
Conflict Checkable and Decodable Codes
and Their Applications

Benny Applebaum* Eliran Kachlon*

May 2, 2023

Abstract

Let C be an error-correcting code over a large alphabet q of block length n, and assume that,
a possibly corrupted, codeword c is distributively stored among n servers where the ith entry is
being held by the ith server. Suppose that every pair of servers publicly announce whether the
corresponding coordinates are “consistent” with some legal codeword or “conflicted”. What
type of information about c can be inferred from this consistency graph? Can we check whether
errors occurred and if so, can we find the error locations and effectively decode? We initiate the
study of conflict-checkable and conflict-decodable codes and prove the following main results:

(1) (Almost-MDS conflict-checkable codes:) For every distance d ≤ n, there exists a code
that supports conflict-based error-detection whose dimension k almost achieves the singleton
bound, i.e., k ≥ n − d + 0.99. Interestingly, the code is non-linear, and we give some evidence
that suggests that this is inherent. Combinatorially, this yields an n-partite graph over [q]n that
contains qk cliques of size n whose pair-wise intersection is at most n − d ≤ k − 0.99 vertices,
generalizing a construction of Alon (Random Struct. Algorithms, ’02) that achieves a similar
result for the special case of triangles (n = 3).

(2) (Conflict Decodable Codes below half-distance:) For every distance d ≤ n there exists a
linear code that supports conflict-based error-decoding up to half of the distance. The code’s
dimension k “half-meets” the singleton bound, i.e., k = (n − d + 2)/2, and we prove that this
bound is tight for a natural class of such codes. The construction is based on symmetric bivari-
ate polynomials and is rooted in the literature on verifiable secret sharing (Ben-Or, Goldwasser
and Wigderson, STOC ’88; Cramer, Damgård, and Maurer, EUROCRYPT ’00).

(3) (Robust Conflict Decodable Codes:) We show that the above construction also satisfies a
non-trivial notion of robust decoding/detection even when the number of errors is unbounded
and up to d/2 of the servers are Byzantine and may lie about their conflicts. The resulting
conflict-decoder runs in exponential time in this case, and we present an alternative construc-
tion that achieves quasipolynomial complexity at the expense of degrading the dimension to
k = (n − d + 3)/3. Our construction is based on trilinear polynomials, and the algorithmic re-
sult follows by showing that the induced conflict graph is structured enough to allow efficient
recovery of a maximal vertex cover.

As an application of the last result, we present the first polynomial-time statistical two-
round Verifiable Secret Sharing (resp., three-round general MPC protocol) that remains secure
in the presence of an active adversary that corrupts up to t < n/3.001 of the parties. We can

*Tel-Aviv University, Israel bennyap@post.tau.ac.il, elirn.chalon@gmail.com.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 62 (2023)

upgrade the resiliency threshold to n/3, which is known to be optimal in this setting, at the
expense of increasing the computational complexity to be quasipolynomial. Previous solutions
(Applebaum, Kachlon, and Patra, TCC’20) suffered from an exponential-time complexity even
when the adversary corrupts only n/4 of the parties.

2

Contents

1 Introduction 5
1.1 Conflict Checkable Codes . 6

1.1.1 Almost-Optimal Conflict Checkable Codes . 7
1.2 Conflict Decodable Codes . 9

1.2.1 Conflict Decodable Codes from Symmetric Bivariate Polynomials 10
1.3 Robust Conflict Decodable Codes . 11

1.3.1 Inefficient Robust-Decoding . 13
1.3.2 Quasipolynomial-Time Conflict-Decoder from Trivariate Polynomials 14

1.4 Application: The Round Complexity of Secure Multiparty Computation 15

2 Construction of Almost-Optimal Conflict Checkable Codes 17
2.1 Proof of Lemma 2.2 . 18

2.1.1 Proof of Claim 2.3: The Size of F . 19
2.1.2 Some Basic Properties . 20
2.1.3 Proof of Claim 2.4: Interpolation . 22

3 t-Edge-Neighborhood Graphs 25
3.1 Quasipolynomial-Time Algorithm for Vertex Cover 25
3.2 Polynomial-Time (1 + ϵ)-Approximation for Vertex Cover 27

4 Comparison-Based Codes 29
4.1 Lower Bound on Comparison-Based Codes . 30

4.1.1 Proof of Theorem 4.2 . 30
4.1.2 Proof of Claim 4.3 . 34
4.1.3 Proof of Claim 4.4 . 35

4.2 Linear Conflict checkable Codes are Comparison-Based Codes 36
4.3 Comparison-Based Codes from any Linear MDS Code 36

4.3.1 Multilinear Forms . 37
4.3.2 The Construction . 37
4.3.3 Optimal Comparison-Based Codes from Bilinear Forms 39
4.3.4 Polynomial-Time Codes from Bilinear Forms for t = ⌊(d− 1)/3⌋ 39
4.3.5 Quasipolynomial-Time Codes from Trilinear Forms 40
4.3.6 The Relation to Secret Sharing . 41

5 Round-Optimal Statistical MPC with Strong Honest Majority 43
5.1 Verifiable Secret Sharing . 43

5.1.1 On Trivariate polynomials . 44
5.1.2 Interactive Signature . 44
5.1.3 Weak Commitment . 46
5.1.4 The VSS Protocol . 48
5.1.5 Polynomial-Time VSS for n ≥ (3 + ϵ)t . 52

5.2 From VSS to General MPC . 54

3

A Appendix: Robust Conflict Decodable Codes 58
A.1 Proof of Lemma 1.10 . 60

B Appendix: Multilinear Forms 61
B.1 Proof of Lemma 4.9 . 61
B.2 Proof of Lemma 4.10 . 63

4

1 Introduction

Error-correcting codes play an important role in theory and practive. They allow us to protect the
integrity of data, both in communication and storage, and even the soundness of computation, in
the context of interactive and non-interactive proof systems. In the classical setting, the decoder
gets full access to a (possibly corrupted) codeword and its goal is to detect or correct errors. How-
ever, in the last 30 years a large amount of work was dedicated to codes that support decoding
with restricted access to the codeword, with locally testable codes and locally decodable codes as
the most notable examples (see [Gol10] and references therein).

Motivated by cryptographic applications, we present a new notion of decoding with restricted
access to the codeword. For the sake of concreteness, consider the following (non-cryptographic)
setting. Let C ⊆ [q]n be a code, and let w ∈ [q]n be a (possibly noisy) codeword that is distributed
among n servers, where the ith server holds the ith entry w[i] of w. The decoder has restricted
access to the codeword w, and it is only given access to the conflict graph G of w. The conflict
graph G of w is an undirected graph over n vertices, such that an edge (i, j) exists if and only if
the ith and jth symbol of c are inconsistent with each other, i.e., if there is no codeword c ∈ C
that satisfies c[i] = w[i] and c[j] = w[j]. The goal of the decoder is to check the validity of the
codeword, and, if possible, to identify the error locations. This is challenging since the decoder
sees only a tiny amount of information, about n2 bits, whereas the entire codeword is of bit-length
n log q. In a typical setting where the number of servers is much smaller than the data-size, (e.g.,
q = 2n

3
) the number of bits that are available to the decoder may not even suffice for representing

a single symbol of the alphabet.
Such a mechanism is useful in cases where a client wishes to read the codeword but has only

an expensive line of communication to the servers, which in-turn, are connected with each other
via a fast network. (Think of a server farm on the moon.) Instead of reading the entire code-
word, the servers can compute the pair-wise consistencies in a single round of communication,
and send the resulting graph (i.e., O(n2) bits) to the client. Based on a conflict-decoder, the client
can then identify a set of uncorrupted locations, and by reading only the content of these servers,
recover the information word. That is, standard decoding is decomposed into a conflict computa-
tion, which can be computed by the servers in a single round of interaction over point-to-point
channels, conflict-decoding which is performed by the client, and actual decoding that requires
only a minimal amount of data reads.1

The ability to check and decode given few bits of information is also very useful in crypto-
graphic scenarios where some information about the codeword should be hidden. Indeed, the
problems of conflict-decodability and conflict-checkability, (combined with various secrecy re-
quirements), implicitly appear in the cryptographic literature about secure multiparty computa-
tion and verifiable secret sharing, starting with the classical works of [BGW88, CCD88, RB89].

In this paper, we initiate a systematic study of conflict-based decoding from a purely coding-
theoretic perspective. We consider different tasks such as error detection and error correction
under different noise models, and present definitions, constructions, and lower bounds, in an
attempt to understand how conflict-decoding affects the possible trade-offs between the rate and
the distance (typically over large alphabets). We will also discuss some applications of this new

1Similarly, conflict-checking provides a communication efficient way to ensure that the codeword is non-noisy, this
can be used repeatedly to ensure validity. When a noise is detected, a more expensive correction procedure can be
applied.

5

framework, and compare it to existing notions such as locally-testable codes. We continue with a
formal presentation of our results, starting with the most basic notion of conflict checkable codes.

1.1 Conflict Checkable Codes

In conflict checkable codes, checking whether a vector c is a codeword is done by only inspecting
its conflict graph: c is a codeword if and only if its conflict graph is empty (i.e., it contains no
edges). This is formalized in the following definition.

Definition 1.1 (Conflict functions and graphs). For a code C ⊂ [q]n and every indices i < j ∈ [n], we
define the (i, j)-th conflict function Gi,j : [q] × [q] → {0, 1} of C to be the function that, given σ, τ ∈ [q]
outputs 0 if and only if there exists c ∈ C such that c[i] = σ and c[j] = τ . The conflict functions of C is
defined to be G = (Gi,j)1≤i<j≤n.

For a vector c ∈ [q]n (not necessarily a codeword), we define the conflict graph K of c to be the
(undirected) graph on n vertices 1, . . . , n, where there is an edge (i, j) if and only if Gi,j(c[i], c[j]) = 1.
We say that c[i] is conflicted with c[j] when an the edge (i, j) exists, and say that c[i] is consistent with
c[j] otherwise. The code C is conflict checkable if for every c ∈ [q]n it holds that c ∈ C if and only if
Gi,j(c[i], c[j]) = 0 for every 1 ≤ i < j ≤ n, i.e., the conflict graph of c is empty.

Simple examples and non-examples. We note that the repetition code C = {(σ, . . . , σ) | σ ∈ [q]}
is an (n, k = 1, d = n)q conflict checkable code and that the trivial code C = [q]n is an (n, k = n, d =
1)q conflict checkable code. These codes satisfy the Singleton bound k ≤ n − d + 1 with equality,
and therefore they are maximum distance separable (MDS) codes. It is not hard to see that these are
the only examples of conflict-checkable codes that meet the Singleton bound. Indeed, whenever
k ≥ 2, every two entries (i, j) of an MDS code are independent, i.e., for every σ, τ ∈ [q] there exists
a codeword c with c[i] = σ and c[j] = τ , so the functions Gi,j always return 0, and the code must
contain the set of all the possible vectors. Similarly, a linear code C whose dual code C⊥ has distance
d⊥ ≥ 3 cannot be conflict checkable (unless it is the trivial code), since every d⊥ − 1 ≥ 2 rows of
the generating matrix of C are linearly independent. It follows that some of the most well-studied
codes, such as Reed-Solomon, Reed-Muller, Hadamard and random linear codes, are not conflict
checkable since they have non-trivial dual distance.

Comparison to 2-LTCs. From a definitional perspective, an access to conflicts is very different
from local access (as in locally testable codes): the former consists of O(n2) bits of information that
globally depend on the codeword whereas the latter information is local and consists of few code
symbols (that may potentially contain many bits). The use of global information also allows us to
use deterministic checkers and to require perfect correctness and soundness even for words that
are very close to the code – properties that cannot be achieved by locally-testable code. Never-
theless, it is not hard to see that 2-query locally-testable codes (2-LTC) are also conflict checkable,
since every non-codeword violates a positive fraction of the pairwise consistency checks.2 Conse-
quently, one can use the the recent breakthrough LTC construction of Dinur et al. [DEL+22] to ob-
tain conflict-checkable codes with constant rate, and constant relative-distance over constant-size

2Technically, we need a variant of LTC with 1-sided errors in which every non-codeword is rejected with positive
probability. This is implied, for example, by strongly local testablity as defined in [Gol10, Section 2.3.1]. We also mention
that constant-query LTC can be turned into a 2-LTC via standard techniques (e.g., [Din07]): Pack every tuple that is
queried by a test into a “super-symbol” and let the 2-query test verify the consistency of “super-symbols”.

6

alphabet. We note that this may be an overkill, as 2-testability seems like a significantly stronger
notion than conflict-checkability; In the former case, vectors that are far from the code should vi-
olate a large fraction of the (possibly weighted) pairwise consistency checks, whereas in the latter
case such vectors are only required to violate some conflicts. In addition, while small alphabet is
typically an important feature of LTCs, we will typically be interested in the large-alphabet regime.

The above examples suggest that conflict-checkability requires some redundancy among pairs
of entries but possibly less redundancy than is needed for LTCs. Of course, the interesting ques-
tion is how much redundancy is needed. Somewhat surprisingly, we show that just a “tiny”
amount of redundancy is needed, and it is possible to obtain conflict checkable codes that almost
achieve the Singleton bound (beating the existing upper-bounds for LTCs). Before presenting our
construction, it will be instructive to adopt an alternative view of conflict checkable codes.

A combinatorial view. Definition 1.1 provides an algorithmic view of conflict checkable codes:
Given the conflict graph K of a vector c one can decide whether c is a codeword. Taking a more
combinatorial view, we can identify the conflict functions G = (Gi,j)1≤i<j≤n of the code with a
complete n-partite undirected graph G over q-size sets of vertices, V1, . . . , Vn, whose edges are
labeled by 1 (conflicted) or 0 (consistent) according to the conflict functions. That is, the edge from
the σ-th vertex in Vi to the τ -th vertex in Vj is labeled by Gi,j(σ, τ). By definition, any codeword
c ∈ C corresponds to an n-size clique of consistent edges. It is not hard to see that the converse also
holds.

Claim 1.2. A code C ⊂ [q]n is conflict checkable if and only if there exists an n-partite graph H =
(V1, . . . , Vn, E) with the following properties:

1. For every i ∈ [n], the i-th part Vi consists of q vertices denoted by (i, 1), . . . , (i, q).

2. The code C consists of all vectors c ∈ [q]n for which (1, c[1]), . . . , (n, c[n]) forms a clique in H .

Proof. If C is conflict checkable, take H to be the restriction of the n-partite graph G (defined by
the conflict functions) to the consistent edges, and observe that the graph satisfies the required
properties. For the other direction, assume that the codewords of a code C correspond to cliques in
some n-partite graph H with q vertices on each side. Observe that the conflict functions G = (Gi,j)
of C satisfy Gi,j(σ, τ) = 0 only if ((i, σ), (j, τ)) ∈ E. Therefore every c ∈ [q]n is a codeword if and
only if it induces an empty conflict graph, so C is conflict checkable.

Thus the design of conflict checkable codes with a good rate and a good distance boils down
to packing as many cliques as possible in an n-partite graph while making sure that each pair of
cliques intersects in a small number t of vertices. Indeed, if each part of the graph contains q nodes
and the number of cliques is qk, this yields an (n, k, d)q code with distance of d = n− t.

1.1.1 Almost-Optimal Conflict Checkable Codes

In Section 2 we provide a (non-explicit) construction of a conflict checkable code that almost satis-
fies the Singleton bound.

Theorem 1.3. For every integers n ≥ 3 and 2 ≤ d ≤ n − 1, and every ϵ > 0, there exists an integer
q = q(n, d, ϵ) for which there exists an (n, k, d)q conflict checkable code for k ≥ n− d+ 1− ϵ.

7

We emphasize that our code is not linear, and therefore the dimension k is not necessarily an
integer. From a combinatorial point-of-view, we prove that for every n ≥ 3 and 2 ≤ d ≤ n − 1,
and every ϵ > 0, there exists an integer q = q(n, d, ϵ) for which there exists an n-partite undirected
graph over q-size sets of vertices V1, . . . , Vn that contains at least qk cliques, where each pair of
cliques intersects in at most t = n − d vertices. As we’ve mentioned, for a distance 2 ≤ d ≤ n − 1
the dimension must satisfy k < n− d+1, and therefore the bound on k is almost optimal. We also
mention that the size of the alphabet q is relatively large, approximately 2(n/ϵ)

2
.

Our construction. Alon [Alo02, Section 3], following the construction of Ruzsa and Sze-
merédi [RS78], provided a construction of a 3-partite graph, with q vertices on each side, that
contains at least q2−ϵ edge-disjoint triangles (that is, every pair of triangles intersects in at most a
single vertex). The construction employs a result of Behrend [Beh46] about the existence of dense
subsets of integers in [q] containing no 3-term arithmetic progressions. Our construction can be
seen as an extension and generalization of Alon’s construction to cliques in n-partite graphs, where
every pair of cliques is allowed to intersect in at most t vertices.

At a high level, we first construct a large set F of size qn−d+1−ϵ containing univariate degree-t
polynomials (over the integers), for t = n − d, that satisfy some special property (*) that will be
discussed shortly. We begin with the standard evaluation-based code C′ in which every polyno-
mial f ∈ F is mapped to the codeword (f(i))i∈[n]. We then consider the n-partite graph H that is
induced by the code, i.e., for every polynomial f ∈ F we place an n-size clique over the n vertices
(1, f(1)), (2, f(2)), . . . , (n, f(n)). Finally, we define our code C based on H , i.e., by taking all the
cliques in H . By design, there are at least |F| = qn−d+1−ϵ such cliques since every polynomial
f ∈ F induces a unique clique. (In fact, any pair of such cliques intersects in at most t vertices
since the polynomials are of degree t). However, the graph H may contain some additional cliques
of size n that are not induced by polynomials in F , and the main challenge is to show that any pair
of cliques of size n intersects in at most t vertices.

In order to extend the argument for general cliques, it suffices to prove that for every clique
R = (i, σi)i∈[n] of size n in H there exists a degree-t polynomial GR(x) that is consistent with R,
i.e., GR(i) = σi for all i ∈ [n]. At a high level, we use the special property (*), to show that every
clique R′ of size t+2 in H is consistent with some degree-t polynomial GR′ . This means that, for every
i ∈ [n], there exists a degree-t polynomial Gi that is consistent with the (t+2)-size sub-clique Ri of
R that contains the first t+1 elements of R plus the ith element. The polynomials G1, . . . , Gn agree
on the first t + 1 inputs and so they are all equal to a single polynomial GR which is consistent
with the n-clique R, as required.

Finally, let us provide some details regarding the structure of the set F . At a high level, the set
consists of degree-t univariate polynomials f(x) = a0 + a1x + . . . + atx

t, where we think of each
ai as a vector vi that corresponds to its unique representation in base b, for some appropriately
chosen integer b. We put two (non-linear) limitations on these vectors: (1) each entry of vi is rel-
atively small, and accordingly (a bounded number of) arithmetic operations over the coefficients
are translated to operations over the vectors; and (2) For every index i, we fix the norm of the
vectors vi in all polynomials to be some value Bi, and for every pair of indices i, j we fix the inner
product vi · vj in all polynomials to be some value Bi,j . Most of the technical work is dedicated
to the proof that this additional level of redundancy allows us to extract a degree-t polynomial
for every t+ 2-size clique. An averaging argument further shows and that there exists a choice of
b, (Bi, Bi,j)i,j for which the set F can be sufficiently large. See Section 2 for full details.

8

1.2 Conflict Decodable Codes

In conflict checkable codes we used the conflict graph to check whether a word belongs to the
code. We extend this definition to conflict-decodability as follows.

Definition 1.4 (Conflict decodable codes). A code C ⊆ [q]n is a t-conflict decodable code if there
exists an algorithm F so that for every word w ∈ [q]n that is at most t-far from a codeword c ∈ C the
following holds. The algorithm F , given the conflict graph of w, returns a set of indices I ⊆ [n] such that c
is the only codeword that satisfies c[i] = w[i] for all i ∈ I .

Remark 1.5 (Reducing error correction to recovery from erasures). We observe that conflict decodable
codes allow us to reduce correction from t errors to recovery from erasures. Indeed, given a word w that is at
most t-far from a codeword c ∈ C, we execute F on the conflict graph of w to obtain the set of indices I , and
for every i ∈ [n] \ I we set the ith entry of w to an erasure, i.e., w[i] = ⊥. Finally, we execute the recovery
from erasures algorithm on (the modified) w to obtain c. Since c ∈ C is the only codeword that satisfies
c[i] = w[i] for all i ∈ I , we are guaranteed to obtain the codeword c. This implies that we can recover from
t errors, so the best one can hope for is t ≤ ⌊(d− 1)/2⌋, where d is the distance of C. By default, we will set
t to ⌊(d− 1)/2⌋.

A sufficient condition for conflict-decodability. It turns out that any conflict-checkable code
that satisfies the following natural local-to-global consistency property is also conflict-decodable.

Lemma 1.6 (checkability and Local-to-global consistency ⇒ decodability). An (n, k, d)q conflict
checkable code C provides local-to-global consistency if for every set I ⊆ [n] of at least n− d+ 1 indices
and every symbols (σi)i∈I , if Gi,j(σi, σj) = 0 for every i, j ∈ I such that i < j, then there exists a codeword
c ∈ C such that c[i] = σi for every i ∈ I .3

Any (n, k, d)q conflict checkable code C that satisfies local-to-global consistency is also t-conflict decod-
able with t = ⌊(d− 1)/2⌋. Moreover, the conflict-decoding algorithm F is efficiently computable.

By Remark 1.5, it follows if the code C is linear (and so one can efficiently compute the conflict
graph and can efficiently decode under erasures), then it also has an efficient (standard) error
correcting algorithm that corrects up to ⌊(d− 1)/2⌋ errors.

Proof of Lemma 1.6. Let w be a noisy codeword with distance at most ⌊(d− 1)/2⌋ from a codeword
c ∈ C, and let K be the inconsistency graph of w. Given an input K, the conflict decoder F finds
a 2-approximation vertex cover E in K and outputs I := [n] \ E. The vertex cover is chosen by
running the classic efficient greedy algorithm that repeatedly picks an edge, adds its two vertices
to the vertex cover and removes them from the graph (see, e.g., [CLRS09, Section 35.1]).

The analysis is straightforward. Every edge in K is incident on at least one vertex that corre-
sponds to a noisy entry, so the noisy entries form a vertex cover of size at most ⌊(d− 1)/2⌋. There-
fore, the size of E is at most d− 1, and at most |E|/2 ≤ (d− 1)/2 of the vertices in E correspond to
non-noisy entries in w. Recall that the total number of non-noisy entries is at least n−⌊(d− 1)/2⌋,
and so the number of non-noisy entries in I is at least (n − ⌊(d− 1)/2⌋) − (d − 1)/2 ≥ n − d + 1.
Since all entries in I are pairwise consistent, the local-to-global consistency implies that there ex-
ists a unique codeword that agrees with all entries in I , and since at least n− d+ 1 entries in I are
non-noisy, this codeword has to be c. This concludes the proof of the lemma.

3Since the distance is d, the codeword c has to be unique.

9

We do not know whether the code from Theorem 1.3 satisfies local-to-global consistency. We
construct conflict decodable codes by showing that codes that are based on bivariate polynomials
satisfy local-to-global consistency.

1.2.1 Conflict Decodable Codes from Symmetric Bivariate Polynomials

A natural way of obtaining dependency among pairs of entries of a codeword is by considering
the restriction of multivariate polynomials into linear subspaces. Indeed, this method appears in
the literature of probabilistic checkable proofs (see, e.g., [FGL+91, AS98, ALM+98]) and locally
testable codes (see, e.g., [RS92, RS97, BDN16]), as well as in the cryptographic literature, in the
context of verifiable secret sharing (see, e.g., [BGW88, CDM00, KKK09]). In fact, locally testable
codes based on tensoring (see, e.g., [BSS04, Mei08]) can be seen as generalizations of these ideas.

