
Approximate Locally Decodable Codes with Constant Query

Complexity and Nearly Optimal Rate

Geoffrey Mon∗

Department of Computer Science
University of Texas at Austin

gmon@cs.utexas.edu

Dana Moshkovitz†

Department of Computer Science
University of Texas at Austin

danama@cs.utexas.edu

Justin Oh‡

Department of Computer Science
University of Texas at Austin

sjo@cs.utexas.edu

Abstract

We present simple constructions of good approximate locally decodable codes (ALDCs) in the presence
of a δ-fraction of errors for δ < 1/2. In a standard locally decodable code C : Σk

1 → Σn
2 , there is a decoder

M that on input i ∈ [k] correctly outputs the i-th symbol of a message x (with high probability) using
only q queries to a given string w that is δ-close to C(x). In an ALDC, the decoder M only needs to be
correct on 1−ε fraction of i ∈ [k] for ε much smaller than δ. We present a construction of explicit ALDCs
for all constants 1/2 > δ > ε with a constant number of queries q and with constant, near-optimal rate.
Standard LDCs with constant number of queries and any constant rate are known to be impossible. Past
constructions of ALDCs had vanishingly small rate or a large super-constant number of queries.

Our constructions can be adapted to admit a weak notion of list decoding. In a weak approximate
locally list decodable code C : Σk

1 → Σn
2 , there is a decoder M that on input i ∈ [k], makes at most q

queries to a string w ∈ Σn
2 and outputs a list of symbolsM(i) ⊂ Σ1 with |M(i)| ≪ |Σ1|. For any codeword

C(x) that is δ-close to w, xi ∈ M(i) for at least 1−ε fraction of i ∈ [k]. We provide constructions of weak
approximate locally list decodable codes with a constant number of queries and with rate approaching
that of random (standard) list decodable codes.

We additionally explore what is the lowest error probability ε one can achieve for fixed δ and q. We
show that for any ALDC, ε = Ω(δ⌈q/2⌉). We then show that there exist explicit constant rate ALDCs
for any constant q that achieve ε = O(δ⌈q/2⌉). In particular, for q = 3, we have a constant rate ALDC
with error probability ε = O(δ2).

1 Introduction

Locally decodable codes (LDCs) are a useful and pervasive tool, especially in areas such as pseudorandomness
and PCPs, and there has been intense study towards constructing such codes with optimal parameters. By
the seminal work of [KT00], asymptotically good LDCs with the “dream” parameters of constant rate,
distance, and query complexity cannot exist. In this work, we show that simple constructions can achieve
such ideal parameters for the relaxed notion of approximate locally decodable codes (ALDCs). We hope
that our work will inspire further study of these natural codes that, like LDCs, often emerge in complexity
theory.

∗Supported by NSF Grant CCF-2200956.
†Supported in part by NSF Grant CCF-1705028 and CCF-2200956.
‡Supported in part by NSF Grant CCF-2008076.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 56 (2023)

In a standard (q, δ, ε)-LDC C : Σk
1 → Σn

2 , there exists a randomized decoding algorithm M that takes
as input i ∈ [k] and has query access to a string w that is δ-close to a codeword C(x). The decoder must
correctly output Mw(i, r) = xi with probability at least 1− ε over its internal randomness r for any i ∈ [k],
using at most q (non-adaptive) queries to w. An approximate locally decodable code only requires that M
successfully decodes most of the message coordinates with few queries. That is, for a (q, δ, ε)-approximate
locally decodable code C : Σk

1 → Σn
2 there again exists a randomized algorithm M that takes as input i ∈ [k]

and makes at most q queries to a string w that is δ-close to a codeword C(x). This time, the decoder must
correctly output Mw(i, r) = xi with probability 1 − ε over its internal randomness r on average over all
coordinates i ∈ [k] of the message. We say that such an ALDC achieves error reduction δ to ε. Since the
identity code is a (1, δ, ε)-ALDCs for δ = ε, we hope to construct ALDCs with ε ≪ δ. Notice that in this
relaxation, M might incorrectly compute an ε fraction of the message coordinates. Thus one can view the
decoder as a representation of a string in the message space with a reduced error rate of ε compared to the
original δ-error rate of the noisy codeword. In addition to rate and query complexity, we also consider the
error reduction of an ALDC as a measure of its quality.

Historically, the notion of ALDCs emerged from works on amplification of average-case hardness of
problems in E. The latter is a stepping stone towards construction of pseudorandom generators [IW97].
Explicit constructions of ALDCs that were considered in this context are the XOR code and the direct
product code. The XOR code maps a string x ∈ {0, 1}k to the sequence of

⊕
i∈S⊂n xi for all possible |S| = t.

The direct product code maps a string x ∈ {0, 1}k to the sequence of the restrictions xS for all possible
|S| = t. The rate of the two codes is 1/kO(t), however derandomized versions of those codes, where the
family of sets S is carefully constructed, are known [IW97, Tre03, IJKW10] and achieve rate 1/ poly(k). This
improved rate is nonetheless vanishingly small.

ALDCs can serve as a building block in constructions of standard LDCs, yielding LDCs that can decode
from more errors [BAETS10]. Since the decoder of an ALDC represents a string that is ε-close to the correct
message, if a correct message is a codeword of an LDC, then the decoder of this LDC can correctly compute
(with high probability) every symbol of its message. That is, if C1 : Σ

k
1 → Σℓ

2 is a (q′, ε, ε′)-LDC and if
C2 : Σ

ℓ
2 → Σn

3 is a (q, δ, ε)-ALDC, then C2 ◦ C1 : Σ
k
1 → Σn

3 is a (qq′, δ, ε′)-LDC.1 Since we know that good
LDCs are quite difficult to construct in general, we hope that C2 makes the job of C1 as easy as possible,
by reducing the original error rate δ to an error rate ε that is as small as possible.

ALDCs also appear in the context of PCPs, where symbols of the witness are decoded from a probabilis-
tically checkable proof using a constant number of queries, a concept called a PCP of proximity [BGH+06] or
decoding PCP [MR10, DH13]. Such constructions typically only guarantee that most (instead of all) symbols
are decoded correctly. In fact, in the context of PCPs a weaker notion than ALDC was considered, namely
locally decode or reject codes [MR10], where—not only is the decoder only required to decode most symbols
correctly and not all of them, but it may also refuse to decode if it spots an error in the given word w. While
the paper [MR10] gives a construction of locally decode or reject codes of almost-linear length, their rate is
still vanishingly small 1/ko(1).

We remark that there exist (both explicitly and nonexplicitly) locally decodable codes with constant, near
optimal rate, which implies the existence of ALDCs of the same rate. However, they have a superconstant
number of queries [KMRS17, KRSW18, KRRZ+21]. More details can be found in surveys about locally
decodable codes [Tre04, Yek12].

1.1 Our Results

We give a number of results, both constructions and lower bounds, demonstrating the possibility and limits
of ALDCs in terms of rate and locality. The first constructive result gives constant query ALDCs with near
optimal rate and arbitrary error reduction.

Constant query ALDCs with nearly optimal rate. In the case of unique decoding, the Singleton
bound tells us that a code that can be decoded from δ fraction errors must have rate ≤ 1 − 2δ + o(1),
because a decoding radius of δ implies a distance of ≥ 2δ. Notably, the Reed–Solomon code is a uniquely
(non-local) decodable code that achieves this bound. The work of [KMRS17] utilizes the Reed–Solomon

1An expert reader may notice that [BAETS10] only proves such a composition result for ALDCs with a deterministic decoder.
We show here that a similar result holds when the decoder is randomized (see Theorem 9).

2

code to construct LDCs with subpolynomial many queries with rate approaching the Singleton bound.2 On
the other hand, a rate matching the Singleton bound may not be optimal for an ALDC, which only needs to
correctly decode most symbols. Indeed, an ALDC which can decode most of a message from a δ-corrupted
codeword need not have a distance of 2δ. In fact, an ALDC may have distance 0. For example, an ALDC
may choose to encode two messages that are ε-close to the same codeword (and we will indeed make use of
this fact in our constructions). We give a construction of an ALDC which slightly surpasses the Singleton
bound of 1− 2δ + o(1).

Theorem 1 (See Corollary 3). For any constants δ, ε > 0, any constant parameter α < min {1/4− δ/2, ε},
any constant sized finite field Σ1, and any sufficiently large k, there exists an explicit C : Σk

1 → Σn
2 which is

a (q, δ, ε)-ALDC with q = O
(

1
α3 log

1
ε

)
with |Σ2| ≤ |Σ1|q2

O(q)

. The rate of the code is

1− 2δ − 2α

1− .99H|Σ1|(ε/2)
− o(1).

This theorem shows a quite striking contrast. One cannot hope to have an LDC with constant alphabet
size, rate, and number of queries. Nevertheless, it is possible to have an ALDC that reduces any sufficiently
small constant error rate δ, to any arbitrarily smaller constant error ε, with constant query complexity and
alphabet size, and with rate which is nearly optimal.

Theorem 1 demonstrates that an ALDC can have rate slightly exceeding a uniquely decodable code of the
same decoding radius. We show that this rate is in fact nearly optimal for ALDCs (and also in general for
approximate codes without locality). To do so, we simply observe that composing an ALDC with a uniquely
decodable code yields a uniquely decodable code, which is then governed by traditional coding theory rate
bounds. Doing so yields the following upper bound on the rate of an ALDC.

Theorem 2 (See Theorem 11). A (q, δ, ε)-ALDC C : Σk
1 → Σn

2 must have rate

R ≤ 1− 2δ + o(1)

1−H|Σ1|(2ε)− o(1)
.

Constant query approximate local weak list decodable codes with high rate. We can adapt the
construction in Theorem 1 to admit a local weak list decoding algorithm with a constant number of queries
in the presence of a large fraction of errors.

We consider the following definition of local list decoding: A (q, δ, ε, ℓ)-approximate local weak list de-
codable code C : Σk

1 → Σn
2 is equipped with a decoder M that on input i ∈ [k], makes at most q queries to a

string w ∈ Σn
2 and outputs a list of symbols M(i) ⊂ Σ1 such that |M(i)| ≤ ℓ. For any codeword C(x) that

is δ-close to w we have xi ∈ M(i) for at least 1 − ε fraction of i ∈ [k]. We generally aim to construct such
codes with ℓ ≪ |Σ1|. This definition is similar to the definition of list decoding for locally decode or reject
codes [MR10], but is weaker than the list decoding definition for ALDC that appears in [IJKW10]. In the
latter, the decoder outputs ℓ circuits A1, . . . , Aℓ such that for any C(x) that is δ-close to w, there is j ∈ [ℓ]
that on input i ∈ [k] decodes Aj(i) = xi for at least 1− ε fraction of the i ∈ [k]. This stronger definition can
be easily obtained in the case of polynomially small rate, but we do not know how to achieve it in the case
of constant rate and a constant number of queries.

