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Abstract

Single-hop radio networks (SHRN) are a well studied abstraction of communication

over a wireless channel. In this model, in every round, each of the n participating par-

ties may decide to broadcast a message to all the others, potentially causing collisions.

We consider the SHRN model in the presence of stochastic message drops (i.e., era-

sures), where in every round, the message received by each party is erased (replaced

by ⊥) with some small constant probability, independently.

Our main result is a constant rate coding scheme, allowing one to run protocols

designed to work over the (noiseless) SHRN model over the SHRN model with erasures.

Our scheme converts any protocol Π of length at most exponential in n over the SHRN

model to a protocol Π′ that is resilient to constant fraction of erasures and has length

linear in the length of Π.

We mention that for the special case where the protocol Π is non-adaptive, i.e., the

order of communication is fixed in advance, such a scheme was known. Nevertheless,

adaptivity is widely used and is known to hugely boost the power of wireless channels,

which makes handling the general case of adaptive protocols Π both important and

more challenging. Indeed, to the best of our knowledge, our result is the first constant

rate scheme that converts adaptive protocols to noise resilient ones in any multi-party

model.

1 Introduction

Over the last decades, wireless communication found many applications and has transformed

technology. On the theoretical side, wireless systems were studied by numerous works, many

of which consider the single-hop radio networks (SHRN) model of Chlamtac and Kutten [7],

which abstracts a simple broadcast channel.
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The classical model of SHRN assumes that the communication is noiseless, guaranteeing

that (if no “collisions” occur) the message broadcast in a round will be received correctly

by all the parties. In contrast, recently, Censor-Hillel, Haeupler, Hershkowitz, and Zuzic

[6], initiated the study of the radio networks model under stochastic message drops (a.k.a,

stochastic erasures). In their model, each party only gets the message that was broadcast

with probability 1 − ϵ, independently, for some small constant ϵ. Otherwise, the round

is “erased” for this party, meaning that it is received as a silent round, as if nothing was

broadcast.

While the (noiseless) radio networks model is, by now, mostly well understood, and

while noise is inherent in almost all communication systems, the relative power of noisy

radio networks is far less explored. In this work we study the power of the SHRN model

under the message drop noise of [6].

1.1 Our Result

Our main result is that the model of SHRN with message drops is as powerful as that of

(noiseless) SHRN, in the sense that any protocol that was designed to work over the latter can

be made to work over the former with a small overhead to the communication. An informal

statement of our main result is in Theorem 1.1 (see Theorem 4.1 for a formal statement, the

assumed model is discussed next).

Theorem 1.1. Let n ∈ N be the number of participants, ϵ ∈ (0, 1) be the noise rate, and Γ

be a non-empty alphabet set. For any protocol Π of length T ≤ 2n over the (n,Γ)-broadcast

channel, there is a protocol Π′ with O(T ) rounds over the (n, ϵ,Γ)-noisy broadcast channel

that simulates1 Π, and errs with probability polynomially small in T .

We mention that our scheme works for protocols of length T ≤ 2n, as, if T is much larger

than 2n, there will be rounds where the messages received by all parties are erased (see

Section 2.4). We also mention that our scheme uses a combinatorial building block called a

tree code (see Section 2.2), and like other works that use tree codes, it is not computationally

efficient, as no efficient tree code construction is known. Whether or not longer protocols can

be handled with constant rate, and whether computationally efficient schemes are possible,

are two intriguing questions we leave open.

The collision-as-silence-as-erasures SHRN model. We next overview the noise

model of [6] used by Theorem 1.1 (for formal definitions, see Section 3.2): A protocol over

the (n, ϵ,Γ)-noisy broadcast channel is a communication protocol between n communicating

parties that proceeds in synchronous rounds. In each round, each party can decide to either

broadcast a symbol from Γ or stay silent. If more than one party broadcasts in a given

round (a collision), or none of the parties broadcast (a silent round), then the ‘⊥’ symbol

1By “Π′ that simulates Π”, we mean that a transcript for Π can be retrieved from a transcript for Π′, see
Theorem 4.1.

2



is received by all the parties2. Otherwise, exactly one of the parties broadcasts a symbol,

and each party receives the broadcast symbol with probability 1 − ϵ, and ⊥ with probabil-

ity ϵ, independently3. A protocol over the (n,Γ)-broadcast channel is a protocol over the

(n, 0,Γ)-noisy broadcast channel, i.e., one where erasures do not occur.

1.2 Corruption Noise and Adaptivity

The corruption noise model. One of the original motivations for our work was explor-

ing the power of the SHRN model under stochastic corruption noise, a noise model that

received quite a bit of attention over the last few years (see, e.g., [10, 11]). In this model, in

every round, each party receives the correct symbol output by the channel with probability

1 − ϵ, and receives one of the other symbols with probability ϵ, independently4. Observe

that protecting protocols against corruptions is at least as hard as protecting them against

message drops.

Adaptivity and the [10] scheme. An encouraging piece of evidence, indicating that it

may be possible to make SHRN protocols resilient to corruption noise with small overhead,

was recently given by Efremenko, Kol, and Saxena [10], who designed such a scheme for a

restricted set of protocols called non-adaptive protocols. Still, our initial belief was that such

a scheme is impossible in the general case of adaptive protocols.

Non-adaptive (a.k.a, oblivious or static) protocols are a restricted set of protocols where

it is known ahead of time which party broadcasts in what round, while adaptive protocols

allow the parties to decide whether or not they wish to broadcast at a given round based on

their input and their received transcript up until the current round.

While non-adaptive protocols are useful, they do not fully utilize the power of the wire-

less channel, and communication-efficient protocols for some central problems are, in fact,

adaptive (e.g., the celebrated Decay protocol for computing the size of a network [3]). This

additional power of adaptive protocols is what makes their conversion to noise-resilient ones

more challenging, and, indeed, the [10] scheme may fail when applied to adaptive protocols Π.

When starting this project, we identified two inherent reasons (see Section 2.1) for the

failure of [10] when applied to adaptive protocols and hoped to show that these must lead

to a blowup of Ω̃(log n) in the communication. As most interactive coding lower bounds for

multi-party protocols also extend to the message drop model (e.g., [4, 11]), as a first step,

2The name collision-as-silence is because the same ⊥ symbol is received in both collision and silent
rounds. This model is, perhaps, the most common model in the literature. Another very popular model is
the collision detection model, where collision and silence are perceived as different symbols. Theorem 1.1 is
stated for the collision-as-silence model, but applies to the collision detection model as well.

3Modeling erasures as the same symbol as collisions/silences only makes our result stronger. As explained
in Section 2.3, this makes our erasure model closer to the corruption model.

4Care needs to be taken while defining an error model for corruptions, as some definitions may allow for
signaling-based protocols [20].
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we attempted to convince ourselves that no constant rate simulation scheme exists even for

the SHRN model with message drop noise.

To our surprise, we were able to overcome both problems in the message drop model

and design a scheme that also works for adaptive protocols. As far as we know, the scheme

converting noiseless to noise-resilient protocols we construct in our proof of Theorem 1.1

is the first constant overhead scheme that handles adaptive protocols in any multi-party

setting.

We are still very interested in the more general question of making SHRN protocols

resilient to corruption noise, as we believe it is a basic and “clean” coding question. Our

result can be interpreted as saying that (at least for protocols that are not extremely long)

either a high-rate scheme is possible or a novel lower bound approach is required.

