
Dependency schemes in CDCL-based QBF solving:
a proof-theoretic study
Abhimanyu Choudhury !

The Institute of Mathematical Sciences, Chennai, India
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India

Meena Mahajan ! �

The Institute of Mathematical Sciences, Chennai, India
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India

Abstract
We formalize the notion of proof systems obtained by adding normal dependency schemes into

the QCDCL proof system underlying algorithms for solving Quantified Boolean Formulas, by exploring
the addition of the dependency schemes via two approaches: one as a preprocessing tool, and second
in propagation and learnings in the QCDCL trails.

We show that QCDCL augmented with the reflexive resolution path dependency scheme Drrs

produces three proof systems of interest: QCDCL(Drrs), Drrs + QCDCL and Drrs + QCDCL(Drrs). We show
that these three systems are not only pairwise incomparable, but also each system is incomparable
with the standard QCDCL and QCDCLcube, as well as with QCDCLLEV-ORD

NO-RED , Q-Res, QU-Res, and Q(Drrs)-Res .

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases QBF, CDCL, Resolution, Dependency schemes

1 Introduction

Despite the NP-hardness of propositional satisfiability, SAT solvers today are amazingly
efficient in solving real-world instances. The best algorithms solving SAT in practice are
based on the paradigm conflict-driven clause learning CDCL, that revolutionised SAT solving
in the nineties. Such algorithms use a generic template as follows: repeatedly decide values of
some variables, propagate hard constraints (unit clauses) until a conflict is reached, "learn" a
new clause from the conflict, backtrack and continue. For unsatisfiable formulas, the learning
process yields a refutation in the proof system Resolution, and it was shown over a decade
ago that resolution proofs can themselves be mimicked within this framework, so CDCL equals
Resolution, [19, 1]. Hence, a proof-complexity-theoretic analysis of Resolution has revealed
deep insights into the strengths and limitations of this CDCL paradigm.

With the success of propositional SAT solvers, there are many ambitious attempts now
to tackle more expressive/succinct formalisms. In particular, for the PSPACE-complete
problem of deciding the truth of Quantified Boolean Formulas QBF, there are now many
solvers, as well as a rich (and still growing) theory about the underlying formal proof systems.
Designing solvers for QBFs is a useful enterprise because many industrial applications seem
to lend themselves more naturally to expressions involving both existential and universal
quantifiers; see for instance [22, 9].

The proof system Resolution can be lifted to the QBF setting in many ways. The “CDCL
way” is to add a universal reduction rule, giving rise to the system Q-Res and the more
general QU-Res. Allowing contradictory literals to be merged under certain conditions gives
rise to the system long-distance Q-Resolution LDQ-Res.

Another “CDCL" way is to lift the CDCL algorithm itself to a QCDCL algorithm: decide
values of variables, usually respecting the order of quantified alternation, propagate unit
constraints, interpreting unit modulo universal reductions, repeat until a conflict is reached,
learn a new clause, backtrack and continue. For false formulas, the learning process yields a

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 61 (2023)

mailto:abhimanyuc@imsc.res.in
mailto:meena@imsc.res.in
https://orcid.org/0000-0002-9116-4398

2 Dependency schemes in QCDCL

long-distance Q-resolution refutation. However, the QCDCL refutation itself is much more
restricted than an LDQ-Res refutation. In [7], a formal proof system QCDCL was abstracted out
of the QCDCL algorithm. Noting that potentially the decision policy and the propagation
policy could be modified, the authors of [7] actually formalised four different QCDCL-based
proof systems. The system underlying most solvers is QCDCLLEV-ORD

RED , which we will refer to
as QCDCL without any sub/super-script; for the other systems we will explicitly write the
policies.

While the aforementioned QCDCL proof system explains the correctness of solvers for
false QBFs, it ignores cube-learning from satisfying assignments. In practice, cube-learning
is essential to the completeness of a QCDCL solver; it is integral to proving a QBF to be
true. The choice to ignore this was made in [7] because the focus there (as also here) was
on refutational proof systems, proving QBFs false. In this setting, cube-learning is not
an essential engredient. However, in [13], the authors defined the system QCDCLcube that
incorporates cube-learning on top of the original QCDCL, and found that cube-learning was in
fact advantageous even in constructing shorter refutations for false QBFs.

DepQBF [15] is the leading QCDCL solver and has many versions. Its base version
still employs what the authors call "vanilla QCDCL", and its behaviour on false QBFs is
explained by the proof system QCDCL which we are interested in exploring. Later versions
of DepQBF provide options of turning on "cube learning" (when "turned on", its behaviour
is explained by the proof system QCDCLcube) and also offer heuristics like whether or not to
allow "dependency scheme aware propagation" and/or apply "pure literal elimination".

A heuristic that has been found to be quite useful in many QBF solvers, and has been
formalised in proof systems, is to eliminate easily-detectable spurious dependencies. In a
prenex QBF, a variable "depends" on the variables preceding it in the quantifier prefix; where
"depends" means that a Herbrandt/Skolem function for the variable is a function of the
preceding variables. However, a Herbrand function or countermodel may not really need
to know the values of all preceding variables. A dependency scheme filters out as many of
such unnecessary dependencies as it can detect, producing what is in effect a Dependency
QBF, DQBF. Although DQBF is a significantly richer formalism that is known to be NEXP-
complete (see [2, 21]), these heuristics are not aiming to solve DQBFs in general. Rather, they
algorithmically detect spurious dependencies and disregard them as the algorithm proceeds.
See [14, 20, 15, 16] for early work on this topic. Often the use of a dependency scheme
makes the solvers run faster, and this is borne out by theoretical studies. Now, the universal
reduction rule in the proof systems (say in Q-Res, LDQ-Res) can be applied in more settings
because there are fewer dependencies, and this can shorten refutations significantly. See for
instance [10, 23, 18]. Note that the use of a dependency scheme must be proven to be sound
and complete, and this in itself is often quite involved. The notion of a dependency scheme
being “normal” was introduced in [18], where it is shown that adding any normal dependency
scheme to LDQ-Res preserves soundness and completeness.

In this paper, we examine how the usage of a dependency scheme can affect proof systems
underlying the QCDCL algorithm. As far as we are aware, such a theoretical study has not
been undertaken before, even though many current QBF solvers are based on the QCDCL
paradigm and also do use dependency schemes. Specifically, we focus on the proof system
QCDCL (in the notation of [7], the QCDCLLEV-ORD

RED proof system), underlying most QCDCL-based
solvers, and on the dependency scheme Drrs which has been studied in the context of Q-Res
and LDQ-Res, see [23, 10, 18]. We note that the proof system QCDCL can be made aware
of dependency schemes in more than one way. We identify two natural ways: (1) use a
dependency scheme D to preprocess the formula, performing reductions in the initial clauses

M. Mahajan and A. Choudhury 3

whenever permitted by the scheme, and (2) use a dependency scheme D in the QCDCL
algorithm itself, in enabling unit propagations and in learning clauses. Denoting the first
way as D + QCDCL and the second as QCDCL(D), and noting that we could even use different
dependency schemes in both these ways, we obtain the system D1 + QCDCL(D2). When D1
and D2 are both the trivial dependency scheme Dtrv inherited from the linear order of the
quantifier prefix, this system is exactly QCDCL.

Our contributions are as follows:
1. We formalise the proof system D′ + QCDCL(D) for dependency schemes D, D′, and note that

whenever D′, D are normal schemes, D + QCDCL(D′) is sound and complete (Theorem 3.2).
2. For D1, D2 ∈ {Dtrv, Drrs}, we study the four systems D1 + QCDCL(D2). As observed above,

one of them is QCDCL itself, while the others are new systems. We compare these systems
with each other and show that they are all pairwise incomparable (Theorem 5.1). We
also show that each of them is incomparable with each of the systems QCDCLLEV-ORD

NO-RED , Q-Res,
Q(Drrs)-Res, and QU-Res(Theorem 5.2), as well as with QCDCLcube(Theorem 5.3).

In other words, making QCDCL algorithms dependency-aware is a “mixed bag”: in some
situations this shortens runs while in others it is disadvantageous. Here are our thoughts on
what this actually means.

That QCDCL(D) is stronger than QCDCL at times is to be expected; after all, that is why the
heuristic evolved. That it can be weaker at times appears a bit surprising until one recalls
that even when QCDCL was formalised in [7], it was shown that the no-reduction version
QCDCLLEV-ORD

NO-RED can have an advantage over QCDCL; for some formulas, enabling more reductions
and unit propagations can send the trails down into a trap where refuting a hard sub-formula
becomes inevitable. Since dependency schemes do exactly this enabling of more reductions
and propagations, custom formulas can be designed where the difference is not just between
no-reductions and reductions, but also between reductions and dependency-aware reductions.
This is a consequence of the level-ordering of decisions and the forcing of all unit propogations
with reduction, and may not hold for the other variants of QCDCL.

That D + QCDCL can be stronger than QCDCL is again to be expected. That it can be weaker
seems really counter-intuitive, but is again related to the comment above: the preprocessing
shortens clauses and thus enables more unit propagations in subsequent trails.

