 1.1 by the study of satisfiable CSPs. In particular, in [BKM22b] the authors proved an
analytical lemma [BKM22b, Lemma 1] that plays a crucial role in classifying the complexity of approxi-
mation of satisfiable constraint satisfaction for the case of 3-ary CSPs. En route to extending this result to
larger arity CSPs, the authors have been thinking about a stability version of this problem [BKM22c] which
naturally leads to a structure as given in (1). While such structure, by its own, is already significant, it is
hard to really call it a global structure, since it only asserts that f possesses some distinctive structure after
a random restriction, which limits its applicability. Indeed, while we believe such structure to be sufficient
for some applications (such as resolving the non-linear embedding hypothesis from [BKM22a]), we can
see that to make further progress one needs a more “full-fledged” global characterization of a function f
satisfying (1). This is where the current paper enters the picture, and the original motivation for us to prove
Theorem 1.1.

Upon trying to think of Theorem 1.1, we have realized it is related to two other notable problems in TCS,
namely the linearity testing problem over the biased cube, and the direct product testing problem. Below,
we discuss these problems, and state our results about them.

1.2 Problem 2: The linearity testing problem over the biased cube

The next problem we consider is the biased version of the classical linearity testing problem. Let µq be the
q-biased distribution over {0, 1}, i.e. the distribution in which µq(1) = q and µq(0) = 1− q, and let ν be a
distribution over

{
(a, b, c, d) ∈ {0, 1}4

∣∣ a+ b+ c+ d = 0 (mod 2)
}

whose marginal on each coordinate
is µq in which the probability of each element is at least α > 0. In the linearity testing problem over the
q-biased cube, we have a function f : ({0, 1}n, µ⊗nq )→ {−1, 1} satisfying that

Pr
(x,y,z,w)∼ν⊗n

[f(x)f(y)f(z)f(w) = 1] >
1

2
+ δ, (2)

namely that f(x)f(y)f(z)f(w) = 1 with probability noticeably larger than 1/2, and the goal is to prove that
f must possess some special structure in this case. The classical version of this problem is concerned with
the case that q = 1/2, in which case it was shown that f must have a heavy Fourier coefficient, i.e. must be
correlated with a function of the form χS . Initially, this was shown for the so-called 99% regime [BLR90],
in which δ > 1/2 − ε for some small ε, and later this was extended to the 1% regime, in which case δ is
thought of as small [BCH+96, KLX10].

For any q 6= 1/2, one can recover the result for the 99% regime using the same local-correction tech-
niques [KS09, DFH19] and show that f must be in fact close to a function of the form χS . However, the
techniques in the more challenging 1% regime completely break down, and as far as we know the linearity
testing question is open for any q 6= 1

2 in this regime.
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Theorem 1.1 already by itself gives some structural result for functions f satisfying (2), and to see that,
we re-write (2) as

E
(x,y,z,w)∼ν⊗n

[f(x)f(y)f(z)f(w)] > 2δ. (3)

Inspecting (3), one may apply random-restrictions properly so as to transform inequality (3) to measuring the
advantage certain restrictions of f have in the standard linearity testing problem over the uniform hypercube,
which shows that with noticeable probability, a random restriction of f has a significant Fourier coefficient
as in the setting of Theorem 1.1. Thus, f must be correlated with a function of the form χSg for a low-degree
function g.

Ideally, one would expect that the answer to the linearity testing question over the q-biased cube to also
be about correlations just with χS , which raises the question of whether the g part is necessary in the above
result. In general, we do not know the answer to that, but we are able to show that it boils down to the
following problem, for which we need the notion of resilient functions.

Definition 1.2. Let µ be a probability measure over {0, 1}. A function g : ({0, 1}n, µ⊗n) → R is called
(r, ε) resilient if for any S ⊆ [n] of size at most r and any s ∈ {0, 1}S ,∣∣∣∣Ex∼µ⊗n [f(x) |xS = s]− E

x∼µ⊗n
[f(x)]

∣∣∣∣ 6 ε.

In other words, restricting any set of at most r coordinates changes the average of g by at most ε.

It turns out that to “remove” the g part from the above structural result, it is sufficient (and also necessary,
in a sense) to show that if g1, . . . , g4 are bounded, noise stable functions (which should be thought of as low-
degree functions), that are resilient, then∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[g1(x)g2(y)g3(z)g4(w)]

∣∣∣∣∣ 6 o(1). (4)

In general, we do not know how to solve this problem, however in some cases of interest we are able to do
so, namely in the case that ν is pairwise independent.

To spell it out, in this case, ν is the distribution in which (a) each one of (1, 1, 0, 0), (1, 0, 1, 0),
(1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1) and (0, 0, 1, 1) receives probability q1, (b) the point (1, 1, 1, 1) receives
probability q2, and (c) the point (0, 0, 0, 0) receives probability q3, where q1 = q(1−q)

2 , q2 = q(3q−1)
2 and

q3 = 1− 5q
2 + 3q2

2 . In this case, we are able to resolve the above problem, thereby prove the following result:

Theorem 1.3. Let q ∈ (1
3 ,

2
3), and suppose that ν is a pairwise independent distribution over the set{

(a, b, c, d) ∈ {0, 1}4
∣∣ a+ b+ c+ d = 0 (mod 2)

}
in which the marginal of each coordinate is µq. Then

for every δ > 0, there is δ′ > 0 such that if f : ({0, 1}n, µ⊗nq )→ {−1, 1} satisfies (3), then there is S ⊆ [n]
such that ∣∣∣∣ E

x∼µ⊗n
[f(x)χS(x)]

∣∣∣∣ > δ′.

We remark that our argument gives in fact a version of Theorem 1.3 for real-valued functions with
bounded 12-norms, as well as a list-decoding version. See Section 4 for more details.
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1.3 Problem 3: Direct product testing

The third and final problem considered in this paper is the direct product testing problem which is described
as follows. Fix any q ∈ (0, 1) and consider a table F :

(
[n]
qn

)
→ {0, 1}qn. For a subset S ⊆ [n] of size qn, the

entry F [S] can be thought of as a function fS : S → {0, 1}, by fixing an arbitrary ordering of the set [n]. F
is called a direct product table if there is a function g : [n] → {0, 1} such that for all S, F [S] = g|S . Here,
g|S is the function g restricted to the coordinates in S. In direct product testing, one would like to check, by
querying a few locations from the table F , if the table is coming from a global function g : [n]→ {0, 1}. In
other words, is there a function g : [n]→ {0, 1} such that for many subsets S ⊆ [n], the entry F [S] is equal
to g|S?

The direct product testing problem has been extensively studied in [DR06, DG08, IKW12, DS14,
DFH19] and one of the main motivations of studying direct product testing is its application to constructing
Probabilistically Checkable Proofs with small soundness (for instance, see [IKW12]). There is a natural test
to check if the table F is a direct product and it is as follows: Select a random set A of size q′n and two
random subsets B1 ⊆ [n] \ A and B2 ⊆ [n] \ A each of size (q − q′)n, for some q′ < q, and check if
F [S1]|S1∩S2 = F [S2]|S1∩S2 , where Si = A∪Bi for i = 1, 2. Denote the distribution on the sets (S1, S2) by
Dq,q′ . Clearly, if F is a direct product function, then the test passes with probability 1. The challenging task
is to show that if the test passes with non-negligible probability, then F is close to being a direct product
function.

Similar to linearity testing, the direct product testing has been studied in the 99% regime [DR06, DFH19]
(in which one wants to draw the conclusion when the test passes with probability 1 − ε) and in the 1%
regime [DG08, IKW12, DS14] (in which one wants to draw the conclusion when the test passes with proba-
bility ε). Here, ε can be though of as a small quantity. In this work, we study the direct product test in the 1%
regime when q, q′ are constants independent of n. The regime of parameters we consider is tailored to our
applications (i.e., proving Theorem 1.1, and hence proving Theorem 1.3), and to the best of our knowledge
does not currently appear in the literature.

If the test passes with probability ε, then one possibility is that the table F could be obtained (proba-
bilistically) by choosing some g : [n] → {0, 1}, and defining F [S] independently for each S as g|S with
probability

√
ε, and otherwise to be a random element of {0, 1}qn. More generally, one can take a list of

functions g1, . . . , gm : [n] → {0, 1} such that for all i 6= j we have that ∆(gi, gj) 6 O(1), and then for
each S independently, with probability

√
ε choosing F [S] = gi|S for some random i ∈ [m], and otherwise

taking F [S] to be uniformly chosen. Our direct product theorem asserts that the above examples essentially
exhaust all possible F ’s that satisfy the direct product test.

Theorem 1.4. For all 0 < q′ < q < 1 and ε > 0, there are r ∈ N and δ > 0 such that the following holds.
Suppose that F :

(
[n]
qn

)
→ {0, 1}qn satisfies

Pr
(S1,S2)∼Dq,q′

[F [S1]|S1∩S2 = F [S2]|S1∩S2 ] > ε.

Then there exists a function g : [n] → {0, 1} such that for at least a δ fraction of S ∈
(

[n]
qn

)
, we have

|{i ∈ S | F [S]i 6= g(i)}| 6 r.

The novelty of this result lies in the fact that r is independent of n. Prior to our work, such a conclusion
(in fact, a stronger conclusion with r = 0) was shown by Dinur, Filmus, and Harsha [DFH19] albeit when
the test accepts with probability 1 − ε for small constants ε > 0. We cannot have r = 0 in our conclusion
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as the test passes with a small probability.1 Furthermore, the setting of parameters in our direct product
tests are fundamentally different compared to the previous work on direct product testing and hence our
analysis involves new techniques, including the use of the small-set expansion property of graphs defined
on multi-slices.2 Such expansion property was recently shown in [BKLM22].

For our application, we need to apply the direct product theorem over a q-biased hypercube which is
defined as follows. Consider the q-biased measure over P ([n]), i.e. µ⊗nq (A) = q|A|(1 − q)n−|A|, and let
G : (P [n], µ⊗nq ) → P ([n]) be an assignment that to each A ∈ P ([n]) assigns a subset of it G[A] ⊆ A in
a locally consistent manner. Namely, for α ∈ (0, 1), consider the distribution Dq,α over A,A′ ⊆ [n] that
results from by taking, for each i ∈ [n] independently, i to be both in A,A′ with probability αq, i to be in
A \ A′ with probability (1 − α)q, i to be in A′ \ A with probability (1 − α)q. The function G is locally
consistent if

Pr
(A,A′)∼Dq,α

[
G[A] ∩ (A ∩A′) = G[A′] ∩ (A ∩A′)

]
> ε.

The following corollary, that follows from Theorem 1.4, asserts that in this case, G must be correlated to a
global subset S ⊆ [n].

Corollary 1.5. For all α, ε > 0 and 0 < q < 1
2−α , there are r ∈ N and δ > 0 such that the following holds.

Suppose that G : (P [n], µ⊗nq )→ P ([n]) satisfies

Pr
(A,A′)∼Dq,α

[
G[A] ∩ (A ∩A′) = G[A′] ∩ (A ∩A′)

]
> ε.

Then there exists S ⊆ [n] such that PrA∼µ⊗nq [|G[A]∆(S ∩A)| 6 r] > δ.

1.4 Related Work

As mentioned before, various kinds of linearity tests have been extensively studied. To begin with, Blum,
Luby and Rubienfeld [BLR90] gave the 3-query lineary test under uniform distribution in the 99% regime.
[BCH+96, KLX10] improved this result by showing that if the function on {0, 1}n passes the BLR test with
probability 1

2 + ε, for any constant ε > 0, then it has a non-trivial correlation with some linear function.
In the p-biased setting, Kopparty and Saraf [KS09] gives Op(1)-query linearity test with soundness 1 − ε
for ε close to 0. David, Dinur, Goldenberg, Kindler and Shinkar [DDG+15] gave a linearity testing in the
99% regime on a slice of the Boolean hypercube. Recently, in order to reduce the number of queries in the
biased linearity testing, Dinur, Filmus and Harsha [DFH19] gave a 4-query linearity test (more generally, a
2d+1-query degree-d test) with soundness 1− ε, in the p-biased setting.

The direct product tests (also known as agreement tests) were first studied by Goldreich and Safra [GS00]
in which they show that it can be testable with constantly many queries. Dinur and Reingold [DR06] gave
a 2-query direct product test in the 99% accepting regime. Dinur and Goldenberg [DG08] improved this to
the 1% regime. More specifically, given a table F :

([n]
k

)
→ {0, 1}k, if the test described in the introduction

passes with probability at least ε > 1/kα for some α < 1, then there is a global function g : [n] → {0, 1}

such that for at least εO(1) fraction of the sets S, F [S]
6kδ

6= g(S) for some constant 0 < δ < 1. Here

1Consider a global function g : [n] → {0, 1} and define F [S] = g(S) + η, where η is a random noise with hamming weight
6 C for some constant C. It is easy to see that F will pass the test with a small constant probability and yet there is no global
function that fully agrees with F [S] on a constant fraction of S ∈

(
[n]
qn

)
.

2Given an alphabet sizem ∈ N, thought of as a constant, and ~k = (k1, k2, . . . , km) whose entries sum of up n, the ~k-multi-slice
is the set of vectors x ∈ [m]n in which each symbol i ∈ [m] appears precisely ki times.
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the notation
6β
6= means that the two strings agree on all except β many locations. They also show that one

cannot get a meaningful conclusion of the test passes with probability less than 1
k . More formally, there is

a function F such that the test accepts F with probability at least Ω(k′/k), where k′ is the intersection size
of the two sets from the test distribution, for any function g : [n] → {0, 1}, the fraction of sets S on which

g(S)
60.9k
6= F [S] is at most kn . Thus, for k′ = Θ(k), and k = n1−ε, the claim says there is no global structure

even if the test passes with probability Ω(1). In our case, though, this claim does not give any meaningful
conclusion, as the quantity k

n = q, a large constant.
In order to bring down the soundness of the test (compared to the quantity 2k, which is the alphabet

size), Impagliazzo, Kabanets, and Wigderson gave a 3-query test that has soundness exp(−kα) for some
α > 0. They also gave a different proof of the 2-query test from [DG08] and obtained similar results. Dinur
and Livni Navon [DLN17] improved the soundness of the 3-query test to ε = exp(−Ω(k)) when N � k
(N > 2Ω(k)). In the latter result, the global function approximately agrees with F on at least ε−4ε2 fraction
of the sets. Here, the approximate agreement can be taken as an all but arbitrary small constant fraction of
the coordinates in S.

Recently, Dinur, Filmus and Harsha [DFH19] analyzed the 2-query test in the 99% regime to get a
stronger conclusion. More specifically, they showed that if the test passes with probability at least 1 − ε
for a sufficiently small constant ε > 0, then there is a global function g such that for at least 1 − O(ε)
fraction of the sets S, F [S] = g(S). Note that in the conclusion, they get a stronger agreement with the
global function. They also gave a higher-dimension version of the direct product test where F [S] represents
a degree d functions (as opposed to linear functions) on the variables in S. In the same work [DFH19], the
authors use this direct product test to get a 4-query linearity test over a biased measure on the hypercube.

1.5 Techniques

In this section, we give the proofs overview of the three theorems mentioned in the introduction.

1.5.1 Proof overview of Theorem 1.1

By the hypothesis of the theorem, we know that after a random restriction, the function f is correlated with
a linear function with non-negligible probability. If we put a further restriction on the function, then the
(further) restricted function stays correlated with the same linear function with non-negligible probability.
We use this fact to conclude that the correlated linear function is independent of the actual restriction, i.e.,
it depends on the subset being restricted but independent of the settings to the variables in the subset. Once
we establish this structure, we show that for different subsets I1 and I2 that intersect at many locations, the
corresponding linear functions are similar on the domain {0, 1}I1∩I2 . We exploit this structure further by
using our direct product theorem to conclude that f is correlated to a global nearly-linear function. We now
explain each of these parts in more detail.

We denote I ∼p [n] the choice a random subset of [n] that results from including each element from [n]
in it with probability p. Let χS(x) :=

∏
i∈S

(−1)xi the multiplicative character over the uniform measure.

Step I: Local linear structure. Suppose we have a function f as in the statement of Theorem 1.1. By the
premise, we know that choosing a random restriction I ∼1−β [n] and z ∼ µ′I , the restricted function fI→z
has a significant Fourier coefficient SI,z with noticeable probability. A priori, it may be the case that even
if we fix the set of restricted coordinates I , for each z we would get a completely different and unrelated
character SI,z , and the first step in our argument is to show that this cannot be the case over all I .
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Towards showing that SI,z typically does not depend on z, we consider a heavier random restriction in
which we first choose I as above, then I ′ ∼1/2 Ī , and randomly restrict the coordinates of I ∪ I ′ according
to a measure µ′′, after which the underlying measure of fI→z,I′→z′ is still the uniform measure; in other
words, z′ is chosen uniformly from {0, 1}I′ . Since after the restriction I → z we already have a heavy
Fourier coefficient SI,z with noticeable probability, it follows that fI→z,I′→z′ also has a heavy Fourier
coefficient, namely SI,z ∩ Ī ′, with noticeable probability. Note that the identity of this coefficient now does
not depend on the setting of z′. At the same time, when we view the common random restriction Ĩ → z̃
that combines I and I ′, there is no longer “separation” of what is the I-part and what is the I ′-part, and this
allows us to argue that the identity of SI,z does not really depend on z. Formally, for this step we use the
small set expansion property of the hypercube.

Step II: Local consistency. Thus, we can think that for each I , we have a list of heavy coefficients, W̃I that
capture all of the heavy coefficients that may occur when we randomly restrict the coordinates of I . Using
a list-decoding type version of the argument above, we show that together, all S ⊆ Ī that are individually
only rarely a heavy coefficient of a random restriction of f on I , even together do not contribute much to
the probability that a restriction of f has a significant Fourier coefficient. Using this fact, we are able to
establish that the lists W̃I must have certain local consistency properties. Roughly speaking, we show that
if we choose I1, I2 randomly that intersect on (1 − β) of their elements (for suitably chosen β > 0), with
significant probability we have a pair of compatible characters in the lists of I1, I2. That is, with significant
probability we will be able to find S1 ∈ W̃I1 and S2 ∈ W̃I2 such that S1 ∩ I1 ∪ I2 = S2 ∩ I1 ∪ I2. Clearly,
such property would happen if there was a global character S ⊆ [n] such that many of the lists W̃I contain
S ∩ Ī , and the intuition suggests that this is the only way to create such a situation. In the next part of the
argument, we use a direct product theorem, namely Corollary 1.5, to carry out such an argument.

Step III: Invoking the direct product testing theorem. We show that on top of being locally consistent, the
lists W̃I are also bounded, hence we may define an assignment G to the I’s that to each I selects randomly
a character F [I] ∈ W̃I . Having defined F , we observe that the local consistency of the lists translates to the
fact that the assignment G[A] = F [A] passes the direct product test with significant probability. Thus, we
may invoke Corollary 1.5 to deduce that there exists S ⊆ [n] for which, for a significant fraction of the I’s,
|F [I]∆(S ∩ I)| = O(1).

Step IV: Deducing the correlation with a global nearly-linear function. Stated otherwise, the last con-
clusion asserts that after random restriction, with significant probability the function fI→z is correlated with
a function of the form χS′ for S′ such that |S′∆(I ∩ S)| = O(1). Thus, the function χI∩S ·fI→z has signif-
icant mass on the low-degree part, and is hence not noise sensitive – i.e. it has stability bounded away from
0. Thus, the function (χS ·f)I→z (which up to a sign is the same as the previous function) is somewhat noise
stable with significant probability over the choice of I and z, which allows us to deduce via Lemma 2.8 that
the function χS · f is somewhat noise stable, and hence is correlated with its low-degree part.

1.5.2 Proof overview of Theorem 1.3: linearity testing over a biased hypercube

We begin with an overview of the proof of Theorem 1.3 and the overall idea is as follows. We know
that [BCH+96] if the function passes the linearity test with probability 1/2 + ε under the uniform measure,
then the function is correlated with a linear function. In order to use this structure, we first do a certain
random restriction on a subset of coordinates such that for the rest of the coordinates, our test queries are
distributed uniformly. Now, using the linearity testing over the uniform measure, we can conclude that the
restricted functions are correlated with a linear function. At this point, we use our Theorem 1.1 to conclude
that the original function must be correlated with a product of a linear function and a low-degree polynomial.
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In order to get rid of the low-degree polynomial from the conclusion, we design the test carefully so that its
contribution in the final correlation is negligible. We now explain how to achieve these high-level ideas in
more detail.

Step I: From linearity testing to large Fourier coefficients under random restrictions. Suppose that we
are given a function f : ({0, 1}n, µ⊗nq )→ {−1, 1} satisfying the premise of Theorem 1.3, i.e. such that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[f(x)f(y)f(z)f(w)]

∣∣∣∣∣ > δ. (5)

Using standard averaging arguments, after choosing restrictions fI→a, fI→b, fI→c, fI→d in a correlated
manner that changes the underlying measure to be uniform, with significant probability we get that∣∣∣∣∣ E

(x,y,z,w)∼ν′[n]\I
[fI→a(x)fI→b(y)fI→c(z)fI→d(w)]

∣∣∣∣∣ > δ

2
,

where ν ′ is the uniform distribution over (x, y, z, w) ∈ {0, 1}4 such that x+y+ z+w = 0. Thus, using the
standard Fourier analytic analysis of the test over the uniform measure, we conclude that with significant
probability the function fI→a has a heavy Fourier coefficient. Invoking Theorem 1.1 we conclude that f is
correlated with a function of the form χS · g, where g is a low-degree function, and moreover g takes the
form g = (χSf)6d for some d = Oδ(1).

