
Approximate Locally Decodable Codes with Constant Query

Complexity and Nearly Optimal Rate

Geoffrey Mon, Dana Moshkovitz, and Justin Oh
Department of Computer Science
University of Texas at Austin

{gmon, danama, sjo}@cs.utexas.edu

Abstract

We present simple constructions of good approximate locally decodable codes (ALDCs) in the
presence of a δ-fraction of errors for δ < 1/2. In a standard locally decodable code C : Σk

1 → Σn
2 ,

there is a decoder M that on input i ∈ [k] correctly outputs the i-th symbol of a message x
(with high probability) using only q queries to a given string w that is δ-close to C(x). In
an ALDC, the decoder M only needs to be correct on a 1 − ε fraction of i ∈ [k] for ε much
smaller than δ. We present a construction of explicit ALDCs for all constants 1/2 > δ > ε
with a constant number of queries q and with constant, near-optimal rate. Standard LDCs with
constant number of queries and any constant rate are known to be impossible.

We additionally explore what is the lowest error probability ε one can achieve for fixed δ and
q. We show that for any ALDC, ε = Ω(δ⌈q/2⌉). We then show that there exist explicit constant
rate ALDCs for any constant q that achieve ε = O(δ⌈q/2⌉). In particular, for q = 3, we have a
constant rate ALDC with error probability ε = O(δ2).

1 Introduction

Locally decodable codes (LDCs) are a useful and pervasive tool in both application and theory,
and there has been intense study towards constructing such codes with optimal parameters. By
the seminal work of Katz and Trevisan [KT00], asymptotically good LDCs with the “dream”
parameters of constant rate, distance, and query complexity cannot exist. In this work, we show that
simple constructions can achieve such ideal parameters for the relaxed notion of approximate locally
decodable codes (ALDCs), which are natural codes that, like LDCs, often emerge in complexity
theory.

In a standard (q, δ, ε)-LDC C : Σk
1 → Σn

2 , there exists a randomized decoding algorithm M
that takes as input i ∈ [k] and has query access to a string w that is δ-close to a codeword C(x).
This sublinear-time decoder must correctly output Mw(i, r) = xi with probability at least 1 − ε
over its internal randomness r for any i ∈ [k], using at most q (non-adaptive) queries to w. In
contrast, an approximate locally decodable code only requires that M successfully decodes most of
the message coordinates with few queries. That is, for a (q, δ, ε)-approximate locally decodable code
C : Σk

1 → Σn
2 there again exists a randomized algorithm M that takes as input i ∈ [k] and makes

at most q queries to a string w that is δ-close to a codeword C(x). This time, the decoder must
correctly output Mw(i, r) = xi with probability 1 − ε over its internal randomness r on average
over all coordinates i ∈ [k] of the message.1 The identity code is a trivial (1, δ, ε)-ALDCs for δ = ε,
so ε ≪ δ is the only parameter regime where ALDCs make sense.

1The decoder does not necessarily know which indices i are decoded correctly. A different relaxed definition,
known as relaxed locally decodable codes [BGH+06], requires the decoder to report which indices are corrupted.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 56 (2023)

To make sense of this definition, suppose we would like to amplify the decoding radius of a code
C : Σk

0 → Σn
1 from ε to δ. It is natural to seek a map C ′ : Σn

1 → Σm
2 equipped with a decoder which

can, given any input which is δ-close to some C ′(x), return a string x′ which is ε-close to x. Then,
C ′ ◦ C is a new code with a decoding radius of δ: run the decoder of C ′ on any input which is
δ-close to C ′ ◦ C to get x′ which is ε-close to some codeword of C, and then run the decoder of C
on x′ to uniquely recover the message. If the decoder of C ′ features locality, then C ′ is precisely an
ALDC which can be used to amplify the decoding radius of an LDC [BET10].

Historically, the notion of ALDCs is motivated by topics in computational complexity theory
such as hardness amplification. Informally, suppose there is a function f with a truth table that
differs from the truth table of every possible efficiently computable function on at least an ε fraction
of inputs—that is, no efficient algorithm can compute f with accuracy better than 1 − ε. Then,
we can encode the truth table of f with an ALDC to get the truth table of a new, harder, function
which cannot be computed by any efficient algorithm with accuracy better than 1 − δ < 1 − ε: if
there existed such an algorithm, then we could combine it with an algorithm that computes the
ALDC decoder to build an algorithm computing f with accuracy better than 1 − ε, which is a
contradiction. Explicit ALDCs considered in this context are the XOR code and the direct product
code as well as their derandomized counterparts [IW97, Tre03, IJKW10].

Versions of ALDCs also appear in the context of probalistically checkable proofs, which are
proofs that can be verified with very few queries and randomness. In this research area, certain
constructions allow for symbols of the witness to be decoded from the proof using few queries, a
concept called a PCP of proximity [BGH+06] or decoding PCP [MR10, DH13]. Such constructions
typically only guarantee that most (instead of all) symbols are decoded correctly.

1.1 Our Results

We give both constructions and lower bounds, demonstrating the possibility and limits of ALDCs
in terms of rate and locality. The first constructive result gives constant query ALDCs with near
optimal rate and arbitrary error reduction.

1.1.1 Constant Query ALDCs with Nearly Optimal Rate

In the case of unique decoding, the Singleton bound tells us that a code that can be decoded from
δ fraction errors must have rate at most 1 − 2δ + o(1), because a decoding radius of δ implies a
distance of at least 2δ. Notably, the Reed–Solomon code is a uniquely (non-local) decodable code
that achieves this bound. Kopparty, Meir, Ron-Zewi, and Saraf [KMRS17] use Reed–Solomon as
the base code for Alon–Edmonds–Luby distance amplification [AEL95, AL96] to construct ALDCs
with rate approaching the Singleton bound; this construction is crucial to their construction of
asymptotically-good LDCs with subpolynomial query complexity:

Theorem 1.1 (due to [KMRS17, Lemma 3.2]). For any δ, ε > 0 and any parameter α > 0, there
is an explicit (q, δ, ε)-ALDC with rate 1− 2δ − 2α and query complexity q = poly(1/εα).

This theorem shows a quite striking contrast. One cannot hope to have an LDC with both
constant rate and constant number of queries. Nevertheless, it is possible to have an ALDC that
reduces any sufficiently small constant error rate δ, to any arbitrarily smaller constant error ε, with
constant query complexity and with arbitrarily high rate.

Then, a natural question to ask is: what is the optimal rate for a (q, δ, ε)-ALDC? In particular,
the Singleton rate upper bound of 1 − 2δ + o(1) does not apply to (q, δ, ε)-ALDCs, because they
can have distance less than 2δ: an ALDC’s decoder is only required to return most of the message

2

correctly, so two messages can map to the same ALDC codeword as long as these messages are
ε-close to each other. We take advantage of this fact to get an ALDC construction with higher rate
slightly exceeding the Singleton bound:

Theorem 1.2 (See Corollary 3.9). For any constants δ, ε > 0, any sufficiently small constant
parameter α, any constant sized finite field Σ1, and any sufficiently large k, there is an explicit

C : Σk
1 → Σn

2 which is a (q, δ, ε)-ALDC with q = poly(1/εα) with |Σ2| ≤ |Σ1|q2
O(q)

. The rate of the
code is

1− 2δ − 2α

1− .99H|Σ1|(ε/2)
− o(1).

To achieve this, we refine the Alon–Edmonds–Luby technique [AEL95, AL96] as used by Kop-
party, Meir, Ron-Zewi, and Saraf [KMRS17]. This technique builds a code that divides the message
into small constant-size blocks, encodes each block with a base code, and then permutes all of the
symbols according to a sampler graph to form the codeword. The sampler graph guarantees that
no matter which δ fraction of codeword symbols are corrupted, at least a 1 − ε fraction of the
blocks will “see” an approximately δ fraction of corruption. Because the sampler graph permutes
symbols but does not duplicate them, the rate of this code is the same as the rate of the base code.
In addition, each message symbol can be decoded by querying all of the (constant many) symbols
in its corresponding block. If Reed–Solomon is used as the base code, then this yields an ALDC
with constant query complexity and rate approaching the Singleton bound [KMRS17]. The 1 − ε
fraction of blocks have bounded distance from the Reed–Solomon base code and can be uniquely
decoded, while the remaining ε fraction of blocks which have too much corruption are written off.

We improve the rate by using a (δ, ε)-approximate code2 as the base code for the AEL con-
struction instead of Reed–Solomon. This base code is weaker than a uniquely decodable code such
as Reed–Solomon, and hence can have higher rate. Then, in each of the blocks with bounded
corruption, a 1 − ε fraction of message symbols can be recovered. Since 1 − ε of the blocks have
at most O(δ) corruption, a 1−O(ε) fraction of the entire message can be decoded. Hence, we can
spread the message corruption across all of the blocks, instead of concentrating it in the ε fraction
of blocks written off by the sampler, in order to relax the base code and get a higher rate.

The final step is to show that an approximate code with higher rate exists. This code will
be used on constant-sized blocks, so we can afford to construct it by brute force. Because this
code only needs to preserve 1 − ε of the message coordinates, we can pick a subset D (known as
a covering code) of the message space Σk such that every message is ε-close to some string in D.
Then, we can view D as a new, smaller set of messages Σk′ and encode it using Reed–Solomon
with distance 2δ. To approximately decode, we can use the Reed–Solomon decoder to fully recover
an element of D which is guaranteed to be ε-close to our true original codeword. The rate of this
code is k/k′ · (1− 2δ), which “exceeds” the Singleton bound.

1.1.2 Rate Upper Bound

Theorem 1.2 demonstrates that an ALDC can have rate slightly exceeding a uniquely decodable
code of the same decoding radius. We show that this rate is in fact nearly optimal for approximate
codes in general, even without locality. Simply observe that composing an approximate code with
a uniquely decodable code yields a uniquely decodable code, which is then governed by traditional
coding theory rate bounds. Hence, adding locality incurs almost no cost on rate.

2A (δ, ε)-approximate code is an ALDC with no requirement of locality: there is some (potentially global) decoder
that reduces error from δ to ε.

3

Theorem 1.3 (See Theorem 3.7). A (δ, ε)-approximate code C : Σk
1 → Σn

2 must have rate

R ≤ 1− 2δ + o(1)

1−H|Σ1|(2ε)− o(1)
.

1.1.3 Constant Query Approximate Local Weak List Decodable Codes with High
Rate

We can adapt the construction in Theorem 1.2 to admit a local weak list decoding algorithm with
a constant number of queries in the presence of a large fraction of errors.

