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Abstract

Affine extractors give some of the best-known lower bounds for various computational models,
such as AC0 circuits, parity decision trees, and general Boolean circuits. However, they are not
known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work,
Gryaznov, Pudlák, and Talebanfard (CCC’ 22) introduced a stronger version of affine extractors
known as directional affine extractors, together with a generalization of ROBPs where each node
can make linear queries, and showed that the former implies strong lower bound for a certain
type of the latter known as strongly read-once linear branching programs (SROLBPs). Their
main result gives explicit constructions of directional affine extractors for entropy k > 2n/3,
which implies average-case complexity 2n/3−o(n) against SROLBPs with exponentially small
correlation. A follow-up work by Chattopadhyay and Liao (CCC’ 23) improves the hardness to
2n−o(n) at the price of increasing the correlation to polynomially large, via a new connection to
sumset extractors introduced by Chattopadhyay and Li (STOC’ 16) and explicit constructions
of such extractors by Chattopadhyay and Liao (STOC’ 22). Both works left open the questions
of better constructions of directional affine extractors and improved average-case complexity
against SROLBPs in the regime of small correlation.

This paper provides a much more in-depth study of directional affine extractors, SROLBPs,
and ROBPs. Our main results include:

• An explicit construction of directional affine extractors with k = o(n) and exponentially
small error, which gives average-case complexity 2n−o(n) against SROLBPs with exponen-
tially small correlation, thus answering the two open questions raised in previous works.

• An explicit function in AC0 that gives average-case complexity 2(1−δ)n against ROBPs with
negligible correlation, for any constant δ > 0. Previously, no such average-case hardness
is known, and the best size lower bound for any function in AC0 against ROBPs is 2Ω(n).

One of the key ingredients in our constructions is a new linear somewhere condenser for affine
sources, which is based on dimension expanders. The condenser also leads to an unconditional
improvement of the entropy requirement of explicit affine extractors with negligible error. We
further show that the condenser also works for general weak random sources, under the Poly-
nomial Freiman-Ruzsa Theorem in Fn

2 , recently proved by Gowers, Green, Manners, and Tao
(arXiv’ 23).
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1 Introduction

Randomness extractors are functions that extract almost uniform random bits from weak random
sources that have poor quality. Although the original motivation of randomness extractors comes
from bridging the gap between the quality of randomness required in typical applications and
that available in practice, as pseudorandom objects, they turn out to have broad applications in
computer science. For example, the kind of extractors known as affine extractors are shown to be
closely connected to complexity theory. Indeed, they give strong size lower bounds for AC0 circuits
(constant depth circuits with NOT gates and unbounded fan-in AND, OR gates) by the standard
switching lemma [H̊as86], and are shown to give exponential size lower bounds for DNF circuits
with a bottom layer of parity gates, together with strong average-case hardness for parity decision
trees [CS16]. Via sophisticated gate elimination techniques, they also give the best-known size lower
bounds for general Boolean circuits [DK11, FGHK16, LY22]. We define affine extractors below.

Definition 1 (Affine extractor). An (n, k) affine source is the uniform distribution over some affine
subspace with dimension k, of the vector space Fn2 .

1 A function Ext : {0, 1}n → {0, 1}m is an affine
extractor for entropy k with error ε if for every (n, k) affine source X, we have

Ext(X) ≈ε Um,

where Um stands for the uniform distribution over {0, 1}m, and ≈ε means ε close in statistical
distance. We say Ext is explicit if it is computable by a polynomial-time algorithm.

However, affine extractors are not known to imply strong lower bounds for computational models
that measure space complexity. For example, a natural model in this context is a branching program,
which is a directed acyclic graph with one source and two sinks, and each non-sink node has out-
degree 2. To define the computation of the branching program, one marks each non-sink node with
the index of an input bit, and labels the two outgoing edges by 0 and 1, respectively. Furthermore,
one sink is labeled by 1 and the other is labeled by 0. The program now computes any input by
following the natural path from the source to one sink, while reading the corresponding input bits
and going through the corresponding edges. The program accepts the input if and only if the path
ends in the sink with label 1, and the size of the branching program is defined as the number of its
nodes, which roughly corresponds to 2O(s) where s is the space complexity of the computation.

Proving non-trivial lower bounds of an explicit function for general branching programs turns
out to be a challenging problem. The best known bound is Ω( n2

log2 n
) [Nec66] after decades of effort,

which is not enough to separate P from LOGSPACE. Thus, most research on lower bounds for
branching programs has focused on restricted models, and the most well-studied is the model of
read-once branching program, where on any computational path, any input bit is read at most
once. Exponential lower bounds are known in this model [Weg88, Zák84, Dun85, Juk88, KMW91,
SS92, Pon98, Gál97, BW98, ABCR99, Kab03], however, it is not clear if affine extractors imply
strong lower bounds here. For example, the inner product is a good affine extractor for any entropy
k > n/2, but it can be computed by a read-once branching program of size O(n).

In a recent work [GPT22], Gryaznov, Pudlák, and Talebanfard introduced a generalization
of affine extractors called directional affine extractors and a generalization of standard read-once
branching programs called read-once linear branching programs, and show that explicit construc-
tions of the former imply strong lower bounds for certain cases of the latter. We define the two
generalizations below.

1More generally, affine sources and affine extractors can be defined over any finite field, but in this paper we focus
on the binary field F2.
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Definition 2 (Directional affine extractor). A function DAExt : {0, 1}n → {0, 1}m is a directional
affine extractor for entropy k with error ε if for every (n, k) affine source X and every non-zero
vector a ∈ Fn2 , we have

(DAExt(X),DAExt(X + a)) ≈ε (Um,DAExt(X + a)).

We say the function is a (zero-error) directional affine disperser if there exists some b ∈ {0, 1}m
such that ∣∣∣Supp (DAExt(X) | DAExt(X + a) = b)

∣∣∣ = 2m

.

Remark 1. Our definition is slightly more general than the definition in [GPT22], since we allow
the extractor to output more than one bits. In the special case of m = 1, our definition implies that
in [GPT22], the reverse is also true up to a small loss in parameters as shown in [CL23].

Definition 3 (Linear branching program [GPT22]). A linear branching program on Fn2 is a directed
acyclic graph P with the following properties:

• There is only one source s in P .

• There are two sinks in P , labeled with 0 and 1 respectively.

• Every non-sink node v is labeled with a linear function ℓv : Fn2 → F2. Moreover, there are
exactly two outgoing edges from v, one is labeled with 1 and the other is labeled with 0.

The size of P is the number of non-sink nodes in P . P computes a Boolean function f : {0, 1}n →
{0, 1} in the following way. For every input x ∈ Fn2 , P follows the computation path by starting
from s, and when on a non-sink node v, moves to the next node following the edge with label
ℓv(x) ∈ {0, 1}. The computation ends when the path ends at a sink, and f(x) is defined to be the
label on this sink.

[GPT22] defines two kinds of read-once linear branching programs (ROLBP for short). Specifi-
cally, given any linear branching program P and any node v in P , let Prev denote the span of all
linear queries that appear on any path from the source to v, excluding the query ℓv. Let Postv
denote the span of all linear queries in the subprogram starting at v.

Definition 4 (Weakly read-once linear branching program). A linear branching program P is
weakly read-once if for every inner node v of P , it holds that ℓv /∈ Prev.

Definition 5 (Strongly read-once linear branching program). A linear branching program P is
strongly read-once if for every inner node v of P , it holds that Prev ∩ Postv = {0}.

In this paper, we will focus on strongly read-once linear branching programs, and use SROLBP
as a shorthand. As observed in [GPT22] and [CL23], even the more restricted SROLBPs general-
ize several important and well-studied computational models, for example, decision trees, parity
decision trees, and standard read-once branching programs. These models have applications in
diverse areas, such as learning theory, streaming algorithms, communication complexity and query
complexity. Thus, just as the natural generalizations from AC0 circuits to AC0[⊕] circuits (AC0

with parity gates), and from decision trees to parity decision trees, studying the generalization
from ROBPs to ROLBPs is also a natural direction. In addition, as observed in [GPT22], parity
decision trees are the only case in AC0[⊕] for which we have strong average-case lower bounds, and
they are closely related to tree-like resolution refutation proof systems. Thus studying ROLBPs as a
generalization of parity decision trees is of particular interest (in fact, this is the original motivation
in [GPT22]). We now define two complexity measures of SROLBPs below.
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Definition 6. For a Boolean function f : {0, 1}n → {0, 1}, let SROLBP(f) denote the smallest
possible size of a strongly read-once linear branching program that computes f , and SROLBPε(f)
denote the smallest possible size of a strongly read-once linear branching program P such that

Prx←UFn
2
[P (x) = f(X)] ≥ 1

2
+ ε.

The definition can be adapted to ROBPs naturally.

The main contribution of [GPT22] is to show that directional affine extractors give strong
average-case hardness for SROLBPs. Specifically, they show that for any directional affine extractor
DAExt for entropy k with error ε, we have SROLBP√

ε/2
(DAExt) ≥ ε2n−k−1. In addition, they give

an explicit construction of directional affine extractor for k ≥ 2n
3 + c with ε ≤ 2−c, which also

implies exponential average-case hardness for SROLBPs of size up to 2
n
3
−o(n). Thus, directional

affine extractors are indeed stronger than standard affine extractors and give strong lower bounds in
more computational models. [GPT22] left open the question of explicit constructions of directional
affine extractors for k = o(n).

In a follow-up work, Chattopadhyay and Liao [CL23] showed that another kind of extractors,
known as sumset extractors, also give strong average-case hardness for SROLBPs. These extractors
were introduced by Chattopadhyay and Li [CL16b], which are extractors that work for the sum of
two (or more) independent weak random sources. By using existing constructions of such extractors

in [CL22], they give an explicit function Ext such that SROLBPn−Ω(1)(Ext) ≥ 2n−log
O(1) n, i.e., the

branching program size lower bound becomes close to optimal, but the correlation increases from
exponentially small to polynomially large. Similarly, [CL23] left open the question of obtaining
improved average-case hardness against SROLBPs in the small correlation regime.

We remark that directional affine extractors are a special case of affine non-malleable extractors,
which are defined by Chattopadhyay and Li [CL17]. Roughly, an affine non-malleable extractor is
an affine extractor such that the output is still close to uniform, even conditioned on the output of
the extractor where the input affine source is modified by any affine function with no fixed points. In
this context, directional affine extractors just correspond to the case where the tampering function
adds a non-zero affine shift to the source. Previously, the best affine non-malleable extractor
due to Li [Li23] works for entropy k ≥ (1 − γ)n for some small constant γ < 1/3 with error
2−Ω(n). Thus this does not give a better construction of directional affine extractors. However,
[Li23] does give an improved sumset extractor, which yields an explicit function Ext such that
SROLBPε(Ext) ≥ 2n−O(logn) for any constant ε > 0, i.e., the branching program size lower bound
becomes optimal up to the constant in O(.), but the correlation increases to any constant.

1.1 Our Results

In this paper, we present a much more in-depth study of directional affine extractors, affine non-
malleable extractors, SROLBPs, and standard ROBPs. To begin with, we observe that it is not a
priori clear that SROLBPs are more powerful than standard ROBPs. Indeed, it is easy to see that
AC0[⊕] and parity decision trees are exponentially more powerful than AC0 circuits and standard
decision trees, respectively, since parity requires exponential size AC0 circuits and decision trees.
However, any parity function can be computed by an ROBP of size O(n). Nevertheless, there are
previous works [Oko93, Juk95, GI17] which showed that computing explicit characteristic functions
of certain affine subspaces require ROBPs of size 2Ω(n) (e.g., the satisfiable Tseitin formulas in
[GI17]). Since such functions are easily computable by an SROLBP of size O(n), this provides a
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separation between SROLBP and ROBP and shows that indeed SROLBPs are exponentially more
powerful than ROBPs.

In turn, this further demonstrates that directional affine extractors have stronger properties
than standard affine extractors, as they imply strong lower bounds for SROLBPs. Next, we give
explicit constructions of directional affine extractors with much better parameters than that in
[GPT22]. Our construction works for any linear entropy with exponentially small error.

Theorem 1. For any constant 0 < δ ≤ 1, there exists a family of explicit directional affine
extractors DAExt : {0, 1}n → {0, 1}m for entropy k ≥ δn with error ε = 2−Ω(n) and output length
m = Ω(n).

In fact, our construction can work for slightly sub-linear entropy.

Theorem 2. There exists a constant c > 1 and an explicit family of directional affine extractors
DAExt : {0, 1}n → {0, 1}m for entropy k ≥ cn(log log log n)2/ log log n with error ε = 2−n

Ω(1)
and

output length m = nΩ(1), as well as an explicit family of directional affine dispersers for entropy
k ≥ cn(log log n)2/ log n with m = nΩ(1).

This theorem immediately gives much improved average-case hardness for SROLBPs.

Theorem 3. There is an explicit function DAExt such that SROLBP
2−nΩ(1) (DAExt) ≥ 2

n−Õ( n
log logn

)
,

where Õ(.) hides (log log log n)2 factors.

In particular, we can achieve exponentially small correlation while obtaining a 2n−o(n) size lower
bound for SROLBPs, which is almost optimal. This significantly improves the 2n/3−o(n) size lower
bound in [GPT22] and the polynomially large correlation in [CL23]. Thus, Theorem 2 and 3 provide
positive answers to the two open questions in [GPT22] and [CL23] mentioned before.

We remark that under our new definition, a directional affine extractor is strictly stronger than a
standard affine extractor. Thus Theorem 2 also improves the entropy requirement of negligible error

affine extractors, from the previously best-known result of n√
log logn

[Yeh11, Li11] to cn(log log logn)2

log logn .

We also revisit the hardness results for standard ROBPs. As mentioned before, exponential and
even close to optimal size lower bounds are known for explicit functions in this model, where the
current best result is an explicit function that requires ROBPs (in fact, SROLBPs) of size 2n−O(logn)

[Li23]. However, there has also been a lot of interest in finding functions in lower complexity classes
that give strong lower bounds for ROBPs. It is clear that the class NC0 is not sufficient. Thus the
next possible class is AC0. Indeed there are previous works giving explicit AC0 functions that
require ROBPs of size 2Ω(

√
n)[Juk88, KMW91, Gál97, BW98] and even 2Ω(n) [GI17], yet there is

no average-case hardness as far as we know. Here, we improve both the size lower bound and the
average-case hardness by giving an explicit AC0 function that has negligible correlation with ROBPs
of size 2(1−δ)n for any constant δ > 0.

Theorem 4. For any constant δ > 0 there is an explicit function AC0-Ext in AC0 such that
ROBP2−poly logn(AC0-Ext) ≥ 2(1−δ)n.

One of the key ingredients in our constructions is a new linear somewhere condenser for affine
sources. Specifically, we have

Definition 7. For any 0 < δ < γ < 1, a function SCond : Fn2 → (Fm2 )ℓ is a (δ, γ) affine somewhere
condenser, if it satisfies the following property: for any affine source X over Fn2 with entropy δn,
let (Y1, · · · , Yℓ) = SCond(X) ∈ (Fm2 )ℓ, then there exists at least one i ∈ [ℓ] such that Yi is an affine
source over Fm2 with entropy at least γm.
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Theorem 5. There exists a constant β > 0 such that for any 0 < δ ≤ 1/2, there is an explicit
(δ, 1/2 + β) affine somewhere condenser SCond : Fn2 → (Fm2 )t, where t = poly(1/δ) and m =
n/poly(1/δ). Moreover, SCond is a linear function.

We further show that (a slight modification of) this condenser works for general weak random
sources, under the well-known Polynomial Freiman-Ruzsa Theorem in Fn2 , once one of the most im-
portant conjectures in additive combinatorics and very recently proved by Gowers, Green, Manners,
and Tao [GGMT23]. See section 4 for details.

Previously, all condensers of this kind are based on sum-product theorems, and the function is a
polynomial with degree poly(1/δ) [BKS+05, Raz05, Zuc07]. In contrast, there exist constructions of
linear seeded extractors, where if one lists the outputs of the extractor for all possible seeds, then we
get a somewhere random source such that at least one output is close to uniform, and the function
is a linear function. However, in many applications such as ours, one needs to use a somewhere
condenser instead of simply listing all outputs of an extractor, since the former only gives a small
number (e.g., a constant) of outputs as opposed to poly(n) outputs from the extractor. Hence,
our linear somewhere condenser complements the existing sum-product theorem based somewhere
condensers. Moreover, our construction of the condenser is based on dimension expanders, which
are algebraic pseudorandom objects previously studied based on their own interests, with no clear
applications in computer science as far as we know. Thus, our construction can be viewed as one
of the first applications of dimension expanders in computer science.

Finally, we study the question of whether directional affine extractors can give strong lower
bounds for the class of AC0[⊕] in a black box way. Cohen and Tal [CT15] showed via probablistic
methods that standard affine extractors do not suffice since depth-3 AC0[⊕] circuits can compute
optimal affine extractors. Using a slightly modified argument as that in [CT15], we show that even
the stronger version of directional affine extractors does not suffice. Specifically, depth-3 AC0[⊕]
circuits can also compute optimal directional affine extractors. This in turn provides a strong
separation of AC0[⊕] from SROLBP.

Theorem 6. There exists a function f : {0, 1}n → {0, 1} which is a directional affine extractor for
entropy k with error ε, where k = log n

ε2
+ log log n

ε2
+O(1) such that the following properties hold.

1. f is a polynomial of degree log n
ε2

+ log log n
ε2

+O(1).

2. f can be realized by a XOR-AND-XOR circuit of size O((n/ε)2 · log3(n/ε)).

3. f can be realized by a De Morgan formula of size O((n5/ε2) · log3(n/ε)).

1.2 Overview of the Techniques

Here we give a sketch of the main ideas used in this paper. For clarity, we shall be informal at
places and ignore some technical details.

Directional affine extractors. Our starting point is the construction of affine extractors by Li
[Li11], which works for sub-linear entropy with exponentially small error. We first briefly recall the
construction there. Divide an affine source X of entropy rate δ into O(1/δ) blocks. By choosing
the size of the blocks appropriately, one can show that there exists a “good” block Xg of entropy
rate Ω(δ), and the source X still has a lot of entropy conditioned on Xg (i.e., we get an affine block
source). If we know the position of Xg, randomness extraction is easy: we apply a somewhere
condenser (e.g., those in [BKS+05, Raz05, Zuc07]) to condense Xg into a matrix with a constant
number of rows, such that at least one row has entropy rate 1 − δ/2. At this point, we can apply
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a linear two-source extractor (e.g., the inner product function) to each row of the matrix and the
source X to get an affine somewhere random source, conditioned on the fixing of Xg. This is
another matrix with a constant number of rows, such that at least one row is uniform, and one can
apply existing techniques to deterministically extract random bits from this source [Rao09].

However, when δ is small, we don’t know which block Xg is good. Thus in [Li11], the construc-
tion tries all blocks, and then combines them together. To make this process work, the construction
crucially maintains the following property: (*) for each block Xi, the output bits produced from
this block are constant degree polynomials of the input bits, and the degrees decrease geometrically
from the first block to the last block. With this property, the analysis goes by focusing on the first
good block Xg. Notice that we can fix all the outputs produced from blocks before Xg, while all
outputs produced from blocks after Xg have degrees less than those from Xg. Thus if we take the
XOR of all these outputs, an XOR lemma of polynomials [VW08, BKS+10] guarantees the final
output is still close to uniform. We note that the XOR lemma of polynomials only works for degree
up to log n. Hence it is important to keep the degree c of the outputs from each block to be as
small as possible. Roughly, we will need cO(1/δ) < log n.

Our strategy now is to adapt this construction to directional affine extractors. Towards this, we
use techniques from constructions of non-malleable extractors since, as we remark before, directional
affine extractors are a special case of affine non-malleable extractors. Recent constructions of non-
malleable extractors usually consist of two steps: first, generate a small advice that is different
from the tampered version with high probability, and then use the advice together with other tools
(e.g., correlation breakers) to achieve non-malleability. Thus, our goal is to adapt these two steps
to directional affine extractors while, at the same time, still maintaining property (*), which is
crucial to achieving any linear entropy or slightly sub-linear entropy. We now explain both steps.

As before, for each block Xi we will get an output Ui, which is close to uniform if Xi is a good
block. Divide Ui into two parts Ui = Ui1 ◦ Ui2. We will use Ui1 to generate the advice and Ui2

for the rest of the construction. Notice that from the tampered input X ′ = X + a we also have a
tampered version U ′i = U ′i1 ◦ U ′i2. In the following, we will always use letters with prime to denote
the corresponding random variables produced from the tampered input. If Ui1 ̸= U ′i1 then we are
done, otherwise we use Ui1 = U ′i1 to sample some Ω(δ2n) bits Hi from an encoding of X, using
an asymptotically good binary linear code. Since X ′ = X + a, we have that Hi + H ′i basically
corresponds to the sampled bits from the encoding of a. Thus Hi ̸= H ′i with high probability by
the distance of the linear code. However, we cannot just do sampling naively since we need to keep
the degree to be a constant. Therefore, we also divide both Ui1 and the encoding of X into Ω(δ2n)
blocks where each block contains a constant number of bits, and use each block of Ui1 to sample
one bit from the corresponding block of the encoding of X. By the distance property of the code,
there are Ω(δ2n) blocks of the encoding of X and X ′ that are different. Thus we still have Hi ̸= H ′i
with high probability, and now each bit of Hi is a constant degree polynomial of the bits of Ui1 and
X. The advice string is now Ui1 ◦Hi.

Once we have the advice, we can append it to another string extracted from X by using a linear
seeded extractor and Ui2 as the seed. Now notice that the string produced from X is different from
the string produced from X ′ with high probability, and they are linearly correlated conditioned on
the fixing of (Ui, U

′
i). Thus we can apply, for example, a known affine non-malleable extractor (the

state-of-the-art affine non-malleable extractor with negligible error only works for high entropy).
However, the known construction of affine non-malleable extractor in [CL17] has super constant
degree. Indeed, even one application of this extractor results in a polynomial of degree larger than
log n, which already defeats our purpose to get a directional affine extractor (we can still get a
directional affine disperser, though).

To solve this problem, we develop new ideas that make use of the special structure ofX ′ = X+a.
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Recall that in our construction, for every block Xi we get a Ui2, which is close to uniform if Xi

is good, and X still has enough entropy conditioned on Xi. Our idea now is to use a seeded non-
malleable extractor snmExt instead, which is an extractor with a uniform random seed, such that
if an adversary tampers with the seed but not the source, then the output of the extractor on the
original inputs is close to uniform given the output on the tampered inputs. By appending the
advice string to Ui2 and getting Ũi = Ui ◦Hi, we have Ũi ̸= Ũ ′i with high probability, and the seed
Ũi has high entropy if Hi has small size, which suffices for the seeded non-malleable extractor as
long as the extractor is strong. Now, if the seeded non-malleable extractor is also linear conditioned
on any fixing of the seed, then we have snmExt(X ′, Ũ ′i) = snmExt(X, Ũ ′i) + snmExt(a, Ũ ′i). Since
snmExt(X, Ũi) is close to uniform given snmExt(X, Ũ ′i), and the extractor is strong (we can fix the
seeds (Ũi, Ũ

′
i)), this implies that snmExt(X, Ũi) is close to uniform given snmExt(X ′, Ũ ′i).