The rate of the code we obtain can nearly match probabilistic bounds on standard (nonlocal) list decod-
able codes. A standard list decodable code of radius δ and list size ℓ is a code C : Σk

1 → Σn
2 such that every

string w ∈ Σn
2 has at most ℓ codewords that are δ-close. A probabilistic argument shows that there exist list

decodable codes C : Σk
1 → Σn

2 for any radius δ < 1− 1
|Σ2| , and any list size ℓ with rate 1−H|Σ2|(δ)− 1

ℓ+1−o(1).

Moreover, this rate is essentially optimal for list decodable codes, up to the dependence on ℓ (see for example:
[Vad12, Theorem 5.8]). We show that there are explicit approximate local weak list decodable codes that
slightly exceed this bound (also up to dependence on ℓ).

2The work of [KMRS17] constructs explicit linear locally correctable codes. A locally correctable code (LCC) has an algorithm
such that if w is close to some codeword c, then there exists an algorithm making few queries to w which can return any requested
codeword symbol cj with high probability. Because a linear LCC can be made systematic, an explicit linear LCC implies an
explicit LDC.

3

Theorem 3 (See Theorem 14). Let Σ1 be an arbitrary constant-sized alphabet of size ≥ 3. For parameters
0 < α < ε < 1/2, 1/2 < r < 1− 1/|Σ1|, and ℓ ≥ 1, there exists an explicit (q, r, ε, ℓ)-approximate local weak

list decodable code C : Σk
1 → Σn

2 with |Σ2| ≤ |Σ1|q2
O(q)

. The rate of the code is

≥
1−H|Σ1|(r + α)− 1

ℓ+1 − o(1)

1− 0.99H|Σ1|(ε)

and the query complexity is q ≤ O
(

1
α2 log

1
ε

)
.

3-query ALDCs and optimal error reduction. In the most extreme setting of local decoding, one
may ask what is possible with only 3 queries. Indeed, this has been the subject of extended study in the
case of LDCs with both upper bounds [Yek08, Efr12, DGY11] and lower bounds [Woo07, AGKM22], and as
discussed, it is impossible to achieve constant rate in that case.

Evidently, relaxing the goal of the decoder to error reduction rather than “error elimination” drastically
improves the state of what is feasible in the constant rate regime. Thus it is natural to ask, what is the best
error reduction possible given q queries for a constant rate ALDC? Note that the construction given above,
which can reduce δ to an arbitrarily small ε, may not do so in the optimal number of queries.

We show that for 3 queries, one cannot hope for better than a (3, δ,Θ(δ2))-ALDC for any rate. Intuitively,
a randomized decoder makes three uniformly random queries to the coordinates of a codeword with a δ-
fraction of corruptions. When at least two of these queries read a corrupted symbol, there is no hope the
decoder will output the correct message symbol. This occurs with probability roughly δ2 (assuming the
queries are uniform and independent). We formalize this intuition by showing that no 3-query decoder can
achieve an error rate smaller than Θ(δ2). In fact, we show that any q-query decoder cannot succeed (with
probability over both it s randomness and a uniform choice of message coordinate) with probability better
than the probability that the majority of its queries land on uncorrupted symbols.

Theorem 4 (See Theorem 15). Let C : Σk
1 → Σn

2 be a (q, δ, ε)-ALDC with query complexity q = O(1) and
decoding radius δ < 1/2. Then ε = Ω(δ⌈q/2⌉).

One might ask how such a claim does not contradict previously known results about 3-query LDCs
with subconstant rate such as those in [Yek08, Efr12]. After all, an LDC that is correct on each message
coordinate with probability 1− ε (over the randomness of the decoders) qualifies as an ALDC that reduces
to error ε in our general notion. Again, the point is none of these constructions have a success probability
per coordinate better than 1−Θ(δ2). In fact, [GM12] show that no efficient 3-query LDC can obtain better
than 1− 3δ + o(δ) success probability per coordinate, and that efficient q-query LDCs with commonly used
assumptions cannot do better than 1 − qδ + o(δ). This is fine for applications of LDCs because generally
any high constant probability of decoding a message coordinate is considered a success. Again, we require
much more fine grained care of ε in the notion of ALDCs for interesting results, as ε here directly relates to
the fraction of message coordinates that we have no hope of decoding. We show that it is indeed possible
to construct a constant rate 3-query ALDC with this optimal error reduction. In fact we show that it is
possible to obtain optimal error reduction for any given constant number of queries.

Theorem 5 (See Corollary 6). Let q > 1 and 0 < δ < 1/2 be constants. Let Σ1 be any alphabet. There
are explicit (q, δ, ε)-ALDCs C : Σk

1 → Σn
2 with constant rate, and Σ2 = ΣDR

1 , where ε = O(δ⌈q/2⌉), DL =

O(q
2

δ2 log
q

δ⌈q/2⌉
), and DR = 2DL2O(DL)

.

ALDCs with small alphabet. All of our ALDC constructions feature codeword alphabets of constant
size which depends on the parameters q and δ; when compared to the identity code, one might wonder
whether binary ALDCs can achieve nontrivial error amplification. We show that there exist explicit binary
ALDCs achieving similar error amplification to the construction from Theorem 5, by concatenating that
construction with the Hadamard code.

Theorem 6 (See Theorem 17). Let q > 1 and 0 < δ < 1/2 be constants. There are explicit (q, δ, ε)-ALDCs
C : {0, 1}k → {0, 1}n with constant rate, where ε = O((2δ)⌈q/2⌉).

Thus, a binary ALDC which achieves the same error reduction as Theorem 5 only requires increasing the
query complexity and decreasing the rate by constant factors.

4

1.2 Overview of Techniques

1.2.1 Obtaining Optimal Rate

Our constructions adapt two well known methods for distance amplification of error correcting codes: Alon–
Bruck–Naor–Naor–Roth [ABN+92] and Alon–Edmonds–Luby [AEL95, AL96]. Distance amplification is a
general technique that converts a code with small distance into one with larger distance, ideally without
worsening the rate too severely. Morally, the connection between distance amplification and approximate
locally decodable codes should not be surprising because distance amplification techniques typically perform
error reduction from the final codeword to the codeword of the underlying code. Let us first discuss our
construction of nearly optimal rate ALDCs, utilizing the powerful Alon–Edmonds–Luby technique to add
locality to an otherwise global code [AEL95, AL96]. First as a warmup, consider the following construction
that converts a Reed–Solomon code to an ALDC with rate matching the (standard) Singleton bound. We
make use of samplers. A (δ, ε)-sampler is a bipartite graph G = ([k], [m], E)] of left degree D such that for
any subset S ⊂ [m], for all but at most ε fraction of left nodes u, the fraction of neighbors of u in S is δ-close
to |S|/m. We break the message into blocks so that the Reed–Solomon encoding (with appropriately chosen
parameters) of each block is of length D. Now, each RS codeword corresponds to a left node of G, and each
symbol of the final codeword corresponds to a right node of G. Each symbol of the final codeword is the
concatenation of the corresponding symbols from the left neighbors.3 This gives us a code with rate matching
the Singleton bound: each symbol from each RS encoding gets copied exactly once in the codeword, and so
the rate is exactly that of the Reed–Solomon code (assuming that the message is able to be evenly divided
into appropriate-sized blocks). The RS code provides the required redundancy, breaking the message into
blocks provides locality, and the sampler spreads the corruption evenly to ensure that most of the blocks are
still fully decodable.

In particular, locality is achieved because given a message index i, the decoder need only query all the
neighbors of the corresponding RS block. By the properties of the sampler, if there is at most δ fraction
of errors in the codeword, for at least 1 − ε of the message indices, the corresponding queries will give at
most 2δ incorrect symbols, and so Reed–Solomon can correctly decode the entire block. The observation to
improve the rate is that it is not necessary for the RS code to correctly decode the entire block—rather, it
is sufficient that only 1 − O(ε) symbols within the block are correctly decoded. Thus we can replace the
Reed-Solomon code by a better rate approximate code. An approximate code is simply a code C for which
there is a (nonlocal and possibly inefficient) decoder that when given as input a string w that is δ-close to a
codeword, outputs a string that is ε-close to the corresponding message.

We construct an appropriate approximate code with optimal rate, by composing a covering code (es-
sentially the dual of an error-correcting code: every message must be ε-close to some codeword) with a
Reed–Solomon code; the covering code compresses the block so that only 1− ε of the symbols will be recov-
erable in the worst case, and then the RS code introduces redundancy to ensure that the covering codeword
can be reconstructed in its entirety. The idea is that since the decoder only needs to output a string close to
the message, it can insist on only outputting a codeword from the covering code. Since the covering code is
a small subset D ⊂ {0, 1}k of the message space, we only need to encode strings of length {0, 1}log|D|, thus
improving the rate. Prior existence proofs show that a covering code of appropriate rate exists [KSV03],
which we can explicitly construct via brute force, as the block sizes are constant. Note that this decoding
procedure is in fact deterministic.

1.2.2 Obtaining Weak List Decoding

To obtain a weak approximate locally list decodable code we can simply replace the Reed Solomon code used
in the constant sized approximate code above with an optimal list decodable code found via brute force.
This will yield a constant sized approximate list decodable code, where there is a decoder M that on input
any string w, outputs a small list of possible messages M(w) such that for every codeword C(x) that δ-close
to w, at least one message from M(w) is ε-close to x. We will use this approximate list decodable code in
the same sampler-based construction above. Again, the rate in the final construction will inherit the rate of
the constant sized approximate list decodable code. For the weak list decoding property, we observe that

3For a given left node, the corresponding RS code has D symbols, so each edge leaving the node corresponds to a symbol.

5

... ...

message
m ∈ Σk

1

...

y ∈ (ΣDL
0)k

′

C0 : Σb
1 → ΣDL

0

Σb
1

...

sampler
G = ([k′], [n], E)

...

ΣDL
0

ΣDR
0 = Σ2

codeword C(m) ∈ Σn
2

Figure 1: The construction of our ALDC with nearly optimal rate. We first divide the message into blocks
of constant length b and encode each block with a near-optimal rate approximate code C0 found via brute
force. On the right hand side, we have a biregular (δ, ε)-sampler between k′ = k/b nodes and n nodes with
left degree DL and right degree DR. Each coordinate of the final codeword consists of the concatenation
over all neighbors of the coordinate, of a symbol from the neighbor. The code inherits the rate of C0.

the list of strings returned by M above for a given small block of the message also naturally induces a small
list of symbols for every coordinate in the block.

1.2.3 Obtaining Optimal Error Reduction

To construct constant query ALDCs with optimal error reduction, we simply use another sampler-based
technique, this time from [ABN+92]. Consider a binary message of length k, and a (δ, ε)-sampler G =
([k], [n], E). The symbol at coordinate j ∈ [n] of the codeword is the concatenation of all of the bits
corresponding to the left neighbors of j. To decode a given message bit i, one can simply query all the
neighbors of i, read the the appropriate bit from the symbol of each neighbor, and take the majority. In
order to obtain a 3-query decoding with near optimal reduction, we can simply pick 3 random neighbors
instead. In general, picking q random neighbors and taking the majority gives success probability roughly
equal to the optimal implied from Theorem 4.