We consider the following definition of local list decoding: A (q, δ, ε, ℓ)-approximate local weak
list decodable code C : Σk

1 → Σn
2 is equipped with a decoder M that on input i ∈ [k], makes at most

q queries to a string w ∈ Σn
2 and outputs a list of symbols M(i) ⊂ Σ1 such that |M(i)| ≤ ℓ. For

any codeword C(x) that is δ-close to w we have xi ∈ M(i) for at least 1− ε fraction of i ∈ [k]. We
generally aim to construct such codes with ℓ ≪ |Σ1|. This definition is similar to the definition of list
decoding for locally decode or reject codes [MR10], but is weaker than the list decoding definition
for ALDC that appears in [IJKW10]. In the latter, the decoder outputs ℓ circuits A1, . . . , Aℓ such
that for any C(x) that is δ-close to w, there is j ∈ [ℓ] that on input i ∈ [k] decodes Aj(i) = xi for
at least 1− ε fraction of the i ∈ [k]. This stronger definition can be easily obtained in the case of
polynomially small rate, but we do not know how to achieve it in the case of constant rate and a
constant number of queries.

The notion of approximate weak list decoding (without locality) was used implicitly before
[GI02, GI04] as an ingredient for constructing (standard) list decodable codes. A standard list
decodable code of radius δ and list size ℓ is a code C : Σk

1 → Σn
2 such that every string w ∈ Σn

2 has
at most ℓ codewords that are δ-close. Such works also utilize the distance amplification technique of
[AEL95] as we do, and [GKO+16, HRW20] later observed that such a construction also has locality.

We use the same AEL technique as these previous works, and demonstrate that our technique of
slightly improving the rate by first applying a covering code can also be applied to approximate weak
list decoding. Specifically, we show that there are explicit approximate local weak list decodable
codes that slightly exceed the probabilistic bound on the rate of standard list decodable codes.
A probabilistic argument shows that there exist list decodable codes C : Σk

1 → Σn
2 for any radius

δ < 1− 1
|Σ2| , and any list size ℓ with rate 1−H|Σ2|(δ)−

1
ℓ+1 −o(1). Moreover, this rate is essentially

optimal for list decodable codes, up to the dependence on ℓ (see for example: [Vad12, Theorem
5.8]).

Theorem 1.4 (See Theorem 4.4). Let Σ1 be an arbitrary constant-sized alphabet of size ≥ 3. For
parameters 0 < α < ε < 1/2, 1/2 < r < 1 − 1/|Σ1|, and ℓ ≥ 1, there exists an explicit (q, r, ε, ℓ)-

approximate local weak list decodable code C : Σk
1 → Σn

2 with |Σ2| ≤ |Σ1|q2
O(q)

. The rate of the code
is

≥
1−H|Σ1|(r + α)− 1

ℓ+1 − o(1)

1− 0.99H|Σ1|(ε)

and the query complexity is q ≤ O
(

1
α2 log

1
ε

)
.

To obtain a weak approximate locally list decodable code we can simply replace the Reed
Solomon code used in the constant sized approximate code above with an optimal list decodable
code found via brute force. This will yield a constant sized approximate list decodable code, where
there is a decoder M that on input any string w, outputs a small list of possible messages M(w)
such that for every codeword C(x) that δ-close to w, at least one message from M(w) is ε-close to

4

x. We will use this approximate list decodable code in the same sampler-based construction above.
Again, the rate in the final construction will inherit the rate of the constant sized approximate list
decodable code. For the weak list decoding property, we observe that the list of strings returned
by M above for a given small block of the message also naturally induces a small list of symbols
for every coordinate in the block.

1.1.4 3-Query ALDCs and Optimal Error Reduction

In the most extreme setting of local decoding, one may ask what is possible with only 3 queries. In-
deed, this has been the subject of extended study in the case of LDCs with both upper bounds [Yek08,
Efr12, DGY11] and lower bounds [Woo07, AGKM23, KM23, Yan24, AG24], and as discussed, it is
impossible to achieve constant rate in that case.

Evidently, relaxing the goal of the decoder to error reduction rather than “error elimination”
drastically improves the state of what is feasible in the constant rate regime. Thus it is natural to
ask, what is the best error reduction possible given q queries for a constant rate ALDC? We show
that for 3 queries, one cannot hope for better than a (3, δ,Θ(δ2))-ALDC for any rate. Intuitively, a
randomized decoder makes three uniformly random queries to the coordinates of a codeword with
a δ-fraction of corruptions. When at least two of these queries read a corrupted symbol, there is
no hope the decoder will output the correct message symbol. In fact, we show that any q-query
decoder cannot succeed (with probability over both its randomness and a uniform choice of message
coordinate) with probability better than the probability that the majority of its queries land on
uncorrupted symbols.

Theorem 1.5 (See Theorem 5.1). Let C : Σk
1 → Σn

2 be a (q, δ, ε)-ALDC with query complexity
q = O(1) and decoding radius δ < 1/2. Then ε = Ω(δ⌈q/2⌉).

In addition, we show that it is indeed possible to construct a constant rate 3-query ALDC with
this optimal error reduction. In fact we show that it is possible to obtain optimal error reduction
for any given constant number of queries, by adapting a different but related distance amplification
technique due to Alon–Bruck–Naor–Naor–Roth [ABN+92].

Theorem 1.6 (See Corollary 5.4). Let q > 1 and 0 < δ < 1/2 be constants. Let Σ1 be any
alphabet. There are explicit (q, δ, ε)-ALDCs C : Σk

1 → Σn
2 with constant rate, and Σ2 = ΣDR

1 , where

ε = O(δ⌈q/2⌉), DL = O(q
2

δ2
log q

δ⌈q/2⌉
), and DR = 2DL2

O(DL)
.

This construction is similar to the near-optimal rate ALDC construction. We can use a sampler
graph with the repetition code for each message symbol, and decode by taking the majority over q
uniformly random copies of the desired message symbol.

1.1.5 ALDCs with Small Alphabet

All of our ALDC constructions feature codeword alphabets of constant size which depends on the
parameters q and δ; when compared to the identity code, one might wonder whether binary ALDCs
can achieve nontrivial error amplification. We can get explicit binary ALDCs achieving similar error
amplification to the construction from Theorem 1.6, by concatenating that construction with the
Hadamard code.

Theorem 1.7 (See Theorem 5.5). Let q > 1 and 0 < δ < 1/2 be constants. There are explicit
(q, δ, ε)-ALDCs C : {0, 1}k → {0, 1}n with constant rate, where ε = O((2δ)⌈q/2⌉).

5

1.2 Related work

Distance amplification of LDCs. The work of [KMRS17] was the first to apply the Alon–
Edmonds–Luby distance amplification technique [AEL95, AL96] in order to amplify the decoding
radius of a locally decodable code from ε to δ. By breaking the message into constant-size blocks and
encoding with a Reed–Solomon code, they are able to implicitly construct an ALDC that reduces
error from δ to ε with rate approaching the Singleton bound 1 − 2δ − 2α for an arbitrarily small
parameter α. In their construction, for any given corruption of a δ fraction of codeword symbols,
the sampler ensures that a ≥ 1− ε fraction of constant-size Reed–Solomon blocks are “good”: they
see few enough errors to be exactly decoded, so that ≥ 1 − ε symbols of the entire message can
be recovered. Our construction is able to increase this rate to 1−2δ−2α

1−.99H(ε/2) , because we allow each

of the good constant-size blocks to get O(ε) of their message symbols incorrect. Distributing this
allowable error into the constant-size codes allows them to have higher rate, which improves the
overall rate of the ALDC.

The works of [CY21, CY22] build on [KMRS17] by constructing distance amplification pro-
cedures for LDCs with subconstant decoding radius. This gives them a general transformation
converting LDCs with constant rate and very small distance to LDCs with constant rate and
constant distance, with a smaller overhead in query complexity compared to [KMRS17]. Their
techniques make use of properties specific to decoders for LDCs. We also directly construct a dis-
tance amplification transformation (in the form of an ALDC) with constant decoding radius, rate,
and query complexity using a similar technique, but with particular emphasis on obtaining near-
optimal rate. In addition, the only property required to use an ALDC for distance amplification is
to have a decoder that handles an ε decoding radius.

Relaxed LDCs. ALDCs are not the only relaxation of LDCs. The work of [BGH+06] introduced
the notion of relaxed locally decodable codes. A relaxed locally decodable code C : Σk

1 → Σn
2 is

also equipped with a local randomized decoder M that takes as input i ∈ [k] and makes a small
number of q queries to a string w that is δ-close to a codeword C(x). For every i ∈ [k], the decoder
must either correctly output xi or an error symbol ⊥ with high probability over its randomness.
Moreover, the decoder is not allowed to return an error symbol when the string is uncorrupted.
Because most local views are uncorrupted, there must be at least 1− ε of coordinates i for which
M(i, r) = xi with high probability. In words, for every coordinate, the decoder must either output
the correct message symbol for most coordinates, and indicate that an error has been detected for
the rest.

Thus relaxed LDCs are a weaker notion than LDCs, and indeed [BGH+06] show that there exist
relaxed LDCs using a constant number of queries and block length k1+γ for any small constant
γ > 0, a vast improvement to the state of the art of standard LDCs. Nevertheless, [GL21, DGL21]
show that relaxed LDCs using a constant number of queries cannot have constant rate. In contrast,
our work shows that the even more relaxed notion of ALDCs can have nearly optimal constant rate
using a constant number of queries.

Average-case smooth codes. Smooth codes have local decoders which only need to successfully
decode every message index i ∈ [k] when given an uncorrupted codeword, but with the additional
requirement of smoothness: for every i ∈ [k], the decoder queries any index of the input string w
with probability O(1/n), i.e., the queries to the codeword are almost uniform. The work of [KT00]
showed that LDCs are equivalent to smooth codes, and reasoned with smooth codes to prove the
first rate upper bounds for LDCs. In particular, an LDC can be made smooth. Let Si be the set
of codeword indices that the LDC decoder queries with probability > q/δn on input i ∈ [k]. This

6

set cannot be larger than δn, or else the decoder makes more than q queries. Therefore, we can
build a smooth decoder that black boxes the LDC decoder, such that for each i, queries to Si made
by the LDC decoder are answered with 0 instead of with an actual query to the codeword. Then,
every codeword index is queried with probability ≤ q/δn, and the simulated LDC decoder sees a
codeword with at most δ fraction of errors, so it will still be able to successfully decode the ith
symbol of the message.

While studying pathways to nonexplicit LDCs, [BDG19] shows that an average-case smooth
code, which successfully decodes on average over both the message index and over all possible
messages, implies a smooth code that works over all message indices and all messages, with a
constant factor loss in rate. This notion is remarkably similar to the idea of ALDCs, and a similar
generalization has also been used to show lower bounds on LDCs [Woo07]. Critically however,
average-case smooth codes are still smooth while ALDCs may not be. An ALDC cannot be made
smooth using the technique from the previous paragraph. The sets Si can differ for distinct values
of i. However, the ALDC guarantee only states that most message symbols can be decoded when
queries to Si are ignored. Therefore, i may not be one of those successfully decoded message indices,
and the decoder may fail on most or all of the message symbols. Indeed, the constructions we give
are far from smooth, because for each i ∈ [k] the support of the query distribution for the decoder
for i is constant sized.