2

Luckily, there are previous constructions of linear seeded non-malleable extractors due to Li
[Li12], which are based on the inner product function. Moreover, this extractor also has the property
that each output bit is a constant degree polynomial of the input bits. Thus everything seems to
work out, except for one problem: the non-malleable extractor in [Li12] only works when the source
has entropy rate > 1/2, but here our goal is to work for any linear (or slightly sub-linear) entropy.
A natural idea would be to use the somewhere condenser (e.g., in [BKS+05, Raz05, Zuc07]) to
boost the entropy rate of X. However, all known condensers of this kind are based on sum-product
theorems, which are non-linear functions, and applying them changes the structure of X ′ = X + a,
which is important for our construction. Another idea is to apply a linear seeded extractor to X
and try all possible seeds. This indeed keeps the structure of X ′ = X + a, but will result in a
poly(n) number of outputs, and combining them together will result in a polynomial of large, super
constant degree.

This motivates another key ingredient in our construction, a new linear somewhere condenser
for affine sources. In short, we construct a linear function which, given any affine source on n bits
with entropy rate 0 < δ ≤ 1/2, outputs poly(1/δ) rows such that each row has n/poly(1/δ) bits,
and at least one row has entropy rate 1/2+β for some absolute constant β > 0. This complements
the sum-product based somewhere condensers, and can be viewed as a separate contribution of our
work. We will explain the construction of this condenser later, but finish the description of our
directional affine extractor here, assuming that we have the linear somewhere condenser.

The rest of the construction roughly goes as follows. We apply the linear somewhere condenser
to the source X to get a constant number of rows, then apply snmExt to each row using Ũi as the
seed. Thus we get a constant number of outputs such that at least one of them is close to uniform
conditioned on the corresponding tampered output. Now we apply an affine correlation breaker
such as those in [Li17, CGL22, CL22] to further break the correlations between different outputs,
and combine these outputs together by taking the XOR. The correlation breaker guarantees that
the final output is close to uniform conditioned on the tampered output. To keep the degree small,
we need to replace all seeded extractors used in the correlation breaker with a constant degree
linear seeded extractor in [Li11]. This keeps the output bits to be constant degree polynomials of
the input bits, and the remaining construction is essentially the same as that in [Li11].

Linear somewhere condenser. We now describe our construction of the linear somewhere con-
denser. This is based on another pseudorandom object known as dimension expander. Informally,
a dimension expander is a set of linear mappings from a vector space Fn to itself, such that for any
linear subspace V ⊂ Fn with small dimension k ≤ n/2, the span of the union of all the images of V

2The actual analysis involves more details since here X is not independent of (Ũi, Ũ
′
i), but the property still holds

due to the affine structure. We omit the details here.
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under the set of linear mappings has dimension at least (1+α)k for some absolute constant α > 0.
Readers familiar with expander graphs can see that this is a linear algebraic analog of expander
graphs. Thus, it is desirable to give explicit constructions of the set of linear mappings which has
as few number of mappings as possible, where this number d is called the degree. Dimension ex-
panders were first introduced by Barak, Impagliazzo, Shpilka, and Wigderson [BISW04], who also
showed the existence of such objects. Later, Bourgain and Yehudayoff [Bou09, BY13] gave explicit
constructions of dimension expanders with degree d = O(1) over any field. Interestingly, as far as
we know, there are no previous applications of dimension expanders in computer science, and they
are mainly studied based on their own interests and connections to other algebraic pseudorandom
objects. Thus our construction can be viewed as one of the first applications of dimension expanders
in computer science.

Given an explicit dimension expander {Ti}i∈[d] where each Ti is a linear mapping, and any affine
source X with entropy rate δ ≤ 1/2, we first construct a basic somewhere condenser as follows.
Divide X equally into X = X1 ◦X2, and our condenser produces 2d + 2 outputs: (X1, X2, {X1 +
Ti(X2)}i∈[d], {Ti(X1)+X2}i∈[d]). We show that at least one output has entropy rate (1+γ)δ for some
constant γ > 0, and we give some intuition below. By the structure of affine sources, one can show
that there exists another affine source X3 independent of X1 such that X2 = X3 +L(X1) for some
linear function L. Let H(X1) = s, H(X3) = r and H(L(X1)) = t, then we have s+r = δn. If either
s or r is small, e.g., s≪ δn/2, then we must have r ≫ δn/2 and thus H(X2) = r+ t ≥ (1+γ)δn/2.
Therefore the entropy rate of X2 is at least (1 + γ)δ. The case of r ≪ δn/2 is similar. Hence, we
only need to consider the case where s ≈ δn/2 and r ≈ δn/2, and notice that we must have either
s ≤ δn/2 or r ≤ δn/2. Furthermore, in this case, t must be small, since otherwise, we would again
have H(X2) = r + t ≥ (1 + γ)δn/2.

For simplicity, assume that s = r = δn/2, and t = 0. Hence both X1 and X2 have entropy rate
δ ≤ 1/2, and they are independent. Without loss of generality, assume the supports of both X1

and X2 are linear subspaces. By the property of the dimension expander, Span(∪i∈[d]Ti(X1)) has
dimension at least (1 +α)δn/2. We now argue that there exists an i ∈ [d] such that the support of
Ti(X1)+X2 has dimension at least (1+α/d)δn/2, which implies that Ti(X1)+X2 has entropy rate
at least (1 + α/d)δ. To see this, assume otherwise, then for any i ∈ [d], any vector in the support
of Ti(X1) + X2 can be expressed as a linear combination of the r = δn/2 basis vectors in the
support of X2 and < (α/d)δn/2 other vectors. This implies that Span(∪i∈[d]Ti(X1)) has dimension
< δn/2 + d · (α/d)δn/2 = (1 + α)δn/2, since any vector in Span(∪i∈[d]Ti(X1)) can be expressed as
a linear combination of the r = δn/2 basis vectors in the support of X2 and < d · (α/d)δn/2 other
vectors. This contradicts the property of the dimension expander.

Thus, in all cases, we get the desired entropy rate boost. Our final somewhere condenser involves
repeated uses of the basic condenser, as in previous works. It is easy to see that the entropy rate
of at least one output will increase to 1/2 + β for some absolute constant β > 0 after O(log(1/δ))
uses of the basic condenser. The number of outputs is, therefore, poly(1/δ) and each output has
n/poly(1/δ) bits. Finally, it is clear that the condenser is a linear function.

Once we have this linear condenser, we can even replace the somewhere condensers used in
[Li11] by the new condenser. This further reduces the degree of the polynomials of the output bits
(since previous somewhere condensers are polynomials instead of linear functions). Therefore we
can push the entropy requirement of our directional affine extractor to be even better than that in

[Li11], from n√
log logn

to cn(log log logn)2

log logn .

We show that a slight modification of our linear condenser also works for general weak random
sources, under the Polynomial Freiman-Ruzsa Theorem. Roughly, the idea is to use a careful anal-
ysis of subsources and collision probability. Specifically, it is known that if the collision probability
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of a distribution is small, then the distribution is close to having high min-entropy. On the other
hand, if the collision probability is large, then (without loss of generality) assuming the distribution
is the uniform distribution over some unknown subset, existing results in additive combinatorics
imply that there is a large subset A in the support of the distribution such that the size of A+ A
is not much larger than A. The Polynomial Freiman-Ruzsa Theorem then implies that there is
another large subset A′ ⊂ A which is “close” to an affine subspace, which roughly reduces the
analysis to the case of affine sources. See section 4 for the details.

AC0 average-case hardness for ROBPs. To show AC0 average-case hardness for ROBPs, we use
a standard observation that if one conditions on an inner node, then the input bits prior to this
node and the input bits after this node are still independent. We then construct an appropriate
extractor in AC0, which we call AC0-Ext, for sources with such a structure. Specifically, given any
ROBP of size s and any constant δ > 0, we can find a cut or anti-chain (a maximal subset of vertices
such that none of which is an ancestor of any other vertex) of size O(s) at roughly depth δn above
the sinks, so that conditioned on the fixing of any vertex in the cut, the input uniform random
string X now becomes two independent weak sources A and B, where A corresponds to the first
part of the program and B corresponds to the second part. Since we don’t know the order of bits
queried by the ROBP, the bits of the two sources are interleaved, and we view X = A+B. Using
a standard averaging argument, one can show that with high probability, the following properties
are satisfied: (1) A and B are supported on disjoint subsets of input bits; (2) A has min-entropy
roughly (1−δ)n− log s and B has min-entropy δn; and (3) B is an oblivious bit-fixing source, which
is obtained by fixing some unknown bits in a uniform random string. If s ≤ 2(1−2δ)n then both A
and B have entropy rate roughly δ. Now, our goal is to construct an extractor in AC0 for sources
with this structure, that is also strong in B. This means that even if we condition on the fixing
of the vertex in the cut and B, the output of the extractor is still close to uniform. On the other
hand, the output of the ROBP is completely determined by the vertex and B. Thus our extractor
is average-case hard for ROBPs of size up to 2(1−2δ)n.

As usual, the function AC0-Ext will be compositions of different, more basic extractors as build-
ing blocks. Thus we need all these building blocks to be computable in AC0. Here, we leverage the
constructions from two previous works on extractors in AC0: (1) the AC0-computable extractors
AC0-BFExt for bit-fixing source by Cheng and Li [CL18], and (2) the AC0-computable strong linear
seeded extractors AC0-LExt by Papakonstantinou, Woodruff, and Yang [PWY16].

Now we can describe our main idea of construction. Divide X into t = O(1/δ) blocks, and by
an averaging argument, there exists a block Bg of B with entropy rate Ω(δ). Now for the block
Xg = Ag +Bg, we can fix Ag so that Xg is an oblivious bit-fixing source of entropy rate Ω(δ) and
is a deterministic function of B. We next fix the bits from B outside of the g-th block so that the
source X outside of Xg is a deterministic function of A and thus independent of Xg. Moreover, A
and X still have enough entropy left.

Applying the above-mentioned extractor AC0-BFExt for bit-fixing sources to each block Xi, we
convert X into a somewhere random source Y = Y1 ◦ · · · ◦ Yt where the row Yg is a deterministic
function of Bg and close to uniform, while all the other rows are deterministic functions of A. At
this point, we can simply take the XOR of the Yi’s to obtain a close-to-uniform output. However, as
mentioned before, we need the extractor to be strong in B and this simple approach is not sufficient.
Instead, we fix all the outputs produced by AC0-BFExt for Xi where i ̸= g. Note that these are all
deterministic functions of A. Thus conditioned on this fixing, Y becomes a deterministic function
of B, which is independent of A. Moreover, as long as the output size of AC0-BFExt is not too large,
A still has enough entropy left. Since X = A + B, we can now apply a strong t-affine correlation
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breaker as in [Li17, CL22] with each Yi as the seed to extract from X a random string, and take the
XOR of them. The property of the correlation breaker guarantees that the string produced from Yg
and X is close to uniform conditioned on all the other outputs and Y . Hence the XOR is also close
to uniform conditioned on B. To ensure the correlation breaker is computable in AC0, we replace all
the strong (linear) seeded extractors in the known constructions of t-affine correlation breakers with
the above-mentioned AC0-LExt. Since t = O(1/δ) is a constant, the correlation breaker involves a
constant number of compositions of AC0-LExt, which is still in AC0.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we give some preliminary knowledge and
some primitives from prior works. In Section 3 we describe our construction of linear somewhere
random condenser for affine sources. Section 4 generalizes the construction to general weak sources
under the Polynomial Freiman-Ruzsa Theorem. We give our construction of directional affine
extractors in Section 5, and an AC0 computable extractor against ROBP in Section 6. We present
some open problems in Section 7. In the appendix we show that depth-3 AC0[⊕] circuits can
compute optimal directional affine extractors, and give some omitted proofs.

2 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instan-
tiations. Let s, t be two integers, {V 1

1 , V
2
1 , · · · , V t

1 , V
1
2 , V

2
2 , · · · , V t

2 , · · · , V 1
s , V

2
s , · · · , V t

s } be a set of

random variables. We use V
[t]
i to denote the subset {V 1

i , · · · , V t
i } and V j

[s] to denote the subset

{V j
1 , · · · , V

j
s }. We use V

[t]
[s] as a shorthand for the whole set of random variables. We also use i[t] to

denote the set of indices {i1, i2, · · · , it}. Let |S| denote the cardinality of the set S. For ℓ a positive
integer, Uℓ denotes the uniform distribution on {0, 1}ℓ. When used as a component in a vector,
each Uℓ is assumed independent of the other components. Let Fq denote the finite field of size q.
All logarithms are to the base 2.

2.1 Probability Distributions and Entropy

Definition 8 (Statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z) := max
T⊆S

(|W (T )− Z(T )|) = 1

2

∑
s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. Let V also be a distribution
on the set S. We sometimes use W ≈ε Z | V as a shorthand for (W,V ) ≈ε (Z, V ). We will use
this two notations interchangeably throughout the paper. For a distribution D on a set S and a
function h : S → T , let h(D) denote the distribution on T induced by choosing x according to D
and outputting h(x).

Lemma 7. For any function α and two random variables A,B, we have ∆(α(A), α(B)) ≤ ∆(A,B).

Definition 9 (Min-entropy). The min-entropy of a random variable X is defined as

H∞(X) = min
x∈Supp(X)

{− logPr[X = x]} .

For a random variable X ∈ {0, 1}n, we say it is an (n, k)-source if H∞(X) ≥ k. The entropy
rate of X is defined as H∞(X)/n.
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2.2 Somewhere Random Sources and Extractors

Definition 10 (Somewhere random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 11. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such that
some Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-
k-sources.

Definition 12. A function C : {0, 1}n×{0, 1}d → {0, 1}m is a (k → ℓ, ε)-condenser if for every k-
source X, C(X,Ud) is ε-close to some ℓ-source. When convenient, we call C a rate-(k/n→ ℓ/m, ε)-
condenser.

Definition 13. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → ℓ, ε)-somewhere-condenser
if for every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to a somewhere-ℓ-source. When
convenient, we call C a rate-(k/n→ ℓ/m, ε)-somewhere-condenser.

Definition 14 (Seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

2.3 The Structure of Affine Sources

In this paper, affine sources encompass uniform distributions over linear subspaces and by affine
functions we sometimes mean affine-linear functions.

Definition 15 (Affine source). Let Fq be the finite field with q elements. Denote by Fnq the n-
dimensional vector space over Fq. A distribution X over Fnq is an (n, k)q affine source if there
exist linearly independent vectors a1, · · · , ak ∈ Fnq and another vector b ∈ Fn1 s.t. X is sampled by
choosing x1, · · · , xk ∈ F uniformly and independently and computing

X =
k∑

i=1

xiai + b.

The min-entropy of affine source coincides with its standard Shannon entropy, we simply use
H(X) to stand for the entropy of an affine source X.

The following lemma is a slight generalization of its version in [Li11], where we show that L
can be an affine function instead of just a linear function. We also prove that the entropy of X is
constant conditioned on any fixing of L(X). The readers are referred to Appendix B for a proof.

Lemma 8 (Affine conditioning [Li11]). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any affine function. Then there exist independent affine sources A,B such that:

• X = A+B

• There exists c ∈ {0, 1}m, such that for every b ∈ Supp(B), it holds that L(b) = c.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that
A = L−1(L(A)).

• H(X |L(X)=ℓ) = H(B) for all ℓ ∈ Supp(L(X)).
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The following definition is a specialization of conditional min-entropy for affine sources. It is
well-defined by Lemma 8.

Definition 16 (Conditional min-entropy for affine sources). Let W and Z be two affine sources.
Define

H(W | Z) = H(W |Z=z), ∀z ∈ Supp(Z).

Lemma 9. Let X,Y, Z be affine sources. Then H(X | (Y,Z)) ≥ H(X | Z)− log(Supp(Y )).

We will also need the following lemma from [Li11] when we do sequential conditioning on blocks
of an affine source or argue about the total entropy of blocks of an affine source.

Lemma 10 (Affine entropy argument [Li11]). Let X be any affine source on {0, 1}n. Divide X
into t arbitrary blocks X = X1 ◦X2 ◦ · · · ◦ Xt. Then there exists positive integers k1, · · · , kt such
that,

• ∀j, 1 ≤ j ≤ t and ∀(x1, · · · , xj−1) ∈ Supp(X1, · · · , Xj−1), H(Xj |X1=x1,··· ,Xj−1=xj−1) = kj;

•
∑t

i=1 ki = H(X).

2.4 Average Conditional Min-Entropy and Average-Case Seeded Extractors

Definition 17 (Average conditional min-entropy). The average conditional min-entropy is defined
as

H̃∞(X |W ) = − log
(
Ew←W

[
max
x

Pr[X = x |W = w]
])

= − log
(
Ew←W

[
2−H∞(X|W=w)

])
.

Lemma 11 ([DORS08]). For any s > 0, Prw←W [H∞(X |W = w) ≥ H̃∞(X |W )− s] ≥ 1− 2−s.

Lemma 12 ([DORS08]). If a random variable B has at most 2ℓ possible values, then H̃∞(A | B) ≥
H∞(A)− ℓ.

Lemma 13 ([DORS08]). For any δ > 0, if Ext is a (k, ε) extractor, then it is also a (k+log(1/δ), ε+
δ) average case extractor.

2.5 Alternating Extraction and Independence Merging

The following techniques underpin the construction of correlation breakers.

Definition 18 (L-alternating extraction). Let W be an (nw, kw)-source and (Q1, · · · , QL) be L
(nq, kq)-sources. Let Extq,Extw be strong seeded extractors that extract s bits from sources with
min-entropy k with error ε and seed length s. Let S1 = Slice(Q1, d) for some appropriate length
d, R1 = Extw(W,S1), S2 = Extq(Q2, R1), · · · , RL−1 = Extw(W,Sℓ−1), SL = Extq(QL, RL−1), then
L-alternating extraction(Q1, · · · , QL,W ) = SL.

Lemma 14 (Look-ahead extractor [CGL16]). Let W be an (nw, kw)-source and W ′ be a random
variable on {0, 1}nw that is arbitrarily correlated with W . Let Y = (Q,S1) such that Q is a
(nq, kq)-source, S1 is a uniform string on s bits, and Y ′ = (Q′, S′1) be a random variable arbitrarily
correlated with Y , where Q′ and S′1 are random variables on nq bits and s bits respectively. Let
Extq,Extw be strong seeded extractors that extract s bits from sources with min-entropy k with error
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ε and seed length s. Suppose (Y, Y ′) is independent of (W,W ′), and kw, kq ≥ k + 2ℓs+ 2 log(1/ε).
Let laExt be the ℓ round look-ahead extractor using Extq,Extw, and (R1, · · · , Rℓ) = laExtℓ(W,Y ),
(R′1, · · · , R′ℓ) = laExtℓ(W

′, Y ′). Then for any 0 ≤ j ≤ ℓ− 1, we have

Rj+1 ≈O(ℓε) Us | (Y, Y ′, R0, R
′
0, · · · , Rj , R

′
j).

The following lemma captures an essential argument for the flip-flop and NIPM constructions,
which are components of correlation breakers.

Lemma 15 (Independence-merging lemma [CGL22]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be any
(k, ε)-strong seeded extractor, X,X [t] ∈ {0, 1}n, Y, Y [t] ∈ {0, 1}d such that X,X [t] are independent
with Y, Y [t] ∈ {0, 1}d, W = Ext(X,Y ) and W j = Ext(Xj , Y j) for every j ∈ [t]. Suppose there exists
S, T ⊆ [t] such that

• (Y, Y S) ≈δ (Ud, Y
S);

• H̃∞(X | XT , Z) ≥ k + tm+ log(1/ε).

Then

W ≈2ε+δ Um | (WS∪T , Y, Y [t]).

2.6 ε-Biased Space and XOR Lemmas

The tools in this subsection are utilized in [Li11] for their affine disperser and extractor construc-
tions. We also adopt these techniques in our constructions of directional affine dispersers and
extractors.

Definition 19 (ε-biased space). A random variable Z over {0, 1} is ε-biased if |Pr[Z = 0]−
Pr[Z = 1]| ≤ ε. A sequence of 0− 1 random variables Z1, · · · , Zm is ε-biased for linear tests if for
any nonempty set S ⊂ [m], the random variable ZS =

⊕
i∈S Zi is ε-biased.

Lemma 16 ([Vaz86]). Let Z1, · · · , Zm be 0− 1 random variables that are ε-biased for linear tests.
Then the distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.

Definition 20. For two functions f, p : {0, 1}n → {0, 1}, their correlation over the uniform distri-
bution is defined as

Cor(f, p) =
∣∣∣Prx[f(x) = p(x)]−Prx[f(x) ̸= p(x)]

∣∣∣,
where the probability is over the uniform distribution. For a class C of functions, we denote by
Cor(f, C) the maximum of Cor(f, p) over all functions p ∈ C whose domain is {0, 1}n.

Theorem 17 (XOR lemma for polynomials over F2 [VW08, BKS+10]). Let Pd stand for the class
of all polynomials of degree at most d over F2. Let f : {0, 1}n → {0, 1} be a function such that
Cor(f, Pd) ≤ 1− 2−d and f⊕m be the XOR of the value of f on m independent inputs. Then

Cor(f⊕m, Pd) ≤ exp(−Ω(m/(4d · d))).
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3 Linear Somewhere Condenser for Affine Sources

In this section we provide an explicit construction of a linear somewhere condenser for affine sources,
or more conveniently, an affine somewhere condenser where each output is a linear function of the
input. We begin with the definition.

Definition 21. For any 0 < δ < γ < 1, a function SCond : Fn2 → (Fm2 )ℓ is a (δ, γ) affine somewhere
condenser, if it satisfies the following property: for any affine source X over Fn2 with entropy δn,
let (Y1, · · · , Yℓ) = SCond(X) ∈ (Fm2 )ℓ, then there exists at least one i ∈ [ℓ] such that Yi is an affine
source over Fm2 with entropy at least γm.

We will prove the following theorem.

Theorem 18. There exists a constant β > 0 such that for any 0 < δ ≤ 1/2, there is an explicit
(δ, 1/2 + β) affine somewhere condenser SCond : Fn2 → (Fm2 )t, where t = poly(1/δ) and m =
n/poly(1/δ). Moreover, SCond is a linear function.

To prove the theorem we will use the following object known as a dimension expander.

Definition 22 (Dimension expander [BISW04, DS11]). Let F be a field and let T1, · · · , Td : Fn → Fn

be linear mappings. The set T = {Ti}di=1 is an α-dimension expander with degree d, if for every
subspace V ⊂ Fn of dimension at most n/2 we have

dim

(
d∑

i=1

Ti(V )

)
≥ (1 + α) dim(V ).