We show that this approach also applies for the construction of conflict decodable codes, by
considering the following code, that appears implicitly in [CDM00, KKK09]. Let Fp be a finite field
of size p ≥ n, let 1, . . . , n be n distinct non-zero field elements, and let 1 ≤ ℓ < n be an integer.
Consider the following code,

Cbivariate =

{
(F (x, 1), . . . , F (x, n))

∣∣∣∣∣ F is a symmetric bivariate polynomial
of degree at most ℓ in each variable

}
,

where every codeword c ∈ Cbivariate corresponds to some symmetric bivariate polynomial F (x, y)
of degree at most ℓ in each variable, and the i-th entry of c is the degree-ℓ univariate polynomial
c[i] = F (x, i) that is obtained from F (x, y) via the substitution y = i. Such univariate polynomials
can be naturally represented as vectors in Fℓ+1

p . In Section 4.3 we prove the following theorem.

Theorem 1.7. The code Cbivariate is a linear4 [n, k = (ℓ + 2)/2, d = n − ℓ]q conflict checkable code that
satisfies local-to-global consistency, with alphabet q = pℓ+1.

Therefore, by Lemma 1.6 the code Cbivariate is a t-conflict decodable code for t = ⌊(n− ℓ− 1)/2⌋.
In Section 4.3 we generalize this construction and show how to derive conflict-decodable codes by
restricting a symmetric multilinear map according to the generating matrix of an arbitrary linear
MDS code. Our framework generalizes and extends the secret-sharing construction of [PC12,
Section 3.2.3] which, in turn, is based on [CDM00].

Comparison-based codes. The code Cbivariate satisfies a special property: if fi(x) is the ith en-
try, and fj(x) is the jth entry, then the ith entry is consistent with the jth entry if and only if
fi(j) = fj(i). In other words, in order to compute the conflict function Gi,j the servers i and j
just need to apply an equality-check between a pair of locally-computable values. This feature,
denoted comparison-based conflicts, simplifies the computation of conflicts, and will play an impor-
tant role later when presenting the cryptographic applications. It is not hard to show that every
linear conflict-decodable code supports comparison-based conflicts (see Section 4.2). The use of
comparison-based conflicts, induces additional redundancy as, at least intuitively, each bit of in-
formation appears in 2 copies. By using tools from information theory, we formalize this intuition

4In this paper we refer to a code as linear if given an information word w ∈ Fk′
, the i-th entry of the codeword can

be obtained via a linear transformation. This is a generalization of the standard notion of linear codes, and therefore
the dimension is not necessarily integral. See Section 4.2 for more details.

10

and prove in Section 4.1 that the combination of comparison-based conflicts and local-to-global
consistency degrades the achievable rate by a factor of 2, compared to MDS codes.

Theorem 1.8. For every (n, k, d)q comparison-based conflict checkable code with 1 < d < n that satisfies
local-to-global consistency, it holds that k ≤ n−d+2

2 . In particular, the bound holds for any linear conflict
checkable code that satisfies local-to-global consistency.

Observe that our code Cbivariate satisfies the theorem’s conditions and “half-meets” the Single-
ton bound, i.e., it satisfies k = (n − d + 2)/2, and so, by Theorem 1.8, it achieves an optimal rate.
Recall that our conflict-checkable code from Theorem 1.3 is an almost-MDS code and so it bypass
the above bound. Indeed, the code is not comparison-based and is not known to achieve local-
to-global consistency. We conjecture that the former property is the important one and that the
bound from Theorem 1.8 can be bypassed by some conflict checkable code with local-to-global
consistency. Observe that this conjecture holds for the special case of d = n− 1 since, in this case,
the conflict checkable code from Theorem 1.3 trivially satisfies local-to-global consistency (any
pair of consistent entries must be consistent with a unique codeword).

1.3 Robust Conflict Decodable Codes

Robust conflict decodable codes extend conflict decodable codes in two orthogonal ways: They
provide some guarantees even when the noisy codeword is far from the code and even when the
conflict graph is corrupted. Roughly, the first case corresponds to a scenario where the writer who
stored the information on the servers was malicious and the second one deals with the case where
some of the servers are malicious. The code should handle these two cases simultaneously, i.e.,
cope with a malicious coalition that includes a bad writer and up to t servers. Details follow.

Consider the scenario where a writer distributes some information x ∈ [q]n among n remote
servers, where the ith server holds x[i]. Supposedly, the information is coherent, i.e., it corre-
sponds to a codeword c ∈ C where the ith server holds the ith entry x[i] = c[i]. Next, an honest
reader wishes to read the information, and to save bandwidth, she first asks the servers to pair-
wise compare their data and then publish the conflict graph. The reader inspects the graph and
should apply some form of decoding that should be robust even in the setting where the writer
and a subset B ⊆ [n] of at most t servers is corrupted by an adversary. This means that the stored
vector x may be far from the code, and that instead of seeing the conflict graph K(x) of x, the
reader only sees a modified version in which the adversary can fully add/remove edges that are
incident to B. (Since the servers in B may lie about their conflicts.)

To cope with this situation, we relax the output of the decoder and, instead of asking her to
output a single set I of non-noisy entries, she is allowed to output a list of vertex subsets, L, where
we think of each set E ∈ L as an “explanation” or a “guess” for the set of corrupt servers. Ac-
cordingly, E is a subset of [n] of size at most t. We make the following requirements: (1) (Validity)
Every pair of honest servers outside the explanation has to be consistent. (2) (Unique decoding for
honest writer) If the writer is honest and wrote a codeword c, then, no matter which explana-
tion E is chosen from the list, the content of the honest servers outside E uniquely determines c.
Specifically, we can access the content of the servers outside E, and, assuming that bad servers
can be identified via such an access (e.g., by some cryptographic mechanism or by inspecting
their internal state), we can recover the stored codeword c. (3) If the writer is malicious, then for
every explanation in the list E, the honest parties outside the explanation uniquely define some
codeword c′ ∈ C that may vary across different explanations. This effectively means that even a

11

malicious writer is forced to write some codeword. (We will later discuss a stronger variant that
guarantees that all explanations correspond to the same codeword.) Finally, it will be useful to
strengthen Requirement (2) for an honest writer, and additionally require the existence of at least
one explanation in the list containing only corrupt parties. Intuitively, this property allows us to
support multiple write operations that were either employed by the same writer or by different
writers. Indeed, if the writers are all honest, we can find a common t-size subset E that covers, in
each list of explanations Li, at least one explanation Ei ∈ Li, and so we can access the servers in
E and properly decode all the codewords.

We continue with a formal definition of robust conflict deocdable codes.

Definition 1.9 (Robust conflict decodable codes). Let C ⊆ [q]n be a code whose conflict functions are
G = (Gi,j)1≤i<j≤n. For a vector x ∈ [q]n (not necessarily a codeword) and for a set B ⊆ [n], we say that a
graph K is B-corrupt with respect to x, if K can be obtained from the conflict graph K(x) of x by adding
and removing only edges that are incident on at least one vertex of B.

For an integer 0 ≤ t ≤ n, we say that C is a t-robust conflict decodable code if there exists a function
E , called the conflict-decoder function, such that for every vector x ∈ [q]n, every set B ⊆ [n] of size
at most t, and every graph K that is B-corrupt with respect to x, the conflict-decoder function E takes the
graph K and returns a (possibly empty) explanation-list L where every E ∈ L is a subset of [n] of size at
most t and the following holds.

• (Validity of explanations) For every explanation E in L, and every pair i, j in H := [n] \ B for
which Gi,j(x[i],x[j]) = 1, either i ∈ E or j ∈ E (or both). That is, every explanation forms a vertex
cover of the graph K[H] that is obtained by restricting K the set of the honest locations.

• (Good inputs) If there exists a codeword c ∈ C such that x[i] = c[i] for every i ∈ H, then (1)
there exists an explanation E that is a subset of B (in particular L is not empty), and (2) for every
explanation E, the codeword c is the only codeword that satisfies x[i] = c[i] for all i ∈ H \ E.

• (Bad inputs) If there is no codeword c ∈ C such that x[i] = c[i] for every i ∈ H, then either L is
empty, or for every explanation E there exists a unique codeword c ∈ C such that x[i] = c[i] for all
i ∈ H \ E.

Note that the decoder is allowed to output an empty list of explanations if he “catches” a
cheating writer.

On the guarantees for bad inputs. In Definition 1.9, when the inputs of the honest servers are
bad (i.e., they are inconsistent with every codeword), different explanations can define different
codewords. One could suggest a stronger definition, where there exists a codeword c, that is
consistent with every explanation:

(Strong guarantees for bad inputs) If there is no codeword c ∈ C such that x[i] = c[i] for
every i ∈ H, then either L is empty, or there exists a unique codeword c ∈ C such that for
every explanation E, only the codewrod c satisfies c[i] = x[i] for all i ∈ H \ E.

In Appendix A.1 we prove that a t-robust conflict decodable code (as per Definition 1.9) satisfies
the strong definition if and only if d ≥ 3t+ 1, as summarized in the following lemma.

Lemma 1.10. Let C be an (n, k, d)q t-robust conflict decodable code. Then C satisfies the strong guarantees
for bad inputs if and only if d ≥ 3t+ 1.

12

1.3.1 Inefficient Robust-Decoding

It turns out that, just like in (non-robust) conflict decodable codes, the construction of robust con-
flict decodable codes can be reduced to the construction of a conflict checkable code that satisfies
local-to-global consistency. However, unlike the case of non-robust decoding, here the generic
conflict-decoder is not necessarily efficient: it is required to find all t-vertex covers in a graph,
a task that, under standard computational complexity assumptions, takes time exponential in
t = Ω(n) [CJ03, IPZ01].

Lemma 1.11. Let C be an (n, k, d)q conflict checkable code that satisfies local-to-global consistency. Then
C is t-robust conflict decodable code for t = ⌊(d− 1)/2⌋.

At a high level, we let the conflict-decoder find all vertex covers of size at most t, and output
them as the explanations. This ensures that validity of explanations holds, and if the inputs are
good then at least one explanation contains only corrupt servers, as they form a vertex cover of
size at most t. One can verify that the rest of the requirements follow as well, by using the fact that
C satisfies local-to-global consistency. The full proof is deferred to Appendix A.

In the appendix we also prove that the conditions in Lemma 1.11 are in fact necessary. Namely,
for every 0 ≤ t ≤ n, if a code C is t-robust conflict decodable then (1) it must be conflict checkable
and t-conflict decodable; (2) the best achievable robustness t is (d − 1)/2 where d is the code’s
distance; and (3) in such a case the code must also satisfy the local-to-global consistency property.
By combining this with Theorem 1.8 we derive a Singleton-type bound for comparison-based t-
robust conflict decodable code.

Lemma 1.12. Let C be an (n, k, d)q comparison-based t-robust conflict decodable code, with 1 < d < n
and 1 ≤ t ≤ ⌊(d− 1)/2⌋. Then k ≤ (n− 2t+ 1)/2.

Proof. Since d ≥ 2t + 1, we can think of C as an (n, k, d′ := 2t + 1)q comparison-based t-robust
conflict decodable code. This code is conflict chekcable (Lemma A.2) and it satisfies local-to-global
consistency with respect to d′ (Lemma A.4), and so, by Theorem 1.8 it holds that k ≤ (n−d′+2)/2 =
(n− 2t+ 1)/2, as required.

Recall that the bivariate code Cbivariate is a linear [n, k = (ℓ + 2)/2, d = n − ℓ]q=pℓ+1 , conflict
checkable code with local-to-global consistency, and is therefore comparison-based t-robust con-
flict decodable code with robustness t = ⌊(n− ℓ− 1)/2⌋. This is optimal by Lemma 1.12. (When d
is odd, k = (n− 2t+ 1)/2, and when d is even k = (n− 2t)/2.)

Remark 1.13 (Efficient conflict-decoder for sub-optimal parameters and the relation to secret-shar-
ing). While Cbivariate provides an optimal construction, its generic conflict-decoder is inefficient and requires
time poly(2t, n), as discussed above. However, it turns out that if we think of C as a t-robust conflict de-
codable code for a sub-optimal threshold t = ⌊(n− ℓ− 1)/3⌋, then we can obtain a code with a conflict-
decoder that runs in time polynomial in n and t. (See Section 4.3.4 for more details.)

Unfortunately, such sub-optimal dependency between the rate and the robustness falls short of pro-
viding the desired applications. More accurately, our cryptographic applications require efficient t-robust
decoding with robustness as good as t = ⌊(n− ℓ− 1)/2⌋ where ℓ is the individual degree of the underlying
polynomials. Roughly speaking, we will use the code to construct a secret sharing scheme (similarly to
Shamir’s scheme [Sha79]) and so the degree parameter ℓ will correspond to the privacy threshold. (A secret
will be embedded in a codeword such that any group of ℓ servers learn nothing on the secret.) Since we will
be interested in the setting where the adversary corrupts up to n/3 servers, we will have to take ℓ, t ≥ n/3,
which prevents us from using the sub-optimal version mentioned above.

13

1.3.2 Quasipolynomial-Time Conflict-Decoder from Trivariate Polynomials

Let Fp be a finite field of size p ≥ n, let 1, . . . , n be n distinct field elements, and let 1 ≤ ℓ < n be an
integer. Consider the code,

Ctrivariate =

{
(F (x, y, 1), . . . , F (x, y, n))

∣∣∣∣∣ F is a symmetric trivariate polynomial
of degree at most ℓ in each variable

}
,

where every codeword c ∈ Ctrivariate corresponds to some symmetric trivariate polynomial
F (x, y, z) of degree at most ℓ in each variable, and the ith entry of c is the symmetric bivariate
polynomial c[i] = F (x, y, i). In Section 4.3.5 we prove the following theorem.

Theorem 1.14. The code Ctrivariate is an [n, k = (ℓ+ 3)/3, d = n− ℓ]q comparison-based t-robust conflict
decodable code for t = ⌊(n− ℓ− 1)/2⌋, with alphabet q = p(ℓ+2)(ℓ+1)/2 and a conflict-decoder algorithm
that runs in time tO(log t) · poly(n).

While the generic conflict-decoder has exponential dependency in t, the conflict-decoder of
Ctrivariate has only quasipolynomial dependency in t, which is an almost-exponential improvement.
Following Remark 1.13, we mention that the code Ctrivariate can be used for (ℓ + 1)-out-of-n secret
sharing. To embed a secret s in a codeword, pick a random symmetric trivariate polynomial
F (x, y, z) of degree at most ℓ in each variable conditioned on F (0, 0, 0) = s, and distribute the
corresponding codeword c by giving the symbol c[i] to the i-th server.

The conflict-decoder. We continue with a high-level description of the conflict-decoder. Recall
that, given the conflict graph K, the generic inefficient conflict-decoder of Lemma 1.11 simply
outputs all t-vertex covers of K as the explanations. To obtain an efficient conflict-decoder, we
observe that the conflict graph is structured. Specifically, the key observation is that if a pair of
honest servers, i and j, are conflicted, then the set of honest servers that are conflicted with either
i or j is large and contains at least (n − t) − ℓ honest servers (including i and j). Indeed, every
honest server k that is consistent with both i and j, induces some partial agreement between i
and j of the form fi(k, j) = fj(k, i) where fi and fj are the symmetric bivariate polynomials that
are being held by the ith and jth servers, respectively. Thus, if there are ℓ + 1 honest servers that
are consistent with both i and j, then i and j cannot be conflicted (since their residual degree-ℓ
univariate polynomials, fi(·, j) and fj(·, i), agree). Getting back to the conflict graph, if an edge
(i, j) appears between two honest servers, then their the joint neighborhood |N(i)∪N(j)| must be
large, i.e.,

|N(i) ∪N(j)| ≥ n− t− ℓ = d− t ≥ t+ 1. (1)

Based on this observation, we start by removing all edges (i, j) that do not satisfy (1) and derive
a subgraph K′. Since we remove only edges that are incident to at least one corrupt server, we
can focus on K′. (The requirements from the explanations address only the edges between honest
parties.) After this “cleaning” process we are left with a graph that each of its edges has large
neighborhood as in (1); we refer to such a graph as t-edge-neighborhood graph. In Section 3 we
show that, by using a variant of the classic search-tree algorithm, it is possible to find all t-vertex
covers in such graphs in time tO(log t) · poly(n). Roughly speaking, we repeatedly choose a vertex
of degree at least (t+1)/2 and recursively branch by placing either the vertex or all its neighbours
into the vertex cover. The latter step leads to t′-edge-neighborhood graph in which we need to

14

find all t′-vertex covers for t′ ≤ (t + 1)/2. Therefore each path in the recursion tree can contain at
most O(log t) such steps, which essentially implies the desired bound. As an additional result, we
also show how to find a (1 + ϵ)-approximation of t-vertex covers in polynomial time, which will be
important for our applications. The question of finding an exact vertex cover in polynomial-time
algorithm in such graphs remains as an interesting open question.

Remark 1.15 (Comparison to Raz-Safra and Ben-Sasson-Sudan). Closely related arguments appear
in the literature of probabilistic checkable proofs and locally testable codes codes [RS97] (see also the work
of [BSS04] in the context of tensoring). Specifically, the a closely-related variant of t-edge neighborhood
graph property was employed in these works to derive a better soundness error of a local test, i.e., to derive
better information-theoretic bounds on the structure of the code. In contrast, we use t-edge neighborhood
graph in order to reduce the computational complexity of the conflict-decoder, i.e., we use this extra
combinatorial structure in order to obtain an algorithmic result.

1.4 Application: The Round Complexity of Secure Multiparty Computation

In secure multiparty computation (MPC) with information-theoretic security there are n parties who
wish to compute a function of their joint inputs at the presence of a computationally-unbounded
active (aka Byzantine or malicious) rushing adversary that controls up to t of the parties. We
follow the standard convention [BGW88] and assume that each pair of parties is connected by
a secure and authenticated point-to-point channel, and that all parties have access to a common
broadcast channel.

Applebaum et al. [AKP20] provided a three-round protocol for general MPC in the regime of
strong honest majority, where t ≤ (n − 1)/3. This setting is of special interest since three rounds
are necessary for any non-trivial resiliency threshold (t ≥ 2) [GIKR02], and since the best achiev-
able threshold in three rounds is t ≤ (n − 1)/3 [AKP20]. However, the protocol of [AKP20] has
exponential dependency on the number of corrupt parties t. (These results are still meaningful since
their protocol is secure even against a computationally-unbounded adversary.)

Our results. We note that the core combinatorial ingredient in the above construction (as well
as in previous ones) is a robust conflict decodable code. Indeed, [AKP20] implicitly use the code
Cbivariate that supports only exponential-time robust conflict decoding, and accordingly suffer from
exponential overhead. In this work, we show that by replacing Cbivariate with Ctrivariate, we can
obtain a protocol that has quasipolynomial dependency on n. Formally, we prove the following
theorem.

Theorem 1.16. Every n-party functionality F , represented as a boolean circuit of size s and depth d, can
be realized by a 3-round protocol that provides statistical security against a static, active, rushing adversary
corrupting up to t < n/3 of the parties. The complexity of the protocol is poly(tlog t, n, s, 2d).

As in all known constructions of constant-round information-theoretic MPC, our protocol has
an exponential dependency on the depth d of the circuit. Getting rid of this dependency, even
in weaker adversarial models (e.g., passive adversary and resiliency of t = 1), is a famous open
problem that goes back to [BMR90].

In addition, for almost-optimal resiliency of t ≤ n/3.01, we can obtain protocol that has poly-
nomial dependency on n. Formally, we prove the following theorem.

15

Theorem 1.17. For every constant ϵ > 0, every n-party functionality F , represented as a boolean circuit
of size s and depth d, can be realized by a 3-round protocol that provides statistical security against a static,
active, rushing adversary corrupting up to t of the parties, where t ≤ n/(3 + ϵ). The complexity of the
protocol is poly(n, s, 2d).

Our main technical contribution is a 2-round protocol for statistically-secure verifiable secret
sharing (VSS), that has quasipolynomial dependency on t for optimal resiliency, and polynomial
dependency on t for almost-optimal resiliency. We continue with a toy version, that highlights the
main ideas in the construction.

Toy version: very-weak VSS. For simplicity, let us consider the following specialized version of
VSS. A distinguished player, called the dealer, holds a symmetric trivariate polynomial F (x, y, z)
of degree at most t in each variable, and wants to let the ith party learn the bivariate polynomial
F (x, y, i), and nothing else. We require the following weak correctness property, that should hold
even if the dealer and up to t parties are corrupted: At the end of the protocol there exists a subset
I of 2t + 1 parties so that every i ∈ I outputs F ′(x, y, i) for some degree-t polynomial F ′ that
is consistent with the dealer’s polynomial if the dealer is honest. The rest of the honest parties
(outside I) output a special failure symbol ⊥. Our goal is to design a secure 2-round protocol for
this task.

The polynomial F (x, y, z) corresponds to a codeword c of the [n, k = (t + 3)/3, d = n − t]q
t-robust conflict decodable code Ctrivariate, where for the robustness parameter we used the fact
that n ≥ 3t + 1 so (d − 1)/2 ≥ t. As we want to let the ith party learn c[i] = F (x, y, i), in the first
round of the protocol we simply let the dealer send c[i] to i, and denote by fi(x, y) the bivariate
polynomial that i received. From now on, we think of the ith party as the ith server that holds c[i],
and of the corrupt parties as the corrupt servers.

In the second round our goal is to perform a secure public consistency check among the parties
in order to obtain the conflict graph. To do so, we strongly use the fact that Ctrivariate is a comparison-
based code, and let every pair of parties (i, j) do the following: (1) in the first round, we let i
and j exchange a random univariate degree-t polynomial ri,j(x), that will be used as a one-time
pad; and (2) in the second round, the i-th party broadcasts the univariate polynomials bi,j(x) :=
fi(x, j) + ri,j(x), and the jth party broadcasts bj,i(x) := fj(x, i) + ri,j(x). Given these values every
party can tell whether these two parties are in conflict or not without learning anything on the
actual content of their polynomials. Indeed, here we see the importance of comparison-codes:
they allow to publish consistency check in a secure and round-efficient way! Of course, if one of the
parties, i or j, is corrupt, she can effectively decide whether to generate a conflict or not.

After the second round, the parties locally compute the conflict graph, execute the conflict-
decoder of Ctrivariate, choose some canonical explanation E of size at most t, and let I := [n] \ E be
the complement set. If no explanation exists (which, by guarantees for good inputs, occurs only if
the dealer is corrupt) then the parties conclude that the dealer is corrupt, and output some default
polynomial (say, the all-zero polynomial). Otherwise every i ∈ I outputs fi(x, y) while every
i ∈ E output ⊥. Observe that |I| = n − |E| ≥ 2t + 1, and that the guarantees of the robust code
imply that even if the dealer is corrupt, the polynomials fi(x, y) of all honest parties in I uniquely
define some symmetric trivariate polynomial F (x, y, z) of degree at most t in each variable. We
mention that in previous works [AKP20], that were implicitly based on the code Cbivariate, this step
required exponential time because of the use of the generic conflict-decoder; in contrast, by using
the efficient decoder of Ctrivariate we can obtain a quasipolynomial-time protocol!

16

In order to obtain a full-fledged VSS, we further exploit the guarantees of the robust code. For
example, we need to use the fact that if a the dealer is honest, then there exists some explanation
that contains only corrupt parties. See Section 5 for full details. Let us mention that the use
of trivariate polynomials (or more generally codes with efficient robust conflict-decoder) is new
in this context, and may open the door to additional applications. Indeed, a followup work of
Abraham, Asharov, and Patra already employed our tools to derive new results in asynchronous
secret sharing [AAP23].

Organization. The rest of the paper is organised as follows. Section 2 is devoted to the con-
struction of an almost-MDS conflict checkable code. In Section 3 we study the notion of t-
edge-neighborhood graphs and present efficient algorithms for finding all vertex covers in such
graphs. Comparison-based codes are studied in Section 4 including Singleton-type bounds (Sec-
tion 4.1), the relation to linear codes (Section 4.2), and a general framework for the construction
of comparison-based robust conflict decodable codes from any linear MDS codes (Section 4.3).
Finally, in Section 5 we present the applications of robust conflict decodable codes to secure mul-
tiparty computation.