Local self-correction for Reed–Muller codes. A local self-corrector for a code C is an algo-
rithm that, given access to a string w which is δ-close to some codeword in C, is able to make few
queries to w in order to return an entire message m such that C(m) is δ′-close to w, where δ′ can be
(much) larger than δ. This is possible if the block length n of C is much longer (say, exponential)
than the message length k, such that a decoder that makes e.g. poly(k) queries is still local because
it reads a negligible fraction of the codeword. Local self-correctors have also been called approxi-
mate local decoders [HT18], but this definition significantly differs from our definition of ALDCs,
as well as LDCs and LCCs. LDCs and LCCs have algorithms that return an individual index of
the unique message or codeword that is close to w, and ALDCs return an individual index of a
string which is ε-close to the original message with ε being significantly smaller than the original
error rate δ. In contrast, a local self-corrector must return an entire message m, whose codeword
C(m) is within a (potentially larger) radius from w. This definition is related to local list decod-
ing for Reed–Muller codes [GL89, STV01] and has been studied for constant-degree Reed–Muller
codes [TW14, HT18, KLT23].

2 Preliminaries

For an alphabet Σ, we will make use of the |Σ|-ary entropy function H|Σ|(ε) = ε log|Σ| (|Σ| − 1) −
ε log|Σ| ε− (1− ε) log|Σ| (1− ε).

2.1 Error-Correcting Codes

Definition 2.1. For some alphabet Σ, let x, y ∈ Σn. The relative (Hamming) distance of x, y,
denoted δ(x, y), is the fraction of coordinates on which x, y differ.

Say that a string a is δ-close to a string b if the relative distance of a and b is ≤ δ. We first
recall the definition of a (standard) code. We will also use Vol|Σ| (δ, k) to denote the number of

strings y ∈ Σk that are δ-close to any given x ∈ Σk.

7

Definition 2.2. C : Σk
1 → Σn

2 is a code with distance δ if for any two x ̸= x′ ∈ Σk: δ(C(x), C(x′)) ≥
δ.

We will also refer to δ/2 as the decoding radius of the code, because it characterizes the max-
imum error rate from which unique decoding is still possible. The rate of a code is the ratio
k log Σ1/(n log Σ2). We will utilize two well known bounds on codes, the Singleton bound and the
Gilbert–Varshamov bound.

Theorem 2.3 (Singleton bound). Any code with block length n and radius δ must have rate

R ≤ 1− 2δ + 1/n

Theorem 2.4 (Gilbert-Varshamov bound). For any alphabet |Σ| ≥ 2 and any radius δ < 1
2 −

1
2|Σ| ,

there exists a code C : Σk → Σn with rate

R ≥ 1−H|Σ|(2δ)− o(1)

Lemma 2.5. For any positive integer k, constant size field F, and δ ∈ (0, 1/2), there exists an
explicit code RSF,k,δ : Fk → Σn where |Σ| ≤ O(n), with distance 2δ and rate ≥ 1− 2δ.

Proof. For any b ≤ n ≤ t where t is a power of |F|, the Reed–Solomon code Σb → Σn has rate
b/n = 1 − 2δ + 1/n, distance 2δ, and alphabet Σ which is an extension of field of F such that
|Σ| = t ≤ |F|n. Therefore, to encode k-bit strings, we need to lift our string to the larger alphabet
Σ by partitioning into contiguous substrings of length log t; if k is not a multiple of log t, we can
pad by < log t additional bits. Then, the rate is

k

n log t
=

k/ log t

n
≥ b− 1

n
= 1− 2δ

The distance of the code is the same as the distance of the unmodified Reed–Solomon code, which
is 2δ, because any two bit strings will map to different strings in Σb.

2.1.1 Uniquely Decodable Codes

Before discussing the approximate variants of codes, we first define (standard) locally decodable
codes. We first recall the definition of a standard locally decodable code.

Definition 2.6. C : Σk
1 → Σn

2 is a (q, δ, ε)-locally decodable code (LDC) if there exists a (random-
ized) decoder M(i, r), where r is the randomness used, such that

1. M makes ≤ q queries

2. for every i ∈ [k] and every w which is δ-close to some codeword C(x),

Pr
r
[Mw(i, r) = xi] ≥ 1− ε

The most famous example of an LDC is the Hadamard code, which encodes a message m ∈
{0, 1}k as a string containing one bit for the evaluation of each of the 2k possible linear functions
(mod 2) on m.

Lemma 2.7. The Hadamard code is a (2, δ, 2δ)-LDC.

8

Proof. For input i, the decoder can pick a uniformly random linear function f , and then query
two bits: the bit corresponding to f(m) and the bit corresponding to f(m) + mi. Each query is
uniformly distributed and has probability δ of being corrupt, so by union bound both queries will
be uncorrupted with probability ≥ 1− 2δ and the correct value of mi will be returned.

As an analogue of a standard code, we can define an approximate code.

Definition 2.8. C : Σk
1 → Σn

2 is an (δ, ε)-approximate code if there exists some deterministic
decoding algorithm M such that for every w ∈ Σn

2 which is δ-close to some c ∈ C, M(w) returns a
string z such that δ(z, c) ≤ ε.

We often refer to δ as the decoding radius and ε as the error of the code. Note that it is entirely
possible for an approximate code to have distance 0. Indeed, C may map two messages that are
ε-close to the same codeword. This will be the case in our constructions. One may ask how such
codes could still be useful. The observation is that when composed with a standard code, the
messages encoded by the approximate code are themselves codewords that should be ε-far. It is
natural to ask whether the decoding procedures of an approximate code can be local.

Definition 2.9. C : Σk
1 → Σn

2 is an (q, δ, ε)-approximately locally decodable code (ALDC) if there
exists a randomized decoder Mw(i, r), where r is the randomness used, such that

1. M makes ≤ q queries

2. for every w which is δ-close to some codeword C(x),

Pr
i∈[k],r

[Mw(i, r) = xi] ≥ 1− ε

Again we refer to δ as the radius and ε as the error of an ALDC. First, we observe that a
(q, δ, ε)-ALDC is in fact also a (δ, ε)-approximate code. This is because for every w that is δ-close
to a codeword, there exists a fixing rw such that Pri[M

w(i, rw)] ≥ 1 − ε. Thus to (inefficiently)
decode any w to error smaller than ε, we can simply do the following. We keep a lookup table of
all the randomness strings rw that have the property above for each possible w. For any input w,
we can then lookup rw and run the local decoding procedure using this randomness for all i’s. This
fact will be important when we prove bounds on the parameters of approximate codes, as it will in
turn prove bounds on ALDCs.

The explicit notion of an ALDC, with deterministic and randomized decoders, has appeared
previously in [BET10] and [Sol09] respectively. Some composition results are given, although
none for the composition of an ALDC with randomized decoder and an LDC. As discussed in the
introduction, [BET10] show that an ALDC with deterministic decoder and the right parameters
can be composed with an LDC to increase the decoding radius.

We stress that it is natural to consider randomized decoders as well, and we construct an ALDC
in Theorem 1.6 with a randomized decoder with a query to error tradeoff that cannot be achieved
with a deterministic decoder.3 It is simple to extend the composition result of [BET10] for when
the decoder is randomized.

Theorem 2.10. Pick any γ > 0. If C1 : Σ
k
1 → Σn

2 is a (q, (1 + γ)δ, ε)-LDC and if C2 : Σ
n
2 → Σn′

3

is a (q′, δ′, δ)-ALDC, then C2 ◦ C1 is a (qq′, δ′, ε+ e−Θ(γ2δ2n))-LDC.

3If a (q, δ, ε)-ALDC has a deterministic decoder, then it suffices to corrupt a δ fraction of the codeword in order to
fool the decoder on an ε ≥ δ/q fraction of the message. However, when the decoder is randomized (e.g. Theorem 1.6),
we can do better and achieve greater error reduction.

9

Proof. Consider the behavior of the decoder M1 for the LDC C1 when its queries are supplied
by the decoder M2 for the ALDC C2. Consider running the decoder for C2 for all its message
indices i using independent randomness for every i to obtain a string s ∈ Σn

2 . The behavior of M1

combined with M2 is identical to the behavior of M1 on s, so it suffices to show that s has at most
(1 + γ)δn errors. Call the randomness used for index i: ri. Let Zi for i ∈ [n] be the indicator
random variable of whether si is correct. By definition, Er1,...,rn [

∑
Zi] ≤ δn. Since the Zi’s are

independent, Hoeffding’s inequality tells us:

Pr
[∑

Zi ≥ (1 + γ)δn
]
≤ e−2γ2δ2n.

So with high probability, s has no more than (1 + γ)δn errors, and hence the local decoder for C1

sees sufficiently few errors. Finally, note that M1’s queries can be answered in an online manner
using M2, so only the requested symbols of s need be computed.

To summarize, one can compose an ALDC with an LDC with vanishingly small overhead in
the final failure probability of the LDC. In many applications, such a small overhead in error is not
necessary, as ε is considered a large fixed constant such as 1/3. However, we note that how small
ε can be relative to δ for a standard LDC has also been the subject of study [GM12]. Thus we
present the vanishingly small error overhead as it is relevant for those cases.

As to the existence of approximate locally decodable codes (other than full-strength locally
decodable codes which are trivially approximate locally decodable codes), to the best of our knowl-
edge the identity code is the only such code mentioned in the literature ([BET10]), where it is noted
that approximate local decoding seems significantly easier than local decoding: there exist approx-
imate locally decodable codes with constant query complexity and polynomial block length (like
the identity code), while there are no known constant-query locally decodable codes that achieve
polynomial block length.

2.1.2 List Decodable Codes

When a string w is very far from a particular codeword (i.e., has r fraction of errors where r is close
to 1), it may be impossible to exactly or even approximately decode, because multiple codewords,
corresponding to drastically different messages, may be r-close to w. Even so, if this list of nearby
codewords is small for every w, then the code is list decodable.

Definition 2.11. A code C : Σk
1 → Σn

2 is an (r, ℓ)-list decodable code if for every w ∈ Σn
2 , there are

≤ ℓ codewords c ∈ C where δ(w, c) ≤ r.

The probabilistic method yields nonexplicit list decodable codes which have nearly-optimal rate:

Proposition 2.12 ([Vad12, Theorem 5.8]). For an arbitrary alphabet Σ, all integers n, ℓ, and
r ∈ (0, 1− 1/|Σ|), there (nonexplicitly) exists an (r, ℓ)-list decodable code C : Σk → Σn with rate ≥
1−H|Σ|(r)− 1

ℓ+1 . Note that any (r, ℓ)-list decodable code must have rate ≤ 1−H|Σ|(r)+
log|Σ| ℓ

n +o(1).