We say that T is explicit if there exists a poly(n)-time algorithm that, on input n, outputs T .

Theorem 19 ([Bou09, BY13]). There exist absolute constants d ∈ N and 0 < α < 1 such that over
any field F, there exists an explicit family of α-dimension expanders with degree d.

Given the above theorem we first provide a basic affine condenser:

Algorithm 1 BasicCond(x)

Input: x ∈ Fn2 — an n bit string.
Output: z ∈ (Fm2 )2d+2 — an array of 2d+ 2 bit strings with length m, where m = n/2 and d is
the constant in Theorem 19.

Sub-Routines and Parameters:
Let T = {Ti}di=1 be the α-dimension expander given by Theorem 19.

Divide x into 2 blocks x = x1 ◦ x2 where each block has n/2 bits.
Let z = z1 ◦ z2 ◦ · · · ◦ z2d+2, where z1 = x1, z2 = x2, and z2i+1 = x1 +Ti(x2), z2i+2 = x2 +Ti(x1),
for any i ∈ [d].

We will prove the following lemma.

Lemma 20. For any 0 < δ ≤ 1/2, BasicCond is a (δ, (1+ α
4d)δ) affine somewhere condenser, where

α, d are the constants in Theorem 19.
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Proof. Let X be any affine source over Fn2 with entropy k = δn. Without loss of generality, assume
the support of X is a linear subspace V (if not, we can do the analysis for the corresponding linear
subspace, and then add the affine shift, since we are always dealing with linear functions here). We
start by giving a set of k base vectors for V . For this, consider the linear subspace W ⊆ V s.t. the
first n/2 bits of W are 0. Assume dim(W ) = r and let b1, · · · , br be a basis for W . Next, we extend
these vectors to b1, · · · , br, c1, · · · , cs which form a complete basis for V , such that s+ r = k.

Note that the vectors formed by the first n/2 bits of {ci}si=1 are also linearly independent,
otherwise some linear combination of them will be in W . Let {c̄i}si=1 be the first n/2 bits of
{ci}si=1, and {c̃i}si=1 be the second n/2 bits of {ci}si=1. Similarly, let {b̃i}ri=1 be the second n/2 bits
of {bi}ri=1 (recall the first n/2 bits are 0).

Now, let Q ⊆ [s] be such that ({b̃i}ri=1, {c̃i}i∈Q) form a basis of the supporting linear subspace
of X2. Let C = span({c̃i}i∈Q). The source X is sampled by picking a uniform random vector
Y = (Y1, · · · , Yk) ∈ Fk2 and computing

s∑
i=1

Yici +
r∑

j=1

Ys+jbj =
s∑

i=1

Yi(c̄i, c̃i) +
r∑

j=1

Ys+j(0, b̃j).

Thus the first n/2 bits are given by
∑s

i=1 Yic̄i, while the second n/2 bits are given by

s∑
i=1

Yic̃i +
r∑

j=1

Ys+j b̃j =
∑
i∈Q

Yic̃i +
∑

i∈[s]\Q

Yic̃i +
r∑

j=1

Ys+j b̃j .

Note that for any i ∈ [s] \ Q, c̃i can be expressed as a linear combination of ({b̃i}ri=1, {c̃i}i∈Q).
Let Y = ({Yi}i∈[s]\Q), then the above can be written as

∑
i∈Q

(Yi + Li(Y ))c̃i +

r∑
j=1

(Ys+j + Lj(Y ))b̃j ,

where each Li or Lj is a linear function from F
s−|Q|
2 to F2.

It is easy to see that the k random bits ({Yi}si=1, {Ys+j+Lj(Y )}rj=1) are independent and uniform
(in particular, any non-trivial parity of these bits is a uniform random bit). Similarly, the random
bits ({Yi+Li(Y )}i∈Q, {Ys+j+Lj(Y )}rj=1) are also independent and uniform. Let A = span({c̄i}si=1),

B = span({b̃i}ri=1), and C = span({c̃i}i∈Q). So dim(A) = s, dim(B) = r, and let dim(C) = |Q| = t.
By the above calculation, we have H(X1) = dim(A) = s, H(X2) = dim(B) + dim(C) = r + t.
Furthermore, let X3 =

∑r
j=1(Ys+j+Lj(Y ))b̃j and X4 =

∑
i∈Q(Yi+Li(Y ))c̃i, then X3 is the uniform

distribution over B and X4 is the uniform distribution over C. Thus H(X3) = r and H(X4) = t.
We know X1 =

∑s
i=1 Yic̄i. Thus X1 and X3 are independent, while X4 is a deterministic function of

X1 (hence also independent of X3). Note that X2 = X3 +X4, and X = (X1, X2) = (X1, X3 +X4).
Note that s + r = k = δn. If s ≥ (12 + α

8d)k, then H(X1) = s ≥ (12 + α
8d)k = (1 + α

4d)δ(n/2).
Similarly, if r ≥ (12 + α

8d)k, then H(X2) = r + t ≥ r ≥ (1 + α
4d)δ(n/2). In either case, we are done.

Otherwise, we must have s < (12 +
α
8d)k and r < (12 +

α
8d)k, which in turn implies that s > (12 −

α
8d)k

and r > (12 −
α
8d)k. Now if t ≥ α

4dk, then H(X2) = r + t > (12 + α
8d)k = (1 + α

4d)δ(n/2), and again
we are done.

The only case left is when (12 −
α
8d)k < s, r < (12 + α

8d)k and t < α
4dk. Since s + r = k, one of

them must be at most k/2 = δn/2. We have two cases.

Case 1. (12 −
α
8d)k < s ≤ k/2. In this case, dim(A) = s ≤ δ(n/2) ≤ (1/2) · (n/2). Consider

the d linear mappings {Ti}di=1 given by the dimension expander of Theorem 19. Note that
(1 + α)s > (1 + α)(12 −

α
8d)k > (12 + α

8d)k > r. We have the following claim.
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Claim 21. There exists an i ∈ [d] such that dim(Ti(A) +B) ≥ r + (1+α)s−r
d .

To see this, suppose for the sake of contradiction that for all i ∈ [d], we have dim(Ti(A)+B) <

r + (1+α)s−r
d . Then

dim

(
d∑

i=1

Ti(A)

)
< r + d · (1 + α)s− r

d
= (1 + α)s,

since any vector in
∑d

i=1 Ti(A) can be expressed by a linear combination of the r basis vectors

in B, and another < d · (1+α)s−r
d vectors, where each Ti(A) contributes < (1+α)s−r

d vectors.

Now for this particular i ∈ [d], since X1 and X3 are independent, we must have

H(Ti(X1) +X3) ≥ r +
(1 + α)s− r

d
=

1 + α

d
k +

d− 2− α

d
r ≥

(
1

2
+

α

2d

)
k,

as long as d ≥ 3.

Note that Ti(X1) +X2 = Ti(X1) +X3 +X4, and X4 is a deterministic function of X1. Since
H(X4) = t < α

4dk, we can fix X4 and conditioned on any such fixing,

H(Ti(X1) +X2) ≥
(
1

2
+

α

2d

)
k − t >

(
1

2
+

α

2d

)
k − α

4d
k =

(
1

2
+

α

4d

)
k.

Therefore, in the end we still have H(Ti(X1) +X2) > (12 + α
4d)k = (1 + α

2d)δ(n/2).

Case 2. (12 −
α
8d)k < r ≤ k/2. The proof of this case is similar, with a slight modification.

Specifically, we have dim(B) = r ≤ δ(n/2) ≤ (1/2) · (n/2). Consider the d linear mappings
{Ti}di=1 given by the dimension expander of Theorem 19. By exactly the same argument as
before, we have the following claim.

Claim 22. There exists an i ∈ [d] such that dim(A+ Ti(B)) ≥ s+ (1+α)r−s
d .

Now again, since X1 and X3 are independent, we must have

H(X1 + Ti(X3)) ≥ s+
(1 + α)r − s

d
=

1 + α

d
k +

d− 2− α

d
s ≥

(
1

2
+

α

2d

)
k,

as long as d ≥ 3.

Note that X1 + Ti(X2) = X1 + Ti(X3) + Ti(X4), and X4 is a deterministic function of X1.
Since H(X4) = t < α

4dk, we can fix X4 and conditioned on any such fixing,

H(X1 + Ti(X2)) ≥
(
1

2
+

α

2d

)
k − t >

(
1

2
+

α

2d

)
k − α

4d
k =

(
1

2
+

α

4d

)
k.

Therefore, in the end we still have H(X1 + Ti(X2)) > (12 + α
4d)k = (1 + α

2d)δ(n/2).
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We can now give our main condenser, which involves repeated use of the basic condenser.

Algorithm 2 SCond(x)

Input: x ∈ Fn2 — an n bit string; 0 < δ ≤ 1/2, a given parameter.
Output: z ∈ (Fm2 )ℓ — a matrix of ℓ bit strings with length m, where m = n/poly(1/δ) and
ℓ = poly(1/δ).

Sub-Routines and Parameters:
Let BasicCond be the basic condenser given by Algorithm 1.

Set x0 = x and let i = 0. Initially xi has only n0 = 1 row.

1. Repeat the following step for some h = O(log(1/δ)) steps: For each j and the j’th row
xij in xi, apply BasicCond(xij) to get 2d + 2 rows. Concatenate them to get xi+1 with
ni+1 = ni · (2d+ 2) rows. Set i← i+ 1.

2. Let z = xh.

We can now prove our main theorem.

Proof of Theorem 18. We show that Algorithm 2 gives such an affine somewhere condenser. By
Lemma 20, for any affine source X with H(x) = δn for some 0 < δ ≤ 1/2, after some h′ =
O(log(1/δ)) steps at least one of the rows xh

′
has entropy at least n′/2. Without loss of generality

assume this row has entropy exactly n′/2 (otherwise we can first fix some basis vectors in the
support linear subspace and thus reduce the row to a convex combination of affine sources with
entropy exactly n′/2). Then after another step of applying BasicCond, one of the output rows will
have entropy rate at least 1/2(1 + α

4d) =
1
2 + α

8d .
It’s easy to see that SCond is a linear function, and thus each row in the final output is an

affine source. Furthermore, since we divide each row into 2 equal blocks in every step and obtain
2d+2 new rows from them, the final length of each row is m = n/poly(1/δ) and we have altogether
ℓ = poly(1/δ) rows.

4 Linear Somewhere Condenser for General Weak Sources

We next show that our linear somewhere condenser also works for general weak random sources.

4.1 Some Useful Results

Definition 23. The collision probability of a distribution D is defined as cp(D) = Prx,y←RD[x = y].

Definition 24. We say a distribution X is a convex combination of distributions X1, · · · ,Xm if
there exist numbers p1, · · · , pm ∈ [0, 1] such that

∑
i pi = 1 and the random variable X is equal to∑

i piXi.

Lemma 23 ([BISW04]). Let X be a distribution such that cp(X ) ≤ 1
KL . Then X is of statistical

distance 1√
L
from having min-entropy at least logK.

We need the following results from additive combinatorics.
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Lemma 24 (Plűnnecke-Ruzsa [TV06]). Let A,B be finite subsets in an additive group G. Then

|A+A| ≤ |A+B|4

|A||B|2
.

Lemma 25 (Balog-Szemeredi-Gowers [BS94, Gow98]). Let A,B be finite subsets of an additive
group G and let |A|1−ρ1 ≤ |B| ≤ |A|1+ρ1 . If cp(A + B) ≥ |A|−(1+ρ2−ρ1), then there exist subsets
A′ ⊆ A,B′ ⊆ B such that |A′| ≥ |A|1−10ρ2 , |B′| ≥ |B|1−10ρ2 , and |A′ +B′| ≤ |A|1+ρ1+10ρ2 .

Theorem 26 (Polynomial Freiman-Ruzsa Theorem in Fn2 [GGMT23]). Let A ⊂ Fn2 be a set such
that |A+A| ≤M |A|. Then there exists a subset A′ ⊂ A of size |A′| ≥M−c|A| such that |Span(A′)| ≤
M c|A|, where c ≥ 0 is an absolute constant.

4.2 The Construction

We generalize our affine somewhere condenser as follows.

Algorithm 3 BasicGCond(x)

Input: x ∈ {0, 1}n — an n bit string.
Output: z ∈ ({0, 1}m)2d+3 — an array of 2d+ 3 bit strings with length m, where m = n/2 and
d is the constant in Theorem 19.

Sub-Routines and Parameters:
Let T = {Ti}di=1 be the α-dimension expander given by Theorem 19.

Divide x into 2 blocks x = x1 ◦ x2 where each block has n/2 bits.
Let z = z1 ◦ z2 ◦ · · · ◦ z2d+3, where z1 = x1, z2 = x2, and z2i+1 = x1 +Ti(x2), z2i+2 = x2 +Ti(x1),
for any i ∈ [d]. Finally let z2d+3 = x1+x2. Here all additions are viewing the inputs as elements
in the field Fm2 .

We have the following lemma.

Lemma 27. For any 0 < δ ≤ 1/2, BasicGCond is a rate (δ → (1 + Ω(αd ))δ, 2
−Ω(δn)) somewhere

condenser, where α, d are the constants in Theorem 19.

To prove the lemma we first prove the following lemmas.

Lemma 28. For any constant c > 0 there exists a constant ε = Ω(αd ) such that the following holds.

Let A,B be finite subsets of Fn2 . For any K ≤ 2n/4, assume K1−cε ≤ |A|, |B| ≤ K1+cε. If cp(A +
B) ≥ K−(1+2ε), then there exist subsets Ã ⊆ A, B̃ ⊆ B such that |Ã| ≥ K1−O(ε), |B̃| ≥ K1−O(ε),
|Span(Ã)| ≤ K1+O(ε), |Span(B̃)| ≤ K1+O(ε), and at least one row in the output of BasicCond(A◦B)
has min-entropy (1 + Ω(ε)) logK, where A,B are the uniform and independent distributions over
Ã, B̃ respectively.

Proof. If cp(A + B) ≥ K−(1+2ε), by Lemma 25 there exist subsets A′ ⊆ A,B′ ⊆ B such that
|A′| ≥ |A|1−O(ε), |B′| ≥ |B|1−O(ε), and |A′ + B′| ≤ |A|1+O(ε) = K1+O(ε). Then, by Lemma 24, we

have |A′ +A′| ≤ |A
′+B′|4
|A′||B′|2 ≤ K1+O(ε). Similarly we also have |B′ +B′| ≤ K1+O(ε).

Next, by Theorem 26, there exists a subset Ã ⊂ A′ of size |Ã| ≥ K−O(ε)|A′| = K1−O(ε) such
that |Span(Ã)| ≤ KO(ε)|A′| = K1+O(ε). Similarly there also exists such a subset B̃ ⊂ B′ with the
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same property. Now let A′,B′ be the uniform and independent distributions over Span(Ã),Span(B̃)
respectively. Note that A′,B′ are both affine sources and hence A′ ◦ B′ is also an affine source with
entropy ≥ log |Ã| + log |B̃| = (1 − O(ε))2 logK. Thus, without loss of generality we can view it
as an affine source with entropy exactly (1 − O(ε))2 logK < n/2. Now by Lemma 20, at least
one row in the output of BasicCond(A′ ◦ B′) has entropy (1 + α

4d)(1 − O(ε)) logK. Note that

|Ã||B̃| ≥ (|Span(Ã)||Span(B̃)|)(1−O(ε)). Thus the same row in the output of BasicCond(A ◦ B) has
min-entropy at least (1 + α

4d)(1 − O(ε)) logK − O(ε) logK = (1 + Ω(ε)) logK, as long as ε = γ α
4d

for a sufficiently small constant γ > 0.

Lemma 29. For any constant c > 0 there exists a constant ε = Ω(αd ) such that the following

holds. Let A,B be finite subsets of Fn2 . For any K ≤ 2n/4, assume K1−cε ≤ |A|, |B| ≤ K1+cε

and |Span(B)| ≤ K1+O(ε). If cp(A + B) ≥ K−(1+2ε), then there exists a subset Ã ⊆ A such that
|Ã| ≥ K1−O(ε), |Span(Ã)| ≤ K1+O(ε), and at least one row in the output of BasicCond(A ◦ B) has
min-entropy (1 +Ω(ε)) logK, where A,B are the uniform and independent distributions over Ã, B
respectively.

Proof. The proof is exactly the same as the previous lemma, except in the second paragraph we
can replace the set B̃ with B directly.

We can now prove the following lemma.

Lemma 30. There exists a constant ε = Ω(αd ) such that the following holds. Let A,B be finite

subsets of Fn2 . For any K ≤ 2n/4, assume K1−ε ≤ |A|, |B| ≤ K1+ε. Let X,Y be the uniform and
independent distributions over A,B respectively. Then BasicGCond(X ◦ Y ) is K−Ω(ε)-close to a
somewhere-(1 + Ω(ε)) logK source. In particular, X ◦ Y can be divided into disjoint subsources,
such that for each subsource, either (1) the probability mass is at most 2K−ε, or (2) the probability
mass is at least K−O(ε), and the output of BasicGCond on the subsource is K−ε-close to being an
elementary somewhere (1 + Ω(ε)) logK source.

Proof. We repeatedly apply Lemma 28 and Lemma 29, and dividing A × B into disjoint subsets
as follows. First note that if cp(A + B) ≤ K−(1+2ε), then by Lemma 23, X + Y is K−ε/2-close to
having min-entropy (1 + ε) logK. Otherwise, by Lemma 28, there exist subsets Ã ⊆ A, B̃ ⊆ B
such that |Ã| ≥ K1−O(ε), |B̃| ≥ K1−O(ε), |Span(Ã)| ≤ K1+O(ε), |Span(B̃)| ≤ K1+O(ε), and at least
one row in the output of BasicCond(A ◦ B) has min-entropy (1 + Ω(ε)) logK, where A,B are the
uniform and independent distributions over Ã, B̃ respectively.

Now consider the set A1 = A \ Ã and B1 = B \ B̃. If |A1| ≤ K1−2ε and |B1| ≤ K1−2ε, then
the total probability mass in X ◦ Y corresponding to elements in (A × B) \ (Ã × B̃) is at most
|A1||B|+|A||B1|

|A||B| ≤ 2K−ε, and we are done.

Otherwise, consider the following three sets: Ã × B1, A1 × B̃, and A1 × B1. Note that these
are disjoint subsets whose union equals (A×B) \ (Ã× B̃). We have several cases.

Case 1. Only one of |A1| and |B1| has size larger than K1−2ε. Without loss of generality assume
|B1| ≤ K1−2ε. Note that in this case the total probability mass in X ◦ Y corresponding to

elements in (Ã×B1) ∪ (A1 ×B1) = A×B1 is at most |A||B
1|

|A||B| ≤ K−ε.

For A × B̃, we repeatedly apply Lemma 29. Initially let A∗ = A. As long as |A∗| ≥ K1−2ε,
if cp(A∗ + B̃) ≤ K−(1+2ε), then again by Lemma 23, the output of the sum of the random
variables corresponding to the uniform and independent distributions over A∗ and B̃ will
be K−ε/2-close to having min-entropy (1 + ε) logK, and we stop here. Otherwise we use
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Lemma 29 to find a subset Ã ⊆ A∗ such that |Ã| ≥ K1−O(ε), |Span(Ã)| ≤ K1+O(ε), and at
least one row in the output of BasicCond(A◦B) has min-entropy (1+Ω(ε)) logK, where A,B
are the uniform and independent distributions over Ã, B̃ respectively. We then remove Ã
from A∗ and repeat. The process ends when |A∗| < K1−2ε.

Thus, altogether, we have divided A × B into disjoint subsets, or equivalently, X ◦ Y into
disjoint subsources, such that for each subsource, either the probability mass is at most
K−ε, or the output of BasicGCond on the subsource is K−ε-close to being a somewhere
(1 + Ω(ε)) logK source.

Case 2. |A1| > K1−2ε and |B1| > K1−2ε. We first apply the argument in Case 1 to Ã × B1 and
A1 × B̃. Then we consider A1 × B1. This is the same situation as when we start. Namely,
if cp(A1 + B1) ≤ K−(1+2ε), then by Lemma 23 we are done. Otherwise by Lemma 28, there

exist subsets Ã1 ⊆ A1, B̃1 ⊆ B1 such that |Ã1| ≥ K1−O(ε), |B̃1| ≥ K1−O(ε), |Span(Ã1)| ≤
K1+O(ε), |Span(B̃)| ≤ K1+O(ε), and at least one row in the output of BasicCond(A1 ◦ B1) has
min-entropy (1 + Ω(ε)) logK, where A1,B1 are the uniform and independent distributions

over Ã1, B̃1 respectively. We can therefore continue the analysis as before.

Combining the two cases, eventually we have divided X ◦ Y into disjoint subsources, such that
for each subsource, either (1) the probability mass is at most 2K−ε, or (2) the output of BasicGCond
on the subsource is K−ε-close to being a somewhere (1 + Ω(ε)) logK source.

Notice that when a subsource satisfies (2), its probability mass is always at least K1−O(ε) ·
K1−O(ε)/K2(1+ε) = K−O(ε).

We can now prove Lemma 27.

Proof of Lemma 27. Given an (n, δn) source X with 0 < δ ≤ 1/2, and X = X1 ◦ X2, without
loss of generality we can assume that X is the uniform distribution over a set S ⊆ {0, 1}n with
|S| = 2δn. We first pick a constant parameter λ > 0 to be chosen later. For i ∈ [2] define
Hi = {y ∈ {0, 1}m : Pr[Xi = y] ≥ 2−(1+λ)δm}, which corresponds to the heavy elements in Xi.
Notice that this implies for every i, |Hi| ≤ 2(1+λ)δm. Let τ = 2−βδm for some constant β > 0 to be
chosen later. We define the following sets.

1. S′ = {x ∈ S : ∃i, xi /∈ Hi}.

2. For any x ∈ S′, define I(x) to be the smallest i such that xi /∈ Hi, and Ti = {x ∈ S′, I(x) = i}.
Let B = {i ∈ [2] : |Ti| < 2(1−β)δm}, and define S̃ = S′ \(∪i∈BTi). Note that |∪i∈B Ti| ≤ 2τ |S|.

3. S′′ = {x ∈ S : ∀i, xi ∈ Hi} = S \ S′.

Note that for any x ∈ S̃, we have I(x) /∈ B. Let X̃ be the uniform distribution over S̃. For

any i ∈ [2] \ B, and any y ∈ {0, 1}m, conditioned on I(X̃) = i, we have Pr[X̃i = y] ≤ Pr[Xi=y]
2−βδm ≤

2−(1+λ−β)δm. Thus as long as β ≤ λ/2, X̃i has min-entropy at least (1 + λ/2)δm. Hence X̃ is an
elementary somewhere-(1 + λ/2)δm source.

We now have two cases.