1.3 Related Work

Interactive coding. Interactive error correcting codes encode interactive communication

protocols designed to work over noiseless channels to protocols that also work over noisy

channels. The study of interactive codes was initiated by a seminal paper of Schulman [25]

that considered two-party protocols, which was also the topic of many follow-up works.

Interactive codes for multi-party distributed channels received quite a bit of attention over

the last few years. These include codes for peer-to-peer channels [24, 21, 20, 1, 4, 16, 17] and

codes for various wireless channels [5, 10, 6, 11, 12, 2, 8].

Coding for wireless systems. The models of wireless communication considered in the

context of noise-resilience differ on a few axes. The first axis is the adaptivity of the simulation

protocol: in some papers the target simulation protocol is allowed to be adaptive and in

others it must be non-adaptive. (Of course, if the noiseless protocols considered are adaptive,

the simulation needs to be adaptive. However, simulations of non-adaptive noiseless protocols

by adaptive noise-resilient protocols have been considered). The second axis is whether single

or multi-hop networks are considered. Finally, the last axis is whether the noise is modeled

as stochastic erasures (message drops) or stochastic corruptions (change of symbols).

Non-adaptive simulations. The study of noise in wireless systems can be traced back to

[14] that answered an open problem of [15] by giving an O(n log log n) length communication

protocol for the bit exchange problem (all n parties have an input bit and all parties want

to know the input of all the other parties). The underlying model was the noisy broadcast

channel, which is a non-adaptive, single-hop model with corruption errors. A matching lower

bound for this problem was later given by [18]. The communication complexity of other

specific n-bit functions, like the OR, majority, and parity functions, were studied under

related models by [27, 22, 13, 23, 18]. The non-adaptive single-hop model was studied under

erasure noise by [19], where an O(n log∗ n) protocol is given for the bit exchange problem,

breaking the Ω(n log log n) lower bound proved for corruption errors.

4



The general case of simulating any non-adaptive protocol by an noise resilient non-

adaptive protocol was very recently studied by [9]. Their main result is that, for protocols

of length polynomial in n, such a simulation requires Θ̃(
√
log n) multiplicative overhead in

the communication complexity.

Adaptive simulations. The work of [10] gave a scheme for converting any non-adaptive

noiseless protocol to an adaptive noise-resilient one with only a constant multiplicative over-

head, over a single-hop network with corruption errors (in particular, implying an adaptive

noise-resilient bit exchange protocol with O(n) communication).

Multi-hop radio networks. The work of [10] (and our current work) consider the setting

where the parties are connected in a clique (a single-hop network), as it is assumed that

when a party transmits, all other parties can hear the transmission. As mentioned above,

this topology is the single most extensively studied, as it represents the simplest broadcast

channel. However, wireless systems can have arbitrary topologies.

In contrast to [10], in [11] it is shown that such a scheme is impossible over general

multi-hop networks, where each of the n communicating parties is associated with a node

in the graph, and when a party broadcasts, its message is only received by its neighbors

in the graph (if there are no collisions). Specifically, [11] shows that in some networks, the

cost of noise-resilience is Ω(log n), even for simulating non-adaptive protocols by adaptive

protocols. A matching O(log n)-overhead scheme for converting any noiseless protocol to a

noise resilient one over any network is also given by [11].

The recent work of [6], considered general radio networks under message drop noise.

They show that any protocol over any network can be converted to a noise resilient one

with a multiplicative O(∆ log2∆) overhead to the communication, where ∆ is the maximum

degree of a node in the network. For the special case in which the noiseless protocol we wish

to convert is non-adaptive, a scheme with an improved overhead of poly(log∆, log log n)

is shown [6]. For networks with small ∆, this implies an efficient simulation of noiseless

protocols. However, for networks with large ∆, the [6] simulation can have a huge overhead.

This is not for no reason, as the Ω(log n) lower bound of [11] mentioned above also applies

to the message drop noise and implies that there exist network topologies with large ∆ for

which an Ω(log∆) overhead is necessary. Our result shows for the important single-hop

topology, these communication overheads can be avoided altogether.

2 Proof Sketch

In this section, we give a detailed sketch of our protocol.

As mentioned in Section 1.2, one of the main motivations for our work was studying the

rate of interactive codes over the SHRN model with corruptions. The restricted case where

the protocol Π to be simulated is non-adaptive was studied by [10], but their scheme fails for
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adaptive protocols. We next explain the inherent reasons for this failure and then outline

our solutions for erasure noise.

2.1 The [10] Scheme

The rewind-if-error framework. The [10] scheme utilizes the rewind-if-error framework,

which was initially designed for the two-party setting [25]. Rewind-if-error coding schemes

consist of many iterations, where each iteration consists of two phases: a simulation phase,

where a small number of rounds of the noiseless protocol Π are executed, and a consistency

check phase where the parties attempt to check if they have the same received transcript or

whether an error occurred (e.g., by comparing hashes of their received transcripts). If the

check phase passes, parties continue the simulation, otherwise they rewind and re-simulate

the last few rounds.

A careful examination of the [10] scheme shows that it breaks down when applied to

adaptive protocols for the following two fundamental reasons:

Repeated rewinds. The first problem is that with noise rate ϵ, we should expect about

ϵn parties to experience message drops in every round of the simulation phase. Since ϵ is

constant ϵn≫ 1. This implies that the consistency check phase will almost always fail and

trigger a rewind, and no progress will ever be made. This situation can be trivially corrected

by repeating each broadcast symbol O(log n) times, and thereby effectively reducing the

noise rate to less than 1
n
. However, this is unaffordable for a constant overhead simulation.

We note that this repeated rewinds problem is avoided by [10] as, although the total

number of parties n is large, the assumed non-adaptivity of Π can be used to determine a

small subset S of parties that critically need to know the simulated transcript. These are

the parties that will broadcast in the rounds immediately following the current one. The

remaining parties broadcast later in the future and therefore have more time to decode the

symbol broadcast in the current round. Then, [10] show that it is enough to make sure that

parties in S are not experiencing message drops, which helps reduce overhead down to a

constant. Since in the adaptive case, it is possible that any of the n parties broadcasts next,

this approach cannot be implemented.

Message certification. An even bigger problem we encounter when attempting to run the

[10] scheme on adaptive protocols, is that it crucially uses the fact that the symbol received

from the channel in every round can be certified by at least one of the parties: Since Π is

assumed to be non-adaptive, it can also be assumed that a single party broadcasts in every

round (collision and silences can be eliminated ahead of time). Furthermore, this party (and

all other parties) knows that it is the only one to broadcast. Therefore, if party i broadcast

the symbol σ in round t of Π and some claimed transcript of Π has a symbol different from σ

in round t, party i can “object” to this transcript to trigger a rewind.
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The adaptive setting is different though. Consider, for example, the case where Π is

adaptive and in some rounds has multiple parties broadcasting simultaneously, causing a

collision. We call such collisions intended collisions. Suppose, however, that in round t,

party i was the only one to broadcast, but the claimed transcript for Π has ⊥ in round t.

Since party i may no longer know that it is the only one to broadcast in this round, it may

deem it possible that others have broadcast as well, leading to an intended collision, and

thus will not object. The other, silent, parties may not object either as they may think that

this is a collision or a silent round.