Acknowledgement. We thank Arpita Patra for various discussions on verifiable secret sharing,
Dana Ron for pointing us to the work of Alon [Alo02], and Oded Goldreich for comments about
the relation to locally testable codes. We are especially grateful to Irit Dinur for sharing with us
her insights about locally testable codes, and for pointing out the relation to [RS97] and [BSS04].

2 Construction of Almost-Optimal Conflict Checkable Codes

In this section we prove Theorem 1.3, that we repeat here.

Theorem 2.1 (Theorem 1.3 restated). For every integers n ≥ 3 and 2 ≤ d ≤ n−1, and every ϵ > 0, there
exists an integer q = q(n, d, ϵ) for which there exists an (n, k, d)q conflict checkable code for k ≥ n−d+1−ϵ.

To prove the theorem, we first need the following lemma.

Lemma 2.2 (Main lemma). For every integers n ≥ 3 and 1 ≤ t ≤ n− 2, and every ϵ > 0, there exists an
integer M = M(n, t, ϵ), such that for any integer m ≥ M there exists a set F of degree-t polynomials with
coefficients in {0, . . . ,m}, of size at least

|F| ≥ mt+1−ϵ

so that for every indices η1, . . . , ηt+2 ∈ [n], every elements y1, . . . , yt+2 ∈ Z, and every
(
t+2
2

)
polynomials

(fℓ,r)1≤ℓ<r≤t+2 in F that are not necessarily distinct, where fℓ,r satisfies fℓ,r(ηℓ) = yℓ and fℓ,r(ηr) = yr,
it holds that there exists a degree-t polynomial G(x) such that G(ηi) = yi for all i ∈ [1, . . . , t+ 2].

Lemma 2.2 is proved in Section 2.1. We continue with the proof of Theorem 2.1 given the
lemma.

Proof of Theorem 2.1. Let t = n − d and ϵ′ = ϵ/2, and let M be the integer promised by Lemma 2.2
when applied with (n, t, ϵ′), let m ≥ M be an integer that will be set later, and let F be the promised
set of degree-t polynomials with coefficients in {0, . . . ,m} of size at least mt+1−ϵ′ . Let q = (m +
1) · (t+ 1) · nt, and consider the n-partite graph G = (V1, . . . , Vn, E), where |Vi| = q, and the edges

17

are defined as follows: for every f ∈ F create a clique among the vertices (i, f(i))i∈[n]. Let C be the
code defined as follows: a word c ∈ [q]n is in C if and only if the vertices (i, c[i])i∈[n] form a clique
in G. Then by Claim 1.2 the code C is a conflict checkable code.

We continue by proving that C is an (n, k, d)q conflict checkable code for k ≥ n − d + 1 − ϵ.
Observe that C has length n and alphabet of size q, and therefore it only remains to analyze the
dimension k and the distance d.

The dimension. Since all polynomials in F are of degree t ≤ n − 2, every two polynomials
may agree on at most n− 2 points, and therefore those polynomials create distinct codewords, so
|C| ≥ |F|. Observe that m ≥ q

2nt(t+1) , and the dimension of the code is

k ≥ logq |F| ≥ logmt+1−ϵ′

log q
≥ (t+ 1− ϵ′)− (t+ 1− ϵ′)

log(2nt(t+ 1))

log q
.

Recall that q = (m + 1) · (t + 1) · nt and so, by taking m to be large enough, we can ensure that
(t+ 1− ϵ′) log(2n

t(t+1))
log q ≤ ϵ/2, which implies that k ≥ t+ 1− ϵ, as required.

The distance. Let c1, c2 ∈ C be two distinct codewords. If these codewords correspond to a pair
of polynomials f1, f2 ∈ F then they can agree on at most t locations (since the polynomials are of
degree t) and so they must be of distance at least d = n− t, as required. We extend this argument
for general codewords (that are induced by cliques in G) by showing that every codeword in C
corresponds to an evaluation of some degree t polynomial G (that may not be a member of F) and
every pair of distinct codewords can agree on at most t locations. Details follow.

Fix a codeword c ∈ C. By definition, the vertices (i, c[i])i∈[n] form a clique. For every 1 ≤ ℓ <
r ≤ n, and every edge ((ℓ, c[ℓ]), (r, c[r])) there exists a polynomial fℓ,r(x) ∈ F that satisfies fℓ,r(ℓ) =
c[ℓ] and fℓ,r(r) = c[r]. Consider the sub-clique (i, c[i])i∈[t+2], and observe that, by Lemma 2.2, there
exists a degree-t polynomial G(x) that satisfies G(i) = c[i] for all i ∈ [t+ 2]. In addition, for every
j > t + 2, let Sj := {1, . . . , t + 1} ∪ {j}, and note that by Lemma 2.2, there exists a degree-t
polynomial Gj(x) that satisfies Gj(i) = c[i] for all i ∈ Sj . Therefore Gj and G agree on at least
t + 1 points, so necessarily Gj = G. We conclude that G(i) = c[i] for all i ∈ [n], as required. This
concludes the proof of the theorem.

2.1 Proof of Lemma 2.2

Let d, (Bi)i∈[t], (Bi,i′)1≤i<i′≤t, M and m ≥ M be integers that will be determined later, and let

L :=
⌊
logm
log d

⌋
− 1. Define

F :=

a0 + a1x+ . . .+ atx
t

∣∣∣∣∣∣∣∣∣
a0 ∈ {0, . . . ,m}
∀i ∈ [t], ai =

∑L
j=0 αi,j · dj , where 0 ≤ αi,j <

d
2nt·(n−1)·t2 is an integer,

∀i ∈ [t],
∑L

j=0 α
2
i,j = Bi,

∀1 ≤ i < i′ ≤ t,
∑L

j=0 αi,j · αi′,j = Bi,i′ .

 .

For every f ∈ F such that f(x) =
∑t

i=0 aix
i, and every i ∈ [t], it holds that

ai =

L∑
j=0

αi,j · dj ≤
L∑

j=0

(d− 1) · dt = (d− 1) · d
L+1 − 1

d− 1
≤ dlogd(m) = m,

18

so all the coefficients of f are indeed in {0, . . . ,m}. For i ∈ [t], it will be convenient to think of ai
as the vector (αi,0, . . . , αi,L) that corresponds to its unique representation in base d. Our goal is to
prove that the set F satisfies the lemma, and the rest of the proof is organized as follows. First, we
deal with the size of the set F and prove the following claim.

Claim 2.3 (Size of F). There exists a choice of d, (Bi)i∈[t], (Bi,i′)1≤i<i′≤t and M such that for every integer
m ≥ M the set F has size at least |F| ≥ mt+1−ϵ.

Claim 2.3 is proved in Section 2.1.1. Fix d, (Bi)i∈[t], (Bi,i′)1≤i<i′≤t and m ≥ M according to
Claim 2.3. Fix any η1 < η2 < . . . < ηt+2, any elements y1, . . . , yt+2, and any

(
t+2
2

)
polynomials

(fℓ,r)1≤ℓ<r≤t+2 in F , where fℓ,r satisfies fℓ,r(ηℓ) = yℓ and fℓ,r(ηr) = yr. Denote fℓ,r(x) =
∑t

i=0 a
ℓ,r
i ·

xi, and for every i ∈ [t] denote aℓ,ri =
∑L

j=0 α
ℓ,r
i,j · di. Then, it only remains to prove the following

claim.

Claim 2.4. There exists a degree-t polynomial G(x) such that G(ηi) = yi for all i ∈ [1, . . . , t+ 2].

The rest of the section is organized as follows. In Section 2.1.1 we prove Claim 2.3. Then, in
Section 2.1.2 we analyse some properties that the (vector-representation of the) coefficients aℓ,ri
satisfy. Then, in Section 2.1.3 we use those properties in order to prove Claim 2.4. At a high
level, we do so by interpolating the t + 2 points (η1, y1), . . . , (ηt+2, yt+2) to obtain a polynomial
G(x) = g0 + g1x+ . . .+ gt+1x

t+1 that satisfies G(ηi) = yi for all i ∈ [t+ 2], and then we prove that
gt+1 = 0 by using the vector representation of the coefficients.

2.1.1 Proof of Claim 2.3: The Size of F

In this section we prove Claim 2.3. There are m+1 potential values for a0, and at least
⌊

d
2nn+2

⌋L+1

potential values for ai for any i > 0. Therefore, the number of potential polynomials is at least

m ·
⌊

d

2nn+2

⌋(L+1)·t
≥ mt+1

d2n · (2nn+2)(L+1)n
.

For each of the B’s, the number of potential values is at most (L + 1)
(

d
2nt·(n−1)·t2

)2
≤ (L + 1)d2,

and the number of B’s is t +
(
t
2

)
≤ t2 ≤ n2. Therefore, there exists a choice of the B’s so that the

set F has size at least

|F| ≥ mt+1

d2n · (2nn+2)(L+1)n
·
(

1

(L+ 1)d2

)n2

.

Set d = 2
√
logm to obtain

|F| ≥ mt+1

214n2 logn
√
logm

= m
t+1− 14n2 logn

√
logm

logm = m
t+1− 14n2 logn√

logm ,

and therefore, for M := ⌈2(14n2 logn)/ϵ)2⌉ and every m ≥ M we have that |F| ≥ mt+1−ϵ, as required.
This concludes the proof of Claim 2.3.

19

2.1.2 Some Basic Properties

For every 1 ≤ ℓ < r ≤ t+ 2 define bℓ,r :=
∑t

i=1 a
ℓ,r
i ·

∑i−1
k=0 η

k
ℓ · ηi−1−k

r . As we will see, bℓ,r appears
naturally in the interpolation of the t+2 points (η1, y1), . . . , (ηt+2, yt+2), and therefore we dedicate
this section to the study of (the vector representation of) those terms.

To simplify notation we let Γ(ℓ, r, i) :=
∑i−1

k=0 η
k
ℓ · ηi−1−k

r , so bℓ,r =
∑t

i=1 a
ℓ,r
i · Γ(ℓ, r, i). The

simple identity in Fact 2.5 implies that ((ηr)i − (ηℓ)
i) = Γ(ℓ, r, i) · (ηr − ηℓ) for every i ∈ [t].

Fact 2.5. For every positive integer n it holds that (xn − yn) = (x− y)(
∑n−1

i=0 xiyn−1−i).

We continue by analysing the vector representation of bℓ,r.

The vector representation of bℓ,r. For every j ∈ {0, . . . , L} it holds that

t∑
i=1

αℓ,r
i,j ·

i−1∑
k=0

ηkℓ · ηi−1−k
r <

d

2nt · (n− 1) · t2
· t2 · nt =

d

2(n− 1)
< d, (2)

so the unique representation of bℓ,r in base d is given by the vector vℓ,r := (
∑t

i=1 α
ℓ,r
i,0 ·

Γ(ℓ, r, i), . . . ,
∑t

i=1 α
ℓ,r
i,L · Γ(ℓ, r, i)). The rest of this section is dedicated to the analysis of the norm

and the inner product of the vectors vℓ,r: In Claim 2.6 we analyse the ℓ2-norm of vℓ,r, and in
Claim 2.7 we analyse inner products of the form v1,h · v1,j for 1 < h < j ≤ t+ 2.

Claim 2.6 (ℓ2-norm of vℓ,r). For every 1 ≤ ℓ < r ≤ t+ 2 it holds that

∥∥∥vℓ,r
∥∥∥2
2
=

t∑
i=1

Γ(ℓ, r, i)2 ·Bi + 2
∑

1≤k<i≤t

Γ(ℓ, r, k)Γ(ℓ, r, i) ·Bk,i.

Proof. A direct calculation shows that

∥∥∥vℓ,r
∥∥∥2
2
=

L∑
j=0

(
t∑

i=1

αℓ,r
i,j · Γ(ℓ, r, i)

)2

=
t∑

i=1

Γ(ℓ, r, i)2 ·
L∑

j=0

(αℓ,r
i,j)

2 + 2
∑

1≤k<i≤t

Γ(ℓ, r, k)Γ(ℓ, r, i)
L∑

j=0

αℓ,r
i,j · α

ℓ,r
k,j

=

t∑
i=1

Γ(ℓ, r, i)2 ·Bi + 2
∑

1≤k<i≤t

Γ(ℓ, r, k)Γ(ℓ, r, i) ·Bk,i,

where we used the fact that
∑L

j=0(α
ℓ,r
i,j)

2 = Bi for all i ∈ [t], and
∑L

j=0 α
ℓ,r
i,j · αℓ,r

k,j = Bk,i for all
1 ≤ k < i ≤ t. This completes the proof of the claim.

Claim 2.7 (Inner product). For every 1 < h < j ≤ t+ 2 it holds that

v1,j · v1,h =

t∑
i=1

Γ(1, h, i)Γ(1, j, i)Bi +
∑

1≤k<i≤t

(Γ(1, h, k)Γ(1, j, i) + Γ(1, h, i)Γ(1, j, k))Bk,i.

20

Proof. Fix any 1 < h < j ≤ t+ 2. Observe that the following equations hold:

f1,h(ηh) = fh,j(ηh)

fh,j(ηj) = f1,j(ηj)

f1,j(η1) = f1,h(η1).

Summing up the three equations we obtain
t∑

i=1

a1,ji ((ηj)
i − (η1)

i) =
t∑

i=1

a1,hi ((ηh)
i − (η1)

i) +
t∑

i=1

ah,ji ((ηj)
i − (ηh)

i),

and using Fact 2.5 we obtain that

(ηj − η1)b
1,j = (ηh − η1)b

1,h + (ηj − ηh)b
h,j . (3)

By Equation 2 it holds that vℓ,r[i] < d
2(n−1) for every 1 ≤ ℓ < r ≤ t and i ∈ {0, . . . , L}, so

(ηr − ηℓ)v
ℓ,r[i] < (n − 1) · d

2(n−1) = d/2, and therefore (ηh − η1)v
1,h + (ηj − ηh)v

h,j is the unique
representation in base d of the RHS of Equation 3, and (ηj − η1)v

1,j is the unique representation in
base d of the LHS of Equation 3. That is, we obtained a vector equality of the form

(ηj − η1)v
1,j = (ηh − η1)v

1,h + (ηj − ηh)v
h,j . (4)

Multiplying Equation 4 by v1,j , v1,h and vh,j , we obtain the following three equalities

(ηj − η1)
∥∥v1,j

∥∥2
2
= (ηh − η1)v

1,j · v1,h + (ηj − ηh)v
1,j · vh,j ,

(ηj − η1)v
1,h · v1,j = (ηh − η1)

∥∥∥v1,h
∥∥∥2
2
+ (ηj − ηh)v

1,h · vh,j ,

(ηj − η1)v
h,j · v1,j = (ηh − η1)v

h,j · v1,h + (ηj − ηh)
∥∥∥vh,j

∥∥∥2
2
,

that form three linear equations in the variables (v1,j · v1,h), (v1,j · vh,j), and (v1,h · vh,j). The
unique solution is given by

v1,j · v1,h =
ηj − η1

2(ηh − η1)

∥∥v1,j
∥∥2
2
+

ηh − η1
2(ηj − η1)

∥∥∥v1,h
∥∥∥2
2
− (ηj − ηh)

2

2(ηh − η1)(ηj − η1)

∥∥∥vh,j
∥∥∥2
2

(5)

v1,j · vh,j =
ηj − η1

2(ηj − ηh)

∥∥v1,j
∥∥2
2
− (ηh − η1)

2

2(ηj − η1)(ηj − ηh)

∥∥∥v1,h
∥∥∥2
2
+

ηj − ηh
2(ηj − η1)

∥∥∥vh,j
∥∥∥2
2

v1,h · vh,j =
(ηj − η1)

2

2(ηj − ηh)(ηh − η1)

∥∥v1,j
∥∥2
2
− ηh − η1

2(ηj − ηh)

∥∥∥v1,h
∥∥∥2
2
− ηj − ηh

2(ηh − η1)

∥∥∥vh,j
∥∥∥2
2
.

We continue by computing the term v1,j · v1,h by substituting the terms
∥∥v1,j

∥∥2
2
,
∥∥v1,h

∥∥2
2

and∥∥vh,j
∥∥2
2

in Equation 5 using Claim 2.6. A direct calculation shows that for every i ∈ [t], the co-
efficient of Bi is given by

ηj − η1
2(ηh − η1)

Γ(1, j, i)2 +
ηh − η1

2(ηj − η1)
Γ(1, h, i)2 − (ηj − ηh)

2

2(ηh − η1)(ηj − η1)
Γ(h, j, i)2

=
1

2(ηh − η1)(ηj − η1)

((
(ηj)

i − (η1)
i
)2

+
(
(ηh)

i − (η1)
i
)2 − ((ηj)i − (ηh)

i
)2)

=
((ηj)

i − (η1)
i)((ηh)

i − (η1)
i)

(ηh − η1)(ηj − η1)
= Γ(1, h, i)Γ(1, j, i),

21

where we used Fact 2.5. In addition, for 1 ≤ k < i ≤ t, the coefficient of Bk,i is given by

ηj − η1
2(ηh − η1)

· 2Γ(1, j, k)Γ(1, j, i) + ηh − η1
2(ηj − η1)

· 2Γ(1, h, k)Γ(1, h, i)− (ηj − ηh)
2

2(ηh − η1)(ηj − η1)
· 2Γ(h, j, k)Γ(h, j, i)

=
((ηj)

k − (η1)
k)((ηj)

i − (η1)
i) + ((ηh)

k − (η1)
k)((ηh)

i − (η1)
i)− ((ηj)

k − (ηh)
k)((ηj)

i − (ηh)
i)

(ηj − η1)(ηh − η1)

=
((ηj)

i − (η1)
i)((ηh)

k − (η1)
k) + ((ηj)

k − (η1)
k)((ηh)

i − (η1)
i)

(ηj − η1)(ηh − η1)

= Γ(1, h, k)Γ(1, j, i) + Γ(1, h, i)Γ(1, j, k),

where we used Fact 2.5. Therefore,

v1,j · v1,h =
t∑

i=1

Γ(1, h, i)Γ(1, j, i)Bi +
∑

1≤k<i≤t

(Γ(1, h, k)Γ(1, j, i) + Γ(1, h, i)Γ(1, j, k))Bk,i.

which completes the proof of the claim.

2.1.3 Proof of Claim 2.4: Interpolation

Let G(x) = g0 + g1x+ . . .+ gt+1x
t+1 be the polynomial obtained by interpolating the t+ 2 points

(η1, y1), . . . , (ηt+2, yt+2). Formally, G(x) is given by

G(x) =
t+2∑
j=1

yj ·
∏

1≤h≤t+2
h̸=j

(x− ηh)

(ηj − ηh)

 , hence gt+1 =
t+2∑
j=1

yj ·
∏

1≤h≤t+2
h̸=j

1

(ηj − ηh)

 .

The rest of the section is dedicated to proving that gt+1 = 0, which means that G(x) has degree t.
This involves a rather tedious (but straightforward) computation, using the machinery developed
in the previous section.

Calculating the yj ’s. We continue by calculating the yj ’s. To simplify notation, for every j ∈ [t+2]

we denote π(j) :=
∏

1≤h≤t+2
h̸=j

1
(ηj−ηh)

. For j = 1 we have y1 = f1,2(η1) =
∑t

i=0 a
1,2
i (η1)

i, and for

j = 2 we have y2 = f1,2(η2) =
∑t

i=0 a
1,2
i (η2)

i. For every j > 2 it holds that yj = f1,j(ηj) =∑t
i=0 a

1,j
i (ηj)

i, and in addition it holds that f1,j(η1) = f1,2(η1), so
∑t

i=0 a
1,2
i (η1)

i =
∑t

i=0 a
1,j
i (η1)

i,
which means that a1,j0 =

∑t
i=0 a

1,2
i (η1)

i −
∑t

i=1 a
1,j
i (η1)

i and therefore

yj =

(
t∑

i=0

a1,2i (η1)
i −

t∑
i=1

a1,ji (η1)
i

)
+

t∑
i=1

a1,ji (ηj)
i =

t∑
i=0

a1,2i (η1)
i +

t∑
i=1

a1,ji

(
(ηj)

i − (η1)
i
)
.

We conclude that

gt+1 =

(
t∑

i=0

a1,2i (η1)
i

)
· π(1) +

(
t∑

i=0

a1,2i (η2)
i

)
· π(2)

+
t+2∑
j=3

(
t∑

i=0

a1,2i (η1)
i +

t∑
i=1

a1,ji

(
(ηj)

i − (η1)
i
))

· π(j). (6)

22

Calculating the coefficient of a1,ij . We continue by analysing the coefficient of a1,ij in Equation 6.
First, we prove the following claim.

Claim 2.8. For every i ∈ {0, . . . , t}, it holds that
∑t+2

j=1(ηj)
i · π(j) = 0.

Proof. Consider the interpolation over the t+ 2 points (η1, (η1)i), . . . , (ηt+2, (ηt+2)
i), where we ob-

tain a polynomial H(x) = h0 + h1x + . . . + ht+1x
t+1, and note that H(x) = xi, so ht+1 = 0. From

interpolation we also obtain that

0 = ht+1 =
t+2∑
j=1

(ηj)
i ·

∏
1≤h≤t+2

h̸=j

1

(ηj − ηh)
=

t+2∑
j=1

(ηj)
i · π(j),

as required. This conclude the proof of the claim.

It is not hard to see that the coefficient of a1,20 is
∑t+2

j=1 π(j), so from Claim 2.8 this coefficient is 0.
We continue with the analysis of the coefficient of a1,2i for i > 0. A direct calculation shows that the
coefficient is (η1)i ·

∑
1≤j≤t+2

j ̸=2
π(j)+ (η2)

i ·π(2). From Claim 2.8 we conclude that
∑

1≤j≤t+2
j ̸=2

π(j) =

−π(2), and therefore the coefficient is π(2)((η2)
i − (η1)

i). Finally, for every j ≥ 3 and i ≥ 1 the
coefficient of a1,ji is π(j)((ηj)i − (η1)

i). From Fact 2.5 we obtain that

gt+1 =

t+2∑
j=2

(
π(j) · (ηj − η1) ·

t∑
i=1

a1,ji ·
i−1∑
k=0

ηkj · ηi−1−k
1

)
=

t+2∑
j=2

π(j) · (ηj − η1) · b1,j .

In order to prove that gt+1 = 0, we note that

gt+1 =
t+2∑
j=2

(
π(j) · (ηj − η1) · (

L∑
ℓ=0

v1,j [ℓ] · dℓ)

)
=

L∑
ℓ=0

dℓ ·

 t+2∑
j=2

π(j) · (ηj − η1)v
1,j [ℓ]

 .

Therefore, it is enough to prove that for every ℓ ∈ {0, . . . , L} it holds that
∑t+2

j=2 π(j) · (ηj −
η1)v

1,j [ℓ] = 0. In order to do so, it is enough to prove that the ℓ2-norm of the vector v :=∑t+2
j=2 π(j) · (ηj − η1)v

1,j is 0.

The norm of v. Observe that

∥v∥22 =
t+2∑
h=2

π(h)2 · (ηh − η1)
2
∥∥∥v1,h

∥∥∥2
2
+ 2

∑
2≤h<j≤t+2

π(h)π(j)(ηh − η1)(ηj − η1)v
1,h · v1,j . (7)

Substitute the terms
∥∥v1,h

∥∥2
2

and v1,h·v1, j using Claim 2.6 and Claim 2.7. We continue by showing
that the coefficient of every Bi and every Bk,i in Equation 7 is 0, and therefore the norm is 0.