Step II: The list decoding argument. We would like to argue that since f is correlated with χS · g, we can
“switch” one of the f ’s above with χS · g, and still get that the expectation in (5) is significant. To carry out
such argument, we require a list-decoding version of the previous argument. Namely, we need to find a list
of functions χS1 · g1, . . . , χSm · gm that are all correlated with f and furthermore that “explain” all of the
advantage of the expectation in (5), in the sense that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n

[
(f −

m∑
i=1

χSi · gi)(x)f(y)f(z)f(w)

]∣∣∣∣∣ = o(1). (6)

Such arguments are rather easy to carry out in the uniform measure, however in our setting we are facing
two additional challenges. First, since our decoding procedure above is not very simple, we are only able to
apply it in a black-box way, so if we want to apply it iteratively we have to be careful so that the functions
we work with satisfy the prerequisites of our basic decoding procedure. In our situation, this amounts to the
functions not having too large 2-norm. Second, in contrast to the standard hypercube, the functions χSi · gi
need not be orthogonal hence there is no “natural” bound on the list size m. Indeed, such bound is simply
false, so one cannot simply take all of the functions χSi · gi that are correlated with f .

We overcome these challenges by allowing some flexibility in the degree of gi’s and in the level of cor-
relation we require. Roughly speaking, the idea is that for χS1g1 and χS2g2 to be correlated, the characters
S1, S2 must be close to each other (in the sense that |S1∆S2| is small). Thus, as g1 is the low-degree part
of f · χS1 and g2 is the low-degree part of f · χS2 , we expect these to overlap, and so if we “increase” the
degree in which we truncate, we expect the function χS1g1 to already include in it all of the mass of χS2g2,
and so we would be able to drop χS2g2 from the list.

After carefully doing this argument, we are indeed able to find a boundedm and a list χS1g1, . . . , χSmgm
as above so that (6) holds. This means that for some i, we get that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[(χSi · gi)(x)f(y)f(z)f(w)]

∣∣∣∣∣ > Ω(δ/m),
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and we have effectively switched one of the f ’s into a function with the desired structure. Repeating this
argument a few more times, we find S1, . . . , S4 and g1, . . . , g4 of low degree given as gi = (χSif)6di for
some di = Oδ(1) such that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[(χS1 · g1)(x)(χS2 · g2)(y)(χS3 · g3)(z)(χS4 · g4)(w)]

∣∣∣∣∣ > δ′. (7)

Step III: The invariance principle argument. Letting T = S1 ∩ S2 ∩ S3 ∩ S4, we show that unless all of
the Si’s are almost equal to T (in the sense that |Si∆T | = O(1)), the above expectation is small. Hence,
we get that each one of the Si’s is close to T , and for simplicity of presentation in this overview, we assume
that Si = T for all i. Thus, as χT (x)χT (y)χT (z)χT (w) = 1 in the support of ν, it follows that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[g1(x)g2(y)g3(z)g4(w)]

∣∣∣∣∣ > δ′.

In other words, we have reduced the original problem of studying the structure of functions f that have
an advantage in the linearity test over µq to the same problem, except that now the functions g1, . . . , g4

are low-degree. The slight caveat here is that while f ’s were bounded (in fact, Boolean), the gi’s are not,
however this is easy to fix, and we show that instead of using degree truncations, one can apply a suitable
noise operator and still get an inequality as above. Thus, for the sake of this overview, we think of gi’s as
low-degree bounded functions.

It can be shown that if f is not correlated with any χS , then the average of gi is close to 0, even
after restricting any set of O(1) many coordinates. Thus, using standard regularity arguments, we can
show that there is a set of coordinates T ′ of size O(1) such that after restricting them, the restrictions of
g1, . . . , g4 all have small low-degree influence and still have averages close to 0. In this case, we are able
to appeal to the invariance principle [MOO05], and more specifically to a version from [Mos10]. For the
sake of simplicity of presentation, we ignore the restriction of T ′ for now, so that the invariance principle
implies that the value of E(x,y,z,w)∼ν⊗n [g1(x)g2(y)g3(z)g4(w)] is close to the value of an expectation of the
form E(z1,z2,z3,z4)∼ν̃⊗n

[
P1(z1)P2(z2)P3(z3)P4(z4)

]
, where P1, . . . , P4 : Rn → [−1, 1] are functions over

Gaussian space with the same average as g1, . . . , g4, and ν̃ is a distribution of jointly distributed Gaussian
random variables with the same pairwise correlations as of ν. However, ν is pairwise independent (this is
the only place in which we use this fact), so the last Gaussian expectation is easy to compute and is just
equal to the product of averages of P1, . . . , P4, which is 0. This is a contradiction to (7), and so it is not
possible that f is not correlated with any of χS , completing the overview of the proof.

1.5.3 Proof overview of Theorem 1.4: direct product testing

In the 99% regime, in order to come up with the global function that agrees with the given table F , in most
cases, just taking the majority vote works. More formally, if we define the function g : [n] → {0, 1} by
setting g(i) = MajorityS,S3iF [S]|i, then this g will have the property that it will approximately agree with
F on almost all of the domain

(
[n]
qn

)
. Such a proof strategy was shown to work [DR06, DFH19] in the high

acceptance regime of the direct product tests.
This above strategy, however, fails badly in the 1% regime. To see this, for every S, define F [S] to be

a random element from {0qn, 1qn} with equal probability. It is easy to see that F will pass the test with
probability 1/2. On the other hand, the function g defined by taking the majority vote, looks like a random
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function and hence is very far from the table F .

Step I: Getting the local structure. One of the frameworks that was very successful in analyzing various
direct product tests in the 1% regime is from the work of Impagliazzo, Kabanets, and Wigderson [IKW12].
This framework, that we will explain next, has been used in [DLN17, BDN17] to analyze various agree-
ment tests. As seen before, although taking the majority vote among all the sets containing i does not
work, we can define functions that have agreement with F locally. More specifically, given a subset
S and an assignment σ ∈ {0, 1}qn, if we define a function gS,σ : [n] → {0, 1} by setting gS,σ(i) =
MajorityS′,S′3i,F [S′]|S∩S′=σ|S′∩SF [S′]|i, then at least for the earlier example, one of the gs will end up being
the all 0s function and will have agreement with the table F . In other words, we define the function by
taking the majority vote only among the sets that are consistent with the given pair (S, σ).

This intuition can be made to work even when the test passes with probability ε > 0 where ε is a small
constant, or even a sub-constant. However, in general, the functions gS,σ agree with the table F on only a
o(1)-fraction of the domain. Recall, we are interested in finding a global function g that agrees with F on at
least δ(ε) fraction of the domain for some fixed function δ independent of n.

Step II: Stitching different local functions. To remedy this, the next important component in the frame-
work is to stitch these local functions gS,σ to come up with a global function g that has the required property.
In our set-up, we differ from the previous work in this step of stitching different local functions. If we define
the domain CS,σ ⊆

(
[n]
qn

)
as those sets of size qn on which the function gS,σ agrees with the table F [.], then

one way to show that these different functions gS,σs are similar to each is to show that the families CS,σ and
CS′,σ′ have many sets in common for a typical (S, σ) and (S′, σ′). This would be enough to conclude that
gS,σ ≈ gS′,σ′ and then get the final required global structure. This was shown to work in [DG08, IKW12]
where the set sizes qn = o(

√
n), i.e., when q = o(1/

√
n).

The difficulty that arises in our setting of the parameters is that the sets S are of size Θ(n) and hence
we cannot directly show that for a typical pair (S, σ) and (S′, σ′), the corresponding functions agree with
each other. We can, however, show that for a typical (S, σ), there are many (S̃, σ′), where S̃ is a slight
perturbation of the set S resulting in changing a constant fraction of the coordinates in S, such that the

families CS,σ and CS̃,σ′ have many sets in common. From this, we can conclude that the functions gS,σ
6O(1)

6=
gS̃,σ′ for a typical (S, σ). This still is not enough to guarantee an existence of the global function that agrees
with the table F on δ(ε) fraction of the domain and the reason is that we could only show the approximate
equality between gS,σ and gS̃,σ′ where S̃ is correlated to S.

Step III: Using the small-set expansion property. In order to break the correlation between the pairs (S, σ)
and (S̃, σ′) for which we could show gS,σ ≈ gS̃,σ′ , we use the small set expansion property of a certain graph

defined on the multi-slice {0, 1, 2}n. Note that from the approximate equality gS,σ
6O(1)

6= gS̃,σ′ , we have

E
(S,σ),(S̃,σ′)

[
E

T⊆[n],|T |=n/C
[1gS,σ(T )=gS̃,σ′ (T )]

]
> εO(1),

where C is a large constant depending on the approximate equality of the functions gS,σ and gS̃,σ′ . This
gives,

E
T⊆[n],|T |=n/C

[
E

(S,σ),(S̃,σ′)

[
1gS,σ(T )=gS̃,σ′ (T )

]]
> εO(1),
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Now for a typical subset T , we define a graph on (S, σ) where the edges are given by the distribution in
the above expectation.3 We partition the vertex set based on the values of gS,σ(T ). Then it is possible that
all the parts in the partition are small but still the above expectation is large, unless the graph is a small set
expander. The graph in our case turns out to be a small-set expander and hence we can conclude that one of
the parts in the partition is large and therefore, we can break the correlation to conclude that

E
T⊆[n],|T |=n/C

[
E

(S,σ),(S′′,σ′′)

[
1gS,σ(T )=gS′′,σ′′ (T )

]]
> δ(ε),

for some function δ of ε. From this, we conclude that gS,σ
6O(1)

6= gS′′,σ′′ happens with probability δ(ε) for
a random pairs (S, σ) and (S′′, σ′′). This shows that a constant fraction of these local function gS,σ are
close to each other and hence there is a global function that (approximately) agrees with the table F on a
constantly many sets in the domain.

2 Preliminaries

In this section we introduce some basic tools used throughout the paper, mostly from analysis of Boolean
functions. We refer the reader to [O’D14] for a more thorough introduction and discussion.

Notations. We denote I ∼p [n] the choice a random subset of [n] that results from including each element
from [n] in it with probability p. Here and throughout, we denote by χS(x) =

∏
i∈S

(−1)xi the multiplicative

character over the uniform measure. Later on, when we discuss character over the q-biased measures we
will denote it by χqS(x) = xi−q√

q(1−q)
. We use big-O notations, meaning that the notation f = O(g) says that

f 6 C · g where C > 0 is an absolute constant, and f = Ω(g) says that f > cg where c > 0 is an absolute
constant. To simplify keeping track of various parameters, we shall use the notation 0 < a� b� c 6 1 to
say that first c is chosen, then b is chosen sufficiently smaller compared to c, and then a is chosen sufficiently
small with respect to a.

2.1 The Efron-Stein decomposition

Throughout the paper, we will be dealing with product probability measures over the Boolean hypercube, i.e.
({0, 1}n, µ = µ1× . . .×µn), and mostly with the case that each one of the µi’s is the q-biased distribution.

Given any product space (Ω = Ω1 × . . . × Ωn, µ = µ1 × . . . × µn), one may consider the space of
real-valued functions L2(Ω = Ω1 × . . .× Ωn, µ = µ1 × . . .× µn) equipped with the inner product

〈f, g〉 = E
x∼µ

[f(x)g(x)]

for all f, g : Ω→ R.
The Efron-Stein decomposition of a function f : Ω → R is a natural orthogonal decomposition of f

that is often convenient to use. Here, for each S ⊆ [n] we define the space V ⊆S of functions over Ω that
depend only on coordinates from S, and then V =S = V ⊆S ∩

⋂
S′(S V

⊆S′⊥, which is the space of functions

3In the actual argument, we do not need σ and we view S = A∪B where A∩B = ∅. Hence we use the multi-slice {0, 1, 2}n
to represent the vertices. For instance, S = A ∪B is represented by a string x where xi = 1 if i ∈ A, xi = 2 if i ∈ B and xi = 0
otherwise.
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depending only on coordinates from S and orthogonal to any function that depends on less coordinates.
With respect to this, we denote by f=S ∈ V =S the projection of f to V =S , so that

f =
∑
S⊆[n]

f=S .

Given this decomposition, one can verify that the Parseval and Plancherel identities hold, i.e. that

〈f, g〉 =
∑
S⊆[n]

〈f=S , g=S〉, ‖f‖22 =
∑
S⊆[n]

∥∥f=S
∥∥2

2
.

The degree decomposition. Sometimes, it will be convenient for us to consider the coarser degree de-

composition f =
n∑
d=0

f=d, wherein we define f=d =
∑
|S|=d

f=S . We also define f6d =
d∑
i=0

f=i, and refer

to f6d as the degree d part of f . The degree of f , denoted by deg(f), is defined to be the largest d so that
f=d 6= 0.

Definition 2.1. The degree d weight of a function f : (Ω, µ) → R is defined as W=d[f ] =
∥∥f=d

∥∥2

2
. The

weight of f up to degree d is defined as W6d[f ] =
∥∥f6d∥∥2

2
.

It is easy to see, by orthogonality of the f=i’s, that W6d[f ] =
d∑
i=0

W=i[f ].

2.2 Influences

Influences are a central notion in analysis of Boolean functions, and our arguments use the notions of influ-
ences as well as low-degree influences.

Definition 2.2. For a function f : (Ω = Ω1 × . . .×Ωn, µ = µ1 × . . .× µn)→ R and i ∈ [n], the influence
of the ith coordinate is defined to be as follows. Sample x ∼ µ, and then sample y by taking yj = xj for all
j 6= i and sampling yi ∼ µi independently; we define

Ii[f ] = E
x,y

[
(f(x)− f(y))2

]
.

Subsequently, the low-degree influence of a function f is defined as

Definition 2.3. For a function f : (Ω = Ω1 × . . . × Ωn, µ = µ1 × . . . × µn) → R, d ∈ N and i ∈ [n], the
degree d influence of the ith coordinate is defined to be I6di [f ] = Ii[f

6d].

2.3 Fourier decomposition

The Fourier decomposition is a refinement of the Efron-Stein decomposition that is available in some set-
tings, such as the q-biased probability measure.

Definition 2.4. Let q ∈ (0, 1), and denote σ =
√
q(1− q) the standard deviation of a q-biased random

coin. We define χqi : {0, 1} → R as

χqi (xi) =
xi − q
σ

.

For S ⊆ [n], we define χqS : {0, 1}n → R by χqS(x) =
∏
i∈S

χqi (xi).

13



For the q-biased measure, one can show that for f : ({0, 1}n, µ⊗nq ) → R, it holds that f=S(x) =

f̂(S;µq)χ
q
S(x) where f̂(S;µq) is called the Fourier coefficient of f with respect to S and is given by

f̂(S;µq) = 〈f, χqS〉.

2.4 Random restrictions

In this section, we define the notions of restrictions and of random restrictions that will be extensively used
in the paper. Since the focus of current paper is on the Boolean hypercube with a biased measure, we restrict
our discussion to this domain.

Given a function f : ({0, 1}n, µ⊗n) → R, a set of coordinates I ⊆ [n] and a partial input z ∈ {0, 1}I ,
the restricted function fI→z : {0, 1}[n]\I → R is defined as

fI→z(y) = f(xI = z, xĪ = y).

Here and throughout, we denote by (xI = z, xĪ = y) the point whose I-coordinates are set according to z,
and whose Ī coordinates are set according to y.

A random restriction of a function f : ({0, 1}nµ⊗n)→ R refers to a restriction in which either (or both)
I and z are chosen randomly. Typically, when one says random restriction one has a parameter α ∈ (0, 1),
chooses I ⊆ [n] by including each element i ∈ [n] independently with probability α, choosing z ∼ µI and
then considering the function fI→z as a function from ({0, 1}[n]\I , µ[n]\I) to R. For us, however, it will be
important to consider a more general notion of random restriction, in which the underlying measure of the
restricted function changes.

Suppose that the measure µ can be written as µ = βD1 + (1−β)D2, where D1 and D2 are distributions
and β ∈ (0, 1). In such situations (that have already appeared in the introduction), we will often consider
the following random restriction process: choose I ⊆ [n] by including each element i ∈ [n] in it with
probability β, choose z ∼ DI1 , and consider the function fI→z as a function from ({0, 1}[n]\I ,D[n]\I

2 ) to R.
Note that under these random choices, choosing y ∼ D[n]\I

2 , the distribution of the point (xI = z, xĪ = y)
is still µ, hence this restriction process still makes sense.

Indeed, this restriction process and some of its properties has already appeared in previous works in
this series [BKM22a, BKM22b], and it will also play a crucial role in this work. In a sense, it allows us
to change distributions to other distributions that are more favorable to work with, so long as the supports
of the distributions are the same. Indeed, a typical scenario wherein we use this idea is to go from some
distribution over a domain to the uniform distribution over the same domain.

2.5 Noise Stability

In this section, we define the standard notion of noise stability and prove several basic properties of it.

Definition 2.5. Let µ be a distribution over {0, 1}, and let ρ ∈ [0, 1]. For x ∈ {0, 1}, a ρ-correlated bit
y ∈ {0, 1} is sampled by taking y = x with probability ρ, and otherwise sampling y ∼ µ independently. We
denote this distribution by y ∼ρ,µ x.

Given a distribution µ over {0, 1} and ρ ∈ [0, 1], we denote by Tµ,ρ : L2({0, 1}, µ)→ L2({0, 1}, µ) the
corresponding averaging operator defined as Tµ,ρf(x) = Ey∼ρ,µx [f(x)].

For multi-variate functions f : ({0, 1}n, µ⊗n) → R, one similarly defines ρ-correlated inputs; given
x ∈ {0, 1}n, the distribution over y ∼µ⊗n,ρ x is sampled by taking, for each i ∈ [n] independently, yi = xi
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with probability ρ, and otherwise sampling yi ∼ µ. The corresponding averaging operator Tµ⊗n,ρ is easily
seen then to be the same as T⊗nµ,ρ. When the measure µ and n are clear from context, we often omit them
from the notation.

Definition 2.6. Let µ be a distribution over {0, 1}, let ρ ∈ [0, 1] and let f : ({0, 1}n, µ⊗n) → R be a
function. The noise stability of f with correlation parameter ρ is defined as

Stabρ(f ;µ⊗n) = 〈f,Tρf〉 = E
x∼µ,y∼ρx

[f(x)f(y)].

When the measure is clear from context, we often abbreviate the stability notation, and simply write
Stabρ(f).

Intuitively, for a function f which is noise stable, the values of f(x) and f(y) are correlated if x and
y are correlated inputs. One way to generate correlated inputs x and y is to choose a common random
restriction on a subset of coordinates, and sample the rest of the coordinates independently; the correlation
of f(x) and f(y), after the random restriction then, may be associated with the bias the function has after
random restriction. Indeed, the following lemma expresses the noise stability of f as a function of the empty
Fourier coefficient of a random restriction of f (which captures its bias).

Lemma 2.7. Let µ be a distribution over {0, 1}, and let f : ({0, 1}n, µ⊗n) → R be a function. Then
Stab1−κ(f) = EI∼1−κ,z∼µI

[
f̂I→z(∅)2

]
Proof. Expanding the right hand side, we see it is equal to

E
I∼1−κ,z∼µI

[
E

x,y∼µĪ
[f(x, z)f(y, z)]

]
.

Note that the joint distribution of (x, z) and (y, z) is 1− κ correlated, and so the result follows.

The following lemma is [BKM22b, Lemma 2.14], restated below. To interpret it, intuitively one should
think of small noise stability Stab1−κ(f) 6 ξ as saying that the degree of f is high (roughly log(1/ξ)/κ).
With this in mind, the lemma asserts that if a function f is high degree, then a random restriction of it is also
high degree, albeit with some quantitative loss in the parameters.

Lemma 2.8. There exists an absolute constant c > 0 such that the following holds. Let µ1, µ2 be distri-
butions over {0, 1}, α ∈ (0, 1) and let µ = αµ1 + (1 − α)µ2. Then EI∼α[n],z∼µI1

[
Stab1−κ(fI→z;µ

Ī
2)
]
6

Stab1−c(1−α)κ(f).

2.6 Small set expansion and hypercontractivity

Our arguments use the well-known hypercontractive inequality over the q-biased cube, stated below.

Theorem 2.9. For every r ∈ N and q ∈ (0, 1) there is C(q, r) > 0 such that if f : ({0, 1}n, µ⊗nq )→ R is a
function of degree at most d, then ‖f‖r 6 C(q, r)d ‖f‖2.

We will also use the following well known consequence of the hypercontractive inequality, asserting
that a Boolean function f : ({0, 1}n, µ⊗nq )→ {0, 1} with small average has most of its mass on high levels.
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Theorem 2.10. For every q ∈ (0, 1), there is cq > 0 such that the following holds. Suppose that a function
f : ({0, 1}n, µ⊗nq )→ {0, 1} has average is at most ζ > 0; then for d = cq log(1/ζ) it holds that

W6d[f ] 6 ‖f‖32 6
√
ζ E[f ].

In words, since the total spectral mass of f is ‖f‖22 = E[f ] (since f is Boolean), Theorem 2.10 asserts
that almost of the spectral mass of f lies above level d.

2.7 Markov Chains

Finally, we need the following result from [Mos10], showing that reversible connected Markov chains have
a spectral gap. For us, we will identify a reversible Markov chain T over [m] with the averaging operator it
defines over L2([m];µ), where µ is the stationary distribution of T .

Lemma 2.11. [[Mos10, Lemma 2.9]] Suppose that T is a reversible, connected Markov chain on [m], in
which the probability of each transition is at least α. Then λ2(T ) 6 1− α2

2 .

3 Proof of Theorem 1.1

This section is devoted for the proof of Theorem 1.1.

3.1 Auxiliary Facts

In this section, we prove a few basic facts about random restrictions and Fourier coefficients that were hinted
in the proof overview, and will be used throughout the proof.

The following fact asserts that if a function f : {0, 1}n → R has a heavy Fourier coefficient and a
bounded 2-norm (over the uniform distribution), then after random restriction, it still has a heavy Fourier
coefficient with noticeable probability.

Fact 3.1. Suppose that f : {0, 1}n → R is a function with ‖f‖2 6 1 and
∣∣∣f̂(S)

∣∣∣ > δ for some S. Then for
all I ⊆ [n],

Pr
a∈{0,1}I

[∣∣∣f̂I→a(S ∩ I)
∣∣∣ > δ

2

]
>
δ2

4
.