In the list decoding setting, we can define an analogue to approximate codes: every string w
can be decoded to a small list S, such that if C(m) is r-close to w, then m is ε-close to something
in S.

Definition 2.13. A code C : Σk
1 → Σn

2 is an (r, ε, ℓ)-approximate list decodable code if for every
w ∈ Σn

2 , there is a set S ⊆ Σk
1 of cardinality ≤ ℓ such that for every m ∈ Σk

1 where δ(w,C(m)) ≤ r,
there exists s ∈ S such that δ(s,m) ≤ ε.

10

Finally, we give a natural definition for a code with a local decoder which outputs a small list
of potential symbols for each message index:

Definition 2.14. A code C : Σk
1 → Σn

2 is an (q, r, ε, ℓ)-approximate local weak list decodable code if
there exists a randomized decoder Mw(i, s), where s is the randomness used, which returns a set
of symbols ⊆ Σ1 such that

1. M makes ≤ q queries

2. ∀w, i, r. |Mw(i, r)| ≤ ℓ

3. for every w ∈ Σn
2 , if a message m ∈ Σk

1 has a codeword C(m) which is r-close to w, then

Pr
i∈[k],s

[mi ∈ Mw(i, s)] ≥ 1− ε

This definition makes sense when |Σ1| > ℓ, or else returning the entire alphabet is a trivial
approximate local weak list decoder which does not need to make any queries. We also want to
emphasize that this weak list decoding definition significantly differs from approximate local list
decodable codes studied in works such as [IJKW10], where the decoder on w must return a small
list of efficiently computable functions, such that if C(m) is r-close to w, then m is ε-close to the
output of one of the generated functions.

2.2 Samplers

Throughout this work, we will use samplers to construct ALDCs. A sampler is a procedure that
aims to estimate the average value of a function f by only querying a small subset of possible
inputs.

Definition 2.15. A randomized algorithm Samp is a (α, β)-sampler with sample complexity D
if for every function f : [n] → [0, 1], Samp makes ≤ D queries to an oracle for f and satisfies the
following condition:

Pr
r

[∣∣∣∣Sampf (r)− E
j′∈[n]

[f(j′)]

∣∣∣∣ ≤ α

]
≥ 1− β

We make extensive use of oblivious samplers, where the estimate is computed by taking the
mean of f on a subset of inputs chosen uniformly randomly from a fixed family; such samplers
are equivalently described as bipartite graphs with the set of inputs on the right and the family of
potential query sets on the left.

Definition 2.16. A bipartite graph G with bipartition ([k], [n]) and with left degree D is an
oblivious (α, β)-sampler if for every function f : [n] → [0, 1],

Pr
i

[∣∣∣∣ E
j∈N(i)

[f(j)]− E
j′∈[n]

[f(j′)]

∣∣∣∣ ≤ α

]
≥ 1− β

where N(i) denotes the right vertices neighboring the ith left vertex in G.

The value of an oblivious sampler is that its graph equivalent provides a blueprint for redistribut-
ing message symbols such that if any δ fraction of codeword symbols are corrupted (represented
by an indicator function f), then most of the message symbols will still have roughly δ fraction of
their relevant codeword symbols affected. Indeed, we use a well-known oblivious sampler based on
random walks on expanders in both of our ALDC constructions.

11

Theorem 2.17 ([Gil98]). For any α, β > 0 and for sufficiently large k, there exists an efficiently
constructable biregular (α, β)-sampler with k left vertices, left degree D = O(1

α2 log
1
β), and n =

k/2O(D) right vertices.

Proof sketch. Consider a constant-degree expander graph on n vertices, which is efficiently con-
structable. By the Expander Chernoff bound, a random walk of length D from a uniformly random
starting vertex will visit any given set S with frequency that is α-close to |S|/n. Each of the k left
vertices represent a unique string of log k = log n + O(D) bits which encode the starting vertex
and the instructions of the random walk. The right vertices are associated with the vertices of the
expander, and every left vertex is connected to every vertex that the random walk visits.

Note that this sampler has the optimal sample size/left degree, because any sampler must have
D = Ω(1

α2 log
1
β) [CEG95].

Remark 2.18. It does not hurt to run a random walk for more steps than is needed, as this will
only improve the mixing properties. Thus for a given k and any larger desired left degree D =

Ω
(

1
α2 log

1
β

)
, there is still an explicit (α, β)-sampler with left degree D and n = k/2O(D). This

means, for example, that one can run a random walk say, a constant factor longer than is necessary
for the desired parameters α, β on a graph that is only a constant factor smaller. We will make
use of this fact in our constructions when the required left degree D of the (α, β)-sampler required
may be slightly more than the minimum degree needed according to Theorem 2.17.

3 ALDCs with Nearly Optimal Rate

In this section, we will first present an approximate code with high rate. We will then prove that
such a rate is (nearly) optimal. Finally we’ll show how to use this approximate code to construct
an explicit ALDC with efficient encoding and decoding procedure with roughly the same rate.

3.1 An Approximate Code “Surpassing” the Singleton Bound

The rate of a standard code cannot be larger than roughly 1 − d for relative distance d by the
Singleton bound. As discussed before, the relative distance of an approximate code could be 0, so
this bound is meaningless. Since the decoding radius δ is the relevant parameter for an approximate
code, one might believe that, analogously to the Singleton bound, the rate of an approximate code
is at most roughly 1 − 2δ. We first present an approximate code showing that we can in fact do
slightly better.

To achieve this slightly better rate, we will make use of nearly-optimal covering codes.

Definition 3.1. D ⊆ Σk is a covering code of radius ε if every string w ∈ Σk is ε-close to some
d ∈ D.

Proposition 3.2 ([KSV03, Corollary 1.4]). For all ε ≥ 3/k and all constant size alphabets Σ, there
(non-explicitly) exists a covering code D ⊆ Σk of radius ε such that

|D| ≤ O(εk log (εk)) · |Σ|k

Vol|Σ| (ε, k)
= |Σ|(1−H|Σ|(ε)+f(k))k

where the last equality holds when ε < 1− 1/|Σ|. In particular,

f(k) = O

(
log|Σ| (εk)

k

)
= o(1)

12

... ...

message
m ∈ Σk

1

...

y ∈ (ΣDL
0)k

′

C0 : Σ
b
1 → ΣDL

0

Σb
1

...

sampler
G = ([k′], [n], E)

...

ΣDL
0

ΣDR
0 = Σ2

codeword C(m) ∈ Σn
2

Figure 1: The construction of our ALDC with nearly optimal rate. We first divide the message into
blocks of constant length b and encode each block with a near-optimal rate approximate code C0

found via brute force. On the right hand side, we have a biregular (δ, ε)-sampler between k′ = k/b
nodes and n nodes with left degree DL and right degree DR. Each coordinate of the final codeword
consists of the concatenation over all neighbors of the coordinate, of a symbol from the neighbor.
The code inherits the rate of C0.

Remark 3.3. Any covering code D ⊆ Σk of radius ε must have cardinality

|D| ≥ |Σ|k

Vol|Σ| (ε, k)
≥ |Σ|(1−H|Σ|(ε))k

which is achieved when each message is ε-close to a unique covering codeword. Hence, Proposi-
tion 3.2 is nearly optimal.

We will need to make use of covering codes for constant length messages in our local decoding
construction. Therefore we will need to know how large such constant lengths k must be for the
f(k) in Proposition 3.2 to be negligible. Towards this end, we can modify the proposition to get
the following remark.

Corollary 3.4. There exists a universal constant γ such that for any constant ε > 0, and for any
k ≥ γ/ε2, there (non-explicitly) exists a covering code D ⊆ Σk of radius ε such that

|Σ|(1−H|Σ|(ε))k ≤ |D| ≤ |Σ|k

Vol|Σ| (ε, k)
= |Σ|(1−0.99H|Σ|(ε))k

The .99 can be made arbitrarily close to 1 for larger chosen constants γ.

We show that approximate codes exist for any constants δ > ε > 0 with optimal rate by using
a covering code to compress the message space, and then applying Reed-Solomon.

Lemma 3.5. For any constants 1/2 > δ > ε > 0, any constant size field F, and any k ≥ 3/ε, there
exists an approximate code C : Fk → (F′)n with decoding radius δ, error ε, and rate 1−2δ

1−H|F|(ε)+o(1) ,

where F′ is an extension field of F and |F′| ≤ |F|n.

13

Proof. Let D ⊆ Fk be a covering code of radius ε from Proposition 3.2, so that

|D| = |F|(1−H|F|(ε)+o(1))k =: |F|k
′

We can (inefficiently) obtain D by brute force. Let f : Fk → D be a function such that for all
w ∈ Fk, f(w) is some element of D which is ε-close to w (if there are multiple such elements in
the covering code, pick one arbitrarily and deterministically). Let g : D → Fk′ be an arbitrary
bijection. Both f and g can be obtained by brute force.

For any given message w ∈ Fk, we can then let x = g(f(w)) ∈ Fk′ , and then encode this string
using Reed–Solomon via Lemma 2.5. To decode a string which is δ-close to a codeword, we can
use the distance of RSF,k′,δ to decode and obtain s ∈ Fk′ which is the message corresponding to the
unique nearest Reed–Solomon codeword. Then, g−1(s) = d ∈ D, and d is ε-close to the original
message.

It remains to show the rate of this approximate code. Since k′/k = 1−H|F|(ε) + o(1) and the
rate of RSk,δ is 1− 2δ, the overall rate is

k

k′
· (1− 2δ) =

1− 2δ

1−H|F|(ε) + o(1)

as desired.

Thus we’ve shown that when a decoder only needs to return approximate answers, the rate of
the code can be slightly improved. Again, in our local decoding construction we will utilize these
approximate codes only for constant lengths. Thus we must see how large these constant lengths
must be for good. In the same vein as Corollary 3.4 we can show the following:

Corollary 3.6. There exists a universal constant γ such that for any constants 1/2 > δ > ε > 0,
any constant size field F, and any k ≥ γ/ε2, there exists an approximate code C : Fk → (F′)n with
decoding radius δ, error ε, and rate 1

1−H|F|(ε)
≥ R ≥ 1−2δ

1−.99H|F|(ε)
, where F′ is an extension field of F

and |F′| ≤ |F|n. Again, the .99 can be made arbitrarily close to 1 by choosing γ accordingly.

3.2 An “Approximate” Singleton Bound

We now show that the rate of the code above is in fact essentially optimal. To do so, we prove an
approximate analogue of the Singleton bound.