For every 1 ≤ i ≤ t, the coefficient of Bi is given by

t+2∑
h=2

π(h)2 · (ηh − η1)
2Γ(1, h, i)2 + 2

∑
2≤h<j≤t+2

π(h)π(j)(ηh − η1)(ηj − η1)Γ(1, h, i)Γ(1, j, i)

23

=

t+2∑
h=2

π(h)2 · ((ηh)i − (η1)
i)2 + 2

∑
2≤h<j≤t+2

π(h)π(j)((ηh)
i − (η1)

i)((ηj)
i − (η1)

i)

=
t+2∑
h=2

π(h)2 · ((ηh)i − (η1)
i)2 +

∑
2≤h≤t+2

∑
2≤j≤t+2

j ̸=h

π(h)π(j)((ηh)
i − (η1)

i)((ηj)
i − (η1)

i)

=

t+2∑
h=2

π(h) · ((ηh)i − (η1)
i)

π(h) · ((ηh)i − (η1)
i) +

∑
2≤j≤t+2

j ̸=h

π(j)((ηj)
i − (η1)

i)




=
t+2∑
h=2

π(h) · ((ηh)i − (η1)
i)

 ∑
2≤j≤t+2

π(j)((ηj)
i − (η1)

i)


=

 ∑
2≤j≤t+2

π(j)((ηj)
i − (η1)

i)

2

=

 ∑
2≤j≤t+2

π(j)(ηj)
i

−

(η1)
i
∑

2≤j≤t+2

π(j)

2

=

 ∑
1≤j≤t+2

π(j)(ηj)
i

2

= 0,

where in the first equality we used Fact 2.5, and in the last two equalities we used Claim 2.8. In
addition, for every 1 ≤ k < i ≤ t, the coefficient of Bk,i is given by

t+2∑
h=2

π(h)2 · (ηh − η1)
2 · 2Γ(1, h, k) · Γ(1, h, i)

+ 2
∑

2≤h<j≤t+2

π(h)π(j)(ηh − η1)(ηj − η1)(Γ(1, h, k)Γ(1, j, i) + Γ(1, h, i)Γ(1, j, k))

=

t+2∑
h=2

π(h)2 · ((ηh)k − (η1)
k)((ηh)

i − (η1)
i) +

∑
2≤j≤t+2

j ̸=h

π(h)π(j)((ηh)
k − (η1)

k)((ηj)
i − (η1)

i)



+
t+2∑
h=2

π(h)2 · ((ηh)k − (η1)
k)((ηh)

i − (η1)
i) +

∑
2≤j≤t+2

j ̸=h

π(h)π(j)((ηh)
i − (η1)

i)((ηj)
k − (η1)

k)



=
t+2∑
h=2

π(h) · ((ηh)k − (η1)
k)

π(h)((ηh)
i − (η1)

i) +
∑

2≤j≤t+2
j ̸=h

π(j)((ηj)
i − (η1)

i)




+

t+2∑
h=2

π(h) · ((ηh)i − (η1)
i)

π(h)((ηh)
k − (η1)

k) +
∑

2≤j≤t+2
j ̸=h

π(j)((ηj)
k − (η1)

k)




24

= 2

(
t+2∑
h=2

π(h) · ((ηh)i − (η1)
i)

)(
t+2∑
h=2

π(h) · ((ηh)k − (η1)
k)

)

= 2

(
t+2∑
h=2

π(h) · (ηh)i − (η1)
i
t+2∑
h=2

π(h)

)(
t+2∑
h=2

π(h) · (ηh)k − (η1)
k
t+2∑
h=2

π(h)

)

= 2

 ∑
1≤j≤t+2

π(j)(ηj)
i

 ∑
1≤j≤t+2

π(j)(ηj)
k

 = 0,

where in the first equality we used Fact 2.5, and in the last two equalities we used Claim 2.8.
Therefore gt+1 = 0, and G(x) is a degree-t polynomial that satisfies G(ηi) = yi for every i ∈ [t+2],
as required. This concludes the proof of Claim 2.4, and the proof of Lemma 2.2.

3 t-Edge-Neighborhood Graphs

In this section we formally present the notion of t-edge-neighborhood graphs, together with effi-
cient algorithms for finding vertex cover in such graphs. Let us begin with a formal definition.

Definition 3.1 (t-edge neighborhood graphs). Let G = (V,E) be a graph with n vertices. For an
integer 1 ≤ t ≤ n− 1 we say that G is a t-edge-neighborhood graph if for every edge (u, v) ∈ E it holds
that

|N(u) ∪N(v)| ≥ t+ 1.

The rest of this section is organised as follows. In Section 3.1 we provide a quasipolynomial-
time algorithm for finding all t-vertex covers in t-edge neighborhood graphs. In Section 3.2 we
present a polynomial-time algorithm for finding all (1 + ϵ)-approximations of t-vertex covers in
t-edge neighborhood graphs.

3.1 Quasipolynomial-Time Algorithm for Vertex Cover

In this section we show how to find all size-t vertex covers in t-edge-neighborhood graphs in time
tO(log t) · poly(n). Formally, our goal is to solve the following algorithmic problem.

• Input: A graph G = (V,E) with n vertices and m edges, and an integer t ∈ [n− 1].

• Promise: The graph G is a t-edge-neighborhood graph.

• Goal: Find all t-vertex covers of G.

By finding all t-vertex covers of G we mean finding vertex covers S1, . . . , Sℓ of G, each of size at
most t, so that for every vertex cover I of G of size at most t, there exists some Si such that Si ⊆ I .

High-level idea. Our algorithm is based on the search-tree approach. That is, at each step we
take from the graph a vertex v that has maximal degree, and we note that for every vertex cover
of G, either v is in the vertex cover, or N(v) is in the vertex cover. Therefore, we try both cases: a
right step on the tree means that we add v to the vertex cover, and remove v from the graph; a left

25

step on the tree means that we add N(v) to the vertex cover, and remove N(v) from the graph. It
is not hard to verify that this approach guarantees that we find all t-vertex covers.

For the running time, we use the fact that the graph is a t-edge-neighborhood graph. This
means that in the first step, there must exist a vertex v whose degree is at least (t + 1)/2, and,
in addition, it is not hard to see that if we remove k vertices from the graph then the graph is a
(t−k)-edge-neighborhood graph. Therefore, every path from root to leaf has length at most t, and
the number of left steps in the path is at most ⌈log(t)⌉+ 1, so the number of such paths is at most(

t
⌈log(t)⌉+1

)
= tO(log(t)).

The search tree. We continue with a formal description of the search tree.

Consider the binary tree that is defined recursively as follows. The root is labelled by the tuple
(G,n, t, v,∅), where v is some vertex of G that has maximal degree, and ∅ is the empty set. For ev-
ery node u in the binary search tree with label (G′, n′, t′, v′, S′), the children of this node are defined as
follows.

• If G′ contains no edges then u is a leaf, and its label is changed to S′.

• Otherwise, if t′ = 0 (and G′ contains edges), then u is a leaf, and its label is changed to Failure.

• Otherwise t′ > 0 and we split into cases.

– If dG′(v′) > t′ (i.e., the degree of v′ in G′ is greater than t′), let H be the graph obtained from G′

by removing the vertex v′. Then u has only a right son labelled with (H,n′ − 1, t′ − 1, w, S′ ∪ {v′})
where w is a vertex of maximum degree in H .

– Otherwise dG′(v′) ≤ t′. Let HR be the graph obtained from G′ by removing the vertex v′, and let
HL be the graph obtained from G′ by removing the vertices NG′(v′) (i.e., the neighbors of v′ in G′).
Let wR be a vertex of maximum degree of HR and let wL be a vertex of maximum degree of HL.
Then u has a right child labelled with (HR, n

′−1, t′−1, wR, S
′∪{v′}), and a left child labelled with

(HL, n
′ − dG′(v′), t′ − dG′(v′), wL, S

′ ∪NG′(v′)).

FullSearchTree

Figure 1: FullSearchTree

The algorithm. We continue with a description for an algorithm that finds all t-vertex covers in
t-edge-neighborhood graphs, in time tO(log t) · poly(n).

Input: A graph G = (V,E) with n vertices and m edges, and an integer t ∈ [n− 1].

Promise: The graph G is a t-edge-neighborhood graph.

The algorithm: The algorithm constructs the full search tree, defined in Figure 1, Let S1, . . . , Sℓ be the
labels of all the leaves that are not labelled with Failure. The algorithm outputs S1, . . . , Sℓ.

Algorithm ExactVC

Figure 2: Algorithm ExactVC

26

Theorem 3.2. Algorithm ExactVC, described in Figure 2, on input G = (V,E) with n vertices and m
edges, and an integer t ∈ [n− 1], where G is a t-edge-neighborhood graph, outputs all t-vertex covers of G
in time tO(log t) · poly(n).

Proof. We first prove the correctness of the algorithm, and then analyse its running time.

Correctness. We need to prove that (1) for every leaf with label S, the set S is a vertex cover
of size at most t, and (2) for every t-vertex cover I of G there exists a leaf with label S such that
S ⊆ I . First we note that for every node in the search tree with label (G′, n′, t′, v′, S′), the graph G′

was obtained from G by removing the vertices in the set S′, the graph G′ has n′ = n− |S| vertices,
it holds that |S′| ≤ t and t′ = t − |S|, and the vertex v′ has maximal degree in G′. We therefore
conclude that S′ covers all the edges that were removed from G, and in particular, for every leaf
with label S′ it holds that S′ has size at most t and it is a vertex cover, so (1) holds. For (2), let I
be any vertex cover of size at most t, and consider the walk from root to leaf on the search tree,
where at a node with label (G′, n′, t′, v′, S′), we turn right if v′ ∈ I , and turn left otherwise. Then it
is not hard to verify that at each step it holds that S′ ⊆ I , and in particular, S ⊆ I , where S is the
label of the corresponding leaf.

Running time. Let T (n, t) be the size of the largest search tree among all search trees of graphs
with n vertices that are t-edge-neighborhood graphs. Observe that for every graph with n ver-
tices that is t-edge-neighborhood graph, the search tree can be constructed in time poly(T (n, t), n).
Therefore, it is enough to prove that T (n, t) = tO(log t).

We first observe that for every node in the search tree with label (G′, n′, t′, v′, S′), it holds that
G′ is a t′-edge-neighborhood graph, so v′ has degree at least ⌈(t′ + 1)/2⌉ in G′. Therefore, from
any path from root to leaf, the number of left steps can be at most ⌈log(t)⌉ + 1. In addition, the
total number of steps in such a path is at most t, and therefore the total number of such paths is(

t
⌈log(t)⌉+1

)
= tO(log t), and T (n, t) ≤ (t + 1) · tO(log t) = tO(log t). This completes the proof of the

theorem.

3.2 Polynomial-Time (1 + ϵ)-Approximation for Vertex Cover

In this section we show how to find all size-(1+ϵ)t vertex covers, for ϵ > 0, in t-edge-neighborhood
graphs in time tO(log(1/ϵ))·poly(n). Formally, our goal is to solve the following algorithmic problem.

• Input: A graph G = (V,E) with n vertices and m edges, an integer t ∈ [n − 1], and some
ϵ > 0.

• Promise: The graph G is a t-edge-neighborhood graph.

• Goal: Find all (1 + ϵ)-approximation of t-vertex covers of G.

By finding all (1 + ϵ)-approximation of t-vertex covers of G, we mean finding vertex covers
S1, . . . , Sℓ of G, each of size at most (1 + ϵ)t, so that for every vertex cover I of G of size at most t,
there exists some Si for which |Si \ I| ≤ 2ϵt.

27

High-level idea. We construct the same search-tree as in Section 3.1, but now we truncate the
tree at every node u with label (G′, n′, t′, v′, S′) so that t′ ≤ ϵ · t. This will guarantee that the size
of the search tree will be at most tO(log(1/ϵ)). For every leaf in the truncated search tree with label
(G′, n′, t′, v′, S′) we execute the 2-approximation algorithm for vertex cover on G′ in order to find
a vertex cover S′′ of G′. If S′′ has size at most 2t′ then S′ ∪ S′′ forms a vertex cover of size at most
(t− t′) + 2t′ = t+ t′ ≤ (1 + ϵ)t, so we set the label of the leaf to S′ ∪ S′′. Otherwise, if S′′ has size
more than 2t′ then G′ doesn’t have a vertex cover of size t′, and therefore we change the label of
the leaf to Failure.

The search tree. We continue with a formal description of the search tree.

Consider the binary tree that is defined recursively as follows. The root is labelled by the tuple
(G,n, t, v,∅), where v is some vertex of G that has maximal degree, and ∅ is the empty set. For ev-
ery node u in the binary search tree with label (G′, n′, t′, v′, S′), the children of this node are defined as
follows.

• If G′ contains no edges then u is a leaf, and its label is changed to S′.

• Otherwise, if t′ ≤ ϵ · t, then u is a leaf. Execute the 2-approximation algorithm on G′ to obtain a vertex
cover S′′. If |S′′| ≤ 2t′ then change the label of u to be the set S′ ∪ S′′. Otherwise, if |S′′| > 2t′, change
the label of u to be Failure.

• Otherwise t′ > ϵ · t and we split into cases.

– If dG′(v′) > t′, let H be the graph obtained from G′ by removing the vertex v′. Then u has only a
right son labelled with (H,n′ − 1, t′ − 1, w, S′ ∪ {v′}) where w is a vertex of maximum degree in H .

– Otherwise dG′(v′) ≤ t′. Let HR be the graph obtained from G′ by removing the vertex v′, and
let HL be the graph obtained from G′ by removing the vertices NG′(v′). Let wR be a vertex of
maximum degree of HR and let wL be a vertex of maximum degree of HL. Then u has a right child
labelled with (HR, n

′ − 1, t′ − 1, wR, S
′ ∪ {v′}), and a left child labelled with (HL, n

′ − dG′(v′), t′ −
dG′(v′), wL, S

′ ∪NG′(v′)).

TruncatedSearchTree

Figure 3: TruncatedSearchTree

The algorithm. We continue with a description for an algorithm that finds all (1 + ϵ)-
approximation of t-vertex covers in t-edge-neighborhood graphs, in time tO(log(1/ϵ)) · poly(n).

Input: A graph G = (V,E) with n vertices and m edges, an integer t ∈ [n− 1], a value ϵ > 0.

Promise: The graph G is a t-edge-neighborhood graph.

The algorithm: The algorithm constructs the truncated search tree, defined in Figure 3. Let S1, . . . , Sℓ

be the labels of all the leaves that are not labelled with Failure. The algorithm outputs S1, . . . , Sℓ.

Algorithm ApproxVC

Figure 4: Algorithm ApproxVC

28

Theorem 3.3. Algorithm ApproxVC, described in Figure 4, on input G = (V,E) with n vertices and m
edges, an integer t ∈ [n − 1], and a value ϵ > 0, where G is a t-edge-neighborhood graph, outputs all
(1 + ϵ)-approximations of t-vertex covers of G in time tO(log(1/ϵ)) · poly(n).

Proof. We first prove the correctness of the algorithm, and then analyse its running time.

Correctness. We need to prove that (1) for every leaf with label S, the set S is a vertex cover of
size at most (1 + ϵ)t, and (2) for every t-vertex cover I of G, there exists a leaf with label S such
that |S \ I| ≤ 2ϵt. Claim (1) follows in the same way as in the proof of Theorem 3.2. For (2), let
I be any vertex cover of size at most t, and consider the walk from root to leaf on the search tree,
where at a node with label (G′, n′, t′, v′, S′), we turn right if v′ ∈ I , and turn left otherwise. Then
it is not hard to verify that at each step it holds that S′ ⊆ I . Consider the corresponding leaf,
and let (G′, n′, t′, v′, S′) be the original label of the leaf. If G′ has no edges then S′ ⊆ I and we’re
done. Otherwise, the set I \ S′ forms a vertex cover of G′ of size at most t′ ≤ ϵt, and therefore, the
2-approximation algorithm returns a vertex cover S′′ of G′ of size at most 2t′ ≤ 2ϵt. We conclude
that |S′ \ I| ≤ |S′′| ≤ 2ϵt, as required.

Running time. Let T (n, t, ϵt) be the size of the largest search tree that is truncated according to
parameter ϵt, among the search trees of all graphs with n vertices that are t-edge-neighborhood
graphs. Observe that the search tree can be constructed in time poly(T (n, t, ϵt), n), and therefore,
it is enough to prove that T (n, t, ϵt) = tO(log(1/ϵ)).

As in the proof of Theorem 3.2 we observe that for every node in the search tree with label
(G′, n′, t′, v′, S′), it holds that G′ is a t′-edge-neighborhood graph, so v′ has degree at least ⌈(t′ +
1)/2⌉ in G′. Therefore, from any path from root to leaf, the number of left steps can be at most
⌈log(1/ϵ)⌉ + 1. In addition, the total number of steps in such a path is at most ϵt, and therefore
the total number of such paths is

(
ϵt

⌈log(1/ϵ)⌉+1

)
= tO(log(1/ϵ)), and T (n, t) ≤ (t + 1) · tO(log(1/ϵ)) =

tO(log(1/ϵ)). This completes the proof of the theorem.

4 Comparison-Based Codes

In this section we present our results regarding comparison-based codes, formally defined as fol-
lows.

Definition 4.1 (Comparison-based codes). A code C ⊆ [q]n is a comparison-based code, if for every
1 ≤ i < j ≤ n there exist functions fi,j , fj,i : [q] → [q] such that the (i, j)-th conflict function Gi,j is given
by Gi,j(σ, τ) = NEQ(fi,j(σ), fj,i(τ)), where NEQ(x, y) is the not-equal function, that returns 1 if x ̸= y,
and 0 if x = y.

The rest of this section is organised as follows. In Section 4.1 we present a lower bound for
comparison-based conflict checkable codes that satisfy local-to-global consistency. In Section 4.2
we discuss linear codes, and show that they are comparison-based codes. In Section 4.3 we present
a general framework for constructing comparison-based robust conflict decodable codes, based on
linear MDS codes.

29

4.1 Lower Bound on Comparison-Based Codes

In this section we prove Theorem 1.8, that we repeat here.

Theorem 4.2 (Theorem 1.8 restated). Let C be an (n, k, d)q comparison-based conflict checkable code
with 1 < d < n, and assume that it satisfies local-to-global consistency. Then k ≤ n−d+2

2 .

We prove Theorem 4.2 in Section 4.1.1. Since the proof of Theorem 4.2 is somewhat technical,
we first consider the toy version where n = 3 and d = 2, that conveys the main ideas of the proof.

Toy version. Consider the case where n = 3 and d = 2, so our goal is to prove that k ≤ 3/2.
Let (X1, X2, X3) be a uniformly distributed codeword. In the first step, we bound the Shannon’s
entropy of f1,2(X1). Consider the entropy of (X1, X2, X3), and observe that

k · log q = H(X1, X2, X3) = H(X1, X2) ≤ H(X1) +H(X2)−H(f1,2(X1)).

The second equality follows since the code has distance d = 2 and so every n − d + 1 = 2 entries
fully determine the codeword. The inequality follows by noting that the random variable f1,2(X1)
is equal to f2,1(X2) and can therefore be (deterministically) derived both from X1 and from X2.
Therefore H(f1,2(X1)) ≤ H(X1)+H(X2)−k · log q. A similar argument shows that H(f1,3(X1)) ≤
H(X1) +H(X3)− k · log q.

In the second step, we analyse the joint entropy H(f1,2(X1), f1,3(X1)). Since the code has
distance d = n−1 = 2, for every choice (σ2, σ3) in the support of (X2, X3), there exists a unique σ1
such that (σ1, σ2, σ3) is a codeword. Since the code is conflict checkable, this means that there exists
a unique σ1 that satisfies f1,2(σ1) = f2,1(σ2) and f1,3(σ1) = f3,1(σ3). We conclude that f1,2(X1) and
f1,3(X1) fully determine X1, and therefore H(f1,2(X1), f1,3(X1)) = H(X1).

Finally, in the third step, we analyse the mutual information I(f1,2(X1); f1,3(X1)):

0 ≤ I(f1,2(X1); f1,3(X1)) = H(f1,2(X1)) +H(f1,3(X1))−H(f1,2(X1), f1,3(X1))

≤
(
H(X1) +H(X2)− k · log q

)
+
(
H(X1) +H(X3)− k · log q

)
−H(X1),

where the last inequality is based on the bounds from the first and second step. Since
H(X1), H(X2), H(X3) ≤ log q, we obtain that k ≤ 3/2, as required.

The proof of the general case follows the same lines, but is somewhat more technical. First, we
can no longer take a single index as a pivot (the index i = 1 in the toy version). For example, in the
first step we need to obtain a bound on H(fi,j(Xi)) for every pair of indices i, j. Moreover, we can
no longer restrict ourselves to a fixed set of n− d+ 1 indices, but rather, the bound on H(fi,j(Xi))
is obtained by averaging over the bounds obtained from every possible set of n−d+1 indices. The
third step is also generalized in similar ways. Finally, in order to perform the second step when
d < n−1, we explicitly use the assumption that the code C satisfies local-to-global consistency. (In
the toy version this property follows implicitly since d = n− 1.)

4.1.1 Proof of Theorem 4.2

Let C be an (n, k, d)q code with 1 < d < n, so necessarily n ≥ 3. We assume that C is conflict
checkable and satisfies local-to-global consistency, and that it is comparison-based, i.e., for every

30

1 ≤ i < j ≤ n there exist functions fi,j , fj,i : [q] → [q] such that Gi,j(σ, τ) = NEQ(fi,j(σ), fj,i(τ)).
Our goal is to prove that the dimension k of the code is at most (n− d+ 2)/2.

Let (X1, . . . , Xn) be a uniformly distributed codeword from C. We denote by Π the set of all n!
permutations of the vector (1, . . . , n), and for every pair of distinct indices i1, i2 ∈ [n], we let
S(i1, i2) be the set of all vectors of length n − 2 that contain distinct elements from {1, . . . , n} \
{i1, i2}. The proof continues in three steps. First, we prove the following upper bound on the
entropy of fi,j(Xi) (that corresponds to the first step in the toy version).

Claim 4.3. For every pair of distinct indices i1, i2 ∈ [n] it holds that

H(fi1,i2(Xi1)) ≤ H(Xi1) +H(Xi2) +
1

(n− 2)!

∑
(i3,...,in)∈S(i1,i2)

(H(Xi3) + . . .+H(Xin−d+1
))

− 1

(n− 2)!

∑
(i3,...,in)∈S(i1,i2)

(H(fi1,i3(Xi1), fi2,i3(Xi2)) + . . .+H(fi1,in−d+1
(Xi1), . . . , fin−d,in−d+1

(Xin−d
)))

− k log q,

where the sum in the second row is 0 if d = n− 1.

Then, we prove that Xi is fully determined by any n − d + 1 evaluations
fi,j1(Xi), . . . , fi,jn−d+1

(Xi), as stated in the following claim (that corresponds to the second
step in the toy version).

Claim 4.4. For every permutation (i1, . . . , in) ∈ Π it holds that

H(Xi1) = H(fi1,i2(Xi1), . . . , fi1,in−d+2
(Xi1)),

where we observe that, since d > 1, then n− d+ 2 ≤ n and the RHS of the equation is well defined.

The proofs of Claim 4.3 and Claim 4.4 are deferred to Section 4.1.2 and Section 4.1.3, respec-
tively. Let us continue with the proof of Theorem 4.2 given Claim 4.3 and Claim 4.4. For every
permutation (i1, . . . , in) ∈ Π and 2 ≤ t ≤ n− d+ 1, since the mutual information is non-negative,
we have5

0 ≤ I(fi1,i2(Xi1), . . . , fi1,it(Xi1); fi1,it+1(Xi1), . . . , fi1,in−d+2
(Xi1))

= H(fi1,i2(Xi1), . . . , fi1,it(Xi1)) +H(fi1,it+1(Xi1), . . . , fi1,in−d+2
(Xi1))−H(fi1,i2(Xi1), . . . , fi1,in−d+2

(Xi1))

= H(fi1,i2(Xi1), . . . , fi1,it(Xi1))−H(Xi1) +H(fi1,it+1(Xi1), . . . , fi1,in−d+2
(Xi1)),

where in the last equality we used Claim 4.4 and reordered the terms. Summing over all
(i1, . . . , in) ∈ Π we obtain

0 ≤
∑

(i1,...,in)

(
H(fi1,i2(Xi1), . . . , fi1,it(Xi1))−H(Xi1) +H(fi1,it+1(Xi1), . . . , fi1,in−d+2

(Xi1))
)

= (n− t)! ·
∑

(i1,...,it)

H(fi1,i2(Xi1), . . . , fi1,it(Xi1))− (n− 1)!

n∑
i=1

H(Xi)

+ (d+ t− 3)! ·
∑

(i1,...,in−d−t+3)

H(fi1,i2(Xi1), . . . , fi1,in−d−t+3
(Xi1)).