Proof. Fixing I , we have
f̂(S) = E

a

[
χS∩I(a)f̂I→a(S ∩ I)

]
,

so by the triangle inequality
δ 6 E

a

[∣∣∣f̂I→a(S ∩ I)
∣∣∣].

On the other hand,

E
a

[∣∣∣f̂I→a(S ∩ I)
∣∣∣2] 6 E

a

[
‖fI→a‖22

]
= ‖f‖22 6 1.

Hence, we get by the Paley-Zygmund inequality that

Pr
a

[∣∣∣f̂I→a(S ∩ I)
∣∣∣ > δ

2

]
>

(
1− 1

2

)2 Ea
[∣∣∣f̂I→a(S ∩ I)

∣∣∣]2

Ea
[∣∣∣f̂I→a(S ∩ I)

∣∣∣2] >
δ2

2
.
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The following fact is similar in spirit to Fact 3.1, except that the underlying measure of the function
changes after random restriction. It asserts that if a function f is correlated with a character χS and has
bounded 2-norm under some distribution, and we perform a random restriction that changes the underlying
measure of the restricted function, then with noticeable probability the restriction of f is still correlated with
some character χT .

Fact 3.2. Let µ1, µ2 be distributions over {0, 1}, α ∈ (0, 1) and let µ = αµ1 + (1 − α)µ2. Suppose that
f : ({0, 1}n, µ⊗n)→ R is a function with ‖f‖2 6 1 and |Ex [f(x)χS(x)]| > δ for some S. Then

Pr
I∼α[n],a∼µI1

[∣∣∣∣∣ E
x∼µI2

[fI→a(x)χS |I→a(x)]

∣∣∣∣∣ > δ

2

]
>
δ2

4
.

Proof. We have

f̂(S) = E
I∼α[n],a∼µI1

[
E

x∼µI2

[fI→a(x)χS |I→a(x)]

]
,

so by the triangle inequality

δ 6 E
I∼α[n],a∼µI1

[∣∣∣∣∣ E
x∼µI2

[fI→a(x)χS |I→a(x)]

∣∣∣∣∣
]
.

On the other hand,

E
I∼α[n],a∼µI1

∣∣∣∣∣ E
x∼µI2

[fI→a(x)χS |I→a(x)]

∣∣∣∣∣
2
 6 E

I∼α[n],a∼µI1

[
E

x∼µI2

[
|fI→a(x)χS |I→a(x)|2

]]
= ‖f‖22 6 1.

Hence, the result follows again by the Paley-Zygmund inequality.

The third and last fact is an auxiliary statement in probability. It asserts that if we have independent
random variables X and Y and an event E that depends on them that has a significant probability, then
sampling x1, . . . , xr1 ∼ X and y1, . . . , yr2 ∼ Y all independently, the event that E holds for all pairs
(xi, yj) for 1 6 i 6 r1 and 1 6 j 6 r2 has significant probability.

Fact 3.3. Suppose X,Y are independent random variables, and E is an event depending on X,Y such that
Prx∼X,y∼Y [E(x, y)] > δ. Then for all r1, r2,

Pr
x1,...,xr1∼X,y1,...,yr2∼Y

 r1⋂
i=1

r2⋂
j=1

E(xi, yj)

 > δr1r2 .

Proof. By Jensen’s inequality

δr2 6 E
x∼X,y∼Y

[
1E(x,y)

]r2 6 E
x∼X

[
E
y∼Y

[
1E(x,y)

]r2] = E
x∼X

 E
y1,...,yr2∼Y

 r2∏
j=1

1E(x,yj)

.
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By Jensen’s inequality again

δr1r2 6 E
x∼X

 E
y1,...,yr2∼Y

 r2∏
j=1

1E(x,yj)

r1 = E
y1,...,yr2∼Y

 E
x∼X

 r2∏
j=1

1E(x,yj)

r1

6 E
y1,...,yr2∼Y

 E
x∼X

 r2∏
j=1

1E(x,yj)

r1
= E

x1,...,xr1∼X
y1,...,yr2∼Y

 r1∏
i=1

r2∏
j=1

1E(xi,yj)

,
and the proof is concluded.

3.2 Local Linear Structure

In this section, we begin the formal proof of Theorem 1.1, and first show that with each I ⊆ [n] one
may associate a set of characters which are the ones that can become heavy after randomly restricting the
coordinates of I . Fix f as in Theorem 1.1; throughout the proof, we will have the parameters

0� κ� s, r−1 � ζ � ε� ξ � δ, η � β < α < 1.

For a set I ⊆ [n] and z ∈ {0, 1}I , define

WI,z =
{
S ⊆ I

∣∣ ∣∣∣f̂I→z(S)
∣∣∣ > δ

}
, W̃I,z =

{
S ⊆ I

∣∣ ∣∣∣f̂I→z(S)
∣∣∣ > δ

2

}
,

where ĝ(S) = Ex [g(x)χS(x)]. Note that by the premise of Theorem 1.1, we have that choosing I ∼1−β [n]
and z ∼ µ′I , we have that WI,z 6= ∅ with probability at least η.

We now consider I ′ ∼1−β/2 [n] and z′ ∼ µ′′I , where µ′′ = 1−β
1−β/2µ

′+ β/2
1−β/2U . Then note that sampling

I ′, z′ can be done by sampling I1 ∼1−β [n], I2 ∼1/2 [n] \ I1, z(1) ∼ µ′I1 and z(2) ∼ U I2 and taking
I ′ = I1∪I2 and z′ = z(1)◦z(2). Then by our earlier observation,WI1,z(1) 6= ∅with probability at least η; we

condition on this event and take some S ∈WI1,z(1), thus getting from Fact 3.2 that
∣∣∣f̂I′→z′(S ∩ I2)

∣∣∣ > δ/2

with probability at least δ2/2, and so we get that

Pr
I1,I2

z(1),z(2)

[
S ∩ I2 ∈ W̃I1∪I2,z(1)◦z(2)

∣∣∣S ∈WI1,z(1)

]
>
δ2

2
.

Sampling I ′2 independently of I2, and z(2), z(3) assignments for I2 and z(2)′, z(3)′ assignments for I ′2
independently, we get by Fact 3.3 that

Pr
I1,I2,I′2

z(1),z(2),z(3)
z(2)′,z(3)′

[
S∩I2∈W̃I1∪I2,z(1)◦z(2)∩W̃I1∪I2,z(1)◦z(3)

S∩I′2∈W̃I1∪I′2,z(1)◦z(2)′∩W̃I1∪I′2,z(1)◦z(3)′

∣∣∣∣S ∈WI1,z(1)

]
>
δ8

16
. (8)
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For each I ′, we define the set of S ⊆ I ′ that occur somewhat frequently as characters when restricting
the coordinates of I ′:

WI′ =

{
S ⊆ I ′

∣∣ Pr
z∼µ′′I′

[∣∣∣f̂I′→z(S)
∣∣∣ > δ

2

]
> ζ

}
.

One can show that with significant probability over the choice of I ′ ∼1−β/2 [n], the set collectionWI′ is non-
empty, but we need the following stronger statement. It asserts that the probability that W̃I1∪I2,z(1)◦z(2) ∩
W̃I1∪I2,z(1)◦z(2)′ intersect in T which is rare, i.e. such that T 6∈ W̃I1∪I2 , is small.

Claim 3.4. For all I ′, we have that

Pr
I1,I2:I1∪I2=I′

z(1),z(2),z(3)

[
∃T, T ∈ W̃I1∪I2,z(1)◦z(2) ∩ W̃I1∪I2,z(1)◦z(3), T 6∈WI′

]
6 ξ.

Proof. For each T ⊆ I ′, define XT =
{
z′ ∈ {0, 1}I′

∣∣∣ ∣∣∣f̂I′→z′(T )
∣∣∣ > δ

2

}
. We note that T ∈ WI′ if and

only if µ′′(XT ) > ζ. We also note that:

∑
T

µ′′(XT ) =
∑
T

∑
z′

µ′′(z′)1∣∣∣f̂I′→z′ (T )
∣∣∣> δ

2

=
∑
z′

µ′′(z′)
∑
T

1∣∣∣f̂I′→z′ (T )
∣∣∣> δ

2

6
∑
z′

µ′′(z′)
‖fI′→z′‖22

(δ/2)2
,

where in the last inequality we used Parseval. The last expression is equal to ‖f‖22
(δ/2)2 6 4

δ2 .
Next, consider the distribution over z′ = z(1) ◦ z(2) and z′′ = z(1) ◦ z(3) as in (8). Note that this

is a product distribution, in which independently for each i ∈ I ′, with probability (1 − β)/(1 − β/2) we
take z′i = z′′i according to the distribution µ′, and otherwise we take z′i, z

′′
i independently according to U .

We define the corresponding Markov chain pa→b = Pr [z′′1 = b | z′1 = a], and note that it is connected,
reversible and each transition has probability at least β/2. Thus, defining the corresponding averaging
operator T: L2({0, 1}, µ′′)→ L2({0, 1}, µ′′), by Lemma 2.11 we have that λ2(T) 6 1− Ω(β2).

Fix T 6∈ WI′ , so that µ′′(XT ) < ζ. By Theorem 2.10, we get that for d = Ωβ(log(1/ζ)) it holds that
W6d[1XT ;µ′′] 6 εµ′′(XT ), hence

〈1XT ,T
I′1XT 〉 6W6d[1XT ;µ′′]+λ2(T)dW>d[1XT ;µ′′] 6 εµ′′(XT )+(1−Ω(β2))dµ′′(XT ) 6 2εµ′′(XT ),

and summing over T 6∈WI′ gives∑
T 6∈WI′

〈1XT ,T
I′1XT 〉 6

∑
T

2εµ′′(XT ) 6
8ε

δ2
6 ξ.

On the other hand, inspecting the left hand side, it is equal to

∑
T 6∈WI′

〈1XT ,T
I′1XT 〉 =

∑
T 6∈WI′

E
z′,z′′

[
1z′,z′′∈XT

]
= E

z′,z′′

 ∑
T 6∈WI′

1
T∈W̃I′,z′

1
T∈W̃I′,z′′


= E

z′,z′′

[∑
T

1
T∈W̃I′,z′∩W̃I′,z′′

1T 6∈WI′

]
,

which is at least the left hand side in the claim. The proof is thus concluded.
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From the above claim we deduce the following claim, which asserts that choosing I1 and independently
I2 and I ′2, the collections WI1∩I2 and WI1∩I′2 contain compatible sets T and T ′ with noticeable probability.

Definition 3.5. Let I1 ⊆ [n], and let I2, I
′
2 ⊆ [n] \ I1. We say that two sets T ⊆ [n] \ (I1 ∪ I2) and

T ′ ⊆ [n] \ (I1 ∪ I ′2) are compatible if there is S ⊆ [n] such that T = S ∩ I1 ∪ I2 and T ′ = S ∩ I1 ∪ I ′2.

Claim 3.6. PrI1,I2,I′2

[
∃S ⊆ [n], S ∩ I2 ∈WI1∪I2 ∧ S ∩ I ′2 ∈WI1∪I′2

]
> ηδ8

64 .

Proof. Let E be the event in (8). Combining Claim 3.4 and (8), we get that

Pr
I1,I2,I′2

z(1),z(2),z(3)
z(2)′,z(3)′

[
∃S ∈WI1,z(1) : E ∧ S ∩ I2 ∈WI1∪I2 ∧ S ∩ I2 ∈WI1∪I′2

]
>
δ8

16
Pr
[
WI1,z(1) 6= ∅

]
− 2ξ,

and as the probability that WI1,z(1) is non-empty is at least η/2, we get that the left hand side of the claim is
at least

Pr
I1,I2,I′2

z(1),z(2),z(3)
z(2)′,z(3)′

[
∃S ∈WI1,z(1), E ∧ S ∩ I2 ∈WI1∪I2 ∧ S ∩ I2 ∈WI1∪I′2

]
>
δ8

16

η

2
− 2ξ >

ηδ8

64
.

Next, we show that each |WI′ | is not too large.

Claim 3.7. For all I ′, |WI′ | 6 4
ζδ2 .

Proof. Note that

E
z′

[∣∣∣{S | 1S∈W̃I′,z′

}∣∣∣] > E
z′

 ∑
S∈WI′

1
S∈W̃I′,z′

 =
∑
S∈WI′

E
z′

[
1
S∈W̃I′,z′

]
> ζ |WI′ | .

On the other hand,

E
z′

[∣∣∣{S | 1S∈W̃I′,z′

}∣∣∣] = E
z′

[∑
S

1
S∈W̃I′,z′

]
6 E

z′

[
‖fI′→z′‖22

(δ/2)2

]
=
‖f‖22

(δ/2)2
6

4

δ2
,

and the result follows.

Note that the distribution of I1 ∪ I2 is ∼1−β/2 [n], and we next want to define a function over such sets.
We define F : (P ([n]), µ⊗n1−β/2) → P ([n]) that assigns to each I ′ ⊆ [n] a subset of I ′, denoted by F [I ′], in
the following way: for each input I ′ ⊆ [n], consider WI′ . If it is non-empty, choose a random T ∈WI′ and
set F [I ′] = T . If it is empty, choose a random T ⊆ I ′ and output F [I ′] = T . For convenience, we define
G : (P ([n]), µ⊗np/2)→ P ([n]) by G[A] = F [[n] \A], and note that G[A] ⊆ A always.

We consider the following direct product test over the assignment G:

1. Choose I1 ∼1−β [n] and independently I2, I
′
2 ∼1/2 I1. Set A = I1 ∪ I2, A′ = I1 ∪ I ′2.

2. Take T = G[A], T ′ = G[A′].
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3. Accept if T ∩A ∩A′ = T ∩A ∩A′.

Claim 3.8. Over the randomness of the choice of the assignment F , we have that

E
F

[
Pr [Direct product test succeeds]

]
>
ηζ2δ12

1024
.

Proof. By Claim 3.6, with probability at least ηδ8

64 the collections WI1∪I2 and WI1∪I′2 contain a pair of
compatible sets, call them T and T ′. Conditioned on that, by Claim 3.7 the probability that F [I1 ∪ I2] = T

and F [I1 ∪ I ′2] = T ′ is at least
(
ζδ2

4

)2
, in which case the direct product test between I1 ∪ I2 and I1 ∪ I ′2

accepts. We conclude that with probability at least ηδ
8

64 ·
ζ2δ4

16 over the randomness of I1, I2, I
′
2 and F , the

direct product test between I1 ∪ I2 and I1 ∪ I ′2 accepts, and the claim is proved.

It follows that with probability at least ηζ
2δ12

2048 over the choice of randomness over the assignment F , the
direct product test above succeeds with probability at least ηζ

2δ12

2048 . We fix such assignment F henceforth.

3.3 Applying the Direct Product Theorem

Using Corollary 1.5, we find S such that

Pr
A∼β/2[n]

[|G[A]∆S| 6 r] > s.

Next, we argue that this global consistency does not come from the A’s that were randomly assigned.
Let Ak be the set of A ⊆ [n] of size k for which W̃A was empty. For each S, we note that by Chernoff’s
inequality, the probability that |G[A]∆S| 6 r for more than s/2 fraction ofA of size k is at most 2−Ωr,s((nk))

(since the events that the variousA satisfy it are independent, and the probability of each one is exponentially
small in n hence much smaller than s). Thus, by the union bound over all S ⊆ [n] it follows that the
probability this occurs for some S is at most 2n2−Ωr,s((nk)) 6 2−Ωr,s((nk)), and by the Union bound over k it
follows that the probability that there is k for which there is such S is at most 2−Ωr,s((nk)). Thus, it follows
that we could have fixed the randomness of the choice of F so that F has the above property and also passes
the direct product test with probability at least ηζ

2δ12

2048 , and doing so we conclude that then we have

Pr
A∼β/2[n]

[
|G[A]∆S| 6 r, W̃A 6= ∅

]
>
s

2
.

Define the function g(x) = χS(x) and consider f ′(x) = f(x)g(x). For A such that |G[A]∆S| 6 r and
W̃A is non-empty, choosing A′ ⊆ A by including each element i ∈ A in A′ with probability κ

r , we get that

G[A]∩A′ = S ∩A′ with probability 1−O(κ). As G[A] ∈WA, when we choose z ∼ µ′′A with probability

at least ζ we have
∣∣∣f̂A→z(G[A])

∣∣∣ > δ
2 , and so

∣∣∣f̂ ′A→z(G[A]∆S)
∣∣∣ > δ

2 (note that we have switched from f

to f ′). Thus, choosing z′ ∼ UA\A′ we get that

E
A′,z′

[
f̂ ′A→z,A\A′→z′(∅)

2
]
> E

A′,z′

[
f̂ ′A→z,A\A′→z′(G[A]∆S ∩A′)2

]
− Pr

A′

[
(G[A]∆S) ∩A′ 6= ∅

]
,

which is at least Ω(δ2) − O(κ) > Ω(δ2). On the other hand, by Lemma 2.7 the left hand side is equal to
Stab1−κ(f ′

A→z). Thus, we get from Lemma 2.8 that for some absolute constant c > 0 we have

Stab1−c(1−β)κ(f ′) > E
A,z

[
Stab1−κ(f ′

A→z)
]
> E

A,z

[
1G[A]∈WA

1|G[A]∆S|6rStab1−κ(f ′
A→z)

]
> Ω(sδ2).
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This means that for d = O
(

log(1/sδ2)
(1−β)κ

)
, we have that W6d[f

′] > Ω(sδ2), hence f ′ is Ω(sδ2)-correlated

with the function f ′′ = f ′6d, and therefore f is Ω(sδ2)-correlated with the function gf ′′, as desired.

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Throughout this section, we fix ν to be the distribution from the
setting of Theorem 1.3.

4.1 From Linearity Testing to Large Fourier Coefficients under Random Restrictions

The following lemma demonstrates the connection between Theorems 1.1 and Theorem 1.3, and we state
it in a general form that will be necessary for our argument to go through. The lemma asserts that if
f1, . . . , f4 are functions such that f2, . . . , f4 have a bounded 12-norm, and f1 has a bounded 2-norm, for
which

∣∣E(x,y,z,w)∼νn [f1(x)f2(y)f3(z)f4(w)]
∣∣ is bounded away from 0, then with significant probability,

after a random restriction f1 must be correlated with a character χS .
To be more precise, we fix a small enough absolute constant β, and note that we may write ν = (1 −

β)ν ′ + βµ where µ is the uniform distribution over {(a, b, c, d) ∈ {0, 1}n | a+ b+ c+ d = 0}. Then

Lemma 4.1. For all ε > 0 and M > 1 there is δ > 0 such that the following holds. Suppose that
f1, . . . , f4 : {0, 1}n → R are functions with ‖f1‖2 6 M and ‖fi‖12 6 M for i = 2, 3, 4; further suppose
that ∣∣∣∣∣ E

(x,y,z,w)∼νn
[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε.

Then, PrI∼1−β [n]

z∼ν′I

[
∃S ⊆ Ī ,

∣∣∣f̂1I→z(S)
∣∣∣ > δ

]
> δ

Proof. By assumption, ε is at most

∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ E
I∼1−β [n]

(a,b,c,d)∼µ′I

[
E

(x,y,z,w)∼µ[n]\I
[f1I→a(x)f2I→b(y)f3I→c(z)f4I→c(w)]

]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ E
I∼1−β [n]

(a,b,c,d)∼ν′I

∑
S⊆Ī

f̂1I→a(S)f̂2I→b(S)f̂3I→c(S)f̂4I→d(S)


∣∣∣∣∣∣∣∣ .

Let E be the event that |f1I→a(S)| 6 ξ for all S. Then we get that

ε 6 E
I∼1−β [n]

(a,b,c,d)∼ν′I

∑
S⊆Ī

(
ξ1E +

∣∣∣f̂1I→a(S)
∣∣∣ 1E) ∣∣∣f̂2I→b(S)f̂3I→c(S)f̂4I→d(S)

∣∣∣
.
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By AM-GM inequality,

E
I∼1−β [n]

(a,b,c,d)∼ν′I

∑
S⊆Ī

∣∣∣f̂2I→b(S)f̂3I→c(S)f̂4I→d(S)
∣∣∣


6
1

3
E

I∼1−β [n]

(a,b,c,d)∼ν′I

∑
S⊆Ī

∣∣∣f̂2I→b(S)
∣∣∣3 +

∑
S⊆Ī

∣∣∣f̂3I→c(S)
∣∣∣3 +

∑
S⊆Ī

∣∣∣f̂4I→d(S)
∣∣∣3


6
1

3
E

I∼1−β [n]

(a,b,c,d)∼ν′I

[
‖f2I→b‖1 ‖f2I→b‖

2
2 + ‖f2I→c‖1 ‖f3I→c‖

2
2 + ‖f2I→d‖1 ‖f4I→d‖

2
2

]

6
1

3
E

I∼1−β [n]

(a,b,c,d)∼ν′I

[
‖f2I→b‖

3
2 + ‖f3I→c‖

3
2 + ‖f4I→d‖

3
2

]

6
1

3
E

I∼1−β [n]

(a,b,c,d)∼ν′I

[
‖f2I→b‖

3
3 + ‖f3I→c‖

3
3 + ‖f4I→d‖

3
3

]
,

which is equal to 1
3

(
‖f2‖33 + ‖f3‖33 + ‖f4‖33

)
6M3. Similarly, we get that

E
I∼1−β [n]

(a,b,c,d)∼ν′I

1Ē
∑
S⊆Ī

∣∣∣f̂1I→a(S)f̂2I→b(S)f̂3I→c(S)f̂4I→d(S)
∣∣∣


6 E
I∼1−β [n]

(a,b,c,d)∼ν′I

1Ē ‖f1I→a‖1 ‖f2I→b‖1
∑
S⊆Ī

∣∣∣f̂3I→c(S)f̂4I→d(S)
∣∣∣


6 E
I∼1−β [n]

(a,b,c,d)∼ν′I

[1Ē ‖f1I→a‖1 ‖f2I→b‖1 ‖f3I→c‖2 ‖f4I→d‖2],

where in the last inequality we used Cauchy-Schwarz and Parseval. By Hölder’s inequality we may bound
the last expression as

E
I∼1−β [n]

(a,b,c,d)∼ν′I

[
14
Ē

]1/4
E

I∼1−β [n]

(a,b,c,d)∼ν′I

[
‖f1I→a‖

4/3
1 ‖f2I→b‖

4/3
1 ‖f3I→c‖

4/3
2 ‖f4I→d‖

4/3
2

]3/4
,

which again using Hölder’s inequality is at most

Pr
[
Ē
]1/4 E

I∼1−β [n]

(a,b,c,d)∼ν′I

[
‖f1I→a‖

2
1

]1/2

E
I∼1−β [n]

(a,b,c,d)∼ν′I

[
‖f2I→b‖

4
1 ‖f3I→c‖

4
2 ‖f4I→d‖

4
2

]1/4
.

