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Abstract

In the average-case k-SUM problem, given r integers chosen uniformly at random from {0, ..., M — 1},
the objective is to find a set of k numbers that sum to 0 modulo M (this set is called a “solution”). In the
related k-XOR problem, given k£ uniformly random Boolean vectors of length log M, the objective is to
find a set of k of them whose bitwise-XOR is the all-zero vector. Both of these problems have widespread
applications in the study of fine-grained complexity and cryptanalysis.

The feasibility and complexity of these problems depends on the relative values of k, r, and M. The
dense regime of M < r*, where solutions exist with high probability, is quite well-understood and we
have several non-trivial algorithms and hardness conjectures here. Much less is known about the sparse
regime of M > r¥, where solutions are unlikely to exist. The best answers we have for many fundamental
questions here are limited to whatever carries over from the dense or worst-case settings.

We study the planted k-SUM and k-XOR problems in the sparse regime. In these problems, a random
solution is planted in a randomly generated instance and has to be recovered. As M increases past ¥,
these planted solutions tend to be the only solutions with increasing probability, potentially becoming
easier to find. We show several results about the complexity and applications of these problems.

Conditional Lower Bounds: Assuming established conjectures about the hardness of average-case
(non-planted) k-SUM when M = r*, we show non-trivial lower bounds on the running time of algo-
rithms for planted k-SUM when r* < M < r2*. We show the same for k-XOR as well.

Search-to-Decision Reduction: For any M > ¥, suppose there is an algorithm running in time T
that can distinguish between a random k-SUM instance and a random instance with a planted solution,
with success probability (1 —o(1)). Then, for the same M, there is an algorithm running in time O(T)
that solves planted k-SUM with constant probability. The same holds for k-XOR as well.

Hardness Amplification: For any M > r* if an algorithm running in time 7' solves planted k-XOR
with success probability ©(1/polylog(r)), then there is an algorithm running in time O(T") that solves
it with probability (1 —o(1)). We show this by constructing a rapidly mixing random walk over k-XOR
instances that preserves the planted solution.

Cryptography: For some M < 2P°1°8(") the hardness of the k-XOR problem can be used to construct
Public-Key Encryption (PKE) assuming that the Learning Parity with Noise (LPN) problem with
constant noise rate is hard for 2" -time algorithms. Previous constructions of PKE from LPN
needed either a noise rate of O(1/4/n), or hardness for 2" time algorithms.

Algorithms: For any M > 2T2, there is a constant ¢ (independent of k) and an algorithm running in
time r° that, for any k, solves planted k-SUM with success probability Q(1/8k)‘ We get this by showing

an average-case reduction from planted k-SUM to the Subset Sum problem. For 7% < M <« 2T27 the
best known algorithms are still the worst-case k-SUM algorithms running in time r/*/2170(),
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1 Introduction

In the k-SUM problem, given a set of » numbers from [M], the task is to find a set of k of them that sum to
0 (modulo M), if such a set exists.! This problem has been central to studying the complexity of important
problems in a variety of domains such as computational geometry, data structures, graph theory, etc. [AW14,
Pat10, GO95, BHP01, SEO03, KPP16]. It also has several applications in cryptanalysis [Wag02, BCJ11].

The naive algorithm of iterating through all k-sets takes time O(r*). The “meet-in-the-middle” algorithm
that computes the sums of all [k/2]-sets and looks for collisions runs in time O(r[*/21) [HS74]. Better
algorithms are known that are faster than r/*/21 by a few polylog factors [BDP08, GP18, Cha20]. There are
also FFT-based algorithms that run in time O(M + r) [Bril7, JW19], which is faster if M < r*/21,

The 3-SUM hypothesis of Gajentaan and Overmars [GO95] states that it is not possible to do much
better than the above — that any algorithm for the 3-SUM problem in general takes time at least r2—°(1),
This hypothesis has been instrumental in establishing conditional lower bounds on the complexities of a
variety of interesting problems. More generally, it is conjectured that any algorithm for k-SUM takes time
at least r#/21=0(1) [AT,13].

Average-Case k-SUM. In the average-case k-SUM problem, the » numbers in the input are each chosen
uniformly at random from [M]. The characteristics of the problem now change depending on the relative
sizes of M, r, and k. In analogy to Subset Sum [LO85], we define the density of average-case k-SUM as the

following ratio:
r
1
()

 logM

When this density A is 1, the expected number of k-SUM solutions in an instance is also 1. In general, the
expected number of solutions is approximately r*(!=1/2) " For values of A larger than 1 (the dense regime),
this number is polynomial in r, and for smaller values of A (the sparse regime), it is vanishing with .

In the dense regime, several non-trivial algorithms are known for average-case k-SUM that are more
efficient than the worst-case algorithms. For instance, the “birthday” algorithm that computes the sum of
random sets of /2 numbers and looks for collisions runs in expected time O(v/M) = O(r*/22). For densities

larger than ~ k/(1 + log, k), Wagner’s k-tree algorithm [Wag02] solves the problem in time O(r).

However, at density A = 1, when there is only a single solution in expectation, no algorithms are
known that outperform the best worst-case algorithms. The average-case k-SUM problem at this density is
believed to be as hard as the worst-case variant, although no worst-case to average-case reduction is currently
known [Pet15, LLW19, DKK21].

Conjecture 1.1 (Average-Case k-SUM Conjecture). Any algorithm for average-case k-SUM at density 1
with constant probability of success has running time at least §) (r ““/ﬂ_o(l)).

Building on this conjecture, Dinur et al. [DKK21] showed lower bounds on the complexity of k-SUM
at densities in the range (1,2). In particular, their results implied that Wagner’s algorithm is optimal for
k = 3,4, and 5 for certain densities in this range. LaVigne et al. [LLW19] used a decision version of this
conjecture to construct fine-grained One-Way Functions.

The Sparse Regime. In this work, we investigate the average-case complexity of k-SUM at densities
smaller than 1, where random instances are unlikely to have k-SUM solutions. While there has been a lot
of recent work on average-case k-SUM with densities 1 and higher [LLW19, BSV21, DKK21], very little
is known about its complexity in the sparse regime. The natural version of the problem in this regime is
planted k-SUM, where a randomly chosen set of k¥ numbers that sum to 0 is planted at random locations in
a random k-SUM instance. There are two problems to be considered here:

1The k-SUM problem is usually defined with the sum being over the integers. These variants are equivalent in complexity
in the worst-case, and also in the average-case in certain regimes of parameters (see [BSV21, DKK21]).



e The planted search k-SUM problem is to recover a k-SUM solution given such an instance (at low
densities, with high probability, the planted solution is the only one)

e The planted decision k-SUM problem is to distinguish a random instance with a planted solution from
a random instance without a planted solution

We study these and the analogous versions of the k-XOR problem, where the elements in the input are
Boolean vectors and the addition operation is replaced with bitwise-XOR.

Apart from being a natural and interesting problem on its own, the planted k-SUM problem in the
sparse regime is interesting also for its potential applications to cryptography (some of which we realize in
this work). Structured problems where a hidden solution can be planted are often useful in cryptographic
constructions [ABW10, LLW19]. An immediately relevant illustration of this may be seen in the case of the
Subset Sum problem, which is the unparametrized version of k-SUM where the size of the solution is not
restricted. The average-case hardness of the planted Subset Sum problem at very low densities can be used to
construct Public Key Encryption [LPS10], a primitive that only a handful of different hardness assumptions
are known to imply.

1.1 Owur Results

We study the planted k-SUM and k-XOR problems at densities 1 and lower. In either case, the density
of an instance consisting of r elements is defined as the ratio (klogr/log M), where M is the size of the
domain from which the elements in the instance are drawn.2 We show conditional lower bounds, search-to-
decision reductions, hardness amplification, algorithms, and applications of the hardness of these problems
to cryptography. Our results are summarized in Fig. 2. In this section, we briefly describe these results and
present informal versions of our theorems; see the respective sections for the precise statements.

Conditional Lower Bounds. We start by looking at the search problem, showing an equivalence between
planted search k-SUM and regular (non-planted) search k-SUM at any non-sparse density.

Theorem 1.2 (Section 4). At density A > 1, any algorithm that solves planted search k-SUM with success
probability € also solves non-planted search k-SUM with success probability 9(63/2)

Following the above theorem, the average-case k-SUM conjecture (which is stated for density 1) also
implies similar hardness for planted search k-SUM at density 1. This equivalence also implies that, assuming
the conjecture, the algorithm that plants random k-SUM solutions into random instances is a fine-grained
One-Way Function. We then show reductions for planted search k-SUM from density 1 to lower densities,
implying conditional lower bounds on the complexity of the problem at these densities.

Theorem 1.3 (Section 5). Assuming the average-case k-SUM conjecture, any algorithm that solves planted
search k-SUM at density A € (%, 1) with constant success probability has to take time ) (rk (1_ﬁ)_°(1))

Our reduction works by lowering the density of an instance by sampling a random subset of the instance,
and then trying to use an algorithm for lower density k-SUM on the subset. Another way to lower density
is to reduce the value of k in the k-SUM problem being solved, by combining elements of the input, in a
similar way to Wagner’s k-tree algorithm. This approach gives us similar lower bounds as sampling a subset,
though only for some specific densities in the range (%, 1). But interestingly, it gives lower bounds for k-SUM
assuming the hardness of k’-SUM for a different k’. The following is an example of such a bound.

Theorem 1.4 (Section 5.2). Assuming the average-case 5-SUM conjecture, any algorithm that solves planted
search 4-SUM at density 4/5 with constant success probability has to take time (TQ_O(l))

2This ratio is a good approximation to the more meaningful expression for density introduced earlier in this section when k
is small, and we use this instead in the rest of the paper for simplicity.



Search to Decision Reduction. Having shown the above results for the search k-SUM problem, we
show a search-to-decision reduction for planted k-SUM that, in particular, carries over the conditional lower
bounds to the decision k-SUM problem. Note that a reduction in the other direction — from decision to
search — is straightforward and conserves the running time and success probability.

Theorem 1.5 (Section 6). At any density A < 1, suppose there is an algorithm that runs in time T and
solves planted decision k-SUM with success probability 1 — o(1). Then, for every constant € < 1, there is an
algorithm that runs in time 9] (T + i) and solves planted search k-SUM at the same density with success
probability at least €.

While a known search-to-decision reduction for Subset Sum [IN89] can be extended to show a search-
to-decision reduction for k-SUM [ABRV23], our reduction uses a different approach that relies less on the
group structure in the problem. We present it here in anticipation of its applicability to other problems.

Following the above lower bounds, our current understanding of the complexity of average-case k-SUM
at various densities is depicted in Fig. 1. The results described so far hold not just for k-SUM over integers
(modulo some M or otherwise), but also generalize to k-SUM over any suitable family of Abelian groups (see
Section 3 for what “suitable” means here). Our remaining results are specific to either k-SUM over integers
or the k-XOR problem and make use of the additional structure present in the respective groups.

Hardness Amplification. For the k&-XOR problem, we show that the success probability of an algorithm
for the planted search k-XOR can be amplified. We do this using a random walk over k-XOR instances that
preserves the planted solution (with non-trivial probability) and is also rapidly mixing. Similar techniques
have been used to prove direct product theorems in the past [[JKW10]. Hirahara and Shimizu [HS23] use
a similar approach to show hardness self-amplification for a number of important problems (see Section 1.3
for a comparison of our techniques).

Theorem 1.6 (Section 7). At any density (m) <AL, for k>3, suppose there is an algorithm

that runs in time T and solves planted search k-XOR with success probability Q(1/polylog(r)). Then, there
is an algorithm that runs in time O(T) and solves planted search k-XOR at the same density with success
probability 1 — o(1).

Public Key Encryption. Next, we show that the hardness of decision k-XOR at sufficiently low densities
can be used to construct fine-grained Public-Key Encryption (PKE) assuming the hardness of the Learning
Parity with Noise (LPN) problem with constant noise rate. It is known how to construct PKE assuming
either that LPN with m-bit secrets at noise rate O(1/y/m) is hard for poly(m)-time algorithms [Ale03], or
that LPN with constant noise rate is hard for 2" -time algorithms [YZ16]. We show that the hardness of
planted k-XOR can be used to weaken the assumption on LPN needed for PKE.

Theorem 1.7 (Section 8). Under any of the following sets of assumptions about constant-noise LPN on
m-bit secrets and planted decision k-XOR on instances of size r, there is a PKE scheme in which encryption
and decryption can be done in time r't°(1) which is secure against adversaries running in time r%/21=21)

e LPN is 2™ -hard for some constant c, and k-XOR is rI*/21=°M) _hard for all densities A = 1/polylog(r)
e LPN is m¢-hard for some ¢ = w(1), and k-XOR is v'*/21=°()_hard for all densities A = 1/r°(")

At even lower densities of O(1/r), fine-grained PKE can be constructed assuming the hardness of k-SUM
alone [ABRV23], by extending PKE constructions based on Subset Sum [LPS10]. Theorem 1.7 also works
for super-constant k& — assuming of the hardness of k-XOR for such k (even against 7°(*)-time algorithms)
would give a PKE scheme secure against all polynomial-time adversaries. Note that these assumptions about
k-XOR are quite strong as not much research has gone into algorithms for this problem at these low densities.
Our theorem is to be seen, at this point, primarily as motivation for further research on this subject.
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Figure 1: Landscape of the known bounds on the complexity of average-case (planted) k-SUM problems as
k — oo (except for the Wagner algorithm, which is depicted for k = 4). The x-axis represents the density

A = % of the instances, and the y-axis represents the runtime 7', with y = ,icifT .
gr

More specifically, the

y-axis is the exponent of the runtime, such that if the runtime of an algorithm at density A is 7**, we plot the
point (A, a). We have omitted the algorithm that works at density O(log(r)/r?) presented in Section 9 since
its runtime is independent of k.

Algorithms for Very Sparse k-SUM. Proceeding in this direction, we show an average-case reduction
from very sparse planted k-SUM over integers to the average-case Subset Sum problem at low densities.
Known algorithms for average-case Subset Sum [LO85, Ben22] then give us an algorithm in this regime that
outperforms the worst-case k-SUM algorithms. Note that below, ¢ is independent of k.

Theorem 1.8 (Section 9). For any density A < (klog(r)/r?), there is a constant ¢ € N such that for any
k € N, there is an algorithm that runs in time r¢ and solves planted search k-SUM (over integers or with
prime moduli) at density A with success probability Q(1/8%).

1.2 Technical Overview
In this section, we give a high-level overview of the techniques we use to show our results.
Equivalence of Planted and Non-Planted k-SUM. We show that any algorithm for planted search

k-SUM at density 1 also works for non-planted search k-SUM with a small loss in success probability. This
follows from showing that the planted and non-planted distributions at densities 1 and higher are statistically
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Figure 2: Overview of our results in terms of the density of the generated instances (excluding A € {0, 00}),
where r is size (number of elements) of the instance. The z-axis is not to scale. The PKE schemes for A < 1 can
be constructed from the specified hardness of LPN under the assumption that k-XOR is hard at the densities
depicted on the plot. By contrast, the PKE scheme for A > 1 works under no assumptions on the hardness of
k-XOR, and for A € (3,1] under the standard average-case k-SUM conjecture.

close. Let Dy denote the distribution of uniformly random k-SUM instances, and D; the distribution of such
instances with random planted k-SUM solutions. We construct a class of hybrid distributions D® that
“interpolates” between these. For £ € [3,7*], the distribution D has the following properties:

e D has total variation distance at most 1/(¢ — 2)? from D,
e D has Rényi divergence (of order co) at most £ + 1 relative to Dy

So if an algorithm succeeds with probability € on Dj, then it succeeds with probability at least € = (e —
1/(¢—2)?) on D), and thus with probability at least ¢'/(£+1) on Dy. Picking an appropriate £ = O(1/,/¢)
then gives us what we want.

The distribution D® is defined as follows: it samples an instance from X from Dy, checks if the instance
at most £ solutions: if so, it outputs X, and otherwise it outputs a fresh sample from Dy. The above bounds
on the distances are then shown by expressing the probability mass functions of D® and D; in terms of
that of Dy, and using bounds on the probability of an instance from Dy having more than ¢ solutions.

Conditional Lower Bounds. Following the above equivalence, the average-case k-SUM conjecture implies
that planted search k-SUM at density 1 needs at least 7¥/2=°(1) time. Assuming this, we show lower bounds
for lower densities. Suppose there is an algorithm .4 that runs in time 7'(r) and solves planted search k-SUM
at some density A < 1 with constant probability. The idea is, given an instance X at density 1, to convert X



into an instance of density A that still contains the planted solution, and then use A to recover the solution.
We implement this in two different ways.