5Observe that n − d + 1 ≥ n − (n − 1) + 1 = 2, so there is at least one possible value for t, and that n − d + 2 ≤
n− 2 + 2 = n.

31

For every 2 ≤ t ≤ n− d+ 1 define

f(t) := (n− t)! ·
∑

(i1,...,it)

H(fi1,i2(Xi1), . . . , fi1,it(Xi1))− (n− 1)!
n∑

i=1

H(Xi)

+ (d+ t− 3)! ·
∑

(i1,...,in−d−t+3)

H(fi1,i2(Xi1), . . . , fi1,in−d−t+3
(Xi1)),

observe that f(t) is just the sum of I(fi1,i2(Xi1), . . . , fi1,it(Xi1); fi1,it+1(Xi1), . . . , fi1,in−d+2
(Xi1))

over all (i1, . . . , in) ∈ Π, and that we proved that f(t) ≥ 0. The rest of the proof is ordered as
follows. In Claim 4.5 we prove Theorem 4.2 for the special case of d = n − 1. This proof is short
and similar to the proof of the toy version. Then, in Claim 4.6 we prove Theorem 4.2 for d < n− 1,
for which the proof is more involved.

Claim 4.5. Assume that d = n− 1. Then k ≤ (n− d+ 2)/2.

Proof. For d = n− 1 there is a single choice for 2 ≤ t ≤ n− d+ 1 which is t = 2. Recall that in the
toy version we achieved the bound k ≤ (n− d+ 2)/2 by bounding the term I(f1,2(X1); f1,3(X1)).
Proving Claim 4.5 follows similar lines, where we bound the term f(2), which is just the sum of
I(fi1,i2(Xi1); fi1,i3(Xi1)) over all (i1, . . . , in) ∈ Π. Observe that f(2) is bounded by

f(2) = (n− 2)! ·
∑
(i1,i2)

H(fi1,i2(Xi1))− (n− 1)!

n∑
i=1

H(Xi)

+ (n− 2)! ·
∑
(i1,i2)

H(fi1,i2(Xi1))

= 2(n− 2)! ·
∑
(i1,i2)

H(fi1,i2(Xi1))− (n− 1)!
n∑

i=1

H(Xi)

≤ 2(n− 2)!
∑
(i1,i2)

(H(Xi1) +H(Xi2))− 2(n− 2)! · n · (n− 1)k log q − (n− 1)!
n∑

i=1

H(Xi)

= 3(n− 1)! ·
n∑

i=1

H(Xi)− 2n! · k log q,

where the inequality follows from Claim 4.3 for the special case of d = n − 1. Since f(2) ≥ 0 and
H(Xi) ≤ log q for every i ∈ [n], it holds that k ≤ 3/2 = (n− d+ 2)/2, as required. This concludes
the proof of Claim 4.5.

Claim 4.6. Assume that d < n− 1. Then k ≤ (n− d+ 2)/2.

Proof. First, we bound the term f(2).

f(2) = (n− 2)! ·
∑
(i1,i2)

H(fi1,i2(Xi1))− (n− 1)!

n∑
i=1

H(Xi)

+ (d− 1)! ·
∑

(i1,...,in−d+1)

H(fi1,i2(Xi1), . . . , fi1,in−d+1
(Xi1))

32

≤ (n− 2)!
∑
(i1,i2)

(H(Xi1) +H(Xi2)) +
∑

(i1,...,in)

(H(Xi3) + . . .+H(Xin−d+1
))

−
∑

(i1,...,in)

(H(fi1,i3(Xi1), fi2,i3(Xi2)) + . . .+H(fi1,in−d+1
(Xi1), . . . , fin−d,in−d+1

(Xin−d
)))

− (n− 2)! · n · (n− 1)k log q

− (n− 1)!
n∑

i=1

H(Xi) + (d− 1)! ·
∑

(i1,...,in−d+1)

H(fi1,i2(Xi1), . . . , fi1,in−d+1
(Xi1)),

where the inequality follows from Claim 4.6, and we observe that no summation is empty, since
d < n− 1. Therefore,

f(2) ≤ 2 · (n− 1)!
n∑

i=1

H(Xi) + (n− d− 1) · (n− 1)!
n∑

i=1

H(Xi)

− (n− 3)!
∑

(i1,...,i3)

(H(fi1,i3(Xi1), fi2,i3(Xi2))− (n− 4)!
∑

(i1,...,i4)

(H(fi1,i4(Xi1), fi2,i4(Xi2), fi3,i4(Xi3))

− . . .− (d− 1)!
∑

(i1,...,in−d+1)

H(fi1,in−d+1
(Xi1), . . . , fin−d,in−d+1

(Xin−d
)))

− n! · k log q

− (n− 1)!
n∑

i=1

H(Xi) + (d− 1)! ·
∑

(i1,...,in−d+1)

H(fi1,i2(Xi1), . . . , fi1,in−d+1
(Xi1))

= (n− d) · (n− 1)!
n∑

i=1

H(Xi)

− (n− 3)!
∑

(i1,...,i3)

(H(fi1,i2(Xi1), fi1,i3(Xi1))− (n− 4)!
∑

(i1,...,i4)

(H(fi1,i2(Xi1), fi1,i3(Xi1), fi1,i4(Xi1))

− . . .− d!
∑

(i1,...,in−d)

H(fi1,i2(Xi1), . . . , fi1,in−d
(Xi1)))

− n! · k log q, (8)

where in the last equality we simply changed the name of the indices, and used the fact that
fi,j(Xi) = fj,i(Xj) for every i, j ∈ [n] with probability 1. To complete the proof we split into cases
according to the parity of (n− d+ 2).

First case: (n − d + 2) is even. Assume that (n − d + 2) is even. Consider the sum 0 ≤ f(2) +∑(n−d+2)/2
t=3 f(t), observe that every f(t) for t > 2 cancels

(n−t)!·
∑

(i1,...,it)

H(fi1,i2(Xi1), . . . , fi1,it(Xi1)) and (d+t−3)!·
∑

(i1,...,in−d−t+3)

H(fi1,i2(Xi1), . . . , fi1,in−d−t+3
(Xi1)).

33

in the bound of f(2) in Equation 8, and therefore,6

n! · k log q ≤ (n− d) · (n− 1)! ·
n∑

i=1

H(Xi)− (
n− d− 2

2
) · (n− 1)! ·

n∑
i=1

H(Xi)

≤ n− d+ 2

2
· n! log q

so k ≤ n−d+2
2 , as required.

Second case: (n − d + 2) is odd. Assume that (n − d + 2) is odd. Consider the sum 0 ≤ f(2) +∑(n−d+1)/2
t=3 f(t), observe that every f(t) for t > 2 cancels

(n−t)!·
∑

(i1,...,it)

H(fi1,i2(Xi1), . . . , fi1,it(Xi1)) and (d+t−3)!·
∑

i1,...,in−d−t+3

H(fi1,i2(Xi1), . . . , fi1,in−d−t+3
(Xi1)).

in the bound of f(2) in Equation 8, and therefore,7

n! · k log q ≤ (n− d) · (n− 1)! ·
n∑

i=1

H(Xi)−
n− d− 3

2
· (n− 1)! ·

n∑
i=1

H(Xi)

− (
n+ d− 3

2
)! ·

∑
i1,...,in−d+3

2

H(fi1,i2(Xi1), . . . , fi1,in−d+3
2

H(Xi1)).

For t = n−d+3
2 we have (n− t)! = (d+ t− 3)!, and since f(t) ≥ 0 we obtain

(n− 1)!
n∑

i=1

H(Xi) ≤ 2(
n+ d− 3

2
)!

∑
i1,...,in−d+3

2

H(fi1,i2(Xi1), . . . , fi1,in−d+3
2

H(Xi1)).

We conclude that

n!k log q ≤
(
(n− d) · (n− 1)! ·n− n− d− 3

2
· (n− 1)! ·n− 1

2
(n− 1)! ·n

)
log q =

n− d+ 2

2
·n! · log q,

so k ≤ n−d+2
2 , as required. This concludes the proof of Claim 4.6.

The proof of Theorem 4.2 now follows from Claim 4.5 and Claim 4.6.

4.1.2 Proof of Claim 4.3

In this Section we prove Claim 4.3. First we observe that, since it is possible to recover from d− 1
erasures, for every n− d+ 1 distinct indices i1, . . . , in−d+1 ∈ {1, . . . , n} it holds that

k log q = H(X1, . . . , Xn) = H(Xi1 , . . . , Xin−d+1
).

6For the special case of d = n − 2 the sum
∑(n−d+2)/2

t=3 f(t) is empty. However, in this case the following follows
directly from the bound on f(2).

7For the special case of d = n − 3 the sum
∑(n−d+1)/2

t=3 f(t) is empty. However, in this case the following follows
directly from the bound on f(2).

34

Therefore, for every permutation (i1, . . . , in) ∈ Π it holds that

k log q = H(Xi1 , . . . , Xin−d+1
)

= H(Xi1) +H(Xi2 | Xi1) +H(Xi3 | Xi1 , Xi2) . . .+H(Xin−d+1
| Xi1 , . . . , Xin−d

)

≤ H(Xi1) +H(Xi2 | fi1,i2(Xi1))

+H(Xi3 | fi1,i3(Xi1), fi2,i3(Xi2)) + . . .+H(Xin−d+1
| fi1,in−d+1

(Xi1), . . . , fin−d,in−d+1
(Xin−d

))

= H(Xi1) +H(Xi2) +H(Xi3) + . . .+H(Xin−d+1
)

−H(fi1,i2(Xi1))−H(fi1,i3(Xi1), fi2,i3(Xi2))− . . .−H(fi1,in−d+1
(Xi1), . . . , fin−d,in−d+1

(Xin−d
))

where in the last equality we used the chain rule and the fact that fi,j(Xi) = fj,i(Xj) with proba-
bility 1, for every i, j ∈ [n]. Note that the sum in the last row is not empty since d < n. Hence,

H(fi1,i2(Xi1)) ≤ H(Xi1) +H(Xi2) +H(Xi3) + . . .+H(Xin−d+1
)

−H(fi1,i3(Xi1), fi2,i3(Xi2))− . . .−H(fi1,in−d+1
(Xi1), . . . , fin−d,in−d+1

(Xin−d
))

− k log q, (9)

where the sum in the second row is 0 if d = n− 1.
Consider now any pair of distinct indices i1, i2 ∈ [n], and recall that S(i1, i2) is the set of all

vectors of length n−2 that contain distinct elements from {1, . . . , n}\{i1, i2}, so |S(i1, i2)| = (n−2)!.
As Equation 9 holds for every choice of (i3, . . . , in) ∈ S(i1, i2), we can take the average of these
inequalities and obtain

H(fi1,i2(Xi1)) ≤ H(Xi1) +H(Xi2) +
1

(n− 2)!

∑
(i3,...,in)∈S(i1,i2)

(H(Xi3) + . . .+H(Xin−d+1
))

− 1

(n− 2)!

∑
(i3,...,in)∈S(i1,i2)

(H(fi1,i3(Xi1), fi2,i3(Xi2)) + . . .+H(fi1,in−d+1
(Xi1), . . . , fin−d,in−d+1

(Xin−d
)))

− k log q.

This completes the proof of the claim.

4.1.3 Proof of Claim 4.4

In this section we prove Claim 4.4. We argue that for every permutation (i1, . . . , in) ∈ Π it holds
that

H(Xi1) = H(fi1,i2(Xi1), . . . , fi1,in−d+2
(Xi1)).

To do so, it is enough to prove that H(Xi1 | fi1,i2(Xi1), . . . , fi1,in−d+2
(Xi1)) = 0. Assume towards

contradiction that H(Xi1 | fi1,i2(Xi1), . . . , fi1,in−d+2
(Xi1)) > 0, so there exists a codeword c ∈ C,

c = (σ1, . . . , σn), such that H(Xi1 | fi1,i2(σi1), . . . , fi1,in−d+2
(σi1)) > 0. That is, there exists τi1 ̸= σi1

that satisfies fi1,i2(σi1) = fi1,i2(τi1), . . . , fi1,in−d+2
(σi1) = fi1,in−d+2

(τi1). Consider the sub-vector
(τi1 , σi2 , . . . , σin−d+2

) ∈ [q]n−d+2 and observe that every two entries are pairwise consistent. Since
C satisfies local-to-global consistency, this vector fully defines a codeword c′ ∈ C such that c′ ̸= c
since c′[i1] = τi1 ̸= σi1 = c[i1]. However, the distance of c and c′ is at most (d− 2) + 1 = d− 1, in
contradiction. Therefore, H(Xi1) = H(fi1,i2(Xi1), . . . , fi1,in−d+2

(Xi1)), as required. This completes
the proof of the claim.

35

4.2 Linear Conflict checkable Codes are Comparison-Based Codes

Let F be a finite field, and let q = |F|ℓ for some positive integer ℓ. We say that an (n, k, d)q code C
is a linear code over F, and refer to it as an [n, k, d]q code, if C ⊆ (Fℓ)n, and there exist n matrices
G1, . . . ,Gn ∈ Fℓ×(ℓ·k) such that

• It holds that dim(Row-Span(G1, . . . ,Gn)) = ℓ ·k. (That is, the (ℓ ·n)× (ℓ ·k) matrix G obtained
by putting the matrices G1, . . . ,Gn one on top of the other, has full rank.)

• For every codeword c = (c[1], . . . , c[n]) ∈ C there exists an information word m ∈ Fℓ·k such
that c[i] = Gi ·m for every i ∈ [n].

It is not hard to see that for every codeword c ∈ C there exists a unique information word m ∈ Fℓ·k

such that c[i] = Gi · m for every i ∈ [n]. Note that the distance of the code is d if and only
d = minc∈C |{i ∈ [n] | c[i] ̸= 0⃗}|. We also note that k is not necessarily an integer. We continue by
proving that every linear conflict checkable code is a comparison-based code.

Theorem 4.7. Let F be a finite field, and let q = |F|ℓ for some positive integer ℓ. Let C be an [n, k, d]q code
over F. Then C is a comparison-based code.

Combining Theorem 4.7 with Theorem 4.2, we immediately obtain the following corollary.

Corollary 4.8. Let F be a finite field, and let q = |F|ℓ for some positive integer ℓ. Let C be an [n, k, d]q
conflict checkable code that satisfies local-to-global consistency. Then k ≤ (n− d+ 2)/2.

We continue with the proof of Theorem 4.7.

Proof. We show that for every 1 ≤ i < j ≤ n, the conflict function Gi,j is of the form Gi,j(ui,uj) =
NEQ(fi,j(ui), fj,i(uj)), where in our context ui,uj ∈ Fℓ. Let Gi and Gj be the corresponding matri-
ces, and let G be the 2ℓ× ℓ · k matrix defined by

G :=

[
Gi

Gj

]
, and let u :=

[
ui

uj

]
.

Let Im(G) be the image of G, let V := Im(G)⊥ be the orthogonal complement of the image, and let
{v1, . . . ,vr} be a basis of V . Observe that Gi,j(ui,uj) = 0 if and only if u ∈ Im(G), if and only if
u · vi = 0 for every i ∈ [r], and that this occurs if and only if ui · pre(vz) = −uj · suff(vz) for all
z ∈ [r], where pre(vz) is the length-ℓ prefix of vz , and suff(vz) is the length-ℓ suffix of vz . Therefore,
we define fi,j(ui) := (ui · pre(vz))z∈[r] and fj,i(uj) := (−uj · suff(vz))z∈[r], and indeed it holds that
Gi,j(ui,uj) = NEQ(fi,j(ui), fj,i(uj)). This concludes the proof of the theorem.

4.3 Comparison-Based Codes from any Linear MDS Code

In this section we present our construction of comparison-based codes based on any linear MDS
code. The section is organised as follows in Section 4.3.1 we recall the definition and some basic
properties of multilinear forms, that will be used in the construction. In Section 4.3.2 we present
the basic construction, and in Section 4.3.3 we show that it can be used to construct optimal
comparison-based codes, albeit with inefficient conflict-decoder. In Section 4.3.4 we show that
in the special case of n ≥ 4t we can obtain a code with polynomial-time conflict-decoder, and in
Section 4.3.5 we present an asymptotically-good code (i.e., a non-optimal code with constant rate
and constant relative distance) with quasipolynomial-time conflict decoder. Finally, in Section 4.3.6
we show that our codes can be used as a threshold secret sharing scheme.

36

4.3.1 Multilinear Forms

We recall the notion of multilinear forms from linear algebra. For more information, see,
e.g., [RAG05]. Let V be a vector space over a field F. A function F : V m → F is a multilinear
form (or m-form) if it is linear in each coordinate separately, i.e., if

F (v1, . . . ,vi−1, αvi + βv′
i,vi+1, . . . ,vm) = αF (v1, . . . ,vi−1,vi,vi+1, . . . ,vm)

+ βF (v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vm),

for every i ∈ [m], v1, . . . ,vm,v′
i ∈ V and α, β ∈ F. The function F is a symmetric multilinear form

if for every permutation π of [m] it holds that

F (v1, . . . ,vm) = F (vπ(1), . . . ,vπ(m)).

Observe that the set of all symmetric m-forms is a vector space over F. The following lemmas will
be useful for the analysis of our construction. Proofs appear in Appendix B.

Lemma 4.9. Let m, t ≥ 1 and ℓ ≥ t be integers, let V be a vector space of dimension t over a field F,
let v1, . . . ,vℓ ∈ V be vectors spanning V , and let F1, . . . , Fℓ be symmetric (m − 1)-forms that satisfy
Fi(vj , ·, . . . , ·) = Fj(vi, ·, . . . , ·) for all i ̸= j. Then there exists a unique m-form F that satisfies

F (vi, ·, . . . , ·) = Fi(·, . . . , ·),

for all i ∈ [ℓ]. In addition, F is symmetric.

Lemma 4.10. Let m, t ≥ 1 be integers, let V be a vector space of dimension t over a finite field F, and let
0 ≤ ℓ ≤ t be an integer. Let v1, . . . ,vℓ ∈ V be linearly independent vectors in V , and let F1, . . . , Fℓ be
symmetric (m − 1)-forms that satisfy Fi(vj , ·, . . . , ·) = Fj(vi, ·, . . . , ·) for all i ̸= j. Then the number of
symmetric m-forms F that satisfy F (vi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈ [ℓ] is exactly

|F|L, where L =

(
m+ (t− ℓ− 1)

m

)
.

4.3.2 The Construction

In this section we present our construction of comparison-based robust conflict decodable codes,
and prove some basic properties. Let G ∈ FN×K be the generator matrix of a linear [N,K,D =
N−K+1]|F| MDS-code S , and denote by Gi the i-th row of G. Let m ≥ 1 be an integer and consider
the following construction.

Construction 4.11. Define the length-N code

C := {(F (G1, ·, . . . , ·), . . . , F (GN , ·, . . . , ·) | F : (FK)m → F is a symmetric m-form}.

That is, for every F we define a codeword whose ith coordinate is the symmetric (m− 1)-form
that is obtained from F by restricting its first input to the ith row of G.

Theorem 4.12. The code C in Construction 4.11 is an [n, k, d]q code, for code-length n = N , alphabet size

q = |F|(
m+K−2

m−1), dimension k = 1+ K−1
m and distance d = D. In addition, for m ≥ 2 the code is a conflict

checkable code that satisfies local-to-global consistency, and for every 1 ≤ i < j ≤ n the conflict function
Gi,j is given by Gi,j(Fi, Fj) = NEQ(Fi(Gj , ·, . . . , ·), Fj(Gi, ·, . . . , ·)).

37

The following corollary follows immediately from Lemma 1.11.

Corollary 4.13. In the settings of Theorem 4.12, the code C is a comparison-based t-robust conflict decodable
code for t = ⌊(d− 1)/2⌋.

We continue with the proof of Theorem 4.12.

Proof of Theorem 4.12. Observe that C is indeed a code with length n. Every symbol is a symmetric

(m−1)-form, and by Lemma 4.10 the number of symmetric (m−1)-forms is |F|(
(m−1)+K−1

m−1). There-

fore, the size of the alphabet is q = |F|(
m+K−2

m−1). We continue with the analysis of the distance and
the dimension.

Distance. Consider two distinct symmetric m-forms F and F ′, and let c and c′ be the cor-
responding codewords. We prove by induction on m that the distance of c and c′ is indeed
d = D. The base case m = 1 follows since the code C is in fact the original MDS-code
S. For the induction step, assume correctness for m − 1 and we shall prove the claim for m.
Let e1, . . . , eK be the standard basis of FK , and observe that there exists i∗ ∈ [K] such that
F (ei∗ , ·, . . . , ·) ̸= F ′(ei∗ , · · · , . . . , ·), or otherwise, by Lemma 4.9, it holds that F = F ′. Let Cm−1

be the code obtained from Construction 4.11 when applied with m−1, let H := F (ei∗ , ·, . . . , ·) and
H ′ := F ′(ei∗ , ·, . . . , ·) be symmetric m− 1 forms, and let u and u′ be the corresponding codewords
in Cm−1. Then by the induction hypothesis there exists a set I ⊆ [n] of size d such that u[i] ̸= u′[i]
for all i ∈ I . That is, F (ei∗ ,Gi, ·, . . . , ·) ̸= F ′(ei∗ ,Gi, ·, . . . , ·) for every i ∈ I . In particular, it holds
that F (Gi, ·, . . . , ·) ̸= F ′(Gi, ·, . . . , ·) for all i ∈ I , so c[i] ̸= c′[i] for all i ∈ I . We conclude that the
distance of c and c′ is at least d, as required.

Dimension. We proved that for every distinct symmetric m-forms F and F ′ the corresponding
codewords have distance at least 1 Therefore, each symmetric m-form defines a unique codeword,
and by Lemma 4.10 the dimension is

logq(|F|(
m+K−1

m)) = 1 +
K − 1

m
.

Linearity. For every i ∈ [n] Consider the map φi that takes a symmetric m-form F and returns
the (m−1)-form F (Gi, ·, . . . , ·). It is not hard to verify that φi is a linear map, so C is indeed a linear
code.

Conflict checkability. From now on we assume that m ≥ 2. We continue by proving that C
is a conflict checkable code. Let (Gi,j)1≤i<j≤n be the conflict functions of C, and observe that
for every 1 ≤ i < j ≤ n, and every two symbols Fi and Fj that are (m − 1)-forms, it holds
that (1) if Fi(Gj , ·, . . . , ·) = Fj(Gi, ·, . . . , ·) then by Lemma 4.10 there exists a symmetric m-form
F that satisfies F (Gi, ·, . . . , ·) = Fi(·, . . . , ·) and F (Gj , ·, . . . , ·) = Fj(·, . . . , ·), and (2) if there exists
a symmetric m-form F that satisfies F (Gi, ·, . . . , ·) = Fi(·, . . . , ·) and F (Gj , ·, . . . , ·) = Fj(·, . . . , ·)
then Fi(Gj , ·, . . . , ·) = F (Gi,Gj , · · · , . . . , ·) = F (Gj ,Gi, · · · , . . . , ·) = Fj(Gi, ·, . . . , ·). Therefore,
Gi,j(Fi, Fj) = NEQ(Fi(Gj , ·, . . . , ·), Fj(Gi, ·, . . . , ·)).