Bounding ‖f1I→a‖1 6 ‖f1I→a‖2 so that the first expectation is at most ‖f1‖2 and using Hölder’s inequality
again on the rest, we get that the above expression is at most

Pr
[
Ē
]1/4 ‖f1‖2 ‖f2‖12 ‖f3‖12 ‖f4‖12 6M4Pr

[
Ē
]1/4
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Combining, we conclude that
ε 6 ξM3 + Pr

[
Ē
]1/4

M4.

We take ξ = ε
2M3 , and get that Pr

[
Ē
]
>
(

ε
2M4

)4, and the claim is proved for δ =
(

ε
2M4

)4.

Combining Lemma 4.1 and Theorem 1.1 we get the following corollary:

Corollary 4.2. For all ε > 0 and M > 1 there are d ∈ N and δ > 0 such that the following holds. Suppose
that f1, . . . , f4 : {0, 1}n → R are functions with ‖f1‖2 6 M and ‖fi‖12 6 M for i = 2, 3, 4; further
suppose that ∣∣∣∣∣ E

(x,y,z,w)∼νn
[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε.

Then, there is S ⊆ [n] such that f1 is δ correlated with χSg where g = (f1χS)6d.

In the following section, we strengthen this assertion to a list-decoding type statement.

4.2 The List Decoding Argument

As explained before, Corollary 4.2 implies that f1 is δ-correlated with a function of the form χSg1 where
g1 = (f1 ·χS)6d, where d ∈ N, δ > 0 depend only on ε and M . We would like a stronger statement, saying
that all of the advantage in the expectation of f1, . . . , f4 comes from such structures in f1, and we show
such statement in this section.

Define
Sd,δ(f) =

{
S | f is δ-correlated with χS(fχS)6d

}
.

Contrary to the case of the uniform distribution, the size of Sd,δ(f) can be large and may even depend on the
dimension n; this is possible because for S1, S2 ⊆ [n] that have a small symmetric difference, the functions
χS1 and χS2 are correlated. Thus, we replace the bound on the size of S by the following notion.

Definition 4.3. We say a collection of sets S1, . . . , Sr are D-separated if |Si∆Sj | > D for all i, j.

First, we observe that separated characters are near orthogonal, even when multiplied by a low-degree
function.

Claim 4.4. Suppose Si, Sj areD-separated, and let gi, gj be functions of degree at most dwith ‖gi‖4 , ‖gj‖4 6
M . Then

〈χSigi, χSjgj〉 6M242de−
q(1−q)D

2 .

Proof. By definition,

〈χSigi, χSjgj〉 = E
x∼µ⊗nq

[
χSi∆Sj (x)gi(x)gj(x)

]
= E

x∼µ⊗nq

[
χ62d
Si∆Sj

(x)gi(x)gj(x)
]
,

where the last transition holds as each one of gi and gj have degree at most 2d, hence gi(x)gj(x) has degree
at most d. Thus by Cauchy-Schwarz twice, we get that

〈χSigi, χSjgj〉 6
∥∥∥χ62d

Si∆Sj

∥∥∥
2
‖gigj‖2 6

∥∥∥χ62d
Si∆Sj

∥∥∥
2
‖gi‖4 ‖gj‖4 6M2

∥∥∥χ62d
Si∆Sj

∥∥∥
2
.
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To upper bound the last 2-norm, note that by Parseval, we have that

∥∥∥χ62d
Si∆Sj

∥∥∥2

2
=

2d∑
j=0

∥∥∥χ=j
Si∆Sj

∥∥∥2

2
6 42d

2d∑
j=0

4−j
∥∥∥χ=j

Si∆Sj

∥∥∥2

2
6 42d

n∑
j=0

4−j
∥∥∥χ=j

Si∆Sj

∥∥∥2

2
= 42d

∥∥T1/2χSi∆Sj
∥∥2

2
,

and since χSi∆Sj is a product function we have that

∥∥T1/2χSi∆Sj
∥∥2

2
=

(
E

x∼µq ,y∼1/2x
[(−1)x(−1)y]

)|Si∆Sj |
6

(
1− Pr

x∼µq ,y∼1/2x
[x 6= y]

)D
6

(
1− q(1− q)

2

)D
.

Combining, we get that 〈χSigi, χSjgj〉 6M242de−
q(1−q)D

2 .

The following claim asserts that the collection Sd,δ(f) cannot contain many separated sets.

Claim 4.5. For all δ > 0 and M > 1, there is R = 2M2

δ2 , such that for all d ∈ N, there is D(d, q,M, δ) =
100

q2(1−q)2d
2 log2(M/δ) such that the following holds. If a function f : {0, 1}n → R has 2-norm at most M ,

then the largest collection of D-separated sets in Sd,δ(f) consists of at most R elements.

Proof. Assume that S1, . . . , SR ∈ Sd,δ(f) are D-separated for R > 2M2

δ2 ; then we take a sub-collection of
size R′ = 2M2

δ2 , and to simplify notations we simply assume that R = R′. Denote gi = (fχSi)
6d.

The functions χSigi are nearly orthogonal. By Claim 4.4, for all i 6= j we have 〈χSigi, χSjgj〉 6

M242de−
q(1−q)D

2 6 e−
√
D, where the last inequality is by choice of D.

Concluding the proof. Note that 〈f, χSigi〉 = 〈fχSi , gi〉 = ‖gi‖22 > δ2. Computing, we get that

0 6

∥∥∥∥∥f −
R∑
i=1

χSigi

∥∥∥∥∥
2

2

= ‖f‖22 +

R∑
i=1

‖χSigi‖
2
2 − 2

R∑
i=1

〈f, χSigi〉+
∑
i 6=j
〈χSigi, χSjgj〉.

and using our earlier observation and the fact that ‖χSigi‖
2
2 = ‖gi‖22 we get that

Rδ2 6 ‖f‖22 +
∑
i 6=j
〈χSigi, χSjgj〉 6M2 +R2e−

√
D.

Plugging R = 2M2

δ2 yields that 2M2 6 M2 + 4M4

δ4 e−
√
D, and hence e

√
D 6 4M2

δ4 , in contradiction to the
choice of D.

We would like to remark one important feature in Claim 4.5, which is that the list size R is indepen-
dent of d. This allows us to perform the following iterative processes, which will help us in replacing the
orthogonality property one usually has in the list decoding argument.
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4.2.1 The First Iterative Process: Getting Separation

FixM and ε > 0, and take d and δ forM and ε/10 from Corollary 4.2; we choose 0 < δ′ � δ and chooseR
from Claim 4.5 for δ′2. We take a sequence of parameters d = D0 � D1 � D2 � . . .� DR+1 � DR+2.
For each i define Si = SDi,δ′2(f). Starting with i = 0, we wish to find a well separated collection in Si in
which any two sets are far from each other. That is, we want to find a collection of sets from Si in which
any two sets are very far from each other, and any other S ∈ Si is close to one of the sets in the collections.

To achieve this, we pick the largest collection of S1, . . . , Sr in Si which is Di+1 separated, and if there
are j 6= k such that |Sj∆Sk| 6 Di+2/2, increase i by 1 and iterate. In other words, increase i by 1, and
pick the largest collection of S1, . . . , Sr′ in Si which is Di+1 separated, and increase i again if there are two
distinct sets in this collection are Di+2/2 close.

It is clear that if the above process terminates, say at step i, then in our collection S1, . . . , Sr satisfies
that |Sj∆Sk| > Di+2/2 for all j 6= k, and any S ∈ Si is Di-close to one of the sets in the collection.
Next, we prove that this process indeed terminates, and for that we denote by Ri the size of the collection
S1, . . . , Sr in iteration i. The next claim shows that whenever we iterate, the size of Ri strictly decreases:

Claim 4.6. Ri+1 6 Ri − 1.

Proof. Assume otherwise, and let S1, . . . , SRi be the collection at iteration i and T1, . . . , TRi be a part of
the collection at iteration i + 1 (which can be picked as we assume Ri+1 > Ri). We first observe that for
any j = 1, . . . , Ri, there is k = 1, . . . , Ri such that |Tj∆Sk| 6 Di+1. Indeed, otherwise we could have
added Tj to the list S1, . . . , SRi at iteration i, in contradiction to its maximality. Also, we note that for a
given k there is at most a single j such that |Tj∆Sk| 6 Di+1, otherwise if we have distinct such j, j′ then∣∣Tj∆Tj′∣∣ =

∣∣(Tj∆Sk)∆(Tj′∆Sk)
∣∣ 6 |Tj∆Sk|+ ∣∣Tj′∆Sk∣∣ 6 2Di+1 < Di+2,

in contradiction to the fact that the Tj’s are Di+2 separated. Thus, there is a permutation π : {1, . . . , Ri} →
{1, . . . , Ri} such that

∣∣Tj∆Sπ(j)

∣∣ 6 Di+1, and without loss of generality we assume that π is the identity.
As the process didn’t stop at iteration i it means that the collection S is not Di+2/2 separated, so there

are distinct k, k′ such that |Sk∆Sk′ | 6 Di+2/2, and we get that

|Tk∆Tk′ | 6 |Tk∆Sk|+ |Tk′∆Sk′ |+ |Sk∆Sk′ | 6 2Di+1 +
Di+2

2
< Di+2,

in contradiction to the fact that the collection T is Di+2 separated.

Since by Claim 4.5 we have that R0 6 R, it follows that the process must terminate after at most R
steps, and we fix i on which it stops. Thus we get that for D′ = Di, we look at SD′,δ′2(f) and find there a
largest collection of sets S1, . . . , Sr, such that any S ∈ SD′,δ′2(f) is D′′ = Di+1 close to one of the S′j , and

for any j 6= k we have that |Si∆Sj | > Di+2

2 = Dtop. Our parameters satisfy D′ � D′′ � Dtop.

4.2.2 The Second Iterative Process: Avoiding Overlaps

We now run another iterative process; take η > 0; if
∥∥∥(χSjf)62D′′

∥∥∥
2
> (1 + η)

∥∥∥(χSjf)6D
′
∥∥∥

2
for some

r, we increase D′ to 2D′′, and take the new D′′ to be sufficiently larger than the new D′ (and still much
smaller than Dtop). Note that since we have at most R distinct j’s and each one can cause at most Oδ,δ′,η(1)

increases, we eventually reachD′ such that
∥∥∥(χSjf)62D′′

∥∥∥
2
6 (1+η)

∥∥∥(χSjf)6D
′
∥∥∥

2
for all j. Furthermore,

since the factor by whichD′ increases in this process only depends on δ, δ′, η, we still have thatD′ � D′′ �
Dtop.
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4.2.3 The List Explains All of the Advantage

We are now ready to show that the list that we found, χSj (χSjf1)6D
′

for j = 1, . . . , r, explains almost all
of the advantage the functions f1, . . . , f4 have in the premise of Theorem 1.3. Towards this end, denote

f ′1 = f1 −
r∑
j=1

χSjgj , where gj = (χSjf1)6D
′
.

Lemma 4.7. We have that
E

(x,y,z,w)∼ν⊗n

[
f ′1(x)f2(y)f3(z)f4(w)

]
6
ε

4
.

Proof. Assume towards contradiction otherwise. Before proceeding to the formal proof, we explain the
idea. After showing that the 2-norm of f ′1 is not much larger than M , we will be able to apply Corollary 4.2
to conclude that f ′1 is correlated with a function of the form χSg for g of degree at most D′. We will then
show that S must be close to one of the Si’s; indeed, if this is not the case then the difference f1 − f ′1 is
not correlated with χSg, so it must be the case that f1 is correlated with χSg, and then we appeal to the
maximality of the list S1, . . . , Sr to argue that S then must be close to one of the Si’s.

But then, in a sense, the `2-mass of (f1χS)6D
′
would already “be included” in the `2 mass of (f1χSi)

6D′+L,
whereL is the distance between Si and S. But by our iterative processes above, the `2 mass of (f1χSi)

6D′+L

and of (f1χSi)
6D′ should be very close to each other, hence we would have already removed that from f ′1,

therefore we get a contradiction.
We proceed to the formal argument. Clearly the 12-norm of each one of f2, f3, f4 is at most M . As for

the 2-norm of f ′1, we have

∥∥f ′1∥∥2

2
= ‖f‖22 − 2

∑
i

〈f, χSigi〉+

∥∥∥∥∥∑
i

χSigi

∥∥∥∥∥
2

2

= ‖f‖22 −
∑
i

‖gi‖22 +
∑
i 6=j
〈χSigi, χSjgj〉,

which is at most M2 + R2M242D′e−
q(1−q)

2
D′′ , where we used Claim 4.4. By choice of D′′, this is at

most 2M2, so ‖f ′1‖2 6 2M . We therefore have that the functions f ′1/2, f2, f3, f4 satisfy the conditions of
Corollary 4.2, and so f ′1/2 is δ-correlated with a function of the function χS(f ′1χS/2)6d. Thus, as

〈f ′1, χS(f ′1χS/2)6D
′〉 =

∥∥∥(f ′1χS/2)6D
′
∥∥∥2

2
>
∥∥∥(f ′1χS/2)6d

∥∥∥2

2
= 〈f ′1, χS(f ′1χS/2)6d〉 > δ,

it follows that f ′1/2 is δ-correlated with χSg for g = (f ′1χS/2)6D
′
.

Next, we argue that S has to be close to some Si and that (f1χS)6D
′+D′′ must have significant 2-norm.

Claim 4.8. There is i such that |S∆Si| 6 D′′, and also it holds that
∥∥∥(f1χS)6D

′+D′′
∥∥∥

2
> δ′2.

Proof. We have 2δ 6 〈f ′1, χSg〉 = 〈f1, χSg〉 −
∑
i
〈χSigi, χSg〉. If 〈f1, χSg〉 > δ, then we get that f1χS is

δ-correlated with a degree d function of 2-norm at most 1, hence∥∥∥(f1χS)6D
′
∥∥∥2

2
= sup

h : {0,1}n→R degree 6 D′

‖h‖261

〈fχS , h〉2 > 〈fχS , g〉2 > δ2,

so S ∈ SD′,δ2 . By the maximality of S1, . . . , Sr, we conclude |S∆Si| 6 D′′ for some i.
Else, we have that |〈χSigi, χSg〉| > 3δ′′

R for some i, and using Claim 4.4 we find that |Si∆S| 6
O(logM +D′ + log(R/3δ′′)) 6 D′′.
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In any case, we get that |S∆Si| 6 D′′ for some i. Consider the function χS∆Si(fχSi)
6D′ which has

degree at most D′ +D′′; then

〈χSf, χS∆Si(fχSi)
6D′〉 = 〈f, χSi(fχSi)6D

′〉 = ‖gi‖22 > δ′2,

so the function χSf is δ′2-correlated with a function of degree at most D′ +D′′ which has 2-norm 1, hence∥∥∥(fχS)6D
′+D′′

∥∥∥2

2
= sup

h : {0,1}n→R degree 6 D′ +D′′

‖h‖261

〈fχS , h〉2 > δ′4.

Assume without loss of generality that in Claim 4.8 we have i = 1. Then S is at least Dtop − D′′ far
from Sj for all j 6= 1, hence using Claim 4.4

∣∣〈f ′1, χSg〉 − 〈f1, χSg〉+ 〈χS1g1, χSg〉
∣∣ =

∣∣∣∣∣∣〈
∑
j 6=1

χSjgj , χSg〉

∣∣∣∣∣∣ 6 2OM,R,δ(D
′′)−ΩM,R,δ(Dtop) 6

δ′

2
,

so |〈f1, χSg〉 − 〈χS1g1, χSg〉| > δ′

2 . On the other hand, the next claim shows an upper bound on this
difference, which is a contradiction provided η is small enough, thereby finishing the proof.

Claim 4.9. |〈χS1g1, χSg〉 − 〈f1, χSg〉| 6
√

6ηM2

Proof. Recall that
∥∥∥(f1χS1)62D′′

∥∥∥
2
6 (1 + η)

∥∥∥(f1χS1)6D
′
∥∥∥

2
, so

∥∥∥(f1χS1)62D′′ − (fχS1)6D
′
∥∥∥2

2
=
∥∥∥(f1χS1)62D′′

∥∥∥2

2
− 2〈(f1χS1)62D′′ , (f1χS1)6D

′〉+
∥∥∥(f1χS1)6D

′
∥∥∥2

2

=
∥∥∥(f1χS1)62D′′

∥∥∥2

2
−
∥∥∥(f1χS1)6D

′
∥∥∥2

2

6 3η
∥∥∥(f1χS1)6D

′
∥∥∥2

2

6 3ηM2.

Thus,

〈χS1g1, χSg〉 = 〈g1, χS∆S1g〉 = 〈(f1χS1)6D
′
, χS∆S1g〉

= 〈(f1χS1)62D′′ , χS∆S1g〉+ 〈(f1χS1)6D
′ − (f1χS1)62D′′ , χS∆S1g〉.

By Cauchy-Schwarz,∣∣∣〈(fχS1)6D
′ − (fχS1)62D′′ , χS∆S1g〉

∣∣∣ 6 ∥∥∥(f1χS1)62D′′ − (f1χS1)6D
′
∥∥∥

2
‖χS∆S1g‖2 6

√
3ηM2

∥∥f ′1∥∥2
,

which is at most
√

6ηM2. Thus,
∣∣∣〈χS1g1, χSg〉 − 〈(f1χS1)62D′′ , χS∆S1g〉

∣∣∣ 6 √6ηM2. To finish the proof,

note that since the degree of χS∆S1g is less than 2D′′ we have

〈(f1χS1)62D′′ , χS∆S1g〉 = 〈f1χS1 , χS∆S1g〉 = 〈f1, χSg〉.
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4.3 Applying the List Decoding Argument

Armed with Lemma 4.7, we can now switch the functions fi with functions of the form χSi(fiχSi)
6di and

retain that the expectation is large. More precisely, from Lemma 4.7 it follows that∣∣∣∣∣ E
(x,y,z,w)∼νn

[
(f1 − f ′1)(x)f2(y)f3(z)f4(w)

]∣∣∣∣∣ > 3ε

4
,

so there is i such that for h1(x) = χSi(x)(f1χSi)
6D′(x) it holds that∣∣∣∣∣ E

(x,y,z,w)∼νn
[h1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε′ =
3ε

4R
.

Thus, starting with the assumption that
∣∣E(x,y,z,w)∼νn [f1(x)f2(y)f3(z)f4(w)]

∣∣ > ε, we managed to change
f1 to a function of the form h1 while only needing to decrease ε to ε′. Namely, we proved the following
lemma:

Lemma 4.10. For all ε > 0 and M > 1 there are D and ε′ > 0 such that the following holds. Suppose that
f1, . . . , f4 : {0, 1}n → R are functions with ‖f1‖2 6 1 and ‖fi‖12 6M for all i; further suppose that∣∣∣∣∣ E

(x,y,z,w)∼νn
[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε.

Then for some S ⊆ [n], and d 6 D, defining the function h1(x) = χS(f1χS)6d we have that∣∣∣∣∣ E
(x,y,z,w)∼νn

[h1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε′.

We iterate lemma 4.10 to change each one of the functions fi to an hi, and get

Lemma 4.11. For all ε > 0 and M > 1 there are D1, . . . , D4 and ε′ > 0 such that the following holds.
Suppose that f1, . . . , f4 : {0, 1}n → R are functions with ‖fi‖2 6 1 and ‖fi‖12 6M for all i for which∣∣∣∣∣ E

(x,y,z,w)∼νn
[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε.

Then for some S1, . . . , S4 ⊆ [n], and d1 6 D1, . . . , d4 6 D4, defining the function hi = χSi(fiχSi)
6di we

have that ∣∣∣∣∣ E
(x,y,z,w)∼νn

[h1(x)h2(y)h3(z)h4(w)]

∣∣∣∣∣ > ε′.

Henceforth, we fix ε′ and S1, S2, S3, S4 as well as h1, h2, h3, h4 as given in Lemma 4.11. Denote
T = S1 ∩ S2 ∩ S3 ∩ S4. To finish this section, we show that each one of the Si’s is close to T .

Claim 4.12. For allD ∈ N and ε′ > 0, there is t ∈ N such that if we have g1, . . . , g4 are functions of degree
at most D at 2-norm at most 1, and∣∣∣∣∣ E

(x,y,z,w)∼νn
[χS1(x)g1(x)χS2(y)g2(y)χS3(z)g3(z)χS4(w)g4(w)]

∣∣∣∣∣ > ε′,

then |Si∆T | 6 t for all i = 1, . . . , 4, where T = S1 ∩ . . . ∩ S4.
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Proof. Define t = maxi |Si∆T | and

G(x, y, z, w) = g1(x)g2(y)g3(z)g4(w), G′(x, y, z, w) = χS1\T (x)χS2\T (y)χS3\T (z)χS4\T (w),

and think of them as functions from (({0, 1}4)n, ν⊗n) to R. We note that as xyzw = 1 in the support of ν,
we have that∣∣〈G′, G〉∣∣ =

∣∣∣∣∣ E
(x,y,z,w)∼νn

[χS1(x)g1(x)χS2(y)g2(y)χS3(z)g3(z)χS4(w)g4(w)]

∣∣∣∣∣ > ε′.