1.3 Related work

Distance amplification of LDCs. The work of [KMRS17] was the first to apply the Alon–Edmonds–
Luby distance amplification technique [AEL95, AL96] in order to amplify the decoding radius of a locally
decodable code from ε to δ. By breaking the message into constant-size blocks and encoding with a Reed–
Solomon code, they are able to implicitly construct an ALDC that reduces error from δ to ε with rate
approaching the Singleton bound 1 − 2δ − 2α for an arbitrarily small parameter α. In their construction,
for any given corruption of a δ fraction of codeword symbols, the sampler ensures that a ≥ 1− ε fraction of
constant-size Reed–Solomon blocks are “good”: they see few enough errors to be exactly decoded, so that
≥ 1 − ε symbols of the entire message can be recovered. Our construction is able to increase this rate to

1−2δ−2α
1−.99H(ε/2) , because we allow each of the good constant-size blocks to get O(ε) of their message symbols

incorrect. Distributing this allowable error into the constant-size codes allows them to have higher rate,
which improves the overall rate of the ALDC.

The works of [CY21, CY22] build on [KMRS17] by constructing distance amplification procedures for

6

LDCs with subconstant decoding radius. This gives them a general transformation converting LDCs with
constant rate and very small distance to LDCs with constant rate and constant distance, with a smaller
overhead in query complexity compared to [KMRS17]. Their techniques make use of properties specific
to decoders for LDCs. We also directly construct a distance amplification transformation (in the form of
an ALDC) with constant decoding radius, rate, and query complexity using a similar technique, but with
particular emphasis on obtaining near-optimal rate. In addition, the only property required to use an ALDC
for distance amplification is to have a decoder that handles an ε decoding radius.

Relaxed LDCs. ALDCs are not the only relaxation of LDCs. The work of [BGH+06] introduced the
notion of relaxed locally decodable codes. A relaxed locally decodable code C : Σk

1 → Σn
2 is also equipped

with a local randomized decoder M that takes as input i ∈ [k] and makes a small number of q queries to a
string w that is δ-close to a codeword C(x). For every i ∈ [k], the decoder must either correctly output xi or
an error symbol ⊥ with high probability over its randomness. Moreover, the decoder is not allowed to return
an error symbol when the string is uncorrupted. Because most local views are uncorrupted, there must be
at least 1− ε of coordinates i for which M(i, r) = xi with high probability. In words, for every coordinate,
the decoder must either output the correct message symbol for most coordinates, and indicate that an error
has been detected for the rest.

Thus relaxed LDCs are a weaker notion than LDCs, and indeed [BGH+06] show that there exist relaxed
LDCs using a constant number of queries and block length k1+γ for any small constant γ > 0, a vast
improvement to the state of the art of standard LDCs. Nevertheless, [GL21, DGL21] show that relaxed
LDCs using a constant number of queries cannot have constant rate. In contrast, our work shows that
the even more relaxed notion of ALDCs can have nearly optimal constant rate using a constant number of
queries.

Average-case smooth codes. Smooth codes have local decoders which only need to successfully decode
every message index i ∈ [k] when given an uncorrupted codeword, but with the additional requirement of
smoothness: for every i ∈ [k], the decoder queries any index of the input string w with probability O(1/n),
i.e., the queries to the codeword are almost uniform. The work of [KT00] showed that LDCs are equivalent to
smooth codes, and reasoned with smooth codes to prove the first rate upper bounds for LDCs. In particular,
an LDC can be made smooth. Let Si be the set of codeword indices that the LDC decoder queries with
probability > q/δn on input i ∈ [k]. This set cannot be larger than δn, or else the decoder makes more
than q queries. Therefore, we can build a smooth decoder that black boxes the LDC decoder, such that for
each i, queries to Si made by the LDC decoder are answered with 0 instead of with an actual query to the
codeword. Then, every codeword index is queried with probability ≤ q/δn, and the simulated LDC decoder
sees a codeword with at most δ fraction of errors, so it will still be able to successfully decode the ith symbol
of the message.

While studying pathways to nonexplicit LDCs, [BDG19] shows that an average-case smooth code, which
successfully decodes on average over both the message index and over all possible messages, implies a smooth
code that works over all message indices and all messages, with a constant factor loss in rate. This notion
is remarkably similar to the idea of ALDCs, and a similar generalization has also been used to show lower
bounds on LDCs [Woo07]. Critically however, average-case smooth codes are still smooth while ALDCs may
not be. An ALDC cannot be made smooth using the technique from the previous paragraph. The sets Si

can differ for distinct values of i. However, the ALDC guarantee only states that most message symbols
can be decoded when queries to Si are ignored. Therefore, i may not be one of those successfully decoded
message indices, and the decoder may fail on most or all of the message symbols. Indeed, the constructions
we give are far from smooth, because for each i ∈ [k] the support of the query distribution for the decoder
for i is constant sized.

Local self-correction for Reed–Muller codes. A local self-corrector for a code C is an algorithm that,
given access to a string w which is δ-close to some codeword in C, is able to make few queries to w in order
to return an entire message m such that C(m) is δ′-close to w, where δ′ can be (much) larger than δ. This
is possible if the block length n of C is much longer (say, exponential) than the message length k, such that
a decoder that makes e.g. poly(k) queries is still local because it reads a negligible fraction of the codeword.

7

Local self-correctors have also been called approximate local decoders [HT18], but this definition significantly
differs from our definition of ALDCs, as well as LDCs and LCCs. LDCs and LCCs have algorithms that
return an individual index of the unique message or codeword that is close to w, and ALDCs return an
individual index of a string which is ε-close to the original message with ε being significantly smaller than
the original error rate δ. In contrast, a local self-corrector must return an entire message m, whose codeword
C(m) is within a (potentially larger) radius from w. This definition has been studied for constant-degree
Reed–Muller codes [TW14, HT18, KLT23].

2 Preliminaries

For an alphabet Σ, we will make use of the |Σ|-ary entropy function H|Σ|(ε) = ε log|Σ| (|Σ| − 1)− ε log|Σ| ε−
(1− ε) log|Σ| (1− ε).

2.1 Error-Correcting Codes

Definition 1. For some alphabet Σ, let x, y ∈ Σn. The relative (Hamming) distance of x, y, denoted δ(x, y),
is the fraction of coordinates on which x, y differ.

Say that a string a is δ-close to a string b if the relative distance of a and b is ≤ δ. We first recall the
definition of a (standard) code. We will also use Vol|Σ| (δ, k) to denote the number of strings y ∈ Σk that

are δ-close to any given x ∈ Σk.

Definition 2. C : Σk
1 → Σn

2 is a code with distance δ if for any two x ̸= x′ ∈ Σk: δ(C(x), C(x′)) ≥ δ.

We will also refer to δ/2 as the decoding radius of the code, because it characterizes the maximum error
rate from which unique decoding is still possible. The rate of a code is the ratio k log Σ1/(n log Σ2). We will
utilize two well known bounds on codes, the Singleton bound and the Gilbert–Varshamov bound.

Theorem 7 (Singleton bound). Any code with block length n and radius δ must have rate

R ≤ 1− 2δ + 1/n

Theorem 8 (Gilbert-Varshamov bound). For any alphabet |Σ| ≥ 2 and any radius δ < 1
2 −

1
2|Σ| , there exists

a code C : Σk → Σn with rate
R ≥ 1−H|Σ|(2δ)− o(1)

Lemma 1. For any positive integer k, constant size field F, and δ ∈ (0, 1/2), there exists an explicit code
RSF,k,δ : Fk → Σn where |Σ| ≤ O(n), with distance 2δ and rate ≥ 1− 2δ.

Proof. For any b ≤ n ≤ t where t is a power of |F|, the Reed–Solomon code Σb → Σn has rate b/n =
1 − 2δ + 1/n, distance 2δ, and alphabet Σ which is an extension of field of F such that |Σ| = t ≤ |F|n.
Therefore, to encode k-bit strings, we need to lift our string to the larger alphabet Σ by partitioning into
contiguous substrings of length log t; if k is not a multiple of log t, we can pad by < log t additional bits.
Then, the rate is

k

n log t
=

k/ log t

n
≥ b− 1

n
= 1− 2δ

The distance of the code is the same as the distance of the unmodified Reed–Solomon code, which is 2δ,
because any two bit strings will map to different strings in Σb.

2.1.1 Uniquely Decodable Codes

Before discussing the approximate variants of codes, we first define (standard) locally decodable codes. We
first recall the definition of a standard locally decodable code.

Definition 3. C : Σk
1 → Σn

2 is a (q, δ, ε)-locally decodable code (LDC) if there exists a (randomized) decoder
M(i, r), where r is the randomness used, such that

8

1. M makes ≤ q queries

2. for every i ∈ [k] and every w which is δ-close to some codeword C(x),

Pr
r
[Mw(i, r) = xi] ≥ 1− ε

The most famous example of an LDC is the Hadamard code, which encodes a message m ∈ {0, 1}k as a
string containing one bit for the evaluation of each of the 2k possible linear functions (mod 2) on m.

Lemma 2. The Hadamard code is a (2, δ, 2δ)-LDC.

Proof. For input i, the decoder can pick a uniformly random linear function f , and then query two bits:
the bit corresponding to f(m) and the bit corresponding to f(m)+mi. Each query is uniformly distributed
and has probability δ of being corrupt, so by union bound both queries will be uncorrupted with probability
≥ 1− 2δ and the correct value of mi will be returned.

As an analogue of a standard code, we can define an approximate code.

Definition 4. C : Σk
1 → Σn

2 is an (δ, ε)-approximate code if there exists some deterministic decoding algo-
rithm M such that for every w ∈ Σn

2 which is δ-close to some c ∈ C, M(w) returns a string z such that
δ(z, c) ≤ ε.

We often refer to δ as the decoding radius and ε as the error of the code. Note that it is entirely possible
for an approximate code to have distance 0. Indeed, C may map two messages that are ε-close to the same
codeword. This will be the case in our constructions. One may ask how such codes could still be useful. The
observation is that when composed with a standard code, the messages encoded by the approximate code
are themselves codewords that should be ε-far. It is natural to ask whether the decoding procedures of an
approximate code can be local.