To see that the code is conflict checkable, consider any symmetric (m − 1)-forms F1, . . . , Fn

that satisfy Fi(Gj , ·, . . . , ·) = Fj(Gi, ·, . . . , ·) for all i ̸= j. Our goal is to prove that there exists a

38

symmetric m-form that satisfies F (Gi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈ [n]. Since the n vectors
G1, . . .Gn span FK , by Lemma 4.9 there exists a symmetric m-form that satisfies F (Gi, ·, . . . , ·) =
Fi(·, . . . , ·) for all i ∈ [n], as required.

Local-to-global consistency. It remains to prove that the code satisfies local-to-global consis-
tency. By a known property of MDS codes, every K rows of G are linearly independent. Since
n−d+1 = N −D+1 = K, we note that local-to-global consistency follows from Lemma 4.9. This
concludes the proof of the theorem.

4.3.3 Optimal Comparison-Based Codes from Bilinear Forms

Applying Theorem 4.12 and Corollary 4.13 with an [N,K,D = N − K + 1]|F| MDS-code and
m = 2, we obtain an [n, k, d]q comparison-based t-robust conflict decodable code, with code-length
n = N , dimension k = (K + 1)/2, distance d = D and threshold t = ⌊(d− 1)/2⌋, and it holds that
k = K+1

2 = N−D+2
2 = n−d+2

2 . Therefore, if 2 < D < N then by Lemma 1.12 for an odd D the value
of k is optimal, and for an even D the value of k is optimal up to an additive factor of 1/2.

4.3.4 Polynomial-Time Codes from Bilinear Forms for t = ⌊(d− 1)/3⌋

In this section we present codes with polynomial-time conflict-decoder for the special case of
t = ⌊(d− 1)/3⌋.

Theorem 4.14. Let F be a finite field, and let G ∈ FN×K be the generator matrix of an MDS code
[N,K,D = N − K + 1]|F|. Let C be the code obtained from Construction 4.11 with m = 2. Then C
is an [n, k, d]q comparison-based t-robust conflict decodable code with a polynomial-time conflict-decoder
algorithm, for code-length n = N , dimension k = (K + 1)/2, distance d = D, alphabet size q = |F|K and
threshold t = ⌊(d− 1)/3⌋.

Proof. Applying Theorem 4.12 and Corollary 4.13 with an [N,K,D = N−K+1]|F| MDS code with
N ≥ 4K and m = 2, we obtain an [n, k, d]q comparison-based t′-robust conflict decodable code C
with code-length n = N , dimension k = (K + 1)/2, distance d = D, alphabet size q = |F|K and
threshold t′ = ⌊(d− 1)/2⌋, but we will restrict ourselves to threshold t = ⌊(d− 1)/3⌋, and think
of the code as a t-robust conflict decodable code. In addition, we are promised that the code C
satisfies local-to-global consistency, and for every 1 ≤ i < j ≤ n the conflict function Gi,j is given
by Gi,j(Fi, Fj) = NEQ(Fi(Gj , ·, . . . , ·), Fj(Gi, ·, . . . , ·)).

The conflict-decoder algorithm. Given a graph K, the algorithm finds a 2-approximation vertex
cover E′ in K using the classic efficient greedy algorithm, that picks an edge in each step, adds
its two vertices to the vertex cover, and removes the two vertices from the graph (For full details,
see, e.g., [CLRS09, Section 35.1]). If the size of the vertex cover is more than 2t, then the algorithm
returns no explanation. Otherwise, let Q ⊆ E′ be the set of all vertices u ∈ E′ such that there are
K + t vertices v outside E′ so that (u, v) is not an edge in K. The algorithm sets E := E′ \Q. If the
number of vertices in E is more than t then the algorithm returns no explanation (i.e., it returns an
empty list). Otherwise, the algorithm returns a single explanation E.

39

Analysis. We continue by proving that the code is a t-robust conflict decodable code with respect
to the conflict-decoder algorithm that we defined. Observe that N −K + 1 = d ≥ 3t+ 1, and that,
since the code is an MDS code, every K rows of G are a basis of FK . Whenever E′ has size at most
2t it holds that (1) there are at least (n − t) − 2t = n − 3t ≥ K honest servers outside E′ that by
Lemma 4.9 fully define a symmetric bilinear form F , and (2) every server in E′ that is consistent
with at least K + t servers outside E′ is consistent with at least K honest servers outside E′, and
therefore, by Lemma 4.9 is consistent with F .

We continue by proving that C is a t-robust conflict decodable code with respect to our conflict-
decoder algorithm. Fix any x ∈ [q]n, any B ⊆ [n] of size at most t, and any graph K that is B-corrupt
with respect to x. To see that validity of explanations holds, assume that the conflict-decoder
outputs an explanation E on K, and assume that there are i, j ∈ H such that (i, j) is an edge in K.
Then without loss of generality i is in E′. We split into cases.

• If the j-th server is not in E′ then Fj(·) = F (Gi, ·), and therefore it is impossible that the i-th
server is consistent with at least K + t servers outside E′, or otherwise Fi(Gj) = F (Gi,Gj) =
F (Gj ,Gi) = Fj(Gi), so the i-th server is consistent with the j-th server, in contradiction.
Therefore, the i-th server is in E, as required.

• If the j-th server is in E′ then it is impossible that both the i-th server and the j-th server are
consistent with K+t servers outside E′ or otherwise Fi(Gj) = F (Gi,Gj) = F (Gj ,Gi) = Fj(Gi),
so the i-th server is consistent with the j-th server, in contradiction. Therefore, either the i-th
server is in E or the j-th server is in E (or both), as required.

To see that the guarantees for good inputs hold, observe that if there exists c ∈ C such that
x[i] = c[i] for all i ∈ H, then all the honest servers are pairwise-consistent, the corrupt servers
form a vertex cover of size at most t = K in K, and every edge is incident on at least one corrupt
server. Therefore, the size of E′ is at most 2t, and the number of honest servers in E′ is at most
|E′|/2. Hence, the number of honest servers outside E′ is at least (N−t)−|E′|/2 ≥ N−2t ≥ K+t.
Therefore, all honest servers in E′ are consistent with at least K+t servers outside E′, which means
that E contains no honest servers, and its size is at most t. In addition, by Lemma 4.9 the honest
servers fully define the codeword c, as required.

To see that guarantees for bad inputs hold, consider any explanation E (if there is no ex-
planation then we’re done). Observe that the number of honest servers outside E is at least
(N − t)− |E| ≥ N − 3t ≥ K, and that, by validity of explanations, they are all pairwise consistent,
so by Lemma 4.9 they fully define a unique bilinear form F , so the unique codeword that is con-
sistent with the honest servers outside E is the codeword corresponding to F . This concludes the
analysis.

4.3.5 Quasipolynomial-Time Codes from Trilinear Forms

We continue by presenting a code with quasipolynomial-time conflict-decoder for a general threshold
t.

Theorem 4.15. Let F be a finite field, let G ∈ FN×K be the generator matrix of an MDS code [N,K,D =
N − K + 1]|F|. Let C be the code obtained from Construction 4.11 with m = 3. Then for every t ≤
⌊(d− 1)/2⌋ the code C is an [n, k, d]q comparison-based t-robust conflict decodable code for code-length
n = N , dimension k = (K + 2)/3, distance d = D, alphabet size q = |F|(

K+1
2) and a conflict-decoder

algorithm that runs in time tO(log t) · poly(n).

40

Proof. Applying Theorem 4.12 and Corollary 4.13 with an [N,K,D = N − K + 1]|F| MDS code
and m = 3, we obtain an [n, k, d]q comparison-based t-robust conflict decodable code C with code-
length n = N , dimension k = (K + 2)/3, distance d = D and threshold t = ⌊(d− 1)/2⌋. In
addition, we are promised that the code C satisfies local-to-global consistency, and for every 1 ≤
i < j ≤ n the conflict function Gi,j is given by Gi,j(Fi, Fj) = NEQ(Fi(Gj , ·, . . . , ·), Fj(Gi, ·, . . . , ·)).
We continue by proving that C is a robust conflict decodable code with quasipolynomial-time
conflict-decoder algorithm.

The conflict-decoder algorithm. Given a graph K the conflict-decoder does as follows. First,
it computes a graph K′ by repeatedly removing from K any edge (i, j) so that |N(i) ∪ N(j)| <
(N − t) − (K − 1), until the property |N(i) ∪ N(j)| ≥ (N − t) − (K − 1) holds for every edge
(i, j). Then it executes Algorithm ExactVC (from Figure 2) on the graph K′ and the integer t,
and obtains the vertex-covers (E1, . . . , Em). Finally, the algorithm outputs the list of explanations
(E1, . . . , Em).

Analysis. Fix any x ∈ [q]n, any B ⊆ [n] of size at most t, and any graph K that is B-corrupt with
respect to x. We first prove the following lemma.

Lemma 4.16. Let i, j ∈ H and let I ⊆ H \ {i, j} be a set of at least K honest servers that does not include
the i-th and j-th servers, such that the i-th and j-th servers are pairwise consistent with all servers in I .
(However, the servers in I are not necessarily pairwise consistent.) Then the i-th server is consistent with
the j-th server.

Proof. For every ℓ ∈ I it holds that Fi(Gj ,Gℓ) = Fi(Gℓ,Gj) = Fℓ(Gi,Gj) = Fℓ(Gj ,Gi) = Fj(Gℓ,Gi) =
Fj(Gi,Gℓ). Since G is the generator matrix of an MDS code, every K rows of G span FK , and
therefore, by Lemma 4.9 it holds that Fi(Gj , ·) = Fj(Gi, ·), as required.

Observe that none of the edges that the conflict-decoder algorithm removes is an edge between
two honest servers. To see this it is enough to prove that for any pair of conflicting honest servers
i, j ∈ H it holds that |(N(i)∪N(j))∩H| ≥ (N − t)− (K − 1) = N − t−K +1 in the original graph
K. Assume towards contradiction that |(N(i) ∪ N(j)) ∩ H| ≤ N − t − K. Then there are at least
|H| − |(N(i)∪N(j))∩H| = (N − t)− (N − t−K) = K honest servers that are pairwise consistent
with i and j, and therefore by Lemma 4.16 servers i and j must be consistent, in contradiction.
The proof now follows in the same way as the proof of Lemma 1.11, by noting that the modified
graph K′ is a t-edge-neighborhood graph, as N − t−K + 1 = (D− 1)− t+ 1 ≥ 2t− t+ 1 = t+ 1,
and that by Theorem 3.2 Algorithm ExactVC runs in time tO(log t) ·poly(n) and the list (E1, . . . , Em)
contains all t-vertex covers of K′. This concludes the proof of the theorem.

4.3.6 The Relation to Secret Sharing

A K-out-of-N secret sharing scheme allows a dealer D that holds a secret s to share the secret
among N parties, so that every set of K − 1 parties has no information about s, but K parties can
recover the secret s. We continue with a formal definition of K-out-of-N secret sharing, and ex-
plain how our codes can be used to construct pairwise-verifiable secret sharing [PC12, Section 3.2.3]
(see also [CDM00]).

41

Definition 4.17. Let S be a domain of secrets, let R be a domain of randomness, let T be the domain of
shares, let N be the number of parties, and let 1 ≤ K ≤ N be a threshold. A K-out-of-N secret sharing
scheme is defined by a sharing algorithm share : S ×R → TN and recovery functions recA : TK → S for
all subsets A ⊆ [N] of size at least K, and it satisfies the following properties.

• (Correctness) For every s ∈ S, r ∈ R and a subset A ⊆ [N] of size at least K, it holds that
recA((si)i∈A) = s, where share(s, r) = (s1, . . . , sn).

• (Perfect privacy) For every pair of secrets s, s′ ∈ S and for every subset A ⊆ [n] of size at most
K − 1, it holds that (si)i∈A has the same distribution as (s′i)i∈A, where share(s, r) = (s1, . . . , sn)
and share(s′, r′) = (s′1, . . . , s

′
n), and r, r′ are uniformly distributed over R.

The secret sharing scheme is pairwise verifiable, if there exists functions (Gi,j , fi,j , fj,i)1≤i<j≤n such that
Gi,j(si, sj) = NEQ(fi,j(si), fj,i(sj)), that satisfy the following property. For every subset A ⊆ [n] of size
at least K, and for every shares (si)i∈A, if Gi,j(si, sj) = 0 for all i < j ∈ A then there exists s ∈ S and
r ∈ R such that si is the i-th output of share(s, r) for all i ∈ A.

We continue by presenting a K-out-of-N secret sharing scheme that is pairwise verifiable. Let
G ∈ F(N+1)×K be a generator matrix for an [N +1,K,D = N −K +2]|F|, where we denote the i-th
row of G by Gi for i ∈ {0, . . . , N}. Let C be the [N + 1, k,D]q code defined by Construction 4.11
when applied with m ≥ 2, where k = 1+K−1

m , and recall that C satisfies local-to-global consistency
(see Theorem 4.12).

Sharing a secret. To share a secret s ∈ F, sample a random symmetric m-form conditioned on
F (G0,G0, . . . ,G0) = s. For i ∈ [N], set the i-th share to be si := F (Gi, ·, . . . , ·).

Correctness and pairwise-verifiability. By Lemma 4.9 every K parties fully define a the sym-
metric m-variate form F , so the parties can recover the m-form F and recover the secret s =
F (G0,G0, . . . ,G0). In addition, pairwise-verifiability follows since the code C satisfies local-to-
global consistency and K = (N + 1)−D + 1.

Privacy. We continue by proving that our scheme is a K-out-of-N secret sharing scheme. We
begin with the following claim.

Claim 4.18. Let m, t ≥ 1 be integers, let V be a vector space of dimension t, let v1, . . . ,vt be a basis
of V , let F1, . . . , Ft−1 be symmetric (m − 1)-forms that satisfy Fi(vj , ·, . . . , ·) = Fj(vi, ·, . . . , ·) for all
i ̸= j ∈ [t−1], and let s ∈ F. The number of symmetric m-forms F that satisfy F (vi, ·, . . . , ·) = Fi(·, . . . , ·)
for all i ∈ [t− 1] and F (vt,vt, . . . ,vt) = s is exactly 1.

Proof. We prove the claim by induction on m. The base case m = 1 is straightforward. For the
induction step, assume correctness for m−1, and we shall prove correctness for m. For every sym-
metric m-form F that satisfies F (vi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈ [t−1] and F (vt,vt, . . . ,vt) = s
it holds that Ft(·, . . . , ·) := F (vt, ·, . . . , ·) satisfies Ft(vi, ·, . . . , ·) = Fi(vt, ·, . . . , ·) for all i ∈ [t − 1]
and also satisfies Ft(vt,vt, . . . ,vt) = s. By the inductive hypothesis, the number of such Ft is
exactly 1. Finally, by Lemma 4.9, for every such Ft there exists a unique symmetric m-form that
satisfies F (vi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈ [t]. This concludes the proof of the claim.

42

Consider any set I of K − 1 parties and any two secrets s, s′ ∈ F. To prove that privacy holds
it is enough to note that the following claims hold.

• For any symmetric (m − 1)-forms (Fi)i∈I that satisfy Fi(Gj , ·, . . . , ·) = Fj(Gi, ·, . . . , ·) for
all i, j ∈ I , the number of symmetric m-forms F that satisfy F (Gi, ·, . . . , ·) = Fi(·, . . . , ·)
and F (G0,G0, . . . ,G0) = s is equal to the number of symmetric m-forms F that satisfy
F (Gi, ·, . . . , ·) = Fi(·, . . . , ·) and F (G0,G0, . . . ,G0) = s′. This now follows immediately from
Claim 4.18.

• The number of m-forms F that satisfy F (G0, . . . ,G0) = s is equal to the number of m-forms
F that satisfy F (G0, . . . ,G0) = s′. Indeed, let M be the number of m-forms (this number
was computed in Lemma 4.10, but we don’t need the exact value). Observe that (1) by
Lemma 4.9 every m-form F is fully determined by (F (Gi, · . . . , ·))i∈I∪{0}, (2) by Claim 4.18,
given (F (Gi))i∈I the number of m-forms F that satisfy F (G0, . . . ,G0) = s is exactly 1, and
therefore, the number of m-forms F that satisfy F (G0, . . . ,G0) = s is exactly M/|F|. Since the
same argument works for s′ as well, the claim follows.

This concludes the proof of privacy.

5 Round-Optimal Statistical MPC with Strong Honest Majority

In this section we consider the scenario where n parties P = {P1, . . . , Pn} wish to compute a func-
tion of their joint inputs with information-theoretic security, at the presence of a computationally-
unbounded active (aka Byzantine or malicious) rushing adversary that controls up to t of the
parties. We assume that each pair of parties is connected by a secure and authenticated point-to-
point channel, and that all parties have access to a common broadcast channel.8 Throughout this
section, we let κ denote a statistical security parameter, and assume without loss of generality that
κ = ω(log n). We also let F be a finite field, and assume that it is sufficiently large, |F| ≥ 2Ω(κ).
We denote by B the set of corrupt parties, by H the set of honest parties, and we let 1, . . . , n be n
distinct elements field elements.

We present a quasipolynomial-time 3-round MPC protocol with statistical security with n ≥
3t + 1, and a polynomial-time 3-round MPC protocol with statistical security with n ≥ 3(1 + ϵ)t
for any constant ϵ > 0. We first design a 2-round verifiable secret sharing protocol (VSS), and
then simply plug our VSS protocol in the satatistical framework of [AKP20] to obtain a 3-round
protocol for general MPC.

5.1 Verifiable Secret Sharing

In this section we present a 2-round protocol for verifiable secret sharing. Our construction fol-
lows the blueprints of the (exponential-time) construction of [AKP20], that implicitly used the
(exponential-time) t-robust conflict decodable codes based on symmetric bilinear forms (more con-
cretely, they used symmetric bivaraite polynomials). We replace the symmetric bilinear forms
with the quasipoylnomial-time codes from symmetric trilinear forms to improve the efficiency of
the construction. To make this section self-contained, and in accordance with the literature of se-
cure multiparty computation, it would be easier to consider a concrete instance of the codes that

8For a formal definition of secure multiparty computation in our settings, see, e.g., [AKP20, Appendix A].

43

is based on trivariate polynomials. We emphasize that the protocol can be instantiated with any
t-robust conflict decodable codes obtained from Theorem 4.15.

The rest of the section is organised as follows. In Section 5.1.1 we briefly discuss trivariate
polynomials. In Section 5.1.2 we present the notion of interactive signatures, that will be used as a
basic building block in our construction. In Section 5.1.3 we use interactive signatures to construct
weak-commitments, which is a weaker notion of VSS. Finally, in Section 5.1.4 we use weak commit-
ments to construct a full-fledged VSS protocol. Throughout this section, we always consider the
optimal resiliency n ≥ 3t + 1 and obtain a quasipolynomial-time protocol. In Section 5.1.5, we
explain how to modify the VSS protocol when n ≥ (3 + ϵ)t in order to obtain a polynomial-time
protocol.

5.1.1 On Trivariate polynomials

Let C be the code obtained from Construction 4.11 when it is instantiated with [n, t+1, d = n− t]|F|
Reed-Solomon code and m = 3. One can verify that

C =

{
(F (x, y, 1), . . . , F (x, y, n))

∣∣∣∣∣ F is a symmetric trivariate polynomial
of degree at most t in each variable

}

Then, by Theorem 4.15, for any n ≥ 3t + 1 the code C is a t-robust conflict decodable code, with
conflict-decoder algorithm with time tO(log t) · poly(n). We recall that the i-th server, that holds the
bivariate polynomial fi(x, y), is consistent with the j-th server, that holds the bivariate polynomial
fj(x, y) if and only if fi(x, j) = fj(x, i).

Remark 5.1 (On punctured codes). Let I ⊆ [n] be a set of size n − ℓ for some 0 ≤ ℓ ≤ t. In some cases
it will be useful to consider the punctured code

CI =

{
(F (x, y, i))i∈I

∣∣∣∣∣ F is a symmetric trivariate polynomial
of degree at most t in each variable

}
,

that is, CI is the code C punctured at the indices not in I . Again, CI can be obtained from Construction 4.11
by instantiating it with [n − ℓ, t + 1, n − ℓ − t]|F| Reed-Solomon code, and m = 3, and therefore, by
Theorem 4.15, for any n ≥ 3t + 1 the code CI is a (t − ℓ)-robust conflict decodable code, with conflict-
decoder with time tO(log t) · poly(n).

In addition, the following fact is analogous to Lemma 4.9.

Fact 5.2. Let m ≥ 1 be an integer. Let K ⊆ {1, . . . , n} be a set of size at least t + 1, and let
(fk(x1, . . . , xm−1))k∈K be a set of symmetric bivariate polynomials of degree at most t in each vari-
able. If for every i, j ∈ K it holds that fi(x1, . . . , xm−2, j) = fj(x1, . . . , xm−2, i) then there exists a
unique symmetric m-variate polynomials F (x1, . . . , xm) of degree at most t in each variable such that
fk(x1, . . . , xm−1) = F (x1, . . . , xm−1, k) for every k ∈ K.

5.1.2 Interactive Signature

Our first building block is interactive signatures, presented in Definition 5.3, taken verbatim
from [AKP20].

44

Definition 5.3 (Interactive Signature Scheme (ISS)). In an interactive signature scheme (ISS)
amongst a set P of n parties, there are three distinguished parties, a dealer D ∈ P, an intermediary I ∈ P,
and a receiver R ∈ P. In addition, all parties in P play the role of verifiers. At the beginning of the
protocol, D holds an input s ∈ F, referred to as the secret, and each party (including the dealer) holds an
independent random string. The protocol consists of two phases, a distribute phase, and a verify & open
phase with the following syntax.

- Distribute: In this phase, D sends s to a designated intermediary I ∈ P. D also sends private informa-
tion (computed based on its secret and randomness) to I and to each of the verifiers in P.

- Verify & open: This phase consists of two parts, verification and opening.

• In the verification, the parties communicate in order to ensure that the information received
from D are consistent. The verification ends with a public accept or reject, indicating whether
the verification is successful or not.

• In the opening, I sends s to the receiver R, and all verifiers send information to R in order to
make sure that R accepts only the correct value s.

If the verification failed, then R outputs ⊥. Otherwise, upon a successful verification, R verifies that
the value s′ ∈ F received from I is valid, using the information received from the verifiers in the
opening. If s′ is valid then R outputs s′, otherwise R outputs ⊥.

A two-phase, n-party protocol as above is called a (1 − ϵ)-secure ISS scheme, if for any adversary A
corrupting at most t parties amongst P, the following holds:

- Correctness: If D and I are honest, the verify phase will complete with a success and an honest R accepts
and outputs s in the open phase.

- ϵ-nonrepudiation: Assume that I and R are honest. Then the probability that the verification succeeds
and R does not accept the value s′ sent by I in the opening is at most ϵ.

- ϵ-unforgeability: Assume that D and R are honest and let View be any possible view of the adversary in
the ISS execution. Then, conditioned on View, the probability that R outputs either s or ⊥ is at least
1− ϵ.

- Privacy: If D, I and R are honest, then the distribution of the adversary’s view is identical for any two
secrets s and s′. Denoting Views as A’s view during the ISS scheme when D’s secret is s, the privacy
property demands Views ≡ Views′ for any s ̸= s′.

- Output extraction: In any execution where D is corrupt and R is honest, the output of R can be ex-
tracted from the view View of the corrupt parties .

The work of [AKP20] presented a polynomial-time protocol iSig for interactive signatures,
where each phases requires one round. Formally, they proved the following lemma. (See [AKP20,
Lemma 4.2].)

Lemma 5.4. Let κ be the security parameter, let n be the number of parties, and let t be the number
of corrupt parties, so that n ≥ 3t + 1. Protocol iSig is (1 − 2−κ)-secure interactive signature scheme,
tolerating a static, active rushing adversary corrupting t parties. Moreover, the protocol achieves perfect
privacy and perfect correctness, and can be implemented in time poly(n, κ, log |F|).