One direction of our separation between D + QCDCL and QCDCL(D) was genuinely surprising
to us. We construct formulas where after preprocessing (as in D + QCDCL) the resulting
formula is propositional and easy to refute in Resolution, and hence the original formula is
easy to refute in D + QCDCL. However, the same formula is hard for QCDCL(D), Section 4.5!
In other words, it is not enough for the QCDCL algorithm to be dependency-aware; this
awareness must be achieved at the right stage of the algorithm.

The fact that QCDCL(D), D + QCDCL, and D + QCDCL(D) are all incomparable with QCDCLcube

is note-worthy and interesting as allowing for cube-learning always adds strength and makes
things easier as compared to without cube-learning; QCDCLcube as a proof system is known
to be strictly more powerful than QCDCL [13]. Our results show that switching on cube-
learning (which most current solvers do by default) and switching on dependency-awareness
as proposed here are orthogonal options. Which option is better may depend on the setting
from which the instances to be solved arise.

This work is based on formalisms in [23, 10, 18, 7]. See [7] for an extensive bibliography
of relevant work.

The rest of this paper is organised as follows. After spelling out notation and required
prelimiaries in Section 2, including defining dependency schemes and describing the QCDCL
proof system, we show in Section 3 that the addition of normal dependency schemes results

4 Dependency schemes in QCDCL

in sound and complete proof systems. In Section 4 we present, for some previously studied
formulas as well as for some newly designed formulas, lower and/or upper bounds in the
D1 + QCDCL(D2) systems when D1, D2 are in {Dtrv, Drrs}. Using these bounds, we conclude
in Section 5 that these new systems are pairwise incomparable with each other as well
as with each of QCDCL,QCDCLLEV-ORD

NO-RED ,Q-Res,Q(Drrs)-Res,QU-Res,QCDCLcube. We end with some
concluding remarks in Section 6.

2 Preliminaries

2.1 Basics
A Quantified Boolean Formula in prenex conjunction normal form (PCNF) consists of a
prefix with an ordered list of variables, each quantified either existentitally or universally,
and the matrix, which is a set of clauses over these variables. That is, it has the form

Φ = Qx⃗ · φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn)

where φ is a propositional formula in CNF.
The formula is true if there are (Skolem) functions si for each existentially quantified

variable xi, where each such si depends only on universally quantified variables xj with j < i,
such that substituting these si in φ yields a tautology. Similarly, the formula is false if there
are (Herbrand) functions hi for each universally quantified variable xi, where each such hi

depends only on existentially quantified variables xj with j < i, such that substituting hi in
φ yields an unsatisfiable formula.

In this note, we focus on false formulas; refutations must rule out the existence of Skolem
functions. In the proof system Q-Res, a refutation of a false QBF is a derivation of the empty
clause □ from the clauses in the matrix, using two rules: Resolution (from A = C ∨ x and
B = D ∨ ¬x, derive C ∨D, provided the pivot x is existential and C ∨D is not tautological.
We denote this as C ∨D = res(A,B, x)), and Universal Reduction (from C ∨ u derive C if
u is universal and no existential variable in C appears to the right of u in the prefix). The
stronger system LDQ-Res allows tautological clauses in resolution under certain conditions: a
universal variable u appearing in opposite polarities in C and D is represented as the merged
literal u∗, provided it is to the right of the pivot x.

A proof system P is said to simulate a proof system Q if, for every formula, the size of the
shortest P refutation is polynomial in the size of the shortest Q refutation.

For a set S of clauses and a literal ℓ, we use shorthand ℓ ∨ S to denote the set of clauses
{ℓ ∨ C | C ∈ S}.

2.2 Dependency Schemes
Dependency schemes are mappings that associate every PCNF formula Φ with a binary
relation on its variables in a manner that encodes constraints on the order of pairs of variables.
The most basic of dependency schemes is the trivial dependency scheme Dtrv, which is in
fact the order of quantifier prefix: an existential variable x depends on a universal variable
u (i.e. (u, x) ∈ Dtrv(Φ)) if x appears to the right of u in the quantifier prefix. A non-trivial
dependency scheme D produces, for any formula Φ, a subset D(Φ) of the trivial dependencies;
it does not introduce new dependencies. Some non-trivial schemes are the standard scheme
Dstd and the reflexive resolution path scheme Drrs; see [23]. Roughly speaking, in Drrs, (u, x)
is in the dependency relation of a formula if (u, x) ∈ Dtrv and there is a sequence of clauses
with the first containing u, the last containing ū, some intermediate consecutive clauses

M. Mahajan and A. Choudhury 5

containing x and x̄, and where each pair of consecutive clauses has an existential variable,
quantified after u, in opposite polarities. The non-existence of such a sequence implies that
if at all there are Skolem functions for x, then there exists a Skolem function for x which
does not use information about u; hence x need not depend on u. Formally, the dependence
scheme is defined as follows:

▶ Definition 2.1 (Reflexive Resolution Path Dependency Scheme, [23]). For a QBF Φ = Qϕ,
the pair (u, x) is in Drrs(Φ) if and only if (u, x) ∈ Dtrv(Φ) and there exists a sequence of
clauses C1, · · · , Cn ∈ ϕ and a sequence of literals l1, · · · , ln−1 such that:

u ∈ C1 and ū ∈ Cn,
x = var(li) for some i ∈ [n− 1],
var(li) ̸= var(li+1) for each i ∈ [n− 2], and
(u, var(li) ∈ Dtrv(Φ), li ∈ Ci and l̄i ∈ Ci+1 for each i ∈ [n− 1].

For a dependency scheme D, a QBF Φ, a universal literal ℓu ∈ {u, ū} and an existential
literal ℓx ∈ {x, x̄}, we say that ℓx blocks ℓu if (u, x) ∈ D(Φ); in particular, this implies that
x is quantified after u. For a clause C we denote by red-D(C) the subclause obtained by
removing all universal literals which are not blocked by any other literal in C. We denote by
red-D(Φ) the QBF Ψ obtained by replacing each clause C in the matrix of Φ with the clause
red-D(C). When D = Dtrv, we use the notation red(C) and red(Φ).

The proof systems Q-Res and LDQ-Res, augmented with a dependency scheme D [18],
permit universal reduction of u under the more relaxed requirement that (u, x) ̸∈ D for any
existential variable x ∈ C. That is, they permit the derivation of red-D(C) from C.

An interesting and important subclass of dependency schemes are the so-called normal
dependency schemes.

▶ Definition 2.2 (Normal Dependency Scheme, [18]). A dependency scheme D is
monotone if for every PCNF formula ϕ, and every assignment τ to a subset of var(ϕ),
D(ϕ[τ]) ⊆ D(ϕ). (Here ϕ[τ] is the restriction of ϕ obtained by applying the partial
assignment τ to it.)
simple if for every PCNF formula Φ of the form Φ = ∀XQ.ϕ, every LDQ(D)-Res derivation
P from Φ, and every u ∈ X, either u or ū does not appear in P .
normal if it is both monotone and simple.

If D is simple, then in a QBF with a leading universal block, universal variables from
the first block appear in a LDQ-Res derivation in only one polarity. This feature is useful
in proving soundness of LDQ-Res. However, for LDQ-Res(D), this alone is not enough. The
additional property of monotonicity, expressing that applying a partial assignment can
possibly erase existing dependencies but cannot create new ones, suffices to ensure soundness.

The dependency schemes Dtrv, Dstd, Drrs are all normal dependency schemes. These
normal dependency schemes are important to us because for these dependency schemes
LDQ(D)-Res is a sound proof system[18].

2.3 The proof system QCDCL

This proof system QCDCL defined in [7] formalises the reasoning in QCDCL algorithms. A
refutation of a false QBF is a sequence of triples of the form (T,C, π) where T is a trail (in
the QCDCL algorithm) ending in a conflict, C is the clause learnt from this trail, and π is
the LDQ-Res derivation of C explaining how C is learnt. (Recall that in (Q)CDCL, a trail is
a sequence of literals, some of which are decisions made by the algorithm and the others are
propagated literals. Following the standard convention, we denote decision literals in a trail

6 Dependency schemes in QCDCL

in boldface.) From the last triple in the sequence we can learn the empty clause, completing
the refutation. Three factors affect the construction of the refutation.
1. The decision policy: how to choose the next variable to branch on. In standard QCDCL

(i.e QCDCLLEV-ORD
RED , the focus of this paper), decisions must respect the quantifier prefix level

order. (Variables x, y are at the same level if they are quantified the same way, and no
variable with a different quantification appears between them in the prefix order.) Other
policies such as ASS-ORD, ASS-R-ORD, UNI-ANY, are also possible; see [7, 11].

2. The unit propagation policy. Upon a partial assignment α to some variables, when does
a clause C propagate a literal? In the No-Reduction policy, a clause C is unit if exactly
one literal ℓ of C is unset, and this literal is propagated. In the Reduction policy, used by
most current QCDCL solvers [15, 17], a clause C propagates literal ℓ if after restricting
C by α and applying all possible universal reductions, only ℓ remains. In standard QCDCL
the Reduction policy is used.
In the notation of [7], for a decision policy P and a propagation policy R, the corresponding
QCDCL proof system is denoted QCDCLP

R. Thus standard QCDCL is QCDCLLEV-ORD
RED . Other

variants are also defined in [7]; in particular QCDCLLEV-ORD
NO-RED .