Also, the degree of G is at most 4D, so we get that∣∣〈G′, G〉∣∣ =
∣∣∣〈G′64D

, G〉
∣∣∣ 6 ∥∥∥G′64D

∥∥∥
2
‖G‖2 6

∥∥∥G′64D
∥∥∥

2
‖g1‖8 ‖g2‖8 ‖g3‖8 ‖g4‖8 ,

where we used Cauchy-Schwarz multiple times. By Theorem 2.9 we have that ‖gi‖8 6 C(q)D ‖gi‖2 6

C(q)D. Also by Parseval we get that
∥∥∥G′64D

∥∥∥
2
6 24D

∥∥∥T1/2G
′64D

∥∥∥
2
6 24D

∥∥T1/2G
′∥∥

2
. Combining all,

we get that
ε′ 6

∣∣〈G′, G〉∣∣ 6 C ′(q,D)
∥∥T1/2G

′∥∥
2
.

To upper bound
∥∥T1/2G

′∥∥
2
, we note that G′ is a product function, i.e. we may write it as G′ =

n∏
i=1

G′i for

G′i that depends only on the ith coordinate of (x, y, z, w), so
∥∥T1/2G

′∥∥
2

=
n∏
i=1

∥∥T1/2G
′
i

∥∥
2
. Each variable

i it depends on, i.e. such that G′i is not constant, is a variable that appears in at least in one of S1, . . . , S4

but not in T , so there are at least t of these variables. We claim that there is λ ∈ (0, 1) depending only on
q such that

∥∥T1/2G
′
i

∥∥
2
6 λ for any such i; indeed, suppose for simplicity that G′i(x, y, z, w) = xiyizi, and

note that ∥∥T1/2G
′
i

∥∥2

2
= E

(x,y,z,w),(x′,y′,z′,w′)∼ν
that are 1/2-correlated

[
xiyizix

′
iy
′
iz
′
i

]
6 1− Ωq(1).

Thus,
∥∥T1/2G

′∥∥
2
6 λt, and plugging that above yields that ε′ 6 C ′(q,D)λt, and re-arranging yields that

t 6 log(C′(q,D)/ε′)
log(1/λ) , as desired.

We fix T and t from Claim 4.12 and define S′i = Si∆T and h′i = χS′i(fiχSi)
6Di ; note that then each h′i

is a function of degree at most t+Di, and∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[
h′1(x)h′2(y)h′3(z)h′4(w)

]∣∣∣∣∣ =

∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[h1(x)h2(y)h3(z)h4(w)]

∣∣∣∣∣ > ε′.

Summarizing, in this section we proved the following lemma.

Lemma 4.13. For all ε > 0, there are t,D ∈ N and ε′ > 0 such that the following holds. Suppose
f1, . . . , f4 : {0, 1}n → [−1, 1] are functions such that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε.

Then there are D1, . . . , D4 ∈ N that are at most D, S1, . . . , S4 ⊆ [n] and S′1 ⊆ S1, . . . , S
′
4 ⊆ S4 of size at

most t, such that∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[
(χS′1(χS1f1)6D1)(x)(χS′2(χS2f2)6D2)(y)(χS′3(χS3f3)6D3)(z)(χS′4(χS4f4)6D4)(w)

]∣∣∣∣∣ > ε′.
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4.4 Preparation for the Invariance Principle Argument: Applying Noise

In the next and final part of the argument, we would like to apply the invariance principle on the expectation
in the conclusion of Lemma 4.13 in order to relate it to an expectation over Gaussian space. There are,
however, a few issues that prevent us from doing so directly. First, the functions (χSifi)

6Di may not be
bounded (and in fact they are likely not), so if we apply the invariance principle on them directly we would
need to consider a more general problem in Gaussian space, about unbounded functions, whose answer may
be different than the one we’re looking for. Second, the distribution over (x, y, z, w) is not connected, and
therefore we cannot appeal to a black-box invariance principle. Third, the functions in the conclusion of
Lemma 4.13 need not have small low-degree influence, and we would need this in order to appeal to any
form of the invariance principle.

In this section, we resolve the first two issues. Namely, we show that we may switch the truncations
above to applications of the noise operator Tρ, and furthermore that we can apply the noise operator on each
one of these functions and still keep the expectation in consideration substantial. We achieve these two state-
ment using the same argument, similar to an idea from [FKLM20], asserting that if we have any integer D,
then the truncation operator f → f6D can be approximated, in `2, by a polynomial P , applied on the noise
operator Tρ, i.e. that

∥∥P (Tρ)f − f6D
∥∥

2
is small for all f , for some fixed polynomial P . Thus, noting that

each (χS′i(χSifi)
6Di) has degree at most t+Di, we can replace this function with P1(Tρ)(χS′i(χSifi)

6Di)
for an appropriate polynomial P1 and get a similar expectation. We can then switch the internal truncation
operator with P2(Tρ)χSifi and still get a significant expectation, so expanding out the polynomials P1 and
P2 we get that at least one of the terms that are product is significant.

We proceed to the formal description of this step, and begin with an auxiliary fact which constructs the
type of polynomials P we use in our arguments.

Fact 4.14. For all η, ξ > 0 and s ∈ [η, 1 − η] there is a polynomial P : [0, 1] → [0, 1] such that: (1) for
x 6 s, P (x) 6 ξ, (2) for x > s+ η, P (x) > 1− ξ.

Proof. Define the function f : [0, 1] → [0, 1] which is 0 for x 6 s, 1 for x > s + η, and between s
and s + η we linearly interpolate so that f is continuous. By the density of polynomials, i.e. the Stone-
Weirstrass theorem, there is a univariate polynomial P : [0, 1] → [0, 1] such that ‖P − f‖∞ 6 ξ, and the
result follows.

Using Fact 4.14, we prove in the next claim that the truncation operator of degreeD can be approximated
by a polynomial applied on the noise operator T1/2.

Claim 4.15. LetD ∈ N and ξ > 0. Then there exist a polynomial P such that for all f : ({0, 1}n, µ⊗nq )→ R
it holds that ∥∥P (T1/2)f − f6D

∥∥
2
6 ξ ‖f‖2

Proof. Set ρ = 1/2, and note that the eigenvalues of Tρ are ρj for j = 0, 1, . . . , n. Note that for j 6 D we
have that ρj > ρD, and for j > D + 1 we have that ρj 6 ρD+1. Letting η = ρD − ρD+1 > 0, we may use
Fact 4.14 to find a polynomial P such that P (ηj) > 1− ξ for j 6 D and P (ηj) 6 ξ for j > D.

Note that the eigenvalues of P (Tρ) are P (ηj), hence we get that

P (Tρ)f =
n∑
j=0

P (ρj)f=j ,
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hence by Parseval

∥∥P (T1/2)f − f6D
∥∥2

2
=

D∑
j=0

∣∣P (ρj)− 1
∣∣2 ∥∥f=j

∥∥2

2
+

n∑
j=D+1

P (ρj)2
∥∥f=j

∥∥2

2

6
D∑
j=0

ξ2
∥∥f=j

∥∥2

2
+

n∑
j=D+1

ξ2
∥∥f=j

∥∥2

2

= ξ2 ‖f‖22 ,

concluding the proof.

We are now ready to state and prove the main result of this section.

Lemma 4.16. For all ε > 0, there are t ∈ N and δ > 0 such that the following holds. Suppose
f1, . . . , f4 : {0, 1}n → [−1, 1] are functions such that∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[f1(x)f2(y)f3(z)f4(w)]

∣∣∣∣∣ > ε.

Then there are ρ1, . . . , ρ4 ∈ (0, 1/2], ρ′1, . . . , ρ
′
4 ∈ (0, 1/2], S1, . . . , S4 ⊆ [n] and S′1 ⊆ S1, . . . , S

′
4 ⊆ S4 of

size at most t, such that defining gi = Tρi(χSif), we have∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[
Tρ′1

(χS′1g1)(x)Tρ′2
(χS′2g2)(y)Tρ′3

(χS′3g3)(z)Tρ′4
(χS′4g4)(w)

]∣∣∣∣∣ > δ.

Proof. We use Lemma 4.13 and find (Si, S
′
i)i=1,...,4 as well as t,D ∈ N and ε′ > 0 from there. We also take

D1, . . . , D4 and denote hi = (χSifi)
6Di . For notational convenience, we denote x1 = x, x2 = y, x3 = z

and x4 = w
First, we show that one may introduce the noise operators on the outside, and we demonstrate how to do

it for the first function. For this, we use the parameters

0� ξ � D−1, t−1, ε′ � ε.

We apply Claim 4.15 for t+D, and find a polynomial P1 from Claim 4.15 that ξ-approximates the truncation
operator on degree t+D. Thus,∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n

[
4∏
i=1

(χS′ihi)(x
i)

]
− E

(x,y,z,w)∼ν⊗n

[
(P1(T1/2)χS′1h1)(x)

4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣
=

∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[
(P1(T1/2)χS′1h1 − χS′1h1)(x1)

4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣
6
∥∥∥P1(T1/2)χS′1h1 − χS′1h1

∥∥∥
2

√√√√ E
(x,y,z,w)∼ν⊗n

[
(P1(T1/2)χS′1h1 − χS′1h1)(x1)

4∏
i=2

(χS′ihi)(x
i)2

]
, (9)

where we used Cauchy-Schwarz. Applying Hölder’s inequality and Theorem 2.9 we get that this is at most∥∥∥P (T1/2)χS′1h1 − χS′1h1

∥∥∥
2

4∏
i=2

∥∥∥χS′ihi∥∥∥6
6 C(D, t, q)

∥∥∥P (T1/2)χS′1h1 − χS′1h1

∥∥∥
2

4∏
i=2

∥∥∥χS′ihi∥∥∥2
.
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Note that
∥∥∥χS′ihi∥∥∥2

= ‖hi‖2 6 ‖χSifi‖2 = ‖fi‖2 6 1. Also note that by Claim 4.15 we have∥∥∥P1(T1/2)χS′1h1 − χS′1h1

∥∥∥
2
6 ξ

∥∥∥χS′1h1

∥∥∥
2
6 ξ.

Combining, we get that

(9) 6 ξC(D, tq) 6
ε′

10
.

Thus, we get that ∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[
(P (T1/2)χS′1h1)(x1)

4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣ > 9ε′

10
.

Expand out P (z) =
d∑
j=0

αjz
j , and note that α0 = P (0) 6 ξ, so we get that

d∑
j=1

|αj |

∣∣∣∣∣E
[

T1/2j (χS′1h1)(x1)
4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣ > 9ε

10
− α0

∣∣∣∣∣E
[

4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣ .
Note that using Cauchy-Schwarz and Theorem 2.9 as before we have that

∣∣∣∣E [ 4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣ 6 C(D, t, q),

so we get that
d∑
j=1

|αj |

∣∣∣∣∣E
[

T1/2j (χS′1h1)(x1)
4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣ > 4ε′

5
.

We conclude that there is a j such that∣∣∣∣∣E
[

T1/2j (χS′1h1)(x1)
4∏
i=2

(χS′ihi)(x
i)

]∣∣∣∣∣ > 4ε

5
d∑
j=1
|αj |

> ε1 = Ωε,ξ(1),

and we choose ρ′1 = 1/2j .
We can now iterate this argument with ε′ being ε1 and taking parameters sufficiently small compared to

it. Eventually, we find ρ′1, . . . , ρ
′
4 6 1/2 such that∣∣∣∣∣E

[
4∏
i=1

Tρ′i
(χS′ihi)(x

i)

]∣∣∣∣∣ > ε4,

where ε4 > 0 is a function of the original ε.
Next, we show that we can replace h1 with Tρ1(χS1f1) for some ρ1 6 1/2. The argument is similar to

before, and below the elaborate. Take the parameters (to avoid cumbersome notations, we re-use ξ)

0� ξ � D−1, t−1, ε′ � ε4,
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and take a polynomial P2 from Claim 4.15 that ξ-approximates the truncation to degree D operator. Then∣∣∣∣∣E
[

4∏
i=1

Tρ′i
(χS′ihi)(x

i)

]
− E

[
Tρ′1

(χS′1P2(T1/2)(χS1f1))(x1)
4∏
i=2

Tρ′i
(χS′ihi)(x

i)

]∣∣∣∣∣
=

∣∣∣∣∣E
[

Tρ′1

(
χS′1(χS1f1)− P2(T1/2)(χS1f1)

)
(x1)

4∏
i=2

Tρ′i
(χS′ihi)(x

i)

]∣∣∣∣∣
6
∥∥∥Tρ′1

(
χS′1(χS1f1)− P2(T1/2)(χS1f1)

)∥∥∥
2

√√√√E

[
4∏
i=2

Tρ′i
(χS′ihi)(x

i)2

]

6
∥∥∥Tρ′1

(
χS′1(χS1f1)− P2(T1/2)(χS1f1)

)∥∥∥
2

4∏
i=2

∥∥∥Tρ′i
(χS′ihi)

∥∥∥
6
. (10)

Note that by Theorem 2.9∥∥∥Tρ′i
(χS′ihi)

∥∥∥
6
6
∥∥∥χS′ihi∥∥∥6

6 C(D, t, q)
∥∥∥χS′ihi∥∥∥2

6 C(D, t, q) ‖fi‖2 6 C(D, t, q).

From Claim 4.15, we get∥∥∥Tρ′1

(
χS′1(χS1f1)− P2(T1/2)(χS1f1)

)∥∥∥
2
6
∥∥∥χS′1(χS1f1)− P2(T1/2)(χS1f1)

∥∥∥
2
6 ξ ‖χS1f1‖2 6 ξ.

Together, we get that (10) 6 C(D, t, q)ξ 6 ε4/10, so we conclude that∣∣∣∣∣E
[

Tρ′1
(χS′1P2(T1/2)(χS1f1))(x1)

4∏
i=2

Tρ′i
(χS′ihi)(x

i)

]∣∣∣∣∣ > 9ε4

10
.

Repeating the argument that now expands our P2, saying that the constant term is negligible and finding the
maximal contribution, we that if α0, . . . , αd are the coefficients of P2, then there is j > 1 such that∣∣∣∣∣E

[
Tρ′1

(χS′1T1/2j (χS1f1))(x1)

4∏
i=2

Tρ′i
(χS′ihi)(x

i)

]∣∣∣∣∣ > 9ε4
10 − C(D, q, t)α0

d∑
j=1
|αj |

> ε5 = Ωε4,ξ(1).

We choose ρ1 = 1/2j . Continuing in this way for h2, h3 and h4, the lemma is proved.

4.5 Preparation for the Invariance Principle Argument: Resilience and Regularity

The invariance principle of [MOO05] applies to functions with small influences, however it was observed
by Mossel [Mos20] that appealing to an influence regularity lemma, one may apply the invariance principle
to resilient functions. We too intend to apply the invariance principle in our setting, and towards this end we
need to show the functions in our setting to be resilient (or rather, that they can be assumed to be resilient),
as well as state and prove a regularity lemma for our setting. In this section, we establish these preparatory
steps, and in the next section we use them in order to apply the invariance principle (we remark that the
presentation and focus herein is also similar to [CFM+22]).
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4.5.1 Resilient Functions

Definition 4.17. Let µ be a probability measure over {0, 1}. A function f : ({0, 1}n, µ⊗n) → R is called
(r, ε) resilient if for any S ⊆ [n] of size at most r and any s ∈ {0, 1}S ,∣∣∣∣Ex∼µ⊗n [f(x) |xS = s]− E

x∼µ⊗n
[f(x)]

∣∣∣∣ 6 ε.

In words, restricting any set of at most r coordinates changes the average of f by at most ε.

To relate this notion to our setting, we show that if a function f is not correlated with any χS , then
Tρ′(χS′Tρ(χSf)) is resilient for all S, S′ ⊆ S of bounded size and ρ, ρ′ ∈ (0, 1).

Lemma 4.18. For all ε > 0, r, t ∈ N and q ∈ (0, 1) there is a δ > 0 such that the following holds. Suppose
f : ({0, 1}n, µq) → R is a function such that |〈f, χS〉| 6 δ for all S ⊆ [n]. Then for all S and S′ ⊆ S of
size at most t, ρ, ρ′ ∈ (0, 1), the function g = Tρ′(χS′Tρ(χSf)) is (r, ε) resilient. Moreover, |E[g]| 6 ε.

Proof. Fix R of size at most r, z ∈ {0, 1}S and denote h(x) = 1xR=z . Then we have to show that

|〈g, h〉 − E[g]E[h]| 6 ε |E[h]| , |E[g]| 6 ε.

First, note that

|E[g]| = |E[χS′Tρ(χSf)]| = |〈χS′ ,Tρ(χSf)〉| = |〈TρχS′ , χSf〉| = |〈χSTρχS′ , f〉| .

Note that the function TρχS′ only depends on coordinates form S′, and the set {χT }T⊆S′ is a basis for such
functions, so we may write

TρχS′(x) =
∑
T⊆S′

αTχT (x),

where the coefficients αT satisfy that |αT | = Oq,r(1). It follows that

|E[g]| 6 |〈χSTρχS′ , f〉| 6
∑
T⊆S′

|αT | |〈χSχT , f〉| 6
∑
T⊆S′

|αT | |〈χSχT , f〉| = Oq,r(δ) 6
ε

2

for sufficiently small δ. Thus, to finish the proof it suffices to bound 〈g, h〉.
Similarly to before, 〈g, h〉 = 〈f, χSTρ(χS′Tρ′h)〉. As h depends only on coordinates from R, we may

write
h(x) =

∑
R′⊆R

αR′χR′ ,

where |αR′ | = Oq,r(1) for all R′, so that

|〈g, h〉| 6
∑
R′⊆R

|αR′ | |〈g, h〉〈f, χSTρ(χS′χR′)〉| .

Again, for S′, R′ we may write

Tρ(χS′χR′) = Tρ(χS′⊕R′) =
∑

L⊆S′⊕R′
βLχL,

where |βL| = Oq,r(1) for all L, so

|〈g, h〉| 6
∑
R′⊆R

∑
L⊆S′⊕R′

|αR′ | |βL| |〈f, χSχL〉| 6
∑
R′⊆R

∑
L⊆S′⊕R′

|αR′ | |βL| δ = Oq,r(δ) 6
ε

2
(q(1− q))r

for sufficiently small δ. The proof is concluded since |E[h]| > (q(1− q))r.
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In words, Lemma 4.18 tells us that if the functions f1, . . . , f4 in the setting of Theorem 1.3 do not satisfy
the conclusion of the theorem, then the functions in the conclusion of Lemma 4.16 are resilient.

4.5.2 The Regularity Lemma

Next, we describe the regularity lemma we intend to use, and towards this end we define the notion of regular
functions.

Definition 4.19. We say a function f : ({0, 1}n, µ⊗nq )→ R is (d, τ) regular if maxi∈[n] I
6d
i [f ] 6 τ .

The following lemma asserts that given functions f1, . . . , f` with bounded 2-norm, one can find a set
T consisting of constantly many coordinates such that randomly restricting the functions f1, . . . , f` on T
yields that all functions are regular with high probability.

Lemma 4.20. For all `, d ∈ N, ξ, τ > 0 and q ∈ (0, 1) there is J such the following holds. Suppose
f1, . . . , f` : ({0, 1}n, µ⊗nq )→ R are functions of 2-norm at most 1; then there exists T ⊆ [n] of size at most
J such that

Pr
z∼µTq

[∃j = 1, . . . , ` such that (fj)T→z is not (d, τ) regular] 6 ξ.

Proof. Let ρ = 1/2; starting with T = ∅, we will add elements to T , and inspect the potential function

p(T ) =
∑̀
j=1

E
z∼µTq

[Stabρ((fj)T→z)].

At each point in the argument, we will inspect the set of restrictions Z for which there is j such that (fj)T→z
is not (d, τ) regular; for z ∈ Z, we denote such j by jz and choose some iz such that Iiz

6d[(fjz)T→z] > τ . If
µq(Z) 6 ξ, we are done, and otherwise we take T ′ = T∪

⋃
z∈Z {iz}, and show that p(T ′) > p(T )+Ωd,ξ(1).

We then iterate the process with T ′, and note that as for every T we have

p(T ) 6
∑̀
j=1

E
z∼µTq

[
‖(fj)T→z‖22

]
=
∑̀
j=1

‖fj‖22 6 `,

the process must terminate after O`,d,ξ(1) steps and then we have µq(Z) 6 ξ. As |T ′| 6 |T | + |Z| 6
|T |+ ((1− q)q)−|T | 1ξ , it follows that the size of the final set T is also O`,d,ξ(1), so we will be done.

It remain to show that p(T ′) > p(T )+Ωd,ξ(1). First, observe by a direct computation that for a function
g and a coordinate i we have that

E
a∼µq

[
Stabρ(g{i}→a)

]
= Stabρ(g) + (1− ρ)Ii[Tρg;µq].

Fix j = 1, . . . , `, let Ej be the event that for z the function (fj)T→z is not (d, τ) regular and let iz be a
coordinate whose degree d influence is at least d. We get that

E
z∼µT ′q

[Stabρ((fj)T ′→z)] = E
z∼µTq

z′∼µQT\T ′

[
Stabρ((fj) T→z

T ′→z′
)

]
> E

z∼µTq ,a∼µq

[
Stabρ((fj) T→z

{iz}→a
)

]
,
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where we think of z as fixed, and used the above observation for each coordinate in T ′ \ T except for iz ,
lower bounding the influence by 0. Using the observation again we get that

E
z∼µT ′q

[Stabρ((fj)T ′→z)] > E
z∼µTq

[Stabρ((fj)T→z) + (1− ρ)Iiz [Tρ(fj)T→z;µq]]

> E
z∼µTq

[
Stabρ((fj)T→z) + (1− ρ)ρd1Ej (z)

]
= E

z∼µTq
[Stabρ((fj)T→z)] + (1− ρ)ρd Pr

z∼µTq
[Ej ].