45

5.1.3 Weak Commitment

Following the blueprints of [AKP20], we continue by designing a protocol for weak commitment. At
a high level, weak commitment allows a dealer D ∈ P to share a symmetric trivariate polynomial
H(x, y, z) of degree at most t in each variable among the parties in P, so that party Pi receives
the symmetric bivariate polynomial H(x, y, i). More precisely, if D is honest, then every party Pi

learns only its share H(x, y, i). If D is corrupt, then D can cause a small set P′ of honest parties
to output a special failure symbol ⊥; however, every other honest Pi outputs Hi(x, y) so that all
polynomials (Hi(x, y))Pi∈H\P′ are consistent with some symmetric trivariate polynomial H(x, y, z)
of degree at most t in each variable. This is formalized in the following functionality.

• Input: D inputs a symmetric trivariate polynomial H(x, y, z) of degree at most t in each variable. A
corrupt D also inputs a bit flag, and a set P′ of size at most n− 2t− 1.

• Outputs: If D is honest then the functionality returns the bivariate polynomial H(x, y, i) to Pi.
If D is corrupt and flag = 1 then the functionality returns “D is corrupt” to all the parties. Otherwise,
the functionality returns ⊥ to every Pi ∈ P′, and returns the bivariate polynomial H(x, y, i) to every
Pi ∈ P \ P′.

Functionality Fwcom

Figure 5: Functionality Fwcom

The protocol. Our protocol follows the blueprints of [AKP20]. In the first round the dealer sends
the bivariate polynomial hi(x, y) := h(x, y, i) to Pi where x and y are treated as formal variables.
Consider the code C discussed in Section 5.1.1, and observe that Pi holds the i-th entry of the
codeword defined by h(x, y, z), and we therefore think of Pi as the i-th server of the robust conflict
decodable code, where the set of corrupt servers is exactly the set of corrupt parties. In addition,
for every pair of parties (Pi, Pj) the dealer executes the distribute phase of iSig with the value
h(x, j, i) and with Pi as the intermediate and Pj as the receiver.

In the second round, every pair of parties (Pi, Pj) performs a secure public consistency check,
and completes the verify and open phase of iSig. Recall that Pi is consistent with Pj if and only if
hi(x, j) = hj(x, i). Therefore, the consistency check is executed as follows. In the first round Pi and
Pj exchange a random pad rij(x) which is a random degree-t univariate polynomial, and in the
second round Pi broadcasts hi(x, j)+ ri,j(x) and Pj broadcasts hj(x, i)+ ri,j(x). Observe that Pi is
consistent with Pj if and only if the broadcast messages are equal. For honest Pi and Pj , all parties
learn whether Pi is consistent with Pj . However, if, e.g., Pi is corrupt, then Pi can fully control
the result of the consistency check, but this is not a problem, as this behaviour is also allowed for
a corrupt server. We also note that when D, Pi and Pj are honest this public comparison reveals
no information about h(x, j, i), as all the other parties can see is a random degree-t polynomial,
so privacy is preserved. We emphasize the the public comparison stage strongly relies on the fact
that the code C is a comparison-based code.

At this stage the parties can locally compute the conflict graph based on the public compar-
isons, and find an explanation E of size t using the conflict-decoder (if no such explanation exists
then the parties deduce that D is corrupt). Every party outside the set E simply outputs the share
it received from the dealer, while every party Pi in E recovers its own share by interpolating all the

46

univariate polynomials h(x, i, j) for every Pj that successfully opened its signature. If the results
of the interpolation is not a symmetric bivariate polynomial of degree-t, then Pi outputs ⊥. The
protocol is described in Figure 6.

Inputs: D holds a symmetric trivariate polynomial h(x, y, z) of degree at most t in each variable. All
parties share a statistical security parameter 1κ.

R1: D and every party Pi do the following in parallel.

1. For every ordered pair (Pi, Pj), D initiates the distribute phase of (n + 1) instances of iSig, denoted
as (iSigi,j,k)k=0,...,n, with Pi as the intermediary, Pj as the receiver and (h(k, j, i))k=0,...,n as the secret
(and with security parameter 1κ).

2. Each Pi picks a symmetric bivariate polynomial ri(x, y) of degree at most t in each variable, and
sends the univariate polynomial ri,j(x) := ri(x, j) to every Pj .

3. Each Pi sets its tentative share to be hi(x, y).

R2: The parties do as follows.

1. For each ordered pair (i, j), party Pi broadcasts mi(x, y) := hi(x, y) + ri(x, y), and Pj broadcasts
mi,j := hj(x, i) + ri,j(x).

2. For each ordered pair (i, j), the parties execute the verify and open phases of (iSigi,j,k)k=0,...,n and
let h′

i,j,k be the output of iSigi,j,k. If (h′
i,j,k)k=0,...,n correspond to a univariate degree-t polynomial

then Pj sets h′
i,j(x) to be the corresponding polynomial, and otherwise Pj sets h′

i,j := ⊥.

Local Computation: Each party does as follows.

1. A pair (Pi, Pj) is called conflicting pair if mi(x, j) ̸= mi,j(x) or mj(x, i) ̸= mj,i(x). We say that Pi

is conflicted with D if (D,Pi) is a conflicting pair, or if any of the iSigi,j,k instances for j ∈ [n] and
k ∈ {0, . . . , n} results in Failure. Construct the conflict graph, and remove from it any party in
conflict with D (let ℓ be the number of removed parties) to obtain a graph K. Let L be the set of
parties removed from the graph, and let M := P \ L.

2. Execute the conflict-decoder algorithm of the punctured code CM on K to obtain a list of explanations
(E1, . . . , Em), where each explanation of size at most t− ℓ (see Remark 5.1).

3. If no explanation exists (and in particular, if ℓ > t) then the parties output “D is corrupt” and
terminate. Otherwise, let E be any one of those explanations.a

4. Let W := P \ (E ∪ L). Every Pi ∈ W outputs hi(x, y). Every Pi ̸∈ W computes a polynomial h′
i(x, y)

interpolating over (h′
j,i(x))j:Pj∈W,h′

j,i ̸=⊥. If h′
i(x, y) is not a symmetric bivariate polynomial of degree

t in each variable then Pi outputs ⊥. Otherwise, Pi outputs h′
i(x, y).

aLooking forward, when using wcom as a subprotocol, this explanation will be chosen by the outer protocol.

Protocol swcom

Figure 6: Protocol swcom

The following Theorem shows that protocol wcom is a UC-secure implementation of Fwcom.

Theorem 5.5. Let κ be the security parameter, let n be the number of parties, and let t be the number of
corrupt parties, so that n ≥ 3t+1. Protocol wcom is a UC-secure implementation of Fwcom with statistical
security against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol
is poly(tlog t, n, κ, log |F|).

47

Since the security analysis is the same as in [AKP20], we omit the full proof, and only sketch
the proof of correctness here.

Proof sketch. We split into cases.

Honest D. We need to prove that in a real-world execution with input h(x, y, z) to the honest
dealer, every honest party Pi outputs h(x, y, i). Observe that only corrupt parties are conflicted
with D, and by the guarantees for good inputs of robust conflict decodable codes, we are promised
that an explanation exists, so D is not discarded. Every honest party inside W (which is not
necessarily the set of all honest parties) outputs h(x, y, i). In addition, for every honest Pi not in
W, the correctness of iSig guarantees that h′j,i(x) = h(x, i, j) for every honest Pj , and that with
all but negligible probability, hj,i is either ⊥ or equals to h(x, i, j) for every corrupt Pj . Since
there are at least (n − t) − |E| ≥ t + 1 honest parties in W, and by Fact 5.2, we conclude that
h′i(x, y) = h(x, y, i), as required. Therefore every honest party Pi outputs h(x, y, i), as required.

Corrupt D. If D is discarded then correctness holds and the parties output “D is corrupt”. Other-
wise, by the validity of explanations of the robust conflict decodable codes, for every explanation
E and every pair of conflicting honest parties Pi and Pj , either Pi ∈ E or Pj ∈ E. In addition, the
set W contains at least (n− t)− ℓ− |E| ≥ t+ 1 pairwise consistent honest parties, that by Fact 5.2
define a unique symmetric trivariate polynomial h(x, y, z) of degree at most t in each variable9,
and every honest Pi in W outputs h(x, y, i). For every honest Pi /∈ W , by the nonrepudiation
property of iSig, with all but negligible probability it holds that hj,i(x) = h(x, i, j) for every honest
Pj ∈ W. Since there are at least t+ 1 honest parties in W, the polynomial that Pi recovers is either
h(x, y, i) or ⊥. Finally, observe that the number of honest parties with non-⊥ output is at least
|W| ≥ t+ 1 = (n− t)− (n− 2t− 1), as required. This completes the proof sketch.

Remark 5.6 (On tentative shares). We note that for every honest party in W, the tentative share from
the end of Round 1 becomes its final share at the end of Round 2. For honest parties outside W with non-⊥
output, the tentative share might change only if the dealer is corrupt.

5.1.4 The VSS Protocol

In this section we present the verifiable secret sharing protocol. At a high level, the VSS func-
tionality takes a symmetric trivariate polynomial F (x, y, z) from the dealer D, and returns the
bivariate polynomial F (x, y, i) to Pi. We continue with a formal definition of the functionality.

Inputs.

• An honest D inputs a symmetric trivariate polynomial F (x, y, z) of degree t in each variable.

• A corrupt D inputs a polynomial F (x, y, z).

Functionality Fvss

9More generally, this follows from the guarantees for bad inputs of robust conflict decodable codes.

48

Outputs.

• For an honest D, the functionality returns the bivariate polynomial fi(x, y) := F (x, y, i) to every
party Pi.

• For a corrupt D, if the input F (x, y, z) is not a symmetric trivariate polynomial F (x, y, z) of degree t
in each variable, the functionality resets F (x, y, z) to be the zero-polynomial. The functionality Fvss

returns the univariate polynomial fi(x, y) := F (x, y, i) to every Pi.

Figure 7: Functionality Fvss

The protocol. Our VSS protocol follows the blueprint of [AKP20]. At a high level we follow the
same path of Protocol wcom, except that now every random pad will also be committed via wcom.
This will allow every party that is not in W to recover its share even if D is corrupt. The protocol
is presented in Figure 8.

Inputs: D holds a symmetric trivariate polynomial F (x, y, z) of degree at most t in each variable. All
parties share a statistical security parameter 1κ.

R1 D and every party Pi do the following in parallel.

1. D sends to each Pi the bivariate polynomial fi(x, y) := F (x, y, i).

2. Each party Pi picks a random symmetric trivariate polynomial hi(x, y, z) of degree at most t in each
variable and initiates an instance of swcom, denoted as swcomi as a dealer with polynomial hi(x, y, z).

R2 For each ordered pair (i, j), Pi broadcasts the bivariate polynomial pi(x, y) := fi(x, y)+hi(x, y, 0) and
Pj broadcasts the univariate polynomial pi,j(x) := fj(x, i) + hi,j(x, 0), where hi,j(x, y) is the tentative
share of Pj in swcomi. In parallel, parties execute R2 of swcomi for all i ∈ {1, . . . , n}.

Local Computation All parties do as follows.

1. A pair (Pi, Pj) is called VSS-conflicting pair if pi(x, j) ̸= pi,j(x) or pj(x, i) ̸= pj,i(x). Construct the
conflict graph, and remove from it any party in conflict with D (let ℓ be the number of removed
parties) to obtain a graph K. Let L be the set of parties that were removed from the graph.
Let K1, . . . ,Kn be the graphs computed in swcom1, . . . , swcomn, respectively, and let L1, . . . , Ln be
the corresponding sets of parties that were removed from the graphs.

2. Every party executes Algorithm FindE from Figure 9 on inputs (K,K1, . . . ,Kn, L, L1, . . . , Ln) , to
obtain the sets E,E1, . . . , En, I that satisfy the following requirements:

(a) E is an explanation of K. Let W := P \ (E ∪ L).
(b) I ⊆ W is a set of size at least 2t+ 1,
(c) for every i ∈ I , the set Ei is an explanation of Ki. Let Wi := P \ (Ei ∪ Li).
(d) for every i ∈ I it holds that |W ∩Wi| ≥ 2t+ 1.

3. If Algorithm FindE returns Failure then D is discarded, each party resets its share to be the all-zero
polynomial, and terminates.

Protocol vss

49

4. Otherwise, for every Pi ∈ W the parties locally complete the local computation of swcomi with the
set Ei as the explanation.

5. Every Pi ∈ W outputs fi(x, y) and terminates.

6. Every Pi ̸∈ W computes the set W′
i of indices j such that Pi has non-⊥ output in swcomj , and resets

the bivaraite polynomial fi(x, y) to the polynomial interpolated over the univariate polynomials
(pj(x, i) − hj,i(x, 0))Pj∈I∩W′

i
(where pj(x, y) was broadcasted by Pj in R2 and hj,i(x, y) is the final

share of Pi in swcomj). Finally, Pi outputs fi(x, y).

Figure 8: Protocol vss

Finding E,E1, . . . , En, I . We continue with the description of Algorithm
FindE.

Input: The conflict graphs K,K1, . . . ,Kn, amd the corresponding sets L,L1, . . . , Ln of parties that were
removed from those graphs.

The algorithm:

1. Let M := P \ L. Execute the conflict-decoder algorithm of the punctured code CM on K to obtain
the explanations S1, . . . , Sm of size at most t− |L| (See Remark 5.1).

2. For i = 1, . . . ,m:

(a) Initialize Ii := ∅.
(b) For j ∈ [n] \ (Si ∪ L) do as follows:

i. Let Mj := P \ Lj . Execute the conflict-decoder algorithm of the punctured code CMj
on Kj to

obtain the explanations Sj,1, . . . , Sj,mj of size at most t− |Lj | (See Remark 5.1).
ii. If there exists some index k such that n− |Si ∪L∪ Sj,k ∪Lj | ≥ 2t+ 1 then set S∗

i,j := Sj,k, and
add the index j to the set Ii.

(c) If |Ii| ≥ 2t+ 1 then:
i. Set E := Si.

ii. Set Ej := S∗
i,j for j ∈ Ii, and Ej = ∅ otherwise.

iii. Set I := Ii.
iv. Return (E,E1, . . . , En, I).
(Otherwise, continue to the next iteration.)

3. Return Failure.

Algorithm FindE

Figure 9: Algorithm FindE

Observe that the running time of the algorithm is polynomial in the running time of the conflict-
decoder algorithm, and therefore it is tO(log t) · poly(n). It is straightforward to verify that if the
Algorithm does not return Failure, then the algorithm returns sets (E,E1, . . . , En, I) that satisfy
the requirements mentioned in Protocol vss. We continue by proving that if D is honest then the
algorithm does not return Failure.

Claim 5.7. Assume that D is an honest dealer. Then Algorithm FindE on (K,K1, . . . ,Kn, L, L1, . . . , Ln)
finds sets E,E1, . . . , En, I that satisfy the requirements with probability 1.

50

Proof. Since D is honest, no honest party is conflicted with D, so L contains no honest party.
Therefore, by the guarantees for good inputs of the robust codes, we are promised that the conflict-
decoder algorithm on K returns an explanation Si such that Si ⊆ B. Therefore, for every honest
party Pj it holds that j ∈ [n]\ (Si∪L), and since there are n− t ≥ 2t+1 honest parties, it is enough
to prove that for every honest Pj the algorithm finds an explanation S∗

i,j in Kj , so j ∈ Ii.
For every honest Pj , the parties that are removed from Kj in the execution of wcomj are either

(1) parties that are conflicted with Pj as a dealer in wcomj , and those parties are necessarily corrupt,
or (2) parties Pk for whom the verification of the iSig execution with Pj as the dealer and Pk as the
intermediate ended with Failure, and again, by the (perfect) correctness of iSig, those parties are
necessarily corrupt. Therefore, the set Lj contains no honest parties. By the guarantees for good
inputs, we are promised that the conflict-decoder algorithm on Kj returns an explanation Sj,k such
that Sj,k ⊆ B. Since Si, L, Sj,k, Lj ⊆ B, we conclude that n − |Si ∪ L ∪ Sj,k ∪ Lj | ≥ 2t + 1, and
therefore the algorithm adds the index j to Ii. This concludes the proof of the claim.

Security of vss. We continue by arguing that vss is a a UC-secure implementation of Fvss.

Theorem 5.8. Let κ be the security parameter, let n be the number of parties, and let t be the number
of corrupt parties, so that n ≥ 3t + 1. Protocol vss is a UC-secure implementation of Fvss with statistical
security against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol
is poly(tlog t, n, κ, log |F|).

Since the security analysis is the same as in [AKP20], we omit the full proof, and only sketch
the proof of correctness here.

Proof sketch. We split into cases.

Honest D. As argued in Claim 5.7, when D is honest the Algorithm FindE always finds sets
(E,E1, . . . , En, I) that satisfy the requirements, so D is not discarded. Let (E,E1, . . . , En, I) be the
sets that the algorithm outputs, and let W := P \ (E ∪ L) and Wi := P \ (Ei ∪ Li). Observe that
every honest Pi in W outputs fi(x, y) = F (x, y, i), as required. Consider now any honest Pi /∈ W,
and let Pj be a party in I ∩W′

i.

• Assume that Pj is honest. Then, by the correctness of wcomj , it holds that pj(x, i)−hj,i(x, 0) =
fj(x, i) + hj(x, i, 0)− hj(x, i, 0) = F (x, i, j) (with all but negligible probability).

• Assume that Pj is corrupt. The set Wj contains at least 2t+1 parties, and therefore it contains
at least 2t+ 1− t = t+ 1 honest parties. By the correctness of wcomj , with all but negligible
probability, the shares of those honest parties fully define a symmetric trivariate polynomial
hj(x, y, z) of degree at most t in each variable.

Consider any honest Pk in W∩Wj , and recall that the tentative share of Pk in wcomj becomes
the final share of Pk (see Remark 5.6). Since Pj and Pk are in W they are consistent, and
therefore it must hold that pj(x, k) = F (x, k, j) + hj(x, k, 0). That is, Pj has broadcasted a
polynomial pj(x, y) so that pj(x, k) is equal to F (x, k, j) + hj(x, k, 0) for any honest Pk in
W ∩Wj . Since W ∩Wj is of size at least 2t + 1 it must contain at least 2t + 1 = t + 1 honest
parties, so necessarily pj(x, y) = F (x, y, j)+hj(x, y, 0). By the correctness of swcomj , with all
but negligible probability Pi holds hj,i(x, y) = hj(x, y, i), and we conclude that Pi recovers
the share pj(x, i)− hj,i(x, 0) = F (x, i, j).

51

Finally, since I is of size at least 2t + 1 it must contain at least 2t + 1 − t = t + 1 honest parties.
Since W′

i contains all honest parties, we conclude that Pi recovers at least t + 1 shares, and so Pi

correctly recovers F (x, y, i).

Corrupt D. If D is discarded then we are done. Otherwise, let WH := W ∩ H, observe that
|WH| ≥ |W| − |B| ≥ 2t + 1 − t = t + 1, and that all parties in WH are pairwise consistent, so the
shares of the parties in WH define a symmetric trivariate polynomial F (x, y, z) of degree at most
t in each variable. It is enough to show that the shares of all honest parties outside W is also
consistent with F (x, y, z). The proof now follows by following the same lines as in the case of
honest D. This concludes the proof.

5.1.5 Polynomial-Time VSS for n ≥ (3 + ϵ)t

Let ϵ > 0 be any constant. We note that if n ≥ (3 + ϵ)t then we can obtain a polynomial time VSS
protocol. The main observation is that the bottleneck of the running-time of both wcom and vss is
the conflict-decoder algorithm that runs in time tO(t) · poly(n). We note that when n ≥ (3 + ϵ)t it
suffices to have weaker guarantees from the conflict-decoder algorithm to obtain a VSS protocol.
Those weaker guarantees will allows us to obtain a polynomial time weak conflict decoder. We
continue by describing the requirements from the weak conflict-decoder algorithm.

Relaxing the requirements. Let δ = ϵ/100. The weak conflict-decoder should satisfy the same
guarantees as in Definition 1.9 with the following relaxations.

• The size of each explanation can be at most (1 + δ)t.

• The guarantees for good inputs are relaxed as follows: If there exists a codeword c ∈ C such
that x[i] = c[i] for every i ∈ H, then (1) there exists an explanation E such that |E \ B| ≤ 2δt
(in particular L is not empty), and (2) for every explanation E, the codeword c is the only
codeword that satisfies x[i] = c[i] for all i ∈ H \ E.

Validity of explanations and guarantees for bad inputs remain the same.

The weak conflict-decoder. We continue with a description of a weak conflict-decoder that sat-
isfies the relaxed requirements with respect to the code C that is based on trivariate polynomials.
Given a graph K the conflict-decoder does as follows. First, it computes a graph K′ by repeat-
edly removing from K any edge (i, j) so that |N(i) ∪ N(j)| < (n − t) − t, until the property
|N(i) ∪ N(j)| ≥ n − 2t holds for every edge (i, j). Then it executes the Algorithm ApproxVC
in Figure 4 on the graph K′, the integer t, and the value δ, to obtain the (1 + δ)-approximations
E1, . . . , Em. Finally, the algorithm outputs the list (E1, . . . , Em).

Analysis. By the same analysis as in the proof of Theorem 4.15 the conflict-decoder does not
remove any edge between two honest servers, and since n − 2t ≥ t + 1, the graph K′ is a t-edge-
neighborhood graph, so the weak conflict decoder runs in time poly(n). To see that the weak
conflict-decoder satisfies the relaxed requirements, we note that

• every explanation is of size at most (1 + δ)t,

52

• validity of explanations hold as no edge between two honest servers was removed from K′,
and every explanation is a vertex cover of K′,

• for good inputs, assume that the shares of the honest parties are consistent with some sym-
metric trivariate polynomial f(x, y, z) of degree at most t in each variable, and observe that
the set B is a vertex cover of K′, so by the correctness of ApproxVC, it outputs a vertex cover
Ei such that |Ei \B| ≤ 2δt; in addition, for every explanation E the set H \E contains at least
(n− t)− (1 + δ)t ≥ t+ 1 honest parties that are pairwise consistent, so they fully define the
polynomial f(x, y, z),

• for bad inputs, observe that for every explanation E the set H \ E contains at least (n −
t) − (1 + δ)t ≥ t + 1 honest parties that are pairwise consistent, so they fully define some
symmetric trivariate polynomial f(x, y, z) of degree at most t in each variable.

Polynomial time VSS. In order to obtain a polynomial time VSS protocol we simply replace
every execution of the conflict-decoder with an execution of the weak conflict-decoder. In more
details, we make the following changes.

• In Protocol wcom, we change Step (2) in the local computation of wcom to: “Execute the weak
conflict-decoder algorithm of the punctured code CM on K to obtain explanations E1, . . . , Em

of size at most (1 + δ)(t − ℓ)”. (Note that this step is anyway executed by the outer vss
protocol.)

• In Algorithm FindE we change Step 1 as follows: “Let M := P\L. Execute the weak conflict-
decoder algorithm of the punctured code CM on K to obtain the explanations S1, . . . , Sm of
size at most (1 + δ)(t− |L|)”.

• In Algorithm FindE we change Step (2,b,i) as follows: “Let Mj := P \ Lj . Execute the
weak conflict-decoder algorithm of the punctured code CMj on Kj to obtain the explanations
Sj,1, . . . , Sj,mj of size at most (1 + δ)(t− |Lj |)”.

We note that correctness still holds. Indeed, in wcom the exact same analysis shows that the proto-
col is correct after the modification. For vss, it is not hard to verify that the running time of ExactE
is poly(n), and that whenever the algorithm does not return Failure, the algorithm returns sets
that satisfy the requirements in Protocol vss. In addition, it is not hard to verify that, similarly to
Claim 5.7, whenever the dealer is honest, the modified FindE always return sets (E,E1, . . . , En, I)
that satisfy the requirements. Therefore, the same correctness analysis proves that Protocol vss
remains correct after the modification. Denote the modified vss protocol by vsspoly, and observe
that we obtain the following theorem.