3. The set of learnable clauses. These explain the conflict at the end of a trail.
▶ Definition 2.3 (learnable clauses). From a trail

T := (p(0,1), · · · , p(0,g0); d1, p(1,1), · · · p(1,g1); d2, · · · · · · · · · ; dr, p(r,1), · · · p(r,gr))

ending in a conflict p(r,gr) = □, the sequence LT of learnable clauses has a clause
associated with each propagation in the trail, and one more clause, described by tracing
the conflict backwards through the trail as follows. (ante(ℓ) denotes the clause that causes
literal ℓ to be propagated; i.e. the antecedent.)
C(r,gr) = red(ante(p(r,gr))).
For i ∈ {0, 1, · · · , r} and j ∈ [gi − 1],

C(i,j) =
{

red[res(C(i,j+1), red(ante(p(i,j))), p(i,j))] if p̄(i,j) ∈ C(i,j+1)

C(i,j+1) otherwise

For i ∈ {0, 1, · · · , r − 1}.

C(i,gi) =
{

red[res(C(i+1,1), red(ante(p(i,gi))), p(i,gi))] if p̄(i,gi) ∈ C(i+1,1)

C(i+1,1) otherwise

In the above formulation of the QCDCL system, we only consider trails that end in a conflict.
Trails ending in a satisfying assignment are ignored. This is enough to ensure refutational
completeness – the ability to prove all false QBFs false. From satisfying assignments, solvers
can learn cubes (or terms), and this is necessary to prove true QBFs true. In [13] it was shown
that allowing cube (or term) learning from satisfying assignments can also be advantageous
while refuting false QBFs. This led to the definition of the proof system QCDCLcube, which
was shown to be strictly stronger than the standard QCDCL system i.e. QCDCLLEV-ORD

RED .
Our focus, however, is on adding dependencies to the basic QCDCL system without cube

learning, so wherever we talk about QCDCL as a proof system we refer to QCDCLLEV-ORD
RED .

3 Adding Dependency Schemes to the QCDCL proof system

We first describe the generic addition of dependency schemes to QCDCL, and then show
soundness and completenes for normal schemes. For a decision policy P and a propagation

M. Mahajan and A. Choudhury 7

policy R, the corresponding QCDCL proof system is denoted QCDCLP
R. Adding a dependency

scheme D to this system can affect P , R, as well as the set of learnable clauses.
For the decision policy P = LEV-ORD, which is the focus of this work, adding a dependency

scheme D does not affect the decision policy.
For the propagation policy, the notion of unit clauses depends on the universal reductions

allowed, and this in turn is affected by the dependency scheme. In the case of R = NO-RED,
no universal reductions are allowed anyway, so adding a dependency scheme to the proof
system does not affect the policy. In the case of R = RED, the definition of a unit propagation
changes. A clause C propagates a literal ℓ at a position in the trail if the ∀(D)-reduction of C
restricted to the trail so far is a unit clause. That is, the partial assignment α specified by the
trail so far does not satisfy C, and after restricting C by α, applying all universal reductions
allowed by D leaves the single literal ℓ; red-D(C|α) = {ℓ}. We denote this propagation policy
as RED + D.

The dependency scheme modifies the reduction rule, which modifies the set of learnable
clauses. The set of learnable clauses is now defined in a similar way as in Definition 2.3, but
replacing red everywhere with red-D, the ∀(D) rule for universal reduction with respect to
the dependency.

A completely different way in which a dependency scheme D can be added to QCDCL proof
systems is by adding it as a preprocessing step, by applying the red-D rule on the axioms of
the given formula. That is, produce QCDCL refutations of red-D(Φ) instead of Φ.

These two ways of adding dependency schemes to QCDCL – (1) in the trail construction,
propagation and learning itself, or (2) as pre-processing – can both be combined. For a
particular dependency scheme D, we can think of three distinct proof systems:

QCDCL(D): use D for unit propagations and learning, but not for preprocessing.
D + QCDCL: use D only to preprocess the formula.
D + QCDCL(D): use D for preprocessing first and then use it again during propagation and
learning.

Going a step further, we can even use different dependency schemes in the preprocessing and
in the actual trails. Thus, formally, we define the general proof system D′ + QCDCL(D):

▶ Definition 3.1 (D′ + QCDCL(D) proof system).
For a false QBF Ψ = Q ·ψ and a dependency scheme D, a QCDCL(D) derivation of a clause C
from Ψ is a sequence of triples (Ti, Ci, πi), or equivalently, a triple of sequences

ι := ((T1, · · · , Tm), (C1, · · · , Cm), (π1, · · · , πm))

where for each i ∈ [m], the trail Ti follows policies LEV-ORD and RED + D, each clause Cj ∈ LTj

is a clause learnable from Tj using the red-D rule, and Cm = C. Each πi is the derivation
of Ci from Q · (ψ ∪ {C1, · · · , Ci−1}) in LDQ(D)-Res.

For a false QBF Φ = Q · ϕ and dependency schemes D, D′, a D′ + QCDCL(D) deriviation of
a clause C from Φ is a QCDCL(D) derivation of C from Ψ = red-D′(Φ).

If C = (□), then the derivation ι is called a refutation.

Note that QCDCL is exactly the proof system Dtrv + QCDCL(Dtrv). Using other dependency
schemes instead of Dtrv is a natural generalisation.

We now show that adding normal dependency schemes D1, D2 preserves soundness and
completness.

▶ Theorem 3.2. If D1 and D2 are normal dependency schemes, then D1 + QCDCL(D2) is a
sound and complete proof system.

8 Dependency schemes in QCDCL

Proof. First we prove the soundness of the system. Suppose ι is a D1 + QCDCL(D2) refutation
of a QBF Φ. By definition, this is a QCDCL(D2) refutation of the QBF Ψ = red-D1(Φ). Now,
every QCDCL(D) refutation has an underlying LDQ(D)-Res refutation. Therefore, from ι we can
extract a LDQ(D2)-Res refutation Π of Ψ. Since D2 is a normal dependency scheme, LDQ(D2)-Res
is a sound proof system [18], and therefore Ψ is a false QBF. Now, by completeness of LDQ-Res,
there exists a LDQ-Res refutation Π′ of Ψ. The reductions made to obtain Ψ from Φ, followed
by the derivation steps in Π′, gives a LDQ(D1)-Res refutation Π′′ of Φ. Since D1 is also a
normal dependency scheme, LDQ(D1)-Res is also sound, and hence, the existence of Π′′ implies
that Φ is a false QBF.

Now we turn to completeness. In Theorem 3.16 of the full version of [7], QCDCL (denoted
there as QCDCLLEV-ORD

RED) is shown to be complete. Exactly the same proof, which is actually
quite intricate, works also to show the completeness of D1 + QCDCL(D2). The idea is as follows:
for a false formula Φ, in the 2-player evaluation game, the universal player has a winning
strategy on Φ. Since each clause in Φ has a subclause in Ψ = red-D1(Φ), the same strategy
is also a winning strategy in the evaluation game on Ψ, so Ψ is false. Now, we can construct
trails in level order that perform propagations whenever applicable, decide the polarity of
existential variables arbitrarily, and decide the polarities of universal variables following
this winning strategy. (This is possible because decisions are level-ordered.) The winning
strategy guarantees that each such trail runs into a conflict. The set of learnable clauses
either contains the empty clause, or is shown to contain an asserting clause – one which after
backtracking becomes unit at some point in the trail – and an asserting clause is shown to
be new. Thus each trail that does not terminate the refutation learns a new clause, and
there are only finitely many clauses that can be added. All the arguments in this outline
work also in the presence of a dependency scheme (D2) that is used in both propagation and
learning. ◀

Having established soundness and completeness when normal dependency schemes are
added, we now wish to look at how adding a particular dependency scheme affects the
strength of these systems. In this work we focus on adding the reflexive resolution path
dependency scheme Drrs as it is one of the most popular ones, and it is known that adding
it to Q-Res gives a strictly stronger system in Q(Drrs)-Res. Therefore it is interesting to see
if the same parallel extends to the QCDCL systems. Thus in the system D1 + QCDCL(D2),
we will henceforth assume that D1, D2 ∈ {Dtrv, Drrs}. When a dependency scheme is Dtrv, we
will omit reference to it. Thus we have the systems QCDCL, QCDCL(Drrs), Drrs + QCDCL, and
Drrs + QCDCL(Drrs).

Before proceeding further, the following propositions are noteworthy to keep in mind.

▶ Proposition 3.3. For a QBF Φ, if D(Φ) = Dtrv(Φ), then all of QCDCL, QCDCL(D), D + QCDCL,
and D + QCDCL(D)are equivalent on Φ and produce the same refutations.

This is simply because if D = Dtrv, then adding the dependency scheme gives nothing new to
the system as no extra reductions are enabled.