Theorem 3.7. Suppose C : Σk
1 → Σn

2 is a (δ, ε)-approximate code with rate R. Then

R ≤ 1− 2δ + o(1)

1−H|Σ1|(2ε)− o(1)

Proof. Let C ′ : {0, 1}k′ → Σk
1 be a standard code of radius ε and rate R′ = 1 − H|Σ1|(2ε) − o(1)

guaranteed by the Gilbert–Varshamov bound.
The composition C ◦ C ′ is a code with radius δ. The rate of this code is RR′. Moreover, the

rate of this code must obey the Singleton bound. Thus we have:

(1−H|Σ1|(2ε)− o(1))R ≤ RR′ ≤ 1− 2δ + o(1) =⇒ R ≤ 1− 2δ + o(1)

1−H|Σ1|(2ε)− o(1)

Note that this same approach can be applied to any rate upper bound for C ◦ C ′, and we can
pick whichever is strongest for the desired alphabet size.

14

3.3 An ALDC Approaching the “Approximate” Singleton Bound

Now that we see that our approximate code has nearly optimal rate, we turn to the task of making
such codes local. To do so, we closely follow the techniques of [AEL95] and [KMRS17]. For
completeness we provide the full construction and its analysis here.

Code construction. Recall that for a given constant sized message alphabet Σ1 which is a finite
field of size a, sufficiently large message length k, and constants 1/2 > δ > ε, we wish to construct
a (q, δ, ε)-ALDC C : Σk

1 → Σn
2 with good rate and small q for some Σ2 and n.

Let 0 < α < min {1/4− δ/2, ε} be a parameter. Recall that by Theorem 2.17, for any α and
ε there exists a biregular (α, ε/2)-sampler with left degree D∗

L = Θ(1
α2 log

1
ε). Choose b > 1 to

be an integer which is b ≥ γ/ε2 such that, according to Corollary 3.6, there is a (δ + α, ε/2)-
approximate code C0 : Σ

b
1 → ΣDL

0 with rate at least 1−2δ−2α
1−.99H|Σ1|(ε/2)

and with DL ≥ D∗
L. If we

choose b = Θ(D∗
L log|Σ1|D

∗
L) then D∗

L ≤ DL ≤ O
(

D∗
L

1−2δ−2α

)
≤ O(1αD

∗
L) and the conditions for

Corollary 3.6 are satisfied.
Given a length k input message x, we divide the message into k′ = k/b blocks of length b;

if b does not divide k we can add ≤ b symbols of padding (which is a constant because DL is a
constant) and only hurt the rate by a o(1) term. We encode each block using C0. This gives us a
string y ∈ ((Σ0)

DL)k
′
.

Incorporating Remark 2.18, there also exists an explicit (α, ε/2) sampler G = ([k′], [n], E) which
has any left degree DL ≥ D∗

L and has right degree DR = k′DL/n, simply by adding more steps to
the random walk. This enhanced sampler is the one we will actually use to encode.

We treat each coordinate of y as a left vertex of G. The final codeword C(x) ∈ Σn
2 for Σ2 =

(Σ0)
DR is defined as follows. Fix any i ∈ [n]. We now define C(x)i. For every neighbor j ∈ [k′] of

i, let e(j) ∈ [DL] be the number such that the edge entering j from i is the e(j)-th edge leaving i
in some arbitrary ordering of the edges leaving j. Finally let σj ∈ Σ0 be the e(j)-th symbol in the
block corresponding to neighbor j. The i-th symbol of C(x) is the concatenation of all such σj-s.

Decoder and analysis. We prove the following theorem:

Theorem 3.8. For parameter min {1/4− δ/2, ε} > α > 0, the code above C : Σk
1 → Σn

2 is a
(DL, δ, ε)-ALDC with |Σ2| ≤ O(DL)

DR . The rate of the code is

1− 2δ − 2α− o(1)

1− .99H|Σ1|(ε/2)
.

Proof. We first calculate the rate. Note that in the final output C(x), we copy every symbol in Σ0

contained in y exactly once, and ≤ b additional symbols of padding are added. Thus the rate of
the code is the rate between the message and y. This is simply the rate of (δ+α, ε/2)-approximate
code C0:

1− 2(δ + α)

1− .99H|Σ1|(ε/2)
− o(1)

We now show that there is a decoder that correctly outputs xi for at least 1 − ε coordinates i
given a word w that is δ-close to C(x). On input i, the decoder does the following.

1. Find the block i′ ∈ [k′] containing index i.

2. For each neighbor of i′ in G, j ∈ Γ(i′) ⊂ [n], query the j-th coordinate of w. This gives DL

symbols in Σ2 = ΣDR
0 . Let σℓ ∈ Σ2 for each ℓ ∈ [DL] denote the symbol obtained from the

ℓ-th neighbor of j.

15

3. For each σℓ, let σ0,ℓ ∈ Σ0 denote the symbol within σℓ corresponding to the ℓ-th symbol in

block i′. This gives a string s ∈ ΣDL
0 .

4. Run the decoding algorithm for C0 on s. This gives a string in {0, 1}b representing the
bits in the decoded message for all coordinates in block i′. Return the bit corresponding to
coordinate i.

Observe that this decoding procedure is in fact deterministic. We now prove correctness. Let
B ⊂ [n], |B| ≤ δn, be any subset of corrupted coordinates. By the sampler property, all but at
most ε/2-fraction of the k′ blocks have a neighborhood with at most (δ+α)-fraction of neighbors in
the corrupted set. This means that on at least (1− ε/2)-fraction of blocks, the decoding algorithm
for C0 will return a string s ∈ {0, 1}b that is ε/2-close to the true message on that block. Thus the
decoder will only err on at most ε-fraction of the message coordinates overall.

Finally, it remains to express DL in terms of our parameters. Substituting the value of DL,
observing that C0 can be found via brute force, and calculating the alphabet size of Σ2 we get:

Corollary 3.9. For any constants δ, ε > 0, any constant parameter 0 < α < min {1/4− δ/2, ε},
any constant sized alphabet Σ1 which is a finite field, and any sufficiently large k, there exists an

explicit C : Σk
1 → Σn

2 is a (q, δ, ε)-ALDC with q = O
(

1
α3 log

1
ε

)
with |Σ2| ≤ |Σ1|q2

O(q)

. The rate of
the code is

1− 2δ − 2α

1− .99H|Σ1|(ε/2)
− o(1).

Proof. As discussed above, DL =
O(D∗

L)
α = O

(
1
α3 log

1
ε

)
. Since n = k′/2O(DL), we have DR =

k′DL/n = DL · 2O(DL). Thus Theorem 3.8 shows that this is an ALDC with desired parameters.
For explicitness, we simply observe that b is constant, and so we can find the approximate code
C0 : Σ

b
1 → (Σ0)

DL via brute force.

4 Approximate List Decoding

The technique of message compression via a covering code, which we used in the previous section
to build approximate codes, can also be used to yield approximate list decodable codes. We will
instantiate this technique using nearly-optimal list decodable codes (see Proposition 2.12).

Lemma 4.1. If D ⊆ Σk
1 is a covering code of radius ε with |D| = |Σ1|k

′
, and if a code C : Σk′

1 → Σn
2

is an (r, ℓ)-list decodable code with rate R, then there exists an (r, ε, ℓ)-approximate list decodable
code C ′ : Σk

1 → Σn
2 with rate kR/k′.

Proof. In the same manner as Lemma 3.5, let f : Σk
1 → D be a function such that for all w ∈ Σk

1,
f(w) is some element of D which is ε-close to w (if there are multiple such elements in the covering
code, pick one arbitrarily and deterministically). Let g : D → Σk′

1 be an arbitrary bijection. Both
f and g can be obtained by brute force.

For any given messagem ∈ Σk
1, let C(m) = C(g(f(w))) ∈ Σn

2 . Then, consider any string w ∈ Σn
2 .

By the list decodability of C, there is a set S of ≤ ℓ strings s ∈ Σk′
1 such that δ(w,C(s)) ≤ r. Hence,

g−1(S) is a set of ≤ ℓ messages such that if C ′(m) is r-close to w, then m is ε-close to something
in g−1(S). This is because of C ′(m) = C(g(f(m))) is r-close to w, then g(f(m)) will be in the set
S. So, g−1(S) will contain f(m) which by design is ε-close to m.

16

Theorem 4.2. Let Σ be an arbitrary alphabet. Let 0 < ε < 1/2, 0 < r < 1 − 1/|Σ|, and ℓ ≥ 1.
If k ≥ 3/ε, then there is a (nonexplicit) (r, ε, ℓ)-approximate list decodable code C : Σk → Σn with
rate

≥
1−H|Σ|(r)− 1

ℓ+1

1−H|Σ|(ε) + o(1)

Proof. Combine the covering code from Proposition 3.2 and the list decodable code from Proposi-
tion 2.12 using the previous lemma.

We will use the Alon–Edmonds–Luby technique once again to lift this approximate globally
list decodable code to a approximate locally weak list decodable code. To do so, we will utilize
approximate list decodable codes from Theorem 4.2 with constant length. To that end it is helpful
to know how large k must be to upper bound the o(1) terms in the rate.

Corollary 4.3. Let Σ be an arbitrary alphabet with |Σ| ≥ 3. Let 0 < ε < 1/2, 1/2 < r < 1− 1/a,
and ℓ ≥ 1. There exists a universal constant γ such that if k ≥ max {γ/ε2, γ/H|Σ|(r)

2}, then there

is a (nonexplicit) (r, ε, ℓ)-approximate list decodable code C : Σk → Σn with rate R ≥ 1−H|Σ|(r)− 1
ℓ+1

1−.99H|Σ|(ε)

and R ≤ 1
1−H|Σ|(ε)

. The .99 can be made arbitrarily close to 1 for larger chosen constants γ.

Our approximate locally weak list decodable code construction is identical to the construction
for high-rate ALDCs (see Corollary 3.9), and we defer to that construction for details. Let 0 < α < ε
be a parameter. By Theorem 2.17, for any α and ε there exists a biregular (α, ε/2)-sampler with
left degree D∗

L = Θ(1
α2 log

1
ε), and we need to choose a block size b ≥ max {γ/ε2, γ/H|Σ1|(r + α)2}

such that, according to Corollary 4.3, there is a (r + α, ε/2, ℓ)-approximate list decodable code
C0 : Σ

b
1 → ΣDL

1 with DL ≥ D∗
L, so that we can build a random walk sampler meeting or exceeding

the conditions for an (α, ε/2)-sampler, but with left degree matching DL. It suffices to set b =
Θ(D∗

L) such that D∗
L ≤ DL ≤ O(D∗

L) and the conditions for Corollary 4.3 are satisfied. We end up

with a code that has rate R ≥ 1−H|Σ1|(r)−
1

ℓ+1

1−.99H|Σ1|(ε)
− o(1) because the rate is the same as the constant

sized code with a possible o(1) additive loss due to padding. Again, the .99 can be made arbitrarily
close to 1.