Case 1. Pr[X ∈ S′] ≥ 1− τ . In this case, notice that X̃ is 2τ + τ = 3τ -close to X, thus we are
done.
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Case 2. Pr[X ∈ S′′] ≥ τ . In this case, notice that |S′′| ≥ τ |S| = 2(2−β)δm. Also, S′′ is a subset
of H1 ×H2, so

|H1 ×H2| ≥ |S′′| ≥ 2(2−β)δm.

However, for each i ∈ [2] we have |Hi| ≤ 2(1+λ)δm, and thus for each i ∈ [2] we also have

|Hi| ≥ 2(2−β)δm/2(1+λ)δm = 2(1−β−λ)δm.

We now consider the source (Y1, Y2) where each Yi is the independent uniform distribution over
Hi. We will apply Lemma 30 by setting K = 2δm ≤ 2n/4, and ε ≥ 2λ. Notice that for any i ∈ [2],
we have K1−ε ≤ |Hi| ≤ K1+ε since we have chosen β ≤ λ/2.

Thus by Lemma 30, there exits a constant c > 0 such that Y1 ◦ Y2 can be divided into disjoint
subsources, such that for each subsource, either (1) the probability mass is at most 2K−ε, or (2)
the probability mass is at least K−cε, and the output of BasicGCond on the subsource is K−ε-close
to being an elementary somewhere (1 + Ω(ε)) logK source.

For each subsource Y j in (2), we consider the intersection of its support with S′′. If the
intersection has probability mass at most K−cε−4λ, then we say it is a bad intersection, otherwise
we say it is a good intersection. Notice that for a good intersection, the output of BasicGCond on
the subsource defined as the uniform distribution over the intersection is K−ε+4λ-close to being an
elementary somewhere (1+Ω(ε)− 4λ) logK source. On the other hand, the total probability mass
of the bad intersections is at most K−4λ.

Notice that the probability mass of S′′ in (Y1, Y2) is at least 2
(2−β)δm/(2(2+2λ)δm) = 2−(β+2λ)δm.

Hence if we define X ′′ as the uniform distribution over S′′, then BasicGCond(X ′′) is (2K−ε +
K−4λ)/(2−(β+2λ)δm) +K−ε+4λ ≤ 2−λδm-close to a somewhere (1 + Ω(ε) − 4λ) logK = (1 + λ)δm
source, as long as we take λ = γε for a sufficiently small constant γ > 0.

Now define X ′ to be the uniform distribution over S′′∪ S̃. Then BasicGCond(X ′) is 2−λδm-close
to a somewhere (1 + λ/2)δm source. Notice that X is 2τ -close to X ′. Thus BasicGCond(X) is
2τ + 2−λδm-close to a somewhere (1 + λ/2)δm source.

Setting β = λ/2, we have that in both cases, BasicGCond(X) is 2−Ω(δn)-close to a somewhere
(1 + Ω(αd ))δm source.

Our main condenser now involves repeated uses of the basic condenser.

Algorithm 4 SGCond(x)

Input: x ∈ Fn2 — an n bit string; 0 < δ ≤ 1/2, a given parameter.
Output: z ∈ (Fm2 )ℓ — a matrix of ℓ bit strings with length m, where m = n/poly(1/δ) and
ℓ = poly(1/δ).

Sub-Routines and Parameters:
Let BasicGCond be the basic condenser given by Algorithm 3.

Set x0 = x and let i = 0. Initially xi has only n0 = 1 row.

1. Repeat the following step for some h = O(log(1/δ)) steps: For each j and the j’th row
xij in xi, apply BasicGCond(xij) to get 2d + 3 rows. Concatenate them to get xi+1 with
ni+1 = ni · (2d+ 3) rows. Set i← i+ 1.

2. Let z = xh.
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By a similar argument as in the proof of Theorem 18, we can prove the following theorem.

Theorem 31. There exists a constant β > 0 such that for any 0 < δ ≤ 1/2, there is an explicit rate
(δ → 1/2 + β, 2−Ω(m)) somewhere condenser SGCond : {0, 1}n → ({0, 1}m)t, where t = poly(1/δ)
and m = n/poly(1/δ). Moreover, SGCond is a linear function.

5 Directional Affine Extractor

In this section, we describe our directional affine extractors for linear entropy with exponentially
small error. The construction also works for sublinear entropy with a slight loss in the error and
output length.

5.1 Low-Degree Affine Correlation Breaker

As we introduced in Section 1, keeping the outputs of the directional affine extractor low-degree
is critical. However, our construction makes use of advice correlation breakers, and all existing
correlation breakers have degrees forbiddenly high for our purpose. To handle this, we construct a
family of low-degree correlation breakers. We assume that the input random variables to each of
the following subroutines are affine. This assumption is valid since in the analysis of Algorithm 8
where we invoke Theorem 37 of ldACB, the input random variables are affine.

Substitutes for strong seeded extractors. We will base our construction on a similar frame-
work to the advice correlation breaker in [CGL22]. To keep the degree low, we substitute the GUV
extractors and the condense-then-hash extractors used throughout with the low-degree strong linear
seeded extractor from Theorem 32.

Theorem 32 (Low-degree strong linear seeded extractors [Li11]). There exists a constant 0 < β < 1
such that for every 0 < δ < 1 and any 1/

√
n < α < 1 there exists a polynomial time computable

function LSExt : {0, 1}n × {0, 1}d → {0, 1}m and a constant 0 < β < 1 such that s.t.

• d ≤ αn,m ≥ βδαn.

• For any (n, δn)-affine source X, let R be the uniform distribution on {0, 1}d independent of
X. Then (LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and for any fixing
of r the output is a linear function of x.

Low-degree look-ahead extractor. The first step is to construct a low-degree look-ahead ex-
tractor which is a component of the low-degree advice correlation breaker. The following algorithm
is such a construction instantiated with the low-degree strong linear seeded extractor in Theorem 32.
Since the low-degree strong linear seeded extractor has shorter output length than the minimal seed
length, we cannot directly apply existing lemmas about look-ahead extractors. Instead, we need to
tailor a new set of parameters and a new theorem for the low-degree one.
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Algorithm 5 (k, t, ε)-laExt(x, y)

Input: Bit strings x, y of length n, d respectively. Initially, x has entropy k.
Output: Bit string (r0, r1) of length 2m.
Subroutines and Parameters:

Let s = d/(2 + 2t), where C0

√
log(1/ε)

k n ≥ s ≥ C1n
√
n/k for some constants C0 > 0, C1 > 1.

Let LSExt1w : {0, 1}n × {0, 1}s → {0, 1}m1 be the low-degree strong linear seeded extractor from
Theorem 32 with δ32 = k/n, α32 = d/((2t+2)n), error ε0 = 2−Ω(kd2/((t+1)2n2) and output length
m1 = β32kd/((2t+ 2)n).
Let LSExt1q : {0, 1}d × {0, 1}m1 → {0, 1}m2 be the low-degree strong linear seeded extractor from

Theorem 32 with δ32 = 1/2, α32 = β32k/((2 + 2t)n), error ε1 = 2−Ω(dk2/((t+1)2n2)) = ε
Ω(d/k)
0 and

output length m2 = β2
32kd/(4(t+ 1)n).

Let LSExt2w : {0, 1}n × {0, 1}m2 → {0, 1}m be the low-degree strong linear seeded extractor from
Theorem 32 with δ32 = k/(2n) and α3 = β2

32kd/((4 + 4t)n2), error ε2 = 2−Ω(k3d2/((8+8t)2n4)) =

ε
Ω(k2/n2)
0 and output length m = β3

32k
2d/((8 + 8t)n2).

1. Let s0 = Slice(y, s)

2. Let r̃0 = LSExt1w(x, s0)

3. Let s1 = LSExt1q(y, r̃0)

4. Let r1 = LSExt2w(x, s1)

5. Output r0 = Slice(r̃0, |r1|), r1

Theorem 33 (2-look-ahead extractor). For every t ≤
√
n, t ∈ N and ε > 0, there exists an explicit

function laExt : {0, 1}n × {0, 1}d → ({0, 1}m)2 which satisfies the following. Let X,X [t] ∈ {0, 1}n
and Y, Y [t] ∈ {0, 1}d be random variables such that

(
X,X [t]

)
is independent of

(
Y, Y [t]

)
, Y = Ud.

There exists a large enough constant C > 0 such that if

k = H(X) ≥ Cmax
{(

(t+ 1)2 log(1/ε)n4/d2
)1/3

, (t+ 1)
√
n
}
;

n ≥ d ≥ C(t+ 1)max
{
n
√
n/k,

(
log(1/ε)n4/k3

)1/2}
,

then (R0, R1) := laExt(X,Y ) and their tamperings (R
[t]
0 , R

[t]
1 ) satisfy

(R0 ≈ε Um) | (Y, Y [t]);

(R1 ≈ε Um) | (Y, Y [t], R0, R
[t]
0 ),

where m = Ω(k2d/((1 + t)n2)).
Moreover, each bit of r′0 is a degree 4 polynomial of the input bits; each bit of r1 is a degree 40
polynomial of the input bits.

Proof. We will show that Algorithm 5 is such a function. First we demonstrate that the choice of
the parameters in Algorithm 5 are correct. The first constraint comes from the requirement of the
minimal seed length of any LSExt, i.e., we need to guarantee that

d/((2t+ 2)n) > 1/
√
n ; (seed length requirement of LSExt1w)

β32k/((2 + 2t)n) > 1/
√
n ; (seed length requirement of LSExt1q)

β2
32kd/((4 + 4t)n2) > 1/

√
n , (seed length requirement of LSExt2w)
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this puts a lower bound for d:

d >
4

β2
32

· (t+ 1)n
√
n

k
.

Since n ≥ d, we have

k >
4

β2
32

· (t+ 1)n.

Let ε ≥ ε0 + ε1 + ε2, then there exists a constant λ such that ε ≥ 2−λk
3d2/((t+1)2n4). Taking the

logarithm on the error and isolating out k and d, we have

(t+ 1)2 log(1/ε)n4

λ
≤ k3d2 ⇐⇒ k ≥ C0

(
(t+ 1)2 log(1/ε)n4/d2

)1/3
;

(t+ 1)2 log(1/ε)n4

λ
≤ k3d2 ⇐⇒ d ≥ C ′0(t+ 1)

(
log(1/ε)n4/k3

)1/2
,

for some large enough constants C0, C
′
0. Therefore, if k and d satisfy the constraints in Theorem 33,

they also works for Algorithm 5. Next, we prove the extraction properties of the look-ahead
extractor.

1. Since Y = Ud, S0 is uniform. Since Y is independent of X, X is independent of S0. Since
H(X) ≥ k, by the property of strong seeded extractor of LSExt1w, R̃0 ≈ε0 Um1 | S0, which
also implies that R0 ≈ε0 Um | (Y, Y [t]) given the independence between X and (Y, Y [t]).

2. Since S0, S
[t]
0 are linear functions of Y and Y [t], we have H(Y | S0, S

[t]
0 ) ≥ d− (t+ 1) · d

2+2t =

d/2. Since R̃0 is ε0 close to uniform, by the property of strong seeded extractor of LSExt1q ,
S1 ≈ε0+ε1 Um2 .

3. Conditioned on the fixings of (S0, S
[t]
0 ), R0, R

[t]
0 are linear functions of X and X [t]. Therefore,

we have H(X | R̃0, R̃
[t]
0 ) ≥ k − (t + 1)m1 = k/2. Since S1 ≈ε0+ε1 Um2 , by the property of

strong seeded extractor of LSExt2w, R1 ≈ε0+ε1+ε2 Um | (R0, R
[t]
0 , Y, Y [t]).

Lastly, the degree of the output follows easily from the degree of the output of LSExt from Theo-
rem 32. This completes the proof of Theorem 33.

Low-degree non-malleable independence-preserving merger. The second step is to con-
struct a low-degree non-malleable independence-preserving merger. Non-malleable independence-
perserving merger was first defined in [CL16a] to merge a somewhere random source while preserving
independence among itself and the tampered sources. We start with the definition.

Definition 25. An (t, ℓ, ε)-NIPM : {0, 1}n× ({0, 1}m)ℓ → {0, 1}m1, or NIPMℓ for short, with error
ε for ℓ ∈ N is function which satisfies the following property. Suppose

• V, V [t] are random variables, each supported on boolean ℓ ×m matrices, s.t. for any i ∈ [ℓ],
Vi = Um;

• for every j ∈ [t], there exists an hj ∈ [ℓ] such that (Vhj
, V j

hj
) = (Um, V j

hj
);

• X,X [t] are random variables independent of V, V [t], each supported on d bits and X has enough
entropy,
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then

NIPMℓ(X,V ) ≈ε Um1 | (NIPMℓ(X
1, V 1), · · · ,NIPMℓ(X

t, V t)).

Algorithm 6 NIPMℓ(x, v)

Input: x — an n bit string, v — an ℓ×m bit matrix.
Output: z — an m ·

∏ℓ
i=1 αi bit string where each αi is defined below for i ∈ [ℓ].

Sub-Routines and Parameters:
Let δw = k/2n be a lower bound on the assumed entropy rate of x in Definition 25, δq = 1/2 a
lower bound on the entropy rate of for each vhi

where i ∈ [ℓ]. Let α1 = m/((3 + 3t)n).
For i ∈ [ℓ− 1] :

• set δ32 and α32 from Theorem 32 to be δw and αi respectively;

• set δ32 and α32 from Theorem 32 to be δq and δwβ32αi respectively;

• let αi+1 = δqδwβ
2
32αi,

which gives

• αi = (δwδq)
i−1 β2i−2

32 α1.

For i ∈ [ℓ− 1]:

• LSExtiw : {0, 1}n × {0, 1}αin → {0, 1}δwβ32αin be the extractor from Theorem 32 with error

εwi = 2−Ω(δ2i−1
w δ2i−2

q α2
1n).

• LSExtiq : {0, 1}m×{0, 1}δwβ32αin → {0, 1}αi+1n be the extractor from Theorem 32 with error

εqi = 2−Ω(δ2i−1
q δ2i−1

w α2
1m).

Let s1 = Slice(v1, α1n).
For i ∈ [ℓ− 1]:

1. ri = LSExtiw(x, si)

2. si+1 = LSExtiq(vi+1, ri)

Let z = sℓ.

Theorem 34 (NIPMℓ). For every ℓ ∈ N, ε > 0, if there exists a large enough C such that

• k ≥ Cmax
{(

(t+ 1)2 log(1/ε)n2ℓ−1/m3
)1/(2ℓ−3)

, (t+ 1)
√
n
}
;

• n ≥ m ≥ Cmax
{
(t+ 1)n

√
n/k, ((t+ 1) log(1/ε)n2ℓ−1/k2ℓ−3)1/3

}
,

then there exists an NIPMℓ : {0, 1}n×({0, 1}m)ℓ → {0, 1}m1 and constants 0 < η < 1 and {εwi , ε
q
i }

ℓ−1
i=1

each larger than 0 such that

• εwi = εΩ((n2/k2)ℓ−i).

• εqi = εΩ((n2/k2)ℓ−i).

• m1 ≥ ηℓm/(t+ 1).
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• each output bit of NIPMℓ is a degree 2Θ(ℓ) polynomial of the input bits.

In the analysis of NIPMℓ (and later ldACB), we will be using the lemma below repeatedly. It is
adjusted from Lemma 15 for affine sources. See Appendix B for a proof.

Lemma 35 (Independence-merging lemma for affine sources). Let LExt : {0, 1}n×{0, 1}d → {0, 1}m
be any (k, ε)-strong linear seeded extractor, X0 ∈ {0, 1}n an affine source, X,X [t] ∈ {0, 1}n, Y, Y [t] ∈
{0, 1}d all linear functions of X0, W = LExt(X,Y ) and W j = LExt(Xj , Y j) for every j ∈ [t].
Suppose there exists S, T ⊆ [t] such that

• (Y, Y S) ≈δ (Ud, Y
S);

• H(X | XT , Y, Y [t]) ≥ k + tm,

then

W ≈ε+δ Um | (WS∪T , Y, Y [t]).

Proof of Theorem 34. We will show that Algorithm 6 is such an NIPMℓ. We first argue about the
degree of each output bit. Let the degree of si be di for all i ∈ [ℓ], then they satisfy the following
recursive formula

di =

{
1 if i = 1

3(3di−1 + 1) + 1 = 9di−1 + 4 if i > 1

solving which gives us dℓ =
9ℓ−1−1

2 .

We now use induction to show the following claim. We let R
[j]
h[j]

:= {R1
h1
, R2

h2
, · · · , Rj

hj
}.

Claim 36. Without loss of generality, let 1 ≤ h1 ≤ · · · ≤ ht ≤ ℓ. For every j ∈ [t], the following
holds after step hj

Shj
≈∑

i∈[hj−1] ε
w
i +

∑
i∈[hj−1] ε

q
i
Uαhj

n | (S[i−1], S
[t]
[i−1], R[i−1], R

[t]
[i−1]),

Rhj
≈∑

i∈[hj ]
εwi +

∑
i∈[hj−1] ε

q
i
Uδwβw

hj
αhj

n | (R
[j]
h[j]

, S[hj ], S
[t]
[hj ]

, R[hj−1], R
[t]
[hj−1]),

which implies that

Sℓ ≈∑
i∈[ℓ−1](ε

q
i+εwi ) Uαℓn | (V

[t]
h[t]

, S
[t]
ℓ , S[ℓ−1], S

[t]
[ℓ−1], R[ℓ−1], R

[t]
[ℓ−1]).

Proof. We skip writing errors explicitly below whenever they can be easily seen to follow the claim.
Case i ≤ h1 − 1. We prove by induction that

Si ≈∑
j∈[i−1] ε

w
j +

∑
j∈[i−1] ε

q
j
Uαin | (S[i−1], S

[t]
[i−1], R[i−1], R

[t]
[i−1]),

Ri ≈∑
j∈[i] ε

w
j +

∑
j∈[i−1] ε

q
j
Uδwβw

i αin | (R[i−1], R
[t]
[i−1], S[i], S

[t]
[i] ).

(1)

In round 1, since V1 = Um, S1 = Uα1n. Then by Lemma 35, (R1, S1, S
[t]
1 ) ≈ε (Uδwβw

1 α1n, S1, S
[t]
1 ).

Then, assume that Eqn. (1) holds ∀i ∈ [h1 − 2]. Since

H(Vi+1 | R[i], R
[t]
[i], S[i], S

[t]
[i+1]) = H(Vi+1 | S[i], S

[t]
[i+1]) ≥ m − (t + 1)(

∑i+1
j=1 αjn) ≥ m/2, by the

property of strong seeded extractor, the first part of Eqn. (1) holds. Since
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H(X | S[i], S
[t]
[i] , R[i], R

[t]
[i+1]) = H(X | R[i], R

[t]
[i+1]) ≥ k − (t + 1)δw(

∑i+1
j=1 β32αin) ≥ k/2, by the

property of strong seeded extractor, the second part of Eqn. (1) holds.
Case i = hj. We prove by induction that

Shj
≈ Uδwβw

hj
αhj

n | (V
[j]
h[j]

, S
[j]
h[j]

, S[hj−1], S
[t]
[hj−1], R[hj−1], R

[t]
[hj−1]),

Rhj
≈ Uαin | (R

[j]
h[j]

, S[hj ], S
[t]
[hj ]

, R[hj−1], R
[t]
[hj−1]),

(2)

then by Lemma 35, for i ∈ [hj + 1, hj+1 − 1], j ∈ [t] (we defined ht+1 − 1 := ℓ), it holds that

Si ≈ Uδwβw
i αin | (V

[j]
h[j]

, S
[j]
i , S[i−1], S

[t]
[i−1], R[i−1], R

[t]
[i−1]),

Ri ≈ Uαin | (R
[j]
i , S[i], S

[t]
[i] , R[i−1], R

[t]
[i−1]).

(3)

In round h1 − 1, (Vh1 , V
1
h1
) ≈ (Um, V 1

h1
). By Lemma 35,

Sh1 ≈ Uδwβw
h1

αh1
n | (V 1

h1
, S1

h1
, S[h1−1], S

[t]
[hj−1], R[h1−1], R

[t]
[h1−1]). Then, again by Lemma 35, Rh1 ≈

Uα1n | (R1
h1
, S[h1], S

[t]
[h1]

, R[h1−1], R
[t]
[h1−1]). Assume that Eqn. (2) holds for i ∈ h[j−1], j ∈ [t]. Since

(Vhj
, V j

hj
) ≈ (Um, V j

hj
) and that the second equation in Eqn. (3) for i ∈ [hj − 1] holds, then by

Lemma 35, Eqn. (2) holds for i = hj .

Lastly, the setting of the parameters is similar to that of Theorem 33. This completes the proof
of Theorem 34.

Low-degree advice correlation breaker Now, we are ready to give the construction of the
low-degree correlation breaker. We first give the definition of low-degree advice correlation breaker.

Definition 26 (ldACB). A function ldACB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m is an advice
correlation breaker for linearly correlated sources if the following holds. Let

• A,A[t], B,B[t] be random variables on {0, 1}n and Y, Y [t] be random variables on {0, 1}d such
that (A,A[t]) is independent of (B,B[t], Y, Y [t]). Moreover, H(A) ≥ k and Y = Ud;

• X = A+B,Xi = Ai +Bi for every i ∈ [t];

• α, α1, · · · , αt be a-bit strings s.t. α ̸= αi for every i ∈ [t];

• each bit of the output is a constant degree polynomial of the inputs X (Xi) and Y (Y i),

then

(ldACB(X,Y, α) ≈ε Um) |
(
ldACB(X1, Y 1, α1), · · · , ldACB(Xt, Y t, αt)

)
.

Moreover, if there are random variables X ′, A′, B′ and Y ′ such that X ′ = A′+B′ and (Y = Ud) | Y ′,
then it also holds that

(ldACB(X,Y, α) ≈ε Um) |
(
ldACB(X ′, Y ′, α), ldACB(X1, Y 1, α1), · · · , ldACB(Xt, Y t, αt)

)
.

We remark that Definition 26 differs from standard definitions in that it allows conditioning on
an tampered output with the same advice, given that the seed is non-malleable to the tampered
seed. We will be using this property in our proof for directional affine extractors.

In our construction, we also need the following function.
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Definition 27 (FFAssign [CGL22]). Let FFAssign : ({0, 1}n)2 × {0, 1}a → ({0, 1}n)2a be de-
fined as follows. Let r0, r1 ∈ {0, 1}n and α ∈ {0, 1}a. Let αj denote the j-th bit of α. Then
FFAssign(r0, r1, α) := (rα1 , r1−α1 , · · · , rαa , r1−αa).

Algorithm 7 ldACB(x, y, id)

Input: Bit strings x = w + z, y, id of length n, d, a respectively, where d < n.
Output: Bit string y′ of length n2.
Subroutines and Parameters:
Let LSExt : {0, 1}n ×{0, 1}m1 → {0, 1}m2 from Theorem 32 with m1 = d/(4 + 2t), output length
m2 = β32kd/((8 + 4t)n), entropy k/2 and error ε1.
Let laExt : {0, 1}d × {0, 1}m2 → ({0, 1}v)2 from Theorem 33 where v = Ω(m1/(16 + 16t)) =
Ω(d/(32(1 + t)2)) with entropy d/3 and error ε2.
Let FFAssign : ({0, 1}v)2 × {0, 1}a → ({0, 1}v)2a from Definition 27.
Let NIPM2a : {0, 1}n × ({0, 1}v)2a → {0, 1}n2 from Theorem 34 with entropy k/2 and error ε3.