▶ Proposition 3.4. For a QBF Φ, Drrs(Φ) = ∅ if and only if red-Drrs(Φ) is a propositional
formula (no universal variables in any clause).

Further, if Drrs(Φ) = ∅, then red-Drrs(Φ) is easy to refute in Res if and only if Φ is easy
to refute in Drrs + QCDCL and Drrs + QCDCL(Drrs).

Proof. (Sketch) If Drrs(Φ) = ∅, then by definition red-Drrs(Φ) is propositional. If Drrs(Φ) ̸= ∅,
then there is some reflexive resolution path involving a universal variable u, and the occurrence

M. Mahajan and A. Choudhury 9

of u in the first clause of the path is blocked by an existential literal even with respect to
Drrs. So red-Drrs(Φ) is not propositional.

If red-Drrs(Φ) is propositional, then after the preprocessing in Drrs + QCDCL and Drrs + QCDCL(Drrs),
the universal variables have no role to play and the ensuing refutation is a standard CDCL
refutation. Since CDCL is equivalent to Res, the claim follows. ◀

▶ Remark 3.5. It is tempting to believe that if, for a QBF Φ, red-D(Φ) is a propositional
formula easy to refute in Res, then Φ is easy to refute in QCDCL(D) as well. However, this
intuition is misleading. As we will show in Section 4.5, this is provably not the case.

4 Refutation size bounds for some formulas

In this section we examine the effect of adding the Drrs scheme to QCDCL (obtaining the
three systems QCDCL(Drrs), Drrs + QCDCL and Drrs + QCDCL(Drrs)) by computing bounds on
refutation size for some known QBF formulas, as well as for some newly-constructed QBF
formulas.

4.1 The QParityn formulas
The first family of formulas that we study are the QParity formulas, first defined in [8].

▶ Formula 1 (QParityn). The QParityn formula has the prefix
∃x1, · · · , xn∀z∃t2, · · · , tn and the matrix

x1 ∨ x2 ∨ t̄2 x̄1 ∨ x̄2 ∨ t̄2 x1 ∨ x̄2 ∨ t2 x̄1 ∨ x2 ∨ t2
for i = 2, . . . , n : xi ∨ ti−1 ∨ t̄i x1 ∨ t̄i−1 ∨ ti x̄i ∨ ti−1 ∨ ti x̄i ∨ t̄i−1 ∨ t̄i

tn ∨ z t̄n ∨ z̄

As shown in [8], these formulas are hard to refute in QU-Res (and hence also in Q-Res and
QCDCLLEV-ORD

NO-RED). In [7] it was shown that they have short refutations in QCDCL.
It is straightforward to see that Drrs(QParity) = Dtrv(QParity): the last two clauses give

the dependence (z, tn), and this extends to (z, ti) for all i using the remaining clauses. Hence
the QParity formulas are hard to refute in Q(Drrs)-Res as well.

On the other hand, since these formulas are easy to refute in QCDCL (and hence also
in QCDCLcube), from Proposition 3.3 it follows that they have short refutations in all three
systems: QCDCL(Drrs), Drrs + QCDCL, and Drrs + QCDCL(Drrs).

4.2 The Equalityn formulas
The next formula we study are another well-known family of QBF formulas, the Equality
formulas, first introduced in [4].

▶ Formula 2 (Equalityn). The Equalityn formula has the prefix ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn
and the PCNF matrix

(t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

(xi ∨ ui ∨ ti)︸ ︷︷ ︸
Ai

∧ (x̄i ∨ ūi ∨ ti)︸ ︷︷ ︸
Bi

In [4] it was shown that these formulas are hard for QU-Res, and hence also for Q-Res and
QCDCLLEV-ORD

NO-RED . In [7] it was shown that they are hard for QCDCL as well.
However, as shown in [13], they are easy to refute in QCDCLcube.

10 Dependency schemes in QCDCL

Further, as shown in [3], Drrs(Equality) = ∅, and there are short refutations in
Q(Drrs)-Res.

Since Drrs(Equality) = ∅, no existential variable depends on any universal variable in
the entire formula. Hence red-Drrs(Equality) is the propostional formula described below.

red-Drrs(Equality) : (t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

(xi ∨ ti)︸ ︷︷ ︸
A′

i

∧ (x̄i ∨ ti)︸ ︷︷ ︸
B′

i

This formula has a short Res refutation (resolve A′

i, B′
i to get ti for all i, and then resolve

the ti’s with Tn). Therefore by Proposition 3.4, the Equality formulas are easy to refute in
Drrs + QCDCL and Drrs + QCDCL(Drrs).

Finally we come to the system QCDCL(Drrs). It turns out that these formulas are also easy
to refute in this system, but this is not so straightforward. In particular, it does not follow
merely because red-Drrs(Equality) is easy to refute in Res; see Remark 3.5. We describe
the refutation below.

▶ Lemma 4.1. The Equalityn formulas have O(n2) refutations in QCDCL(Drrs)

Proof. Since Drrs(Equalityn) = ∅, the propagation policy and clause learning always reduce
the universal u variables from the corresponding clauses.

We will construct a polynomial size refutation for the Equalityn formulas containing
2(n − 1) trails. Define the following clauses: For i ∈ [n], Ti =

∨
j≤i t̄j ; for i ∈ [n] \ {1},

Li = x̄i ∨ Ti−1 and Ri = xi ∨ Ti−1.
We will construct the trails Un−1,Vn−1,Un−2,Vn−2, · · · ,U1,V1, and learn clauses Ln−1, Rn−1, · · ·L1, R1

corresponding to these trails. The U trails decide x variables (as many as is possible until
conflict) positively; the V trails decide them negatively. Due to the RED policy, each decision
propagates at least one t literal.

The initial trail is

Un−1 := (x1, t1; x2, t2, ...,xn−1, tn−1, t̄n, xn,□)

and the antecedent clauses are ante(tj) = Bj for j ∈ [n− 1], ante(t̄n) = Tn, ante(xn) = An,
and ante(□) = Bn. From these set of clauses we learn the clause Ln−1 = x̄n−1 ∨ Tn−2.

Restarting, create a symmetric trail to Un−1 flipping each decision:

Vn−1 := (x̄1, t1; x̄2, t2, ..., x̄n−1, tn−1, t̄n, xn,□)

where the antecedent clauses are ante(tj) = Aj for j ∈ [n−1], ante(t̄n) = Tn, ante(xn) = An,
and ante(□) = Bn. From these set of clauses we learn the clause Rn−1 = xn−1 ∨ Tn−2.

We now go down now from i = n− 2 down to i = 2. At stage i, we first construct trail
Ui by deciding x variables positively; we reach a conflict after deciding xi. The trail and
antecedent clauses are as follows:

Ui := (x1, t1; x2, t2, ...,xi, ti, xi+1,□)

with ante(tj) = Bj for j ∈ [i], ante(xi+1) = Li+1, ante(□) = Ri+1. From this we learn the
clause Li.

Next, we create the symmetrical trail by deciding the x variables negatively

Vi := (x̄1, t1; x̄2, t2, ..., x̄i, ti, xi+1,□)

M. Mahajan and A. Choudhury 11

with antecedent clauses ante(tj) = Aj for j ∈ [i], ante(xi+1) = Li+1, ante(□) = Ri+1.
From this we learn the clause Ri.

The proof ends with the two trails

U1 = (x1, t1, x2,□)

with antecedents ante(t1) = B1, ante(x2) = L2, ante(□) = R2, from which we learn
L1 = x̄1, and finally the last trail

V1 = (x̄1, t1, x2,□)

with antecedents ante(x̄1) = L1, ante(t1) = B1, ante(x2) = L2, ante(□) = R2, from which
we learn the empty clause □, completing the refutation.
The QCDCL(Drrs) refutation we have created has O(n) trails and hence overall size O(n2). ◀

Thus the Equality formulas, which are hard for both Q-Res and QCDCL, become easy to
refute when the power of Drrs is added to these systems. Thus they showcase the power of
dependency schemes and discarding spurious dependencies.

4.3 The Trapdoorn formulas
The Trapdoor formulas were introduced in [7], in order to compare QCDCL with the variant
with the NO-RED policy. The idea is to juxtapose two proposotional formulas, one hard for
Res and one easy for Res, and judiciously interject universal and existential variables tying
the two together. The tying is done in such a way that QCDCL trails with the NO-RED policy
can quickly get to the easy part, whereas with RED and the ensuing forced propagations,
QCDCL is trapped into refuting the hard part. Thus for QCDCL proof systems, allowing
reductions, which force more unit propagations in a trail, is not necessaririly a good thing.

▶ Formula 3 (Trapdoorn). The Trapdoorn QBF has the prefix
∃y1, · · · , ysn

∀w∃t∃x1, · · · , xsn
∀u, where sn is the number or variables in the propositional

pigeonhole principle PHPn+1
n , and the following matrix:

PHPn+1
n (x1, · · · , xsn

)
for i ∈ [sn] : ȳi ∨ xi ∨ u , yi ∨ x̄i ∨ u

for i ∈ [sn] : yi ∨ w ∨ t , yi ∨ w ∨ t̄ , ȳi ∨ w ∨ t , ȳi ∨ w ∨ t̄

In [7], it was shown that these formulas are easy to refute in QCDCLLEV-ORD
NO-RED and Q-Res (and

hence also in Q(Drrs)-Res and QU-Res), but are hard to refute in QCDCL because the reductions
force unit propagations in the trails which send the solver down a "trap" of refuting PHP.