In the first approach, given an instance X consisting of r elements sampled at density 1, we choose a
random subset X’ of X of size r® (thus reducing the density to A) and run A on X’. If we condition on all
elements of the solution planted in X being copied to X’ in this process, then X’ is distributed identically
to a planted k-SUM instance of size r® sampled at density A. In this case, A will find this solution with
constant probability (over X). The event we conditioned on happens with probability at least Q(1/rF(1=2));
and so if we repeat this process O(rk(l_A)) times, it happens at least once with constant probability and
we can find a solution in X. The k-SUM conjecture now implies that r*(1—=2) . T'(72) > r*/2_ This, in turn,
implies that T'(r) > r*(1=2x) which is the bound we show.

The second approach is to reduce the density by combining elements in the input and reducing the k in
the k-SUM problem being considered, not unlike the Wagner k-tree algorithm. For example, given instance
X for planted k-SUM at density 1, randomly choose r/4 disjoint pairs of elements to remove from the
instance, compute their sum and put the result back in to get instance X’. If it happened that, out of the
k elements in the solution in X, two were picked as one of these pairs to be combined and the remaining
were left untouched, then this leads to a set of (kK — 1) elements in X’ that sum to 0. Seen as an instance of
(kK —1)-SUM, X’ has density ~ (1 — 1/k), and an algorithm solving it can be used to solve X. Computing
the probability of this happening then leads to a similar lower bound of rk(=3x) for density A, with two
important differences. First, it translates between different values of k, inferring lower bounds on k’-SUM
from the hardness of k-SUM for k' # k. Second, it only works for a discrete set of densities for a given value
of k, whereas the first lower bound works “continuously” as depicted in Fig. 1.

Search-to-Decision Reduction. We show that an algorithm for decision k-SUM at density less than 1
with large enough success probability can be used to solve planted search k-SUM. Given a planted instance
X, we use the decision algorithm to obtain information on where the planted solution is using a non-recursive
binary search. Consider replacing half of the elements in X with random elements, and running the decision
algorithm on the resulting instance X’. If none of the k elements of the planted solution were replaced in
this process, then X’ is identical to a random planted k-SUM instance. If any of the elements of the planted
solution were replaced, then X’ is identical to a random non-planted k-SUM instance. We use the ability of
the decision algorithm to distinguish between these distributions to work out where the k elements of the
solution are.

We perform the above replacement polylog(r) times, starting from the original input each time. We
maintain a counter C; for each element of the input that counts the number of iterations in which this
element was not replaced and the decision oracle reported there was a solution. We show that the expected
value of this counter is noticeably larger for elements that are part of the planted solution. A concentration
bound for the counters then implies that, with high probability at the end of the iterations, the k largest
counters correspond to the elements in the planted solution.

Hardness Amplification. We show that an algorithm that solves planted k-XOR recovery at density in
the range (1/polylog(r), 1] with probability Q(1/polylog(r)) in time T implies an algorithm that solves it
at the same density with probability (1 — o(1)) in time O(T'). We briefly describe our approach here. For
simplicity, we will start with the stronger assumption that there is an algorithm A that solves planted search
k-XOR with probability Q(1) and, further, is deterministic.

Let T4 C (F5)" be the set of k-XOR instances for which A correctly finds a solution; note that T4
consists of an (1) fraction of planted instances (if the density is sufficiently less than 1). Our approach,
given an instance X € (F5*)", is to find an X’ € T 4 such that a solution for X can be recovered from A(X").
If there is an efficient procedure that finds such an X’ given X and fails for at most a o(1)-fraction of X’s,
then this would prove the required amplification. We do this using the following process.

Walk(X, t):
1. Set X0+ X



2. For i from 1 to t:

2.1. Sample j < [r]
2.2. Replace the j' element X ~![j] with a random element x < FJ* such that z # X*~1[j]
2.3. Set X' to be the resulting instance

3. Output X*

Consider a graph where each vertex corresponds to an instance in (F3")", with an edge between two
vertices iff they differ in exactly one column. This is a well-studied graph known as the Hamming graph,
here defined over length-r strings and alphabet of size 2. The above process is a t-step random walk on
this graph starting from the vertex corresponding to X. The expansion properties of the Hamming graph
imply that random walks of length w(r) mix quite well. In other words, with ¢ = w(r), for any sets .S and T'
that each contain an (1) fraction of instances, at least an (1) fraction of t-step random walks that start
from S end in T.

With T = T4, this is reminiscent of what we want — by the above property, if T4 contains an (1)-fraction
of instances, then the set of instances X from which a constant fraction of walks do not lead to T4 has to be
of relative size o(1). There are some issue here, though — first, this random walk does not preserve solutions
S0 it is not clear how to use it to solve X; and second, this graph mostly consists of non-planted instances,
and T4 does not actually contain a constant fraction of these. We deal with both of these by considering a
conditioning of this random walk.

For simplicity, we restrict our attention to planted instances X that have a unique solution. Denote by
span(X) the set of all instances X’ such that the solution in X’ appears at the same locations and consists of
exactly the same elements as that in X. Now, conditioning on all the X*’s being contained in span(X), the
process Walk(X,t) is again a t-step random walk over a Hamming graph, this time defined over span(X).
This conditioned random walk does preserve the solution of X, as X' is now in span(X). Further, for
densities less than 1, with high probability no additional solutions are introduced during this walk.

Suppose the fraction of instances in span(X) that are contained in T4 is at least £2(1). Then the set of
X' € span(X) = span(X’) for which an Q(1)-fraction of conditioned ¢-step random walks starting from X’
do end in T4 is of relative size at least (1 — o(1)). For each such X', the event we conditioned on happens
with probability at least (1 —k/r)t. So for all but a o(1) fraction of X’ € span(X), the unconditioned t-step
random walk starting from X’ ends in T4 with probability at least Q((1 —k/r)t). We can set t = r -loglogr
so that it is large enough for the walk to mix, and also (1 — k/r)! = 1/polylog(r) is not too small so that
success can then be amplified by repetition.

It remains to show that the fraction of instances in span(X) contained in T4 is at least €2(1). We show
that this property can be achieved for all but a o(1)-fraction of instances X by obfuscating the solution.
Our obfuscation works by multiplying the elements of X by a random full-rank matrix and permuting the
elements of the resulting instance before running A on it. This hides most properties of the solution and
ensures that for most instances X, the fraction of span(X) that is solved correctly by the algorithm is the
same, and hence is at least €(1). This argument works at every density < 1 — 10{501%, and we extend the
result to density 1 using a couple of other reductions.

Public-Key Encryption. We present a Public-Key Encryption (PKE) scheme whose security is based
on the hardness of the planted k-XOR problem at low densities and on the hardness of Learning Parity with
Noise (LPN) with constant noise rate. The scheme is similar to the dual Regev encryption [Reg09, GPV0S],
which uses the hardness of the Learning With Errors problem.

Key Generation: To generate a public key, Alice samples a planted k-XOR instance X € F§'*" at density A
(to be determined later), with m = klog(r)/A. The secret key is the location K C [r] of the planted
solution. We denote also by K € Fj the characteristic vector corresponding to the set K.

Encryption: To encrypt a bit b = 0, Bob simply samples a random vector ¢ <— F5 and sends ¢ to Alice. To
encrypt b = 1, he computes a random linear combination of the rows of X, adds noise to the entries and



sends the result to Alice. Specifically, he samples a random vector s € F5* as well as a Bernoulli-noise
vector Ber) (for some constant 7 = ©(1)) and computes the ciphertext ¢ < s’ X +e.

Decryption: The idea is that Alice, knowing the location K € F} of the planted solution, may compute the
inner product ¢ - K: if Bob encrypted a 0, the result is a random Berl, if he encrypted a 1, unless
the noise destroyed the solution, the result will be zero. So Alice guesses that Bob encrypted a one, if

c¢" K = 0 and guesses zero otherwise. This process can be amplified to achieve vanishing decryption
error by repeating it £ = exp(k) - w(logr) times.

By the hardness of k-XOR, the public key X generated by Alice is indistinguishable from a random matrix
Y € F0¥" without a planted k-XOR solution. If such a Y was the public key, the hardness of LPN then
implies that encryptions of 0 and 1 are indistinguishable. Security for the ¢ repetitions then follows from a
hybrid argument.

Suppose that LPN with constant noise rate, say n = 1/3, is hard for T'(m)-time algorithms. We then
consider different ways of instantiating k and m to strike a trade-off between the hardness required for LPN
and the density at which k-XOR is assumed to be hard, given the level of security we want. For instance, let
us assume that LPN with constant noise is hard for 2™ -time algorithms and determine at what density
we need to assume that k-XOR is hard. Suppose that k-XOR takes time 7¥/2 time at some density A. We
want to have T'(m) > 7¥/2 for the LPN hardness to match the security afforded by k-XOR. This implies
that we must have m%% > klog(r)/2, which when combined with the identity m = klog(r)/A implies
that A < (klfglz):))gg = poly]log(r)' So assuming 2m"" hardness for LPN and hardness of k&-XOR at some
1/polylog(r) density gives us PKE secure against rk/2_time adversaries. The key generation, encryption,
and decryption all run in time #'T°(1)_ So if we make these assumptions for super-constant k, this gives us
PKE that is secure against all polynomial-time adversaries.

More generally, we get PKE from 2 -hardness of constant-noise LPN (for any constant ¢ > 0), assuming
k-XOR is hard at every density 1/polylog(r). A similar argument allows us to construct PKE from m¢-
hardness of constant-noise LPN for any ¢ = w(1), assuming k-XOR is hard at every density 1/r°(1).

Algorithms at Very Low Densities. We show a general reduction from the average-case planted k-SUM
problem modulo p (where p is prime) at density % to the average-case Subset Sum problem modulo
p at density A whenever A < 1/2. Polynomial-time algorithms are known for the average-case Subset
Sum problem at densities lower than 1/r [LO85, Ben22]. This immediately implies an algorithm for k-SUM
modulo p at density at or below *19%" whose runtime complexity is a fixed polynomial in r independent of k.
This is asymptotically much faster than existing worst-case k-SUM algorithms. Following known reductions
from k-SUM over integers to modular k-SUM [DKK21], this also implies an algorithm for average-case
k-SUM over integers at the same density with the same runtime.

In the Subset Sum problem modulo p, given r numbers from [p] and a target ¢, the task is to find some
subset of them (of unrestricted size) that sums to ¢ modulo p. In average-case Subset Sum, the r numbers
are chosen uniformly at random, and ¢ is set to be the sum of a random subset of these. A nalve attempt
at a reduction simply passes the k-SUM instance directly to the Subset Sum algorithm, with target sum 0.
At low enough densities, with high probability the only subset that sums to 0 would indeed be the k-SUM
solution. The problem with this reduction is that the resulting Subset Sum instance doesn’t look like a
randomly sampled instance at all. We modify this reduction in a couple of different ways to rectify that.

First, we add to each element in the k-SUM instance (call it A) a randomly chosen element « in Z,,. This
shifts the target sum by k« since we know that the subset we are looking for has size k. Note that A was
already chosen uniformly at random before replacing exactly one element by the negated sum of k — 1 other
elements (corresponding to planting a k-SUM solution). As a result of adding « to everything, this becomes
equivalent to replacing one element by ka — (the sum of k — 1 other elements). Since « is random and p
is prime, this is equivalent to randomly sampling a new element. Thus, we have ensured that the array of
numbers passed to the Subset Sum oracle has a uniform distribution.

We still have the issue that the solution we are looking for (call it K) has length exactly k, and our
Subset Sum algorithm could be biased against such solutions. To fix this, we choose a completely random



subset S C A, and add ) ¢ e to the target. If S and K are disjoint (which happens with probability 27k,
we end up with an instance of Subset Sum that is closer to being from the right distribution. The solution
we are looking for is now S |J K. While this conditional distribution does not actually have the distribution
of a random Subset Sum instance, we can show that it is statistically close.

These two modifications now guarantee that a random instance of k-SUM gets mapped to an almost
random instance of Subset Sum, which the provided Subset Sum algorithm must still be able to solve with
constant success probability. This completes the reduction.

1.3 Related Work

The worst-case complexity of the k-SUM problem has been studied extensively in the field of fine-grained
complexity due to its reductions to a large number of other interesting problems [GO95, BHP01, SEO03,
BDPO08, Pat10, AW14, KPP16, DSW18, Cha20, ...]. We refer the reader to the survey by Williams [Wil18]
for details. The complexity of the k-SUM problem in other computational models has also been studied,
and it is known to have non-trivial decision trees [GS17, GP18], non-deterministic algorithms [CGIT16], and
lower bounds in some of these models [Eri95, AC05]. Questions regarding data structures for it have also
been studied [KP19, GGHT20, CL23].

Some conditional bounds for worst-case k-SUM are known in certain settings. For super-constant k, an
algorithm that runs in time 7°(*) would contradict the Exponential Time Hypothesis (ETH) [PW10]. And
an algorithm for k-SUM with numbers in the range [M] that runs in time M'~?() would contradict the
Strong Exponential Time Hypothesis (SETH) [ABHS19].

Average-Case k-SUM. Average-case k-SUM and k-XOR in the dense regime have several applications
in cryptanalysis and has been the subject of substantial work in the area, most involving better algorithms
and applications [Wag02, MS12, NS15, Nanl5, Din19, LS19, BDJ21].

More recently, different conditional lower bounds have been shown in this regime. Brakerski et al. [BSV21]
show that Wagner’s algorithm is near-optimal for k-SUM at large densities as k tends to infinity, using
reductions from worst-case lattice problems. Dinur et al. [DKK21], as discussed above, show lower bounds
at densities in (1,2) assuming the k-SUM conjecture at density 1. Dalirrooyfard et al. [DLW20] show the
average-case hardness of counting solutions in a “factored” version of k-SUM assuming SETH. They also
show search-to-decision reductions for the average-case Zero-k-Clique problem.

The study of average-case fine-grained complexity in general has proliferated in the past few years [BRSV17,
DLW20]. Of particular relevance here is line of work on worst-case to average-case reductions for counting
k-cliques, which focuses on reducing from and to the same problem [GR18, BBB19]. The general paradigm
of looking for small hidden solutions in random instances is common in problems studied in statistical infer-
ence, such as planted clique, Sparse PCA, etc. [Jer92, BR13b, BR13a, GZ19]. Worst-case versions of these
problems have also been subjects of interest in fine-grained complexity [Will8, GV21].

Hardness Amplification. Approaches similar to ours for hardness amplification have been used to prove
direct product theorems in the past [[JKW10], but its use in amplifying the hardness of a fixed natural
problem is new. In concurrent independent work, Hirahara and Shimizu [HS23] use a similar framework to
show hardness amplification for the planted clique problem, triangle counting, matrix multiplication, and
online matrix-vector multiplication. We briefly describe below the high-level similarities and differences in
our approaches.

Our approach to amplifying the hardness of planted search k-XOR is as follows. Given an instance, we
perform a random walk over instances of the same size where each step consists of adding some noise to the
instance and then randomizing it in a way that preserves solutions. We show that the graph defined over
the instances by these steps has sufficient expansion properties for the random walk to mix well before the
noise added destroys the initial solution. Then, for most instances as starting point, with a large enough
probability, the random walk leads to an instance that still has the original solution and at which the weak
average-case algorithm is correct.



Hirahara and Shimizu’s approach, roughly, is to embed the given instance in a randomized instance of
larger size — note that this never destroys the original solution. They then show, in each of their reductions,
that the bipartite graph that captures this random embedding has sufficient expansion properties that again,
with most instances as starting point, with a large enough probability, taking a random edge on the bipartite
graph leads to a larger instance at which the weak average-case algorithm is correct. This approach is closer to
that of Impagliazzo et al. [[JKW10], who also relied similarly on bipartite graphs with expansion properties.

The approach in [HS23] is likely to be more generally applicable because it never destroys solutions.
In problems where solutions are larger (rather than just a constant k out of r elements), it is harder to
repeatedly randomize instances the way we do without destroying solutions. One benefit of our approach,
at least in the case of k-SUM, is that the graph that results from our steps is much simpler and easier to
analyze than the graph that would have resulted from their approach.

Fine-Grained Cryptography. The question of constructing cryptographic primitives with fine-grained
security guarantees assuming fine-grained hardness conjectures has been studied alongside average-case fine-
grained complexity [BRSV18, LLW19, BC22]. LaVigne et al. [LLW19] use an assumption about the hardness
of decision k-SUM to construct a fine-grained One-Way Function. They also construct fine-grained Public-
Key Encryption (with quadratic security) assuming the average-case hardness of the Zero-k-Clique problem.
Juels and Peinado [JP00] similarly constructed One-Way Functions from the conjectured hardness of planted
clique for certain parameters.