Definition 5. C : Σk
1 → Σn

2 is an (q, δ, ε)-approximately locally decodable code (ALDC) if there exists a
randomized decoder Mw(i, r), where r is the randomness used, such that

1. M makes ≤ q queries

2. for every w which is δ-close to some codeword C(x),

Pr
i∈[k],r

[Mw(i, r) = xi] ≥ 1− ε

Again we refer to δ as the radius and ε as the error of an ALDC. First, we observe that a (q, δ, ε)-ALDC is
in fact also a (δ, ε)-approximate code. This is because for every w that is δ-close to a codeword, there exists
a fixing rw such that Pri[M

w(i, rw)] ≥ 1−ε. Thus to (inefficiently) decode any w to error smaller than ε, we
can simply do the following. We keep a lookup table of all the randomness strings rw that have the property
above for each possible w. For any input w, we can then lookup rw and run the local decoding procedure
using this randomness for all i’s. This fact will be important when we prove bounds on the parameters of
approximate codes, as it will in turn prove bounds on ALDCs.

The explicit notion of an ALDC, with deterministic and randomized decoders, has appeared previously in
[BAETS10] and [Sol09] respectively. Some composition results are given, although none for the composition
of an ALDC with randomized decoder and an LDC. As discussed in the introduction, [BAETS10] show that
an ALDC with deterministic decoder and the right parameters can be composed with an LDC to increase
the decoding radius.

We stress that it is natural to consider randomized decoders as well, and we construct and study such
ALDCs in this work. It is simple to extend the composition result of [BAETS10] for when the decoder is
randomized.

Theorem 9. Pick any γ > 0. If C1 : Σ
k
1 → Σn

2 is a (q, (1 + γ)δ, ε)-LDC and if C2 : Σ
n
2 → Σn′

3 is a
(q′, δ′, δ)-ALDC, then C2 ◦ C1 is a (qq′, δ′, ε+ e−Θ(γn))-LDC.

9

Proof. Consider the behavior of the decoder M1 for the LDC C1 when its queries are supplied by the decoder
M2 for the ALDC C2. Consider running the decoder for C2 for all its message indices i using independent
randomness for every i to obtain a string s ∈ Σn

2 . Call the randomness used for index i: ri. Let Zi for i ∈ [n]
be the indicator random variable of whether si is correct. By definition, Er1,...,rn [

∑
Zi] ≤ δn. Since the Zi’s

are independent, Hoeffding’s inequality tells us:

Pr
[∑

Zi ≥ (1 + γ)δn
]
≤ e−2γ2δ2n.

So with high probability, s has no more than (1 + γ)δn errors. To finish, we simply observe that the same
analysis holds when M1’s queries are supplied by using M2 to decode the requested symbols of s on the
fly.

To summarize, one can compose an ALDC with an LDC with vanishingly small overhead in the final
failure probability of the LDC. In many applications, such a small overhead in error is not necessary, as ε
is considered a large fixed constant such as 1/3. However, we note that how small ε can be relative to δ for
a standard LDC has also been the subject of study [GM12]. Thus we present the vanishingly small error
overhead as it is relevant for those cases.

As to the existence of approximate locally decodable codes (other than full-strength locally decodable
codes which are trivially approximate locally decodable codes), to the best of our knowledge the identity
code is the only such code mentioned in the literature ([BAETS10]), where it is noted that approximate local
decoding seems significantly easier than local decoding: there exist approximate locally decodable codes with
constant query complexity and polynomial block length (like the identity code), while there are no known
constant-query locally decodable codes that achieve polynomial block length.

2.1.2 List Decodable Codes

When a string w is very far from a particular codeword (i.e., has r fraction of errors where r is close to 1),
it may be impossible to exactly or even approximately decode, because multiple codewords, corresponding
to drastically different messages, may be r-close to w. Even so, if this list of nearby codewords is small for
every w, then the code is list decodable.

Definition 6. A code C : Σk
1 → Σn

2 is an (r, ℓ)-list decodable code if for every w ∈ Σn
2 , there are ≤ ℓ

codewords c ∈ C where δ(w, c) ≤ r.

The probabilistic method yields nonexplicit list decodable codes which have nearly-optimal rate:

Proposition 1 ([Vad12, Theorem 5.8]). For an arbitrary alphabet Σ, all integers n, ℓ, and r ∈ (0, 1−1/|Σ|),
there (nonexplicitly) exists an (r, ℓ)-list decodable code C : Σk → Σn with rate ≥ 1−H|Σ|(r)− 1

ℓ+1 . Note that

any (r, ℓ)-list decodable code must have rate ≤ 1−H|Σ|(r) +
log|Σ| ℓ

n + o(1).

In the list decoding setting, we can define an analogue to approximate codes: every string w can be
decoded to a small list S, such that if C(m) is r-close to w, then m is ε-close to something in S.

Definition 7. A code C : Σk
1 → Σn

2 is an (r, ε, ℓ)-approximate list decodable code if for every w ∈ Σn
2 , there

is a set S ⊆ Σk
1 of cardinality ≤ ℓ such that for every m ∈ Σk

1 where δ(w,C(m)) ≤ r, there exists s ∈ S such
that δ(s,m) ≤ ε.

Finally, we give a natural definition for a code with a local decoder which outputs a small list of potential
symbols for each message index:

Definition 8. A code C : Σk
1 → Σn

2 is an (q, r, ε, ℓ)-approximate local weak list decodable code if there exists
a randomized decoder Mw(i, s), where s is the randomness used, which returns a set of symbols ⊆ Σ1 such
that

1. M makes ≤ q queries

2. ∀w, i, r. |Mw(i, r)| ≤ ℓ

10

3. for every w ∈ Σn
2 , if a message m ∈ Σk

1 has a codeword C(m) which is r-close to w, then

Pr
i∈[k],s

[mi ∈ Mw(i, s)] ≥ 1− ε

This definition makes sense when |Σ1| > ℓ, or else returning the entire alphabet is a trivial approximate
local weak list decoder which does not need to make any queries. We also want to emphasize that this weak
list decoding definition significantly differs from approximate local list decodable codes studied in works such
as [IJKW10], where the decoder on w must return a small list of efficiently computable functions, such that
if C(m) is r-close to w, then m is ε-close to the output of one of the generated functions.

2.2 Samplers

Throughout this work, we will use samplers to construct ALDCs. A sampler is a procedure that aims to
estimate the average value of a function f by only querying a small subset of possible inputs.

Definition 9. A randomized algorithm Samp is a (α, β)-sampler with sample complexity D if for every
function f : [n] → [0, 1], Samp makes ≤ D queries to an oracle for f and satisfies the following condition:

Pr
r

[∣∣∣∣Sampf (r)− E
j′∈[n]

[f(j′)]

∣∣∣∣ ≤ α

]
≥ 1− β

We make extensive use of oblivious samplers, where the estimate is computed by taking the mean of f on
a subset of inputs chosen uniformly randomly from a fixed family; such samplers are equivalently described
as bipartite graphs with the set of inputs on the right and the family of potential query sets on the left.

Definition 10. A bipartite graph G with bipartition ([k], [n]) and with left degree D is an oblivious (α, β)-
sampler if for every function f : [n] → [0, 1],

Pr
i

[∣∣∣∣ E
j∈N(i)

[f(j)]− E
j′∈[n]

[f(j′)]

∣∣∣∣ ≤ α

]
≥ 1− β

where N(i) denotes the right vertices neighboring the ith left vertex in G.

The value of an oblivious sampler is that its graph equivalent provides a blueprint for redistributing
message symbols such that if any δ fraction of codeword symbols are corrupted (represented by an indicator
function f), then most of the message symbols will still have roughly δ fraction of their relevant codeword
symbols affected. Indeed, we use a well-known oblivious sampler based on random walks on expanders in
both of our ALDC constructions.

Theorem 10 ([Gil98]). For any α, β > 0 and for sufficiently large k, there exists an efficiently constructable
biregular (α, β)-sampler with k left vertices, left degree D = O(1

α2 log
1
β), and n = k/2O(D) right vertices.

Proof sketch. Consider a constant-degree expander graph on n vertices, which is efficiently constructable.
By the Expander Chernoff bound, a random walk of length D from a uniformly random starting vertex will
visit any given set S with frequency that is α-close to |S|/n. Each of the k left vertices represent a unique
string of log k = log n + O(D) bits which encode the starting vertex and the instructions of the random
walk. The right vertices are associated with the vertices of the expander, and every left vertex is connected
to every vertex that the random walk visits.

Note that this sampler has the optimal sample size/left degree, because any sampler must have D =
Ω(1

α2 log
1
β) [CEG95].

Remark 1. It does not hurt to run a random walk for more steps than is needed, as this will only improve

the mixing properties. Thus for a given k and any larger desired left degree D = Ω
(

1
α2 log

1
β

)
, there is still

an explicit (α, β)-sampler with left degree D and n = k/2O(D). This means, for example, that one can run a
random walk say, a constant factor longer than is necessary for the desired parameters α, β on a graph that
is only a constant factor smaller. We will make use of this fact in our constructions when the required left
degree D of the (α, β)-sampler required may be slightly more than the minimum degree needed according
to Theorem 10.

11

3 ALDCs with Nearly Optimal Rate

In this section, we will first present an approximate code with high rate. We will then prove that such a
rate is (nearly) optimal. Finally we’ll show how to use this approximate code to construct an explicit ALDC
with efficient encoding and decoding procedure with roughly the same rate.

3.1 An Approximate Code “Surpassing” the Singleton Bound

The rate of a standard code cannot be larger than roughly 1 − d for relative distance d by the Singleton
bound. As discussed before, the relative distance of an approximate code could be 0, so this bound is
meaningless. Since the decoding radius δ is the relevant parameter for an approximate code, one might
believe that, analogously to the Singleton bound, the rate of an approximate code is at most roughly 1− 2δ.
We first present an approximate code showing that we can in fact do slightly better.

To achieve this slightly better rate, we will make use of nearly-optimal covering codes.

Definition 11. D ⊆ Σk is a covering code of radius ε if every string w ∈ Σk is ε-close to some d ∈ D.

Proposition 2 ([KSV03, Corollary 1.4]). For all ε ≥ 3/k and all constant size alphabets Σ, there (non-
explicitly) exists a covering code D ⊆ Σk of radius ε such that

|D| ≤ O(εk log (εk)) · |Σ|k

Vol|Σ| (ε, k)
= |Σ|(1−H|Σ|(ε)+f(k))k

where the last equality holds when ε < 1− 1/|Σ|. In particular,

f(k) = O

(
log|Σ| (εk)

k

)
= o(1)

Remark 2. Any covering code D ⊆ Σk of radius ε must have cardinality

|D| ≥ |Σ|k

Vol|Σ| (ε, k)
≥ |Σ|(1−H|Σ|(ε))k

which is achieved when each message is ε-close to a unique covering codeword. Hence, Proposition 2 is nearly
optimal.

We will need to make use of covering codes for constant length messages in our local decoding construction.
Therefore we will need to know how large such constant lengths k must be for the f(k) in Proposition 2 to
be negligible. Towards this end, we can modify the proposition to get the following remark.

Corollary 1. There exists a universal constant γ such that for any constant ε > 0, and for any k ≥ γ/ε2,
there (non-explicitly) exists a covering code D ⊆ Σk of radius ε such that

|Σ|(1−H|Σ|(ε))k ≤ |D| ≤ |Σ|k

Vol|Σ| (ε, k)
= |Σ|(1−0.99H|Σ|(ε))k

The .99 can be made arbitrarily close to 1 for larger chosen constants γ.