Clearly, Drrs(Trapdoor) = ∅ since the universal variables appear in only one polarity.
Thus red-Drrs(Trapdoor)is the following propositional formula:

PHPn+1
n (x1, · · · , xsn

)
for i ∈ [sn] : ȳi ∨ xi , yi ∨ x̄i

for i ∈ [sn] : yi ∨ t , yi ∨ t̄ , ȳi ∨ t , ȳi ∨ t̄

This formula has a very short Res refutation involving the four y, t clauses for any i.
Hence by Proposition 3.4, the Trapdoor formulas are easy to refute in Drrs + QCDCL and
Drrs + QCDCL(Drrs).

We observe below that they are quite easy to refute in QCDCL(Drrs) as well.

▶ Lemma 4.2. The Trapdoorn formulas have O(1)-size refutation in QCDCL(Drrs)

12 Dependency schemes in QCDCL

Proof. As seen before, Drrs(Trapdoorn) = ∅. Using this fact we can construct a QCDCL(Drrs)
refutation consisting of two trails T1 and T2. The first trail decides y1 and learns ȳ1, the
second trail has no decisions. More precisely, the first trail is

T1 := (y1, t,□)

with red-Drrs(ante(□)) = red-Drrs(ȳ1∨w∨t̄) = (ȳ1∨t̄), and red-Drrs(ante(t)) = red-Drrs(ȳ1∨
w∨t) = (ȳ1∨t). This allows us to learn the clause (ȳ1). The second trail begins by propagating
ȳ1.

T2 := (ȳ1, t,□)

Here, red-Drrs(ante(□)) = red-Drrs(y1 ∨ w ∨ t̄) = y1 ∨ t̄, red-Drrs(ante(t)) = red-Drrs(y1 ∨
w ∨ t) = y1 ∨ t and ante(ȳ1) = ȳ1 Therefore, we can learn the empty clause (□), completing
the refutation. ◀

Thus, we see that the Trapdoor formulas which were hard for QCDCL become easy to
refute when the power of Drrs is added to the QCDCL system, be it in preprocessing, unit
propagation or both. This is another demonstration of the advantage of discarding spurious
dependencies.

4.4 The Dep-Trapn formulas

From the previous sub-sections it may appear that adding Drrs to QCDCL only adds to its
strength and suggests that the addition of the dependency scheme gives us a strictly stronger
proof system as with Q-Res. However, this is not the case; QCDCL’s are tricky proof systems.
In the previous sections we discussed the QParity and Trapdoor formulas; these were used
in [7], to show that neither of QCDCLLEV-ORD

NO-RED and QCDCL simulates the other. For the Trapdoor
formulas, the reduction sends the QCDCL refutation down a "trap" but not the QCDCLLEV-ORD

NO-RED
refutation. This motivates the idea of designing a formula where adding the dependency
scheme enables reductions that send the refuatation down a trap into which the seemingly
weaker systems do not fall. Based on this idea, we introduce the family Dep-Trap which is a
slight modification of the Trapdoor family, and is defined as follows:

▶ Formula 4 (Dep-Trapn). The Dep-Trapn formula has the prefix
∃y1, · · · , ysn

∀w∃t∀u∃x1, · · · , xsn
, and the matrix is as given below.

PHPn+1
n (x1, · · · , xsn

)
for i ∈ [sn] : ȳi ∨ u ∨ xi , yi ∨ u ∨ x̄i

for i ∈ [sn] : yi ∨ w ∨ t , yi ∨ w ∨ t̄ , ȳi ∨ w ∨ t , ȳi ∨ w ∨ t̄

w̄ ∨ t̄

Note that there are two differences from the Trapdoorn formulas. Firstly, the universal
variable u which was earlier quantified at the end is now quantified just before the existential
variables x1, · · · , xsn

. Secondly, there is an additional clause w̄ ∨ t̄. We will see that these
serve a dual purpose: the shifting of the position of u stops QCDCL from falling into the trap,
making the formulas easy to refute in QCDCL, while the additional clause prevents the Drrs

scheme from bypassing the trap as it used to in the Trapdoorn formulas, since now instead
of being the empty set, Drrs(Dep-Trap) = {(w, t)}. Therefore, red-Drrs(Dep-Trap) isn’t a

M. Mahajan and A. Choudhury 13

propositional formula anymore; in fact it is the following QBF:

PHPn+1
n (x1, · · · , xsn

)
for i ∈ [sn] : ȳi ∨ xi , yi ∨ x̄i

for i ∈ [sn] : yi ∨ w ∨ t , yi ∨ w ∨ t̄ , ȳi ∨ w ∨ t , ȳi ∨ w ∨ t̄

w̄ ∨ t̄

We observe below that for exactly the same reasons as Trapdoor, the Dep-Trap formulas are
easy to refute in QCDCLLEV-ORD

NO-RED , and hence also in Q-Res, Q(Drrs)-Res, and QU-Res. Furthermore,
the shifting of u to before the xi’s stops QCDCL from going down the "trap", and hence the
formulas are easy to refute in QCDCL (and in QCDCLcube).

▶ Lemma 4.3. The Dep-Trap formulas have polynomial-size refutations in QCDCL, QCDCLLEV-ORD
NO-RED ,

Q-Res, QU-Res and Q(Drrs)-Res.

Proof. First we will show that the Dep-Trap formulas have a linear-size refutation in QCDCL.
We will do so by constructing a complete refutation. The first trail decides all y variables
positively, decides w negatively, and then propagates t and a conflict. Unlike Trapdoor we
don’t propagate an x after an y decision, since the u cannot be reduced and so blocks unit
propagation.

T1 := (y1; y2; · · · ; ysn ; w̄, t,□)

where ante(□) = (ȳ1 ∨ w ∨ t̄) and ante(t) = (ȳ1 ∨ w ∨ t). Hence the set of learnable clauses
for this trail is LT1 = ((ȳ1 ∨w∨ t̄), (ȳ1)); allowing us to learn the clause (ȳ1). Now the second
trail propagates (ȳ1) followed by remaining decisions as before.

T2 := (ȳ1; y2; · · · ; ysn ; w̄, t,□)

where ante(□) = (y1 ∨ w ∨ t̄), ante(t) = (y1 ∨ w ∨ t), and ante(ȳ1) = ȳ1. Therefore, the set
of learnable clauses for this trail is LT2 = ((y1 ∨w ∨ t̄), (y1), (□)) which allows us to learn the
empty clause (□), completing the refutation. The refutation size is O(sn), which is linear in
the formula size.

Since none of the unit propagations in the two trails above employed a universal reduction,
the same refutation is also a valid linear-size refutation in QCDCLLEV-ORD

NO-RED . Since all the
other systems mentioned in the lemma simulate QCDCLLEV-ORD

NO-RED , Dep-Trap has polynomial-size
refutations in these proof systems as well. ◀

Next we show that these formulas are hard to refute in QCDCL variants that use Drrs.

▶ Lemma 4.4. Refutations of the Dep-Trapn formulas in QCDCL(Drrs), Drrs + QCDCL and
Drrs + QCDCL(Drrs) require exponential size.

Proof. Drrs(Dep-Trapn) = {(w, t)}. This means that the universal variable w cannot be
reduced from any axiom clause it appears in as they all also contain the variable t, whereas
the universal variable u can be reduced from the axiom clauses as no existential variable
depends on it.

Let us first see hardness for QCDCL(Drrs). Since u can be reduced but not w, the proof
of hardness of Trapdoor in QCDCL from [7] carries over as is to hardness of Dep-Trap in
QCDCL(Drrs): the decisions on the y variables propagate x literals, sending the trails down the
PHP trap. The additional clause cannot change the course of such trails, because its variables
appear after the y part in the prefix and decisions are required to be level-ordered.

14 Dependency schemes in QCDCL

Next consider the other two variants. Preprocessing yields the QBF red-Drrs(Dep-Trap)
described above. Now all trails in a refutation of this formula must start with deciding the
yi’s; these decisions propagate the xi’s; and w cannot be reduced from the clauses it exists
in (irrespective of whether we allowed ∀(D)-reductions or not) nor decided before all the yi’s
are decided. Again, the proof of hardness of Trapdoor in QCDCL from [7] lifts to hardness of
Dep-Trap in Drrs + QCDCL and Drrs + QCDCL(Drrs). ◀

The Dep-Trap formulas are thus easy for QCDCL, but become hard to refute when Drrs is
added to the system demonstrating that allowing more reductions and removing spurious
dependencies does not necessarily help for the QCDCL system.

4.5 The TwoPHPandCTn formulas
The formulas in the previous sections seem to suggest that Proposition 3.4 could also extend
to include QCDCL(Drrs). We show now that this is not the case. The motivation for defining the
following formula also comes from the Trapdoor formulas, using the propositional hardness
of PHP and the "easiness" of the (negation of) complete tautology on two variables. The
added new element is the use of two disjoint copies of the hard part.