1.4 Open Problems

There are a number of questions raised by our work that remain to be answered. Answering any of these
is likely to involve interesting new ideas and lead to better understanding of the average-case complexity of
fundamental problems.

1. Are there algorithms for planted k-SUM at densities in (k log /12, 1) that are better than the worst-
case algorithms?

2. Can our conditional lower bounds be improved? In particular, could similar bounds be shown for
densities smaller than 1/27

3. Similarly, can conditional lower bounds for search k-SUM be shown for densities larger than 27
4. Ts there a fine-grained reduction from worst-case k-SUM to average-case k-SUM at any density?
5. Can our approach to hardness amplification (or that of [HS23]) be applied to other problems in fine-
grained complexity?
Paper Organization

The paper is organized as follows. In Section 3, we formally define the planted search and decision k-SUM
problems. In Section 4, we establish an equivalence between planted k-SUM and non-planted k-SUM at
density 1. In Section 5, we establish our conditional lower bounds for sparse k-SUM. In Section 6, we show a
search-to-decision reduction for k-SUM. In Section 7, we present a success amplification theorem for search
k-XOR. In Section 8, we propose a public-key encryption scheme based on the hardness of sparse planted
k-XOR and LPN. Finally, in Section 9, we describe our algorithm for very sparse k-SUM by reducing the
problem to Subset Sum.

2 Preliminaries

We denote by log 2 the base-2 logarithm of x. We denote by [n] = {1,2,...,n} the set containing the first

n positive integers. We use the notation X & @ to denote that X is sampled uniformly from G when G is
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finite. We let 1[-] be the indicator variable for the validity of the statement in the brackets, with 1 denoting
true and 0 denoting false. If A, B are two sets, we denote by AAB = (AU B) \ (AN B) the symmetric
difference between A, B.

We say a function f(-) is negligible if it grows slower than the inverse of any polynomial, i.e. if for any
constant ¢, it holds that f(z) = o(z¢). We denote by negl a generic negligible function.

Probability theory. If D is a probability distribution on a countable set €2, and X € ), we denote by
D(X) the probability mass of D on X. We use the notation X ~ D to denote that X is sampled according to
D. If D, D’ are two probability distributions, we denote by SD(D, D’) the total variation distance, defined
as,
1
AN /
SD(D, D) = 5 > ID(X) = D(X")].
Xe

It is well-known that the total variation distance gives an upper bound on the advantage of distinguishing
between two probability distributions.

Lemma 2.1 (Rényi divergence, [BLRLT18]). Let P,Q be two probability distributions, with supp(P) C
supp(Q), and let E C supp(Q) be an event. Then,

Q(E) > P(E)/R(P|Q),
where R(P||Q) is the Rényi divergence (of order o), defined as,
P(z)

z€supp(P) Q(CC) ’

R(P|Q) =

The Rényi divergence between two distributions can be used to obtain multiplicative bounds on the success
probabilities of average-case algorithms whose inputs are sampled from those distributions.
We denote by Ber, the Bernoulli distribution on support I, with parameter 1. In a similar vein, we

let Ber; be the distribution of  i.i.d. Bernoulli distributions with support F; where X ~ Ber; means that
mXr

X; ~ Ber, and that X; and X; are independent for i # j, and likewise for Ber,

with support F5'*".

Concentration bounds. We will make use of a variety of concentration bounds that we include here for
the purpose of self-containment. Markov’s inequality gives concentration of a non-negative random variable
in terms of its first moment.

Lemma 2.2 (Markov’s inequality, [SS05]). Let X be a non-negative random variable. Then for everyt > 0,

Pr[X > tE[X]] < %

Chebyshev’s inequality bounds it in terms of its second moment.

Lemma 2.3 (Chebyshev’s inequality, [Tch67]). Let X be a random variable with finite variance. Then for
every t > 0,

1
Pr[|X — E[X]| > tStd[X]] < 2
where Std[X]| = /Var[X] is the standard deviation of X.

The Paley-Zygmund inequality gives an anticoncentration bound it in terms of its first two moments.

Lemma 2.4 (Paley-Zygmund inequality, [PZ32]). Let X be a non-zero random variable with finite variance.
Then for every c € [0, 1],

Pr[X > cE[X]] > (1 - 0)2
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A slightly stronger (and rewritten) version of the inequality is as follows.

(1 - X
PriX > cE[X]] > Var[X] + (1 — ¢)?2 E[X]?

Finally, the Chernoff bounds gives strong concentration for the mean of n i.i.d. 0-1 random variables.

Lemma 2.5 (Chernoff bound, [Che52]). Let X1, Xo,..., X, be i.i.d random wvariables on {0,1}, and let
X = Z?:l X;. Then for every e > 0,

PriX > (14 ¢)E[X]] <e 2

and, Pr[X < (1—e)E[X]] <e =

Similarly, the following also holds,

1 1
Pr [X > —E[X] +5} <e 2
n n
1 1
and, Pr {X < -E[X] - 5} <e 2
n n

Spectral graph theory We will analyze one of our constructions by representing it as a graph and obtain
bounds on its edge expansion to argue correctness. Formally, an undirected graph G = (V| E) consists of a
set of n vertices V, with |V| = n, and a set of m edges E C V x V, such that (u,v) € E iff (v,u) € E. Let
n denote the number of nodes, and m the number of edges. If A, B C V, we denote by F(A, B) the set of
edges connecting A and B, i.e. (u,v) € E(A,B) iff u € A,v € B and (u,v) € E. The degree of a node is
the number of edges that includes it. A graph is said to be d-regular if all nodes have degree d. The graph
may also be represented using its adjacency matrix A € F3*". Fix any ordering of the vertices and let (i, 5)
denote the edge between the i*" and the j** node. With slight overload of notation, we let G refer also to
the n x n matrix defined as G;; = 1[(4,5) € E]. A multigraph is a graph that is allowed to have multiple
edges between the same nodes. We may represent such graphs using matrices of the form A € N**" where
the value A;; represents the number of edges from ¢ to j. A graph remains a special case of a multigraph
where A;; € {0,1} for every i, j € [n].

Let G be a multigraph with adjacency matrix A. We associate to G the eigenvalues of A. Now, let A\ >
A2 > -+ > A, be the eigenvalues of G. We then define the algebraic expansion as AM(G) = max;—a. || =
max(|Az],|An]). The algebraic expansion measures the extent to which nodes are connected, with smaller
values of A(G) meaning a graph that is more connected. In particular, the following lemma allows us to
lower bound the number of edges between any two sets of vertices in terms of A(G).

Lemma 2.6 (Expander Mixing Lemma, [AC88]). Let G = (V, E) be a d-regular graph, and let S,T C V.

Then,

d-15]-|T|
V]

where \(GQ) is the algebraic expansion of the graph.

E(S,T) - S AMG)VIS|- T

Hamming Graphs Fix a set Q with |Q| = q. The Hamming graph H(d,q) is defined as the graph (V| E)
whose vertex set V = Q¢ = Q@ xQ x - - x @ is the Cartesian product of Q with itself d times, where (u,v) € E
if u and v differ in precisely one coordinate, i.e. if there is an index j € [d] such that u; = v; if and only if
i = j. The graph H(d, q) is a regular graph of diameter d, whose eigenvalues can be characterized as follows.

Lemma 2.7 (Hamming Graph Eigenvalues, [DKT16]). The i*® eigenvalue of the adjacency matriz of H(d, q)
satisfies,
d

N(H(d,q)) = (g(d — i) — d)(D@D",
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3 The Planted £-SUM Problem

We now formally define the average-case k-SUM problem over general Abelian groups, and present existing
hardness conjectures for certain interesting groups. We start with a framework for discussing the general
groups in this setting, and some descriptive quantities we will use for them.

Group Ensembles. We fix some underlying countably infinite sequence of finite Abelian groups G =
{GM}, cn+ that we refer to as a group ensemble. Informally, an instance of “size” r of the k-SUM problem
over G will consist of r elements chosen uniformly at random from the group G("). With slight abuse of
notation, we denote the group operation in all of these groups by + (thus removing its dependency on r),
and trust that it is clear from the context to which group it belongs.

Definition 3.1. For any k € N and group ensemble G = {G(T)}, we define the k-SUM density of the rt®
group as,

log ()
A — k) 1
We then define the k-SUM density of the ensemble G as the limit of A" as r tends to infinity, i.e.,
Ax(G) = lim AY(G). (2)
r—00

When k is clear from the context, we will simply refer to the above quantity as the density of G, and denote
it by A(G) or even A.

We only work with group ensembles that have well-defined density, though many of our techniques can
be applied to specific groups (rather than all groups in an ensemble) if needed. We will also need the groups
in the ensembles to be efficiently sampleable and have group operations that can be efficiently performed.
This is both so that hard problems defined over them can be used, and because our reductions sometimes
need to sample random group elements.?

Definition 3.2 (Admissibility). For k € N, a group ensemble G = {G(T)} is admissible for k-SUM if it
satisfies the following properties:

e Efficient sampling: There exists an algorithm that, on input r € N, samples a uniformly random group
element from G and runs in time O (polylog |G(T)|)

e Efficient operations: There exists an algorithm that, on input r € N and group elements g, h € G,
outputs the result of the corresponding group operation on g and h, and runs in time O (log ’G(T)D

e Convergent density: Ag(G) exists and is finite.

All our statements are to be taken to be made only for ensembles that are admissible for k-SUM for k
that will be clear from the context, and we leave out this specification in the rest of the paper.

Special Ensembles. We now define two classes of group ensembles that will be of particular interest
to us. Each class is parameterized by the density A of the ensemble. The first is the class of modular
k-SUM ensembles, i.e., ensembles associated with the k-SUM problem modulo some integer. The ensemble
corresponding to density A > 0 is defined as follows.

1
) k ogrw . 3)

nosuM = 1Zome }pey,  Where m(r) = { A

3Note that log |G(T)| is the number of bits required to represent elements of G(") and we ask that random elements be
sampleable in time quasi-linear in this. This asks for a uniform algorithm that samples elements for any G("). All the theorems
stated in the paper are for uniform algorithms. All of our reductions are uniform except where they use this group sampler
and compute group operations. So if the group ensembles in consideration only have non-uniform samplers and non-uniform
algorithms for group operations, the non-uniform versions of our theorems are still true for them.
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Another class that we will pay special attention to is the class of k-XOR group ensembles, i.e. k-SUM defined
over G Fym for an approriately chosen m. We define it as follows.

klogr
GI(C-A)EOR ={GFymm },cy, where m(r) = { g w )

- Q)

The Non-Planted k-SUM Problem. Fix some k € N, a group ensemble G = {G()},.cy, and define the
related ensemble of “null distributions” as follows.

Distribution D"
1. Sample r group elements X1, Xs, ..., X, i.i.d. uniformly at random from G(")
2. Return X = (X4,..., X,)

In the (non-planted) search k-SUM problem, given such an X, the task is to find a set of k elements in
X that sum to zero (the identity element of the group).

Definition 3.3 (Non-Planted Search k-SUM). For k € N and an ensemble G, an algorithm A is said to
solve the (non-planted) search k-SUM problem over G with success probability € if, on input an instance X
of size v it outputs an S = A(X) C [r] with |S| =k such that:

Pr |} X;=0[>¢
xX~Di"” [ics
S+ A(X)

If e = Q(1), we simply say that A solves the search k-SUM problem over G.

We will refer to any set S of size k that satisfies ), ¢ X; = 0 as a k-SUM solution for X. Not all
instances X necessarily have a k-SUM solution. However, if G has density 1, there is (asymptotically) at
least a constant probability that X drawn from Dg has at least one k-SUM solution. Such a solution, can
be found in time O(r[*/21) using a simple meet-in-the-middle algorithm. So for any ensemble G of density 1,
there is an algorithm that runs in time 5(7"““/ 21) and solves search k-SUM over G with success probability
Q(1).

For certain ensembles of density 1, it is conjectured that it is not possible to do much better than this.
That is, that there is no algorithm that is significantly faster that still solves the search k-SUM problem
with constant success probability. The following conjectures were formalized by Dinur et al. [DKK21], where
they are stated to be folklore.* Weaker versions appear in [LLW19] and [Pet15].

Conjecture 3.4 (Average-Case k-SUM Conjecture). For any k € N, any algorithm that solves (non-planted)
search k-SUM over G,(Cl_)SUM with constant success probability has expected running time at least Q(r1*/21=0()),

Conjecture 3.5 (Average-Case k-XOR Conjecture). For any k € N, any algorithm that solves (non-planted)
search k-SUM over G,(Cl_?XOR with constant success probability has expected running time at least Q(r!*/21=0()),

The Planted k-SUM Problem. We now define a different distribution — the planted distribution —
where, again we sample a random instance, but now we additionally plant a solution at random before
outputting it. We may define this process formally as follows.

4To be accurate, Dinur et al. state their conjecture for the k-SUM problem where the sum is performed over integers (rather
than modulo some number as in Gg_gunm ). They show, however, that k-SUM over integers is equivalent to k-SUM over Gg_sum
at approximately the same density, roughly implying the conjecture above.
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Distribution DY)
1. Sample r group elements X1, X, ..., X, i.i.d. uniformly at random from G
2. Choose a random set S C [r] with |S| =k

3. Let i € S be the smallest index and let X; <= =37, ¢ X;
i

4. Return X

Once again, we may define a (planted) search k-SUM problem for the planted distribution in the same
way as we did in Definition 3.3.

Definition 3.6 (Planted Search k-SUM). For k € N and an ensemble G, an algorithm A is said to solve
the planted search k-SUM problem over G with success probability € if, on input an instance X of size r it
outputs an S = A(X) C [r] with |S| = k such that:

P > Xi=0]>

XNDr(T) l 1 =
1 €S

S+ A(X)

If e = Q(1), we simply say that A solves the planted search k-SUM problem over G.

Note that the 6(7"““/ 2])-time algorithm mentioned above can solve the planted search k-SUM problem
with probability (1 —o(1)). In addition, we also define a decision version of the k-SUM problem, which is to

distinguish between these above two distributions. Now the algorithm is given a sample from either D((JT) or

DY), and has to guess from which distribution its input was sampled.

Definition 3.7 (Decision k-SUM). For k € N and an ensemble G, an algorithm A is said to solve the
decision k-SUM problem over G with success probability € if, for b € {0,1}:

Pr [A(X)=0]>¢
X~D{"

Ife =1—0(1), we simply say that A solves the decision k-SUM problem over G.

An algorithm that randomly guesses can solve the decision k-SUM problem with success probability 1/2,
so the interesting task is doing better than this. It follows from our proofs in Section 4 that at density 1,
the best success probability any algorithm can have is some constant € < 1. At lower densities, it is possible
to achieve success probability that is (1 — o(1)) by checking whether any solution exists.

Notation. We will use the following notation for ease of discussion of the number of solutions in k-SUM
instances.

Definition 3.8. For k € N, an ensemble G, and an instance X = (X1,...,X,) where each X; € G| we
denote by 9 (X) the number of sets S C [r] with |S| = k such that Y ics Xi=0. When k and G are clear
from context, we simply denote this by ¢(X).

In later sections, we will occasionally be ‘sloppy’ with our use of these formal definitions. It will often
be the case that the choice of r is fixed and unambiguous, and hence we will sometimes refer to the group
ensemble simply as GG, thus removing the dependence on the superscript. Similarly, we may denote the null
distribution as simply Dy, or the planted distribution as D;. Similarly, the underlying group ensemble may
be implicitly given in terms of the density; when we talk about ‘sampling at density Ay’, we refer to a group
ensemble G(20) that satisfies A(G) = Ag. These group ensembles will often be GEC_ASOI)JM and GESE)OR, though
we may omit formally specifying this and trust it is clear from the context what we mean.
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4 Equivalence of Planted and Non-Planted k-SUM

In this section, we prove an equivalence between planted and non-planted k-SUM at densities > 1 for any
finite Abelian group. We first show that at A = 1, any algorithm that solves the planted problem can be
used to solve the non-planted problem. The precise theorem we show is the following.

Theorem 4.1. For any k € N and ensemble G of density 1, suppose there exists an algorithm that runs in
time T'(r) and solves planted search k-SUM over G with success probability at least e(r). Then, the same
algorithm also solves non-planted search k-SUM over G with success probability at least e(r)3/2/9.