We show that approximate codes exist for any constants δ > ε > 0 with optimal rate by using a covering
code to compress the message space, and then applying Reed-Solomon.

Lemma 3. For any constants 1/2 > δ > ε > 0, any constant size field F, and any k ≥ 3/ε, there exists
an approximate code C : Fk → (F′)n with decoding radius δ, error ε, and rate 1−2δ

1−H|F|(ε)+o(1) , where F′ is an

extension field of F and |F′| ≤ |F|n.

Proof. Let D ⊆ Fk be a covering code of radius ε from Proposition 2, so that

|D| = |F|(1−H|F|(ε)+o(1))k
=: |F|k

′

12

We can (inefficiently) obtain D by brute force. Let f : Fk → D be a function such that for all w ∈ Fk, f(w)
is some element of D which is ε-close to w (if there are multiple such elements in the covering code, pick one
arbitrarily and deterministically). Let g : D → Fk′

be an arbitrary bijection. Both f and g can be obtained
by brute force.

For any given message w ∈ Fk, we can then let x = g(f(w)) ∈ Fk′
, and then encode this string using

Reed–Solomon via Lemma 1. To decode a string which is δ-close to a codeword, we can use the distance
of RSF,k′,δ to decode and obtain s ∈ Fk′

which is the message corresponding to the unique nearest Reed–
Solomon codeword. Then, g−1(s) = d ∈ D, and d is ε-close to the original message.

It remains to show the rate of this approximate code. Since k′/k = 1 − H|F|(ε) + o(1) and the rate of
RSk,δ is 1− 2δ, the overall rate is

k

k′
· (1− 2δ) =

1− 2δ

1−H|F|(ε) + o(1)

as desired.

Thus we’ve shown that when a decoder only needs to return approximate answers, the rate of the code
can be slightly improved. Again, in our local decoding construction we will utilize these approximate codes
only for constant lengths. Thus we must see how large these constant lengths must be for good. In the same
vein as Corollary 1 we can show the following:

Corollary 2. There exists a universal constant γ such that for any constants 1/2 > δ > ε > 0, any constant
size field F, and any k ≥ γ/ε2, there exists an approximate code C : Fk → (F′)n with decoding radius δ, error
ε, and rate 1

1−H|F|(ε)
≥ R ≥ 1−2δ

1−.99H|F|(ε)
, where F′ is an extension field of F and |F′| ≤ |F|n. Again, the .99

can be made arbitrarily close to 1 by choosing γ accordingly.

3.2 An “Approximate” Singleton Bound

We now show that the rate of the code above is in fact essentially optimal. To do so, we prove an approximate
analogue of the Singleton bound.

Theorem 11. Suppose C : Σk
1 → Σn

2 is a (δ, ε)-approximate code with rate R. Then

R ≤ 1− 2δ + o(1)

1−H|Σ1|(2ε)− o(1)

Proof. Let C ′ : {0, 1}k′ → Σk
1 be a standard code of radius ε and rate R′ = 1−H|Σ1|(2ε)− o(1) guaranteed

by the Gilbert–Varshamov bound.
The composition C ◦C ′ is a code with radius δ. The rate of this code is RR′. Moreover, the rate of this

code must obey the Singleton bound. Thus we have:

(1−H|Σ1|(2ε)− o(1))R ≤ RR′ ≤ 1− 2δ + o(1) =⇒ R ≤ 1− 2δ + o(1)

1−H|Σ1|(2ε)− o(1)

Note that this same approach can be applied to any rate upper bound for C ◦ C ′, and we can pick
whichever is strongest for the desired alphabet size.

3.3 An ALDC Approaching the “Approximate” Singleton Bound

Now that we see that our approximate code has nearly optimal rate, we turn to the task of making such
codes local. To do so, we closely follow the techniques of [AEL95] and [KMRS17]. For completeness we
provide the full construction and its analysis here.

13

Code construction. Recall that for a given constant sized message alphabet Σ1 which is a finite field of
size a, sufficiently large message length k, and constants 1/2 > δ > ε, we wish to construct a (q, δ, ε)-ALDC
C : Σk

1 → Σn
2 with good rate and small q for some Σ2 and n.

Let 0 < α < min {1/4− δ/2, ε} be a parameter. Recall that by Theorem 10, for any α and ε there
exists a biregular (α, ε/2)-sampler with left degree D∗

L = Θ(1
α2 log

1
ε). Choose b > 1 to be an integer which

is b ≥ γ/ε2 such that, according to Corollary 2, there is a (δ + α, ε/2)-approximate code C0 : Σ
b
1 → ΣDL

0

with rate at least 1−2δ−2α
1−.99H|Σ1|(ε/2)

and with DL ≥ D∗
L. If we choose b = Θ(D∗

L log|Σ1| D
∗
L) then D∗

L ≤ DL ≤

O
(

D∗
L

1−2δ−2α

)
≤ O(1

αD
∗
L) and the conditions for Corollary 2 are satisfied.

Given a length k input message x, we divide the message into k′ = k/b blocks of length b; if b does not
divide k we can add ≤ b symbols of padding (which is a constant because DL is a constant) and only hurt
the rate by a o(1) term. We encode each block using C0. This gives us a string y ∈ ((Σ0)

DL)k
′
.

Incorporating Remark 1, there also exists an explicit (α, ε/2) sampler G = ([k′], [n], E) which has any
left degree DL ≥ D∗

L and has right degree DR = k′DL/n, simply by adding more steps to the random walk.
This enhanced sampler is the one we will actually use to encode.

We treat each coordinate of y as a left vertex of G. The final codeword C(x) ∈ Σn
2 for Σ2 = (Σ0)

DR is
defined as follows. Fix any i ∈ [n]. We now define C(x)i. For every neighbor j ∈ [k′] of i, let e(j) ∈ [DL]
be the number such that the edge entering j from i is the e(j)-th edge leaving i in some arbitrary ordering
of the edges leaving j. Finally let σj ∈ Σ0 be the e(j)-th symbol in the block corresponding to neighbor j.
The i-th symbol of C(x) is the concatenation of all such σj-s.

Decoder and analysis. We prove the following theorem:

Theorem 12. For parameter min {1/4− δ/2, ε} > α > 0, the code above C : Σk
1 → Σn

2 is a (DL, δ, ε)-ALDC
with |Σ2| ≤ O(DL)

DR . The rate of the code is

1− 2δ − 2α− o(1)

1− .99H|Σ1|(ε/2)
.

Proof. We first calculate the rate. Note that in the final output C(x), we copy every symbol in Σ0 contained
in y exactly once, and ≤ b additional symbols of padding are added. Thus the rate of the code is the rate
between the message and y. This is simply the rate of (δ + α, ε/2)-approximate code C0:

1− 2(δ + α)

1− .99H|Σ1|(ε/2)
− o(1)

We now show that there is a decoder that correctly outputs xi for at least 1 − ε coordinates i given a
word w that is δ-close to C(x). On input i, the decoder does the following.

1. Find the block i′ ∈ [k′] containing index i.

2. For each neighbor of i′ in G, j ∈ Γ(i′) ⊂ [n], query the j-th coordinate of w. This gives DL symbols in
Σ2 = ΣDR

0 . Let σℓ ∈ Σ2 for each ℓ ∈ [DL] denote the symbol obtained from the ℓ-th neighbor of j.

3. For each σℓ, let σ0,ℓ ∈ Σ0 denote the symbol within σℓ corresponding to the ℓ-th symbol in block i′.

This gives a string s ∈ ΣDL
0 .

4. Run the decoding algorithm for C0 on s. This gives a string in {0, 1}b representing the bits in the
decoded message for all coordinates in block i′. Return the bit corresponding to coordinate i.

Observe that this decoding procedure is in fact deterministic. We now prove correctness. Let B ⊂ [n],
|B| ≤ δn, be any subset of corrupted coordinates. By the sampler property, all but at most ε/2-fraction of
the k′ blocks have a neighborhood with at most (δ+α)-fraction of neighbors in the corrupted set. This means
that on at least (1 − ε/2)-fraction of blocks, the decoding algorithm for C0 will return a string s ∈ {0, 1}b
that is ε/2-close to the true message on that block. Thus the decoder will only err on at most ε-fraction of
the message coordinates overall.

14

Finally, it remains to express DL in terms of our parameters. Substituting the value of DL, observing
that C0 can be found via brute force, and calculating the alphabet size of Σ2 we get:

Corollary 3. For any constants δ, ε > 0, any constant parameter 0 < α < min {1/4− δ/2, ε}, any constant
sized alphabet Σ1 which is a finite field, and any sufficiently large k, there exists an explicit C : Σk

1 → Σn
2 is

a (q, δ, ε)-ALDC with q = O
(

1
α3 log

1
ε

)
with |Σ2| ≤ |Σ1|q2

O(q)

. The rate of the code is

1− 2δ − 2α

1− .99H|Σ1|(ε/2)
− o(1).

Proof. As discussed above, DL =
O(D∗

L)
α = O

(
1
α3 log

1
ε

)
. Since n = k′/2O(DL), we have DR = k′DL/n =

DL · 2O(DL). Thus Theorem 12 shows that this is an ALDC with desired parameters. For explicitness, we
simply observe that b is constant, and so we can find the approximate code C0 : Σ

b
1 → (Σ0)

DL via brute
force.

4 Approximate List Decoding

The technique of message compression via a covering code, which we used in the previous section to build
approximate codes, can also be used to yield approximate list decodable codes. We will instantiate this
technique using nearly-optimal list decodable codes (see Proposition 1).

Lemma 4. If D ⊆ Σk
1 is a covering code of radius ε with |D| = |Σ1|k

′
, and if a code C : Σk′

1 → Σn
2 is an

(r, ℓ)-list decodable code with rate R, then there exists an (r, ε, ℓ)-approximate list decodable code C ′ : Σk
1 → Σn

2

with rate kR/k′.

Proof. In the same manner as Lemma 3, let f : Σk
1 → D be a function such that for all w ∈ Σk

1 , f(w) is
some element of D which is ε-close to w (if there are multiple such elements in the covering code, pick one
arbitrarily and deterministically). Let g : D → Σk′

1 be an arbitrary bijection. Both f and g can be obtained
by brute force.

For any given message m ∈ Σk
1 , let C(m) = C(g(f(w))) ∈ Σn

2 . Then, consider any string w ∈ Σn
2 . By

the list decodability of C, there is a set S of ≤ ℓ strings s ∈ Σk′

1 such that δ(w,C(s)) ≤ r. Hence, g−1(S) is
a set of ≤ ℓ messages such that if C ′(m) is r-close to w, then m is ε-close to something in g−1(S). This is
because of C ′(m) = C(g(f(m))) is r-close to w, then g(f(m)) will be in the set S. So, g−1(S) will contain
f(m) which by design is ε-close to m.