2.2 Avoiding The Repeated Rewinds Problem

A protocol Π exhibiting repeated rewinds. To explain how our scheme handles the

first (and easier) repeated rewinds problem described above, consider the following protocol

Π that exhibits it (the second, message certification problem, does not occur): The protocol

is played over an underlying complete binary tree of depth T < 2n. Each of the n parties

gets as input, one symbol bv ∈ {0, 1, ⋆} for each vertex v in the tree, where the inputs are

sampled as follows: First, we select one of the root-to-leaf paths in the tree uniformly at

random and call it the “correct path”. We assign each of the vertices v on this path to

exactly one of the n parties uniformly at random. Here, by “assigning vertex v to party i”

we mean that party i gets a bit bv ∈ {0, 1} for vertex v. If vertex v is not assigned to party

i, party i gets bv = ⋆. Additionally, each of the vertices v outside this path is assigned to

many parties, say, to a set of n
2
parties selected uniformly at random.

In the noiseless protocol Π, all parties start from the root of the tree, and, upon reaching

node v, a party that was not assigned v (has bv = ⋆) stays silent, and a party that was

assigned v broadcasts its bit bv. Since each of the vertices on the correct path was assigned

to exactly one party, exactly one party broadcasts a bit, and all parties then progress to the

child of v indicated by this bit (that is, if 0 is broadcast they update v to be the left child of

v, otherwise to the right child). This is done until a leaf is reached, which is also the output

of the protocol.

Observe that since on every vertex of the correct path a single party broadcasts (and

the parties know that this is the case), the message certification problem does not occur.

However, since any of the n parties may potentially be the one to broadcast in the next

round, the repeated rewinds problem occurs.

The play-it-safe simulation scheme. To avoid repeated rewinds in our simulation of

Π, we make sure that parties never go off the correct path (i.e., no party ever reaches a

vertex v that is not on the correct path) by guaranteeing that the parties never broadcast

when it is not their turn to broadcast. To this end, our policy for the parties is that they

always play it safe and never broadcast unless they know the entire transcript so far.

Of course, it may be the case that the received transcript of the party who should

broadcast next contains erasures, causing it to refrain from broadcasting. Since no other
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party broadcasts, this will be a silent round and all parties will receive ⊥. Upon receiving

⊥, parties do not update their current node v in the tree. Thus, no progress is made in this

round, where progress is measured as the number of steps taken on the correct path (the

depth of v in the tree). Note, however, that indeed in this protocol parties never go off the

correct path.

To allow progress to resume, we need to ensure that the erasures in the transcript of the

party that should broadcast next are resolved (hopefully, within a few rounds). To this end,

we pick one of the parties (say, the first party) to be the leader. After every communication

round, this leader re-broadcasts the symbol it received from the channel on a tree code

[26]. A tree code is essentially an error correcting code that can be computed “online” and

ensures that the messages sent until round t will eventually be decoded correctly, where the

probability of correct decoding greatly increases with the number of rounds that have passed

since round t. Thus, parties that suffer an erasure will be able to recover the missing symbol

over the next few iterations by observing what was received from the leader on the tree code.

This means that, while progress may pause, it will resume within a few rounds.

2.3 Avoiding The Message Certification Problem

A harder-to-simulate protocol Π. Now let us address the second (and more severe)

problem of message certification. Observe that in our simulation of the above protocol Π we

did not encounter this problem. The reason is that on every vertex on the correct path a

single party is scheduled to broadcast. We now consider the more general case where some

of the vertices on the correct path are given to more than one party. For concreteness, say

that a quarter of the vertices v on the correct path are given to exactly 2 parties, and an

additional quarter is given to n
2
parties (that is, in total, there is an intended collision on half

of the vertices on the correct path). Additionally, assume that the underlying tree is ternary

(instead of binary), and the children of every non-leaf vertex are labeled by {0, 1,⊥}. In a

case of an intended collision, the ⊥ child of the current vertex should be taken.

Erasures can cause errors. Observe that the play-it-safe simulation protocol we had

before has to change: When designing it, we assumed that there are no collisions on the

correct path, thus progress was paused when a ⊥ symbol was received (that is, the parties

did not update their current vertex v in the tree). As intended collisions are now possible,

we ask that, upon receiving ⊥, the parties update v to the ⊥ child of v.

Observe however, that since the parties are unable to differentiate intended collisions

from erasures, as both are received as ⊥, they may go off the correct path and will need to

eventually detect the error and rewind. We note that working in the erasure model typically

means that a party that does not have the correct transcript knows that it does not have the

correct transcript. However, as is evident here, this reasoning does not apply to our erasure

model. In this sense, our model is closer to the corruptions model than other erasure models.
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In our simulation, parties can go off the correct path in round t if the party that was

supposed to broadcast in round t (say party i) did not do so as it did not know the full

transcript so far. By not broadcasting, party i potentially converts the output of the channel

in round t from a bit to ⊥ (this happens when party i was supposed to be the only one to

broadcast) or from ⊥ to a bit (this happens when one additional party was supposed to

broadcast). Recall that, owing to the usage of a tree code, party i eventually learns the

complete transcript until the missed round t. When this happens, we can have party i

object in the next consistency check in order to trigger a rewind. However, because the rate

of erasures is constant and parties broadcast very often (recall that a quarter of the vertices

on the correct path are given to n
2
parties), there are likely to be too many missed rounds

and such objections will once again cause repeated rewinds.

Critical parties. To implement a rewind-if-error mechanism without repeated rewinds,

we observe that rewinds are required only when the output symbol was changed due to party

i (a party that was scheduled to broadcast in round t) not broadcasting in round t. Note

that this only happens if the output symbol in round t is not a collision. In this case, we say

that party i is critical5 for round t. We use the policy that party i only objects to round t

if it is critical to round t6. Note that this policy does not cause repeated rewinds: if many

parties were supposed to broadcast in round t, none of them is critical (this round will be a

collision round even if one of these parties will not broadcast). Otherwise, if few parties were

supposed to broadcast in round t, then there is a good chance that round t is not erased in

any of the received transcripts of these parties.

Collision-not-as-silence. To be able to implement the policy, party i needs to know if

it was critical to the round t that it missed. Observe that if round t was a collision round

even without party i broadcasting, then party i is not critical for round t, and no rewind is

necessary. It is not hard to see that this is in fact the only case where a party who missed

a round is not critical for this round. This means that testing criticality boils down to the

ability to differentiate a collision round from a silent round.

To differentiate collision rounds from silent rounds, we use a known radio networks col-

lision detection trick. Assume for the purposes of this sketch that there is some player,

say the leader, that is known to not broadcast in this round7. We “run” the round twice,

once in a black-box way (without the leader broadcasting), and once again while having the

leader broadcast. If the round was a silent round, then the parties receive a ⊥ in the first

run, and a bit (non-⊥ symbol) in the second, while if the round was a collision, they will

5We mention that this definition differs slightly from the technical sections, but implements a similar
idea.

6Observe that a priori, it is not clear if the parties know they are critical. We deal with this later in this
section. We also note that the notion of critical parties does not appear in the algorithm description and is
used only in the analysis.