1. Let s = Slice(y,m1).

2. Let q = LSExt(x, s).

3. Let (r0, r1) = laExt(y, q).

4. Let (v1, v2, · · · , v(2a−1), v2a) = FFAssign((r0, r1), α).

5. Output v∗ = NIPM2a(x, v1 ◦ · · · ◦ v2a).

Theorem 37 (ldACB). For every 0 < ε < 1 and n ∈ N and every k, d, t, a, there exists a large
enough C such that if

• k ≥ Cmax
{(

(t+ 1)2 log(1/ε)n4a−1/m3
)1/(4a−3)

, (t+ 1)
√
n
}
;

• d ≥ C(t+ 1)2max
{
(t+ 1)n

√
n/k, ((t+ 1) log(1/ε)n4a−1/k4a−3)1/3

}
,

then there exists a constant 1 > η > 0 and an ldACB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m which
is a low-degree advice correlation breaker for linearly correlated sources s.t.

• m = Ω(η2akd/((t+ 1)3n));

• each output bit of ldACB is a degree 2Θ(2a) polynomial of the input.

Proof. We will prove that Algorithm 7 gives such a function.
First we prove that ldACB satisfy Definition 26.

1. Let QA := LSExt(A,S), Q′A := LSExt(A′, S′), QB := LSExt(B,S), Q′B := LSExt(B′, S′). Also
for all i ∈ [t], let Qi

A := LSExt(Ai, Si), let Qi
B := LSExt(Bi, Si).

2. Since Y = Ud | Y ′, then S = Um1 | Y ′. Since H(X | Y ′, S, S[t]) ≥ H(A) ≥ k ≥ k/2+(t+2)m2,
by Lemma 35 Q ≈ε1 Um2 | (Q′, Y ′, S, S[t]).

3. First note that conditioned on S, since LSExt is a linear function, Q = QA + QB. More-
over, we have that Y is independent of QA further conditioned on QB. Since H(Y |
Y ′, S, S[t], QB, Q

[t]
B , Q′) ≥ d−(t+1)(m1+m2) ≥ d/3 andQA ≈ε1 Um2 | (Q′, Y ′, S, S[t], QB, Q

[t]
B ),

R0 ≈ε1+ε2 Uv | (S, S[t], Q,Q[t], Q′, Y ′, R′0)
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and
R1 ≈ε1+ε2 Uv | (S, S[t], Q,Q[t], Q′, Y ′, R0, R

′
0, R

[t]
0 , R′1).

4. By the Definition 27, Vi ≈ε1+ε2 Uv | V ′,∀i ∈ [2a]. In addition, for every i ∈ [t], there exists
hi ∈ [2a] s.t. Vhi

= R1 and V i
hi

= Ri
0. Therefore for every i ∈ [t], there exists hi ∈ [2a] s.t.

Vhi
≈ε1+ε2 Uv | V ′hi

.

5. Since H(X | Q,Q′, Q[t], Y ′, S, S[t], V ′∗) ≥ k − (2 + t)m2 − 2av ≥ k/2, by Theorem 34,
V ∗ ≈ε1+ε2+ε3 Un2 | (V [t]∗, V ′∗).

Now since LSExt and laExt cause a constant increase in the degree of the output bits, and NIPM2a

cause a 2Θ(2a) increase in the degree. each output bit of ldACB is a degree 2Θ(ℓ) polynomial of the
input.
Finally, the parameters constraints follows from those of Theorem 34. This completes the proof of
Theorem 37.

5.2 Directional Affine Extractor for Linear Entropy

Apart from the low-degree correlation breaker, we still need the following extractors as building
blocks.

Theorem 38 ([CG88]). For every constant δ > 0, there exists a polynomial time algorithm IP :
({0, 1}n)2 → {0, 1}m such that if X is an (n, k1) source, Y is an independent (n, k2) source and
k1 + k2 ≥ (1 + δ)n, then

IP(X,Y ) ≈ε Um | Y,

where ε = 2−
δn−m−1

2 .

Theorem 39 ([Li11]). For every affine t× r somewhere random source X, there exists a function

AffineSRExt such that AffineSRExt(X) outputs m = r/tO(log t) bits that are 2−Ω(r/tO(log t))-close to
uniform. Moreover, each bit of the output is a degree tO(1) polynomial of the bits of the input.

Theorem 40 (Seeded non-malleable extractor [Li12]). For any constant 1 > δ > 0, let X be an
(n, k)-source with k = (1/2 + δ)n and Y be the uniform distribution on {0, 1}n/2−1 independent
of X. Let b1, · · · , bn/2 be a basis of F2n/2 regarded as a vector space over F2. For each bi, let

Y i =
(
biY, biY

3
)
where Y is regarded as an element in F∗

2n/2 and define one bit Zi = IP(X,Y i) where
IP is the inner product function over Fn2 . Choose m = Ω(n) bits from {Zi}, let snmExt(X,Y ) =
(Zi1 , · · · , Zim). Let A : {0, 1}n → {0, 1}n be any function without fixed point, then

|snmExt(X,Y ), snmExt(X,A(Y )), Y − Un, snmExt(X,A(Y )), Y | ≤ 2−Ω(n).

The following proposition about strong linear seeded extractors and affine sources is useful to
us.

Proposition 41 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear strong seeded extractor
for min-entropy k with error ε < 1/2. Let X be any affine source with entropy k. Then

Pru←UUd
[Ext(X,u) = Um] ≥ 1− ε.

We use the following lemma when arguing about strong seeded extractors with deficient seed.
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Lemma 42 ([CGL16]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be strong seeded extractor for min-
entropy k, and error ε. Let X be a (n, k)-source and let Y be a source on {0, 1}d with min-entropy
d− λ. Then

Ext(X,Y ) ≈2λε Um | Y.

We now present our construction of directional affine extractor.

Algorithm 8 DAExt(x)

Input: x — an n bit string.
Output: z — an m bit string with Ω(n).

Sub-Routines and Parameters:
Let ℓ1 = poly(2/δ), ℓ′1 = (n/(2(m′+ k+1)))log(2d19+2) where k is defined below, ℓ2 = poly(4/δ) =
ℓ3. Let BasicCond be the basic condenser from Algorithm 1.

Let SCondi : {0, 1}n →
(
{0, 1}n/ℓ

1/ log(2d19+2)
i

)ℓi
for i ∈ {1, 3}, SCond2 : {0, 1}n/t →(

{0, 1}n/
(
tℓ

1/ log(2d19+2)
2

))ℓ2

, be linear affine condensers from Theorem 18.

Let IP :

(
{0, 1}n/

(
tℓ

1/ log(2d19+2)
2

))2

→ {0, 1}Ω(n) be the two-source extractor from Theorem 38

with error ε1 = 2−Ω(n), set up to extract from two independent sources whose entropy rates sum
up to more than 1 + 2β18.
Let AffineSRExt be the extractor for affine somewhere random sources from Theorem 39 with
error ε2 = 2−Ω(n).
Let LSExt : {0, 1}n × {0, 1}d → {0, 1}m′

be the strong linear seeded extractor from Theorem 32
set to extract from entropy δn/2 with error ε3 = 2−Ω(n).
Let Enc : {0, 1}n → {0, 1}λn be the encoding function of an asymptotically good linear binary
code with constant relative rate 1/λ and constant relative distance β.
Let snmExt : {0, 1}2(m′+k+1) × {0, 1}m′+k → {0, 1}n1 be the seeded non-malleable extractor from
Theorem 40 with error ε4 = 2−Ω(n). Choose m′ and k such that log(n/(m′ + k + 1)) ∈ N where

• m′ ≤ β18δ
2n/(300tℓ2ℓ

′
3), k = Ω(n) ≤ n1

20 log(λn/n1)
.

Let ldACB : {0, 1}n × {0, 1}n1 × {0, 1}log ℓ′1 → {0, 1}n2 be the advice correlation breaker from
Theorem 37 with output length n2 = O(δn1/poly(ℓ

′
1)) and error ε5 = 2−Ω(n).
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Let G be the generating matrix of an asymptotically good linear binary code with codeword
length m1 and constant relative distance γ. Thus G is an αm1 × m1 matrix for some constant
α > 0. Let Gi stand for the i’th row of the matrix.

Let sc1 ◦ sc2 ◦ · · · ◦ scℓ′1 = BasicCondr ◦SCond1(x), where r = log(n/(m′+k+1))−1− ℓ
1/ log(2d19+2)
1 .

Divide x into t blocks x = x1 ◦ · · · ◦ xt where t = 2⌈log(10/δ)⌉ ≥ δ/10 and each block has n/t bits.
For every i, 1 ≤ i ≤ t do the following.

1. Let yi1 ◦ · · · ◦ yiℓ2 = SCond2(xi), where yij is the j’th row of the matrix obtained by applying
SCond2 to xi. Note that ℓ2 = O(1) and each yij has Ω(n) bits.

2. Apply BasicCondlog t ◦ SCond3 on x. That is, first apply SCond3 on X, and then apply
BasicCond log t times on the output so that we get ℓ′3 blocks BasicCondlog t ◦ SCond3(x) =
x′1 ◦ · · · ◦ x′ℓ′3 , of equal size with each block having the same number of bits as yij . Note that

ℓ′3 = O(1).

3. Apply IP to every pair of x′j1 and yij2 , and output β18δ
2n/(300tℓ2ℓ

′
3) bits. Let sri be the matrix

obtained by concatenating all the outputs IP(x′j1 , yij2), i.e., each row of sri is IP(x
′
j1
, yij2) for

a pair (x′j1 , yij2).

4. Let ri = AffineSRExt(sri).

5. Let ui = LSExt(x, ri), set up to output m′ bits.

6. Divide ui into ui1 ◦ui2 where ui1 has k log(λn/k) ≤ n1/10 bits and ui2 has ≥ m′−n1/10 bits.

7. Divide Enc(x) into k blocks of equal size such that Enc(x) = x̃1 ◦ x̃2 ◦ · · · ◦ x̃k where each block

has O(1) bits. Divide ui1 into k equal blocks u
(1)
i1 ◦ · · · ◦u

(k)
i1 . Let hi = x̃1

|u(1)
i1

◦ x̃2
|u(2)

i1

◦ · · · ◦ x̃k
|u(k)

i1

and ũi = ui ◦ hi.

8. Let snij3 be snmExt applied to each scj3 and ũi and output n1 ≤ m′/100 bits. Let sni be the
ℓ′1 × n1 matrix obtained by concatenating snij3 for j3 ∈ [ℓ′1], i.e., the j-th row of sni is snij .

9. Let ỹi =
⊕ℓ′1

j=1 ldACB(x, snij , j) and output n2 ≤ m′/10000 bits.

10. Let wi = LSExt(x, ỹi), set up to output n3 ≤ m′/1000000 bits.

11. Divide the bits of wi into si = Ω(n) blocks of equal size, with each block having ci number of
bits for some constant ci to be chosen later. For every j = 1, · · · , si, compute one bit vij by

taking the product of all the bits in the j’th block, i.e., vij =
∏jci

(j−1)ci+1wiℓ.

Output m1 = Ω(n) bits {zj =
⊕t

i=1 vij}.
Disperser to Extractor.
For each codeword Gi, let Si = {j ∈ [m1] : Gij = 1} be the set of indices s.t. the bit of the codeword
Gi at those indices are 1. Define

oi =
⊕

zj:j∈Si

to be the bit associated with Gi, i.e., oi is the XOR of the zj ’s whenever the j’th index of the
codeword Gi is 1.
Take a constant 0 < β′ ≤ α, where β′ is chosen later. Output o = (o1, · · · , oβ′m1).
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Theorem 43. For any constant 0 < δ ≤ 1, there exists a family of functions DAExt : {0, 1}n →
{0, 1}m where m = Ω(n), such that for any affine source X of min-entropy at least δn, any nonzero
a ∈ {0, 1}n, it holds that

(DAExt(X),DAExt(X + a)) ≈ε (Um,DAExt(X + a)),

where ε = 2−Ω(n).

Proof. In the proof below, we have in mind two DAExt running in parallel, one with input X, the
other with input X+a =: X ′. We use {Xi}i∈[t], {SRi}i∈[t], {Ri}i∈[t], {Ui}i∈[t], {Ũi}i∈[t], {SNi}i∈[t],
{SCi}i∈[ℓ1], {Ỹi}i∈[t], {Wi}i∈[t] to denote the random variables generated in DAExt(X) and {X ′i}i∈[t],
{SR′i}i∈[t], {R′i}i∈[t], {U ′i}i∈[t], {Ũ ′i}i∈[t], {SN ′i}i∈[t], {SC ′i}i∈[ℓ1], {Ỹ ′i }i∈[t], {W ′i}i∈[t] to denote the
random variables generated in DAExt(X + a).

Throughout the proof, we maintain a random variable Z. We update Z each time a group of
random variables has been fixed so that it represents all the random variables that have been fixed.
We will make Z explicit each time it is revised. Initially, Z = 0.

We now show that Algorithm 8 is an efficient family of such functions. We first argue there
exists an iteration g such that conditioned on all the random variables generated in the previous
iterations, both X and Xg have Ω(δ) entropy rate.

Lemma 44. There exists 1 ≤ g ≤ t s.t. conditioned on any fixings of

(Xi, X
′
i, SRi, SR

′
i, Ri, R

′
i, Ũi, Ũ

′
i , SNi, SN

′
i , Ỹi, Ỹ

′
i ,Wi,W

′
i )i∈[g−1]

in order, X is an affine source with H(Xg) ≥ δn/(4t) and H(X) ≥ 3δn/5 + δn/(3t).

Proof. By Lemma 10, when dividing X into t blocks, there exist positive integers k1, · · · , kt which
sum up to δn such that for any i ∈ [t], conditioned on the fixing of X1, · · · , Xi−1, H(Xi) = ki.
Therefore, there must exists an i such that ki ≥ δn/(3t). Let g be the minimal index such that
H(Xg) = kg ≥ δn/(3t).

1. Consider the affine source X and X ′ = X + a. Once we fix (Xi = xi)i∈[g−1], (X
′
i := Xi+ ai =

xi + ai)i∈[g−1] are also fixed. Since Xi is an affine funciton of X, after this fixing, X and X ′

are still affine sources. By Lemma 10, after this fixing H(Xg) = H(X ′g) ≥ kg ≥ δn/(3t)

and H(X) = H(X ′) =
∑t

i=g ki ≥ δn − (t − 1) · δn/(3t) ≥ 2δn/3 + δn/(3t). Now set
Z = {Xi, X

′
i}i∈[g−1].

2. Note that conditioned on the fixing of (Xi = xi)i∈[g−1] (thus (X
′
i = x′i)i∈[g−1]), both (SRi)i∈[g−1]

and (SR′i)i∈[g−1] are affine functions of X. In general, fixing (SRi = sri)i∈[g−1] does not nec-
essarily fix (SR′i = sr′i)i∈[g−1] and in the worst cases SR′i = sr′i may be linearly independent

with SRi = sri. Let SR = SR1 ◦ · · · ◦ SRg−1 and SR′ = SR′1 ◦ · · · ◦ SR′g−1. By Lemma 9,

since SR ◦ SR′ has at most (β18δ
2n/(300t)) · t · 2 = β18δ

2n/150 bits, H(X | Z, SR ◦ SR′) ≥
2δn/3 + δn/(3t)−H(SR ◦ SR′(X)) ≥ 2δn/3 + δn/(3t)− β18δ

2n/150.
Note that fixing SR◦SR′ also fixes {Ri, R

′
i}i∈[g−1]. Now let Z = Z∪{SRi, SR

′
i, Ri, R

′
i}i∈[g−1].

3. Let Ũ ◦ Ũ ′ = Ũ1 ◦ · · · ◦ Ũg−1 ◦ Ũ ′1 · · · ◦ Ũ ′g−1, then conditioned on any fixing of Z, Ũ is an affine

function of X and it has at most (β18δ
2n/(300tℓ2ℓ

′
3)) ·t ·2 = β18δ

2n/(150ℓ2ℓ
′
3) bits. Therefore,

by Lemma 9 H(X | Z, Ũ ◦ Ũ ′) ≥ 2δn/3 + δn/(3t) − β18δ
2n/150 − β18δ

2n/(150ℓ2ℓ
′
3). Now,

Z = Z ∪ {Ui, Ũi}i∈[g−1].
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4. Let SN ◦ SN ′ = SN1 ◦ · · · ◦ SNg−1 ◦ SN ′1 · · · ◦ SN ′g−1, then conditioned on any fixing of Z,

SN ◦ SN ′ is an affine function of X and it has at most β18δ
2n/(15000ℓ2ℓ

′
3) bits. Therefore,

by Lemma 9 H(X | Z, SN ◦ SN ′) ≥ 2δn/3 − β18δ
2n/150 − 1.01 · β18δ2n/(150ℓ2ℓ′3). Now,

Z = Z ∪ {SN, SN ′}.

5. Let Ỹ ◦Ỹ ′ = Ỹ1◦· · ·◦Ỹg−1◦Ỹ ′1 · · ·◦Ỹ ′g−1, then conditioned on any fixing of Z, Ỹ ◦Ỹ ′ is an affine

function of X and it has at most β18δ
2n/(1500000ℓ2ℓ

′
3) bits. Therefore, by Lemma 9 H(X |

Z, Ỹ Ỹ ′) ≥ 2δn/3 + δn/(3t)− β18δ
2n/150− 1.0101 · β18δ2n/(150ℓ2ℓ′3). Now, Z = Z ∪ {Ỹ Ỹ ′}.

6. Let W ◦W ′ = W1 ◦ · · · ◦Wg−1 ◦W ′1 · · · ◦W ′g−1, then conditioned on any fixing of Z, W ◦W ′
is an affine function of X and it has at most β18δ

2n/(150000000ℓ2ℓ
′
3) bits. Therefore, by

Lemma 9 H(X | Z,W,W ′) ≥ 2δn/3+ δn/(3t)− δ2n/150− 1.010101 · β18δ2n/(150ℓ2ℓ′3). Now,
Z = Z ∪ {W,W ′}.

7. Therefore,H(Xg | Z) ≥ δn/(3t)−β18(δ2n/150+δ2n/(150ℓ2ℓ
′
3)+δ2n/(15000ℓ2ℓ

′
3)+δ2n/(1500000ℓ2ℓ

′
3)+

δ2n/(150000000ℓ2ℓ
′
3)) = δn/(3t)− β18δ

2n/150− 1.010101 · β18 · δ2n/(150ℓ2ℓ′3) > δn/(4t) and
H(X | Z) ≥ 2δn/3 + δn/(3t)− β18δ

2n/150− 1.010101 · β18δ2n/(150ℓ2ℓ′3) > 3δn/5 + δn/(3t).

Lemma 45. With probability 1 − 2−Ω(n) over the further fixings of Xg, Rg is 2−Ω(n)-close to
uniform.

Proof. We examine the execution of DAExt on the good block Xg up to step 4.

1. By Lemma 44, H(Xg | Z) ≥ δn/(4t)
Theorem 18

=⇒ Yg1 ◦ · · · ◦ Ygℓ2 := SCond(Xg) = somewhere-
rate-(1/2 + β18) source. WLOG, assume Ygi has rate 1/2 + β18.

2. By Lemma 8, ∃Ag, Bg s.t. X = Ag + Bg, Xg(X) = Xg(Ag), H(Xg) = H(Ag), and Xg is
independent with Bg.

3. After fixing Xg, Bg (thus X) has min-entropy at least 3δn/5 + δn/(3t)− δn/t ≥ δn/4. Now,
let Z = Z ∪ {Xg}.

4. Since the ℓ′3 blocks X = X̃1 ◦ · · · ◦ X̃ℓ′3
are obtained by applying BasicCondlog t ◦ SCond3 on

X, each X̃i is linear in X. Then X̃i(X) = X̃i(Ag) + X̃i(Bg) follows from Lemma 8. Let
X̃i(Ag) = Agi and X̃i(Bg) = Bgi. By Theorem 18, there exists one block with entropy rate
at least 1/2 + β18, let Bgj be such a block.

5. Note that IP(X̃j , Ygi) = IP(Agj , Ygi) + IP(Bgj , Ygi). Since Ygi has entropy rate ≥ 1/2 + β18
and Bgj has entropy rate ≥ 1/2+β18, by Lemma 38, with probability (1− ε1) over the fixing
of Ygi (thus Ag and Xg), IP(Bgj , Ygi) is ε1 close to uniform. Since Ag (thus Agj) is fixed, the
random variable IP(Agj , Ygi) is fixed as well. Therefore, IP(Bgj , Ygi) is ε1 close to uniform
implies that IP(Ygi, X̃j) is ε1 close to uniform. Therefore, with probability (1− ε1 − ε2) over
the fixing of Xg, SRg is (ε1 + ε2) close to a somewhere random source.

6. SRg ≈ε1+ε2 somewhere random source
Theorem 39

=⇒ Rg ≈ε1+ε2 uniform.

Lemma 46. With probability 1− 2−Ω(n) over further fixings of
(
SRg, SR

′
g, Rg, R

′
g

)
, Ug is uniform.
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Proof. Since Xg is a linear function of X, conditioned on any fixing of it, it still holds that X
is an affine source. Moreover, conditioned on the fixing of Xg (and thus X ′g as well), SRg and

SR′g are linear functions of X. By Lemma 8, there exists independent affine sources Ãg and

B̃g s.t. X = Ãg + B̃g, SRg ◦ SR′g(X) = SRg ◦ SR′g(Ãg) and H(SRg ◦ SR′g) = H(Ãg). Thus

H(B̃g) = H(X)−H(Ãg) = H(X)−H(SRg ◦ SR′g) ≥ δn/2.

Next note Rg is a deterministic function of SRg thus independent of B̃g. In addition, Rg is 2−Ω(n)-
close to uniform by Lemma 45. Now, by Theorem 32 and Proposition 41, with probability (1− ε3)
over the fixings of Rg (and thus with probability (1− ε3) over the fixings of SRg), LSExt(B̃g, Rg) is
uniform. Since LSExt is a linear function and LSExt(Ãg, Rg) is fixed, with probability (1− ε3) over
the fixings of Rg, LSExt(X,Rg) is uniform.

At this point, set Z = Z ∪ {SRg, SR
′
g, Rg, R

′
g}. We have already shown that with high proba-

bility over the fixing of Z, Ug is uniform. Now, we want to establish that Ũg and Ũ ′g, which are Ug

and U ′g appended with advice are linearly correlated, i.e., there exists an affine function A without

fixed points s.t. A(Ũg) = Ũ ′g. We achieve this in the following two Lemmas.