Theorem 5.9. Let κ be the security parameter, let ϵ > 0 be a constant, let n be the number of parties, and
let t be the number of corrupt parties, so that n ≥ (3 + ϵ)t. Protocol vsspoly is a UC-secure implementation
of Fvss with statistical security against a static, active, rushing adversary corrupting up to t parties. The
complexity of the protocol is poly(n, κ, log |F|).

53

5.2 From VSS to General MPC

The work of [AKP20] presents a general transformation from an implementation of Fvss to the
computation of a general functionality. More concretely, for any functionality F that can be rep-
resented as a boolean circuit of size s and depth d, they provided a compiler that transforms any
r-round protocol for Fvss into an (r + 1)-round secure realization of F , where the compiler pre-
serves statistical security, and has overhead poly(n, κ, s, 2d). We therefore obtain the following
theorems.10

Theorem 5.10. Let κ be the security parameter, let n be the number of parties, and let t be the number of
corrupt parties, so that n ≥ 3t+1. Let F be an n-party functionality, represented as a boolean circuit of size
s and depth d. Then there exists a UC-secure implementation of F with statistical security against a static,
active, rushing adversary corrupting up to t parties. The complexity of the protocol is poly(tlog t, n, κ, s, 2d).

Theorem 5.11. Let κ be the security parameter, let ϵ > 0 be a constant, let n be the number of parties, and
let t be the number of corrupt parties, so that n ≥ (3+ϵ)t. Let F be an n-party functionality, represented as
a boolean circuit of size s and depth d. Then there exists a UC-secure implementation of F with statistical
security against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol
is poly(n, κ, s, 2d).

10Technically, the work of [AKP20] considered the functionality Fvss with respect to bivariate polynomials, where the
dealer inputs a symmetric bivariate polynomial F (x, y) of degree at most t in each variable, and the i-th party outputs
F (x, i). However, it is not hard to see that the bivariate version of Fvss reduces efficiently and non-interactively to
the trivariate version of Fvss that appears in our work in the following way: given F (x, y), pick a random symmetric
trivariate polynomial G(x, y, z) of degree at most t in each variable, conditioned on G(x, y, 0) = F (x, y), and input
G(x, y, z) to (the trivariate version of) Fvss; the i-th party, on receiving the output Gi(x, y) = G(x, y, i) from Fvss,
outputs Gi(x, 0), which is equal to F (x, i).

54

References

[AAP23] Ittai Abraham, Gilad Asharov, and Arpita Patra. Perfect asynchronous MPC with
linear communication overhead. Private Communication, 2023.

[AKP20] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The resiliency of MPC with low
interaction: The benefit of making errors (extended abstract). In Theory of Cryptogra-
phy - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II, pages 562–594, 2020.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998.

[Alo02] Noga Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21(3-
4):359–370, 2002.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of np. Journal of the ACM (JACM), 45(1):70–122, 1998.

[BDN16] Amey Bhangale, Irit Dinur, and Inbal Livni Navon. Cube vs. cube low degree test.
arXiv preprint arXiv:1612.07491, 2016.

[Beh46] Felix A Behrend. On sets of integers which contain no three terms in arithmetical
progression. Proceedings of the National Academy of Sciences, 32(12):331–332, 1946.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10, 1988.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513, 1990.

[BSS04] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques: 7th International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, APPROX 2004, and 8th International Workshop on Randomization and
Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004. Proceedings,
pages 286–297. Springer, 2004.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19, 1988.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party com-
putation from any linear secret-sharing scheme. In Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Cryptographic Tech-
niques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages 316–334, 2000.

55

[CJ03] Liming Cai and David Juedes. On the existence of subexponential parameterized al-
gorithms. Journal of Computer and System Sciences, 67(4):789–807, 2003.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, 3rd Edition. MIT Press, 2009.

[DEL+22] Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally
testable codes with constant rate, distance, and locality. In Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing, pages 357–374, 2022.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Ap-
proximating clique is almost np-complete (preliminary version). In Proceedings of the
32nd annual symposium on Foundations of computer science, pages 2–12, 1991.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure
multiparty computation. In Advances in Cryptology - CRYPTO 2002, 22nd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Pro-
ceedings, pages 178–193, 2002.

[Gol10] Oded Goldreich. Short locally testable codes and proofs: A survey in two parts. Prop-
erty testing: current research and surveys, pages 65–104, 2010.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–
530, 2001.

[KKK09] Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round com-
plexity of VSS in point-to-point networks. Inf. Comput., 207(8):889–899, 2009.

[Mei08] Or Meir. Combinatorial construction of locally testable codes. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 285–294, 2008.

[PC12] Anat Paskin-Cherniavsky. Secure Computation with Minimal Interaction. PhD thesis,
Technion — Israel Institute of Technology, 2012.

[RAG05] Steven Roman, S Axler, and FW Gehring. Advanced linear algebra, volume 3. Springer,
2005.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 73–85, 1989.

[RS78] Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points carrying three
triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18(939-945):2, 1978.

[RS92] Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and
over rational domains. In SODA, pages 23–32, 1992.

56

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability pcp characterization of np. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 475–484, 1997.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

57

A Appendix: Robust Conflict Decodable Codes

In this section we provide full proofs for the basic properties of robust conflict decodable codes.

Conflict checkablity plus local-to-global consistency imply robust decoding. We begin by
proving Lemma 1.11.

Lemma A.1 (Lemma 1.11 restated). Let C be an (n, k, d)q conflict checkable code that satisfies local-to-
global consistency. Then C is t-robust conflict decodable code for t = ⌊(d− 1)/2⌋.

Proof. Let E be a function that given a graph K on n vertices, returns (1) a single explanation E = ∅
if K contains no edges, or (2) all vertex covers of K of size at most t if K contains an edge (here,
there might possibly be no explanations). Fix any word x ∈ [q]n, any set B ⊆ [n] of size at most t,
and any graph K that is B-corrupt with respect to x. Denote the output of E on K by L = (Ei)i.

• (Validity of explanations) Fix any explanation E in L and consider any i, j ∈ H such that
Gi,j(x[i],x[j]) = 1. Then there is an edge (i, j) in K, and since E is a vertex cover then either
i ∈ E or j ∈ E (or both).

• (Good inputs) Assume that there exists a codeword c ∈ C such that x[i] = c[i] for every i ∈ H.
Then for every i, j ∈ H it holds that x[i] is consistent with x[j], so there is no edge (i, j) in
K. Therefore, the set B is a vertex cover of K of size at most t, so L is not empty. In addition,
for every explanation E it holds that |H \ E| ≥ (n− t)− t ≥ n− d+ 1, and therefore c is the
unique codeword that satisfies x[i] = c[i] for all i ∈ H \ E, as required.

• (Bad inputs) Assume that there is no codeword c ∈ C such that x[i] = c[i] for every i ∈ H.
If L is empty then we’re done. Otherwise, for every explanation E it holds that |H \ E| ≥
(n − t) − t ≥ n − d + 1, and by validity of explanations all parties in H \ E are pairwise
consistent. Hence, by the local-to-global property, there exists a unique codeword c that
satisfies x[i] = c[i] for all i ∈ H \ E.

This concludes the proof of the lemma.

Robust codes are conflict checkable codes. We move on and prove that every robust conflict
decodable code is a conflict checkable code.

Lemma A.2. Let C ⊆ [q]n be a t-robust conflict decodable code for 0 ≤ t ≤ n. Then C is a conflict checkable
code.

Proof. Let c ∈ C be any codeword, and consider the case where B = ∅ and the i-th server receives
c[i]. Then the conflict graph K is empty, and by the guarantees for good inputs we are guaranteed
that the explanation E = ∅ appears in the explanation-list that the conflict decoder generates.

Let x ∈ [q]n and assume that Gi,j(x[i],x[j]) = 0 for all 1 ≤ i < j ≤ n. Our goal is to prove
that x is a codeword. Assume towards contradiction that x is not a codeword, and consider the
case where B = ∅ and the i-th server receives x[i]. Then the conflict graph K is empty, and by the
above observation, the explanation E = ∅ appears in the explanation-list that the conflict decoder
generates. But from the guarantees for bad inputs there must exist a unique codeword c ∈ C such
that x[i] = c[i] for all i ∈ [n], i.e., x = c ∈ C, in contradiction.

58

Robust codes are conflict decodable codes. We continue by proving the every robust conflict
decodable code is also a conflict decodable code.

Lemma A.3. Let C ⊆ [q]n be a t-robust conflict decodable code for 0 ≤ t ≤ n. Then C is a t-conflict
decodable code.

Proof. Let E be the conflict-decoder of C, and let F be the algorithm that, on a conflict graph K
does as follows: F executes E on K to obtain the list L, takes the first explanation E from the list
and outputs the set I = [n] \ E. We continue by proving that C is a t-conflict decodable code with
respect to F .

Let w ∈ [q]n be any vector that is at most t-far from some codeword c ∈ C, let S ⊆ [n] be the
set of indices where w differs from c, and let K be the conflict graph of w. First, we prove that E
on K returns a non-empty list L. Indeed, as C is a robust conflict decodable code, consider the case
where x = c, B = S and the the B-corrupt graph is K. Then, by the guarantees for good inputs,
the conflict-decoder E on K returns a non-empty list L, and we let E be the first explanation in L.
We are also promised that the only codeword c′ ∈ C that satisfies c′[i] = c[i] for all i ∈ [n] \ (S ∪E)
is c′ = c.

Our goal now is to prove that the codeword c is the unique codeword that satisfies c[i] = w[i]
for all i ∈ [n] \ E. As C is a robust conflict decodable code, consider the case where x = w, B = ∅
and the the B-corrupt graph is K. Then by the guarantees for bad inputs, there exists a unique
codeword c′ that satisfies c′[i] = w[i] for all i ∈ [n] \ E. Observe that w[i] = c[i] for all i ∈ [n] \ S,
and therefore it holds that c′[i] = c[i] for all i ∈ [n] \ (S ∪ E). Hence it must hold that c′ = c, and
the claim follows.

As an immediate corollary, we obtain that t ≤ ⌊(d− 1)/2⌋, since this bound must hold in t-
conflict decodable codes.

On the necessity of local-to-global consistency. Lemma 1.11 shows that every (n, k, d)q conflict
decodable code is a t- robust conflict decodable code. The following lemma shows that local-to-
global consistency is indeed necessary.

Lemma A.4. Let C be an (n, k, d)q t-robust conflict decodable code, for 0 ≤ t ≤ ⌊(d− 1)/2⌋. Then every
set I ⊆ [n] of size ℓ ≥ n − 2t, and every (xi)i∈I ∈ [q]ℓ such that xi is consistent with xj for all i, j ∈ I ,
there exists a unique codeword c ∈ C that satisfies c[i] = xi for all i ∈ I .

Proof. Let I ⊆ [n] be a set of size ℓ ≥ n− 2t, and let (xi)i∈I ∈ [q]ℓ such that xi is consistent with xj
for all i, j ∈ I . It is enough to prove that there exists a codeword c ∈ C that satisfies c[i] = xi for
all i ∈ I , since uniqueness follows from the fact that d ≥ 2t+ 1.

Let B1 and B2 be a partition of [n] \ I into two sets of size at most t. We assume without loss
of generality that B1 is not empty. First, assume that B2 = ∅. Consider the case where B = B1,
the input to the honest servers is (xi)i∈I (the input to the corrupt servers is arbitrary), and let K be
the B-corrupt graph with respect to (xi)i∈I , where every corrupt server is consistent with all other
servers. Observe that K has no edges, and therefore there exists an explanation E = ∅. (Indeed,
consider the case where there are no corruptions and the input to the honest servers is a valid
codeword so the corresponding inconsistency graph has no edges – then the guarantees for good
inputs imply that E = ∅ has to be in L.) Hence, there exists a unique codeword c ∈ C that satisfies

59

c[i] = x[i] for all i ∈ I , as required. Therefore, in the rest of the proof we assume that B2 is not
empty.

Assume towards contradiction that there is no codeword c ∈ C satisfying c[i] = xi for all i ∈ I .
Let c ∈ C be any codeword, and consider the following cases.

1. (Case 1) Let B = B1 be the set of corrupt servers, let x1[i] = c[i] for all i ∈ B2 and x1[i] = xi
for all i ∈ I be the inputs of the servers, and let K be the B-corrupt graph with respect to x1,
where every corrupt server is consistent with all other servers. Observe that all edges in K
are of the form (u, v) for u ∈ B2 and v ∈ I .

2. (Case 2) Let B = B2 be the set of corrupt servers, let x2 = c be the inputs of the servers, and
let K be the B-corrupt graph with respect to x2. That is, we take the same graph as in Case 1,
and this is possible since all edges in K are of the form (u, v) for u ∈ B2 and v ∈ I .

Observe that there must be some explanation in Case 1. Indeed, if no explanation exists in Case 1,
then, since the inconsistency graph in Case 1 is the same as the inconsistency graph in Case 2, no
explanation exists in Case 2, which is a contradiction to the guarantees of good inputs.

Let E be any explanation in Case 1. Observe that there must be i ∈ I such that i ∈ E. Indeed,
if I ∩ E = ∅, then, from the guarantees for bad inputs in Case 1, there exists a codeword c ∈ C
that satisfies c[i] = x1[i] = xi for all i ∈ I , in contradiction to the assumption that such a codeword
does not exist.

Finally, since the explanations in Case 1 are the same as the explanations in Case 2, we obtain
that every explanation in Case 2 contains some index i that belongs to I . Therefore, in Case 2 no
explanation is contained in B2, in contradiction to the guarantees for good inputs. This concludes
the proof.

A.1 Proof of Lemma 1.10

In this section we prove Lemma 1.10. We do so by proving the following claims.

Claim A.5. Let C be an (n, k, d)q t-robust conflict decodable code, for 0 ≤ t ≤ ⌊(d− 1)/2⌋, that satisfies
the strong guarantees for bad inputs. Then d ≥ 3t+ 1.

Proof. Assume towards contradiction that d ≤ 3t. Let c1, c2 ∈ C be two distinct codewords of
distance d, let I ⊆ [n] be the set of coordinates i ∈ [n] such that c1[i] ̸= c2[i], let S1, S2, S3 be a
partition of I into sets of size at most t (since d ≥ 2t + 1 no set is empty), and let S4 := [n] \ I .
Consider the following cases.

1. (Case 1) Let B = ∅ be the set of corrupt servers, and define the input x1 as follows: for
i ∈ S1 ∪ S2 ∪ S4 we set x1[i] = c1[i], and for i ∈ S3 we set x1[i] = c2[i]. Let K1 be the
corresponding inconsistency graph, and observe that all the edges are from S1 ∪ S2 to S3.

2. (Case 2) Let B = S3 be the set of corrupt servers, let x2 = c1 be the input of the servers.
The corresponding B-corrupt graph, denoted K2, is obtained from K1 by removing all edges
between B3 and B1. That is, the only edges in K2 are from S3 to S2.

3. (Case 3) Let B = S2 be the set of corrupt servers, let x3 = c2 be the input of the servers, and
set the B-corrupt graph to be K2. (This is possible since all edges in K2 are of the form (u, v)
for u ∈ S2 and v ∈ S3.)

60

4. (Case 4) Let B = S1 be the set of corrupt servers, and define the input x4 as follows: for i ∈ S2

we set x4[i] = c1[i], and for i ∈ S3 ∪ S4 we set x4[i] = c2[i]. Set the corresponding B-corrupt
graph to be K2. (This is possible since the conflict pattern between S2 and S3 in K2 is exactly
like in K1.)

In Case 2 we obtain an explanation E3 ⊆ S3. Since the inconsistency graph in Case 2 and in Case 4
is K2, then explanation E3 is an explanation in Case 4 as well. Let c∗ be the unique codeword that
satisfies c∗[i] = x4[i] for all i ∈ (S2 ∪ S3 ∪ S4) \E3. Observe that c∗ agrees with c1 on the indices in
S2 ∪ S4, i.e., on at least |S2|+ |S4| ≥ 1 + (n− d) > n− d indices, so necessarily c∗ = c1.

In Case 3 we obtain an explanation E2 ⊆ S2. Since the inconsistency graph in Case 3 and in
Case 4 is K2, then explanation E2 is an explanation in Case 4 as well. Let c′ be the unique codeword
that satisfies c′[i] = x4[i] for all i ∈ (S2∪S3∪S4)\E2. Observe that c′ agrees with c2 on the indices
in S3 ∪S4, i.e., on at least |S3|+ |S4| ≥ 1+ (n− d) > n− d indices, so necessarily c′ = c2. However,
by the strong definition we should have c′ = c1, in contradiction. This completes the proof of the
claim.

Claim A.6. Let C be an (n, k, d)q t-robust conflict decodable code with d ≥ 3t + 1. Then C satisfies the
strong guarantees for bad inputs.

Proof. Fix any set B of size t, any bad input x (i.e., x is not a codeword), and any B-corrupt graph
with respect to x, denoted K. Let L = (E1, . . . , Em) be the corresponding list of explanations (if
there are no explanations then we’re done).

For every explanation Eℓ, denote by cℓ the unique codeword that satisfies cℓ[i] = x[i] for all
i ∈ H \ Eℓ. We prove that for every pair of explanations Eℓ and Er it holds that cℓ = cr. Let
S = H \ (Eℓ ∪ Er), and observe that |S| ≥ 1 since n ≥ d ≥ 3t + 1, and |Eℓ|, |Er|, |B| ≤ t. Observe
that cℓ and cr agree on all indices in S. In addition, the distance of C when restricted to coordinates
in S is at least d− 3t ≥ 1, and since cℓ and cr agree on all indices in S it must hold that cℓ = cr, as
required. This completes the proof of the claim.

B Appendix: Multilinear Forms

B.1 Proof of Lemma 4.9

In this section we prove Lemma 4.9. First, we need the following claim.

Claim B.1. Let m, t ≥ 1 be integers, let V be a vector space of dimension t over a field F, let v1, . . . ,vt ∈ V
be a basis of V , and let F1, . . . , Ft be symmetric (m−1)-forms that satisfy Fi(vj , ·, . . . , ·) = Fj(vi, ·, . . . , ·)
for all i ̸= j. Then there exists a unique m-form F that satisfies

F (vi, ·, . . . , ·) = Fi(·, . . . , ·),

for all i ∈ [t]. In addition, F is symmetric.

Proof of Claim B.1. For vectors u1, . . . ,um ∈ V where ui =
∑t

j=1 αi,j · vj we define

F (u1, . . . ,um) :=
∑

i1,...,im∈[t]

α1,i1 · . . . · αm,im · Fi1(vi2 , . . . ,vim).

61

To see that F is indeed an m-form, note that

F (u1, . . . ,uj−1, γuj + δu′
j ,uj+1, . . . ,um)

=
∑

i1,...,im∈[t]

α1,i1 · . . . · αj−1,ij−1 · (γαj,ij + δα′
j,ij) · αj+1,ij+1 . . . · αm,im · Fi1(vi2 , . . . ,vim)

= γ
∑

i1,...,im∈[t]

α1,i1 · . . . · αj−1,ij−1 · αj,ij · αj+1,ij+1 . . . · αm,im · Fi1(vi2 , . . . ,vim)

+ δ
∑

i1,...,im∈[t]

α1,i1 · . . . · αj−1,ij−1 · α′
j,ij · αj+1,ij+1 . . . · αm,im · Fi1(vi2 , . . . ,vim)

= γF (u1, . . . ,ui−1,ui,ui+1, . . . ,um) + δF (u1, . . . ,ui−1,u
′
i,vi+1, . . . ,um),

for every j ∈ [m], every vectors u1, . . . ,um,u′
j ∈ V and every γ, δ ∈ F. To see that F is symmetric,

note that by the symmetry of F1, . . . , Ft and since Fi(vj , ·, . . . , ·) = Fj(vi, ·, . . . , ·) for all i ̸= j, it
holds that

Fi1(vi2 , . . . ,vim) = Fiπ(1)
(viπ(2)

, . . . ,viπ(m)
),

for every i1, . . . , im ∈ [t] and every permutation π of [m]. Therefore, for every vectors u1, . . . ,um ∈
V it holds that

F (uπ(1), . . . ,uπ(m)) =
∑

i1,...,im∈[t]

απ(1),i1 · . . . · απ(m),im · Fi1(vi2 , . . . ,vim)

=
∑

i1,...,im∈[t]

α1,iπ−1(1)
· . . . · αm,iπ−1(m)

· Fi1(vi2 , . . . ,vim)

=
∑

i1,...,im∈[t]

α1,iπ−1(1)
· . . . · αm,iπ−1(m)

· Fiπ−1(1)
(viπ−1(2)

, . . . ,viπ−1(m)
)

=
∑

i1,...,im∈[t]

α1,i1 · . . . · αm,im · Fi1(vi2 , . . . ,vim)

= F (u1, . . . ,um).

Finally, for uniqueness, let F ′ be any m-form that satisfies F ′(vi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈
[m]. Then

F ′(u1, . . . ,um) = F ′

∑
i1∈[t]

α1,i1vi1 , . . . ,
∑
im∈[t]

α1,imvim


=

∑
i1,...,im∈[t]

α1,i1 · . . . · αm,im · F ′ (vi1 , . . . ,vim)

=
∑

i1,...,im∈[t]

α1,i1 · . . . · αm,im · Fi1 (vi2 , . . . ,vim)

= F (u1, . . . ,um).

This concludes the proof of the lemma.

We continue with the proof of Lemma 4.9. Assume without loss of generality that v1, . . . ,vt

form a basis of V , and let F be the symmetric m-form promised in Claim B.1. It only remains to

62

prove that F (vi, ·, . . . , ·) = Fi(·, . . . , ·), for all i ∈ {t+1, . . . , ℓ}. To see this, observe that for every i ∈
{t+ 1, . . . , ℓ} and every j ∈ [t] it holds that F (Gi,Gj , ·, . . . , ·) = F (Gj ,Gi, ·, . . . , ·) = Fj(Gi, ·, . . . , ·) =
Fi(Gj , ·, . . . , ·), and therefore, by Claim B.1 it must hold that F (Gi, ·, . . . , ·) = Fi(·, . . . , ·), as re-
quired. This concludes the proof of the lemma.

B.2 Proof of Lemma 4.10

We prove the claim by induction on m. The base case m = 1 is straightforward, and we continue
with the inductive step. Assume correctness for m − 1, and we shall prove the claim for m. Let
vℓ+1, . . . ,vt complete the vectors v1, . . . ,vℓ to a basis of V . By the induction hypothesis, the num-
ber of ways to choose (m− 1)-forms Fℓ+1, . . . , Ft that satisfy Fi(vj , ·, . . . , ·) = Fj(vi, ·, . . . , ·) for all
i ̸= j ∈ [t] is given by

|F|
∑t−ℓ−1

i=0 ((m−1)+(t−ℓ−1)−i
m−1) = |F|(

m+(t−ℓ−1)
m)

where we used the known identity
(
n+k
k

)
=
∑n

i=0

(
n−i+k−1

k−1

)
. By Lemma 4.9 every choice of such

Fℓ+1, . . . , Ft fully defines a symmetric m-form F that satisfies F (vi, ·, . . . , ·) = Fi(·, . . . , ·) for all
i ∈ [ℓ], and in addition every symmetric F that satisfies F (vi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈ [ℓ]
also defines the (m − 1)-forms (Fi(·, . . . , ·) := F (vi, ·, . . . , ·))i∈{ℓ+1,...,t} so that Fi(vj , ·, . . . , ·) =
Fj(vi, ·, . . . , ·) for all i ̸= j ∈ [t]. Therefore the number of symmetric m-forms F that satisfy

F (vi, ·, . . . , ·) = Fi(·, . . . , ·) for all i ∈ [ℓ] is exactly |F|(
m+(t−ℓ−1)

m). This concludes the proof of the
lemma.

63

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