This theorem implies that planting is a one-way function. Let f, : (;) — ng gTIXT 1o the ‘planting
function’ that samples a random matrix at density 1 — such that m = klogr — and plants a solution in the
location specified by the first index, where these locations are ordered lexicographically among all subsets
of [r] of size k. For instance, the output f.(1) is a random matrix that has a solution in the set [k]. Then
it follows immediately from Theorem 4.1 that f, is a fine-grained one-way function. This function was also
considered by [LLW19] who show that it constitutes a fine-grained one-way function based on a decision
version of the k-SUM conjecture. In the dense regime, the two distributions are equivalent in a stronger
sense.

Theorem 4.2. At any density A > 1, if k < ar for some constant o < 1, then it holds that,
sp (D§”, Df") = 0 (1/r =51

This means that if we modify f, to have k = w(1) and A > 1 be some constant, then planting is an ‘actual’
one-way function against any polynomial-time algorithm assuming the k-XOR conjecture is true. This is
similar to [JP00] who show that planting a clique of a certain size in an Erd6s—Rényi graph also constitutes
a one-way function, assuming it is hard to find planted cliques of size (1 + €)logn for some constant € > 0
in an Erd6s—Rényi graph of size n.

Proof Strategy. At a high-level, we wish to show that any algorithm A that solves the planted k-SUM
recovery problem with some constant probability € > 0 also solves the non-planted k-SUM recovery problem
with constant probability ¢ > 0 for a possibly different constant. To do so, we proceed using a hybrid
argument where we define a intermediate distribution, parameterized by some integer ¢ > 0, whose distance
to both Dy and D1 can be bounded. By transitivity, this shows that Dy and D; are also close and allows us
to bound the error probability. In the former case, we are able to bound the Rényi divergence, and in the
latter the statistical distance. This allows us to express € as an affine function of €, i.e. ¢ = ae — 3 where
a = a(f) and f = B(¢) are functions of £. We will show that, for each ¢, there is a choice of £ such that
€ > 0 for sufficiently large r, which would conclude the proof. Specifically, we define the following family of
probability distributions,

Distribution D’

1. Sample X & D;.

2. Let ¢(X) be the number of solutions.
3. If ¢(X) > ¢, let X & Dy,
4. Output X.

Note that this distribution ‘interpolates’ between Dy and D; - in particular, we have D° = Dy and D) = Dy.
Lemma 4.3. For any X, if ¢(X) is the number of solutions in X, we have,

1. Dl(X) = C(X) Do(X)
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2. D'(X) = (]l[c(X) < fe(X) + Pr [e(X) > z]) Do(X).

Proof. To prove the first statement, we break down the expression for D;(X) using the definition of the
planted distribution as follows.

Di(x)= P X;=YVi#i\Xi=-> Y
ScClr] JES
|S|=k VES
i<—min(S)
- Y]NEDO SPC)E] Xj=Yjvj # i/\Xi == ZYJ
|S|=k Jes
i«—min(S) VED)

Observe that the planting process ensures there is at least one solution in the resulting vector. Hence,
c(X)=0= D1(X)=0=c(X) - Do(X). Now let us assume that X has ¢(X) > 1 distinct solutions, and it
was obtained by choosing Y ~ Dy, S C [r] and i € S in the planting process. Clearly, S can be any of the
¢(X) solutions of k&-SUM in X, and ¢ is the minimum index in S. Since Y; is completely replaced whereas
the other elements in Y remain unchanged, Y can be any vector that agrees with X in all indices other than
i; there are 2™ such vectors corresponding to each possible group element as Y;. Starting from X, we can
therefore make 2" ¢(X) choices for the pair (Y,S). Since all the choices made in the planting process are
uniformly random, the probability of any particular pair is 27,%(7,1“) Multiplying the two expressions, we get

2 X) e = e(X)

C— . = ¢(X)Do(X
omr omr C( ) 0( )
To prove the second statement, observe that D’(X) is the sum of the probability of choosing X in step
1 and that of choosing X in step 3 of the sampling procedure. The first term is clearly 0 if ¢(X) > ¢
(since step 3 would override it in that case) and D;(X) otherwise. The second term is the product of the
probability of re-sampling in step 3 (which is exactly XP% [¢(X) > {]) and the probability of getting X from
~L1
re-sampling (which is just Dg(X)). The statement now follows from adding the two terms and expanding
Dy (X) = e(X)Do(X). O

Next, we will bound the Rényi divergence of D and Dy using Lemma 2.1 which gives a multiplicative
bound on the error. In fact, applying Lemma 4.3, it is straight-forward to bound the Rényi divergence for
our use-case.

Corollary 4.4. R(D'||Dy) = ¢+ XPl}fj [¢(X) > £].
~L

This establishes that D¢ is not ‘too far’ from Dy and establishes a multiplicative bound on the error
probabilities for an algorithm that solves the hybrid distribution, and the non-planted distribution. Next,
we will bound the statistical distance between D and D; to get an additive bound.

Lemma 4.5. SD(D‘ D) < ﬁ
Proof. At a high level, our proof strategy is to bound the statistical distance in terms of the probability that
a planted instance has at least a certain number of solutions that we can then bound using Chebyshev’s
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inequality by bounding its first two moments.
SD(D*, Dy)

= 3 IP'(x) - Dy(x)|

XeGr

1
=3 | X B0 = 0D00+ 3 [e00) - By ) > 6] Do)
Xeagr Xeor
e(X)<¢e “(X)>e

Now identify those instances X for which D‘(X) > D;(X). This is exactly the probability that c¢(X) < ¢
which means the statistical distance is just the difference in probability between D*(X) and D;(X) which
we may also write as follows.

SD(D!, Dy) = Py P [e(X) > ] Do(X)
c(X)<¢e
_ {X e G [c(X) <}
= B0 > 5=
— Pr [e(X) >0 Pr [e(X) <4
< Pr [e(X) > (]
X~Dq

Now, suppose we sample X from D; and consider the number of solutions in X. Clearly, the number of
solutions is invariant to where exactly the solution is planted, so we may condition on the event that the
planted solution is [k].

Let X ~ Dy, let S C [r] be a k-set and let Is = 1[}, g
whether S is a solution for the instance X. Clearly, as X is sampled randomly, we have Is ~ Ber; ™; hence
Ells] =27, and Var(Is) = 27" (1-27"). Now, let I = } g, Is = ¢(X) be the total number of solutions.

IS|=k

X; = 0] be the random variable, indicating

First, note that by linearity of expectation,

= Y B =1+ Y 2—m:1+<(;>—1> 9m =g _gm

SClr] SCIr]
IS1=k |S|=k, S#[k]

Next, we may decompose the variance of I as follows.

Var(I) = > Var(Is)+ » Y Cov(Is,Ir)

SC[r] SCr] TClr]
|S|=k |S|=k |T|=k
T#83

We shall make use of the fact that for the vast majority of tuples, the covariance is zero. In fact, we note
the following identity.

0 if SAT # [k]

Cov(Ils,IT) = {2—m (1—27™) if SAT = [k]

To see why this is true, note that when SAT = [k], since we know [k] is a solution, we have that Is = It
and hence Cov(Ig,Ir) = Var(Ig) =27 (1 —27™). On the other hand, if this is not the case, then S must
contain at least one group element contained in neither T nor [k], and hence S is a solution for exactly one
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Figure 3: Depiction of the argument for statistical closeness of Dy and D;. We define a class of hybrid distributions
DY for which we can bound the distance to Do and D1, specifically we bound the Rényi divergence between Dy and
D® and the statistical distance between D and D;. We show that for large enough values of r, there is an ¢ such
that the nonplanted error probability on of any algorithm that solves the planted problem is some constant > 0.

choice of this element, meaning Ig is independent of I7. This allows us to write,

Var()=1-277+ <k§2> (ZJ;) 27 (=27

<1-2"M 4 (k " 1) 9=m (1 — 9=™)

k
cp(1—27m)
r

1

<1 —2m+ck<r) 9=m (1 — 2= ™)
T

—1-2m g

Here ¢y, is a constant that depends only on k. This means that Std(I) = 1+ o(1) and so for sufficiently large
7, we have that Std(I) < v/2. We now put things together.
¢
<
SD(D*,D;) < XEIbl[C(X) > /)
< Pr [le(X)=2|>¢—-2]

~ X~D;
(€-2)
< Pr 1Bl > =
2
((—2)

Std(I)]

IN

Where the latter inequality follows from application of Chebyshev’s inequality (Lemma 2.3). O

This establishes that D’ is not ‘too far’ from D;, and implies a bound on the additive error between the
success of an algorithm for the planted distribution and its success on D. This also immediately establishes
the following bound.

2
Lemma 4.6. XEEI [¢(X) > 1] < =k

We are now ready to show the main result of this section.

Proof of Theorem 4.1. We now prove the main result of this section. Let A be an algorithm that solves
planted k-SUM, and let € > 0 be a constant that lower bounds its error probability. We shall prove that
A solves non-planted k-SUM with probability > ¢’ for some other constant ¢ > 0. By Lemmas 4.5 and 4.6
and Corollary 4.4, we get that,

o € (25, [eX) > 1] ST o
= = 2
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To ensure that € > 0, solving for ¢, we get that £ > 2+ \/g Note that for any € and k, there is a viable such ¢

for sufficiently large r (note that ¢ is confined to the interval [0, (;)], which concludes the proof. Specifically,
we let £ =2+ % which gives a bound of,

3/2 3/2

’ € € 3/2
s L (o) 0
T2 +4/e+4 9
Stronger Equivalence in the Dense Regime. We now show the second theorem of this section, namely
that the two distributions are close in a stronger sense in the dense regime

Proof of Theorem 4.2. Let M be the set of instances without a solution. By Lemma 4.3, we know that D1
has the property that D;(X) = 0 for every X € M and that D1(X) > Dy(X) for every X € supp(D).
Hence, we get that,

| M, |

A(Do,D1) = Y Do(X) =520 = Pr [e(X)=0] =1~ Pt [o(X)>1]
XeM

Our goal is thus to lower bound the probability that X has at least one solution. We note that by linearity
of expectation the expected number of solutions satisfies,

= ()= ()

Similarly, since the indicator variables for two separate solutions are pairwise independent, we get that,

Var [e(X)] = (;)1_/i (1—27™).

X~Dy

And thus we get that by application of Paley-Zygmund (Lemma 2.4) that,

Pr [e(X) > 0] > T
Wb 02 ()" +Ele(X

This means we can upper bound the statistical distance as follows.

2 2
SD (Dy,Dy) < ——— < =0 (HE),
1L o\ F— %]
() (%)
where the last bound follows since k < ar for some constant o < 1. O

5 Conditional Lower Bounds for Sparse k-SUM

In this section, we establish two different conditional lower bounds for planted k-SUM in the sparse regime.
In Section 5.1, we describe a sparsification procedure on k-SUM that reduces the size of the input array
to decrease the density of an instance. The resulting reduction establishes a conditional lower bound for
recovery and detection that is non-trivial at any density A € [%, 1). Next in Section 5.2, we use a different
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method to lower density by changing the value of k; this gives us non-trivial bounds at some particular
densities in [%, 1).

Before going into further details, let us describe the conditional lower bound by Dinur, Keller and Klein
[DKK21]. They establish a conditional lower bound for the dense regime A € (1,2]. We describe their
reduction at a high level for the case of G = GFan with k even for simplicity of exposition.> Here, we may
interpret the input as a matrix X € F5'*", with the goal being to find k columns that XOR to the all-zero
vector. Their lower bound is established by giving a reduction from an instance of density 1 to a dense
instance by removing rows from the instance and giving this instance to a dense oracle.

Now suppose we wish to convert a density 1 instance to having density A € (1,2]. In order to do this,

we need to remove ¢ = klogr — m rows from the instance. This process introduces 2™ /r* = r[k(%fl)]
new solutions in expectation. Hence, ignoring constant factors, assuming that the oracle returns a random

,1}

solution, we need to invoke the oracle r* (= many times to obtain constant success probability. Now

suppose the dense oracle takes time T', then we can solve a density 1 instance in time 7* (-1 7 which by
Conjecture 3.4% must satisfy r" [x-1p > rk/2=o(1) "and hence we must have that 7' > r* [3-%]-o) This
establishes a lower bound for the dense case, and assuming the oracle returns a random solution. However,
this is not the case of a malicious oracle as the inputs as described are highly correlated. Thus, the main
technical contribution of [DIKK?21] is an obfuscation procedure that ensures the oracle gives (mostly) random
responses, whose correctness is analyzed using discrete Fourier analysis. The lower bound they obtain is
known to be optimal for k = 3,4, 5.

Theorem 5.1 (Dinur, Keller, Klein [DKK21]). Suppose Conjecture 3.4 (resp. Conjecture 3.5) is true. Then,

for k € N and A € (1,2], any algorithm that solves search k-SUM in G](ﬁ;UM (resp. G,(f)OR) with constant

success probability has to take expected time ) (r[k(%_%)]_o(l)).

As a first observation, note that this lower bound is easily adaptable to the sparse setting (at least in the
case of k-XOR). Here, instead of removing rows to increase the density, we will add random rows to lower the
density and give the resulting instance to the sparse oracle. Here, we do not need to worry about correlations
between instances, as we are not introducing new solutions. In fact, the oracle cannot be malicious as it has
to be correct over the randomness of the instance which is distributed exactly according to what it expects.
Note that by adding ¢ rows, the original solution is preserved with probability 2=¢ and hence we will have to
invoke to oracle £(2') times to recover the solution with constant probability. Now suppose we start with
a density 1 instance: in order to convert this to a density A instance, we need to add t = klogr (% — 1)
such rows. Assuming it takes time 7T to solve the instance at density A, by Conjecture 3.4 we get a bound
of 26T > rk/2, ie. rF [%-1] T > rk/2, and thus T > rk [3-%] which is non-trivial for A > % This reduction
establishes the following lower bound.

Theorem 5.2 (Follows from techniques in [DKK21]). Suppose Congecture 3.5 is true. Then, for k € N and
A€ (%, 1], any algorithm that solves search k-SUM in G,(f))(OR with constant success probability has to take

expected time Q) (r[k(%_%)]—o(l))

5.1 Lower Bound for Densities in (%, 1)

In this section, we show how to generalize Theorem 5.2 to k-SUM in arbitrary groups. Specifically, we will
prove the following theorem.

Theorem 5.3. Consider some k,r € N, A € (%, 1), e € (0,1], and Abelian group G. Suppose there is an
algorithm that runs in time T and, given an instance of r™ uniformly random group elements from G with

5See Footnote 4 in Section 3 discussing the slightly different definition of the k-SUM problem as considered by [DKK21].

6Throughout this section, we use a weaker version of Conjectures 3.4 and 3.5 that state a lower-bound of rk/2=0(1) rather
than r[*/21=o(1) This is done for simplicity in our expressions. Note that this relaxation only weakens our lower bounds,
which are hence actually stronger than stated for certain values of k and A.
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a planted k-SUM solution, outputs a k-SUM solution for it with probability €. Then, for some constants
c € N, € € (0,1], there is an algorithm that runs in time (c- T -r*1=2) log(|G|)) that, given an instance of
r uniformly random group elements from G with a planted k-SUM solution, outputs a k-SUM solution for it
with probability €.

Proof. Let A®) be the algorithm that given 72 random group elements from the group G with a planted
solution, outputs a k-SUM solution with probability at least e. We then construct the following algorithm
AW for recovering k-SUM solutions given 7 random elements from G with a planted solution.

Algorithm AM(X)
1. Repeat 2rF(1=2) times:

1.1. Initialize X’ to be an empty array.

1.2. Randomly choose 7 elements from X and copy them to X.
1.3. Define P to be the indexing function such that X'[i] = X[P(7)].
1.4. Let K + A®)(X)

1.5. If K is a solution, return P(K).

By definition of planted k-SUM, we know that X has at least one solution K. On any given iteration, the

probability of all k of those elements being copied to X' is ? - _1 - L _k+1 > k(z D . Therefore, the
probability that we call A on an array containing all the elements of K at least once is at least

k(1—A)

E(A=1)\ 27 1
1—<1—T > >1- - =0().
2 e

We claim that the probability distribution induced on X’ conditioned on the original solution being preserved
is just the planted distribution on density A. Observe that the elements of X outside K are uniformly i.i.d
from G, and K independently contains a uniformly random k-tuple from G that sums to 0. Therefore, the
elements of X’ outside K are also uniformly i.i.d from G, and K still contains a uniformly random k-tuple
from G that sums to 0. We can conclude that if A®) gets called on an array where the solution is preserved,
its input will look like an average-case instance sampled from the planted distribution, and A will succeed
with probability e. The overall success probability of A1) is therefore at least € (1 — é) = Q(1). The runtime
of AW is O(r*1=2) T as desired. O

This reduction immediately gives a lower bound on k-SUM in terms of the density.