Theorem 13. Let Σ be an arbitrary alphabet. Let 0 < ε < 1/2, 0 < r < 1 − 1/|Σ|, and ℓ ≥ 1. If k ≥ 3/ε,
then there is a (nonexplicit) (r, ε, ℓ)-approximate list decodable code C : Σk → Σn with rate

≥
1−H|Σ|(r)− 1

ℓ+1

1−H|Σ|(ε) + o(1)

Proof. Combine the covering code from Proposition 2 and the list decodable code from Proposition 1 using
the previous lemma.

We will use the Alon–Edmonds–Luby technique once again to lift this approximate globally list decodable
code to a approximate locally weak list decodable code. To do so, we will utilize approximate list decodable
codes from Theorem 13 with constant length. To that end it is helpful to know how large k must be to upper
bound the o(1) terms in the rate.

Corollary 4. Let Σ be an arbitrary alphabet with |Σ| ≥ 3. Let 0 < ε < 1/2, 1/2 < r < 1− 1/a, and ℓ ≥ 1.
There exists a universal constant γ such that if k ≥ max {γ/ε2, γ/H|Σ|(r)

2}, then there is a (nonexplicit)

(r, ε, ℓ)-approximate list decodable code C : Σk → Σn with rate R ≥ 1−H|Σ|(r)− 1
ℓ+1

1−.99H|Σ|(ε)
and R ≤ 1

1−H|Σ|(ε)
. The

.99 can be made arbitrarily close to 1 for larger chosen constants γ.

15

Our approximate locally weak list decodable code construction is identical to the construction for high-
rate ALDCs (see Corollary 3), and we defer to that construction for details. Let 0 < α < ε be a parameter.
By Theorem 10, for any α and ε there exists a biregular (α, ε/2)-sampler with left degree D∗

L = Θ(1
α2 log

1
ε),

and we need to choose a block size b ≥ max {γ/ε2, γ/H|Σ1|(r + α)2} such that, according to Corollary 4,

there is a (r+α, ε/2, ℓ)-approximate list decodable code C0 : Σ
b
1 → ΣDL

1 with DL ≥ D∗
L, so that we can build

a random walk sampler meeting or exceeding the conditions for an (α, ε/2)-sampler, but with left degree
matching DL. It suffices to set b = Θ(D∗

L) such that D∗
L ≤ DL ≤ O(D∗

L) and the conditions for Corollary 4

are satisfied. We end up with a code that has rate R ≥ 1−H|Σ1|(r)− 1
ℓ+1

1−.99H|Σ1|(ε)
− o(1) because the rate is the same

as the constant sized code with a possible o(1) additive loss due to padding. Again, the .99 can be made
arbitrarily close to 1.

The decoder for this code will also work almost identically to the high-rate ALDC decoder from Theo-
rem 12. Query all of the codeword indices corresponding to the block containing the desired message index
i, and then run the approximate list decoding algorithm for the constant-size code on that block in order to
recover a set S of ≤ ℓ strings of length b. Then, return the set of symbols that appear in any string in S at
the substring index corresponding to the message index i. For an input w, let m ∈ Σk

1 such that C(m) is
r-close to w. Then, ≥ 1− ε/2 of the blocks will be “good”: they contain a ≤ r + α fraction of symbols that
differ from C(m), and the constant-size approximate list decodable code will return a set of ℓ substrings of
length b, one of which is ε/2-close to the corresponding substring of m. Therefore, the decoder acting on
a ≥ 1 − ε/2 fraction of message indices i in each good block will return a set that contains mi, and these
indices make up a ≥ 1− ε fraction of the total message. Again, observing that the code from Corollary 4 is
only used for constant message lengths and thus can be found via brute force, we can construct an explicit
approximate local weak list decodable code.

Theorem 14. Let Σ1 be an arbitrary constant-sized alphabet of size ≥ 3. For parameters 0 < α < ε < 1/2,
1/2 < r < 1− 1/|Σ1|, and ℓ ≥ 1, there exists an explicit (q, r, ε, ℓ)-approximate local weak list decodable code

C : Σk
1 → Σn

2 with |Σ2| ≤ |Σ1|q2
O(q)

. The rate of the code is

≥
1−H|Σ1|(r + α)− 1

ℓ+1

1− 0.99H|Σ1|(ε)
− o(1)

and the query complexity is

q ≤ O

(
1

α2
log

1

ε

)

5 Achieving Optimal Error Reduction

What is the best possible error reduction that a q-query ALDC can achieve, and what structure would such
a decoder have? A (q, δ, ε)-ALDC decoder must be nonlinear to achieve ε = o(δ), because [GM12] show that
for any linear decoder and arbitrary message index, there exists some noisy codeword such that decoding fails
with probability Ω(δ). In fact, we are able to show that the best possible error reduction, even for inefficient
ALDCs, is ε = Θ(δ⌈q/2⌉). We construct an efficient q-query ALDC with constant rate and alphabet that
achieves this optimal error reduction up to constant factors.

5.1 Majority Lower Bound on Error

Let C be some nonadaptive (q, δ, ε)-ALDC, over any size alphabet and with any rate. Then, we will show
that ε ≥ Ω(δ⌈q/2⌉); in particular, for two queries, this shows that C must have error ≥ δ which is already
achieved by the 1-query identity code. Intuitively, if a decoder doesn’t trust the majority of the queries that
it sees, then it is biased towards returning a certain answer and will do poorly on a different message.

Theorem 15. Let C : Σk
1 → Σn

2 be a nonadaptive (q, δ, ε)-ALDC with q = O(1), 0 < δ < 1/2, and sufficiently
large n. Then, ε ≥ Ω(δ⌈q/2⌉).

Proof. We will construct a string which is δ-close to some codeword, such that C cannot decode more than
a 1 − Ω(δ⌈q/2⌉) fraction of message symbols. Let S be a uniformly random subset of [n] of cardinality δn.
Then, for sufficiently large n, we will show there exists a noisy codeword w such that δ(w,C(m)) ≤ δ, and

16

• if q is odd,

Pr
i
[Mw(i) ̸= mi] ≥ Pr

[
|[q] ∩ S| ≥ q + 1

2

]
≥ Ω(δ(q+1)/2) (1)

• if q is even,

Pr
i
[Mw(i) ̸= mi] ≥ Pr

[
|[q − 1] ∩ S| ≥ q

2

]
≥ Ω(δq/2) (2)

Note that the lower bound for odd q is precisely the probability that a majority of q queries land in S, and
the lower bound for even q is identical to the lower bound for q − 1.

Let m be some arbitrary string in the message space of C, and let m′ be an arbitrary string such that
m′

i ̸= mi for all i ∈ [k]. Let c = C(m) and let c′ = C(m′). Let S ⊆ [n] be a uniformly chosen subset of
cardinality δn. Let w be a string such that indices outside S match c while indices inside S match c′, and
let w′ be defined in the opposite fashion.

Since C has a nonadaptive decoder, for a fixed message index i, the decoder M on a string w̃ is equivalent
to returning D(w̃|Q), where D is a deterministic function and Q is a set of query locations, each sampled
from some distribution depending on i.

Pr
i
[M w̃(i) = m̃i] = E

i,D,Q
[Pr[D(w̃|Q)] = m̃i]

We will prove that either w or w′ suffices to yield the desired upper bound for the right hand side, by
choosing (m̃, w̃) uniformly from {(m,w), (m′, w′)}.

Pr
S,m̃,w̃,i

[M w̃(i) = m̃i] = E
i,D,Q

[
E

S,m̃,w̃
[Pr[D(w̃|Q)] = m̃i

]
= E

i,D,Q

[
Pr[D(w|Q) = mi] + Pr[D(w′|Q) = m′

i]

2

]
Consider an arbitrary i, D, and Q. Let X = |Q ∩ S| be the random variable representing how many

queries fall into the set of indices which are corrupted.

p := Pr
S
[D(w|Q) = mi] =

q∑
j=0

Pr[D(w|Q) = mi | X = j] · Pr[X = j]

Since mi ̸= m′
i for all i, Pr[D(w|Q) = mi | K] + Pr[D(w|Q) = m′

i | K] ≤ 1 for any event K.

≤ 1−
q∑

j=0

Pr[D(w|Q) = m′
i | X = j] · Pr[X = j]

Analogously,

p′ := Pr
S
[D(w′|Q) = m′

i] =

q∑
j=0

Pr[D(w′|Q) = m′
i | X = j] · Pr[X = j]

We can group terms when averaging between p and p′, since Pr[D(w|Q) = mi | X = j] = Pr[D(w′|Q) = mi |
X = q − j]; on both sides, the decoder sees q − j queries that correspond to c and j that correspond to c′.

p+ p′ = 2 Pr
S,m̃,w̃

[D(w̃|Q) = m̃i]

≤ 1 +

q∑
j=0

(Pr[D(w|Q) = m′
i | X = q − j]− Pr[D(w|Q) = m′

i | X = j]) · Pr[X = j]

≤ 1 +

⌊ q−1
2 ⌋∑

j=0

(Pr[D(w|Q) = m′
i | X = q − j]− Pr[D(w|Q) = m′

i | X = j]) · Pr[X = j]

+

⌊ q−1
2 ⌋∑

j=0

(Pr[D(w|Q) = m′
i | X = j]− Pr[D(w|Q) = m′

i | X = q − j]) · Pr[X = q − j]

= 1 +

⌊ q−1
2 ⌋∑

j=0

(Pr[D(w|Q) = m′
i | X = q − j]− Pr[D(w|Q) = m′

i | X = j]) · (Pr[X = j]− Pr[X = q − j])

17

For sufficiently large n, Pr[X = j] ≥ Pr[X = q − j] when j < q/2 since Pr[X = j] =
(
q
j

)(
n−q
δn−j

)
/
(
n
δn

)
and

Pr[X = q − j] =
(
q
j

)(
n−q

δn−(q−j)

)
/
(
n
δn

)
; then, use the fact that the difference between any two probabilities is

≤ 1. This removes any dependence on i, D, or Q from the bound.

≤ 1 +

⌊ q−1
2 ⌋∑

j=0

(Pr[X = j]− Pr[X = q − j])

≤ 1 +

⌊ q−1
2 ⌋∑

j=0

Pr[X = j]−

1−
⌈ q−1

2 ⌉∑
j=0

Pr[X = j]


≤

⌊ q−1
2 ⌋∑

j=0

Pr[X = j] +

⌈ q−1
2 ⌉∑

j=0

Pr[X = j]

If q is odd, then we have that the probability of success is

p+ p′

2
≤

q−1
2∑

j=0

Pr[X = j]

= Pr
[
|[q] ∩ S| < q

2

]
which is the desired bound (1). If q is even, then

p+ p′

2
≤ Pr

[
X <

q

2

]
+

1

2
Pr
[
X =

q

2

]
= Pr

[
|[q − 1] ∩ S| < q − 1

2

]
using Lemma 5, which matches the desired bound (2). To complete the proof:

E
S,m̃,w̃

[Pr
i
[M w̃(i) = m̃i]] = E

S,m̃,w̃

[
E

i,D,Q
[Pr[D(w̃|Q)] = m̃i

]
= E

i,D,Q

[
E

S,m̃,w̃
[Pr[D(w̃|Q)] = m̃i

]
= E

i,D,Q

[
Pr[D(w|Q) = mi] + Pr[D(w′|Q) = m′

i]

2

]
= E

i,D,Q

[
p+ p′

2

]
=

p+ p′

2

By the probabilistic method, there exist fixed S, m̃, and w̃ (i.e., some δ-noisy codeword) such that Pri[M
w̃(i) =

m̃i] ≤ p+p′

2 .