Summing over j yields that

p(T ′) > p(T ) + (1− ρ)ρd
∑̀
j=1

Pr
z∼µTq

[Ej ] > p(T ) + (1− ρ)ρd
∑̀
j=1

Pr
z∼µTq

[Ej ] > p(T ) + (1− ρ)ρdµq(Z),

which is at least p(T ) + Ωd,ξ(1), and we are done.

In the next section, we will combine the regularity lemma and the resilience of the functions discussion
in this section and show the expectation in the conclusion of Lemma 4.16 is close 0.

4.6 The Invariance Principle Argument

In this section, we show how to use the tools from the previous section in order to apply the invariance
principle on the expectation in the conclusion of Lemma 4.16. Towards this end, we first present the basic
set-up of the invariance principle.

Definition 4.21. Let ν be a probability measure over {0, 1}4. The covariance matrix of ν, denoted as G[ν],
is a matrix in R4×4 whose i, j entry is equal to

G[ν]i,j = sup
fi : ({0,1},νi)→R,E[fi]=0
fj : ({0,1},νi)→R,E[fj ]=0

E(xi,xj)∼νi,j
[
fi(x

i)fj(x
j)
]√

Exi∼νi [fi(xi)2]
√
Exj∼νj [fj(xj)2]

.

For our distribution ν, since it is pairwise independent it follows that G[ν] = I . Given a covariance
matrix, one can define the associated jointly distributed Gaussian distribution. For us, as G[ν] = I , the
relevant Gaussian distribution will be that of G1, . . . , G4 with co-variance matrix I , i.e. independently
distributed standard Gaussian random variables. We denote this distribution by µ.

Definition 4.22. We define the function clip : R → [−1, 1] by clip(z) = z for z ∈ [−1, 1], clip(z) = 1 if
z > 1 and clip(z) = −1 if z 6 −1.

Given a function f : ({0, 1}n, µq) → [−1, 1], we may expand f according to the q-biased Fourier basis
and write

f(x1, . . . , xn) =
∑
S⊆[n]

f̂(S;µq)χ
q
S(x).

Define the associated multi-linear polynomialF (z1, . . . , zn) =
∑
S⊆[n]

f̂(S;µq)
∏
i∈S

zi, so that f(x1, . . . , xn) =

F (χq{1}(x1), . . . , χq{n}(xn)). With this notations, and towards applying the invariance principle we think of
F as a function over Gaussian space Rn. We have the following consequence of the invariance principle
of [MOO05, Mos10]
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Lemma 4.23. Let ν be a distribution over {0, 1}4 and µ be a distribution over R4 with the same covariance
matrix as of ν.

For all γ, ε > 0 there are τ > 0 and d ∈ N such that if f1, . . . , f4 : ({0, 1}n, µ⊗nq ) → [−1, 1] are
function such that maxi∈[n] I

6d
i [gj ] 6 τ for all j = 1, . . . , 4, and γ1, . . . , γ4 ∈ [γ, 1]. Then, looking at

gj = T1−γjfj and considering its associated multi-linear polynomial Gj , we have∣∣∣∣∣∣ E
(x1,...,x4)∼ν⊗n

 4∏
j=1

T1−γjfj(x
j)

− E
(z1,...,z4)∼µ⊗n

 4∏
j=1

clip(Gj)(z
j)

∣∣∣∣∣∣ 6 ε.

Proof. The proof is the same as [CFM+22, Theorem 5.9].

Let f1, . . . , f4 be as in Theorem 1.3, and take gi = Tρi(χSifi) and hi = χS′igi as in Lemma 4.16. The
following lemma shows an upper bound on the expectation in Lemma 4.16 in the case that each fi is not
correlated with any function of the form χS . In the next section, we combine it with Lemma 4.16 to prove
Theorem 1.3.

Lemma 4.24. For all t ∈ N, q ∈ (0, 1) and ξ > 0, there are r ∈ N and δ > 0 such that the following
holds. Suppose f1, . . . , f4 : ({0, 1}n, µ⊗nq ) → [−1, 1] are functions that satisfy that |〈fj , χS〉| 6 δ for all
j = 1, . . . , 4 and S ⊆ [n], then∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[h1(x)h2(y)h3(z)h4(w)]

∣∣∣∣∣ 6 ξ,

where gj = Tρj (χSjhj), hj = Tρ′j
(χS′jgj) and

∣∣∣S′j∣∣∣ 6 t, 0 < ρj , ρj′ 6 1/2 for j = 1, . . . , 4.

Proof. We use the parameters

0 < δ � r−1, ε� d−1 � J−1 � τ � t−1, ξ 6 1.

Let f1, . . . , f4 be functions as in the statement of Lemma 4.24. By Lemma 4.20, we may find a set of
coordinates T ⊆ [n] of size at most J such that, denoting by Ei the event that (fi)T→u is (r, τ) regular for
u ∼ µTq , we have that Pr

[
Ē1 ∨ . . . ∨ Ē4

]
6 ξ

10 . Thus, denoting Hi = χS′iTρi(fiχSi) and recalling that
hi = TρiHi, we may write∣∣∣∣∣ E

(x,y,z,w)∼ν⊗n
[h1(x)h2(y)h3(z)h4(w)]

∣∣∣∣∣ =

∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[
Tρ′1

H1(x)Tρ′2
H2(y)Tρ′3

H3(z)Tρ′4
H4(w)

]∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

(x′,y′,z′,w′)∼~ρ′ (x,y,z,w)

[
H1(x′)H2(y′)H3(z′)H4(w′)

]∣∣∣∣∣∣∣∣ ,
where by the notation (x′, y′, z′, w′) ∼~ρ′ (x, y, z, w) we mean that for each i = 1, . . . , n independently, we
take x′i = xi with probability ρ′1 and otherwise re-sample according to µq, independently we take y′i = yi
with probability ρ′2 and otherwise re-sample according to µq, independently we take z′i = zi with probability
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ρ′3 and otherwise re-sample according to µq, and independently we take w′i = wi with probability ρ′4 and
otherwise re-sample according to µq. We re-write the last expectation as∣∣∣∣∣∣∣∣ E

(a,b,α,β)∼νT
(a′,b′,α′,β′)

 E
(x,y,z,w)∼ν[n]\T

(x′,y′,z′,w′)∼~ρ′ (x,y,z,w)

[
(H1)T→a′(x

′)(H2)T→b′(y
′)(H3)T→α′(z

′)(H4)T→β′(w
′)
]
∣∣∣∣∣∣∣∣ ,

which is the same as∣∣∣∣∣ E
(a′,b′,α′,β′)∼ν′T

[
E

(x,y,z,w)∼ν[n]\T

[
Tρ1(H1)T→a′(x)Tρ2(H2)T→b′(y)Tρ3(H3)T→α′(z)Tρ4(H4)T→β′(w)

]]∣∣∣∣∣ .
Above, ν ′ is a distribution which can be explicitly described, however it is only important for us that its
marginal on each coordinate is µq. Thus, denoting E = E1(a′) ∩ E2(b′) ∩ E3(α′) ∩ E4(β′), we can upper
bound the last quantity as

E
(a′,b′,α′,β′)∼ν′T

[
1E

∣∣∣∣∣ E
(x,y,z,w)∼ν[n]\T

[
Tρ′1

(H1)T→a′(x)Tρ′2
(H2)T→b′(y)Tρ′3

(H3)T→α′(z)Tρ′4
(H4)T→β′(w)

]∣∣∣∣∣
]

+ Pr
[
Ē
]
, (11)

where we used the fact that ‖Hj‖∞ 6 1 for all j = 1, . . . , 4. We have Pr
[
Ē
]
6 ξ

10 . For the first term, fix
a′, b′, α′, β′ such that E holds; then the functions H ′1 = (H1)T→a′ , H ′2 = (H2)T→b′ , H ′3 = (H3)T→α′ and
H ′4 = (H4)T→β′ are all (d, τ) regular, so by Lemma 4.23 we get∣∣∣∣∣ E

(x,y,z,w)∼ν[n]\T

[
Tρ′1

(H1)T→a′(x)Tρ′2
(H2)T→b′(y)Tρ′3

(H3)T→α′(z)Tρ′4
(H4)T→β′(w)

]∣∣∣∣∣
6

∣∣∣∣∣ E
(z1,z2,z3,z4)∼µn−J

[
clip(G1)(z1)clip(G2)(z2)clip(G3)(z3)clip(G4)(z4)

]∣∣∣∣∣+
ξ

10
, (12)

where G1 is the multi-linear polynomial associated with Tρ′1
(H1)T→a′ , and similarly for G2, G3 and G4.

Note that the covariance matrix of ν is the identity matrix, hence the covariance matrix of µ is also the
identity, so the random variables z1, . . . , z4 are independent, hence∣∣∣∣∣ E

(z1,z2,z3,z4)∼µn−J

[
clip(G1)(z1)clip(G2)(z2)clip(G3)(z3)clip(G4)(z4)

]∣∣∣∣∣ =

4∏
j=1

|E[clip(Gj)]| . (13)

Fix j; without loss of generality, j = 1. Using Lemma 4.23 again, this time with the functions f2, f3, f4

being the constant 1 function, we get that∣∣∣E[Tρ′1
(H1)T→a′ ]− E[clip(G1)]

∣∣∣ 6 ξ

10
.

However, we have
∣∣∣E[Tρ′1

(H1)T→a′ ]
∣∣∣ = |E[(H1)T→a′ ]|, and by the proof of Lemma 4.18 the function H1

is (r, ε) resilient, and as r > J we get that

|E[(H1)T→a′ ]| 6 ε+ |E[H1]| 6 2ε,
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where in the last inequality we used Lemma 4.18 again. Thus, |E[clip(G1)]| 6 2ε + ξ
10 6 ξ

5 , and plugging

into (12) we get that
∣∣∣E(z1,z2,z3,z4)∼µn−J

[
clip(G1)(z1)clip(G2)(z2)clip(G3)(z3)clip(G4)(z4)

]∣∣∣ 6 ξ
5 , and

plugging this into (13) yields that∣∣∣∣∣ E
(x,y,z,w)∼ν[n]\T

[
Tρ1(H1)T→a′(x)Tρ2(H2)T→b′(y)Tρ3(H3)T→α′(z)Tρ4(H4)T→β′(w)

]∣∣∣∣∣ 6 3ξ

10
.

Finally, plugging this into (11) and then all the way above yields that∣∣∣∣∣ E
(x,y,z,w)∼ν⊗n

[h1(x)h2(y)h3(z)h4(w)]

∣∣∣∣∣ 6 3ξ

10
+

ξ

10
< ξ,

and we are done.

4.6.1 Concluding the Proof of Theorem 1.3

In this section, we finish up the proof of Theorem 1.3, presented below.

Proof of Theorem 1.3. We use the parameters

0 < δ � η, r−1 � t−1, ε′ � ε, q, 1− q < 1.

Assume that
∣∣E(x,y,z,w)∼ν⊗n [f1(x)f2(y)f3(z)f4(w)]

∣∣ > ε; then by Lemma 4.16 we find h1, . . . , h4 defined
therein such that

∣∣E(x,y,z,w)∼ν⊗n [h1(x)h2(y)h3(z)h4(w)]
∣∣ > ε′, and S′1, . . . , S

′
4 are of size at most t.

Assume towards contradiction that each fi satisfies that |〈fi, χS〉| 6 δ for all i = 1, . . . , 4. Then by
Lemma 4.18 each hi is (r, η)-resilient, so by Lemma 4.24

∣∣E(x,y,z,w)∼ν⊗n [h1(x)h2(y)h3(z)h4(w)]
∣∣ < ε′,

and contradiction.

5 Direct product testing

This section is devoted for the proof of Theorem 1.4.

Notations. Given a string x ∈ {0, 1}n and a subset S ⊆ [n], we use the notation x|S to denote the part of

the string x restricted to the set S. Given x, y ∈ {0, 1}n, we use the notation x
>α
6= y to denote that the set

{i ∈ [n] | xi 6= yi} is of size at least α. Similarly, we use x
6α
6= y to denote that the strings x and y differ at

at most α locations.
Inclusion graphs are graphs whose vertices are subsets of some finite universe, and two vertices (subsets)

are connected by an edge iff one is contained in the other. Consider the bipartite inclusion graphG(n, k, t) =

G(X ∪ Y,E) between X =
([n]
k

)
and Y =

(
[n]
t

)
for some k < t. The following lemma from [IKW12] will

be useful for our analysis.

Lemma 5.1. LetG(n, k, t) be the inclusion graph for k < t. Let Y ′ ⊆ Y be any subset of measure ρ < 1/2.
For any constant 0 < ν < 1, we have that for all but at most Oν

(
log 1/ρ
t/k

)
fraction of vertices x ∈ X , we

have ∣∣Pry∈N(x)[y ∈ Y ′]− ρ
∣∣ 6 νρ.

Here, N(x) is the neighbors of the vertex x in G.
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The set up for the direct product testing. Fix constants q, q′ ∈ (0, 1) such that q′ < q and an integer
β > 0. Suppose we are given a table F :

(
[n]
qn

)
→ {0, 1}qn where F [S] ∈ {0, 1}qn can be thought of as

assigning a bit to every element in S (by associating some fixed ordering on the elements of [n]). Consider
the agreement test (Agreement-Test) parameterized by (q, q′, β) given in Figure 5. If the table F is coming

• Pick a random set A0 ∪B0 of size qn where |A0| = q′n

• Select a random set B1 ⊆ [n] \A0 of size (q − q′)n

• Check if F [A0 ∪B0]|A0

6β
6= F [A0 ∪B1]|A0

Figure 1: Agreement-Test with parameters (q, q′, β).

from a global string a ∈ {0, 1}n, i.e., F [S] = a|S , then it is clear that the test accepts with probability 1
(even when β = 0). We wish to conclude that the table F has a similar structure even if the test passes with
probability at least ε for every constant ε > 0. We show this is the case when β = 0.4 We will use the fact
that the parameter β can be set to a non-zero value in the proof of the following main theorem.

Theorem 5.2 (Restatement of Theorem 1.4). For all 0 < q′ < q < 1 and ε > 0, there are r ∈ N and δ > 0
such that the following holds. Suppose that F :

(
[n]
qn

)
→ {0, 1}qn satisfies

Pr
(S1,S2)∼Dq,q′

[F [S1]|S1∩S2 = F [S2]|S1∩S2 ] > ε.

Then there exists a function g : [n] → {0, 1} such that for at least a δ fraction of S ∈
(

[n]
qn

)
, we have

|{i ∈ S | F [S]i 6= g(i)}| 6 r.

To get the local structure in Section 5.1, we follow the same proof strategy as in [IKW12], except that we
change the parameters from a key definition of "excellent" tailored to our setting. An important distinction
between the proof strategy of [IKW12] and our work is in the final step of showing consistency between
different functions with local structure, we crucially use the small-set expansion property of a certain graph
defined on a multi-slice of {0, 1, 2}n. The is shown in Section 5.2.

Throughout the next two subsections, we use ε to denote the passing probability of the Agreement-Test.

5.1 Local structure

In this section, we prove the local structure stated in Lemma 5.6 below. We need a few definitions to state
the lemma.

Consider selecting a random set of size qn as follow. First sample a subset A ⊆ [n] of size q′n and then
select a set B ⊆ [n] \ A of size (q − q′)n uniformly at random. Output (A,B). We need the following
few definitions that are similar to the definitions from the work [IKW12], adapted towards analyzing the
Agreement-Test.

Definition 5.3. (consistency) Fix a set (A,B). A subset B′ ⊆ [n] \A is said to be β-consistent with (A,B)

if F [A,B]|A
6β
6= F [A,B′]|A. Let Consβ(A,B) be the set of all the sets that are β-consistent with (A,B).

4It can be extended for any non-zero β, but for simplicity we only analyze the test with β = 0.
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Definition 5.4. (goodness) A set (A,B) is called (η, β)-good if

Pr
B′⊆[n]\A

[B′ ∈ Consβ(A,B)] > η.

Definition 5.5. (excellence) A set (A,B) is called (η, β, r, γ)-excellent if it is (η, β)-good and

Pr
E,D1,D2

[(E,Di) ∈ Cons(A,B) for i=1,2 &F [A,E,D1]|E 6=F [A,E,D2]|E ] 6 γ.

Here, |E| = r, |Di| = (q − q′)n− r, and (E,Di) is a random subset of [n] \A of size (q − q′)n.

For the proof of our Theorem 1.4, we are going to think of the parameter r as a constant independent of
n, i.e., r = Oε(1).

Fix any (η, β, r, γ)-excellent pair (A0, B0). We define a function gA0,B0 : [n] → {0, 1} based on the
majority vote of the table F restricted to the sets in Consβ(A0, B0). More formally, for x ∈ [n] \ A0, we
set

gA0,B0(x) := Majority
B∈Consβ(A0,B0)|B3x

F [A0, B]|x.

If there is no such B that contains x then we set gA0,B0(x) := 0. We also set gA0,B0(A0) = F [A0, B0]|A0 .

Based on these definitions, we prove the following local structure, which is the main lemma from this
subsection. This is called a local structure as the functions gA0,B0 enjoy strong consistency (similar to what
we need for the global function in Theorem 1.4) but only locally with the sets in Consβ(A0, B0).

Lemma 5.6. For every q, q′ ∈ (0, 1) such that q′ < q, α, β > 0, ε > 0 and r > 1, if (A0, B0) is
(ε/2, β, r, γ)-excellent then

Pr
B∈Consβ(A0,B0)

[F [A0, B]|B
>α
6= gA0,B0(B)] 6 ν,

provided that ν = Ω
(
γ(q−q′)n

αε

)
and νε � Ω

(
r2 ln 1/ε

((q−q′)n)

)
. Furthermore, a random pair (A0, B0) is

(ε/2, β, r, γ)-excellent with probability at least ε2 −
r(r+2β)
q′nγ , if the test Agreement-Test passes with prob-

ability at least ε > 0.

In order to get an intuitive understanding the lemma statement, consider the following setting of the
parameters involved in the statement. Set β, r, α to be poly(1/ε) such that α

2β.r2 � 1
ε4

, γ = r(r+2β)
q′n

4
ε and

ν = Θ(ε). With these settings, the lemma states that if the Agreement-Test passes with probability at least
ε, then there is at least ε/4 fraction of the pairs (A0, B0) that are (ε/2, β, r, γ)-excellent. For each of these
excellent pairs (A0, B0), the function gA0,B0 satisfies the following property:

Pr
B∈Consβ(A0,B0)

[F [A0, B]|B
>poly(1/ε)

6= gA0,B0(B)] 6 O(ε).

In other words, if the test passes with probability ε > 0, then at least ε/4 fraction of the functions gA0,B0

defined above have the property that for at least 1 − O(ε) fraction of the sets in B ∈ Consβ(A0, B0), the
function gA0,B0 agrees with the table F [A0, B] ∈ {0, 1}qn on all but poly(1/ε) many locations.
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We now being to prove the lemma. For notational convenience, in the remaining part of this subsec-
tion, we call a pair (A,B) good if it is (ε/2, β)-good. Similarly, we call a pair (A,B) excellent if it is
(ε/2, β, r, γ)-excellent. Furthermore, we also suppress the subscript of Consβ and simply write it as Cons
as the subscript β will stay the same throughout this subsection.

We start by showing that a random pair is good and excellent with high probability.

Claim 5.7. If PrA0,B0,B1 [F [A0, B0]|A0

6β
6= F [A0, B1]|A0 ] > ε, then a random (A0, B0) is (ε/2, β)-good

with probability at least ε/2.

Proof. Averaging argument.

The next claim shows that almost all the good pairs are excellent, provided γ � r(r+2β)
q′n .

Claim 5.8. PrA0,B0 [(A0, B0) is (ε/2, β)-good but not (ε/2, β, r, γ)-excellent] 6 1
γ
r(r+2β)
q′n .

Proof. Consider the following two events.

1. Event Z1: (A0, B0) is good but

Pr
E,D1,D2

[(E,Di) ∈ Cons(A0, B0) for i=1,2 &F [A0, E,D1]|E 6=F [A0, E,D2]|E ] > γ.

2. Event Z2: (A0, B0) is good, (E,Di) ∈ Cons(A0, B0) for i = 1, 2 and

F [A0, E,D1]|A0∪E
>2β+1

6= F [A0, E,D2]|A0∪E .

We are interested in Pr[Z1]. We have Pr[Z1] = Pr[Z1&Z2]/Pr[Z2 | Z1] 6 Pr[Z2]/Pr[Z2 | Z1]. Note that
Pr[Z2 | Z1] > γ.

We now upper bound Pr[Z2]. The sets from the event Z2 can be equivalently sampled as follows.
First, sample a random subset A′ of [n] of size q′n + r and then pick random sets D1, D2 ⊆ [n] \ A′ of

size (q − q′)n − r, conditioned on the event F [A′, D1]|A′
>2β+1

6= F [A′, D2]|A′ . Let A′′ ⊆ A′ be the set
of coordinates where the disagreement occurs. Set A0 to be a random subset of A′ of size q′n and set
E = A′ \A0.

Observe that if (E,Di) ∈ Cons(A0, B0) for i = 1, 2 then F [A0, E,D1]|A0

62β

6= F [A0, E,D2]|A0 and
hence |A′′| 6 r + 2β, if the former event has to happen. Thus, if (E,Di) ∈ Cons(A0, B0), the expected
size of E ∩ A′′ is at most (r+2β)·r

q′n+r . Therefore, by Markov’s inequality, the probability that |E ∩ A′′| > 1 is

at most r·(r+2β)
(q′n+r) 6 r(r+2β)

q′n . Therefore, Pr[Z2] 6 r(r+2β)
q′n and the claim follows.

The following important claim shows that the function gA0,B0 defined above for an excellent pair
(A0, B0) enjoys strong agreement with F restricted to the sets in Cons(A0, B0).