7This assumption can easily be removed by, e.g, running the round an extra time where only the leader
will broadcast.
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receive ⊥ in both the runs. As they receive a different combination of symbols, they can

distinguish between collisions and silences8. Note that the argument above assumes sender

collision-detection, i.e., the parties that are transmitting also receive a symbol in that round.

However, this assumption is not needed, see Footnote 10 and Remark 4.2.

2.4 Erasures To And From The Leader

Recall from Section 2.2 that after every round the leader re-transmits the symbol that it

received from the channel in this round. We next discuss issues that can arise when the

communication to/from the leader is erased.

Erasures to the leader. Consider the case where the true output of the channel in a

given round is a bit, but the leader receives ⊥ due to an erasure (re-transmitting this ⊥
may cause the execution of the protocol to go off the correct path). However, since erasures

are assumed to happen independently, then with probability exponentially small in n, at

least one of the other parties receives the erased bit and can object in the next consistency

check to trigger a rewind. Using the assumption that the length of the protocol is at most

exponential in n, we get that all such leader errors will be corrected with high probability.

We mention that this is the only place in our proof where we use the bound on the length

of the protocol.

Erasures from the leader: Collision-as-silence-not-as-erasures. Now consider the

situation where the leader receives a bit and re-transmits it, but, due to erasures, some

parties receive a ⊥. By updating their current node v using this ⊥, these parties may fall

off the correct path. As mentioned in Section 2.3, this type of error occurs as the channel

does not distinguish between erasures and collisions/silences.

To circumvent this problem, we convert our collision-as-silence-as-erasures channel to a

collision-as-silence-not-as-erasures channel. This is done by having the leader broadcast a

special symbol9 other than 0, 1, and ⊥, in the case it receives ⊥. As the other parties know

that the leader never broadcasts ⊥, they can deduce that any ⊥ they may receive from it is

due to an erasure. On the other hand, if they receive the special symbol, they can conclude

that the round is a collision/silence.

2.5 Implementing Check Phases

The simulation scheme we discuss so far is in the rewind-if-error framework. In this sketch

we attempted to show that whenever the parties go off the correct path due to erasures, at

least one of the parties is able to detect the problem and object in the next check phase.

8We note that noise can erase the symbol broadcast by the leader in the second run and effectively erase
a silence out to look like a collision. We distinguish between these and regular collisions using the method
described in Section 2.4.

9The actual proof does not require an additional symbol. Rather, we encode every symbol by two symbols.
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To implement a check phase, we ask parties that wish to object to broadcast a bit (say, 1),

and ask all other parties to keep silent. Then, the collision detection subroutine described

above allows the parties to tell whether 0, 1, or more than 1 parties were broadcasting, and

thus also allows them to tell whether there exists an objecting party and a rewind should

take place.

3 Technical Preliminaries

3.1 Concentration Bounds

We shall use the following version of the Chernoff bound.

Lemma 3.1 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e−
δµ
3
·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e−
δ2µ
3 , ∀0 ≤ δ ≤ 1.

3.2 The Model

In this paper, we study the broadcast channel with random erasures, assuming the collision-

as-silence-as-erasures model. To define the model and throughout this paper, we will use

the following notation. For a string s, we shall use |s| to denote the length of s. For i ∈ [|s|],
let si denote the ith coordinate of s and s<i, s≤i denote the prefix of the first i − 1 and i

coordinates of s, respectively. For two strings s, t over the same alphabet, denote by ∆(s, t)

the Hamming distance between s and t, by LCP(s, t) the longest common prefix of the strings

s and t, and by s∥t the concatenation of s and t.

The (n, ϵ,Γ)-noisy broadcast channel is defined by a number n ≥ 0 of parties, an error

parameter ϵ > 0, and an alphabet set Γ satisfying |Γ| > 1. We shall refer to player 1 as the

leader Ld, use ⊥ to denote a special symbol not in Γ (this symbol will represent collisions,

silences, and deletions), and define Γc = Γ∪{⊥}. We also define the (n,Γ)-broadcast channel

to be the noiseless version of this channel, i.e., when ϵ = 0.
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Definition of a protocol. A (deterministic) protocol Π over the (n, ϵ,Γ)-noisy broadcast

channel is defined as:

Π =
(
T,
{
X i
}
i∈[n],Y ,

{
M i

j

}
i∈[n],j∈[T ]

, out
)
. (1)

Here, T = ∥Π∥ is the number of rounds (or the length) of the protocol, X i is the input

space for player i, Y is the output space of the protocol, M i
j : X i×Γj−1

c → Γc is the function

player i uses to determine what message to send in round j, and out : ΓT
c → Y is the function

the leader uses to determine the output from its received transcript. As usual, we define a

randomized protocol to be a distribution over (deterministic) protocols.

Execution of a protocol. The protocol Π starts with all players i ∈ [n] having an input

xi ∈ X i and proceeds in T rounds, maintaining the invariant that before round j, for

all j ∈ [T ], all players i have a transcript πi
<j ∈ Γj−1

c . In round j, player i broadcasts

zi = M i
j

(
xi, πi

<j

)
∈ Γc. Define the function:

combine
(
z1, · · · , zn

)
=

{
zi, if ∃ unique i ∈ [n] such that zi ̸= ⊥
⊥, otherwise

. (2)

Now, the symbol πi
j received by player i in round j equals combine(z1, · · · , zn), with proba-

bility 1− ϵ, and equals ⊥, with probability ϵ, independently for all i ∈ [n] and j ∈ [T ].10 In

the latter case, we say the message to player i in round j was erased by the noise. Player i

appends πi
j to πi

<j to get a transcript πi
≤j and continues the execution of the protocol.

After T rounds, the leader outputs ΠLd(X) = out(πLd
≤T ) ∈ Y . (Note that using only

O(max{T, log n}) additional transmissions, the leader can communicate the output to all

the other parties in a reliable manner by encoding with a standard error correcting code.)

We shall sometimes omit Ld when the channel is noiseless, as in this case, all the players

receive the same transcript and can compute the output.

3.3 Tree Codes

Our algorithms make use of tree codes, first introduced in [26].

Definition 3.2 (Tree Codes). Let X and Γ be two alphabet sets, RTC > 0 be an integer,

and δ ∈ (0, 1). An (X ,Γ, RTC, δ)-tree code is a function TC : X ∗ → ΓRTC such that for any

10We remark that in the literature (e.g., [6]), the broadcast channel (single-hop radio networks) is often
defined such that a player that broadcasts a symbol (other than ⊥) in a round does not receive any symbol
from the channel in that round (in other words, there is no sender collision-detection). However, for simplicity
of presentation, in this paper we assume this stronger model. We explain how to make our protocol work
with no sender collision-detection in Remark 4.2.
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integer k ≥ 0 and strings x, x′ ∈ X k, defining TC(x) = TC(x≤1)∥TC(x≤2)∥ · · · ∥TC(x), we
have:

∆
(
TC(x),TC(x′)

)
≥ δRTC · (k − |LCP(x, x′)|).

Theorem 3.3 ([26]). There exists a constant R ≥ 0 such that for any alphabet sets X , Γ
and all RTC ≥ R · log|X |

log|Γ| , there exists an (X ,Γ, RTC, 0.4)-tree code.

We will also need a way of decoding tree codes from erasures. Recall the notation Γ,⊥,Γc

from above, and let wi,j = (wi)j.