The decoder for this code will also work almost identically to the high-rate ALDC decoder from
Theorem 3.8. Query all of the codeword indices corresponding to the block containing the desired
message index i, and then run the approximate list decoding algorithm for the constant-size code
on that block in order to recover a set S of ≤ ℓ strings of length b. Then, return the set of symbols
that appear in any string in S at the substring index corresponding to the message index i. For
an input w, let m ∈ Σk

1 such that C(m) is r-close to w. Then, ≥ 1 − ε/2 of the blocks will be
“good”: they contain a ≤ r + α fraction of symbols that differ from C(m), and the constant-size
approximate list decodable code will return a set of ℓ substrings of length b, one of which is ε/2-
close to the corresponding substring of m. Therefore, the decoder acting on a ≥ 1 − ε/2 fraction
of message indices i in each good block will return a set that contains mi, and these indices make
up a ≥ 1 − ε fraction of the total message. Again, observing that the code from Corollary 4.3 is
only used for constant message lengths and thus can be found via brute force, we can construct an
explicit approximate local weak list decodable code.

Theorem 4.4. Let Σ1 be an arbitrary constant-sized alphabet of size ≥ 3. For parameters 0 < α <
ε < 1/2, 1/2 < r < 1− 1/|Σ1|, and ℓ ≥ 1, there exists an explicit (q, r, ε, ℓ)-approximate local weak

list decodable code C : Σk
1 → Σn

2 with |Σ2| ≤ |Σ1|q2
O(q)

. The rate of the code is

≥
1−H|Σ1|(r + α)− 1

ℓ+1

1− 0.99H|Σ1|(ε)
− o(1)

17

and the query complexity is

q ≤ O

(
1

α2
log

1

ε

)

5 Achieving Optimal Error Reduction

What is the best possible error reduction that a q-query ALDC can achieve, and what structure
would such a decoder have? In fact, we are able to show that the best possible error reduction,
even for inefficient ALDCs, is ε = Θ(δ⌈q/2⌉) which is achieved by taking the majority of q queries.
We construct an efficient q-query ALDC with constant rate and alphabet that achieves this optimal
error reduction up to constant factors.

5.1 Majority Lower Bound on Error

Let C be some nonadaptive (q, δ, ε)-ALDC, over any size alphabet and with any rate. Then, we
will show that ε ≥ Ω(δ⌈q/2⌉); in particular, for two queries, this shows that C must have error ≥ δ
which is already achieved by the 1-query identity code. Intuitively, if a decoder doesn’t trust the
majority of the queries that it sees, then it is biased towards returning a certain answer and will
do poorly on a different message.

Theorem 5.1. Let C : Σk
1 → Σn

2 be a nonadaptive (q, δ, ε)-ALDC with q = O(1), 0 < δ < 1/2, and
sufficiently large n. Then, ε ≥ Ω(δ⌈q/2⌉).

Proof. We will construct a string which is δ-close to some codeword, such that C cannot decode
more than a 1−Ω(δ⌈q/2⌉) fraction of message symbols. Let S be a uniformly random subset of [n]
of cardinality δn. Then, for sufficiently large n, we will show there exists a noisy codeword w such
that δ(w,C(m)) ≤ δ, and

• if q is odd,

Pr
i
[Mw(i) ̸= mi] ≥ Pr

[
|[q] ∩ S| ≥ q + 1

2

]
≥ Ω(δ(q+1)/2) (1)

• if q is even,

Pr
i
[Mw(i) ̸= mi] ≥ Pr

[
|[q − 1] ∩ S| ≥ q

2

]
≥ Ω(δq/2) (2)

Note that the lower bound for odd q is precisely the probability that a majority of q queries land
in S, and the lower bound for even q is identical to the lower bound for q − 1, so that there is no
advantage to making an even number of queries.

Let m be some arbitrary string in the message space of C, and let m′ be an arbitrary string
such that m′

i ̸= mi for all i ∈ [k]. Let c = C(m) and let c′ = C(m′). Let S ⊆ [n] be a uniformly
chosen subset of cardinality δn. Let w be a string such that indices outside S match c while indices
inside S match c′, and let w′ be defined in the opposite fashion.

Since C has a nonadaptive decoder, for a fixed message index i, the decoder M on a string
w̃ is equivalent to returning D(w̃|Q), where D is a deterministic function and Q is a set of query
locations, each sampled from some distribution depending on i.

Pr
i
[M w̃(i) = m̃i] = E

i,D,Q
[Pr[D(w̃|Q)] = m̃i]

18

We will prove that either w or w′ suffices to yield the desired upper bound for the right hand side,
by choosing (m̃, w̃) uniformly from {(m,w), (m′, w′)}.

Pr
S,m̃,w̃,i

[M w̃(i) = m̃i] = E
i,D,Q

[
E

S,m̃,w̃
[Pr[D(w̃|Q)] = m̃i

]
= E

i,D,Q

[
Pr[D(w|Q) = mi] + Pr[D(w′|Q) = m′

i]

2

]
Consider an arbitrary i, D, and Q. Let X = |Q ∩ S| be the random variable representing how

many queries fall into the set of indices which are corrupted.

p := Pr
S
[D(w|Q) = mi] =

q∑
j=0

Pr[D(w|Q) = mi | X = j] · Pr[X = j]

Since mi ̸= m′
i for all i, Pr[D(w|Q) = mi | K] + Pr[D(w|Q) = m′

i | K] ≤ 1 for any event K.

≤ 1−
q∑

j=0

Pr[D(w|Q) = m′
i | X = j] · Pr[X = j]

Analogously,

p′ := Pr
S
[D(w′|Q) = m′

i] =

q∑
j=0

Pr[D(w′|Q) = m′
i | X = j] · Pr[X = j]

We can group terms when averaging between p and p′, since Pr[D(w|Q) = mi | X = j] =
Pr[D(w′|Q) = mi | X = q − j]; on both sides, the decoder sees q − j queries that correspond
to c and j that correspond to c′.

p+ p′ = 2 Pr
S,m̃,w̃

[D(w̃|Q) = m̃i]

≤ 1 +

q∑
j=0

(Pr[D(w|Q) = m′
i | X = q − j]− Pr[D(w|Q) = m′

i | X = j]) · Pr[X = j]

≤ 1 +

⌊ q−1
2 ⌋∑

j=0

(Pr[D(w|Q) = m′
i | X = q − j]− Pr[D(w|Q) = m′

i | X = j]) · Pr[X = j]

+

⌊ q−1
2 ⌋∑

j=0

(Pr[D(w|Q) = m′
i | X = j]− Pr[D(w|Q) = m′

i | X = q − j]) · Pr[X = q − j]

= 1 +

⌊ q−1
2 ⌋∑

j=0

(Pr[D(w|Q) = m′
i | X = q − j]− Pr[D(w|Q) = m′

i | X = j]) · (Pr[X = j]− Pr[X = q − j])

19

For sufficiently large n, Pr[X = j] ≥ Pr[X = q− j] when j < q/2 since Pr[X = j] =
(
q
j

)(
n−q
δn−j

)
/
(
n
δn

)
and Pr[X = q − j] =

(
q
j

)(n−q
δn−(q−j)

)
/
(
n
δn

)
; then, use the fact that the difference between any two

probabilities is ≤ 1. This removes any dependence on i, D, or Q from the bound.

≤ 1 +

⌊ q−1
2 ⌋∑

j=0

(Pr[X = j]− Pr[X = q − j])

≤ 1 +

⌊ q−1
2 ⌋∑

j=0

Pr[X = j]−

1−
⌈ q−1

2 ⌉∑
j=0

Pr[X = j]

≤

⌊ q−1
2 ⌋∑

j=0

Pr[X = j] +

⌈ q−1
2 ⌉∑

j=0

Pr[X = j]

If q is odd, then we have that the probability of success is

p+ p′

2
≤

q−1
2∑

j=0

Pr[X = j]

= Pr
[
|[q] ∩ S| < q

2

]
which is the desired bound (1). If q is even, then

p+ p′

2
≤ Pr

[
X <

q

2

]
+

1

2
Pr
[
X =

q

2

]
= Pr

[
|[q − 1] ∩ S| < q − 1

2

]
using Lemma A.1, which matches the desired bound (2). To complete the proof:

E
S,m̃,w̃

[Pr
i
[M w̃(i) = m̃i]] = E

S,m̃,w̃

[
E

i,D,Q
[Pr[D(w̃|Q)] = m̃i

]
= E

i,D,Q

[
E

S,m̃,w̃
[Pr[D(w̃|Q)] = m̃i

]
= E

i,D,Q

[
Pr[D(w|Q) = mi] + Pr[D(w′|Q) = m′

i]

2

]
= E

i,D,Q

[
p+ p′

2

]
=

p+ p′

2

By the probabilistic method, there exist fixed S, m̃, and w̃ (i.e., some δ-noisy codeword) such that

Pri[M
w̃(i) = m̃i] ≤ p+p′

2 .

Note that this bound is tight when the codeword alphabet is very large: consider the code
C : Σk → (Σk)n where each symbol of the codeword is a copy of the entire message; then, the decoder
samples q uniformly random codeword indices, and returns the majority of the corresponding
portion of the codeword symbols that contains the requested message index. This bound also
proves that the identity code (where C(x) = x), which is a (1, δ, δ)-ALDC, is optimal for the ≤ 2
query regime:

20

Corollary 5.2. A nonadaptive ALDC with ≤ 2 queries has error ≥ δ.

Proof. A 1-query ALDC is a special case of a 2-query ALDC, so without loss of generality we
consider 2-query ALDCs. The upper bound for 2-query ALDCs given by the theorem is the same
as the upper bound for 1-query ALDCs, which is(

1
0

)(
n−1
δn

)(
n
δn

) = 1− δ

5.2 Achieving the Majority Lower Bound

Although the majority lower bound applies to all (q, δ, ε)-ALDCs, including ones with inefficient
decoders, huge codeword lengths, or huge alphabet size, we will now show that the bound can be
achieved up to a constant factor by explicit and efficient (q, δ, O(δ⌈q/2⌉))-ALDCs with constant rate
and alphabet size. To do so, we apply the Alon–Bruck–Naor–Naor–Roth technique [ABN+92] to a
sampler graph.

Code construction. Let 0 < γ < 1 be an arbitrarily small constant, q be a positive constant
integer, and 0 < δ < 1/2. To construct an ALDC C : Σk

1 → Σn
2 , begin with a biregular graph G

corresponding to an oblivious (α = γδ, β = γδ⌈q/2⌉)-sampler with bipartition ([k], [n]), left degree
DL, and right degree DR. Let m ∈ Σk

1 be an arbitrary message. The jth codeword symbol C(m)j
is defined as the string (mi)i∈N(j) ∈ ΣDR

1 where N(j) is the set of left vertices neighboring the jth
right vertex.