Claim 5.9. For every q, q′ ∈ (0, 1) and r > 1, if (A0, B0) is excellent then

Pr
B∈Cons(A0,B0)

[F [A0, B]|B
>α
6= gA0,B0(B)] 6 ν,

provided that ν = Ω
(
γ(q−q′)n

αε

)
and νε� O

(
r2 ln 1/ε

((q−q′)n)

)
.
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The proof of Lemma 5.6 follows from the above claim along with the Claim 5.7 and Claim 5.8.

Before we prove this claim, we need a few notations and a few claims. Fix an excellent pair (A0, B0).
Let Consx = {B ∈ Cons(A0, B0) | x ∈ B}. Note that this set is used to define gA0,B0(x). For a subset
E ⊆ [n] \ A0 of size r, let BE be the set of all B ⊆ [n] \ A0 such that |B| = (q − q′)n and E ⊆ B. Also,
let ConsE = Cons(A0, B0) ∩BE .

Claim 5.10. For at least 1−O
(

ln 1/ε
(q−q′)n

)
fraction of x ∈ [n] \A0, we have |Consx| > ε

6 |Bx|. For at least

1−O
(

ln 1/ε
(q−q′)n/r

)
fraction of E ⊆ [n] \A0, we have |ConsE | > ε

6 |BE |

Proof. Claim 3.8 and Claim 3.12 from [IKW12] (follows by invoking Lemma 5.1 for the graphsG(n, r, (q−
q′)n) and G(n, 1, (q − q′)n)).

Claim 5.11. For x as above, for at least 1−O
(

ln 1/ε
((q−q′)n/r)

)
fraction of r-sets E containing x,

Pr
B∈ConsE

[F [A0, B]|x = gA0,B0(x)] >
1

10
.

Proof. Consider the bipartite inclusion graph between the sets Ex = {X ⊆ [n] \ {x} | |X| = r − 1} and
Bx = {Y ⊆ [n] \ {x} | |Y | = (q− q′)n− 1}. We know that the set Consx = {Y ∪{x} ∈ Cons(A0, B0)}
has density at least ε/6 in Bx. Since g(x) is defined as the majority among Consx, for at least ε/12 fraction
of the sets in Bx, g(x) agrees with the sets on x. Let this subset be Q.

By the sampler property of the bipartite inclusion graph G(n, r − 1, (q − q′)n − 1) from Lemma 5.1,
we have that for all but at most O

(
ln 1/ε

(q−q′)n/r

)
fraction of the sets in Ex are such that, among the sets in Bx

containing Ex, the measure of those Bx that fall into Consx is in between 1
3
ε
6 and 5

3
ε
6 . Simultaneously, the

measure of thoseBx ⊃ Ex that fall intoQ is between 1
3
ε
12 and 5

3
ε
12 , for all but at most at mostO

(
ln 1/ε

(q−q′)n/r

)
fraction of the sets Ex. Therefore, for at least 1−O

(
ln 1/ε

(q−q′)n/r

)
fraction of the sets Ex, we have

Pr
Y |Bx⊃Ex

[F [A0, Y, x]|x = g(x) | Y ∪ {x} ∈ Consx] >
1
3
ε
12

5
3
ε
6

>
1

10
.

Claim 5.12. For at least 1−O
(

r ln 1/ε
((q−q′)n/r)

)
fraction of E, we have for all x ∈ E,

Pr
B∈ConsE

[F [A0, B]|x = gA0,B0(x)] >
1

10
.

Proof. Let δ = O
(

ln 1/ε
((q−q′)n/r)

)
. Suppose for contradiction, for at least rδ fraction of E, there exists an

x ∈ E such that
Pr

B∈ConsE
[F [A0, B]|x = gA0,B0(x)] 6

1

10
.

This implies that if we select a random E and then a random x ∈ E, then with probability at least δ, the
above inequality does not hold. Now, selecting a random E and an x ∈ E is same as first selecting a random
x and then a random E 3 x. Therefore, this contradicts Claim 5.11.

We are now ready to prove Claim 5.9.
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Proof of Claim 5.9. Let δ = O
(

r ln 1/ε
((q−q′)n/r)

)
. Using Claim 5.10 and Claim 5.12, we get that for at least

1−δ fraction ofE ∈ [n]\A0, |ConsE | > ε
6 |BE | and for all x ∈ E, PrB∈ConsE [F [A0, B]|x = gA0,B0(x)] >

1
10 . Towards contradiction, let us assume

Pr
B⊆[n]\A0

[B ∈ Cons(A0, B0)&F [A0, B]|B
>α
6= gA0,B0(B)] > νε.

Consider picking a randomB satisfying the above event. Pick a random r-subsetE ofB. With probability at
least 1−O(δ), we have that such anE satisfies |ConsE | > ε

6 |BE | and for all x ∈ E, PrB′∈ConsE [F [A0, B
′]|x =

gA0,B0(x)] > 1
10 , provided νε � δ. Let E′ be the set of x ∈ E such that F [A0, B]|x 6= gA0,B0(x). The

probability that |E′| 6= 0 is at least α
(q−q′)n .

Pr
B′∈ConsE

[F [A0, B]|E 6= F [A0, B
′]|E ] | |E′| 6= 0, B ∈ Cons(A0, B0) & F [A0, B]|B

>α
6= gA0,B0(B)] >

1

10
.

Removing the conditioning,

Pr
B⊆[n]\A0,E⊆B,B′⊇E

[B,B′ ∈ Cons(A0, B0) & F [A0, B]|E 6= F [A0, B
′]|E ] > Ω

(
ανε

(q − q′)n

)
,

which is a contradiction to the fact that (A0, B0) is (r, γ) excellent, provided ν > Ω
(
γ(q−q′)n

αε

)
.

5.2 Consistency between the functions gA,B
Now that we have a function gA0,B0 for every excellent pair (A0, B0), the last step is to show that these
functions are similar to each other and hence there is a global function g that (almost) agrees with at least
δ(ε) fraction of the entries from the table F [.]. In order to show this, we differ from the analysis given
in [IKW12]. Towards this, we define another version of Cons, that we call the newCons, as follows.

Fix a constant c ∈ (0, 1).5 Consider selecting a random set of size qn as follow. First, sample a subset
A ⊆ [n] of size q′n and then select a setB ⊆ [n]\A of size (q−q′)n uniformly at random. Select a random
subset of A of size cq′n and call it D. Let E = A \D. Output (D,E,B), where A = D ∪E. Consider the
modified agreement test (Test’) given in Figure 5.2.

• Pick a random set (D∪E∪B) of size qnwhere |D| = cq′n, |E| = (1−c)q′n and |B| = (q−q′)n.

• Select a random subset E′ ⊆ [n] \ (D ∪ E) of size (1− c)q′n.

• Select a random set B′ ⊆ [n] \ (D ∪ E′) u.a.r. where |B′| = (q − q′)n.

• Check if F [D ∪ E ∪B]|D = F [D ∪ E′ ∪B′]|D

Figure 2: Modified agreement test Test’
5The constant c will depend on q, q′.
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Note that Test’ is similar to the agreement test Agreement-Test that we wish to analyze, except that the
we change the parameters from (q′, q, β) to (cq′n, q, 0) for c ∈ (0, 1). Another (minor) difference is that we
require the sets E and E′ to be disjoint in the above distribution, whereas in the Agreement-Test, the sets
B0 and B1 are uncorrelated. As the distribution of (E′, B′) depends on (D,E), for notational convenience,
we denote this marginal distribution by D(D,E).

We now relate the two tests Agreement-Test and Test′ in order to show the consistency between the
functions gA,Bs. Towards this, we define the notion of consistency, goodness, and excellence tailored to
Test’.

Definition 5.13. (consistency) Fix a set (D,E,B) where A = D ∪ E. A subset (E′, B′) in the support of
D(D,E) is said to be consistent with (D,E,B) ifF [D,E,B]|D = F [D,E′, B′]|D. Let newCons(D,E,B)
be the set of all the sets (E′, B′) that are consistent with (D,E,B).

Definition 5.14. (goodness) A set (D,E,B) is called good if

Pr
(E′,B′)∼D(D,E)

[(E′, B′) ∈ newCons(D,E,B)] > ε2/2.

Definition 5.15. (excellence) A set (D,E,B) is called (r̃, γ̃)-excellent if it is good and

Pr
(E1,B1),(E2,B2)∼D(D,E)|

E:=E1∩E2,|E|=r̃

[
(Ei,Bi)∈Cons(D,E,B) for i=1,2 &
F [D∪E1∪B1]|E 6=F [D∪E2∪B2]|E

]
6 γ̃.

The following claim shows that if the Agreement-Test passes with probability at least ε, then the test
Test’passes with probability ε2.

Claim 5.16. If PrA0,B0,B1 [F [A0, B0]|A0 = F [A0, B1]|A0 ] > ε, then there is a constant c ∈
[
q′

2q ,
2q′

q

]
such that the test Test’passes with probability at least ε2. Furthermore, a random triple (D,E,B), with
|D| = cq′n, is good with probability at least ε2/2.

Proof. Consider the following distribution.

• Select S ⊆ [n] of size qn u.a.r.

• Select A,A′ ⊆ S each of size q′n u.a.r.

• Select B ⊆ [n] \A of size (q − q′)n u.a.r.

• Select B′ ⊆ [n] \A′ of size (q − q′)n u.a.r.

We observe the following properties of the above distribution.

1. The pairs (A,S \ A) and (A,B) are distributed according to the test distribution Agreement-Test.
The same holds for the pairs (A′, S \A′) and (A′, B′)

2. For a fixed S, the pairs (A,B) and (A′, B′) are independent.
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Consider the following expectation.

E
S,(A,B),(A′,B′)

[
1F [S]|A=F [A,B]|A & 1F [S]|A′=F [A′,B′]|A′

]
= E

S

[
E

(A,B),(A′,B′)

[
1F [S]|A=F [A,B]|A & 1F [S]|A′=F [A′,B′]|A′

]]

= E
S

[
E

(A,B)

[
1F [S]|A=F [A,B]|A

]2] (Property 2. above)

>

(
E
S

[
E

(A,B)

[
1F [S]|A=F [A,B]|A

]])2

(Jensen’s inequality)

= ε2

Note that the events F [S]|A = F [A,B]|A and F [S]|A′ = F [A′, B′]|A′ together imply that F [A,B]|A∩A′ =
F [A′, B′]|A∩A′ . Therefore, we have

Pr
(A,B),(A′,B′)

[F [A,B]|A∩A′ = F [A′, B′]|A∩A′ ] > ε2.

Based on how the setsA andA′ are distributed, we have with 1−exp(−n) probability, the size ofA∩A′

lies in
[
q′2n
2q ,

2q′2n
q

]
. By an averaging argument, there exists a constant c ∈

[
q′

2q ,
2q′

q

]
such that

Pr
(A,B),(A′,B′)||A∩A′|=cq′n

[F [A,B]|A∩A′ = F [A′, B′]|A∩A′ ] > ε2.

Now, if we let D = A∩A′, E = A \D and E′ = A′ \D, then the pairs (D,E,B) and (D,E′, B′) are
distributed according to the distribution in Test’. Hence, the acceptance probability of Test’is at least ε2.
The claim now follows from the averaging argument similar to the one in the proof of Claim 5.7.

Claim 5.17. A random good set is (r̃, γ̃)-excellent with probability at least 1− r̃2

cq′nγ̃ .

Proof. Although the distribution in Test’is slightly different from the one in Agreement-Test, the proof of
this claim is along the same lines (with β = 0) as the proof of Claim 5.8.

Similar to the previous analysis, for an(r̃, γ̃)-excellent triple (D0, E0, B0), we define a function gD0,E0,B0 :
[n]→ {0, 1} based on the majority vote of the table F restricted to the sets in newCons(D0, E0, B0). More
formally, for x ∈ [n] \D0, we set

gD0,E0,B0(x) := Majority
(E,B)∈newCons(D0,E0,B0)|

E∪B3x

F [D0, E,B]|x.

If there is no such E ∪ B that contains x then we set gD0,E0,B0(x) := 0. We also set gD0,E0,B0(x)(D0) =
F [D0, E0, B0]|D0 .

We have the following claim analogous to Claim 5.9. The proof of this claim is analogous to the proof
of Claim 5.9 and hence we omit the proof.
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Claim 5.18. For every q, q′ ∈ (0, 1) and r̃ > 1, if (D0, E0, B0) is (r̃, γ̃)-excellent then

Pr
(E,B)∈newCons(D0,E0,B0)

[F [D0, E,B]|E,B
>α̃
6= gD0,E0,B0(E,B)] 6 ν̃,

provided that ν̃ = Ω
(
γ̃(q−cq′)n

α̃ε2

)
and ν̃ε� O

(
r̃2 ln 1/ε

((q−cq′)n)

)
.

Setting of the parameters. At this point, we concretely set the parameters so as to have ν, ν̃ 6 ε3 and a
random good set is excellent with probability at least 1−O(ε3) in Claims 5.8 and 5.17. This can be achieved
using the following setting of the parameters.

r̃ =
1

ε
, γ̃ =

1

ε5

1

cq′n
, α̃ =

1

ε10

With these settings, we can have ν̃ 6 ε3 in Claim 5.18. Furthermore, we set

β = 2α̃, r =
1

ε
, γ =

16r(r + 2β)

ε2q′n
≈ 1

ε13

1

q′n
, α =

1

ε18
.

With these settings, we can have ν 6 ε3 in Claim 5.9.

We will fix the parameters as stated above for the rest of the section. With these setting of parameters,
we now relate the functions gD0,E0,B0 and gA0,B0 towards showing that there is a global function g that
agrees with the table F on δ(ε) fraction of the sets. The following two definitions will come handy for the
rest of the argument.

Definition 5.19. For an excellent triple (D0, E0, B0), let newCons?(D0, E0, B0) ⊆ newCons(D0, E0, B0)

be the sets (E,B) such thatF [D0, E,B]|E,B
6α̃
6= gD0,E0,B0(E,B)]. Similarly, for an excellent pair (A0, B0),

Cons?(A0, B0) ⊆ Cons(A0, B0) be the sets B such that F [A0, B]|B
6α
6= gA0,B0(B).

Note that if we have ν̃ 6 ε2/4, then using Claim 5.18, we have

Pr
(E′,B′)∼D(D0,E0)

[(E′, B′) ∈ newCons?(D0, E0, B0)] > ε2/4. (14)

Definition 5.20. Fix (D0, E0, B0) that is good. A pair (E,B) ∈ newCons?(D0, E0, B0) is called a dense
pair, if PrB′⊆[n]\(D0∪E) [(E,B′) ∈ newCons?(D0, E0, B0)] > ε2/8.

The next claim shows that many sets in newCons?(D0, E0, B0) combined with D0 give excellent sets
for Agreement-Test.

Claim 5.21. Let (D0, E0, B0) be an (r̃, γ̃)-excellent triple and suppose ν̃ < ε2

4 and γ > 16r(r+4α̃)
ε2q′n , then,

Pr
(E,B)∈newCons?(D0,E0,B0)

[(E,B) is dense&(D0 ∪ E,B) is (ε2/8, 2α̃, r, γ)− excellent] > ε2/16.

Proof. Since (D0, E0, B0) is good, we have that at least ε2/8 fraction of (E,B) ∈ newCons?(D0, E0, B0)
are dense pairs. We will show that for such pair (E,B), (D0 ∪ E,B) is (ε2/8, 2α̃)-good. Fix any such
(E,B). By the definition of a dense pair, we have

48



Pr
B′⊆[n]\D0∪E

[
gD0,E0,B0

(D0∪E)
6α̃
6= F [D0,E,B]|D0∪E &

gD0,E0,B0
(D0∪E)

6α̃
6= F [D0,E,B′]D0∪E

]
> ε2/8.

Note that both the events in the above probability follow from the fact that (E,B) ∈ newCons?(D0, E0, B0)
and for a random B′, (E,B′) ∈ newCons?(D0, E0, B0) with probability at least ε2/8. Since gD0,E0,B0 is
a function defined on [n], this implies that

Pr
B′⊆[n]\D0∪E

[
F [D0, E,B]|D0∪E

62α̃
6= F [D0, E,B

′]D0∪E

]
> ε2/8,

and hence (D0∪E,B) is (ε2/8, 2α̃)-good. Since, using Claim 5.8, at least 1−ε2/16 fraction of (ε2/8, 2α)-
good pairs are (ε2/8, 2α̃, r, γ)-excellent, we have that at least ε2/16 pairs (E,B) ∈ newCons?(D0, E0, B0),
(D0 ∪ E,B) is excellent.

The following claim shows that the sets in Cons? and newCons? are correlated.

Claim 5.22. Fix any (r̃, γ̃)-excellent triple (D0, E0, B0). For at least Ω(ε4) fraction of the pairs (E,B) ⊆
[n] \D0 where E ∩ E0 = ∅ and B ⊆ [n] \D0 ∪ E, we have

1. (D0 ∪ E,B) is (ε2/8, 2α̃, r, γ)-excellent, and

2. there is at least Ω(ε2) fraction of B′ ⊆ [n] \ (D0 ∪ E) such that (E,B′) ∈ newCons?(D0, E0, B0)
and B′ ∈ Cons?2α̃(D0 ∪ E,B).

Proof. Using Claim 5.21 and (14), for a random (E,B) ∼ (D0, E0), with probability at least Ω(ε4),
(E,B) ∈ newCons?(D0, E0, B0), (D0 ∪ E,B) is (ε2/8, 2α̃, r, γ)-excellent as well as

Pr
B′⊆[n]\(D0∪E)

[(E,B′) ∈ newCons?(D0, E0, B0)] = Ω(ε2).

This implies gD0,E0,B0(D0 ∪ E ∪ B)
6α̃
6= F [D0 ∪ E ∪ B]. We also have gD0,E0,B0(D0 ∪ E ∪ B′)

6α̃
6=

F [D0 ∪ E ∪ B′] for at least Ω(ε2) fraction of B′ ⊆ [n] \ (D0 ∪ E). Therefore, at least Ω(ε4) fraction
of (E,B) are such that for at least Ω(ε2) fraction of B′, (E,B′) ∈ newCons?(D0, E0, B0) as well as

F [D0∪E∪B]|D0∪E
62α̃
6= F [D0∪E∪B′]|D0∪E . The latter condition implies thatB′ ∈ Cons2α̃(D0∪E,B)

and since ν 6 ε3, the claim follows.

Using the above claim, we show that for every (D0, E0, B0) that is excellent, the functions gD0,E0,B0

and gD0∪E,B are very close to each other in hamming distance for many pairs (E,B).

Claim 5.23. Fix any (r̃, γ̃)-excellent triple (D0, E0, B0). Then

Pr
(E,B)∼D(D0,E0)

[gD0,E0,B0

6O(α)

6= gD0∪E,B] > Ω(ε4).

Proof. Select a pair (E,B) according to the distribution D(D0, E0). Using Claim 5.22, with probability at

least Ω(ε4), we have gD0,E0,B0(D0 ∪E ∪B)
6α̃
6= F [D0 ∪E ∪B] , (D0 ∪E,B) is (ε2/8, 2α̃, r, γ)-excellent

and gD0∪E,B(D0 ∪E ∪B)
62α̃+α
6= F [D0 ∪E ∪B].6 Note that in the last condition, we used the fact that if

6The 2α̃ is for possible disagreements on D0 ∪ E and the α is for possible disagreements on B.
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(D0∪E,B) is excellent and ifB′ ∈ Cons?2α̃(D0∪E,B), then (D∪E,B′) is also excellent and furthermore
the functions gD0∪E,B and gD0∪E,B′ are the same as they are defined using the set Cons?(D0 ∪ E,B) =
Cons?(D0 ∪ E,B′)

Combining these events and the above claim, we get that over the randomness of (E,B), with probability
at least Ω(ε4), the following happens:

1. (D0 ∪ E,B) is (ε2/8, 2α̃, r, γ)-excellent,

2. gD0,E0,B0(D0 ∪ E ∪B)
64α
6= gD0∪E,B(D0 ∪ E ∪B), and

3. PrB′⊆[n]\(D0∪E) [(E,B′) ∈ newCons?(D0, E0, B0) & B′ ∈ Cons?2α(D0 ∪ E,B)] > Ω(ε2).

Form the third point we can conclude that PrB′⊆[n]\(D0∪E) [gD0,E0,B0(B′)
62α
6= gD0∪E,B(B′)] > Ω(ε2). As-

suming α = poly(1/ε), we have from the following claim, gD0,E0,B0 |[n]\(D0∪E)

6O(α)

6= gD0∪E,B|[n]\(D0∪E).
The claim follows from this and the point 2 above.

Claim 5.24. For any q ∈ (0, 1), β > 1 and δ > e−qβ/8, given two functions f, g : [n] → {0, 1} such that

PrS⊆[n]||S|=qn[f(S)
6β
6= g(S)] > δ, then |{i ∈ [n] | f(i) 6= g(i)}| 6 4β/q.

Proof. Let E be the disagreement set, i.e., E = {i ∈ [n] | f(i) 6= g(i)}. Suppose towards contradiction
|E| > 4β/q. Now suppose we sample a subset S by including each i ∈ [n] in S independently with
probability q/2. By the Chernoff bound, |S| 6 qnwith probability at least 1−exp(−Ω(q2n)). Furthermore,
the expected size of S ∩ E is 2β. Now, again by the Chernoff bound, the probability that |S ∩ E| is at most

β is at most e−qβ/4. This implies PrS⊆[n]||S|=qn[f(S)
6β
6= g(S)] 6 e−qβ/8 which is a contradiction.

The following claim follows easily from Claim 5.23.

Claim 5.25. There exists a constant d0 ∈ (0, 1) such that for c′ = d0c we have the following. For at least
Ω(ε2) fraction of excellent pairs (A0, B0),

Pr
(Ã0,B)

[gA0,B0

6O(α)

6= gÃ0,B
] > Ω(ε12).