Corollary 5.4. Suppose Conjecture 3./ (resp. Conjecture 3.5) is true. Then, for k € N and A € [; ),

any algorithm that solves planted search k-SUM in Gk sum (resp. G! XOR) with constant success probability
has to take expected time ) ( [k(1-2&)]- 0(1)).

5.2 Reducing Between k-SUM for Different £’s

In this section, we will present a different sparse conditional lower bound. This bound also applies to any
group. Recall that we previously decreased the density by reducing the number of elements in the instance.
Instead, now we will reduce the density by compressing elements of the inputs and hope that the resulting
instance has a ‘nice’ structure. An interesting feature of this lower bound is that it relates the hardness of
kE-SUM to the hardness of ¥'-SUM at a different density (where k # k).

Theorem 5.5. Consider k1, ko € N such that k1 > 3 and ko € [k1+1,2k; —1], and an ensemble G of density
A < Z—; Suppose there exists an algorithm that runs in time T(r) and solves planted search ki-SUM on G

with constant success probability. Then, there is an algorithm B that runs in time O(r¥2=*1T(r)) and solves
planted search ko-SUM on G with constant success probability.

Proof. We start by describing the new algorithm.
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Algorithm B(X)
1. Repeat 32F2rk2—k1 times:

1.1. Initialize X’ to be an empty array.

1.2. Randomly choose & elements from X and copy them to X'.

1.3. Randomly split the remaining elements of X into 7 disjoint pairs.
1.4. Insert the sums of each of the above 7 pairs into X'.

1.5. Add 7 random elements of G to X'.

1.6. Apply a random permutation to X’.

1.7. Let S + A(X").

1.8. If S is a solution and it depends on exactly ks elements of X, return those ko elements.

By definition of planted k-SUM, we know that X has at least one solution S. Recall that |S| = ko.
We are interested in the event where 2k; — ko of the elements in S were copied directly to X’ and the
remaining 2ke — 2k; elements of S were paired with each other such that their sums got copied to X'.
Clearly, this would give rise to a (2k; — ko) + % = k1-SUM solution in X’. We call solutions of this type
valid. The probability of exactly 2k; — k2 elements of S being copied directly to X’ in step 1.2. is at least
(r/2—(2k1—k2))2k2_2k1 S 1

T = 32z

The probability that the 2ky — 2k; remaining elements get paired amongst

themselves in step 1.3. is at least (%)krkl. Therefore, the probability that we call A on an array containing

k1-SUM solution at least once is at least 1 — (1 — W)S%th_kl >1-1=0(01).

We claim that the probability distribution induced on X’ conditioned on it having a walid k;-SUM
solution is just the planted distribution on density A;. Observe that the elements of X outside S are
uniformly i.i.d from G. Therefore, the 7 elements added in step 1.2. and the 7 elements added in step 1.5.
are uniformly i.i.d. from G. Since G is a group, the sum of two random elements is also random; this implies
that the other § elements of X’ are uniformly i.i.d. too (excluding the solution). The density of X" is clearly
ulog() — ki py = Ay

We can conclude that if A gets called on an array where a valid solution exists, its input will look like an
average-case instance sampled from the planted distribution, and it will succeed with constant probability.
The overall success probability of B is therefore also a constant. The runtime of B is clearly O(rF2=*17(r)),
as required. O]

Corollary 5.6. Suppose Conjecture 3.4 (resp. Congecture 5.5) is true. Then, for k € N and A € (%, 1)
such that A = % for some k' € [k + 1,2k — 1], any algorithm that solves planted search k-SUM in G,(f)UM
(resp. G.gf))(OR) with constant success probability has to take expected time ) (T[k(lfﬁ)]fo(l)),

Proof. This follows directly from the contrapositive of the previous theorem and the k-SUM conjecture. If
there is an algorithm at density A = % for k-SUM with runtime T', Theorem 5.5 implies that we can solve

E'-SUM at density 1 in time O(r* ~*T). We assume that is at least Q(r[%}_o(l)). This, along with the
definition of A, implies T' = ) (r[k(l_i)]_o(l)). O

6 Search to Decision Reduction

We will prove that decision is at least as hard as search by reducing search to decision using an algorithm
reminiscent of binary search. The precise statement we will show is the following.
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Figure 4: Illustration of the structure of the algorithm Aec shown for an instance X of size r = 8 and £ = 3. It
chooses a random subset S of the elements of size r/2 = 4 and replaces all elements in X from S with fresh samples
from the group and gives the resulting instance Y to the decision oracle Aget. If Aget reports there is a solution,
we increment a counter for each of the elements we did not replace. We then repeat this process p = polylog(r)
times and output the k elements whose counters are the highest. In the illustration, we have p = 4 and have marked
each set S chosen. At the end, the three elements with the highest counters are X1, X4, X7, so the search algorithm
outputs {X1, X4, X7} as the solution.

Theorem 6.1. For k € N, and ensemble G of density A < 1, suppose there is an algorithm that runs in time
T(r) =Q(r/A), and solves the decision k-SUM problem over G with success probability (1—o(1)). Then, for

any constant v < 1, there is an algorithm that runs in time 5(T(r)), and solves the planted search k-SUM
problem in G with success probability at least ~y.

We first describe the reduction at a high level and then prove its correctness. Our algorithm is vaguely
related to binary search. We will repeatedly guess a random half of the inputs to replace with fresh random
elements, invoke the decision oracle on the resulting instance, and record whether or not the oracle reported
there was a solution. Specifically, we will maintain a counter for every element in the original input that
we increment whenever an element was found to belong to an unreplaced half of the inputs for which the
decision algorithm reported there was a solution. Finally, we output the indices corresponding to the k
largest counters. Our hope is that this process is biased in favor of the indices in the solution, and that we
do not introduce too many new solutions in the process.

Algorithm R(X)
1. Sample r/2 elements from [r] at random (with replacement), and let S C [r] be the resulting set.
2. Let X} « X for every i ¢ S, and let X/ & G otherwise.
3. Return X’

We now describe our reduction formally. Let X ~ D; be some planted instance and let Age; be an algorithm
that solves the decision problem with probability 1 — o(1), and let T be its runtime.

Algorithm A..(X)
1. Let C < 0" be a list of counters.
2. Repeat p times:

2.1. Let Y + R(X), and let S be the subset chosen in this execution of R.
2.2. If Aget(Y) = 1, increment C; for every i ¢ S.

3. Output K C [r] with |K| = k that maximizes ), , C;.
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Sampling an element from G takes time O(klog(r)/A) = O(1/A), and so R(X) can be computed in time
5(7‘/A). Also note that the last step can be done in time O(r) (or faster if using a secondary data structure
such as a heap), and hence the total time complexity of the algorithm is O((T 4 r/A) p). This means we are
done if we can show that Pr[) ., x; = 0] > ~ for some p = polylog(r).

We now explain our proof strategy at a high level. Intuitively, the above procedure will assign higher
counts for the indices belonging to a solution. Indeed, we will give a concentration bound on the value of
each counter, conditioned on it being a solution or not. We will then bound the probability of these values
belonging to two disjoint intervals, such that the desired solution is output. Finally, we will union bound
over all values to achieve the desired result. We may assume w.log. that Age; is deterministic.

Lemma 6.2. Let K C [r] denote the planted set. Then for sufficiently large r it holds that in any given
iteration of Arec, the probability that there is a set S # K such that ), g Y; =0 is at most 4k ==l

Proof. Consider the R(X) used in a given iteration and denote by ¢(R(X)) the number of solutions in R(X)
different from the planted set K. Let A C [r] be a set with |A| = k and let T4 be the indicator for whether
or not A is a solution in R(X). Let K denote the planted set and note that,

ARX)) = Y Ia.
ACr
|Al=k
A#£K

Each T4 ~ Ber (27™), and hence by linearity of expectation,
E[E(R(X))] = KD — 1] 27m < pkl1-&]

Here, the inequality holds since (;) < (eki)k < rk for k > 3 > e. To bound the variance, we will use the
fact that most I4,Ip for A # B are independent. In fact, unless AAB = K, the variables I, and Ip
will each contain one random element that is not determined by the planted solution. This means that
Pr[Ia =11 1Ig] =2 ™ = Pr[l4 = 1], and hence 14, I are independent. If indeed, AAB = K, then A is a
solution if and only if B is a solution, in which case Cov[I4, Ig] = Var[l4] = 27™(1 —2~™). We proceed to
bound the variance using the bounds discussed above.

Var[d(R(X))] = Y Var[la]+ > Cov[la,Ig]
]

AC[r ABC[r]
|Al=k |A|=|B|=k
A£K A#B
r —m —m —m —m
<(k)2 -2+ Y 2ma-2m)
ABCr]
|A|=|B|=k
AAB=K

To count the number of such sets, we may arbitrarily choose k/2 elements from the planted set and choose
k/2 elements from the remaining r — k elements. This uniquely determines the say A, and by consequence

also the set B.
(e () ) e
[ (o

<2 (;) 9=m (1 — 2=™)

< 2rkli-3]
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Note that this gives a bound of Std[¢(R(X))] < v2rF[1=21/2 which allows us to bound the probability that
¢(R(X)) > 1.

Pr{E(R(X)) > 1] < Pr [[A(R(X)) - E[E(R(X)]| > 1 - r*1-4]]

1 —rkl-z]

< Pr | [e(R(X)) - E[e(R(X))]| = <¢W

) Std[E(R(X))]]

Now suppose that 7 > (2 4 v/2) FAST i sufficiently large. Then we get the upper bound,

~ ~ 1 ~
< Pr|[¢(R(X)) = E[e(R(X))]| = =77 Std[c(R(X))]
L ok 1-xl1/2
< 4rF [17%],
where the last inequality follows from Chebyshev’s inequality (Lemma 2.3). O

In the following, we will bound the values of the counters. Denote by Det(X) the correct answer for the
instance X, i.e.,

1 if X has a solution,

0 if X does not have a solution.

Det(X) = {

Lemma 6.3. At any constant density A < 1, if X ~ Dy, then Det(X) = b, except with probability o(1).

Proof. We need to show that with probability 1 — o(1), an instance X ~ D, has a solution iff b = 1. The
case of b =1 is true by definition, while for b = 0 we need to upper bound the probability that an instance
X ~ Dy has a solution. Let S C [r] be a set with |S| = k, and let I's be the indicator variable for S being
a solution. Let ¢(X) be the number of solutions in X and note that ¢(X) = > gc[y) Is. By linearity of

|S|=k
expectation, we have E[¢(X)] < r* [=2] which is subconstant for A < 1. Hence,
1 k _ 1
= >1] = > < pkli=zl
P IDe(X) £ 0= P [e(X) 2 11 = Py [e(X) > S Ble(X)]| < 403
by Markov’s inequality (Lemma 2.2) which as remarked is subconstant. O

Say an instance X is bad if Pr[Agei(R(X)) # Det(R(X))] > 53, with randomness taken over R and Aget.

Lemma 6.4. If Aqet solves the decision problem with success probability 1 — o(1), then for sufficiently large
r, an instance X ~ Dy is bad with probability at most 2%

Proof. At a high level, the result essentially follows using a Markov bound at a sufficiently high value of
r. Let X ~ D be an instance from the planted distribution. First note that the distribution of R(X) is
a convex combination of Dy and D;, determined by whether or not the set chosen by R(-) intersects with
the solution. Hence by correctness Age¢ has to mostly agree with Det. Let S be the subset chosen by R.
Clearly, if S is disjoint from the solution, the resulting instance is distributed as D;. Otherwise, we do not
preserve the solution and the instance is distributed as Dy. Note that as A < 1 is constant, it follows from
Lemma 6.3 that except with probability o(1), X ~ Dpeyx). By convexity, in the former case, A has to
output 1 except with probability o(1), while in the latter case, it has to output 0 except with probability
o(1). Let Z(X) = Yg;%r(x) [A(Y) # Det(Y)], and note that an instance X is bad if Z(X) > 5. For large
enough r, we thus get a bound of E[Z(X)] < 5% with the expectation taken over X and R(-). We can now
bound the probability that X is bad.

1 1
i = > | < > 28k < —
XE%I[X is bad] XEEI [Z(X) > 2%} < XEIbl [Z(X) > 22 E[Z(X)]] < 55%
where the latter follows from Markov’s inequality (Lemma 2.2). O
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Proof of Theorem 6.1. At a high level, we will give a concentration bound on each counter using a Chernoff
bound, and conclude that, with high probability, the range of the counters for the indices in the solution is
disjoint from the range of counters outside the solution by employing a union bound on all the counters.

Formally, suppose Aget is a deterministic algorithm, and let us fix X. Now, in the reduction, for each
choice of R(X), the counter will be incremented by some specific vector which is either zero if the solution
was destroyed, or a balanced vector if the solution is preserved. Let E;; be the event that the ™™ counter was
incremented in the j** iteration. Note that C; = Z§:1 E;;. Now consider an index ¢ belonging to the planted
solution, and suppose that Aget has no errors and that R(-) did not introduce any new solutions. Then C; is
incremented if all of the indices belonging to the solution were not replaced, and thus E[E;; | i solution] = .
Analogously, for an index not belonging to a solution, it will be incremented if the solution were preserved
and also this index was preserved, and so the error-free expectation will be E[E;; | ¢ not solution] = ﬁ
By Lemma 6.4, even if Age; has a o(1) probability of error, we know that for each counter the error is
€ < 2% < Qk% (since k > 3) with probability at least 1 — 2%, where the randomness is taken over the
instance. In addition, even if we destroyed the solution, R(-) might inadvertently create a new solution which
happens with probability < 4r*(1=%) . To account for the errors, we assume, as a worst-case precaution using
a union bound, that the expectations change by at most €, such that by linearity of expectation,

E[Ci] > p < - e) when 7 is solution
1 k(1—%) - .
E[C;] <p BYEsY +e+4r a when ¢ is not solution

We now wish to say that the range of values of indices belonging to the solution is disjoint from the range
of those not belonging to the solution. We say a counter is bad if it deviates from its expectation by more
than 5f7. This ensures that when no counters are bad, for sufficiently large r, the range of counts for the
indices belonging to a solution is disjoint from those not belonging to a solution. To see this, we compute
the distance A to the midpoint of the expectations, i.e.,

-1 -1
p(F -9 -p(Fr+eratlD) p(F - g - gl - s — 4" 07)

A= >
2 2
N )
P\ ok T
b
>2k+4’

where the first inequality follows as € < 2% < Qk% is true for any k > 3, and second inequality follows since

A < 1 is constant and 27“’“(17%) < 2,5,1+4 for sufficiently large r. Note that when X is fixed, each E;; and
E;i, are independent for j # k and are supported on {0,1}. We may thus we may bound the probability of
a bad counter as function of p using a Chernoff bound (Lemma 2.5). Suppose that ¢ is an index belonging
to the solution, then we get the following bound, (Lemma 2.5).

1 1 1
Pr [i*" counter is bad | i solution] = Pr {C’i <E[C;] - L } =Pr [p Ci < EE[CL] — 5ird

D
— T 22k+T7
okt a <e 2 .

Now let 0 < v < 1 be any constant and let p = 22**7 In . Then we get an upper bound of 1 for a solution
counter going bad. We get the same bound for the indices not belonging to a solution. By a union bound
on all the counters, we bound the total error rate by ~. O

7 Hardness Amplification for £-XOR

In this section, we propose a success amplification procedure for k-XOR recovery outside the dense regime.
The procedure amplifies the success of any algorithm that solves recovery with success probability (1 /polylog(r))
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in GFam to a success probability of 1 — o(1), at the cost of increasing its runtime by a polylogarithmic fac-
tor. Since we already proved that the £-SUM detection problem is at least as hard as k-SUM recovery in
the previous section, this also establishes that detection and recovery are equivalent for planted k-SUM in
G = GFom.

Note that any element of GFy= can be represented by a bit vector of size m, hence we will represent
the input as an m x r Boolean matrix whose columns represent the element. Note that addition in this
group is equivalent to bitwise XOR. At density A, we have the relation mA = klogr. Aslongas 1 > A =

Q (m), this implies that logr < m = ©(polylog(r)). To sample from Dy, we simply choose each bit
in the matrix independently and uniformly at random. To sample from D;, we do the same thing and then

replace a random column with the sum of £ — 1 randomly chosen other columns. Given an arbitrary matrix
M sampled from D;, the recovery problem asks for a k-tuple of indices S such that,

P Mi; =0 Vie[m] (5)

jES
Theorem 7.1. For k > 3 and density ) (m) < A <1, suppose there exists an algorithm Aiec that

runs in time T(r) = Q(r), and solves the planted search k-SUM problem over G,(f))(OR with success probability

vy =Q m). Then, there is an algorithm that runs in time O(T(r)), and solves the planted search
k-SUM problem over Ggf))(OR with success probability (1 — o(1)).