▶ Formula 5 (TwoPHPandCTn). The TwoPHPandCTn formulas has the prefix, Q = ∀u∃x1 · · ·xsn

∃y1 · · · ysn
∀v∃z1, z2 and the matrix

u ∨ PHP(x1, · · · , xsn
)

ū ∨ PHP(y1, · · · , ysn
)

v ∨ z1 ∨ z2 , v ∨ z̄1 ∨ z2 , v ∨ z1 ∨ z̄2 , v ∨ z̄1 ∨ z̄2

Observe that these formulas are easy to refute in Q-Res, using the four z1, z2 clauses, and
hence also easy to refute in Q(Drrs)-Res and QU-Res.

Since v appears in only one polarity and u, ū appear in clauses with disjoint variables,
hence Drrs(TwoPHPandCT) = ∅ and red-Drrs(TwoPHPandCT) is the propositional formula

PHP(x1, · · · , xsn)
PHP(y1, · · · , ysn

)
z1 ∨ z2 , z̄1 ∨ z2 , z1 ∨ z̄2 , z̄1 ∨ z̄2

This formula is easy to refute in Res using the z1, z2 clauses; hence by Proposition 3.4, the
original QBFs are easy to refute in Drrs + QCDCL and Drrs + QCDCL(Drrs).

The final question arises now as to how hard they are to refute in QCDCL, QCDCL(Drrs)
and QCDCLLEV-ORD

NO-RED . And the answer is that it is hard for all three systems.

▶ Lemma 4.5. The QBF formulas TwoPHPandCTn require exponential size refutations in
QCDCL, QCDCL(Drrs)and QCDCLLEV-ORD

NO-RED .

Proof. None of the three systems QCDCL, QCDCL(Drrs)or QCDCLLEV-ORD
NO-RED allow for any prepro-

cessing. Hence the first decision in each of these three systems must be on u, which allows for
no propagations in any case. And depending on the choice of u, the next set of decisions are
either all on x variables or all on y variables. The variable v could be dropped during unit
propagation in the QCDCL(Drrs) system, but neither z1 or z2 could be decided or propagated
before all the y or x variables are decided/propagated. Therefore, all conflicts these trails
hit come directly from the PHP clauses. Thus refuting TwoPHPandCT in QCDCL, QCDCL(Drrs)
or QCDCLLEV-ORD

NO-RED is equivalent to refuting PHP in CDCL, requiring exponential size. ◀

M. Mahajan and A. Choudhury 15

These formulas highlight two important facts: firstly that QCDCL(Drrs) is not the same as
Drrs + QCDCL or Drrs + QCDCL(Drrs) and does not simulate them either. And secondly, even
in the case when Drrs = ∅ and reducing the formula by Drrs gives us an easy propositional
formula, it can still be hard to refute for QCDCL(Drrs).

4.6 The RRSTrapEqn formulas
The next family of formulas are obtained by making a slight modification to the Equality
formulas. The motivation to define such a formulas comes from trying to ascertain whether
after preprocessing with Drrs, does allowing reductions using Drrs for unit propagation add
any power over trivial universal reductions.

▶ Formula 6 (RRSTrapEqn). The RRSTrapEqn formula has the prefix
∃a∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn∃b and the PCNF matrix as below:

(t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

(xi ∨ ui ∨ ti ∨ b)︸ ︷︷ ︸
Ai

∧ (x̄i ∨ ūi ∨ ti ∨ b)︸ ︷︷ ︸
Bi

 ∧
n∧

i=1
(ui ∨ b̄)︸ ︷︷ ︸

Ci

∧(a∨ b̄) ∧ (ā∨ b̄)

The prefix has the variables of Equality sandwiched between a and b. The underlying idea
in the formulation is that unlike Drrs(Equality) which is empty, the additional Ci clauses
make Drrs(RRSTrapEq) = {(ui, b) : i ∈ [n]}. Further, adding b to the x, u, t clauses along with
that results in red-Drrs(RRSTrapEq) = RRSTrapEq. Now, since preprocessing by Drrs does not
change the formula at all, therefore the refutational hardness and in fact the refutation for
these two formulas will be exactly the same for the pair of systems QCDCL and Drrs + QCDCL,
and similarly for the pair QCDCL(Drrs) and Drrs + QCDCL(Drrs).

▶ Lemma 4.6. The RRSTrapEq formulas have polynomial size refutations in QCDCL(Drrs)
and Drrs + QCDCL(Drrs), but require exponential size refutations in QCDCL and Drrs + QCDCL

Proof. Since, red-Drrs(RRSTrapEq)= RRSTrapEq, there is no effect of preprocessing, and all
4 systems start off by refuting the same formula. Now, for any of the four proof systems,
if you consider any trail T of a refutation, the first decision must be on the variable a,
and irrespective of the manner of that decision we propagate b̄, which satisifies all the Ci

clauses and removes the b literal from the Ai and Bi clauses. The remaining formula at
this point is exactly the Equality formula, i.e. RRSTrapEq|a=∗,b=0 = Equality, and hence
refuting the RRSTrapEq formulas is equivalent to refuting the Equality formulas in QCDCL
and QCDCL(Drrs), which we know are hard and easy respectively.

Therefore, RRSTrapEq formulas have polynomial size refutations in QCDCL(Drrs) and
Drrs + QCDCL(Drrs), but require exponential size refutations in QCDCL and Drrs + QCDCL ◀

Additionally, since the Equality formulas are embedded in the RRSTrapEq formula, and
since QU-Res is closed under restrictions, the RRSTrapEq formulas are hard for QU-Res and
in turn Q-Res and QCDCLLEV-ORD

NO-RED . However, they are easily seen to have short refutations in
Q(Drrs)-Res: resolve the last two clauses to derive b̄, use it to remove b from the Ai and Bi,
now use Drrs reductions to remove the u literals, resolve on x to derive unit ti clauses, and
remove them from Tn sequentially.

4.7 The PreDepTrapn formulas
The previous section underlined that preprocessing by Drrs may not necessarily make Drrs

during propagation obsolete and/or give an advantage. It is reasonable to believe that at

16 Dependency schemes in QCDCL

least it won’t make things worse. But the following example shows that this is not the case:
preprocessing before allowing a QCDCL system to refute could in fact make the refutation
harder.

The construction of the formula is pretty straightforward. It is the disjoint union of
the two formulas Dep-Trap and Equality, connected by a universal quantified right at the
beginning, appearing in the two sub-formulas in opposite polarites.

▶ Formula 7 (PreDepTrapn). The PreDepTrapn formula has the prefix ∀a ∃y1 · · · ysn
∀w∃t∀u

∃x1 · · ·xsn ∃p1 · · · pn∀q1 · · · qn∃r1 · · · rn, and the matrix

a ∨ Dep-Trap(y1, · · · , ysn , w, t, u, x1, · · · , xsn)
ā ∨ Equality(p1, · · · , pn, q1, · · · , qn, r1, · · · , rn)

(Recall that a∨ Dep-Trap is the disjunction of a with every clause of Dep-Trap, and similarly
for ā ∨ Equality.)

First consider the QCDCLLEV-ORD
NO-RED and QCDCL systems. Since there is no preprocessing, the

first decision of every trail must set the variable a. For a trail that starts with the decision
ā, the PreDepTrap formula reduces exactly to Dep-Trap formula which we know is easy to
refute in QCDCLLEV-ORD

NO-RED as well as QCDCL (Section 4.4). Therefore, the PreDepTrap formulas
are easy to refute in QCDCL and QCDCLLEV-ORD

NO-RED , and as a consequence in Q-Res, Q(Drrs)-Res,
QU-Res, and QCDCLcube.

Next, consider adding Drrs. Since the opposite polarities of a appear in clauses with disjoint
non-interacting sets of variables, no existential variable depends on a. Since Drrs(Equality) =
∅, no variable depends on a q variable. Thus Drrs(PreDepTrap) = Drrs(Dep-Trap),

In the QCDCL(Drrs) system, where there is no preprocessing, the first decision of every trail
must again set the variable a. For trails that start with the decison a, the formula immediately
reduces exactly to the Equality formulas, which are easy to refute in QCDCL(Drrs), Lemma 4.1.
The refutation in the proof of Lemma 4.1, preceded by the decision a, gives a valid refutation
for the PreDepTrap formulas. Therefore these formulas are easy to refute in QCDCL(Drrs).

Finally, consider the case when the formula is preprocessed. We show that this makes
refutations exponentially long.