Definition 3.4 (Decoding from Erasures). Let TC be an (X ,Γ, RTC, δ)-tree code. The de-

coding function of TC, denoted D-TC : (ΓRTC
c )∗ → X ∗ ∪ {fail}, is given by the following: For

an integer k ≥ 0 and w ∈ (ΓRTC
c )k,

D-TC(w) =

{
z, if ∃ unique z ∈ X k : ∀i ∈ [k], j ∈ [RTC] : wi,j ∈ {⊥,TCj(z≤i)}
fail, otherwise

.

Claim 3.5. Let TC be an (X ,Γ, RTC, δ)-tree code and let D-TC be its decoding function. Let

k ≥ 0 be an integer and let z ∈ X k. Then, for any τ̃ ∈
(
ΓRTC
c

)k
such that ∀i ∈ [k], j ∈ [RTC] :

τ̃i,j ∈ {⊥,TCj(z≤i)}, it holds that D-TC(τ̃) ∈ {z, fail}.

Proof. Let τ = TC(z). Consider the set

S =
{
z′ ∈ X k | ∀i ∈ [k], j ∈ [RTC] : τ̃i,j ∈

{
⊥,TCj(z

′
≤i)
}}

.

Note that by the definition of τ̃ , it holds that z ∈ S. Furthermore, by the definition of D-TC,

D-TC(τ̃) =

{
z, if S = {z}
fail, otherwise

.

4 Our Simulation Protocol

We formalize Theorem 1.1 as Theorem 4.1 (below). (Note that by having the parties repeat

every round of the original protocol Π constantly many times and taking the majority of the

outputs, we get the channel noise rate to be smaller than 10−10).

Theorem 4.1 (Formal Version of Theorem 1.1). There exists a constant C such that the

following holds: Fix ϵ = 10−10, n > 0, an alphabet set Γ satisfying |Γ| > 1. For any protocol

Π of length T ≤ 2n in the (n,Γ)-broadcast channel, there is a protocol Π′ over the (n, ϵ,Γ)-

noisy broadcast channel, with ∥Π′∥ ≤ CT , and such that for all inputs X = (x1, x2, · · · , xn)

for the players, we have:

Pr
(
Π′Ld(X) ̸= Π(X)

)
≤ 2−min(n,T ),

13



where the probability is over the noise in the channel.

We note that when n is small, so is T , so Π can be simulated by simply repeating each

round sufficiently many times. As such, without loss of generality, we may assume that n is

large.

The proof of Theorem 4.1 spans the rest of this paper. In this section we give the

simulation protocol Π′, and in Section 5 we give its analysis.

Let n, ϵ,Γ be as in the theorem statement and assume without loss of generality that

Γ = [|Γ|]. Fix a protocol Π. Observe that fixing Π also fixes T, {X i}i∈[n],
{
M i

j

}
i∈[n],j∈[T ]

,

etc. as in Eq. (1). As a randomized protocol is simply a distribution over deterministic

protocols, we can assume without loss of generality, that the protocol Π is deterministic. We

also assume without loss of generality that the output of Π is just its transcript. In order to

define the protocol Π′, we first set up some notation.

Protocol notation. Define the sets PLd = [n] (all parties including the leader), and

P = {2, 3, . . . , n} (all parties excluding the leader).

As motivated in Section 2, our protocol shall implicitly implement a collision detection

model, having two separate symbols for collisions and silences. We shall use a special symbol

⊥C /∈ Γ to denote a collision and ⊥S /∈ Γ to denote a silence. Define Γcs = Γ ∪ {⊥C ,⊥S}.
Additionally let R /∈ Γ be a special symbol indicating that the leader wants to rewind a

round, and denote by Γcsr = Γcs∪{R}. We shall treat both ⊥C and ⊥S as ⊥ in our protocol,

and output a string in ΓT
cs. We also redefine the message functions, M i

j , to take inputs from

Γj−1
cs instead of Γj−1

c , treating both ⊥C and ⊥S as ⊥, e.g., M i
j(x

i,⊥C∥⊥S) = M i
j(x

i,⊥∥⊥).
For simplicity, we shall pad the protocol Π with ⊥ infinitely many times and correspondingly

define, for all i ∈ [n], j > T , the value M i
j(·, ·) = ⊥.

Our protocol will use a (Γcsr,Γ, RTC, 0.4)-tree code TC, where RTC ≥ max(105, 10R) is a

sufficiently large constant and R is as promised by Theorem 3.3. This tree code will only be

written to by the leader, and will be used to log the leader’s simulated transcript. In our

protocol, when we say the leader writes s ∈ Γcsr to the tree code, we mean that it computes

and broadcasts TC(ρ∥s), where ρ is the string of all the symbols it wrote to the tree code

before the current s. We shall also use D-TC to denote the tree code decoding function from

Definition 3.4.

We give a formal description of our protocol Π′ in Algorithm 1.

Remark 4.2. Recall from Footnote 10 that we are assuming a broadcast model with sender

collision-detection. In other words, we assume that players that are talking (broadcasting a

symbol other than ⊥) also receive an output symbol from the channel. We next claim that

our simulation protocol Π′ can be made to work over the channel with no sender collision-

detection, that is, when only players that listen (broadcast ⊥), get the output symbol from

the channel.

There are two sources of problems if we assume no sender collision-detection. The first

is that players i ∈ P are expected to get their own wi at Line 4, which they use to detect

14



Algorithm 1 The simulation protocol Π′.

Input: Each party i ∈ PLd holds an input xi ∈ X i.
Output: The leader outputs π ∈ ΓT

cs, that represents a transcript for Π.
1: for t ∈ [105T ] do
2: Each player i ∈ PLd runs parse on τ i to get output (πi, ri), where:

• τ i, for i ∈ P , is the concatenation of all messages received by player i at Line 8
up to this point (possibly none).

• τLd is the concatenation of all messages broadcast (as opposed to received) by
the leader at Line 8 up to this point (possibly none).

3: Each player i ∈ PLd computes zi ←M i
|πi|+1(x

i, πi). Set zi ← ⊥ if πi = fail.

4: The parties run detect-collisions, using zi as the input for player i ∈ P .
Let wi be the output for player i ∈ PLd.

5: The leader represents wLd ∈ Γcs as an element of Γ4 and broadcasts it in 4 rounds.
Let w̃i be the symbol decoded by player i ∈ P , or ⊥ if the player fails to decode.

6: Each player i ∈ P sets a flag ei ∈ {1,⊥} as follows:

ei ←

{
1, if ri = true or w̃i = ⊥C ̸= wi

⊥, otherwise
.

7: The parties run detect-collisions, using ei as the input for player i ∈ P .
Let eLd be the output for the leader.

8: The leader writes sLd ∈ Γcsr to the tree code, where

sLd ←


R, if eLd ̸= ⊥S

wLd, else if zLd = ⊥
zLd, else if wLd = ⊥S

⊥C , otherwise

.

9: end for
10: The leader runs parse on τLd to get output

(
πLd, rLd

)
, where τLd is as in Line 2. The

leader then outputs πLd
≤T .
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Algorithm 2 Algorithm detect-collisions, that distinguishes between collisions and silence.

Input: Each player i ∈ P has a symbol zi ∈ Γc that it wishes to broadcast in this round.
Output: Each player i ∈ PLd outputs a guess wi ∈ Γcs for the combined symbol.
11: In one round of communication, each player i ∈ P broadcasts zi and the leader broad-

casts ⊥.
Let ui be the symbol heard by player i ∈ PLd.