Note that this bound is tight when the codeword alphabet is very large: consider the code C : Σk → (Σk)n

where each symbol of the codeword is a copy of the entire message; then, the decoder samples q uniformly
random codeword indices, and returns the majority of the corresponding portion of the codeword symbols
that contains the requested message index. This bound also proves that the identity code (where C(x) = x),
which is a (1, δ, δ)-ALDC, is optimal for the ≤ 2 query regime:

Corollary 5. A nonadaptive ALDC with ≤ 2 queries has error ≥ δ.

Proof. A 1-query ALDC is a special case of a 2-query ALDC, so without loss of generality we consider
2-query ALDCs. The upper bound for 2-query ALDCs given by the theorem is the same as the upper bound
for 1-query ALDCs, which is (

1
0

)(
n−1
δn

)(
n
δn

) = 1− δ

18

5.2 Achieving the Majority Lower Bound

Although the majority lower bound applies to all (q, δ, ε)-ALDCs, including ones with inefficient decoders,
huge codeword lengths, or huge alphabet size, we will now show that the bound can be achieved up to a
constant factor by explicit and efficient (q, δ, O(δ⌈q/2⌉))-ALDCs with constant rate and alphabet size. To do
so, we apply the Alon–Bruck–Naor–Naor–Roth technique [ABN+92] to a sampler graph.

Code construction. Let 0 < γ < 1 be an arbitrarily small constant, q be a positive constant integer, and
0 < δ < 1/2. To construct an ALDC C : Σk

1 → Σn
2 , begin with a biregular graph G corresponding to an

oblivious (α = γδ, β = γδ⌈q/2⌉)-sampler with bipartition ([k], [n]), left degree DL, and right degree DR. Let
m ∈ Σk

1 be an arbitrary message. The jth codeword symbol C(m)j is defined as the string (mi)i∈N(j) ∈ ΣDR
1

where N(j) is the set of left vertices neighboring the jth right vertex.
Immediately, we can see that the rate of this code will be 1/DL because each message symbol is duplicated

DL times in the codeword, and the alphabet is Σ2 = ΣDR
1 .

Decoder and analysis. For a message index i and input string w, consider the decoder which indepen-
dently repeats the following step q times, and takes the majority of the results:

1. Pick a uniformly random right vertex j neighboring left vertex i in the sampler graph G.

2. Query the jth index of w, and then return the symbol of wj which corresponds to message index i.

If w is δ-close to some codeword C(m), then by the sampler property, a 1 − β = 1 − γδ⌈q/2⌉ fraction of
message coordinates will be “good”: these coordinates i have at most a ≤ δ + α = (1 + γ)δ fraction of their
neighbors which are corrupted. If a message index i is good, then the probability of a uniformly random
neighbor being corrupt is ≤ (1 + γ)δ, and so the probability that the majority of q repetitions is corrupt is

≤
q∑

ℓ=⌈q/2⌉

(
q

ℓ

)
((1 + γ)δ)ℓ(1− (1 + γ)δ)q−ℓ ≤ O(((1 + γ)δ)⌈q/2⌉)

Hence the decoder achieves the following error:

E
i
[Pr[Mw(i) ̸= mi]] ≤ β + (1− β) ·O(((1 + γ)δ)⌈q/2⌉) ≤ O(((1 + γ)δ)⌈q/2⌉)

If γ = 1/100q = O(1), then (1 + γ)⌈q/2⌉ ≤ eγ⌈q/2⌉ ≤ e1/100 and

O(((1 + γ)δ)⌈q/2⌉) ≤ O(δ⌈q/2⌉)

Theorem 16. For any 0 < δ < 1/2 and constant positive integer q, the code above C : Σk
1 → Σn

2 is a
(q, δ, O(δ⌈q/2⌉))-ALDC with rate 1/DL and alphabet Σ2 = ΣDR

1 .

Finally, we can apply the sampler from Theorem 10 to complete the construction.

Corollary 6. For any 0 < δ < 1/2 and constant positive integer q, there exists an explicit code C : Σk
1 → Σn

2

which is a (q, δ, O(δ⌈q/2⌉))-ALDC with rate 1/DL and alphabet Σ2 = ΣDR
1 , where DL = O(q

2

δ2 log
q

δ⌈q/2⌉
) and

DR = 2DL2O(DL)

.

Note that the decoder which chooses q right neighbors without replacement will perform slightly better,
but for the purpose of matching the majority error bound asymptotically, it is simpler to analyze the decoder
above which chooses neighbors with replacement.

5.3 Binary ALDCs with Nontrivial Error Amplification

The code C described above requires a constant-size alphabet that nevertheless grows quickly in 1/δ. We
can concatenate this code with the Hadamard code to yield binary ALDCs, at the cost of increased rate and
doubled query complexity.

19

Code construction. Let CH : {0, 1}DR → {0, 1}2DR be the Hadamard code for messages of DR bits.
Then, define C2 : {0, 1}k → {0, 1}n′

where n′ = 2DR ·n to be the code C concatenated with CH ; that is, each
symbol of the codeword of C is encoded with CH , and the entire new codeword is flattened to be a string of
bits. The rate of this new code is DR/DL2

DR .

Decoder and analysis. The decoder for C2 is identical to the decoder for C, except that each query to a
right vertex is now serviced by the 2-query local Hadamard decoder. That is, given a message index i and
input string w, repeat the following q times and return the majority:

1. Pick a uniformly right vertex j neighboring left vertex i in the sampler graph G.

2. Let w(j) denote the substring of w corresponding to the Hadamard encoding of the jth symbol of the
base codeword. In particular, w(j) is the substring of length 2DR starting at the ((j − 1) · 2DR + 1)th
bit. Then, run the Hadamard 2-query local decoder on w(j) (see Lemma 2) to decode the single bit
corresponding to message index i. Return the outcome of the Hadamard decoder.

The query complexity is now 2q because each query made by the original decoder is serviced by two queries
of the Hadamard local decoder. If w(j) has a δj fraction of corruption, then the Hadamard decoder will
return an incorrect answer with probability ≤ 2δj . Then, the probability of one iteration of the decoder
returning an incorrect answer is

pi := E
j∈N(i)

[2δj] = 2 E
j∈N(i)

[δj]

If we define a function on the right vertices f(j) = δj ∈ [0, 1], then by the sampler property, a 1− β fraction
of message coordinates will have Ej∈N(i)[δj] ≤ δ+α and hence pi ≤ 2(δ+α). So a good coordinate i will be
successfully decoded with probability

≤ O((2(1 + γ)δ)⌈q/2⌉) ≤ O((2δ)⌈q/2⌉)

using γ = 1/100q as before. The total error of the decoder is

E
i
[Pr[Mw(i) ̸= mi]] ≤ β + (1− β) ·O((2δ)⌈q/2⌉) ≤ O((2δ)⌈q/2⌉)

Theorem 17. For any 0 < δ < 1/2 and constant positive integer q, the code above C2 : {0, 1}k → {0, 1}n′

is a (2q, δ, O((2δ)⌈q/2⌉))-ALDC with rate DR/DL2
DR where DL = O(q

2

δ2 log
q

δ⌈q/2⌉
) and DR = 2DL2O(DL)

.

6 Open problems

ALDCs with optimal rate and error reduction. We gave two contructions of ALDCs. The first
had nearly optimal rate, and a constant number of queries. However, the error reduction is not optimal
for the number of queries it uses. The second construction has optimal error reduction the its number of
queries. However, the rate is far from optimal (although still constant). It is an open question whether one
can construct an ALDC with the best of both worlds or whether it is impossible. That is, do there exist
(q, δ, ε)-ALDCs with rate approaching the Singleton bound, and ε = O(δ⌈q/2⌉)?

Binary ALDCs with optimal query complexity. Both of our constructions have a large constant
alphabet due to the sampler technique. A natural question to ask is what can be done with a smaller
alphabet. In section 5.3 we showed that concatenating our construction for optimal error reduction from
section 5.2 with Hadamard gives an ALDC with binary alphabet. However, this doubles the number of
queries and so no longer gives optimal error reduction for its query complexity. Thus one can ask what is
achievable with binary ALDCs. We do not know whether the same δ to O(δ⌈q/2⌉) error reduction is possible
for a binary ALDC.

20

Strong list decoding with constant number of queries and constant rate. Our list decoding result
only works for a weak notion of list decoding. It is natural to ask whether the standard notion of approximate
local list decoding can be achieved with constant query complexity and constant rate. The work of [IJKW10]
constructs an approximate local list decodable code in the strong sense with a constant number of queries
but with a polynomially small rate (see also [BAETS10, Theorem 2]). The work of [DHK+21] constructs a
code with approximate global list decoding with constant rate. Both of these codes are derandomized direct
product codes.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38(2):509–516, March 1992. Conference Name: IEEE
Transactions on Information Theory. doi:10.1109/18.119713.

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly optimal
recovery. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 512–519,
October 1995. ISSN: 0272-5428. doi:10.1109/SFCS.1995.492581.

[AGKM22] Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, and Peter Manohar. A near-cubic
lower bound for 3-query locally decodable codes from semirandom CSP refutation. Technical
Report TR22-101, Electronic Colloquium on Computational Complexity (ECCC), July 2022.
URL: https://eccc.weizmann.ac.il/report/2022/101/.

[AL96] Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal recovery.
IEEE Trans. Inf. Theory, 42(6):1732–1736, 1996. doi:10.1109/18.556669.

[BAETS10] Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. A note on amplifying the error-
tolerance of locally decodable codes. Technical Report TR10-134, Electronic Colloquium on
Computational Complexity (ECCC), December 2010. URL: https://eccc.weizmann.ac.il/
report/2010/134/.

[BDG19] Jop Briët, Zeev Dvir, and Sivakanth Gopi. Outlaw distributions and locally decodable codes.
Theory of Computing, 15(12):1–24, 2019. URL: https://theoryofcomputing.org/articles/
v015a012, doi:10.4086/toc.2019.v015a012.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Comput-
ing, 36(4):889–974, January 2006. Publisher: Society for Industrial and Applied Mathemat-
ics. URL: https://epubs.siam.org/doi/abs/10.1137/S0097539705446810, doi:10.1137/
S0097539705446810.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algo-
rithms for estimating the average. Information Processing Letters, 53(1):17–25, January
1995. URL: https://www.sciencedirect.com/science/article/pii/002001909400171T,
doi:10.1016/0020-0190(94)00171-T.