▶ Lemma 4.7. The PreDepTrap formulas require exponential size refutations in Drrs + QCDCL
and Drrs + QCDCL(Drrs)

Proof. Since Drrs(PreDepTrap) = Drrs(Dep-Trap), the formula red-Drrs(PreDepTrap) has
the matrix

PHPn+1
n (x1, · · · , xsn)

for i ∈ [sn] : ȳi ∨ xi , yi ∨ x̄i

for i ∈ [sn] : yi ∨ w ∨ t , yi ∨ w ∨ t̄ , ȳi ∨ w ∨ t , ȳi ∨ w ∨ t̄

w̄ ∨ t̄

()r̄1 ∨ · · · ∨ r̄n)
for i ∈ [n] (pi ∨ ri)
for i ∈ [n] (p̄i ∨ ri)

Now the variable a, though still in the quantifier prefix, has no effect on the trails. It can
be decided arbitrarily in the beginning, and then the goal is to refute red-Drrs(PreDepTrap)
in QCDCL and QCDCL(Drrs). At this point, therefore, all trails must start with deciding the
yi’s, propagating the xi’s. Since the only remaining universal w cannot be reduced from the
clauses it occurs in nor decided before all the yi’s are decided, and since the pi’s or ri’s also

M. Mahajan and A. Choudhury 17

cannot be decided before the yi’s, the trails are led into the trap of refuting PHP. The proof
of hardness of Trapdoor in QCDCL from [7] carries over exactly as it is to show hardness for
Drrs + QCDCL and Drrs + QCDCL(Drrs). ◀

4.8 The PropDep-Trapn formulas
The previous section illustrated an example where having Drrs as a preprocessing technique
was a detriment to refuting it and in fact it was better to use Drrs only in unit propagation,
and not also for preprocessing. This leads to the question — could there be a formula where
having Drrs only for preprocessing was strictly better than having it for both preprocessing
and propagation? Addressing this led to the birth of the following formula which is a slight
modification of the Dep-Trap formulas, and which witnesses that the answer is yes.
▶ Formula 8 (PropDep-Trapn). The PropDep-Trapn formulas have the prefix
∃s ∃y1 · · · ysn

∀w∃t∀b1, b2 ∃x1 · · ·xsn
∃z1, z2 and the matrix as given below.

PHPn+1
n (x1, · · · , xsn

)
for i ∈ [sn] : ȳi ∨ b1 ∨ xi ∨ z1 , yi ∨ b2 ∨ x̄i ∨ z2

s ∨ w ∨ t , s ∨ w ∨ t̄ , s̄ ∨ w ∨ t , s̄ ∨ w ∨ t̄

w̄ ∨ t̄

b̄1 ∨ z̄1 , b̄2 ∨ z̄2 , z̄1 , z̄2

First observe that the presence of the four s, w, t clauses make this formula very easy to
refute in Q-Res and hence in Q(Drrs)-Res and QU-Res.

Next, notice that the formulas are also easy to refute in QCDCLLEV-ORD
NO-RED , QCDCL, and QCDCLcube

because, after the initial propagation of the unit clauses z̄1, z̄2 in level 0, there are no
propagations possible before a w decision; the decisions on s and all the yi’s cause no
propagations. A trail that decides s and w̄ quickly reaches a conflict and learns s̄; a next
trail that propagates s̄ and decides w̄ then learns the empty clause.

Coming to Drrs, it can be seen that Drrs(PropDep-Trap) = {(w, t), (b1, z1), (b2, z2)}. There-
fore, red-Drrs(PropDep-Trap)= PropDep-Trap. This means that a QCDCL refutation is also a
Drrs + QCDCL refutation, and therefore PropDep-Trap has short refutations in Drrs + QCDCL.

We now show that refuting these formulas in QCDCL(Drrs) and Drrs + QCDCL(Drrs) is hard.
▶ Lemma 4.8. The PropDep-Trap formulas require exponential size refutations in QCDCL(Drrs)
and Drrs + QCDCL(Drrs)
Proof. Since red-Drrs(PropDep-Trap)= PropDep-Trap, a Drrs + QCDCL(Drrs) refutation in
this case is just a QCDCL(Drrs) refutation, so it suffices to show hardness for the latter. Let
us observe how a QCDCL(Drrs) refutation looks. The two unit clauses z̄1, z̄2 get propagated
initially and then s and the yi’s have to be decided. A decision on s, irrespective of the
polarity, causes no further propagations until w is also decided, as every clause containing
the variable s also contains the variables w and t, and the reduction of w is blocked by t.
Since neither (b1, xi) nor (b2, xi) is in Drrs, a decision on variable yi propagates either xi

(due to the clause containing ȳi, where b1 can now be reduced), or x̄i (due to the clause
containing yi, where b2 can now be reduced). The propagating of xi due to yi sends the
QCDCL(Drrs) refutation down the same "trap" as the Trapdoor formulas for QCDCL[7], and
thus QCDCL(Drrs) requires exponential size refutations to refute these formulas. ◀

4.9 The TwinEqn formulas
The TwinEq formulas were introduced in [13] to show hardness in the system QCDCLcube. They
are formally defined as follows:

18 Dependency schemes in QCDCL

▶ Formula 9 (TwinEqn [13]). The TwinEqn formula has the prefix
∃x1 · · ·xn∀u1 · · ·un, w1, · · · , wn∃t1 · · · tn and the PCNF matrix

(t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

(xi ∨ ui ∨ ti)︸ ︷︷ ︸
Ai

∧ (x̄i ∨ ūi ∨ ti)︸ ︷︷ ︸
Bi

 ∧
n∧

i=1

(xi ∨ wi ∨ ti)︸ ︷︷ ︸
Ci

∧ (x̄i ∨ w̄i ∨ ti)︸ ︷︷ ︸
Di

These formulas are hard for QCDCLcube, and hence also for QCDCL and QCDCLLEV-ORD

NO-RED . For
the same reason as for Equality (the size-cost-capacity theorem from [4]), they are also hard
for QU-Res and Q-Res.

It is easy to show that Drrs(TwinEq) = ∅ (just as Drrs(Equality) is shown to be ∅).
Therefore, red-Drrs(TwinEq) is a propositional formula, and in fact is the same formula
as red-Drrs(Equality). Therefore, due to the same argument as for the Equality for-
mulas in Section 4.2, the TwinEq formulas are easy to refute in Q(Drrs)-Res, Drrs + QCDCL,
Drrs + QCDCL(Drrs) and QCDCL(Drrs).

5 Relation between proof systems

The previous section saw us study the bounds for known as well as our newly-constructed
formulas in a plethora of proof systems. Using these obtained bounds, in this section we
look to obtain the relations of our newly defined proof systems using Drrs with QCDCL among
themselves, as well as their relation with other QBF proof systems.

First we observe that the four versions of QCDCL that use or do not use Drrs in either of
the two ways are all pairwise incomparable.

▶ Theorem 5.1. The proof systems in {QCDCL, QCDCL(Drrs), Drrs + QCDCL, Drrs + QCDCL(Drrs)}
are pairwise incomparable.

Proof. Of the four systems under consideration, the Trapdoor formulas (Section 4.3) are
hard only for QCDCL, and the Dep-Trap formulas (Section 4.4)are easy only in QCDCL. Hence
QCDCL is incomparable with all three systems obtained by adding Drrs.

Among the three systems using Drrs, the TwoPHPandCT formulas (Section 4.5) are hard
only in QCDCL(Drrs), while the PreDepTrap formulas (Section 4.7) are easy only in QCDCL(Drrs).
Hence QCDCL(Drrs) is incomparable with the systems that use preprocessing.

Finally, the systems Drrs + QCDCL and Drrs + QCDCL(Drrs) are separated by the formulas
RRSTrapEq (Section 4.6) easy only in Drrs + QCDCL(Drrs), and the formulas PropDep-Trap
(Section 4.8) easy only in Drrs + QCDCL. ◀

Next we observe that each of the three new versions of QCDCL is also incomparable with
QCDCLLEV-ORD

NO-RED , Q-Res, Q(Drrs)-Res, and QU-Res.

▶ Theorem 5.2. Any two proof systems P1 ∈ {QCDCL(Drrs), Drrs + QCDCL, Drrs + QCDCL(Drrs)},
and P2 ∈ {QCDCLLEV-ORD

NO-RED , Q-Res, Q(Drrs)-Res, QU-Res}, are incomparable.

Proof. The QParity formulas (Section 4.1) require exponential size refutations in P2 but
have polynomial size refutations in P1.

The Dep-Trap formulas (Section 4.4) have constant size refutations in P2 but require
exponential size refutations in P1. ◀

Finally, we observe that even when we add cube-learning to standard QCDCL, the system
QCDCLcube is still incomparable with all the three versions of QCDCL with dependency scheme
added.

M. Mahajan and A. Choudhury 19

▶ Theorem 5.3. Every proof system in {QCDCL(Drrs), Drrs + QCDCL, Drrs + QCDCL(Drrs)} is
incomparable with QCDCLcube.

Proof. The TwinEq formulas (Section 4.9) require exponential size refutations in QCDCLcube

but have poly-size refutations in Drrs + QCDCL, QCDCL(Drrs) and Drrs + QCDCL(Drrs).
The Dep-Trap formulas (Section 4.4) require exponential size refutations in Drrs + QCDCL,

QCDCL(Drrs) and Drrs + QCDCL(Drrs), but have short refutations in QCDCLcube. ◀

6 Conclusion

We have examined, from a rigourous proof-theoretic viewpoint, the effect of incorporating
heuristics based on dependency schemes into QBF solving algorithms based on the conflict-
driven clause learning paradigm. Our results show that unlike in the case of the proof system
Q-Res, where dependency-awareness can shorten but never lengthens refutations, here the
picture is much more nuanced, and all kinds of shortenings as well as lengthenings can be
observed. Thus the decision of whether or not to make a QCDCL solver account for spurious
dependencies is itself a challenging one, and it is likely the domain from where instances are
to be solved may indicate what choice is more suitable.