Lemma 47. Conditioned on Z, there exists Ãg, B̃g s.t. X = Ãg + B̃g, Ug(X) = Ug(Ãg), and
Ug(B̃g) = 0. Moreover, U ′g is linearly correlated with Ug conditioned on any fixing of U ′g(B̃g).

Proof. By Lemma 8, there exists Ãg, B̃g s.t. X = Ãg+B̃g, Ug(X) = Ãg, and Ug(B̃g) = 0. Moreover,
there exists an affine function L such that Ãg = L(Ug). Now conditioned on the fixing of U ′g(B̃g),

U ′g is an affine function of Ãg, and thus an affine function of Ug.

As a reminder, at this stage, we have

Z = {Xi, X
′
i, SRi, SR

′
i, Ri, R

′
i, Ũi, Ũ

′
i , SNi, SN

′
i , Ỹi, Ỹ

′
i ,Wi,Wi}i∈[g−1] ∪ {Xg, X

′
g, SRg, SR

′
g, U

′
g(B̃g)}.

Lemma 48. Conditioned on the event that Ug is uniform, with probability at least 1− 2−Ω(n) over

the fixing of (Z,Ug1 , U
′
g1 , Hg, H

′
g), there exists an affine map A : {0, 1}|Ũg | → {0, 1}|Ũg | without fixed

point such that Ũ ′g = A(Ũg).

Proof. We first show that Ũg ̸= Ũ ′g with high probability.

• If Ug1 ̸= U ′g1, then Ũg(X) ̸= Ũ ′g(X) always holds.

• If Ug1 = U ′g1, we show that Hg ̸= H ′g with probability 1− 2−Ω(n). Note that this is equivalent

to Hg ⊕H ′g ̸= 0 ⇐⇒ (X̃1 ⊕ X̃ ′1)|U(1)
g1

◦ (X̃2 ⊕ X̃ ′2)|U(2)
g1

◦ · · · ◦ (X̃k ⊕ X̃ ′k)|U(k)
g1

⇐⇒ ã1
|U(1)

g1

◦

ã2
|U(2)

g1

◦ · · · ◦ ãk
|U(k)

g1

with probability 1− 2−Ω(n) where ãj for j ∈ [k] are obtained by divide the

Enc(a) (i.e. the encoded shift between the source X and its tampering X ′ = X + a) into k
equal blocks such that Enc(a) = ã1 ◦ ã2 ◦ · · · ◦ ãk. Let ℓ1, · · · , ℓk be the number of bits in each
block that are non-zero. Since at least β fraction of bits in Enc(a) differs from the bits of the
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codeword 0 = Enc(0),
∑k

i=1 ℓi ≥ βλn. Therefore we have

Pr
[
Hg ̸= H ′g | Ug1 = U ′g1

]
= 1−

k∏
i=1

(
1− ℓi

λn/k

)

≥ 1−

∑k
i=1

(
1− ℓi

λn/k

)
k

k

≥ 1− (1− β)k

≥ 1− 2−Ω(n). (k = Ω(n))

Therefore, in total, with probability 1− 2−Ω(n), Ũg ̸= Ũ ′g. By Lemma 47, U ′g is linearly correlated

with Ug conditioned on Z. Now, note that Ũg is a composition of Ug with Hg with Ug1, Hg fixed.
And the same holds for Ũ ′g. Therefore there exists some affine map A such that A(Ũg) = Ũ ′g.

Lemma 49. Conditioned on the further fixings of (Ũg, Ũ
′
g), there exists a constant β > 0 such that

SC is a (1/2 + β) affine somewhere random source.

Proof. Let Z = Z ∪ {Ũg, Ũ
′
g}. It is easy to see that the bound H(X | Z) ≥ δn/2 holds. Therefore,

by Theorem 18, SC is a (1/2 + β18) affine somewhere random source.

Lemma 50. Conditioned on Ug is uniform as well as Ũg and Ũ ′g are linearly correlated, SNg =

snmExt(SC1, Ũg) ◦ · · · ◦ snmExt(SCℓ′1
, Ũg) is 2−Ω(n) close to an affine somewhere random source.

Moreover, there exists h ∈ [ℓ′1] such that

SNgh ≈2−Ω(n) Un1) | SN ′gh.

Proof. Since SC is a (1/2 + β) affine somewhere random source, there exists an h ∈ [ℓ3] such that
H(SCh) ≥ 1/2 + β. For the seeds, the conditioning of (Ug1, U

′
g1) cause a deficiency of at most

20.22n1 to Ũg from being uniform. Then by Theorem 40 and Lemma 42, conditioned on (Ũg, Ũ
′
g),

we have

(snmExt(SCh, Ũg) ≈20.22n1ε4 Un1) | snmExt(SC ′h, Ũ
′
g).

Since 20.22n1ε4 = 2−Ω(n), snmExt is a linear function of SC conditioned on Z, it holds that

(SNgh ≈2−Ω(n) Un1) | SN ′gh,

and SNg is 2−Ω(n) close to an affine somewhere random source.

Lemma 51. With probability 1− 2−Ω(n) over further fixings of SN ′gh = snmExt(SC ′h, Ũ
′
g), Ỹg ⊕ Ỹ ′g

is uniform.

Proof. First note that both X and SNg (similarly X ′ and SN ′g) are affine sources. By Theorem 37,
we have

ldACB(X,SNgh, h) ≈ε5 Un2 | ldACB(X ′, SN ′gh, h)︸ ︷︷ ︸
same advice but

SNgh ≈2−Ω(n) Un1 | SN ′
gh

,
{
ldACB(X,SNgj , j), ldACB(X

′, SN ′gj , j)
}︸ ︷︷ ︸

the set contains the output ∀j∈[ℓ′1]\{h}
different advice

.
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Therefore, it holds that

Ỹg ⊕ Ỹ ′g =
⊕
j∈[ℓ′1]

ldACB(X,SNgj , j)⊕
⊕
j∈[ℓ′1]

ldACB(X ′, SN ′gj , j)

= ldACB(X,SNgh, h)⊕

 ⊕
j∈[ℓ′1]\{h}

ldACB(X,SNgj , j)⊕
⊕
j∈[ℓ′1]

ldACB(X ′, SN ′gj , j)


≈2−Ω(n) Un2 .

Let Z = Z ∪ {SN ′gh}.

Lemma 52. With probability 1 − 2−Ω(n) over the fixing of (Z, Ỹg, Ỹ
′
g), Wg is uniform conditioned

on W ′g. Moreover, there exists a random variable B̂g conditioned on which X is an affine function
of Wg.

Proof. By Lemma 35, Wg ≈2−Ω(n) Un3 | W ′g. Since conditioned on (Ỹg, Ỹ
′
g), Wg is a linear function

of X, by Lemma 8, there exists Âg and B̂g such that Wg(X) = Wg(Âg) and Wg(B̂g) = 0. Moreover,
conditioned on the fixing of B̂g, X is an affine function ofWg. Now, let Z = Z∪{Ỹg, Ỹ ′g ,W ′g, B̂g}.

Lemma 53. For all 1 ≤ j ≤ m1, zj is a constant degree polynomial of the bits of x.

Proof.
We consider how the degree of the polynomial accumulates inside the for-loop of Algorithm 8.

1. According a similar argument to [Li11], each bit of ui is a O(1) degree polynomial of x.

2. In step 7, it suffices to consider each bit of hi. For each j ∈ [k], x̃j has O(1) bits. Since to

sample a bit from x̃j , each u
(j)
i1 only needs to be log |x̃j | = O(1) long to encode all the indices

of x̃j . Therefore, the j-th bit of hi is a linear function of x̃j and a log |x̃j | = O(1) degree

polynomial of u
(j)
i1 .

3. In step 8, each bit of sni is bilinear map on sc and ũi. Therefore, each bit of sn is a degree
O(1) polynomial of the bits of x.

4. In step 9, each bit of ỹi is a degreeO(1) polynomial of bits of x and sc according to Theorem 37.

5. In step 10, each bit of wi is a constant degree polynomial of the inputs by Theorem 32.

6. In step 11, since each ci is a constant, the degree of resulting monomials by taking products
of ci bits is constant. Therefore, each bit of vij for all j ∈ [si] is a degree O(1) polynomial of
x.

Finally, it is direct that each bit of zj is a constant degree polynomial of x for each j ∈ [m1].

Lemma 54. For any integer s ∈ [m1], let Z̃ = (Z̃1, · · · , Z̃s) where Z̃j =
⊕t

i=g Vij. Then conditioned

on any fixing of W ′g and B̂g = b̂, there exists some b ∈ {0, 1}s such that∣∣∣Supp(DAExt(X) | DAExt(X ′) = b)
∣∣∣ = 2s.

36



Proof. First note that for all i ∈ [t], each bit of Wi is a constant degree polynomial of the bit of X.
Therefore, conditioned on the fixing of Z, for every i ≥ g + 1, each bit of W̃i and W̃ ′i is a degree
≤ c(δ) polynomial of the bits of Wg. Thus, for every i ≥ g + 1, the degree of the bit in Wi and W ′i
is c(δ) multiple of the degree of the bit in Wg. Therefore, if

ci > c(δ)ci+1, ∀i

then the degree of the polynomials
⊕t

i=g+1 Vij and
⊕t

i=g+1 V
′
ij is less than the degree of Vgj .

Therefore, there exists a fixing of {Vij , V
′
ij}i∈[g+1−t],j∈[m] such that Z̃j ⊕ Z̃ ′j can take both values

in {0, 1}. Since V ′gj is fixed, Z̃ ′j is fixed as well. This ensures there exists {z̃′j}j∈[m] such that that

Z̃j | (Z̃ ′j = z̃′j) can take both values in {0, 1}.

Next we show that Z̃j take both values in {0, 1} conditioned on Z̃S where S ⊆ [m] \ {j} where
Z̃S denotes (Z̃i)i∈S . Assume that for some (zi)i∈S such that when (Z̃i = zi)i∈S , Z̃j is fixed to zj ,
then it holds that

Pg =
∏
i∈S

(
Z̃i + zi + 1

)(
Z̃j + zj

)
≡ 0.

However, this cannot be true since Pg has a monomial Vgj of bits from Wg that are different from
the monomials of the same degree from Z̃i (if zj = 1). Since Wg is uniform, Vgj is nonzero with
any fixings of Z̃S . Therefore Pg cannot always be 0.

The techniques to bootstrap an extractor from a disperser follow essentially the same line
as [Li11]. We restate them here for the completeness of the proof.

Lemma 55. The random variables O1, · · · , Oαm1 form an ε-biased space.

Proof. Let ∅ ̸= T ⊆ [αm1], Si = {j ∈ [m1] : Gij = 1}, ST = {j ∈ [m1] : ⊕i∈TGij = 1}. Then⊕
i∈T

Oi =
⊕

Zj:j∈ST
.

Since any non-zero linear combination of codewords is again a codeword. The set ST has cardinality
at least γm1. Now note that conditioned on the fixing of Z, each Oi is a degree cg polynomial of
Wg. Moreover, ∀i ∈ ST ,

Oi = Vgi ⊕
t⊕

j=g+1

Vji.

Since for all i ∈ ST , Vgi is the product of some disjoint set (w.r.t. Vgℓ’s, ∀ℓ ∈ ST \ {i}) of the bits
of Wg, it is easy to see that {Vgi : i ∈ ST } is a set of |ST | ≥ γm1 independent copies of the same

function which we simply refer to as f . Since P :=
⊕

i∈T

(⊕t
j=g+1 Vji

)
has degree less than cg − 1

and f has degree cg,

Cor(f, P ) ≤ 1− 2−cg .

Then by Theorem 17,

Cor(f⊕|ST |, P ) ≤ exp(−Ω(|ST |/(4cg−1 · (cg − 1)))) ≤ 2−Ω(γm1).
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Since our choice of T is arbitrary, and there are at most 2αm1 − 1 such choices, there exists an
absolute constant c0 s.t.

Cor(f⊕|ST |, P ) ≤ 2−c0γm1)

for any ∅ ̸= T ⊆ [αm1].
Since f⊕|ST | is uniform, it holds that

∆(
⊕
i∈T

Oi, U) ≤ 2−c0γm1 .

we conclude that O1, · · · , Oαm1 form an ε-biased space.

Now by Lemma 16,

∆(O − Uβ′m1) ≤ 2β
′m1/2 · 2−c0γm1 .

Choose 0 < β′ ≤ α s.t. β′ ≤ c0γ. Then

∆(O − Um) ≤ 2−c0m/2.

Therefore, the output of Algorithm 8 are m bits that are 2−Ω(m)-close to uniform.

5.3 Directional Affine Disperser and Extractor for Sublinear Entropy Sources

In this subsection, we demonstrate how to push the entropy requirement of Algorithm 8 to sublinear.
We first examine how we can do this for the disperser.

Theorem 56. There exists a constant c > 1 and an efficient family of functions DADisp : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn(log log n)2/ log n, there
exists some b ∈ {0, 1}m such that |Supp(DAExt(X) | DAExt(X + a) = b)| = 2m.

Proof Sketch. The disperser construction is Algorithm 8 up to the phase “Disperser to Extractor”,
except for now, we do not make assumptions about the entropy of the input. When pushing down
the entropy requirement, we are mainly interested in 2 binding quantities — the bit length of Wg

and the degree of each bit of {Wi : i ∈ [g + 1, t]}.
We first examine the length of Wg in a step-by-step manner.
Step 1. In step 1 of Algorithm 8, by Theorem 18, we get that ℓ2 = poly(1/δ), and each Ygj has
n/poly(1/δ) bits.
Step 2. We get ℓ′3 = poly(1/δ).
Step 3. The total number of rows in the matrix SRg is ℓ2ℓ

′
3 = poly(1/δ), with each row having

δ2n/(300tℓ2ℓ
′
3) = n/(poly(1/δ)) bits. By Theorem 38, the error is 2−n/poly(1/δ).

Step 4. We apply AffineSRExt. By Theorem 39, we get each Rg has n/poly(1/δ)O(log(1/δ)) bits,

with error 2−n/poly(1/δ)
O(log(1/δ))

.
Step 5. By Theorem 32, after applying LSExt, Ug has n/(1/δ)

O(log(1/δ)) bits with error 2−n/(1/δ)
O(log(1/δ))).

Step 8. First note that by Theorem 18, SCg has n/(1/δ)O(log(1/δ)) bits and SC has ℓ′1 =
(1/δ)O(log(1/δ)) rows. By Theorem 40, each row of SNg has bits n/(1/δ)O(log(1/δ)) with error

2−n/(1/δ)
O(log(1/δ))

.
Step 9. By Theorem 37, Ỹg has n/(1/δ)O(log(1/δ)) bits with error 2−n/(1/δ)

O(log(1/δ))
.

Step 10. By Theorem 32, after applying LSExt,Wg has n/(1/δ)
O(log(1/δ)) bits with error 2−n/(1/δ)

O(log(1/δ))
.

We now check if the degrees of the polynomials produced in Step 11 satisfy the requirements as
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in the analysis of Theorem 43, which adds constraints ci > c(δ)ci+1, ∀i. First note that up to
a sequence of fixings of r.v.s, X is an affine function of Wg. Now by Theorem 18, each bit of
SCond2(Xi) and BasicCondlog t ◦ SCond3(x) is a linear function of the input bits. The function IP is
a degree 2 polynomial. Therefore each bit of SRi is a degree 2 polynomial of the input bits. Since
each bit of the output of AffineSRExt is a degree poly(1/δ) polynomial of the input bits. Therefore
each bit of Ri is a degree poly(1/δ) of the bits of Wg. By Theorem 32, each bit of Ui is a constant
degree polynomial of the input bits. Since Enc is linear and each bit of X̃i has O(1) bits, each bit
of hi is a constant degree polynomial of the inputs. By Theorem 18 and Theorem 40, each bit of
SNij is a constant degree polynomial of the input bits. By Theorem 37, each bit of Ỹi is a degree

2log(ℓ
′
1) = 2log((1/δ)

O(log(1/δ))) = (1/δ)O(log(1/δ)) degree polynomial of the input bits. By Theorem 32,
each bit of Wi is a constant degree polynomial of the input bits. Thus, we conclude that for every
i ≥ g + 1, each bit of Wi is a degree (1/δ)O(log(1/δ)) polynomial of the bits of Wg. Therefore, we
have

c(δ) = (1/δ)O(log(1/δ)).

Since we need ci > c(δ)ci+1 for every 1 ≤ i ≤ 10/δ, we have the following upper bound for all the
ci’s.

c(δ)10/δ = ((1/δ)O(log(1/δ)))O(1/δ) = (1/δ)O((1/δ) log(1/δ)).

Since each Wi has n/(1/δ)
O(log(1/δ)) bits, it suffices to have

n/(1/δ)O(log(1/δ)) > (1/δ)O((1/δ) log(1/δ)).

It suffices to take δ = c(log log n)2/ log n for some constant c.

We now discuss the case for the extractor.

Theorem 57. There exists a constant c > 1 and an efficient family of functions DAExt : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn(log log log n)2/ log log n,

(DAExt(X),DAExt(X + a)) ≈ε (Um,DAExt(X + a)) ,

where ε = 2−n
Ω(1)

.

Proof Sketch. We follow up on the discussion for sublinear entropy disperser. Assume that the
entropy is set such that we indeed obtain a disperser. Note that the disperser outputs

n/
(
(log(1/δ))O(1/δ) · (1/δ)O((1/δ) log(1/δ))

)
= n/(1/δ)O((1/δ) log(1/δ))

bits. From this point, there is and only is one more constraint to consider which is on the degree of
the polynomials. For the extractor, we need to guarantee that the XOR lemma from Theorem 17
yields subexponential error. In other words, we need to guarantee

n/(1/δ)O((1/δ) log(1/δ))

(1/δ)O((1/δ) log(1/δ)) · 2(1/δ)O((1/δ) log(1/δ))
= nΩ(1).

It suffices to take δ = c(log log log n)2/ log log n for some constant c.
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6 Average-case AC0 Hardness for Read-Once Branching Programs

In this section, we build an AC0-computable extractor that are capable of extracting randomness
from the preimage of any output of any read-once branching program of suitable size.

We use the following two constructions of extractors in AC0 from previous works.

Theorem 58 ([CL18]). For any constants c ∈ N, δ ∈ (0, 1], there exists an explicit deterministic
(k = δn, ε = 2− logc n)-extractor AC0-BFExt : {0, 1}n → {0, 1}Ω(k) that can be computed by AC0

circuits of depth O(c), for any (n, k)-bit-fixing source.

Theorem 59 ([PWY16]). For any constants c ∈ N, δ ∈ (0, 1], there exists an explicit strong
linear seeded (k = δn, ε = 2− logc n)-extractor AC0-LExt : {0, 1}n × {0, 1}d → {0, 1}Ω(k) that can be
computed by AC0 circuits of depth O(c), with seed length d = O(logc+1 n).

6.1 AC0-Computable t-Affine Correlation Breaker

Our construction of AC0-computable t-affine correlation breaker builds on the skeleton of the t-
affine correlation breaker in [CL22], which in turn applies the standard correlation breaker in [Li17].
Towards this, we first give an AC0-computable flip-flop, which is used as a subroutine in the standard
correlation breaker. We then replace the strong seeded extractors in the standard correlation
breaker and the t-affine correlation breaker with AC0-LExt.

Algorithm 9 AC0-flip-flop(x, y, b)

Input: Uniform bit strings x, y of length n1, n1 respectively, a bit b and a circuit depth parameter
c ∈ N.
Output: Bit string x̂ of length n2.
Parameters and Subroutines: Let n2 = Ω(n1) ≤ n1/20 and d = Ω(n1) ≤ n2/10. Let
AC0-LExt1 : {0, 1}n1 × {0, 1}d → {0, 1}d be (k1 = n1/10, ε1 = 2− logc n)-strong linear seeded
extractor from Theorem 59, AC0-LExt2 : {0, 1}n2 × {0, 1}d → {0, 1}d be (k2 = n2, ε2 = 2− logc n)-
strong linear seeded extractors from Theorem 59. Let AC0-LExt3 : {0, 1}n1 × {0, 1}d → {0, 1}n2

be a (k3 = n1/2, ε3 = 2− logc n)-strong linear seeded extractor from Theorem 59.
Let laExt : {0, 1}n1×{0, 1}n2+d → {0, 1}2d be a look-ahead extractor for an alternating extraction
protocol run for 2 rounds using AC0-LExt1,AC

0-LExt2 as the seeded extractors.

1. Let ỹ = Slice(y, n2), s0 = Slice(ỹ, d), laExt(x, (ỹ, s0)) = r0, r1

2. Let y = AC0-LExt3(y, rb)

3. Let s0 = Slice(y, d), laExt(x, (y, s0)) = r0, r1

4. Let ŷ = AC0-LExt3(y, r1−b)

5. Let y0 = Slice(ŷ, d)

6. Output x̂ = AC0-LExt3(x, y0)

Theorem 60 (AC0-flip-flop). For any integer c, n1 > 0 and any ε > 0, there exists an explicit
function AC0-flip-flop : {0, 1}n1 × {0, 1}n1 × {0, 1} → {0, 1}m, satisfying the following: let X be an
independent uniform source on n1 bits, and X ′ be a random variable on n1 bits arbitrarily correlated
with X. Let Y be an independent uniform source on n1 bits, and Y be a random variable on n1

bits arbitrarily correlated with Y . Suppose (X,X ′) is independent of (Y, Y ′). If k = Ω(n1), then
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AC0-flip-flop can be computed by AC0 circuits of depth O(c) and for any bit b, it holds that

AC0-flip-flop(X,Y, b) ≈ε Um | (Y, Y ′).

Furthermore, for any bits b, b′ with b ̸= b′, we have

AC0-flip-flop(X,Y, b) ≈ε Um | (AC0-flip-flop(X ′, Y ′, b′), Y, Y ′).

where m ≥ Ω(k) and ε = 6 · 2− logc n1.

Proof. We show that Algorithm 9 is a construction of such functions.

1. Since S0 = Ud and H̃∞(X) ≥ k1, by the property of AC0-LExt1, conditioned on the fixings of
S0, R0 ≈ε1 Ud is a linear function of X, thus of (Y, Y ′). Since H̃∞(Ỹ | S0, S

′
0) ≥ n2− 2d ≥ k2

and R0 ≈ε1 Ud, by the property of AC0-LExt2, conditioned on the fixings of R0, S1 ≈ε1+ε2 Ud

is a linear function of Y ′, thus independent of X. Since H̃∞(X | R0, R
′
0) ≥ n1k−2d ≥ k1 and

S1 ≈ε1+ε2 Ud, by the property of AC0-LExt1, conditioned on S1, R1 ≈ε1+ε2+ε1 Ud is a linear
function of X, thus independent of (Y, Y ′).