At a high level, we will simply invoke the recovery oracle multiple times on inputs related to the original
input. To deal with the oracle potentially being malicious, we employ an obfuscation procedure to hide the
original solution. We will raise the success probability in several steps. For the sake of simplicity, we will
assume that v = © (m) in the rest of the proof. Of course, if our starting algorithm A,. has a higher
success probability, we can always make it less reliable by randomly failing on an appropriate fraction of
inputs.

Let M € F3'*" be an input. For most of the construction, we will impose the following restrictions on
the matrix M:

1. The r columns are all unique. Note that the probability of any 2 particular columns being equal is

exactly 27". This holds even when one (or both) of the 2 columns are part of the planted solution.

Since there are (;) < r? pairs of columns, we can conclude via union bound that the probability of

having any duplicate columns in the matrix is at most ;i =2 h/A < 2ok < % = 0o(y). Therefore,

the r columns are all distinct with probability at least 1 — o(7).

2. There is exactly one solution. Since M is sampled from D1, there is always the solution we explicitly
planted. The probability of another k-XOR solution among the r — 1 original columns is at most

r—1
(QL) < r#(1=1/2)  The new column creates an extraneous solution exactly when there are some other
k — 1 columns which have the same sum as the unchanged columns in S; this happens with probability
r—1
("2;,,}) < rkA=1/2)=1 <1 — 5(y). Therefore, we conclude that this condition is satisfied except
with probability O(rk(l_l/ A)). For the first several steps in the construction, we will assume that
A<I1- %. The following calculation shows that the probability of multiple solutions becomes

o(7) in that case.

at most

1 _ 1 — log log log — log log log r _
rk(l_K) S rk(l l—logloglog7~/log7‘) — QkIOgr(logr—lugluglogv-) < 2klogr( Tog 7 ) e (log logr)

— (polyllog(r)) =l

3. The k columns comprising the solution have rank k£ — 1. The column we replace is obviously lin-
early dependent on the other k£ — 1 columns of S. This condition is therefore fulfilled if and only if

k
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those other k — 1 columns are linearly independent. Note that these columns were all independently
chosen uniformly at random from GFym. The probability of an arbitrary element being outside the
subspace spanned by ¢ elements is 1 — 2!=™. Therefore, the probability of this condition holding is at

least -
(k—1)2 o1 1 1

1—ok—l=myk=l > _ > -
( oz 2m - r polylog(r)

=1-o(y),
since k is some constant and m > logr.

4. The matrix M has rank m. This condition holds as long as all the m rows are linearly independent.
For sake of simplicity, let us ignore the planted column; the other values are all uniformly randomly
chosen. The probability of an arbitrary row being outside the subspace spanned by ¢ rows is 1 —2t=7+1,
Therefore, the probability of this condition holding is at least

mam 2polylog(r)

- — = 1-0(3)

1-2m""Mm>1—-—m2m " =1-
(-2 > 1 ol

since m = O(polylog(r)).

Definition 7.2 (Permissible Matrix). We call a matriz that satisfy all 4 of the above conditions permissible.
Define Dperm, to be the distribution Dy conditioned on the sampled matriz being permissible.

Remark 7.3. Since it is nontrivial to check if a given matriz is permissible, there is mo obvious efficient
sampling process for Dperm. We only use this distribution to make theoretical arguments.

Lemma 7.4. The following is true.

log log 1
1. IfA<1- w, then Pr [M is permissible] =1 — o(v)

log r M~D
2. Dperm 1s uniform on its support.

Proof. The first statement follows from applying the union bound over the probabilities of each of the 4
conditions being violated. The second statement follows from Lemma 4.3 and the fact that each permissible
matrix has exactly one k-XOR solution. O

Our first step is creating an intermediate algorithm A4°°f that runs in 5(T) time and solves the same
problem somewhat more reliably. Let A, be the recovery algorithm with success probability v promised in
the statement of Theorem 7.1; it takes as input a Boolean matrix sampled from D; and returns a Boolean
vector of size  which only contains 1 at the k indices corresponding to a solution. Observe that A,.. can be
adversarially biased in at least two ways. It can only look for solutions in some particular positions (e.g. it
only looks at the first r/2 vectors and always fails in the 1 — 1/2F fraction of the inputs where the solution
involves the other vectors). To deal with this issue, we anonymize the solution by applying an arbitrary
permutation to the columns of M. The original oracle can also only look for solutions where the columns
have some particular property (e.g. it can only find solutions where the total Hamming weight of the k
vectors in S is less than km/2 and always fails for the other half of the input space). To fix this issue, we
randomize the solution by multiplying M with a random full-rank matrix on the left. This will transform
the solution to an arbitrary solution which also has rank k — 1, since full-rank linear transformations keep
rank intact.

Algorithm A° (M)
1. Choose a random full-rank m x m matrix C.

2. Choose a random r X r permutation matrix II.

3. Let K < Avec(CMTI).
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C M = CMII

Figure 5: Visualization of the obfuscation procedure. The input M € Fy'*" is randomized by multiplying with
a random full-rank matrix C' € F3**™ (which preserves the kernel and, in particular, the location of the k-SUM
solution) and then anonymized by permuting the columns of the result with a permutation matrix IT € F3*". The
resulting matrix CM1I is then given to the oracle Ayec for k-XOR recovery.

4. If K is a solution, return KII~1.

For efficiency reasons, we never explicitly construct II, which would take O(r?) time. Instead, we use sparse
representations of IT and II7!, which we can respectively sample and construct in O(r) time. Note that the
algorithm never returns a wrong solution since the two full-rank matrix multiplications cannot create a new
solution. It is also clear that the runtime of this is 7'+ rm? = T + r - polylog(r) = O(T).

Before stating our main lemma regarding A°"f, we introduce some new notation. We will denote the
entire j'" column of a matrix M by M[j]. For an array A of size k containing unique numbers between 1
and r, we define M[A] to be the matrix obtained by concatenating the &k columns of M corresponding to the
indices in A. Formally, M[A][j] := M[A[j]]. Adding bit vectors is defined as taking bitwise XOR for each
position.

Lemma 7.5. Let S and Sy be any two arrays of indices in [r] of length k. Let Vi and Va be any two m x k
Boolean matrices of rank k—1 such that Z?:l Wilj] = Z?Zl Valj] = 0. Recall that ~y is the success probability
of Avec Then, for large enough r, ‘

MNII;LM [A°P (M) succeeds | M[Si] = Vi] = ~1137£mn [A°P (M) succeeds | M[Ss] = V2] (6)
obf _ obf -
MNIID)l;mn [A°PY (M) succeeds]| = ~II)>£EW [A°PY (M) succeeds | M[S1] = V1] (7)

Pr [A°"(M)succeeds| >
M~Diperm

o2

(8)

Proof. Since the columns of V4 sum to 0, its last column is a linear combination of its first & — 1 columns.
Therefore V1[[k —1]] has the same rank as V4. Since V; has rank k—1 and V;[[k — 1]] only has k — 1 columns,
all those columns must be linearly independent. Similarly, the first kK — 1 columns of V5 must also be linearly
independent. Since k—1 < logr < m, we can find a full-rank matrix Cy such that CoV1[[k —1]] = Va[[k —1]].
Since linear transformations preserve linear relations, we also have CoVy = V5. Similarly, we can find a
permutation Iy on [r] that takes S; to Ss. Since both Cy and I are invertible, M[S;] = V; if and only
if CoMTIy[S2] = V. Also, note that a matrix X is permissible if and only if Cy XTIy is permissible, since
permissibility is closed under full-ranked linear transformations of rows as well as permutations of columns.
We can now prove the Eq. (6) as follows. Note that M is permissible if and only if Co Ml is. Since Dperm,
is uniform on its support by Lemma 7.4, sampling M is the same as sampling Cy M Ty, we may write,

Pr  [A°P (M) succeeds | M[S)] = V4]
M~Dyerm

= obf (7Y ‘ B
- CoMHSEDmm['A (M) succeeds | M[S;] = V1]
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Since CyVp = Vs, and I takes S; to Ss,

= obf B
- CoMHfNTDmm[A (M) succeeds | Co MTIy[Ss] = V5]
= obf -1 1 B

= COMH?NYDMW [A°PH(Cy * (CoMTIp)IIy ) succeeds | CoMTIy[Ss] = Vo]

Denoting the matrix CoMTIIy by M’, we get,

= %1" [A°PT(Cyt M'TIG ) succeeds | M'[Sa] = V3
~Lperm

Renaming M’ to M.

= Pr [AObf(C(;lMHal) succeeds | M[Ss] = V3]
MNDpernL

Expanding the definition of AP,

= Ij;r [Arec (CCy MTI ) succeeds | M[Ss] = Vs
C~GL(m.Fa)
~S,

C is a full-rank m x m Boolean matrix if and only if CC'O_l is. Similarly, IT € S,. if and only if Ho_lﬂ €Sy,
We can therefore rewrite as follows.

= 1;r [Arec (CCy t MTI; M) succeeds | M[Ss] = Va]
CCy ~GL(m.F2)
I ' T~

Denoting CCy ' by C’ and TI; 'TI by II'.

= ,.br [Arec(C"MTIT") succeeds | M[Sa] = Va]
CINGLE):T:;I;z)
'~S,

Using the definition of A°Pf.

= Pr[APY(M)succeeds | M[Ss] = V5]

MNDperm
To prove Eq. (7), observe that every permissible matrix M has one and only one pair (S, V') such that V'
is a m x k Boolean matrix of rank k — 1 with Zle V[j] = 0 and M[S] = V. Since the success probability
of A is the same regardless of S and V, the overall success probability must be the same as the success

probability conditioned on any particular values of S and V.
We are now ready to prove Eq. (8).

Pr  [A°f(M)succeeds]
MNDpeTm

— P . .
by [Arec (C MTI) succeeds]
C~GL(m F2)
~S,
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M is permissible if and only if CMII is. Since Dperp, is uniform on its support by Lemma 7.4, sampling M
is the same as sampling C MTI.

Pr
CMTI~Dperm
C~GL(m,Fa)

II~S,

[Arec (CMTI) succeeds]

Rewriting CMTI as M'.

= P M’
VRS [Arec(M') succeeds]

From the definition of Dperm,

> Pr [Apec(M)succeeds] — Pr [M is not permissible]
M~D; M~D;
Using Lemma 7.4, we get,
i
= — > -,
7—o() >3
where the last inequality holds for sufficiently large r. O

7.1 Hardness Amplification at Density <1 — bgi%

Our next step is building the algorithm A42™P that will achieve the required success probability for densities

below 1 — %. The algorithm on input M is formally described below.

Algorithm A*>™P (M)

1. Repeat 6;121,35; times:

1.1. Make a new copy of M and call it M’
1.2. Repeat rlog% times:

1.2.1. Pick ¢ uniformly at random from [r]
1.2.2. Replace M'[i] with a random element from GFym different from M’[i]

1.3. Call A°f (M)

1.4. If the previous call succeeds and returns a k-tuple that was unchanged from M to M’, return
that.

It is easy to see that the algorithm never returns a wrong answer. Note that the inner loop takes O(m)
time. Therefore, the outer loop takes O(T) + O(mr log% + mr) time. Since m = O(polylog(r)), % =
O(polylog(r)) and T = Q(r), the expression simplifies to O(T). The runtime of the whole algorithm is
therefore O(ngk%) -O(T) = O(T), as desired. To analyze the success probability of A*™P_ we start with a
couple of definitions.

Definition 7.6 (Correspondence Graph). For a permissible matriz M with the k-XOR solution S C [r], we
define its correspondence graph Gy as follows: create a vertex for every Boolean matriz M’ € F3'™™" such
that M[S] = M'[S]. Two vertices are connected by an edge if and only if the corresponding matrices only
differ in one column.

Lemma 7.7. Gy is isomorphic to H(r — k,2™).
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Figure 6: The Hamming graph representing the inner loop of A*™P(M). Each iteration resamples a random column
of M and corresponds to taking a random step in the graph, assuming this does not destroy the solution S. Intuitively,
the oracle cannot consistently fail on all the vertices we visit, and thus the process must eventually return the set S.
The proof of this statement amounts to bounding the edge expansion of this graph.

Proof. We are allowed to change r — k columns of M, and there are 2" possibilities for each of those columns.
The isomorphism follows from definition. O

Lemma 7.8. The fraction of vertices corresponding to matrices which are not permissible is o(y) in any
correspondence graph Gy as long as the number of columns of the matriz, r, is large enough.

Proof. We will show that for any permissible M, if we choose the r — k columns outside its k-XOR solution
uniformly at random from GFam, we end up with a permissible matrix with probability 1 — o(y). This is
equivalent to the lemma statement.

The proof of Lemma 7.4 establishes this result almost directly.

1. All the columns are unique with probability at least 1 — %, as before.

2. With very high probability, there will be no new solutions other than the k fixed columns. We can
bound the probability of a new solution by
r—k k
1 k—1

1 r—k\ (k n r—k\ (k n

2m k 0 k—1/\1
Since k is a constant, this sum is O(r*(1=1/2)) = o(~)

3. Since we start with a permissible matrix and do not disrupt the & columns containing its solution, the
solution will always have rank k — 1.

4. The matrix has rank m even ignoring the k fixed columns with probability at least

m2m+k 2polylog(r)
>1_2
2r = 27

(1 _ 2m+k77‘71)m Z 1— m2m+k¢7’r‘ =1— =1— 0(7)

since m = O(polylog(r)) and k < m for large enough r.
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As before, the result follows from an application of the union bound. O

For a pictorial representation of Gy, see Fig. 6. Note that if we are lucky enough to not destroy the
solution while running the inner loop, we end up taking r log % steps in this graph.

Definition 7.9. For a permissible matriz M, its correspondence power graph G7%, is a multigraph which
has the same vertices as Gy, and has t edges between My and My where t is the number of paths of length
rlog% from My to My in Gyr. In other words, we can obtain the adjacency matriz of G, by raising the

adjacency matrix of Gy to the power rlog %

Lemma 7.10. The algebraic expansion of G, is ((r — k)(2™ — 1) — 2m)H°g%.

Proof. By Lemmas 2.7 and 7.7, we know that for G/, the highest eigenvalue is (r — k)(2™ — 1), the second
highest eigenvalue is (r — k)(2™ — 1) — 2™, and the lowest eigenvalue is k — r. Note that raising a matrix to
a certain power also raises its eigenvalues to the same power, and the algebraic expansion of a graph with
eigenvalues Ay > Ay > -+ > A, is defined as max(|\z],|An]). Since (r — k)(2™ — 1) — 2™ > r — k for any
r > k, the lemma follows. O

Lemma 7.11. Each vertex of G%; has degree ((r — k)(2™ — 1))Tlog%

Proof. Lemma 7.7 implies that Gy is a regular graph of degree d = (r — k)(2™ —1). Therefore, starting from

any vertex v, there are exactly d' paths of length . By definition, this implies G%, is ((r — k)(2™ — 1))"'® 5.
regular.

Note that taking rlog% steps in G/ is equivalent to taking 1 step in G7,.

Definition 7.12 (Good Vertices). We call a matriz X good if it is permissible and A°"" has at least a T
success probability on it.

Pr[A°"(X) succeeds] >

2

We call a vertex good if it corresponds to a good matrix.

Lemma 7.13. Let M be any permissible matriz whose number of columns r is large enough. At least a %
fraction of the vertices of Gps are good.

Proof. Note that only a o(y) fraction of the vertices in Gj; are not permissible. We choose r large enough
so that this fraction doesn’t exceed %. The rest of the vertices exactly correspond to the support of Dperm
which has the same k-XOR solution in the same position as M. Since Dperr, is uniform on its support
(Lemma 7.4), conditioning on a random vertex of G being permissible is the same as sampling from Dperp,

and conditioning on it having the same k-XOR solution in the same place as M. Lemma 7.5 now yields

E  [Pr[A°® (M) succeeds] | M’ is permissible] >
M'~G

9)

N2

We proceed via a proof by contradiction. Let us assume that the lemma is false. This implies that at least a

1 — 2 fraction of the vertices in G are either not permissible or has a success probability less than 7. Since

the fraction of vertices not permissible is at most %, at least a 1 — % fraction of the vertices are permissible
but not good. Then, we have:

E  [Pr[A°® (M) succeeds] | M’ is permissible]
M/~G

This expected value is maximized when all the good vertices have success probability 1 and all the other
permissible matrices in G'3; have success probability 7.