Here, Ã0 is distributed uniformly conditioned on |Ã0| = q′n , |A0 ∩ Ã0| = c′q′n and B ⊆ [n] \ Ã0 of size
(q − q′)n.

Proof. Since Ω(ε2) fraction of the triples (D0, E0, B0) are (ε2/8, 2α̃, r, γ)-excellent, we have the following
from Claim 5.23.

Ω(ε6) 6 E
(D0,E0,B0)

E
(E,B)∼D(D0,E0)

[
1
gD0,E0,B0

6O(α)

6= gD0∪E,B

]
.
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Note that (D0 ∪ E,B) being (ε2/8, 2α̃, r, γ)-excellent is implicit in the event. Squaring and applying
Cauchy-Schwarz we get that

Ω(ε12) 6 E
(D0,E0,B0)

E
(E,B)∼D(D0,E0)

(E′,B′)∼D(D0,E0)

[
1
gD0,E0,B0

6O(α)

6= gD0∪E,B

1
gD0,E0,B0

6O(α)

6= gD0∪E′,B′

]

6 E
(D0,E0,B0)

E
(E,B)∼D(D0,E0)

(E′,B′)∼D(D0,E0)

[
1
gD0∪E,B

6O(α)

6= gD0∪E′,B′

]

Now letting A0 = D0 ∪ E′, B0 = B′, Ã0 = D0 ∪ E and B = B, we see that with probability at least
1− exp(−Ω((cq′)2n)), we have |E ∩ E′| = O(q′2n). Therefore, there exists a constant d0 such that when
we condition the above distribution on |A0 ∩ Ã0| = d0cq

′n, the expectation at still least Ω(ε12). The claim
now follows from an averaging argument.

We are now ready to prove the final global structure and the proof of Theorem 1.4 follows from the
following claim.

Claim 5.26. For all ε > 0, there exists δ > 0 such that if

Pr
A0,B0,B1

[F [A0, B0]|A0 = F [A0, B1]|A0 ] > ε,

then there is an excellent pair (A?0, B
?
0) such that

Pr
T∈([n]

qn)

[
gA?0,B?0 (T )

6αO(1)

6= F [T ]

]
> δ.

Proof. We first note that if two functions f, g : [n] → {0, 1} differ at O(α) locations, then if we take a
random subset S ⊆ [n] of size n/α, then the probability that f(S) = g(S) is at least Ω(1). Using this fact
and Claim 5.25, we have the following

E
S⊆[n]||S|= n

α2

[
E

(A0,B0),(Ã0,B)

[
1gA0,B0

(S)=gÃ0,B
(S)

]]
> Ω(εΘ(1)),

where (Ã0, B) is distributed as in Claim 5.25. Note that the event 1gA0,B0
(S)=gÃ0,B

(S) implicitly implies

that the pairs (A0, B0), (Ã0, B) are excellent. By an averaging argument, at least Ω(εΘ(1)) fraction of sets
S are such that

E
(A0,B0),(Ã0,B)

[
1gA0,B0

(S)=gÃ0,B
(S)

]
> Ω(εΘ(1)).

Given such a set S, we define a partition of
(

[n]
qn

)
based on the value gA,B(S). In other words, we have parts

identified by strings in {0, 1}n/α2
; (A,B) and (A′, B′) belong to the part Sβ if gA,B(S) = gA′,B′(S) = β.

We claim that there exists a β such that |Sβ| = c0(ε) ·
(
n
qn

)
, for some c0(ε) > 0.

Consider the graph Gn induced on the set of vertices {(A,B) | |A| = q′n, |B| = (q − q′)n} as follows:
A random neighbor (A′, B′) of (A,B) in this graph is sampled conditioned on the fact that A′ is distributed
uniformly conditioned on |A′| = q′n , |A∩A′| = c′q′n and B′ ⊆ [n] \A′ is a uniformly random set of size
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(q − q′)n. Using the small set expansion property of Gn from Lemma 5.32, if all the parts were of size at
most δ ·

(
n
qn

)
, then

Pr
(A0,B0),(Ã0,B)

[(A0, B0), (Ã0, B) ∈ Sβ for some β] 6 c′′(δ),

where c′′(δ)→ 0 as δ → 0. Therefore, Taking expectation over S yields that

E
S⊆[n]||S|= n

α2

[
E

(A0,B0),(A′0,B
′
0)

[
1gA0,B0

(S)=gA′0,B
′
0
(S)

]]
> εΘ(1)c0(ε)2.

This implies,

E
(A0,B0),(A′0,B

′
0)

[
E

S⊆[n]||S|= n
α2

[
1gA0,B0

(S)=gA′0,B
′
0
(S)

]]
> εΘ(1)c0(ε)2.

and hence,

Pr
(A0,B0),(A′0,B

′
0)

[
gA0,B0

6αO(1)

6= gA′0,B′0

]
> εΘ(1)c0(ε)2.

This means that there exists an excellent pair (A?0, B
?
0) such that

Pr
(A′0,B

′
0)

[
gA?0,B?0

6αO(1)

6= gA′0,B′0

]
> εΘ(1)c0(ε)2.

Now consider selecting a random set T of size qn and select a random subset A of T of size q′n and
let B = T \ A. Select a random set B′ ⊆ [n] \ A. Using the above inequality, with probability at

least εΘ(1)c0(ε)2, gA?0,B?0
6αO(1)

6= gA,B′ and with probability at least Ω(ε2), B ∈ Cons?(A,B′) and hence

gA,B′(T )
6α
6= F [T ]. Combining all these events, we have

Pr
T∈([n]

qn)

[
gA?0,B?0 (T )

6αO(1)

6= F [T ]

]
> Ω(εΘ(1)c0(ε)2 · ε2),

and the claim follows.

5.3 Small-set expansion property of the graphs over a multi-slice

In this section, we show the small set expansion property of the graph that was needed in the proof of
Claim 5.26. For a graph G(V,E), let T (G) be the markov operator associated with G. Also, let φG(µ) :=
minS⊆V (G),|S|6µ|V (G)| Pr(u,v)∈E(G) [v /∈ S | u ∈ S]. Note that if every subset of size at most µ in G ex-

pands, then φG(µ) is large. For any linear operator T , its p→ q norm is defined as ‖T‖p→q := maxv 6=0
‖Tv‖q
‖v‖p .
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The graph Gn. Consider the graph Gn induced on the set of vertices {(A,B) | |A| = q′n, |B| = (q−q′)n}
as follows: A random neighbor (A′, B′) of (A,B) in this graph is sampled conditioned on the fact that A′

is distributed uniformly conditioned on |A′| = q′n , |A ∩ A′| = cq′n and B′ ⊆ [n] \ A′ is a uniformly
random set of size (q − q′)n. In this section, we deduce the small-set expansion property of the graph Gn.
We can view the vertices of the above graph Gn as the multi-slice of {0, 1, 2}n – map the vertex (A,B) to
x ∈ {0, 1, 2}n where xi = 1 if i ∈ A, xi = 2 if i ∈ B and xi = 0 if i ∈ [n] \ (A ∪ B). Let us denote the
multi-slice by Un.

One can view the multi-slice Un as a quotient space Sn/(S(1−q)n × Sq′n × S(q−q′)n), which is useful
in lifting the standard representation-theoretic decomposition of functions over Sn to decompositions of
functions over Un. In order to state the relevant lemmas from [BKLM22], we need the following few
definitions.

Definition 5.27. A function f : Sn → R is called a d-junta if there exists a set of coordinate A ⊆ [n] of size
at most d such that f(π) = g(π(A)) for some function g : [n]A → R.

For two function f, g : Sn → R, define the inner product 〈f, g〉 as Eπ [f(π)g(π)].

Definition 5.28. For d = 0, 1, . . . , n we denote by Vd(Sn) ⊆ {f : Sn → R} the span of d-juntas. Also,
define V=d(Sn) = Vd(Sn) ∩ Vd−1(Sn)⊥.

Therefore, we can write the space of real-valued functions as V=0(Sn)⊕ V=1(Sn)⊕ . . .⊕ V=n−1(Sn),
and thus write any f : Sn → R uniquely as f =

∑n−1
i=0 f

=i where f=i ∈ V=i(Sn). Let V>d(Un) (V6d(Un))
be the span of functions over Un whose degree is at least (at most) d.

We say a distribution µ over ([3] × [3])n commutes with the action of Sn if the following distributions
are the same for all π ∈ Sn and x ∈ [3]n: a) x′, where (x,x′) ∼ µ conditioned on x = π(x), and b) π(x′),
where (x,x′) ∼ µ conditioned on x = x. The following claim shows that the operator T that commutes
with Sn preserves the degree of the functions.

Claim 5.29. (Claim 3.6 from [BKLM22]) Suppose T is an operator that commutes with the action of Sn
on functions over the multi-slice Un. Then for each 0 6 d < n, we have that T (V=d(Un)) ⊆ V=d(Un).

We observe the following few properties of the multi-slice Un and the operator T (Gn).

1. In a multi-slice, every symbol appears the same number of times in every element of the multi-slice.
If we let ki be the number of times the symbol i appears, then the multi-slice is called α-balanced if
ki > αn for every i. The multi-slice Un is α-balanced for α = min{q′, (q − q′), (1− q)}.

2. The edge distribution of the graph Gn is a distribution on the multi-slices Un × Un. A distribution
µ on Un × Un is called α-admissible if a) the distribution is symmetric under Sn, and b) for all
(a, b) ∈ {0, 1, 2} × {0, 1, 2}, the quantity Pr(x,y)∼µ,i∈[n] [xi = a & yi = b] is either at least α or 0. It
can be easily observed that the edge distribution of Gn is α-admissible for α = Ωc,q,q′(1) independent
of n.

3. A distribution µ on Un × Un also called connected iff the bipartite graph (V1 ∪ V2, E) where a) Vi
is the corresponding support of the marginal distribution of µ, and b) (x,y) ∈ E iff (x,y) is in the
support of µ, is connected. Here again, it is easy to observe the connectedness property of the edge
distribution of the graph Gn.

4. Finally, the operator T (Gn) commutes with the action of Sn.
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One of the important characteristic of Ω(1)-admissible and connected distributions, as shown in [BKLM22],
is that it can be replaced by a certain product distribution ν⊗n as far as low-degree functions are concerned.
Thus, this gives a way to prove analytical results for a multi-slice by invoking the corresponding results over
a product distribution.

The following lemma from [FKLM20] gives an upper bound on ‖P6d‖2→4, where P6d is the projector
operator into the space V6d(Un). It crucially uses the fact that Un is α-balanced for some constant α
independent of n.

Lemma 5.30 (Theorem 2.12 from [BKLM22]). For all c > 0 and 0 < q′ < q < 1 and d ∈ N there is
N = N(c, q, q′, d) > 0 and C = C(c, q, q′, d) > 0 such that the following holds. Let n > N and let
f : Un → R be a function of degree at most d, then ‖f‖4 6 C‖f‖2.

Finally, we need the following lemma that bounds the eigenvalues of the operator T (Gn). This lemma
uses the fact the the edge distribution is Ω(1)-admissible and connected.

Lemma 5.31 (Lemma 3.11 from [BKLM22]). For all c > 0 and 0 < q′ < q < 1, there exist constants
C > 0 and δ > 0 such that for all d ∈ N, if f ∈ V>d(Un), we have ‖T (Gn)f‖2 6 C(1 + δ)−d‖f‖2.

We are now ready to prove the small-set expansion property of the graph Gn.

Lemma 5.32. For every c > 0 and 0 < q′ < q < 1, there exists N = N(c, q′, q) such that for all n > N
and µ > 0, the graph Gn defined above has

φGn(µ) > 1− µ′,

where µ′ → 0 as µ→ 0.

Proof. Fix any set S ⊆ V (Gn) of density at most µ. Let f : Un → {0, 1} be the indicator function of
S. As stated at the begining of the section, we can write f as f =

∑n−1
i=0 f

=i where f=i ∈ V=i(Un). Let
f = f1 + f2, where the component f1 =

∑d
i=0 f

=i and f2 =
∑n−1

i=d+1 f
=i for some d to be fixed later. By

letting T := T (Gn), we have

φGn(S) = 1− 〈f, T f〉
µ

.

By letting τ := C(1 + δ)−d from Lemma 5.31, we can bound

〈f, T f〉 = 〈f1, T f1〉+ 〈f2, T f2〉 (Using Claim 5.29 and orthogonality of spaces V=i(Un))

6 ‖f1‖22 + τ‖f2‖22 (Using Claim 5.31)

6 ‖f1‖22 + τµ.

Therefore,

φGn(S) > 1− τ − ‖f1‖22
µ

. (15)

If we let P6d be the projector operator into the subspace V6d(Un), then we have

‖P6d‖4/3→2 = max
g 6=0

‖P6dg‖2
‖g‖4/3

>
‖P6df‖2
‖f‖4/3

=
‖f1‖2
‖f‖4/3

.
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Since ‖f‖4/3 = µ3/4, we have ‖f1‖22 6 ‖P6d‖24/3→2 · µ
3/2. Using the fact that ‖P6d‖24/3→2 = ‖P6d‖22→4,

we get ‖f1‖22 6 ‖P6d‖22→4 · µ3/2. Therefore,

φGn(S) > 1− τ − ‖P6d‖22→4 · µ1/2. (16)

Finally, using Lemma 5.30, we can bound ‖P6d‖22→4 as follows.For any function g, let g1 be the component
of g from V6d and g2 := g − g1 be orthogonal to g1.

‖P6d‖22→4 = max
g:=g1+g2 6=0

‖P6dg‖24
‖g‖22

= max
g:=g1+g2

‖g1‖24
‖g1‖22 + ‖g2‖22

6 max
g1∈V6d

‖g1‖24
‖g1‖22

6 C(c, q, q′, d),

where the last inequality uses Lemma 5.30. Plugging this into (16), we get

φGn(µ) > 1− C(1 + δ)−d − C(c, q, q′, d) · µ1/2.

If we choose d to be some growing function in 1/µ such that C(c, q, q′, d) 6 1
µ1/4 , then it is easy to observe

that φ(µ)→ 1 as µ→ 0.

5.4 Direct product testing: from sets to a product distribution

In this section, we show that Corollary 1.5 follows from Theorem 1.4. We need the following two claims.

Claim 5.33. Fix q ∈ (0, 1) and N = ω(n2). We have,(
N−n
qN−t

)(
N
qN

) = qt(1− q)n−t(1± o(1)).

Proof. Expanding the left-hand side,(
N−n
qN−t

)(
N
qN

) =
(N − n)!qN !(N − qN)!

N !(qN − t)!(N − qN − n+ t)!

=
qN.(qN − 1) . . . (qN − t+ 1) · (N − qN).(N − qN − 1) . . . (N − qN − n+ t+ 1)

N.(N − 1) . . . (N − n+ 1)

= qt(1− q)n−tN(N − 1/q) . . . (N − (t− 1)/q) ·N(N − 1/(1− q)) . . . (N − (n− t− 1)/(1− q))
N(N − 1) . . . (N − (n− 1))

= qt(1− q)n−t (1− 1/qN) . . . (1− (t− 1)/qN) · (1− 1/(1− q)N) . . . (1− (n− t− 1)/(1− q)N)

(1− 1/N) . . . (1− (n− 1)/N)

= qt(1− q)n−t · e
−Θ(t2/qN) · e−Θ((n−t)2/(1−q)N)

e−Θ(n2/N)

= qt(1− q)n−t(1± o(1)),

and the claim follows.

Claim 5.34. Fix q ∈ (0, 1) and N = ω(n2). Consider the following two distributions on P ([n]):

• D1: Select a subset A ⊆ [n] by including i ∈ [n] to A with probability q for each i independently.
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• D2: Select a random subset S ⊆ [N ] of size qN and output S|[n].

Then, the statistical distance between D1 and D2 is at most on(1).

Proof. We will compare the point-wise probabilities p1, p2 : P ([n])→ R assigned by the two distributions
D1 and D2, respectively. Fix any set A ⊆ [n] of size t. We have p1(A) = qt(1 − q)n−t. Now, in order to
sample A from D2, it must be the case that S|[n] = A and therefore, we have

p2(A) =

(
N−n
qN−t

)(
N
qN

) ,
which is qt(1− q)n−t(1± o(1)) using Claim 5.33.

Given a function G : (P [n], µ⊗n) → P ([n]) where G(A) can be thought of as a string in {0, 1}|A| by
specifying a fixed arbitrary ordering on [n], we define a map G̃ :

([N ]
qN

)
→ {0, 1}qN as follows: For a set

S ∈
([N ]
qN

)
, define G̃(S)|S∩[n] = G(S ∩ [n]) and G̃(S)|S\[n] = 0|S\[n]|.

Corollary 5.35 (Restatement of Corollary 1.5). For all α, ε > 0 and 0 < q < 1
2−α , there are r ∈ N and

δ > 0 such that the following holds. Suppose that G : (P [n], µ⊗nq )→ P ([n]) satisfies

Pr
(A,A′)∼Dq,α

[
G[A] ∩ (A ∩A′) = G[A′] ∩ (A ∩A′)

]
> ε.

Then there exists S ⊆ [n] such that PrA∼q [n] [|G[A]∆(S ∩A)| 6 r] > δ.

Proof. We know that

Pr
(A,A′)∼Dq,α

[G[A] ∩ (A ∩A′) = G[A′] ∩ (A ∩A′)] > ε.

Instead of checking consistency on A ∩ A′, we select a set A′′ ⊆ A ∩ A′ by independently including
i ∈ A ∩A′ to A′′ with probability q′/αq. This can only increase the acceptance probability, and hence

Pr
(A,A′)∼Dq,α
A′′∼q′/αqA∩A′

[G[A] ∩A′′ = G[A′] ∩A′′] > ε. (17)

We denote the overall distribution on (A,A′, A′′) from the above probability by D. Now consider
selecting the pairs (A0, B0) and (A0, B1) according to the Agreement-Test with parameters (q, q′, 0) for
the table G̃. Let Ã = A0 ∪ B0 ∩ [n], Ã′ = A0 ∪ B1 ∩ [n] and Ã′′ = A0 ∩ [n]. We use D̃ to denote the
distribution on (Ã, Ã′, Ã′′). We show that the statistical distance between the distributions D and D̃ is at
most o(1).

Claim 5.36. The statistical distance between the distributions D and D̃ is at most o(1) when αq = q′ +
(q−q′)2

(1−q′) .

Proof. For simplicity, consider the following distribution which is a refinement of the distribution D. Fix
0 6 p1, p2, p3, p4 6 1 such that

∑
i pi 6 1. For each i ∈ [n] independently, i ∈ A \ A′ with probability p1

and i ∈ A′ \ A with probability p2, i ∈ (A ∩ A′) \ A′′ with probability p3, and i ∈ A′′ with probability p4.
Note that by choosing p1 = p2 = (1− α)q, p4 = q′ and p3 = αq − q′, we recover the given distribution D
and hence we will fix these values of pi throughout the claim.

56



Fix a triple (A,A′, A′′). Let p and p̃ be the probability masses given to (A,A′, A′′) by the distributions
D and D̃, respectively. Let a = |A \A′|, b = |A′ \A|, c = |(A ∩A′) \A′′| and d = |A′′|. We have

p = pa1 · pb2 · pc3 · pd4 · (1− (p1 + p2 + p3 + p4))n−(a+b+c+d)

We can compute p̃ as follows:

p̃ = Pr
A0,B0,B1

[
A0|[n] = A′′, B0|[n] = A \A′′, B1|[n] = A′ \A′′

]
= Pr

A0

[
A0|[n] = A′′

]
· Pr
A0,B0

[
B0|[n] = A \A′′ | A0|[n] = A′′

]
Pr

A0,B1

[
B1|[n] = A′ \A′′ | A0|[n] = A′′

]
=

(
N−n
q′N−d

)(
N
q′N

) · (N−q′N−(n−d)
(q−q′)N−(a+c)

)(N−q′N
(q−q′)N

) ·

(N−q′N−(n−d)
(q−q′)N−(b+c)

)(N−q′N
(q−q′)N

)
= (1± o(1)) · q′d(1− q′)n−d ·

(
q − q′

1− q′

)a+c( 1− q
1− q′

)n−(a+c+d)

·
(
q − q′

1− q′

)b+c( 1− q
1− q′

)n−(b+c+d)

,

where the last equality follows from Claim 5.33. It can be shown that p = p̃ with the following setting of
pis

p1 = p2 =
(q − q′)(1− q)

(1− q′)
, p3 =

(q − q′)2

(1− q′)
, and p4 = q′.

Therefore, when αq = q′ + (q−q′)2

(1−q′) , the above identities hold along with p1 = p2 = (1− α)q, p4 = q′ and
p3 = αq − q′. This finishes the proof of this claim.

Using the above claim and Equation (17), we conclude

Pr[G[Ã] ∩ Ã′′ = G[Ã′] ∩ Ã′′] > ε− o(1).

Since G̃(S)|i = 0 for every i > n and S 3 i, we have

Pr
(A0,B0),(A0,B1)

[G̃[A0, B0]|A0 = G̃[A0, B1]|A0 ] > ε− o(1),

Therefore, using Theorem 1.4, we conclude that there exists a global function g̃ : [N ]→ {0, 1} such that

Pr
S∈([N ]

qN)

[
G̃[S]

6α
6= g̃(S)

]
> δ,

where α = Oq,q′,ε(1). Furthermore, based on how we came up with the global function g̃, we have g̃(i) = 0

for all i ∈ (n,N ] as G̃(S)|i = 0 for all S ∈
([N ]
qN

)
and i ∈ S. If we let g : [n] → {0, 1} be the function g̃

restricted to the domain [n], we have

Pr
A∼µ⊗nq

[
G[A]

6α
6= g(A)

]
> δ − o(1).

Here, we used Claim 5.34 that shows the statistical distance between the distribution µ⊗nq and the distribution
on S|[n] where S is a uniformly random set from

([N ]
qN

)
is at most o(1).
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