Immediately, we can see that the rate of this code will be 1/DL because each message symbol
is duplicated DL times in the codeword, and the alphabet is Σ2 = ΣDR

1 .

Decoder and analysis. For a message index i and input string w, consider the decoder which
independently repeats the following step q times, and takes the majority of the results:

1. Pick a uniformly random right vertex j neighboring left vertex i in the sampler graph G.

2. Query the jth index of w, and then return the symbol of wj which corresponds to message
index i.

If w is δ-close to some codeword C(m), then by the sampler property, a 1−β = 1−γδ⌈q/2⌉ fraction
of message coordinates will be “good”: these coordinates i have at most a ≤ δ + α = (1 + γ)δ
fraction of their neighbors which are corrupted. If a message index i is good, then the probability
of a uniformly random neighbor being corrupt is ≤ (1+γ)δ, and so the probability that the majority
of q repetitions is corrupt is

≤
q∑

ℓ=⌈q/2⌉

(
q

ℓ

)
((1 + γ)δ)ℓ(1− (1 + γ)δ)q−ℓ ≤ O(((1 + γ)δ)⌈q/2⌉)

Hence the decoder achieves the following error:

E
i
[Pr[Mw(i) ̸= mi]] ≤ β + (1− β) ·O(((1 + γ)δ)⌈q/2⌉) ≤ O(((1 + γ)δ)⌈q/2⌉)

If γ = 1/100q = O(1), then (1 + γ)⌈q/2⌉ ≤ eγ⌈q/2⌉ ≤ e1/100 and

O(((1 + γ)δ)⌈q/2⌉) ≤ O(δ⌈q/2⌉)

21

Theorem 5.3. For any 0 < δ < 1/2 and constant positive integer q, the code above C : Σk
1 → Σn

2

is a (q, δ, O(δ⌈q/2⌉))-ALDC with rate 1/DL and alphabet Σ2 = ΣDR
1 .

Finally, we can apply the sampler from Theorem 2.17 to complete the construction.

Corollary 5.4. For any 0 < δ < 1/2 and constant positive integer q, there exists an explicit code
C : Σk

1 → Σn
2 which is a (q, δ, O(δ⌈q/2⌉))-ALDC with rate 1/DL and alphabet Σ2 = ΣDR

1 , where

DL = O(q
2

δ2
log q

δ⌈q/2⌉
) and DR = 2DL2

O(DL)
.

Note that the decoder which chooses q right neighbors without replacement will perform slightly
better, but for the purpose of matching the majority error bound asymptotically, it is simpler to
analyze the decoder above which chooses neighbors with replacement.

5.3 Binary ALDCs with Nontrivial Error Amplification

The code C described above requires a constant-size alphabet that nevertheless grows quickly in
1/δ. We can concatenate this code with the Hadamard code to yield binary ALDCs, at the cost of
increased rate and doubled query complexity.

Code construction. Let CH : {0, 1}DR → {0, 1}2DR be the Hadamard code for messages of DR

bits. Then, define C2 : {0, 1}k → {0, 1}n′
where n′ = 2DR · n to be the code C concatenated with

CH ; that is, each symbol of the codeword of C is encoded with CH , and the entire new codeword
is flattened to be a string of bits. The rate of this new code is DR/DL2

DR .

Decoder and analysis. The decoder for C2 is identical to the decoder for C, except that each
query to a right vertex is now serviced by the 2-query local Hadamard decoder. That is, given a
message index i and input string w, repeat the following q times and return the majority:

1. Pick a uniformly random right vertex j neighboring left vertex i in the sampler graph G.

2. Let w(j) denote the substring of w corresponding to the Hadamard encoding of the jth
symbol of the base codeword. In particular, w(j) is the substring of length 2DR starting at
the ((j − 1) · 2DR + 1)th bit. Then, run the Hadamard 2-query local decoder on w(j) (see
Lemma 2.7) to decode the single bit corresponding to message index i. Return the outcome
of the Hadamard decoder.

The query complexity is now 2q because each query made by the original decoder is serviced by two
queries of the Hadamard local decoder. If w(j) has a δj fraction of corruption, then the Hadamard
decoder will return an incorrect answer with probability ≤ 2δj . Then, the probability of one
iteration of the decoder returning an incorrect answer is

pi := E
j∈N(i)

[2δj] = 2 E
j∈N(i)

[δj]

If we define a function on the right vertices f(j) = δj ∈ [0, 1], then by the sampler property, a 1−β
fraction of message coordinates will have Ej∈N(i)[δj] ≤ δ + α and hence pi ≤ 2(δ + α). So a good
coordinate i will be successfully decoded with probability

≤ O((2(1 + γ)δ)⌈q/2⌉) ≤ O((2δ)⌈q/2⌉)

using γ = 1/100q as before. The total error of the decoder is

E
i
[Pr[Mw(i) ̸= mi]] ≤ β + (1− β) ·O((2δ)⌈q/2⌉) ≤ O((2δ)⌈q/2⌉)

22

Theorem 5.5. For any 0 < δ < 1/2 and constant positive integer q, the code above C2 : {0, 1}k →
{0, 1}n′

is a (2q, δ, O((2δ)⌈q/2⌉))-ALDC with rate DR/DL2
DR where DL = O(q

2

δ2
log q

δ⌈q/2⌉
) and

DR = 2DL2
O(DL)

.

6 Open problems

ALDCs with optimal rate and error reduction. We gave two contructions of ALDCs. The
first had nearly optimal rate, and a constant number of queries. However, the error reduction is
not optimal for the number of queries it uses. The second construction has optimal error reduction
the its number of queries. However, the rate is far from optimal (although still constant). It is an
open question whether one can construct an ALDC with the best of both worlds or whether it is
impossible. That is, do there exist (q, δ, ε)-ALDCs with rate approaching the Singleton bound, and
ε = O(δ⌈q/2⌉)?

Binary ALDCs with optimal query complexity. Both of our constructions have a large
constant alphabet due to the sampler technique. A natural question to ask is what can be done
with a smaller alphabet. In section 5.3 we showed that concatenating our construction for optimal
error reduction from section 5.2 with Hadamard gives an ALDC with binary alphabet. However,
this doubles the number of queries and so no longer gives optimal error reduction for its query
complexity. Thus one can ask what is achievable with binary ALDCs. We do not know whether
the same δ to O(δ⌈q/2⌉) error reduction is possible for a binary ALDC.

Strong list decoding with constant number of queries and constant rate. Our list decod-
ing result only works for a weak notion of list decoding. It is natural to ask whether the standard
notion of approximate local list decoding can be achieved with constant query complexity and
constant rate. The work of [IJKW10] constructs an approximate local list decodable code in the
strong sense with a constant number of queries but with a polynomially small rate (see also [BET10,
Theorem 2]). The work of [DHK+21] constructs a code with approximate global list decoding with
constant rate. Both of these codes are derandomized direct product codes.

Acknowledgements

GM is supported by NSF Grant CCF-2200956, an NSF Graduate Research Fellowship (DGE-
2137420), and a UT Austin Dean’s Prestigious Fellowship Supplement. DM is supported by NSF
Grants CCF-1705028, CCF-2200956, and CCF-2312573. JO is supported by NSF Grants CF-
2008076 and CCF-2312573. We are grateful to anonymous reviewers for their input.

This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-2137420. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction
of asymptotically good low-rate error-correcting codes through pseudo-random graphs.

23

IEEE Transactions on Information Theory, 38(2):509–516, March 1992. doi:10.1109/
18.119713.

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly op-
timal recovery. In Proceedings of IEEE 36th Annual Foundations of Computer Science,
pages 512–519, October 1995. ISSN: 0272-5428. doi:10.1109/SFCS.1995.492581.

[AG24] Omar Alrabiah and Venkatesan Guruswami. Near-tight bounds for 3-query locally
correctable binary linear codes via rainbow cycles. Technical Report TR24-062,
Electronic Colloquium on Computational Complexity (ECCC), April 2024. URL:
https://eccc.weizmann.ac.il/report/2024/062/.

[AGKM23] Omar Alrabiah, Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. A
near-cubic lower bound for 3-query locally decodable codes from semirandom CSP refu-
tation. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, page 1438–1448, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3564246.3585143.

[AL96] Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal
recovery. IEEE Trans. Inf. Theory, 42(6):1732–1736, 1996. doi:10.1109/18.556669.

[BDG19] Jop Briët, Zeev Dvir, and Sivakanth Gopi. Outlaw distributions and locally decodable
codes. Theory of Computing, 15(12):1–24, 2019. URL: https://theoryofcomputing.
org/articles/v015a012, doi:10.4086/toc.2019.v015a012.

[BET10] Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. A note on amplifying
the error-tolerance of locally decodable codes. Technical Report TR10-134, Electronic
Colloquium on Computational Complexity (ECCC), December 2010. URL: https:
//eccc.weizmann.ac.il/report/2010/134/.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal
on Computing, 36(4):889–974, January 2006. Publisher: Society for Industrial and
Applied Mathematics. doi:10.1137/S0097539705446810.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms
for estimating the average. Information Processing Letters, 53(1):17–25, January 1995.
URL: https://www.sciencedirect.com/science/article/pii/002001909400171T,
doi:10.1016/0020-0190(94)00171-T.

[CY21] Gil Cohen and Tal Yankovitz. Rate amplification and query-efficient distance amplifica-
tion for linear LCC and LDC. In Valentine Kabanets, editor, 36th Computational Com-
plexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual
Conference), volume 200 of LIPIcs, pages 1:1–1:57. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.1.

[CY22] Gil Cohen and Tal Yankovitz. LCC and LDC: tailor-made distance amplification
and a refined separation. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
44:1–44:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/

LIPIcs.ICALP.2022.44.

24

https://doi.org/10.1109/18.119713
https://doi.org/10.1109/18.119713
https://doi.org/10.1109/SFCS.1995.492581
https://eccc.weizmann.ac.il/report/2024/062/
https://doi.org/10.1145/3564246.3585143
https://doi.org/10.1109/18.556669
https://theoryofcomputing.org/articles/v015a012
https://theoryofcomputing.org/articles/v015a012
https://doi.org/10.4086/toc.2019.v015a012
https://eccc.weizmann.ac.il/report/2010/134/
https://eccc.weizmann.ac.il/report/2010/134/
https://doi.org/10.1137/S0097539705446810
https://www.sciencedirect.com/science/article/pii/002001909400171T
https://doi.org/10.1016/0020-0190(94)00171-T
https://doi.org/10.4230/LIPIcs.CCC.2021.1
https://doi.org/10.4230/LIPIcs.ICALP.2022.44
https://doi.org/10.4230/LIPIcs.ICALP.2022.44

[DGL21] Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local
algorithms with applications to coding, testing, and privacy. In Dániel Marx, edi-
tor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021, pages 1651–1665. SIAM, 2021.
doi:10.1137/1.9781611976465.100.