8§, 1-3
< + :
-1 "1-%




This simplifies as follows.

TN C et o O Bl O e S
8-y 208-7) 28-7) 28-7) 2

This inequality directly contradicts Eq. (9), and hence we are done. O

Definition 7.14 (Bad Vertices) Let M be a permissible matriz. We call a vertex X of G, bad if it is
permissible and less than % of its outgoing edges connect to a good vertex.

Lemma 7.15. Let M be any permissible matriz whose number of columns r is large enough. The fraction
of bad vertices in G, is o(1).

Proof. Let S be the set of bad vertices and T be the set of good vertices. We denote the set of all vertices of
Gy by V. We know from Lemma 7.11 that G7; is a regular graph; we shall call its degree d. We will also
denote the algebraic expansion of G%; by A. The expander mixing lemma (Lemma 2.6) now implies

d-|S|-|T d-|S|-|T
E(S,T) — |‘|/|| | < M8 T = E(S,T)2|V||—)\ S| - |T|.

dvISI

The number of edges between S and T is at most since each bad vertex, by Definition 7.14, has at

most edges connecting to a good vertex. Therefore

dy|S| _ d-]S]-] dy |5 1SEIT IS0 1Tl
> - A T = — —>d- - A
i > VLT w6 v =W v
1S |<dIT| d’Y) IsE1T
== — - — ] <A
VIVl 16 Vi v
171
I8 AV
V| — dTl _ dy
V] 16
2 JEX]
VI~ \d (ﬂ _ 1)2
Vi 16
Since T is the set of good vertices, Lemma 7.13 implies % > {. Therefore,
18| ( )2 1 ()\)2 32
< =) =
Vi (5 - 16) v

We now plug in the values of A and d from Lemmas 7.10 and 7.11 respectively to get

ﬁ< (1 om )2rlog 32 <1 1>2rlog}Y g
Vi (r—k)(@2m-1) gl r gl

We can further bound the above expression by using the inequality (1 — %)7 < é

5] < - =327y=0 ! =o(1)
V] v 2T P polylog(n) ) ¢

We have thus shown that the fraction of bad vertices in the correspondence power graph of any permissible
matrix is o(1). O
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We are now ready to conclude our second step.

Lemma 7.16. The average-case success probability of A*™P is 1 — o(1). This algorithm works at any

Q (m) density A <1 — % for large enough 7.

Proof. With probability 1 — o(1), the input matrix M is permissible. In that case, M has a unique solution.
Lemma 7.15 tells us that among all matrices that contain this exact solution at this exact position, only a
o(1) fraction can be bad. So we can assume with probability 1 —o(1) that M has at least a ¢ fraction of its
edges leading to good vertices.

Each iteration of the outer loop of AP makes rlog 1 column replacements before calling A°"f. The

original solution is preserved if we choose one of the r — k columns not in the solution at every step. This
1

happens with probability (1 — £)7'&5 > em2klog 5 v%*, since (1 — 1)* > % for t > 2. Note that when we

r

preserve the solution, the inner loop takes one random step in Gj;. With probability at least &, this lands

us into a good vertex where A°"! succeeds with probability at least T. Thus, each iteration of the outer loop
has a probability at least % of recovering the original solution for any input matrix which is permissible

and not a bad vertex. Observe that different iterations of the outer loop are independent once we condition
on the input matrix. Since the outer loop runs 6;121,35; times, the probability of recovering the solution in at

least one of the iterations is

64log T
2k+2\ S2k+2 1 1
1—(1—7 ) Sl ———=1--=1-0(1) O
T

64

7.2 Hardness Amplification at Density <1

log log log r
log(r)
now dispense with this assumption and only assume A < 1. Note that this implies that permissible matrices
may no longer take up a 1 — o(1) fraction of the input space, and we can no longer pretend the input is

permissible without a significant loss in success probability anymore.

So far, we have only proved Theorem 7.1 for all densities < 1 — . To complete the proof, we will

Proof of Theorem 7.1. Let us define

loglog1
Ag:—1_ logloglogr
log r

To complete the proof, we will assume that A, is an average-case algorithm for k-XOR at some fixed density
A € (Ap, 1] with success probability v = Q (m
a new algorithm B to solve the same problem at the same density A with success probability 1 — o(1).

First, we use Aec to construct an algorithm Ay for solving the same problem at density Ag. On input
My (which is sampled from DlA"), this algorithm A simply throws away a randomly chosen 1 — % fraction
of the rows to get a density A instance M. It then checks if A,ec(M) returns a k-tuple which is also a
solution for the original input My, and if so, returns it. Observe that since the rows of Mj are independently
chosen, M has the same distribution as Df*. Therefore, A returns a solution with probability 7. Any
k-tuple that sum to 0 in My obviously also sum to 0 in M. If M has c solutions of k-XOR, we can argue by
symmetry that they are all equally likely to be a solution for M. Now, note that since M has density < 1,
the expected value of ¢ is less than 3. If the planted solution is .5,

) and time complexity T'(r) = Q(r). We will construct

() — 1

[c] 2|_:k r[k is a solution] = 1 + ;_:k r[k is a solution] + e <
nC[r] KC[T]
K#S

We can therefore apply Markov’s inequality (Lemma 2.2) to conclude that with probability at least 1/2,
there are less than 6 k-XOR, solutions for M. So with probability at least - % . %, we will call Aec on a
matrix with at most 5 solutions, A, will succeed, and the solution it returns will also be a solution for our
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original input M. The success probability of Ag is therefore at least 110 =0 (m). The runtime of

Ay is clearly O(mr) + T = O(T).

We now use our success amplification procedure described in Section 7.1 to obtain an average-case recovery
amp

algorithm Ag™" with runtime O(T) that solves density A instances with probability 1 — o(1).
Now we are ready to construct the final algorithm B. Given a density A instance M with dimensions
m X r, our algorithm does the following;:

Algorithm B
k42
1. Define ¢ := (loglogr)

2. Repeat t times:

2.1. Add klog(r) (A%J - i) rows to M. Each new bit added is chosen i.i.d. from Ber;.

2.2. Call AG™" on the new matrix M.

2.3. If a solution was returned in the last step, check if that is also a solution for M. If so, return it.

Observe that M is guaranteed to have at least one solution S since it is sampled from Df*. The probability

11
of S being a k-XOR solution for M is exactly 2’“0g(7ﬂ)(A Ao) since each additional row halves the chance
of the original solution being preserved. We now bound the probability p that at least one iteration of the
inner loop ran AG"" on a matrix where S was a solution.

t
p>1- (1 - z’“og“)(AAcJ)
Now, since (1 — %)n < % and A < 1, it follows that,

>1—exp <—t . rk(l_Alo>>

_ logloglogr

We now substitute in Ag =1 Toer

to get,
k log log log r )

=1- exp (_t . rlogloglog r—logr

We now let ¢ = (loglog r)**2 and obtain,

K log(r)
=1-—exp (— (loglog )" - (loglog r)m)

log(r) —(k+1) log log log r )

=1—exp (f loglogr - (loglogr) ™ Tee(m=lesToglogr
We now choose a large enough r such that log(r) > (k + 1) logloglogr.

> 1— exp (—log(r) = 1 — o(1)
When M; does have a solution, it is easy to see that it has the same distribution as DEAO) and hence,
AG™P returns a solution with probability 1 — o(1). Taking a union bound, we conclude that with probability
1 —o(1), we call AJ™ on a matrix with a k-XOR solution at least once and it returns that solution. Any
solution to My is always a solution to M, and our algorithm therefore returns it. We thus have the required
success probability. _

The runtime of B is clearly ¢ times the runtime of AG™". Since AJ™" runs in O(T) and t = O(logr), our
algorithm also runs in O(T) time. O

37



8 Public-Key Encryption from £-XOR and Learning Parity with
Noise

In this section, we propose a class of public-key bit encryption schemes based on the planted k-XOR problem
and the learning parity with noise (LPN) problem. By instantiating the class appropriately, we strike various
trade-offs between the hardness required for LPN and the densities at which we assume £-XOR is hard.
Specifically, the cryptosystem can be instantiated assuming either 1) 2m"* hardness of LPN for secrets of
size m; or, 2) 2™ -hardness of LPN (for any constant ¢ > 0) and hardness of k-XOR at density 1/polylog(r);
or, 3) 2¢(M_hardness of LPN and hardness of k-XOR at density 1/r°(%).

At a high level, we simply generate an instance of planted k-XOR and use the result as the public key,
with the location of the planted solution being used as the secret key. The security parameter is the number
r of vectors to generate. Recall that such an instance can be interpreted as a matrix X € F3'*" where
m = klgr/A. We then encrypt a bit as follows. To encrypt zero, we sample a uniform random vector of
length r. To encrypt one, we take a random linear combination of the rows of the public key, i.e. we sample
a random vector s <— F3* and output the ciphertext s' X. Our hope is that only a recipient who knows the
location of planted vector can distinguish s’ X from a random vector. Unfortunately, this transformation
preserves the kernel of X which makes distinguishing between an encryption of zero and one easy. To
circumvent this issue, we add i.i.d. noise to each entry of the ciphertext, i.e. we sample e « Ber:7 where
1 € (0,1) is some noise parameter. Distinguishing such a noisy linear combination from a random vector is
known as the learning parity with noise (LPN) problem which is widely considered to be hard even for lower
noise rates n = Q (1/y/m) [Ale03, Piel2].

Technically speaking, we will obtain a weak public-key encryption scheme in the sense that the advantage
of the adversary is not negligible in the security parameter but only vanishing. This may be amplified
using error-correction with an appropriate hardcore lemma (such as [HR05, Hol05] for full PKE). Formally
speaking, our definition of (weak) PKE is as follows.

Definition 8.1 (Weak Public-Key Encryption). Let PKE = (KeyGen, Enc, Dec) be a triple of functions.
We say PKE is a (weak) public key bit encryption scheme if it satisfies the following two properties.

e (Correctness). It holds that,
Pr [Dec(sk, Enc(pk,b)) = b =1 — o(1),

whenever (pk, sk) < KeyGen(1"), where the randomness is taken over uniform choice of b and the
random coins used by PKE.

e (Indistinguishability). For any PPT adversary A, it holds that,
1
Pr [A(pka Enc(pk,b)) = b} < 5 + 0(1)7

whenever (pk, sk) < KeyGen(1"), where the randomness is taken over uniform choice of b, the random
coins used by PKE, as well as the random coins used by A.

If instead, indistinguishability holds only against any adversary A that runs in fixed polynomial time O(r¢)
for some constant ¢ > 0 then we say PKE is a (weak) r¢-fine-grained public-key bit encryption scheme.

8.1 The Cryptosystem

In this section, we propose a class of cryptosystems PKE, ¢, that is parameterized by four functions
7:N—=(0,1) and k,¢,m : N — N, where for security parameter r, n(r) is the noise-rate, k(r) is the size of
the solution, m(r) is the dimension of the vectors, and £(r) is the number of repetitions of the cryptosystem
we described (this is necessary to satisfy correctness). We will show that PKE, i ¢ can be instantiated in
various ways to obtain public-key encryption, by striking a trade-off between the assumed hardness of LPN
and the densities at which k-XOR is assumed hard.
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Key Generation KeyGen(1").
1. Let pk & F>r,
2. Choose a random set sk C [r] with |sk| = k(r).

3. Let ¢ € sk be the smallest index and let pk; + — Z pk;.
jesk
e

4. Return (pk, sk).

Here, we will interpret each sk € F} as the characteristic vector for the set sk C [r].

Encryption Enc(pk,b).
1. Ifb=0.
1.1. Return C' & Fg(r)w.
2. Ifb=1.
2.1. Let § & Fy">m™),

L(r)xr
2.2. Let F + Bern(r)/Q.

2.3. Return C' <+ Spk + E.

Decryption Dec(sk,C).
1. Return 0 if ||C sk|o > 4(r) (% - %); else return 1.

Moving forward, we will implicitly fix the value of r and thus treat n, k, ¢, m as constants such that we
may drop their dependence on 7.

Lemma 8.2. The cryptosystem is e-correct when £ > 32 (1 —n)” **In(1/e).

Proof. Tt will be convenient for our proof to think of the error of Ber, » added to each bit as Ber,, - Ber; /5 —
for each location, with probability n, XOR, it with a uniformly random bit.

Suppose for £ = 1 that we encrypt b = 0 such that ¢ is a uniformly random vector from {0,1}". It is
clear in this case, as sk # 07, that sk ¢ a uniformly random bit, i.e. if (pk, sk) < KeyGen(r), then we get
that, PrskTc=1] = % If instead we encrypt b = 1 and there are no errors in the k positions corresponding
to the planted set, then sk c = 0. This happens with probability (1 — n)¥. If instead, some error occurred
in the planted set, sk "¢ will be uniformly distributed. As such, if ¢ is obtained by encrypting 1,

T k 1-(1=-n* 1 (1-n*
Prisk' c=0]=(1—-n)"+ 5 =5t
This does not provide useful correctness by itself so we amplify the difference by repeating the process /¢
times and take the majority vote. Now suppose we have /¢ iterations and consider the case of b = 0. Let
E;, = c;-'—sk, for i = 1...¢. Then all E; are i.id. and satisty E[E;] = % It follows by a Chernoff bound
(Lemma 2.5) that,

Pr[Dec(Enc(pk,0), sk) = 1] = Pr

‘ k
E E;, </ (1 — (1_77)> < 67(%(1*77%‘)25/2.
i=1 2 4

This gives a decryption error of at most & whenever £ > 32(1 —7) **In(1/¢). The case for b = 1 is
identical. O
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We aim to show that no adversary can efficiently distinguish between an encryption of zero and an
encryption of one. Formally, we will define the search LPN problem as follows.

Definition 8.3 (LPN Search Problem). An algorithm A is said to solve the learning parity with noise (LPN)
search problem with noise rate n with probability € if, given (X, Xs + e) where X + Fy*™ s « FJ*, and

e+ Ber;, it outputs s with probability at least €, where the randomness is taken over the instance and the

random coins used by the algorithm.

The best known algorithm for search LPN when n = (1) is by Blum, Kalai and Wasserman [BKW03]
that for an m-dimensional secret runs in subexponential time 2°(™/108(m))  There is another algorithm by
Esser, Kiibler and May [EKM17] that runs in time 29" and thus outperforms the BKW algorithm when
the noise-rate is small. We also consider the decision LPN problem that we formally define as follows.

Definition 8.4 (LPN Decision Problem). The (decision) Learning Parity with Noise (LPN) problem over
Fy with noise rate n € (0,1) is to distinguish between the following distributions:

1. (X, Xs +e), where X <~ Fy*™, s < F, and e < Bery,.
2. (X,r), where X < FL*™ and r + F.

We say that an algorithm A solves the decision LPN problem with advantage € if,
Pr[A(X,Xs+e)=1] —Pr[A(X,r) =1]| > ¢,

where the randomness is taken over the instance and the random coins used by A.

The search and decision LPN problems are known to be polynomially equivalent, as showed in [KSS10].
We restate their result as follows.

Lemma 8.5 (Katz, Shin, Smith, [KSS10]). If there is an algorithm that runs in time T and solves the
decision LPN problem with advantage €, then there is an algorithm that runs in time O (Tm:#) and

solves the search LPN problem with probability €/4.

Definition 8.6 (Hardness of LPN). We say that n-noise LPN is hard for time T(m) if any algorithm A
that runs in time O(T(m)) has an advantage o(1) in solving the search LPN problem for secrets of size m
with noise rate Q(n).

We can leverage the equivalence of Lemma 8.5 to to translate hardness of LPN into a bound on the
advantage of an algorithm that solves decision LPN.

Corollary 8.7. Ifn-noise LPN is hard for time T (m) then there is no algorithm that runs in time O(T(m))
and solves the decision LPN problem with advantage w(1/T(m)).

Definition 8.8 (Hardness of k-XOR). We say that k-XOR is hard at density A if any algorithm A that runs
in time O(r*/2 =MW has a probability o(1) of solving the average-case k-XOR search problem in G,(f))(OR.

Lemma 8.9 (Indistinguishability of Cryptosystem). Suppose the following conditions are satisfied.
(1) n-noise LPN is T'(m)-hard for secrets of size m.
(2) k-XOR is hard at density 21%(7”).
(3) L= o(T(m)).