2. Since Rb ≈ε1+b(ε1+ε2) Ud and Rb (R′b) is independent of Y (Y ′) conditioned on {S0, S1}
({S′0, S′1}). Fix (Rb, R

′
b) and Y ′, H̃∞(Y | S0, S

′
0, S1, S

′
1, Y

′) ≥ n1 − 4d− n2 ≥ k3, then by the
property of AC0-LExt3, Y ≈ε3+ε1+b(ε1+ε2) Un2 .

3. Now that Y ′ is fixed, we can fix (R′0, S
′
1, R

′
1). This only cause at most 2d entropy loss to X.

Since S0 is a slice of Y , then S0 ≈ε3+ε1+b(ε1+ε2) Ud. Since also H̃∞(X | R0, R
′
0, R1, R

′
1, R

′
0, R

′
1)

≥ n1−6d ≥ k1, by the property of AC
0-LExt1, conditioned on the fixings of S0, R0 ≈ε3+2ε1+b(ε1+ε2)

Ud is a linear function ofX, thus independent of (Y, Y ′). Since H̃∞(Y | Y ′, S0, S
′
0, S1, S1, S0, S′0)

≥ n2 − 6d ≥ k2 and R0 ≈ε3+2ε1+b(ε1+ε2) Ud, by the property of AC0-LExt2, conditioned on

the fixings of R0, S1 ≈ε3+(2+b)ε1+(b+1)ε2 Ud is a linear function of Y , thus independent of X.

Since H̃∞(X | R0, R
′
0, R1, R

′
1, R0, R′0, R

′
1) ≥ n1 − 7d ≥ k1 and S1 ≈ε3+(2+b)ε1+(b+1)ε2 Ud, by

the property of AC0-LExt1, conditioned on the fixings of S1, R1 ≈ε3+(3+b)ε1+(b+1)ε2 Ud is a
linear function of X, thus independent of (Y, Y ′).

4. From the above analysis, for all b′ ∈ {0, 1}, R1−b′ ≈ε3+3ε1+ε2 Ud | (Y, Y ′) and R1−b ≈ε3+3ε1+ε2

Ud | (R′1−b, Y, Y
′). Therefore, conditioned on the fixing of (R1−b, R

′
1−b), Ŷ (Ŷ ′) is a linear

function of Y (Y ′) and is therefore independent of X (X ′). By Lemma 15, Ŷ ≈2ε3+3ε1+ε2

Un2 | (Ŷ ′, R1−b, R
′
1−b).

5. Now it is easy to see that Y0 ≈2ε3+3ε1+ε2 Un2 | (Y0, R1−b, R
′
1−b), and Y0 (Y ′0) is independent of

X (X ′). We also have H̃∞(X | R0, R
′
0, R1, R

′
1, R0, R1, R′0, R

′
1) ≥ n1−8d ≥ k3. By Lemma 15,

it holds that X̂ ≈3ε3+3ε1+ε2 Un1 | (X̂ ′, Y, Y ′).

This completes the proof of Theorem 60.

AC0-computable standard correlation breaker. The following algorithm is a modification of
the correlation breaker in [Li17] so that it is computable by AC0 circuits.

Definition 28 (AC0-CB). A function AC0-CB : {0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m is a correlation
breaker for entropy k with error ε that can be computed by AC0 circuit of depth c (or a (k, ε, c)-affine
correlation breaker for short) if for every X,X ′ ∈ {0, 1}n, Y, Y ′ ∈ {0, 1}d, α, α′ ∈ {0, 1}a s.t.
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• X is an (n, k) source and Y is uniform

• (X,X ′) is independent of (Y, Y ′)

• α ̸= α′

AC0-CB can be computed by AC0 circuits of depth O(c) and

AC0-CB(X,Y, α) ≈ε Um | AC0-AffCB(X ′, Y ′, α′).

We say AC0-CB is strong if

AC0-CB(X,Y, α) ≈ε Um | (AC0-AffCB(X ′, Y ′, α′), Y ′, Y ).

Algorithm 10 AC0-CB(x, y, id)

Input: Bit strings x, y, id of length n, d, a respectively.
Output: Bit string v̂ of length m.
Subroutines and Parameters:
Fix a constant c. Let ℓ = log(a), s = d/(1000(ℓ+ 1)), r = s/a, m = Ω(d).
Let AC0-LExt0 : {0, 1}n × {0, 1}s0 → {0, 1}d0 be the AC0-computable strong seeded extractor
from 59 set to extract from a (n, d) source where d = Ω(n), seed s0 = O(logc+1 n), output
d0 = Ω(d) ≤ 0.3d, d0 ≥ 200ℓs and error εn = 2− logc n.
Let IP : {0, 1}d0 × {0, 1}d0 → {0, 1}d0/6 be the two source extractor from Theorem 38 with error
εIP = 2−Ω(d).
Let AC0-laExt2ℓ+1 : {0, 1}d × {0, 1}d0/6 →

(
{0, 1}3s

)2ℓ+1
be the look-ahead extractor from

Lemma 14 with the following extractors for Quentin and Wendy:

• AC0-LExtq : {0, 1}d0/6 × {0, 1}3s → {0, 1}3s be the AC0-computable strong seeded extractor
from Theorem 59 set to extract for (d0/6, d0/12) sources with error εd = 2− logc d0/6.

• AC0-LExtw : {0, 1}d × {0, 1}3s → {0, 1}3s be the AC0-computable strong seeded extractor
from Theorem 59 set to extract from (d, d/4) sources with error ≤ εd = 2− logc d0/6.

Let AC0-laExtℓ+1 : {0, 1}n × {0, 1}d0/6 →
(
{0, 1}3s

)ℓ+1
be the look-ahead extractor from

Lemma 14.

• AC0-LExtq : {0, 1}d0/6 × {0, 1}3s → {0, 1}3s be the AC0-computable strong seeded extractor
from Theorem 59 set to extract from (d0/6, d0/12) sources with error εd = 2− logc d0/6.

• AC0-LExt′w : {0, 1}n × {0, 1}3s → {0, 1}3s be the AC0-computable strong seeded extractor
from Theorem 59 set to extract from (n, d/4) sources with error εn = 2− logc n.

Let AC0-flip-flop : {0, 1}3s × {0, 1}3s × {0, 1}a → {0, 1}r be the AC0-computable flip-flop from
Theorem 60 with error 6 · εn.
Let AC0-LExt : {0, 1}3s × {0, 1}r → {0, 1}r be the AC0-computable strong seeded extractor from
Theorem 59 set to extract from uniform sources with error εs = 2− logc(3s).
Let AC0-LExt′ : {0, 1}3s × {0, 1}r → {0, 1}r be the AC0-computable strong seeded extractor from
Theorem 59 set to extract form uniform sources with error εs.
Let AC0-LExt′′ : {0, 1}d × {0, 1}r → {0, 1}s be the AC0-computable strong seeded extractor from
Theorem 59 set to extract from a (d, d/4) source with error εd.
Let AC0-LExt′′′ : {0, 1}n×{0, 1}s → {0, 1}m be the AC0-computable strong seeded extractor from
Theorem 59 set to extract from a (n, d/4) source with error εn.
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Let AC0-NIPM2 construction be 2-alternating extraction {0, 1}r × {0, 1}r × {0, 1}3s → {0, 1}r
from Definition 18 with the following extractors for Quentin and Wendy:

• AC0-LExt′q : {0, 1}r×{0, 1}r → {0, 1}r/2 be the AC0-computable strong seeded extractor from

Theorem 59 set to extract from (r, r) sources with error εr = 2− logc r.

• AC0-LExt′′w : {0, 1}3s × {0, 1}r/2 → {0, 1}r be the AC0-computable strong seeded extractor
from Theorem 59 set to extract from (3s, s) sources with error εs.

1. Let y0 ◦ y1 = Slice(y, s0 + 0.3d) where y0 has length s0 and x1 = AC0-LExt0(x, y0).

2. Compute z = IP(x1, y1).

3. Let r0, r1, · · · , r2ℓ = AC0-laExt2ℓ+1(y, z).

4. Let s0, s1, · · · , sℓ = AC0-laExtℓ+1(x, z).

5. Let V 0 be an a× r matrix whose i’th row is V 0
i = AC0-flip-flop(s0, r0, αi) and has r bits.

6. For j = 1, · · · , ℓ do the following. Merge the matrix vj−1 two rows by two rows: Note

that vj−1 has a/2j−1 rows, for i = 1, · · · , a/2j , compute vj−1i = AC0-NIPM(vj−12i−1, v
j−1
2i , r2j−1)

which outputs r bits, and ṽj−1i = AC0-LExt(r2j , v
j−1
i ) which has r bits. Finally compute

vji = AC0-LExt′(sj , ṽ
j−1
i ) which has r bits.

7. Compute v̂ = AC0-LExt′′′(x,AC0-LExt′′(y, vℓ)).

Theorem 61 (AC0-CB). For every constant c, there exists an explicit strong correlation breaker
{0, 1}n×{0, 1}d×{0, 1}a → {0, 1}Ω(d) for entropy d with error ε = O(a · 2− logc n), where d = Ω(n)
and a = O( d

logc d). Moreover, the correlation breaker is computable by AC0 circuits of depth O(c).

Proof. We show that Algorithm 10 gives such a correlation breaker. We shall analyze the algorithm
step by step.
Step 1. Fix (Y0, Y

′
0), conditioned on this fixing, X1 is a linear function of X and is independent of

(Y1, Y
′
1) and (Y, Y ′).

Step 2. Since X1 ≈εn U0.3d and Y1 = U0.3d, by the definition of IP, Z ≈εIP Ud0/6.
Step 3.

• Further fix (Y1, Y
′
1), conditioned on this fixing, it holds (Z,Z ′) is a deterministic function of

(X1, X
′
1), and thus (Z,Z ′) is independent of (Y, Y ′).

• Z ≈εIP Ud0/6 and H̃∞(Y | Y0, Y ′0 , Y1, Y ′1) ≥ d− 2s0 − 2 · d0 ≥ 0.3d.

• By Lemma 14, since H̃∞(Y | Y1, Y ′1) ≥ 0.3d ≥ d/4 + 2(2ℓ + 1)(3s) + 2 log(1/εd) and d0/6 ≥
d0/12 + 2(2ℓ+ 1)(3s) + 2 log(1/εd), we have that for any 0 ≤ j ≤ 2ℓ− 1, it holds that

Rj+1 ≈O(ℓεd) U3s | (Z,Z ′, R0, R
′
0, · · · , Rj , R

′
j).

By a hybrid argument and the triangle inequality, we have that

(Z,Z ′, R0, R
′
0, · · · , R2ℓ, R

′
2ℓ) ≈O(ℓ2εd) (Z,Z

′, U3s, R
′
0, · · · , U3s, R

′
2ℓ). (4)

where each U3s is independent of all the previous random variables (but may depend on later
random variables).
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• Conditioned on the fixing of (Z,Z ′), we have {(Ri, R
′
i)}i∈[0,2ℓ] is a deterministic function of

(Y1, Y
′
1), thus independent of (X,X ′).

Step 4.

• Fix (X1, X
′
1), conditioned on this fixing, it holds (Z,Z ′) is a deterministic function of (Y1, Y

′
1),

and thus (Z,Z ′) is independent of (X,X ′).

• Z ≈εIP Ud0/6 and H̃∞(X | X1, X
′
1) ≥ d− 2 · d0 ≥ 0.4d.

• By Lemma 14, since H̃∞(X | X1, X
′
1) ≥ 0.4d ≥ d/4 + 2(ℓ + 1)(3s) + 2 log(1/εn) and d0/6 ≥

d0/12 + 2(ℓ+ 1)(3s) + 2 log(1/εd), we have that for any 0 ≤ j ≤ ℓ− 1, it holds that

Sj+1 ≈O(ℓ(εn+εd)/2) U3s | (Z,Z ′,
{
S0, S

′
0, · · · , Sj , S

′
j

}
).

By a hybrid argument and the triangle inequality, we have that

(Z,Z ′, S0, S
′
0, · · · , Sℓ, S

′
ℓ) ≈O(ℓ2(εn+εd)/2) (Z,Z

′, U3s, S
′
0, · · · , U3s, S

′
ℓ). (5)

where each U3s is independent of all the previous random variables (but may depend on later
random variables).

• Conditioned on the fixing of (Z,Z ′), we have {(Si, S
′
i)}i∈[0,ℓ] is a deterministic function of

(X1, X
′
1), thus independent of (Y, Y

′).

Therefore, we conclude that conditioned on the fixing of (X1, X
′
1, Y1, Y

′
1 , Z, Z

′), we have {(Ri, R
′
i)}i∈[0,2ℓ]

is a deterministic function of (Y, Y ′), and {(Si, S
′
i)}i∈[0,ℓ] is a deterministic function of (X,X ′), thus

they are independent. Moreover each Ri and Si is close to uniform given the previous random
variables. From now on, we will assume that each Ri and Si are uniform (*) and add back an error
of O(ℓ2(εn + εd)) in the end. Since in the algorithm and the analysis below, each Ri and Si are
used at most twice either as source of seed, this is sufficient.
Step 5. By Theorem 60, for all i ∈ [a], V 0

i ≈O(εn) Us. Moreover, since α ̸= α′, there exists an
i ∈ [a] such that V 0

i ≈O(εn) Us | (V ′0i , R0, R
′
0). Now that conditioned on the fixing of (R0, R

′
0),

(V 0, V ′0) is a deterministic function of (S0, S
′
0), and thus independent of {(Ri, R

′
i)}i∈[2ℓ].

Step 6. First note that the followings:

1. conditioned on the fixing of (R0, R
′
0), (V

0, V ′0) is a linear function of (S0, S
′
0).

2. Each row of V 0 is close to uniform and there exists a row in V 0 that is close to uniform even
conditioned on the corresponding row in V ′0.

Along the analysis below, we prove by induction that for any j ∈ [0, ℓ],

(a) each row of V j is close to uniform, and there exists a row in V j that is close to uniform even
conditioned on the corresponding row in V ′j .

For any j ∈ [ℓ], it holds that

(b) conditioned on the fixing of (R0, R
′
0, · · · , R2j−2, R

′
2j−2), (V

j−1, V ′j−1) is a linear functions of
(S0, S

′
0, · · · , Sj−1, S

′
j−1).

(c) each row of V j−1 (Ṽ j−1) is close to uniform, and there exists a row in V j−1 (Ṽ j−1) that is
close to uniform even conditioned on the corresponding row in V ′j−1 (Ṽ ′j−1).
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For each iteration j ∈ [ℓ], Step 6 generates 3 new somewhere random matrices: V j−1, Ṽ j−1, and
V j of size (a/2j)× r,(a/2j)× r, and (a/2j)× r respectively. Each one of them has some properties:
Matrix V j−1. Conditioned on the fixings of (R0, R

′
0, · · · , R2j−2, R

′
2j−2), by our assumption (*),

R2j−1 = U3s. Now, condition on (R0, R
′
0, · · · , R2j−1, R

′
2j−1), by Lemma 14, each row of V j−1 is

O(2j−1(εs + εn)) close to uniform. Since there exists one row in V j−1 that is close to uniform
even given the corresponding row in V ′j−1, by Lemma 15, there is one row in V j−1 that is close
to uniform even conditioned on the same row in V ′j−1. Moreover, conditioned on the fixing of
(R0, R

′
0, · · · , R2j−1, R

′
2j−1), (V

j−1, V ′j−1) is a linear function of (V j−1, V ′j−1), which, by induction
hypothesis, is a linear function (S0, S

′
0, · · · , Sj−1, S

′
j−1), and thus independent of R2j .

Matrix Ṽ j−1. First note that the i-th row of the matrix Ṽ j−1 is obtained by using the i-th
row of matrix V j−1 to extract from Sj , for each i ∈ [a/2j ]. In addition, conditioned on V j−1,
Ṽ j−1 is a deterministic function of R2j . Since R2j = U3s | (R0, R

′
0, · · · , R2j−1 , R′2j−1) and

H̃∞(R2j | V j−1, Ṽ j−1
[u] ) ≥ 3s − ur ≥ 3s − ar/2j−1 ≥ 3s − ar ≥ s + log(1/εs) where u ∈ [a/2j − 1],

each row of Ṽ j−1 is uniform by the definition of AC0-LExt. Since there is one row in V j−1 that is
O(2j−1(εs + εn)) close to uniform conditioned on the corresponding row in V ′j−1, by Lemma 15,
there is also one row in Ṽ j−1 that is close to uniform even conditioned on the corresponding row
in Ṽ ′j−1.
Matrix V j. First note that the i-th row of the matrix V j is obtained by using the i-th row of
matrix Ṽ j−1 to extract from Sj , for each i ∈ [a/2j ]. In addition, conditioned on Ṽ j−1, V j is a

deterministic function of Sj . Since Sj = U3s | (S0, S
′
0, · · · , Sj−1, S

′
j−1) and H̃∞(Sj | Ṽ j−1, V j

[u]) ≥
3s − ur ≥ 3s − ar/2j−1 ≥ 3s − ar ≥ s + log(1/εs) where u ∈ [a/2j − 1], each row of V j is
O(2j(εs + εn)) close to uniform by the definition of AC0-LExt′. Since there is one row in Ṽ j−1 that
is close to uniform conditioned on the corresponding row in Ṽ ′j−1, by Lemma 15, there is also one
row in V j that is close to uniform even conditioned on the corresponding row in V ′j .
Setting j = ℓ, we get insV ℓ ≈O(2ℓ(εs+εn)) Ur | V ′ℓ.
Step 7. Note that H(Y | {Ri, R

′
i}i∈[0,2ℓ]) ≥ d/4 + 2 log(1/εd) and H(X | {Si, S

′
i}i∈[0,ℓ]) ≥

d + 2 log(1/εn), since V ℓ ≈O(a(εs+εn)) Ur | V ′ℓ, by 2 iterative use of Lemma 15, it follows that

V̂ ≈O(εn+ℓ2(εn+εd)+a(εs+εn)+εd+εn) Um | V̂ ′ ⇐⇒ V̂ ≈O(aεn) Um | V̂ ′. Since V̂ is a determinis-

tic function of X conditioned on (Y, Y ′, {Si, S
′
i}i∈[0,ℓ]) and AC0-LExt′′′ is strong, it also holds that

V̂ ≈O(aεn) Um | (V̂ ′, Y, Y ′). This completes the proof of Theorem 61.

AC0-computable t-affine correlation breaker. The following definition is a modification of
t-affine correlation breaker [CL22] into the AC0-computable setting.

Definition 29 (AC0-AffCB). A function AC0-AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m is a t-
affine correlation breaker for entropy k with error ε that can be computed by AC0 circuit of depth c
(or a (t, k, ε, c)-affine correlation breaker for short) if for every X,A,B ∈ {0, 1}n, Y, Y [t] ∈ {0, 1}d,
Z and string α, α[t] ∈ {0, 1}a s.t.

• X = A+B

• H̃∞(A | Z) ≥ k

• (Y,Z) = (Ud, Z)

• A is independent of (B, Y, Y [t]) given Z

• α, α1, · · · , αt be a-bit strings s.t. α ̸= αi for every i ∈ [t]
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AC0-AffCB can be computed by AC0 circuits of depth O(c) and

AC0-AffCB(X,Y, α) ≈ε Um |
{
AC0-AffCB(Xi, Y i, αi)

}
i∈[t] .

We say AC0-AffCB is strong if

AC0-AffCB(X,Y, α) ≈ε Um | (
{
AC0-AffCB(Xi, Y i, αi)

}
i∈[t] , Y

[t], Y ).

Algorithm 11 below is a construction of strong (t, k, ε, c)-affine correlation breaker.

Algorithm 11 AC0-AffCB(x, y, id)

Input: Bit strings x = w + z, y, id of length n, d = Ω(n), a respectively.
Output: Bit string q⌈log t⌉ of length r.
Subroutines and Parameters:
Fix a constant c. Let d′0 = O(logc+1 n), d0 ≤ min {k, d} /(10t + 10), dx ≤ d0/(2 log t), r =
k/(10 + 10t), dy = r

4t log t .

Let AC0-LExt : {0, 1}n×{0, 1}d′0 → {0, 1}d0 be the AC0-computable strong seeded extractor from
Theorem 59 with error εn = 2− logc n.
Let AC0-CB : {0, 1}d × {0, 1}d0 × {0, 1}a → {0, 1}dx be the AC0-computable correlation breaker
from Theorem 61 with error ε′ = O(a · 2− logc d).
Let AC0-LExt′ : {0, 1}n×{0, 1}dx → {0, 1}r be the AC0-computable strong seeded extractor from
Theorem 59 with error εn = 2− logc n.
Let AC0-LExtw : {0, 1}d × {0, 1}dy → {0, 1}dx be the AC0-computable strong seeded extractor
from Theorem 59 with error εd = 2− logc d.
Let AC0-LExtq : {0, 1}r × {0, 1}dx → {0, 1}dy be the AC0-computable strong seeded extractor
from Theorem 59 with error εr = 2− logc r.

Let y0 = Slice(y, d′0)
Let x0 = AC0-LExt(x, y0)
Let y1 = AC0-CB(y, x0, α)
Let q0 = AC0-LExt′(x, y1)
For every i, 1 ≤ i ≤ ⌈log t⌉ do the following

1. Let si−1 = Slice(qi−1, dy)

2. Let ri−1 = AC0-LExtw(y, si−1)

3. Let si = AC0-LExtq(qi−1, ri−1)

4. Let ri = AC0-LExtw(y, si)

5. Let qi = AC0-LExt′(x, ri)

Theorem 62 (AC0-AffCB). For every c ∈ N, constant 0 < δ < 1 and n ∈ N and every k, d, t, a,
there exists a constant C such that if

• k ≥ δn

• d = Ω(n) and d ≤ n

• t = O(1)
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• a ≤ C n
logc(n)

then there exists a strong AC0-AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m which is computable by
depth O(c) AC0 circuits

• m = Ω(k)

• ε = O(2− logc−1 k)

Proof. We will prove that Algorithm 11 gives such a function.
First we prove that AC0-AffCB satisfy Definition 29.

1. For all i ∈ [t], let Xi
0,A := AC0-LExt(A, Y i

0 ), X
i
0,B := AC0-LExt(B, Y i

0 ), Q
i
0,A := AC0-LExt′

(A, Y i
1 ), Q

i
0,B := AC0-LExt′(B, Y i

1 ). Let Z be Z29 from Definition 29.

2. By definition of AC0-LExt,

X0,A ≈εn Ud0 | (Z, Y0, Y
[t]
0 , X0,B, X

[t]
0,B).

3. Since H̃∞(Y | Z, Y0, Y [t]
0 , X0,B, X

[t]
0,B) ≥ d − (t + 1)d′0 ≥ 9d/10, R1,A, R

[t]
1,A are independent

of Y, Y [t] given Z, Y0, Y
[t]
0 , X0,B, X

[t]
0,B, and AC0-CB is a strong correlation breaker, it holds

∀i ∈ [t] that

Y1 ≈εn+ε′ Udx | (Y i
1 , Z, Y0, Y

[t]
0 , X0,B, X

[t]
0,B, X0, X

i
0).