12: In one round of communication, each player i ∈ P broadcasts zi and leader broadcasts 1.
Let ui be the symbol heard by player i ∈ PLd.

13: Each player i ∈ PLd returns wi, where

wi ←


ui, if ui ̸= ⊥
⊥S, else if ui ̸= ⊥
⊥C , otherwise

.

Algorithm 3 Algorithm parse, run locally by a player i ∈ PLd to decode and parse the tree
code.
Input: Player i has τ ∈ Γ∗

c , its view of the symbols encoded over the tree code.
Output: Player i outputs a transcript π ∈ Γ∗

c or fail if it failed to decode the tree code, and
a rewind flag r ∈ {true, false} which is true if the player found a problem with π.

14: Initialize π to be the empty string, ℓ←∞.
15: Let ρ← D-TC(τ).
16: If ρ = fail, terminate and return (fail, false).
17: for k ∈ [|ρ|] do
18: if ρk = R then
19: π ← π<|π|.
20: if |π| < ℓ then
21: ℓ←∞.
22: end if
23: else
24: π ← π∥ρk.
25: if D-TC

(
τ≤(k−1)RTC

)
= fail and M i

|π|
(
xi, π<|π|

)
̸= ⊥ and ρk ̸= ⊥C then

26: ℓ← min(ℓ, |π|).
27: end if
28: end if
29: end for
30: Return (π, ℓ ̸=∞).
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erasures experienced by the leader (compute ei in Line 6). However, as erasures are one-

sided, if at least two different players i ̸= i′ ∈ P talk in the same round, the leader and all

listening players will receive the correct symbol, i.e., ⊥C, as the value of wi. As such, if an

erasure causes the leader to get an incorrect wLd, there is at most one player i ∈ P who is

talking. Thus, almost all players in P are listening, so they will have their own wi, and this

erasure is likely to be detected.

The second issue that arises is that the leader is expected to both talk and listen at Line 12.

Recall that the purpose of algorithm detect-collisions is to run a round of the original protocol

and essentially tell whether 0, 1, or ≥ 2 players in P are talking. The leader acts as a

“noisemaker” in Line 12 to distinguish the case of 0 talking players from the case of ≥ 2

talking players. However, the role of a noisemaker can be handled by any other player, as

long as that player would never have talked in this round otherwise.

This gives rise to the following modification of algorithm detect-collisions: We partition

the parties in P into two non-empty sets P1 and P2. We then have parties in P1 perform

algorithm detect-collisions with an arbitrary player in P2 acting as a noisemaker, and vice

versa. This allows the leader to determine whether there were 0, 1, or ≥ 2 players talking in

P1 and in P2, from which they can tell if there were 0, 1, or ≥ 2 players talking in P.
As there are no other cases in the protocol Π′ where a player both talks and uses the value

given to it by the channel, these changes are sufficient to make the algorithm work with no

sender collision-detection.

5 Analyzing the Protocol

In this section we prove that the simulation protocol Π′ given in Section 4 satisfies Theo-

rem 4.1.

Iterations and rounds. Observe that our protocol Π′ has T ′ = 105T iterations and each

iteration has R′ = RTC+8 rounds of communication: 2 rounds in the call to detect-collisions

in Line 4, 4 rounds in Line 5, 2 rounds in the call to detect-collisions in Line 7, and RTC

rounds in Line 8.

The noise indicator. For t ∈ [T ′], r ∈ [R′], and i ∈ [n], we define the indicator random

variable Nt,r,i to be 1 if and only if the message received by player i in the rth round of

communication in iteration t is erased due to noise. For a set S ⊆ [T ′], we shall use NS to

denote the collection N = {Nt,r,i}t∈S,r∈[R′],i∈[n] and sometimes abbreviate N[T ′] as N and N[t] as

N≤t for all t ∈ [T ′]. Observe that our definition implies that the variables in N are mutually

independent and identically distributed, and take the value 1 with probability ϵ.

Note that fixing any instantiation N of N together with the inputs X to the parties fixes

the entire execution of Π′. In fact, for all t ∈ [T ′], fixing any instantiation N≤t of N≤t fixes
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the execution of the first t iterations of Π′. This means that it also fixes the values of all the

variables in these iterations.

Variables. For i ∈ [n] and a variable var in Algorithms 1 and 3,11 we shall use varit(N) to

denote the value of variable var as seen by player i at the end of iteration t when the noise

is N . We shall use t = 0 to denote the values at the start of the execution and drop N when

it is clear from context. As explained above, these values are determined by N≤t. We also

use πLd
T ′+1(N) to refer to the leader’s πLd at Line 10.

The collision-not-as-silence model. To help with our analysis, we define a function

combine-CD that intuitively captures the behavior of a broadcast channel with collision-

detection. Formally, we have, for z1, z2, · · · , zn ∈ Γ∗
c ,

combine-CD
(
z1, · · · , zn

)
=


⊥S, if ∀i ∈ [n] : zi = ⊥
zi, if ∃ unique i ∈ [n] such that zi ̸= ⊥
⊥C , otherwise

. (3)

For the rest of the text, fix inputs X = (x1, x2, · · · , xn) for the players. We abuse notation

slightly and denote by Π = Π(X) the transcript of the noiseless protocol Π when the inputs

to the parties are as inX and the model uses combine-CD in place of combine (thus, Π ∈ ΓT
cs).

This is without loss of generality as a transcript in the collision-not-as-silence model only

has more information than one in the collision-as-silence model.

We show a “monotonicity” property of combine-CD, which shall be used at several points

during the proof.

Lemma 5.1. For i ∈ [n], let zi, z′i ∈ Γc be arbitrary symbols satisfying(
zi ̸= ⊥

)
=⇒

(
z′i = zi

)
. (4)

Also let γ = combine-CD(z1, . . . , zn) and γ′ = combine-CD(z′1, . . . , z′n). Then the following

holds:

1. If γ = ⊥C, then γ′ = ⊥C.

2. If γ ∈ Γ, then γ′ ∈ Γ ∪ {⊥C}.

3. If γ ̸= ⊥C, then γ′ ̸= γ if and only if there exists i′ ∈ [n] such that z′i
′ ̸= ⊥ = zi

′
.

Proof. Define S = {i ∈ [n] : zi ̸= ⊥} and S ′ = {i ∈ [n] : z′i ̸= ⊥}. Observe that, using

Eq. (4), it holds that S ⊆ S ′. By the definition of Eq. (3),

γ = ⊥S ⇐⇒ |S| = 0

11We do not use this notation for variables in Algorithm 2 as that is invoked twice in every iteration.
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γ ∈ Γ ⇐⇒ |S| = 1

γ = ⊥C ⇐⇒ |S| ≥ 2.

Similar statements also hold for γ′.

Using the above, the first two claims we wish to show reduce to showing that if |S| ≥ 2

then |S ′| ≥ 2, and to showing that if |S| = 1 then |S ′| ≥ 1. Both claims follow directly from

the fact that S ⊆ S ′.