One aspect which is unresolved in our work is the nature of our upper bounds. Since
QCDCL is not in itself an algorithm but a template, there are multiple instantiations of it
based on the choice of decision heuristics, propagation policy, and learning scheme. We
have restricted ourselves here to the decision heuristic and propagation policy used in most
state-of-the-art solvers, namely, level-ordered decisions and propagations with reductions.
However, we have not specified the learning scheme. Our lower bounds hold for any QCDCL-
based solver as long as the learning scheme picks a clause only from the learnable-clause
sequence as defined in Section 2. However, the upper bounds hold for specific choices of
learnt clauses, and this, in some sense, reflects a certain non-determinism in the algorithm.
(This is somewhat akin to the non-determinism inherent in CDCL algorithms in the statement
that CDCL simulates Resolution.) Arguably, the upper bounds will be more meaningful if
achieved with actually-used learning schemes. While some of our upper bounds are achieved
with such schemes, specifically the UIP policy, some others make ad hoc choices with respect
to which clauses to learn. Thus the impact of the learning scheme itself is still improperly
understood for dependency-aware QCDCL.

In this work, we only consider decisions in LEV-ORD. Whether incorporating dependency
schemes in the decision policy itself makes a difference or not is an interesting question.
Formalisation seems tricky as it seems to be more like D-ORD than LEV-ORD(D). As recent
work in [12] shows, other orders are not necessarily unsound, so this can still be meaningful.
However, this is quite a different direction to explore. There is also the dependency-learning
setup which is quite different: the solver starts off assuming there are no dependencies, and
gradually builds up a set of dependencies. (That is, add required dependencies starting from
∅, rather than remove spurious dependencies starting from Dtrv.) In this approach, explored
in [17] and used in the QBF solver Qute, learning dependencies does affect decision order.
An in-depth future comparison of these two approaches could be interesting to explore.

Another aspect we have not directly addressed, other than showing soundness and
completeness, is the effect of dependency schemes other than Drrs. Since Drrs is what is
actually used in most QBF solvers, it is important to understand its effect first. But there are
other schemes: the less (than Drrs) general standard dependency scheme Dstd introduced in
[20], and more general schemes based on tautology-free and implication-free paths introduced

20 Dependency schemes in QCDCL

in [5, 6]. It seems reasonable to expect that a similar nuanced picture will present when
considering such schemes as well.

Finally, an aspect to our work that could also be interesting to investigate, with po-
tential ramifications to practical solvers, is exploring the addition of cube-learning to our
dependency-aware QCDCL systems. This may be somewhat non-trivial and nuanced, as
adding dependency schemes to the formal proof system of long-distance term resolution
(the proof system in which proofs can be extracted from runs of solvers on true QBFs,
Q-consensus) is not known to be sound (see the Discussion section in [18]).

References
1 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms

with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.
doi:10.1613/jair.3152.

2 Salman Azhar, Gary Peterson, and John Reif. Lower bounds for multiplayer non-cooperative
games of incomplete information. Journal of Computers and Mathematics with Applications,
41:957 – 992, 2001.

3 Olaf Beyersdorff and Joshua Blinkhorn. Dynamic QBF dependencies in reduction and expansion.
ACM Trans. Comput. Log., 21(2):8:1–8:27, 2020. doi:10.1145/3355995.

4 Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, cost, and capacity: A semantic
technique for hard random QBFs. Log. Methods Comput. Sci., 15(1), 2019. doi:10.23638/
LMCS-15(1:13)2019.

5 Olaf Beyersdorff, Joshua Blinkhorn, and Tomás Peitl. Strong (D)QBF dependency schemes
via tautology-free resolution paths. In Luca Pulina and Martina Seidl, editors, Theory and
Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero,
Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages
394–411. Springer, 2020. doi:10.1007/978-3-030-51825-7_28.

6 Olaf Beyersdorff, Joshua Blinkhorn, and Tomás Peitl. Strong (D)QBF dependency schemes
via implication-free resolution paths. Electron. Colloquium Comput. Complex., TR21-135,
2021. URL: https://eccc.weizmann.ac.il/report/2021/135, arXiv:TR21-135.

7 Olaf Beyersdorff and Benjamin Böhm. Understanding the Relative Strength of QBF CDCL
Solvers and QBF Resolution. Logical Methods in Computer Science, Volume 19, Issue 2, April
2023. URL: https://lmcs.episciences.org/11193, doi:10.46298/lmcs-19(2:2)2023.

8 Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory, 11(4):26:1–26:42, 2019. doi:10.1145/3352155.

9 Olaf Beyersdorff, Mikolás Janota, Florian Lonsing, and Martina Seidl. Quantified boolean
formulas. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Hand-
book of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, pages 1177–1221. IOS Press, 2021. doi:10.3233/FAIA201015.

10 Joshua Blinkhorn and Olaf Beyersdorff. Shortening QBF proofs with dependency schemes. In
Theory and Applications of Satisfiability Testing - SAT, volume 10491 of LNCS, pages 263–280.
Springer, 2017. doi:10.1007/978-3-319-66263-3_17.

11 Benjamin Böhm, Tomás Peitl, and Olaf Beyersdorff. Should decisions in QCDCL follow prefix
order? Electron. Colloquium Comput. Complex., page 040., 2022. (to appear in SAT 2022).
URL: https://eccc.weizmann.ac.il/report/2022/040.

12 Benjamin Böhm, Tomás Peitl, and Olaf Beyersdorff. Should decisions in QCDCL follow prefix
order? In 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 11:1–11:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.11.

13 Benjamin Böhm, Tomáš Peitl, and Olaf Beyersdorff. QCDCL with cube learning or pure
literal elimination - what is best? In Lud De Raedt, editor, Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 1781–1787.

https://doi.org/10.1613/jair.3152
https://doi.org/10.1145/3355995
https://doi.org/10.23638/LMCS-15(1:13)2019
https://doi.org/10.23638/LMCS-15(1:13)2019
https://doi.org/10.1007/978-3-030-51825-7_28
https://eccc.weizmann.ac.il/report/2021/135
http://arxiv.org/abs/TR21-135
https://lmcs.episciences.org/11193
https://doi.org/10.46298/lmcs-19(2:2)2023
https://doi.org/10.1145/3352155
https://doi.org/10.3233/FAIA201015
https://doi.org/10.1007/978-3-319-66263-3_17
https://eccc.weizmann.ac.il/report/2022/040
https://doi.org/10.4230/LIPIcs.SAT.2022.11

M. Mahajan and A. Choudhury 21

International Joint Conferences on Artificial Intelligence Organization, 7 2022. Main Track.
doi:10.24963/ijcai.2022/248.

14 Florian Lonsing. Dependency schemes and search-based QBF solving: theory and practice.
PhD thesis, Johannes Kepler University, Linz, Austria, 2012.

15 Florian Lonsing and Armin Biere. Depqbf: A dependency-aware QBF solver. J. Satisf. Boolean
Model. Comput., 7(2-3):71–76, 2010. doi:10.3233/sat190077.

16 Florian Lonsing and Armin Biere. Integrating dependency schemes in search-based QBF
solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications of Satisfiability
Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14,
2010. Proceedings, volume 6175 of Lecture Notes in Computer Science, pages 158–171. Springer,
2010. doi:10.1007/978-3-642-14186-7_14.

17 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for QBF. J. Artif.
Intell. Res., 65:180–208, 2019. doi:10.1613/jair.1.11529.

18 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-resolution with depend-
ency schemes. J. Autom. Reasoning, 63(1):127–155, 2019. doi:10.1007/s10817-018-9467-3.

19 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011. doi:10.1016/j.artint.2010.10.002.

20 Marko Samer and Stefan Szeider. Backdoor sets of quantified boolean formulas. J. Autom.
Reason., 42(1):77–97, 2009. doi:10.1007/s10817-008-9114-5.

21 Christoph Scholl and Ralf Wimmer. Dependency quantified Boolean formulas: An overview of
solution methods and applications - extended abstract. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, International Conference on Theory and Practice of Satisfiability Testing
SAT, volume 10929 of LNCS, pages 3–16. Springer, 2018.

22 Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified boolean formulas. In 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019, pages 78–84. IEEE, 2019.
doi:10.1109/ICTAI.2019.00020.

23 Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci., 612:83–101, 2016. doi:10.1016/j.tcs.2015.10.020.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.24963/ijcai.2022/248
https://doi.org/10.3233/sat190077
https://doi.org/10.1007/978-3-642-14186-7_14
https://doi.org/10.1613/jair.1.11529
https://doi.org/10.1007/s10817-018-9467-3
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1016/j.tcs.2015.10.020