4. Since conditioned on the fixing of X0, X
[t]
0,B, Y1 is a deterministic function of Y and is inde-

pendent of X
[t]
0 ,

Y1 ≈εn+ε′ Udx | (Y i
1 , Z, Y0, Y

[t]
0 , X0,B, X

[t]
0,B, X0, X

[t]
0 ).

5. By Lemma 15, it holds ∀i ∈ [t] that

Q0,A ≈2εn+ε′ Ur | (Qi
0,A, Z, Y0, Y

[t]
0 , X0,B, X

[t]
0,B, X0, X

[t]
0 , Y1, Y

[t]
1 ).

Since (Q0,B, Q
[t]
0,B) is independent of Q0,A, let

Z0 := (Z, Y0, Y
[t]
0 , X0,B, X

[t]
0,B, X0, X

[t]
0 , Y1, Y

[t]
1 , Q0,B, Q

[t]
0,B),

it also holds that
Q0,A ≈2εn+ε′ Ur | (Qi

0,A, Z0),

which is equivalent to
Q0 ≈2εn+ε′ Ur | (Qi

0, Z0).

Claim 63. Each one of Si, Ri, Qi, Ri is close to uniform and independent of every min
{
2i, t

}
tampered r.v.’s.

Proof. For each i ∈ [⌈log t⌉], let

Zi,1,B := (Zi−1, Si−1,B, S
[t]
i−1,B); Zi,2 := (Zi,1,B, Si−1, S

[t]
i−1); Zi,3 := (Zi,2, Ri−1, R

[t]
i−1)

Zi,3,B := (Zi,3, Si,B, Si,B
[t]
); Zi,4 := (Zi,3, Si, Si

[t]
); Zi := (Zi,4, Ri, Ri

[t]
),
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let Ti be any subset of [t] of size 2i if 2i ≤ t, otherwise, let it be [t]. Now we define an ordering for
the claims C according to which we prove by induction. The first claim is Sub-step 5 with i = 0.
Then the claims follow the order of round i, Sub-step 1; round i, Sub-step 2, ..., round i, Sub-step
5, round i + 1, Sub-step 1; round i + 1, Sub-step 2, ..., round ⌈log t⌉, Sub-step 5. First note that
by the above arguments, the claim in Sub-step 5 below holds for i = 0. It is clear that claims in C
of order ≤ k implies that of order k + 1.
Sub-step 1: Si−1 ≈2εn+ε′+(i−1)(2εd+εn+εr) Udy | (S

Ti−1

i−1 , Zi−1); Si−1,A ≈2εn+ε′ Udy | (S
Ti−1

i−1,A, Zi,1,B)
as long as the statement in Sub-step 5 holds for i− 1.
Sub-step 2: It holds by Lemma 15 that Ri−1 ≈2εn+ε′+εd+(i−1)(2εd+εn+εr) Udx | (R

Ti−1

i−1 , Zi,2) as long

as the statement in Sub-step 1 holds and H̃∞(Y | Zi,2) ≥ 9d/10− 2(i− 1)(t+ 1)dx ≥ d/2.

Sub-step 3: It holds by Lemma 15 that Si ≈2εn+ε′+εd+εr+(i−1)(2εd+εn+εr) Udx | (Si
Ti , Zi,3);

Si,A ≈2εn+ε′+εd+εr+(i−1)(2εd+εn+εr) Udx | (Si,A
Ti , Zi,3,B) as long as the statement in Sub-step 2

holds and H̃∞(Qi−1 | Zi,3) ≥ r − (2i− 1)(t+ 1)dy ≥ r/2.

Sub-step 4: It holds by Lemma 15 that Ri ≈2εn+ε′+2εd+εr+(i−1)(2εd+εn+εr) Udy | (Ri
Ti , Zi,4) as

long as the statement in Sub-step 3 holds and H̃∞(Y | Zi,4) ≥ 9d/10− (2i− 1)(t+ 1)dx ≥ d/2.

Sub-step 5: It holds by Lemma 15 that Qi ≈2εn+ε′+i(2εd+εn+εr) Ur | (QTi
i , Zi) as long as the

statement in Sub-step 4 holds and H̃∞(X | Zi) ≥ k − (d0 + r)(t+ 1)− 2(i− 1)(t+ 1)dx ≥ k/2.

Now, note that conditioned on Z⌈log t⌉, which contains (R⌈log t⌉, R⌈log t⌉
[t]
), Q⌈log t⌉ ≈O(ε′+(log t)εn) Ur |

Q
[t]
⌈log t⌉. Moreover, Q⌈log t⌉, Q

[t]
⌈log t⌉ are deterministic functions of X and are independent of Y, Y [t].

Therefore, we have

Q⌈log t⌉ ≈O((a+log t)·2− logc n) Ur | (Q[t]
⌈log t⌉, Y, Y

[t]).

This completes the proof of Theorem 62.

6.2 AC0-Computable Extractor for Read-Once Branching Program Sources

Algorithm 12 AC0-Ext(x)

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let AC0-BFExt : {0, 1}n → {0, 1}n1 be a linear seeded extractor from Theorem 58 set to extract
from min-entropy k1 = δn with error ε1 = 2− logc(n/t).
Let AC0-AffCB : {0, 1}n × {0, 1}n1 × {0, 1}a → {0, 1}m, a = log(t), be the t-affine correlation

breaker from Theorem 62 with error ε2 = O(2− logc−1 n).

1. Divide x into t = 2/δ blocks such that x = x1 ◦ · · · ◦ xt.
2. Let y1 ◦ · · · ◦ yt = AC0-BFExt(x1) ◦ · · · ◦ AC0-BFExt(xt) such that each yi is of length n1 <

δ2/100n bits.

3. Let s be a t×m matrix whose i’th row si, is AC
0-AffCB(x, yi, i).

4. Output z =
⊕t

j=1 si.
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Theorem 64. For any constant 0 < δ ≤ 1, there exists a family of functions AC0-Ext : {0, 1}n →
{0, 1}m computable in AC0, such that for any sources X = A+B where A and B are independent
and have disjoint spans, A has entropy δn and B is an almost bit-fixing source of entropy δn,
AC0-Ext(X) ≈ε Um | B for m = Ω(n) and ε = O(2− logc−1 n).

Proof.

Lemma 65. There exists g ∈ [t] such that conditioned on the fixing of {B1, · · · , Bg−1, Ag, Bg+1,
· · · , Bt}, the followings are true.

• Xg is an almost bit-fixing source of entropy rate δ and Yg ≈2− logc(n/t) Un1.

• Yg is a deterministic function of B.

• {Y1, · · · , Yg−1, Yg+1, · · · , Yt} are deterministic functions of A.

Proof. Since X = A + B, then Xi = Ai + Bi for all i ∈ [t]. Since H∞(B) ≥ δn, and each Bi is of
block length n/t, there exists g ∈ [t] such that H∞(Bg) ≥ δn/t = δ2n/2. Now by the extraction
property of AC0-BFExt, we have Yg ≈ε1 Un1 .

Lemma 66. Conditioned on the additional fixing of Y = {Yi}i∈[t]\{g}, H∞(A) ≥ δn/4.

Proof. Since Xg has entropy at most δn/2, H∞(Bg) ≥ δ2n/2. Now as Ag is independent of Bg,

H∞(A) ≤ (1 − δ)δn/2. Since |Y | ≤ tn1 ≤ δn/50, we have H̃∞(A | Ag, Y ) ≥ δn − (1 − δ)δn/2 −
δn/50 ≥ δn/4.

Lemma 67. With probability 1− ε2 over the fixings of (Ag, {Si, Yi}i∈[t], B), Z ≈2ε1+ε2 Um.

Proof. Let Z29 = {Yi, Bi}i∈[t]\{g} ∪ {Ag}. By Lemma 65, with probability 1 − 2− logc(n/t), Y is a
somewhere random source. Moreover, since A and B are independent, we have Yg = Un1 | Z. By

Lemma 66, H̃∞(A | Z29) ≥ 4δ/n. By Theorem 62, Sg ≈ε1+ε2 Um | ({Si}i∈[t]\{g} , Y [t]). Since Yg is
a deterministic function of Bg, and conditioned on Yg and Z29, Sg is a deterministic function of A,
it holds that Sg ≈ε1+ε2+ε1 Um | ({Si, Yi}i∈[t]\{g} , B), which implies Z ≈2ε1+ε2 Um | B.

Theorem 68. For any constant δ > 0, let AC0-Ext be a function from Theorem 64 for δ64 = δ/3

with error ε = 2−Ω(logc−1 n), then

ROBP2ε(AC
0-Ext) > 2(1−δ)n.

We prove the above theorem in two steps. First, we recall a lemma in [CL23] and show that
there exists a sum of two sources X = A + B with the following 3 properties, (1) A and B are
supported on disjoint subsets of input bits; (2) A has min-entropy (1 − δ)n − log s and B has
min-entropy at least δn; and (3) B is an oblivious bit-fixing source. Then we show that the output
of our extractor is close to uniform conditioned on the output of ROBP.

Lemma 69 (A special case of Lemma 3.1 from [CL23]). Let X be a uniform random variable over
Fn2 . For every read-once BP f : Fn2 → {0, 1} of size s and every d ∈ [n], there exists a random
variable E, and random variables A,B ∈ Fn2 s.t.

• E has support size at most 2s.
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• X = A+B.

• For every e ∈ Supp(E), define Ae = A |E=e, Be = B |E=e, Then we have

– Ae and Be are independent.

– Be is uniform over a subset of coordinates V B
e of dimension d.

– There exists a complemented subspace V A
e of V B

e such that Ae ∈ V A
e .

• There exists a deterministic function g s.t. g(E,B) = f(X).

Then we prove the claim below, which implies the average-case lower bound of ROBP.

Claim 70. For any constant δ > 0, let AC0-Ext be a function from Theorem 64 with δ64 = δ/3
outputting 1 bit with error ε, and f : {0, 1}n → {0, 1} be any ROBP of size s = 2(1−δ)n. Let X be
a uniform random variable over Fn2 . Then

(AC0-Ext(X), B,E, f(X)) ≈ε (U,B,E, f(X)).

Proof. Note that AC0-Ext is a strong (δn/3, ε) extractor, then by Lemma 13, it is a (δn/3 +
poly log n, 2ε) average case extractor. Since H̃∞(A | E) = 2n−δn/3−log(2s) = 2δ/3 − 1 ≥ δn/3 +
poly log n, we have

(AC0-Ext(X), B,E) ≈2ε (U,B,E).

Since f(X) = g(E,B) is a deterministic function of E and B, we can conclude that

(AC0-Ext(X), B,E, f(X)) ≈2ε (U,B,E, f(X)).

7 Open Problems

Our work leaves several natural open problems. The most obvious is to further improve the con-
structions of directional affine extractors and the average-case hardness for SROLBPs. It would
also be quite interesting to show any hardness of explicit functions for WROLBPs, which appears
to require new ideas. Finally, it is an interesting question to see if there exist functions in AC0 that
achieve optimal hardness for ROBPs, or strong hardness for SROLBPs.
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for branching programs. In Jiŕı Wiedermann, Peter van Emde Boas, and Mogens
Nielsen, editors, Automata, Languages and Programming, 26th International Collo-
quium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, volume
1644 of Lecture Notes in Computer Science, pages 179–189. Springer, 1999.

50



[BISW04] Boaz Barak, Russel Impagliazzo, Amir Shpilka, and Avi Wigderson. Definition and
existence of dimension expanders. Discussion (no written record), 2004.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Sim-
ulating independence: New constructions of condensers, Ramsey graphs, dispersers,
and extractors. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pages 1–10, 2005.

[BKS+10] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and
David Zuckerman. Optimal testing of reed-muller codes. In 51th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 488–497. IEEE Computer Society, 2010.

[Bou09] Jean Bourgain. Expanders and dimensional expansion. Comptes Rendus Mathematique,
347(7):357–362, 2009.
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A Depth 3 AC0[⊕] Circuits Can Compute Optimal Directional
Affine Extractors

In this section, we extend the results in [CT15] and prove depth 3 AC0[⊕] circuits can compute
optimal directional affine extractors given by the probabilistic method.
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Existence of Directional Affine Extractors. We first display the optimal directional affine
extractor.

Claim 71. There exist universal constants n0, c such that the following holds. For every ε > 0 and
n > n0 there exists a directional affine extractor for dimension k with bias ε, F : Fn2 → F2, where
k = log n

ε2
+ log log n

ε2
+ c.

Proof. For the purpose of this proof, it is more convenient to work with the definition of DAExt
in [GPT22].

Definition 30. A boolean function f : Fn2 → F2 is a directional affine extractor for dimension d
with bias ε if for every affine subspace X, every non-zero a, it holds that

DAExt(X) + DAExt(X + a) ≈ε U1.

This definition is equivalent to Definition 2 up to a quadratic blow-up in the error. Check
Appendix B in [CL23] for a proof. Let F : Fn2 → F2 be a random function, namely, {F (x), x ∈ Fn2}
are fresh random bits. Fix an affine subspace U ⊆ Fn2 of dimension k, a non-zero a ∈ Fn2 . Depending
on whether U + a coincides with U , there are two cases to consider.
Case 1. U + a ̸= U . For any x1, x0 ∈ U, x1 ̸= x0, since x1 + x0 ∈ U , it holds that x1 + a ̸∈
{x0, x0 + a}. Therefore, {F (x) + F (x+ a), x ∈ U} are independent random bits and it holds that

Pr

[
1

2k

∣∣∣∣∣∑
x∈U

(−1)F (x)+F (x+a)

∣∣∣∣∣ ≥ ε

]
≤ 2 · e−

2kε2

2 . (Hoeffding Inequality)

Case 2. U + a = U . For any x1, x0 ∈ U x1 ̸= x0, x1 ∈ {x0, x0 + a} ⇐⇒ x1 = x0+ a. If this is the
case, then F (x)+F (x+a) = F (x+a)+F ((x). Therefore, {

(
(−1)F (x)+F (x+a) + (−1)F (x+a)+F (x)

)
/2,

x ∈ Fn2} are independent random variables supported on {−1, 1} and it holds that

Pr

[
1

2k

∣∣∣∣∣∑
x∈U

(−1)F (x)+F (x+a)

∣∣∣∣∣ ≥ ε

]
≤ 2 · e−

2k−1ε2

2 . (Hoeffding Inequality)

The number of pairs of affine subspaces of the same underlining linear subspace is bounded by(
2n

2

)(
2n

k

)
≤ 2(k+2)n. Hence by Union Bound over all pairs of affine subspaces of the same un-

derlining linear subspace, if 2(k+2)n · 2 · e−
2kε2

2 = 2(k+2)n+1− 2kε2

ln 4 < 1 and 2(k+2)n · 2 · e−
2k−1ε2

2 =

2(k+2)n+1− 2k−1ε2

ln 4 < 1 then there exists a directional affine extractor of dimension k with error ε. It
is verified that the same choice of k = log n

ε2
+ log log n

ε2
+ c for some fixed constant c as in [CT15]

suffices for the above inequalities to hold.

Existence of Sumset Linear Injectors. The following definition of sumset linear injectors
slightly generalize the notion of injector in [CT15]. They will be applied in the construction of a
more “structured” random function which is a DAExt.

Definition 31. An (n, k1, k2, d) sumset linear injector with size m is a family of d × n matrices
{A1, · · · , Am} over F2 with the following property: for every pairs of subspaces U, V ⊆ Fn2 of
dimension k1, k2 respectively where dim(U ∩ V ) ≤ 1, there exists an i ∈ [m] such that ker(Ai) ∩
(U + V ) = {0}.

Lemma 72. For every n, k1, k2 such that 2 ≤ k1, k2 ≤ n, there exists an (n, k1, k2, k1 + k2 + 1)
linear injector with size m = n(k1 + k2).
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Proof. Fix a pair of subspaces U, V ⊆ Fn2 of dimension k1, k2 respectively where U ∩ V = {0}. Let
A be a d × n matrix such that every entry of A is sampled from F2 uniformly and independently
at random. For every u+ v ∈ (U + V ) \ {0} it holds that Pr[A(u+ v) = 0] = 2−d. By taking the
union bound over all pairs of elements in U \ {0} and V \ {0}, we get that

Pr [ker(A) ∩ (U + V ) ̸= {0}] ≤ 2k1+k2−d.

Let A1, · · · , Am be d × n matrices such that the entry of each of the matrices is sampled from F2
uniformly and independently at random. By the above equation, it holds that

Pr [∀i ∈ [m] ker(Ai) ∩ (U + V ) ̸= {0}] ≤ 2m(k1+k2−d).

The number of sum of two linear subspaces of dimension k1 and k2 is bounded by
(
2n

k1

)(
2n

k2

)
, which

is bounded above by 2n(k1+k2)−2 for k ≥ 2. Thus if 2n(k1+k2)−2 · 2m(k1+k2−d) < 1 there exists
an (n, k1, k2, d) linear injector with size m. The latter equation holds for d = k1 + k2 + 1 and
m = n(k1 + k2).

More Structured Random Functions. Now we apply the sumset injector to reduce the ran-
domness used in Claim 71.

Lemma 73. Let n0, c be the constants from Claim 71. Let n > n0 and let k, ε be such that
k = log n

ε2
+ log log n

ε2
+ c. Let {A1, · · · , Am} be an (n, k, 2, d) linear injector with size m. Then,

there exists functions f1, · · · , fm : Fd2 → F2 such that the function f : Fn2 → F2 defined by

f(x) =

m⊕
i=1

fi(Aix) (6)

is a directional affine extractor for dimension k with bias ε.

Proof. The proof idea is that “(U + V )-wise” independence, where U is any affine subspace and
V = {0, a} = span{0, a} for any a ̸= 0 ∈ F2 suffices for the proof of Claim 71. In other words,
we only need {f(x)}x∈U∪(U+a) to be independent random bits, instead of full independence over
the truthtable of f . We now construct such a random function, and by replacing the random
function in the proof of Claim 71 with this newly constructed function, we find optimal directional
affine extractors in a restricted class of random functions. This will enable us to argue about its
complexity. Let F1, · · · , Fm : Fd2 → F2 be independent random functions, that is, the random bits{
Fi(x) : i ∈ [m], x ∈ Fd2

}
are independent. Define the random function F : Fn2 → F2 as follows

F (x) =
m⊕
i=1

Fi(Aix).

Let (U,U + a) be any pair of affine subspaces of the same underlining linear subspace U ′, let
V = span{0, a}. By Definition 31, there exists an i ∈ [m] such that ker(Ai)∩ (U ′ + V ) = {0} . This
implies that for every two distinct elements u, v ∈ U it holds that Ai(u), Ai(v), Ai(u+ a), Ai(v+ a)
are pairwise distinct. Otherwise we would reach the contradiction that Ai(u+ v) = 0 or Ai(a) = 0
or Ai(u+ v + a) = 0 and thus u+ v or a or u+ v + a, a non-zero vector in U ′ + V , lies in ker(Ai).
Since Fi is a random function, and Ai is injective on U ∪(U+a), the random bits {Fi(u)}u∈U∪(U+a)

are independent. Since for all x ∈ (U ∪ (U + a)), the fresh random coin Fi(Aix) is used and only
used to generate F (x), it holds that F (x) is independent and random in U ∪ (U + a).
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Theorem 74. Let f be the function from Eqn. (6), where
{
A1, · · · , An(k+2)

}
is the (n, k, 2, k + 3)

sumset linear injector from Lemma 72. Then, f is a directional affine extractor of dimension k
and error ε, where k = log n

ε2
+ log log n

ε2
+O(1). Moreover,

1. deg(f) = log n
ε2

+ log log n
ε2

+O(1).

2. f can be realized by a XOR-AND-XOR circuit of size O((n/ε)2 · log3(n/ε)).

3. f can be realized by a De Morgan formula of size O((n5/ε2) · log3(n/ε)).

Proof. Exactly the same as [CT15].

B Missing Proofs

B.1 Proof of Lemma 8

We recall Lemma 8.

Lemma 8 (Affine conditioning [Li11]). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any affine function. Then there exist independent affine sources A,B such that:

• X = A+B

• There exists c ∈ {0, 1}m, such that for every b ∈ Supp(B), it holds that L(b) = c.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that
A = L−1(L(A)).

• H(X |L(X)=ℓ) = H(B) for all ℓ ∈ Supp(L(X)).

Proof. We prove the second and fourth bullet points.
2nd bullet point. Let L = L+ c′ where L : {0, 1}n → {0, 1}m is a linear function. Consider the
set Supp(X) ∩ Ker(L) which is a linear subspace, let B be this linear subspace with an arbitrary
affine shift c′′, then it holds that L(B) = L(c′′) = L(c′′) + c′ := c. Let A = X − B. Then
L(A) = L(X)− L(B) = L(X) + c′ − c = L(X − (B − c′′))− L(c′′) = Supp(X) ∩ Span(L)− L(c′′).
4th bullet point. For any ℓ ∈ Supp(L(X)), conditioned on the fixing of L(X) = ℓ, by the second
bullet it holds that L(X) = L(A) + L(B) = L(A) + c = ℓ. By the third bullet, this implies
A = L−1(L(A)) = L−1(ℓ − c). Therefore, H(X |L(X)=ℓ) = H(L−1(ℓ − c) + B) = H(B), thus
independent of ℓ.

B.2 Proof of Lemma 35

We recall Lemma 35.

Lemma 35 (Independence-merging lemma for affine sources). Let LExt : {0, 1}n×{0, 1}d → {0, 1}m
be any (k, ε)-strong linear seeded extractor, X0 ∈ {0, 1}n an affine source, X,X [t] ∈ {0, 1}n, Y, Y [t] ∈
{0, 1}d all linear functions of X0, W = LExt(X,Y ) and W j = LExt(Xj , Y j) for every j ∈ [t].
Suppose there exists S, T ⊆ [t] such that

• (Y, Y S) ≈δ (Ud, Y
S);
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• H(X | XT , Y, Y [t]) ≥ k + tm,

then

W ≈ε+δ Um | (WS∪T , Y, Y [t]).

Proof. First note that since X,XT , Y, Y [t] are linear functions of X0, by Lemma 8, the entropy of
X given XT , Y, Y [t] is constant. Therefore, it suffices to use shannon entropy H instead of average
case min-entropy H̃∞.
Conditioned on the fixings of Y S , it holds that WS are linear functions of XS and therefore linear
functions of X0. By Lemma 8, there exists affine sources A = WS(X) and B such that X = A+B.
By Lemma 9, H(B) = H(X | Y S ,WS) ≥ H(X)−|S| ·m. Now further condition on (XT , Y, Y [t]\S),
we have that H(B | XT , Y, Y [t]\S) ≥ H(X | XT , Y, Y T )− |S| ·m ≥ k. By Proposition 41, it follows
that with probability 1 − ε, LExt(X,Y ) = LExt(B, Y ) + LExt(A, Y ) = LExt(B, Y ) + const = Um.
Since W T is a deterministic function of XT and Y T , what we have shown implies

W ≈ε+δ Um | (WS∪T , Y, Y [t]).
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