[CY21] Gil Cohen and Tal Yankovitz. Rate amplification and query-efficient distance amplification for
linear LCC and LDC. In Valentine Kabanets, editor, 36th Computational Complexity Con-
ference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), vol-
ume 200 of LIPIcs, pages 1:1–1:57. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CCC.2021.1.

[CY22] Gil Cohen and Tal Yankovitz. LCC and LDC: tailor-made distance amplification and a refined
separation. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th
International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-
8, 2022, Paris, France, volume 229 of LIPIcs, pages 44:1–44:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.44.

21

https://doi.org/10.1109/18.119713
https://doi.org/10.1109/SFCS.1995.492581
https://eccc.weizmann.ac.il/report/2022/101/
https://doi.org/10.1109/18.556669
https://eccc.weizmann.ac.il/report/2010/134/
https://eccc.weizmann.ac.il/report/2010/134/
https://theoryofcomputing.org/articles/v015a012
https://theoryofcomputing.org/articles/v015a012
https://doi.org/10.4086/toc.2019.v015a012
https://epubs.siam.org/doi/abs/10.1137/S0097539705446810
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/S0097539705446810
https://www.sciencedirect.com/science/article/pii/002001909400171T
https://doi.org/10.1016/0020-0190(94)00171-T
https://doi.org/10.4230/LIPIcs.CCC.2021.1
https://doi.org/10.4230/LIPIcs.ICALP.2022.44

[DGL21] Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algorithms with
applications to coding, testing, and privacy. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10
- 13, 2021, pages 1651–1665. SIAM, 2021. doi:10.1137/1.9781611976465.100.

[DGY11] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J. Comput.,
40(4):1154–1178, 2011. doi:10.1137/100804322.

[DH13] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using decodable PCPs.
SIAM J. Comput., 42(6):2452–2486, 2013. doi:10.1137/100788161.

[DHK+21] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta-Shma. List-
decoding with double samplers. SIAM J. Comput., 50(2):301–349, 2021. doi:10.1137/

19M1276650.

[Efr12] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012. doi:10.1137/090772721.

[Gil98] David Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal
on Computing, 27(4):1203–1220, January 1998. Publisher: Society for Industrial and Applied
Mathematics. URL: https://epubs.siam.org/doi/10.1137/S0097539794268765, doi:10.

1137/S0097539794268765.

[GL21] Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. SIAM J.
Comput., 50(2):788–813, 2021. doi:10.1137/19M1307834.

[GM12] Anna Gal and Andrew Mills. Three-query locally decodable codes with higher correctness
require exponential length. ACM Transactions on Computation Theory, 3(2):5:1–5:34, January
2012. doi:10.1145/2077336.2077338.

[HT18] Pooya Hatami and Madhur Tulsiani. Approximate local decoding of cubic Reed-Muller codes
beyond the list decoding radius. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 663–679. SIAM, 2018. doi:10.1137/1.9781611975031.43.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct
product theorems: Simplified, optimized, and derandomized. SIAM J. Comput., 39(4):1637–
1665, 2010. doi:10.1137/080734030.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas,
USA, May 4-6, 1997, pages 220–229. ACM, 1997. doi:10.1145/258533.258590.

[KLT23] Dain Kim, Anqi Li, and Jonathan Tidor. Cubic Goldreich-Levin. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 4846–4892. SIAM, 2023.
doi:10.1137/1.9781611977554.ch178.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
and locally testable codes with sub-polynomial query complexity. J. ACM, 64(2):11:1–11:42,
2017. doi:10.1145/3051093.

[KRRZ+21] Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat Silas. On list
recovery of high-rate tensor codes. IEEE Transactions on Information Theory, 67(1):296–316,
2021. doi:10.1109/TIT.2020.3023962.

22

https://doi.org/10.1137/1.9781611976465.100
https://doi.org/10.1137/100804322
https://doi.org/10.1137/100788161
https://doi.org/10.1137/19M1276650
https://doi.org/10.1137/19M1276650
https://doi.org/10.1137/090772721
https://epubs.siam.org/doi/10.1137/S0097539794268765
https://doi.org/10.1137/S0097539794268765
https://doi.org/10.1137/S0097539794268765
https://doi.org/10.1137/19M1307834
https://doi.org/10.1145/2077336.2077338
https://doi.org/10.1137/1.9781611975031.43
https://doi.org/10.1137/080734030
https://doi.org/10.1145/258533.258590
https://doi.org/10.1137/1.9781611977554.ch178
https://doi.org/10.1145/3051093
https://doi.org/10.1109/TIT.2020.3023962

[KRSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved decoding
of folded Reed-Solomon and multiplicity codes. In Mikkel Thorup, editor, 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 212–223. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00029.

[KSV03] Michael Krivelevich, Benny Sudakov, and Van H. Vu. Covering codes with improved density.
IEEE Transactions on Information Theory, 49(7):1812–1815, July 2003. Conference Name:
IEEE Transactions on Information Theory. doi:10.1109/TIT.2003.813490.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, STOC ’00, pages 80–86, New York, NY, USA, May 2000. Association for Computing
Machinery. doi:10.1145/335305.335315.

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5):29:1–
29:29, 2010. doi:10.1145/1754399.1754402.

[Sol09] Kiril Solovey. Error reducing locally decodable codes, 2009.
URL: http://tau-research-course-2009.wdfiles.com/local--files/

error-reducing-locally-decodable-codes/ERLDC.pdf.

[Tre03] Luca Trevisan. List-decoding using the XOR lemma. In 44th Symposium on Foundations of
Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages
126–135. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238187.

[Tre04] Luca Trevisan. Some applications of coding theory in computational complexity. CoRR,
cs.CC/0409044, 2004. URL: http://arxiv.org/abs/cs.CC/0409044.

[TW14] Madhur Tulsiani and Julia Wolf. Quadratic Goldreich-Levin theorems. SIAM J. Comput.,
43(2):730–766, 2014. doi:10.1137/12086827X.

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

[Woo07] David P. Woodruff. New lower bounds for general locally decodable codes. Technical Report
TR07-006, Electronic Colloquium on Computational Complexity (ECCC), January 2007. URL:
https://eccc.weizmann.ac.il/report/2007/006/.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM,
55(1):1:1–1:16, 2008. doi:10.1145/1326554.1326555.

[Yek12] Sergey Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci., 6(3):139–255,
2012. doi:10.1561/0400000030.

A Appendix

Lemma 5. When q is an even constant and δ ∈ (0, 1),

q/2−1∑
j=0

(
q
j

)(
n−q
δn−j

)(
n
δn

) +
1

2

(
q

q/2

)(
n−q

δn−q/2

)(
n
δn

) =

q/2−1∑
j=0

(
q−1
j

)(
n−q+1
δn−j

)(
n
δn

)
Proof. We make use of the Pascal’s triangle recurrence (

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
) by manipulating and reindexing

summations. For k < 0, let
(
n
k

)
= 0 for notation.

(
q − 1
q
2 − 2

)(
n− q

δn− q
2

)
=

q
2−2∑
j=0

(
q − 1

j

)(
n− q

δn− j − 2

)
−

q
2−3∑
j=0

(
q − 1

j

)(
n− q

δn− j − 2

)

23

https://doi.org/10.1109/FOCS.2018.00029
https://doi.org/10.1109/TIT.2003.813490
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/1754399.1754402
http://tau-research-course-2009.wdfiles.com/local--files/error-reducing-locally-decodable-codes/ERLDC.pdf
http://tau-research-course-2009.wdfiles.com/local--files/error-reducing-locally-decodable-codes/ERLDC.pdf
https://doi.org/10.1109/SFCS.2003.1238187
http://arxiv.org/abs/cs.CC/0409044
https://doi.org/10.1137/12086827X
https://doi.org/10.1561/0400000010
https://eccc.weizmann.ac.il/report/2007/006/
https://doi.org/10.1145/1326554.1326555
https://doi.org/10.1561/0400000030

=

q
2−2∑
j=0

(
q − 1

j

)(
n− q

δn− j − 2

)
−

q
2−2∑
j=1

(
q − 1

j − 1

)(
n− q

δn− j − 1

)
(
q − 1
q
2 − 2

)(
n− q

δn− q
2

)
=

q
2−2∑
j=0

(
q − 1

j

)(
n− q

δn− j − 2

)
−

q
2−2∑
j=0

(
q − 1

j − 1

)(
n− q

δn− j − 1

)
((

q
q
2 − 1

)
−
(
q − 1
q
2 − 1

))(
n− q

δn− q
2

)
=

q
2−2∑
j=0

((
q − 1

j

)((
n− q + 1

δn− j − 1

)
−
(

n− q

δn− j − 1

))

−
(
q − 1

j − 1

)(
n− q

δn− j − 1

))
(
q − 1
q
2 − 1

)(
n− q

δn− q
2

)
=

q
2−2∑
j=0

((
q − 1

j

)((
n− q

δn− j − 1

)
−
(
n− q + 1

δn− j − 1

))

+

(
q − 1

j − 1

)(
n− q

δn− j − 1

))
+

(
q

q
2 − 1

)(
n− q

δn− q
2

)

=

q
2−1∑
j=0

(
q

j

)(
n− q

δn− j − 1

)
−

q
2−2∑
j=0

(
q − 1

j

)(
n− q + 1

δn− j − 1

)

=

q
2−1∑
j=0

((
q

j

)(
n− q

δn− j − 1

)
−
(
q − 1

j − 1

)(
n− q + 1

δn− j

))

=

q
2−1∑
j=0

((
q

j

)(
n− q

δn− j − 1

)
−
(
q − 1

j − 1

)(
n− q

δn− j

)
−
(
q − 1

j − 1

)(
n− q

δn− j − 1

))

=

q
2−1∑
j=0

((
q

j

)
−
(
q − 1

j − 1

))((
n− q

δn− j

)
+

(
n− q

δn− j − 1

))

−

q
2−1∑
j=0

(
q

j

)(
n− q

δn− j

)
(
q − 1
q
2 − 1

)(
n− q

δn− q
2

)
=

q
2−1∑
j=0

(
q − 1

j

)(
n− q + 1

δn− j

)
−

q
2−1∑
j=0

(
q

j

)(
n− q

δn− j

)

To complete the proof, note that
(

q−1
q/2−1

)
= 1

2

(
q

q/2

)
:

1

2

(
q
q
2

)
=

1

2
· q

q/2
· (q − 1)(q − 2) · · · (q/2 + 1)

(q/2− 1)(q/2− 2) · · · 1
=

(
q − 1
q
2 − 1

)
Then, move the second summation to the left hand side and divide both sides by

(
n
δn

)
.

24
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