[DGY11] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J.
Comput., 40(4):1154–1178, 2011. doi:10.1137/100804322.

[DH13] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using decod-
able PCPs. SIAM J. Comput., 42(6):2452–2486, 2013. doi:10.1137/100788161.

[DHK+21] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta-Shma.
List-decoding with double samplers. SIAM J. Comput., 50(2):301–349, 2021. doi:

10.1137/19M1276650.

[Efr12] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J.
Comput., 41(6):1694–1703, 2012. doi:10.1137/090772721.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In Proceedings of
the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02,
page 812–821, New York, NY, USA, 2002. Association for Computing Machinery.
doi:10.1145/509907.510023.

[GI04] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting Gilbert-
Varshamov bound for low rates. In Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’04, page 756–757, USA, 2004. Society for
Industrial and Applied Mathematics.

[Gil98] David Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal
on Computing, 27(4):1203–1220, January 1998. Publisher: Society for Industrial and
Applied Mathematics. doi:10.1137/S0097539794268765.

[GKO+16] Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. Locally testable and locally correctable codes approaching the
Gilbert-Varshamov bound. Technical Report TR16-122, Electronic Colloquium on
Computational Complexity (ECCC), August 2016. URL: https://eccc.weizmann.
ac.il/report/2016/122/.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
STOC ’89, page 25–32, New York, NY, USA, 1989. Association for Computing Ma-
chinery. doi:10.1145/73007.73010.

[GL21] Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. SIAM
J. Comput., 50(2):788–813, 2021. doi:10.1137/19M1307834.

[GM12] Anna Gal and Andrew Mills. Three-query locally decodable codes with higher correct-
ness require exponential length. ACM Transactions on Computation Theory, 3(2):5:1–
5:34, January 2012. doi:10.1145/2077336.2077338.

25

https://doi.org/10.1137/1.9781611976465.100
https://doi.org/10.1137/100804322
https://doi.org/10.1137/100788161
https://doi.org/10.1137/19M1276650
https://doi.org/10.1137/19M1276650
https://doi.org/10.1137/090772721
https://doi.org/10.1145/509907.510023
https://doi.org/10.1137/S0097539794268765
https://eccc.weizmann.ac.il/report/2016/122/
https://eccc.weizmann.ac.il/report/2016/122/
https://doi.org/10.1145/73007.73010
https://doi.org/10.1137/19M1307834
https://doi.org/10.1145/2077336.2077338

[HRW20] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-
rate tensor codes and applications. SIAM Journal on Computing, 49(4):FOCS17–157,
January 2020. Num Pages: FOCS17-195 Publisher: Society for Industrial and Applied
Mathematics. URL: https://epubs.siam.org/doi/abs/10.1137/17M116149X, doi:
10.1137/17M116149X.

[HT18] Pooya Hatami and Madhur Tulsiani. Approximate local decoding of cubic Reed-Muller
codes beyond the list decoding radius. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 663–679. SIAM, 2018. doi:10.

1137/1.9781611975031.43.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: Simplified, optimized, and derandomized. SIAM J. Comput.,
39(4):1637–1665, 2010. doi:10.1137/080734030.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor,
editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of
Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997. doi:

10.1145/258533.258590.

[KLT23] Dain Kim, Anqi Li, and Jonathan Tidor. Cubic Goldreich-Levin. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 4846–
4892. SIAM, 2023. doi:10.1137/1.9781611977554.ch178.

[KM23] Pravesh K. Kothari and Peter Manohar. An exponential lower bound for linear 3-
query locally correctable codes. Technical Report TR23-162, Electronic Colloquium on
Computational Complexity (ECCC), November 2023. URL: https://eccc.weizmann.
ac.il/report/2023/162/.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. J. ACM,
64(2):11:1–11:42, 2017. doi:10.1145/3051093.

[KSV03] Michael Krivelevich, Benny Sudakov, and Van H. Vu. Covering codes with improved
density. IEEE Transactions on Information Theory, 49(7):1812–1815, July 2003. doi:
10.1109/TIT.2003.813490.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, STOC ’00, pages 80–86, New York, NY, USA, May 2000. Association
for Computing Machinery. doi:10.1145/335305.335315.

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM,
57(5):29:1–29:29, 2010. doi:10.1145/1754399.1754402.

[Sol09] Kiril Solovey. Error reducing locally decodable codes, 2009. URL:
http://tau-research-course-2009.wdfiles.com/local--files/

error-reducing-locally-decodable-codes/ERLDC.pdf.

26

https://epubs.siam.org/doi/abs/10.1137/17M116149X
https://doi.org/10.1137/17M116149X
https://doi.org/10.1137/17M116149X
https://doi.org/10.1137/1.9781611975031.43
https://doi.org/10.1137/1.9781611975031.43
https://doi.org/10.1137/080734030
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://doi.org/10.1137/1.9781611977554.ch178
https://eccc.weizmann.ac.il/report/2023/162/
https://eccc.weizmann.ac.il/report/2023/162/
https://doi.org/10.1145/3051093
https://doi.org/10.1109/TIT.2003.813490
https://doi.org/10.1109/TIT.2003.813490
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/1754399.1754402
http://tau-research-course-2009.wdfiles.com/local--files/error-reducing-locally-decodable-codes/ERLDC.pdf
http://tau-research-course-2009.wdfiles.com/local--files/error-reducing-locally-decodable-codes/ERLDC.pdf

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom genera-
tors without the xor lemma. Journal of Computer and System Sciences,
62(2):236–266, 2001. URL: https://www.sciencedirect.com/science/article/

pii/S0022000000917306, doi:https://doi.org/10.1006/jcss.2000.1730.

[Tre03] Luca Trevisan. List-decoding using the XOR lemma. In 44th Symposium on Founda-
tions of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings, pages 126–135. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.
1238187.

[TW14] Madhur Tulsiani and Julia Wolf. Quadratic Goldreich-Levin theorems. SIAM J. Com-
put., 43(2):730–766, 2014. doi:10.1137/12086827X.

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336,
2012. doi:10.1561/0400000010.

[Woo07] David P. Woodruff. New lower bounds for general locally decodable codes. Techni-
cal Report TR07-006, Electronic Colloquium on Computational Complexity (ECCC),
January 2007. URL: https://eccc.weizmann.ac.il/report/2007/006/.

[Yan24] Tal Yankovitz. A stronger bound for linear 3-LCC. Technical Report TR24-036,
Electronic Colloquium on Computational Complexity (ECCC), April 2024. URL:
https://eccc.weizmann.ac.il/report/2024/036/.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
J. ACM, 55(1):1:1–1:16, 2008. doi:10.1145/1326554.1326555.

A Appendix

Lemma A.1. When q is an even constant and δ ∈ (0, 1),

q/2−1∑
j=0

(
q
j

)(
n−q
δn−j

)(
n
δn

) +
1

2

(q
q/2

)(n−q
δn−q/2

)(
n
δn

) =

q/2−1∑
j=0

(
q−1
j

)(
n−q+1
δn−j

)(
n
δn

)
Proof. We make use of the Pascal’s triangle recurrence (

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
) by manipulating and

reindexing summations. For k < 0, let
(
n
k

)
= 0 for notation.

(
q − 1
q
2 − 2

)(
n− q

δn− q
2

)
=

q
2
−2∑

j=0

(
q − 1

j

)(
n− q

δn− j − 2

)
−

q
2
−3∑

j=0

(
q − 1

j

)(
n− q

δn− j − 2

)

=

q
2
−2∑

j=0

(
q − 1

j

)(
n− q

δn− j − 2

)
−

q
2
−2∑

j=1

(
q − 1

j − 1

)(
n− q

δn− j − 1

)
(
q − 1
q
2 − 2

)(
n− q

δn− q
2

)
=

q
2
−2∑

j=0

(
q − 1

j

)(
n− q

δn− j − 2

)
−

q
2
−2∑

j=0

(
q − 1

j − 1

)(
n− q

δn− j − 1

)

27

https://www.sciencedirect.com/science/article/pii/S0022000000917306
https://www.sciencedirect.com/science/article/pii/S0022000000917306
https://doi.org/https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1109/SFCS.2003.1238187
https://doi.org/10.1109/SFCS.2003.1238187
https://doi.org/10.1137/12086827X
https://doi.org/10.1561/0400000010
https://eccc.weizmann.ac.il/report/2007/006/
https://eccc.weizmann.ac.il/report/2024/036/
https://doi.org/10.1145/1326554.1326555

((
q

q
2 − 1

)
−
(
q − 1
q
2 − 1

))(
n− q

δn− q
2

)
=

q
2
−2∑

j=0

((
q − 1

j

)((
n− q + 1

δn− j − 1

)
−
(

n− q

δn− j − 1

))

−
(
q − 1

j − 1

)(
n− q

δn− j − 1

))
(
q − 1
q
2 − 1

)(
n− q

δn− q
2

)
=

q
2
−2∑

j=0

((
q − 1

j

)((
n− q

δn− j − 1

)
−
(
n− q + 1

δn− j − 1

))

+

(
q − 1

j − 1

)(
n− q

δn− j − 1

))
+

(
q

q
2 − 1

)(
n− q

δn− q
2

)

=

q
2
−1∑

j=0

(
q

j

)(
n− q

δn− j − 1

)
−

q
2
−2∑

j=0

(
q − 1

j

)(
n− q + 1

δn− j − 1

)

=

q
2
−1∑

j=0

((
q

j

)(
n− q

δn− j − 1

)
−
(
q − 1

j − 1

)(
n− q + 1

δn− j

))

=

q
2
−1∑

j=0

((
q

j

)(
n− q

δn− j − 1

)
−
(
q − 1

j − 1

)(
n− q

δn− j

)
−
(
q − 1

j − 1

)(
n− q

δn− j − 1

))

=

q
2
−1∑

j=0

((
q

j

)
−
(
q − 1

j − 1

))((
n− q

δn− j

)
+

(
n− q

δn− j − 1

))

−

q
2
−1∑

j=0

(
q

j

)(
n− q

δn− j

)
(
q − 1
q
2 − 1

)(
n− q

δn− q
2

)
=

q
2
−1∑

j=0

(
q − 1

j

)(
n− q + 1

δn− j

)
−

q
2
−1∑

j=0

(
q

j

)(
n− q

δn− j

)

To complete the proof, note that
(q−1
q/2−1

)
= 1

2

(q
q/2

)
:

1

2

(
q
q
2

)
=

1

2
· q

q/2
· (q − 1)(q − 2) · · · (q/2 + 1)

(q/2− 1)(q/2− 2) · · · 1
=

(
q − 1
q
2 − 1

)
Then, move the second summation to the left hand side and divide both sides by

(
n
δn

)
.

28
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