To prove the third claim, assume γ ̸= ⊥C . We first show that the reverse direction holds:

Suppose that there exists i′ ∈ [n] such that z′i
′ ̸= ⊥ = zi

′
. Then, i′ ∈ S ′ but i′ /∈ S, so

S ⊊ S ′, and thus |S ′| > |S|. Since γ ̸= ⊥C , it holds that either γ = ⊥S or γ ∈ Γ. If γ = ⊥S,

then |S| = 0 and |S ′| > 0, thus γ′ ̸= ⊥S = γ. Otherwise, if γ ∈ Γ, then |S| = 1 and |S ′| ≥ 2,

so γ′ = ⊥C ̸= γ.

To see the forwards direction, suppose that γ ̸= γ′. As combine-CD is a deterministic

function of its inputs, there exists some i ∈ [n] such that zi ̸= z′i. But if zi ̸= z′i, it must be

the case that z′i ̸= ⊥ = zi, as a direct consequence of Eq. (4).

5.1 Technical Lemmas and One-Sided Error

A key property of our model is the fact that our noise is one-sided: After collisions are

resolved, the resulting symbol will either be received correctly, or will be replaced by a ⊥.
This means that if a player hears a symbol that is not ⊥, that player will accurately know

that that is the “correct” symbol, and that they were not affected by noise.

This property means that we can make several very useful claims, which we use through-

out the rest of this paper.

Lemma 5.2. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

πi
t(N) ∈

{
fail, πLd

t (N)
}
.

Proof. Consider the execution of Algorithm 3 at Line 2. In particular, consider Line 15.

Let ρit(N) be the value of ρ player i has during this call to Line 2, and let ρLdt (N) be the

corresponding value for the leader.

Note that τ it (N) is exactly the symbols that player i heard while the leader was broadcast-

ing τLdt (N). This means that for every coordinate j ∈ [|τ it (N)|], (τ it (N))j ∈ {⊥,
(
τLdt (N)

)
j
}.

Thus, by noting that ρLdt (N) is exactly the symbols the leader encoded to get τLdt (N) (as

D-TC(TC(z)) = z), Claim 3.5 gives that at Line 15,

ρit(N) ∈ {ρLdt (N), fail}.

Now, note that if ρit(N) = ρLdt (N), then πi
t(N) = πLd

t (N), as πi
t(N) is calculated by Algo-

rithm 3 from ρit(N) in a fully deterministic manner.
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Otherwise, if ρit(N) = fail, then the check at Line 16 will return πi
t(N) = fail, which

completes the proof.

As a player i ∈ [n] sets zi as a deterministic function of xi and πi at Line 3, we also

directly get the following corollary.

Corollary 5.3. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

zit(N) ∈
{
⊥,M i

|πLd
t (N)|+1

(
xi, πLd

t (N)
)}

.

Likewise, we can also analyse the behaviour of Algorithm 2, during the two calls at Line 4

and Line 7, to see the way the noise can affect the executions of this algorithm.

Lemma 5.4. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

wi
t(N) ∈

{
⊥C , combine-CD

(
⊥, z2t (N), . . . , znt (N)

)}
.

Proof. Let ui and ui denote the values of the corresponding variables during the call to

detect-collisions at Line 4 during iteration t.

We proceed by a case analysis on γ = combine-CD(⊥, z2t (N), . . . , znt (N)):

• When γ = ⊥S: By Eq. (3), this happens when zi
′
t (N) = ⊥ for all i′ ∈ P . Thus, by

the fact that noise can only flip messages to ⊥ and by Eq. (2),

ui ∈ {⊥, combine
(
⊥, z2t (N), . . . , znt (N)

)
= ⊥}.

Line 13 thus ensures that wi
t(N) ∈ {⊥S,⊥C}, as desired.

• When γ = ⊥C: By Eq. (3), this happens when there are multiple players i′ ∈ P such

that zi
′
t (N) ̸= ⊥. Thus, by the fact that noise can only flip messages to ⊥ and by

Eq. (2),

ui = ui = ⊥.

Line 13 thus ensures that wi
t(N) = ⊥C .

• When γ ∈ Γ: By Eq. (3), this happen where there exists a unique i′ ∈ P such that

zi
′
t (N) ̸= ⊥. Thus, by the fact that noise can only flip messages to ⊥ and by Eq. (2),

ui ∈ {⊥, combine
(
1, z2t (N), . . . , znt (N)

)
= ⊥}.

Simultaneously,

ui ∈ {⊥, combine
(
⊥, z2t (N), . . . , znt (N)

)
= γ}.

Line 13 thus ensures that wi
t(N) ∈ {⊥C , γ}.
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Lemma 5.5. For t ∈ [T ′] and any instantiation N of N, we have:

eLdt (N) = ⊥S =⇒ combine-CD
(
⊥, e2t (N), e3t (N), · · · , ent (N)

)
= ⊥S.

Proof. Suppose that eLdt (N) = ⊥S. Using u and u to denote the leader’s view of the corre-

sponding variables in Lines 11 and 12 in the second call to Algorithm 2 in iteration t, we

have by Line 13 that u = ⊥ ≠ u. Now, u ̸= ⊥ is possible only if

u = combine
(
1, e2t (N), . . . , ent (N)

)
̸= ⊥.

By Eq. (2), this implies that e2t (N) = e3t (N) = · · · = ent (N) = ⊥, as there would otherwise

be a collision, and we get combine-CD(⊥, e2t (N), . . . , ent (N)) = ⊥S, as desired.

We also show some properties of the symbol sLd, and how it relates to the transcript that

players maintain.

Lemma 5.6. For all t ∈ [T ′] and any instantiation N of N such that eLdt (N) = ⊥S and

wLd
t (N) = combine-CD(⊥, z2t (N), . . . , znt (N)), we have

sLdt (N) = combine-CD
(
zLdt (N), z2t (N), . . . , znt (N)

)
.

Proof. Let γ = combine-CD
(
zLdt (N), z2t (N), . . . , znt (N)

)
for convenience. We proceed by a

case analysis on wLd
t (N):

• When wLd
t (N) = ⊥S: By Eq. (3), this happens when zi

′
t (N) = ⊥ for all i′ ∈ P . It

follows that γ = zLdt (N) if zLdt (N) ̸= ⊥ and γ = ⊥S otherwise. Conclude from Line 8

that sLdt (N) = γ, as desired.

• When wLd
t (N) = ⊥C: By Eq. (3), this happens when there exists multiple i′ ∈ P such

that zi
′
t (N) ̸= ⊥. It follows that γ = ⊥C . Conclude from Line 8 that sLdt (N) = γ, as

desired.

• When wLd
t (N) ∈ Γ: By Eq. (3), this happens when there exists a unique i′ ∈ P

such that zi
′
t (N) ̸= ⊥, and for that i′, it holds that wLd

t (N) = zi
′
t (N). It follows that

γ = ⊥C if zLdt (N) ̸= ⊥ and γ = zi
′
t (N) = wLd

t (N) otherwise. Conclude from Line 8

that sLdt (N) = γ, as desired.

We also analyse the behaviour of Algorithm 3, and in particular how π and ρ behave in

that algorithm.

Lemma 5.7. For all t ∈ [T ′] and all instantiations N of N,

ρLdt (N) = sLd1 (N)∥ · · · ∥sLdt−1(N).
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Proof. We will prove this by induction.