Then any adversary that runs in time O(r’“/2 (1_9(1))) has an advantage o(1) in distinguishing an encryption
of zero from an encryption of one in PKE, i, ¢ m.
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(pk, Enc(pk, 0)) (pk, Enc(pk, 1))

Hf()) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Hil)
Hardness of k-XOR Hardness of k-XOR
H(go) | Hardnes; of LPN | Hél) | Hardnes; of LPN o Hardnes; of LPN | Hée)

Figure 7: Structure of the hybrid argument. The distribution H, éi) generates a public key pk using the distribution
Dy, generates i vectors of the form s ' pk+e' and £—i random vectors from F5. The distribution H§0> thus corresponds
to an encryption of 0, while Hl(a is an encryption of 1.

Proof. We proceed using a hybrid argument (see Fig. 7) and define a class of distributions Héi), each of
which generates a public key pk using the distribution D,, generates i vectors of the form s'pk + e and

) is an encryption of 0 and Hl(z) is an encryption of 1. By

Definition 8.8, any adversary that runs in time O(r*/2(1=%(1)) has advantage o(1) in distinguishing Hl(o)
from Héo) (respectively, er) from H(gz)). Now, by condition (3) and Corollary 8.7 we have that H(gi) is
O(1/T (m))-indistinguishable from Hé”l) for each 0 < ¢ < ¢ which combined with condition (1) implies that
H(()O) is o(1)-indistinguishable from Héz). We then conclude that H 1(0) and H fz) are o(1)-indistinguishable to
any adversary running in time min (7'(m), 7¥/2(1=21)) " We thus need that T'(m) > r¥/2 = 2m4/2 which is
equivalent to condition (2). O

¢ — ¢ random vectors from [F;,. Note that Hfo

Using Lemma 8.9, we can identify various tradeoffs between the hardness assumed for LPN and the
densities at which k-XOR is assumed to be hard.

Theorem 8.10 (PKE from k-XOR and LPN). There are values of n = ©(1), k = O(logr), m = r°Y) and
¢ = poly(r) such that the cryptosystem PKE, j ¢m is a (weak) public-key bit encryption scheme, with all
operations running in time rt°W) if either of the following conditions are satisfied.

(1) Constant-noise LPN is 2m"° _hard; or,

(2) Constant-noise LPN is 2" _hard (for any constant ¢ > 0) and k-XOR is hard at every density m;

(8) Constant-noise LPN is m*")-hard and k-XOR is hard at every density 7“’%

Proof. Suppose we write the parameters to the cryptosystem as follows (where «, 3,¢ > 0 are parameters
we will define later).

=3 k =e(logr)” m = (logr)” 0 =32-1.5% (logr)?

Here, we need o > 0 for k to be superconstant. The constraint ¢ = exp(k) w(logr) is needed by Lemma 8.2 to
ensure a vanishing decryption error which, moving forward is guaranteed by our choice of parameters. Note
that in order for the ciphertext to be superconstant and of polynomial size, we need to have 1/loglogr <
a < 1. Also note that the density in our case is € % = ¢ (logr)ot1=58,

Now suppose LPN is 2 -hard for some constant ¢ > 0. Suppose we wish to instantiate the cryptosystem
at constant density > 1. In this case, since k = w(1), it follows by Theorem 4.2 that H fo) (respectively, H 1(6))
is, in fact, statistically indistinguishable from H(()O) (respectively, Hée)). Note that we have T'(m) = om’ —

2010e1)™ which must satisfy Sc > 1 for T'(m) to be superpolynomial. Note that in order to have density €, we
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need that 8 = a4+ 1 and thus the cryptosystem is only secure if ¢ > % (in which case we may let  =1—§
and 8 =2 —§ for a small constant § > 0). This shows condition (1) of the theorem.

Suppose instead we let the density be subconstant such that we may circumvent this lower bound. By
Lemma 8.9, the cryptosystem satisfies indistinguishability if we assume k-XOR is hard at density A =
2108T(m) _ 9:pc=1  Using the fact that m = klog(r)/A, this implies indistinguishability at density,

m

2 ‘ 1
A= <(klog(r))1_c> " polylog(r)’

We can now let m = polylog(r) such that A matches the upper bound. By assumption, k-SUM is hard at
this density and we know LPN takes time at least 7*/2 at this density. This shows condition (2).
Finally, suppose instead that 7'(m) = m¢ for some ¢ = w(1). In this case, we need m¢ > r*/2_ and

hence using m = klog(r)/A, we need A < H2 Now let k = /¢, then we can choose m = r°(!) such that
T2cC

A= %, for which again, we know k-SUM is hard by assumption.
For each construction, note that the runtime is limited by O(¢mr) = O(exp(k)polylog(r) ro™) r) = ri+e()
by letting o < 1. O

The first of these results was previously shown by Yu and Zhang [YZ16] who use a different construction
to build public-key encryption from 2m”° hardness of constant-noise LPN.

9 Algorithms for k-SUM at Very Low Densities

In this section, we reduce the planted k-SUM problem on integers to the subset sum problem. We will show
both a worst-case as well as an average-case reduction. We then use existing algorithms for low-density subset
sum to get non-trivial algorithms for planted k-SUM at low densities. Surprisingly, the two constructions
are quite different and can not be combined.

Definition 9.1 (Worst Case Algorithm for Subset Sum). A subset sum problem instance comprises a vector
A containing r integers, and a target value t. An worst-case algorithm Alg solves the problem in time T'(r)
if and only if it can find a Boolean vector x of length r such that A - x =t whenever such a vector x exists.

Note that the above problem is known to be NP-complete.

Definition 9.2 (Average-Case Algorithm for Subset Sum). The average case problem is parametrized by
two integers v and N, where N must be a prime power. To sample an instance, we choose a vector A from
Z and a vector x from {0,1}" uniformly at random. An average case algorithm returns a vector x' given
A and A -x mod N such that A-x = A-x’ mod N with constant probability. Note that this probability
is taken over the randomness of the input as well as the randomness used inside the algorithm.

Remark 9.3. The quantity A = ﬁ is called the density of the subset sum instance. The runtime of an
average case algorithm is expressed as a function of r for some fixed A. It is known that the problem is
hardest when A =1, and there exist polynomial time algorithms when A < % [LO85, Ben22].

Remark 9.4. In fact, the specific algorithms described in [LO85, Ben22] can be applied directly to solve k-
SUM at the densities in Corollaries 9.7 and 9.8 and would give better success probability than that stated there.
Nevertheless, we present our results as corollaries of our reduction to Subset Sum, as this reduction works

for a wider range of densities, and would transfer improvements in algorithms for Subset Sum immediately
to k-SUM.

It is possible to define the average-case version of the problem without using modular arithmetic such
that the two versions correspond to each other more obviously. The modular version of the problem can
be solved by using an oracle for non-modular Subset Sum by calling it r times with multiples of N added
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to the target. On the other hand, the non-modular version can be solved by simply calling the oracle for
modular Subset Sum once; there exists an unique solution with high probability in low densities. We chose
this definition because it is cleaner and still equivalent to the more intuitive translation of the subset sum
problem to the average-case setting.

9.1 Worst-Case Reduction to Subset Sum

In this section, we show the following worst-case reduction from the k-SUM search problem to Subset Sum.

Theorem 9.5. Suppose there exists a worst-case algorithm A with time complexity T(r) = Q(r) that solves
subset sum. Then, there is an algorithm B with the same time complexity T(r) that solves the worst-case
search k-SUM problem.

Proof. We start by describing the new algorithm:
Algorithm B(X)

1. Construct a new array Y of r integers.

2. Let M := max(|X;|) + 1.
3. Set Y[i| :=(k+1)M + X[i] forall 1 <i <.
4. Run A on the set Y with target ¢t = k(k+ 1)M

5. Return the set of indices returned by the previous call.

The above algorithm clearly has the same runtime complexity as A does. To show correctness, recall
that the input array X must have a k-SUM solution. So there is a set x of size k such that >, X; = 0.
By our construction, » ., Y; = k(k +1)M + ., X; =t. Therefore, we ensure that there is at leabt one
solution to the subset sum problem instance we create. Hence, A must return a valid subset sum solution.

Suppose that A returns a set S. By construction,

X <M=M+X,>0=Y,=(k+ )M+ X; = kM + (M + X;) > kM

Therefore, if |S| > k 4 1, the value of >, ¢Y; > (k+ 1) - kM = t. This is a contradiction since the
aforementioned sum is bupp%ed to equal ¢, and we can thus conclude that |S| < k. Similarly, observe that

X <M=X<M=Y,=(k+1)M+X,; < (k+2)M

Therefore, if [S| < k — 1, the value of >, oY; < (k—1)-(k+2)M < k(k+ 1)M = t. This is also a
contradiction since the aforementioned sum is supposed to equal ¢, and we can thus conclude that |S| > k.
Together, these two constraints imply that |S| = k. Now we can easily calculate

ZXi:Z —(k+1)M ZY k(k+1)M
€S €S €S

This concludes our proof that B returns a set of exactly k indices which correspond to a k-SUM solution.
Note that the above reduction works unchanged in the case where A is a randomized algorithm with
some constant success probability; B will also then have the same success probability in that case. O
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9.2 Average-Case Reduction to Subset Sum

The above reduction unfortunately does not generalize to the average case setting. An average-case oracle
could potentially be biased against any Y of the above form (which can be constructed from an array X with
a k-SUM solution). To get around this, we reduce from the modular k-SUM problem with prime moduli. In
the average case, this is known to be equivalent to the integer k-SUM problem.

Theorem 9.6. Suppose there exists an algorithm A of time complexity T (r) = Q(r) that solves the average-
case subset sum problem with constant success probability at some density A < % Then there is an algorithm

B with the same time complexity that can solve the planted search k-SUM problem on groups of the form Z,

kAlogr
T

(where p is a prime larger than k) at density with constant success probability.

Proof. We start by describing the new algorithm:

Algorithm B(X)

1. Construct a new array Y of r integers.

2. Choose o uniformly at random from Z,.
Set Yi] :== a+ X[i] (mod p) for all 1 <i <r.
Choose a random S C [r].

Run A on the set Y with target t = ka4, ¢ Y; (mod p).

S

If A succeeds and returns S’ such that S € S” and |S’\ S| =k, return S’ — S.

Since both the problems here involve members of Z,,, we implicitly treat all numbers in the following analysis
modulo p.
We will first prove that Y looks random. Specifically, we’ll demonstrate that

1
Pr|Y[ij=x|JV| == Vi € [r]Vz € Z,

i p

Note that X comes from a planted k-SUM instance, and therefore, was sampled from the planted distribution.
Let us consider the effect of combining that sampling process with the first 3 steps of our algorithm B, which
is how we obtain the array Y.

Sampling Algorithm for Y
1. Sample r elements Y7,Y5,...,Y, iid. uniformly at random from Z,.

2. Choose a random set T C [r] with |T| =k

3. Let t € T' be the smallest index and let Y; < — ZjES Y;
it

4. Choose o uniformly at random from Z,.
5. Increment Y; by o for all 1 <4 <.

Steps 2 and 4 are just independent uniformly random choices; we can obviously move both steps to
the very beginning. Observe that we can move step 3 to the end if we simply modify the assignment to

Y: + ka =) jes Y;. This is because step 3 does not affect the other » — 1 indices of ¥ and the modified
it

assignment represents the net effect of steps 3 and 5 on Y;. Therefore the sampling algorithm is equivalent

to the following:
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Equivalent Sampling Algorithm for Y
1. Sample 7 elements Y1, Y5,...,Y, i.i.d. uniformly at random from Z,.
2. Choose a random set T' C [r] with |T| = k. Let ¢t € T be its smallest index.

Choose o uniformly at random from Z,.

> W

Increment Y; by « for all 1 <14 < r.

5. Let Yy ¢ ka—3,cY;

Jj#t

In the new algorithm, it is easy to see that Y is uniformly distributed in Z at the end of step 3. That
remains true after step 4, since Z,, is a cyclic group and adding « is merely applying an invertible translation.
Finally, note that ka — > jes Y; is a uniformly random member of Z, since so is . Thus, the last step

£t
simply replaces Y; with a fre:hly chosen uniformly random element of Z,. Therefore, the result of this entire
sampling procedure Y is distributed uniformly in Zj.

Recall that in the planted k-SUM problem, the existence of a k-tuple 7" C [r] such that », . X; = 0 is
guaranteed. Therefore, ), Y; = ka. With probability 2~ k. the set S is disjoint from 7. In that event,
S’ = SJT is a valid solution to the subset sum instance in hne 5 (of algorithm B), and it also satisfies the
conditions in line 6. Since Y is uniformly distributed in Z;, and our subset sum instance has density A < %
the probability that there exists a second subset whose sum also equals ¢ is negligible. So if A succeeds on
the problem instance constructed in line 5 with probability p, we can conclude that B successfully solves the
k-SUM instance with probability at least o

A subset sum problem instance is characterized by a vector and a subset. We have already concluded that
the vector input in our constructed problem instance is distributed uniformly in Zj. Since the density of the

provided k-SUM is &2 iogr, we have khljogr = kAlOgr = g5 = A. Therefore the den51ty of our constructed
subset sum problem is exactly A, and so A Would succeed with constant probability if the subset was chosen
uniformly. Note that the subset (S’ ) is the union of S and T where S is chosen uniformly at random in line
4, T is a random subset of size k, and we only condition on ST = §). We can therefore use Lemma 9.9
to conclude that A solves the subset sum problem we construct with constant probability. Since k is a
constant, this coupled with the observation from the previous paragraph implies that B has constant success

probability. O

Corollary 9.7. There exists an average-case algorithm for k-SUM over Z, groups at density at most %

whose runtime complexity is polynomial in r and does not depend on k.

Proof. The subset sum problem can be solved in the average-case in polynomial time for density at most (%)
with constant success probability (see Remark 9.3). The statement then follows directly from Theorem 9.6.
O

Corollary 9.8. There exists an average-case algorithm for k-SUM over integers (where the integers are
chosen at random from [—N, N| such that A = klo%\}" at density at most (klﬁgr) whose runtime complezity
is polynomial in r and doesn’t depend on k.

Proof. Let p be a prime between N and 2IN. Corollary 9.7 gives us a polynomial algorithm A that solves
k-SUM in Z,, for density approximately A. We can now use Theorem 4.5 in [DKK21] to obtain the desired
algorithm. O

Lemma 9.9. Assume that k is some fized constant. Let Dy be the uniform distribution on subsets of [r].
Let D1 be the distribution induced by the following sampling procedure:

1. Choose k distinct integers uniformly at random from [r]; call this set T.

2. Choose a random subset S of [r]
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3. If SNT =0, return S|JT. Otherwise, repeat the process.

If an average-case algorithm A has success probabilities pg = Qi (1) on inputs from Dy and py on inputs from
Dy, then py > 27 Dp.

Proof. Let Dy be the uniform distribution on subsets of [r] with size at least 7, and let po be the success

probability of A on inputs from Dy. Our proof will bound the total variation distance between Dy and Do,
and the Rényi divergence of order co between Dy and Ds. We will thus derive bounds on |pg — pa| as well
as z—;, which will together imply the given statement.

Note that supp(D2) C supp(Dy). Since both of these distributions are uniform, we have,

A(Dy, D)
= ) (DaAS) = Do(9))

Sesupp(D2)

= Z Dy (5)

Sesupp(Do)—supp(D2)

= ). Do(S)

Sclr],|SI<%
- P [|5| < f}
= 54Dy 4
11\’
< exp (—2r (2 — 4) ) by Hoeffding’s inequality

~on(-])

= o(1).

This implies that po > pg — o(1) > B2. Let us now calculate an explicit expression for D;(Q) for a subset Q
of size at least k. To get an output of (), we need two events to happen simultaneously. 7' must be a subset
of @, which happens with probability (‘%‘) / (,:) Given any such choice of T', .S must be exactly Q@ —T. There
are 2" " choices of S which do not intersect with 7', so the probability of this particular set being chosen is
2k=7_ Since the above two events are independent, we have

Note that all sets of size at least k are in the support of D;. Therefore, as long as r > 4k, we have
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supp(Dz) C supp(D;). We can now calculate the following Rényi divergence using Lemma 2.1 as follows.

R(Dz|| D)
D
Qesupp(D2) D1(Q)
=  max D . (k) Lork
QC[T],|Q|>£< Q) (190) )
— max 1 . (k) .27‘—](?
QClr],|Q|>% \ # subsets of [r] with size at least r/4 (|Ck?)

2k=1 (r/A)(r/4—1)---(r/d—k+1)

L2 (ke
2k \r/4—k+1

- 1 <2r—8k‘+8 § for large enough r
— . R — U,
2 \r/a—k+1

= 4k

Applying the Rényi divergence lemma on the event that algorithm A succeeds, we get that,

p1 > pa/R(D2||Dy) > pa/4~.

Combining the two above relations, we get p; > 2~ (Zk+hp, . O
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