For t′ ∈ [T ′] let ρLdt′ (N) denote the value of ρ during the leader’s execution of Algorithm 3

during iteration t′. Note that ρLdt (N) = D-TC
(
τLdt (N)

)
and that τLdt (N) = TC

(
ρLdt (N)

)
(where TC is as in Definition 3.2). Then, as the leader writes sLdt (N) to the tree code at

Line 8, we see that τLdt+1(N) = TC
(
ρLdt (N)∥sLdt (N)

)
. From this, we conclude that

ρLdt+1(N) = D-TC
(
τLdt+1(N)

)
= ρLdt (N)∥sLdt (N).

Thus, we see that ρLd is merely the string of all values of sLd so far:

ρLdt (N) = sLd1 (N)∥ · · · ∥sLdt−1(N). (5)

Lemma 5.8. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

• If sLdt (N) ̸= R, then

πLd
t+1(N) = πLd

t (N)∥sLdt (N).

• If sLdt (N) = R, then

πLd
t+1(N) =

(
πLd
t (N)

)
<|πLd

t (N)|.

Proof. Consider Algorithm 3, and consider the variables π and ℓ during an execution of

Algorithm 3 run by the leader. Note that this algorithm works iteratively, processing one

character of ρ at a time. In each iteration k of the loop at Line 17, the algorithm updates π

and ℓ based only12 on the current values of π and ℓ, and the value of ρk. Thus, the values of

π and ℓ after iteration k of the loop are a deterministic function of ρ≤k.

As such, consider the call to Algorithm 3 during iterations t and t + 1 of Algorithm 1.

In particular, consider the state of π and ℓ after t − 1 iterations of the loop at Line 17.

As established above, π and ℓ in these iterations will depend only on
(
ρLdt (N)

)
≤t−1

and(
ρLdt+1(N)

)
≤t−1

.

Now, note that ρLdt (N) has only t− 1 symbols, as seen in Lemma 5.7. Thus, after t− 1

iterations, the loop at Line 17 in the call during iteration t of Algorithm 1 will terminate,

and we will thus get that the value of πLd
t (N) is the value of π at the end of that iteration.

Thus, at the start of iteration t of the loop during iteration t + 1 of Algorithm 1, the

value of π begins as πLd
t (N).

Now, it suffices to just see how π is changed during the last iteration of Line 17. Note

that this iteration depends only on
(
ρLdt+1(N)

)
t
= sLdt (N), as established before.

If sLdt (N) = R, then π will get updated at Line 19, and thus πLd
t+1(N) =

(
πLd
t (N)

)
<|πLd

t (N)|.
Otherwise, π gets updated at Line 24, so πLd

t+1(N) = πLd
t (N)∥sLdt (N).

12As the leader always has the full correct value of τ , it never fails to decode at Line 25, so the values of
π and ℓ do not depend on τ .
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5.2 Bad Events

5.2.1 Noise Events

Next, we define and analyze some events based on the variable N.

The event Ewot,r . For t ∈ [T ′], r ∈ [R′], the event Ewot,r occurs if the communication in round r

in iteration t is erased for a significant fraction of the players (it is “wiped out”). Formally,

we have:

Ewot,r :=

∑
i∈[n]

Nt,r,i ≥
n

10

. (6)

As the variables in N are mutually independent, we can bound the probability of Ewot,r .

Lemma 5.9. For all t ∈ [T ′], r ∈ [R′], we have:

Pr
(
Ewot,r

)
≤ 5−n.

Proof. Observe that Ewot,r happens if and only if there is a subset S ⊆ [n] such that |S| ≥ n
10

and Nt,r,i = 1 for all i ∈ S. Using this, we derive:

Pr
(
Ewot,r

)
= Pr

(
∃S ⊆ [n] : |S| ≥ n

10
,∀i ∈ S : Nt,r,i = 1

)
≤

∑
S⊆[n]:|S|≥ n

10

Pr(∀i ∈ S : Nt,r,i = 1) (Union bound)

≤
∑

S⊆[n]:|S|≥ n
10

ϵ
n
10 (Mutual independence of variables in N)

≤ 2n · ϵ
n
10

≤ 5−n.

The event Edct,i . For t ∈ [T ′], i ∈ [n], the event Edct,i occurs if the communication in the first

execution of detect-collisions, i.e., at least one of rounds 1 and 2, in iteration t is erased for

player i. Formally, we have:

Edct,i := (∃r ∈ [2] : Nt,r,i = 1). (7)

Lemma 5.10. For all t ∈ [T ′], i ∈ [n], we have Pr
(
Edct,i
)
≤ 2ϵ. Moreover, for any instantia-

tion N of N such that Edct,i does not occur, we have:

wi
t(N) = combine-CD

(
⊥, z2t (N), z3t (N), · · · , znt (N)

)
.

Proof. The first part is a simple union bound. For the “moreover” part, suppose that N is

an instantiation of N such that Edct,i does not occur. Then, the communication to player i in
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the call to detect-collisions in Line 4 is not erased. Using u and u to denote the values of

player i of the corresponding variables in Lines 11 and 12, we have:

u = combine
(
⊥, z2t (N), z3t (N), . . . , znt (N)

)
,

u = combine
(
1, z2t (N), z3t (N), . . . , znt (N)

)
.

(8)

We now proceed by a case analysis on γ = combine-CD(⊥, z2t (N), z3t (N), · · · , znt (N)):

• When γ ∈ Γ: By Eq. (3), this happens when there exists a unique i′ ∈ P such that

zi
′
t (N) ̸= ⊥, and in this case γ = zi

′
t (N). It follows that u = zi

′
t (N). Conclude from

Line 13 that wi
t(N) = zi

′
t (N) = γ, as desired.

• When γ = ⊥S: By Eq. (3), this happens when zi
′
t (N) = ⊥ for all i′ ∈ P . It follows

that u = ⊥ and u = 1. Conclude from Line 13 that wi
t(N) = ⊥S, as desired.

• When γ = ⊥C: By Eq. (3), this happens when there exists multiple i′ ∈ P such that

zi
′
t (N) ̸= ⊥. It follows that u = ⊥ = u. Conclude from Line 13 that wi

t(N) = ⊥C , as

desired.

The event Eort . For t ∈ [T ′], we define the event Eort to occur if the communication in the

second execution of detect-collisions (which effectively computes a logical OR of the ei’s),

i.e., in at least one of rounds 7 and 8 in iteration t is erased for the leader. Formally, we

have:

Eort := (∃r ∈ {7, 8} : Nt,r,Ld = 1). (9)

Lemma 5.11. For all t ∈ [T ′], we have Pr(Eort ) ≤ 2ϵ. Moreover, for an instantiation N of

N such that Eort does not occur, then:

eLdt (N) = combine-CD
(
⊥, e2t (N), e3t (N), · · · , ent (N)

)
.

Proof. This proof proceeds analogously to the proof of Lemma 5.10.

The event E tct′,t,i. For 0 ≤ t′ < t ≤ T ′ and i ∈ [n], define the following event concerning

the rounds 9 to R′ in each iteration, i.e., the rounds where the leader broadcasts on the tree

code:

E tct′,t,i :=

(
t∑

s=t′+1

R′∑
r=9

Ns,r,i ≥
2RTC

5
· (t− t′)

)
. (10)

Lemma 5.12. For all 0 ≤ t′ < t ≤ T ′ and i ∈ [n], we have:

Pr
(
E tct′,t,i

)
≤ 10−100(t−t′).
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Proof. We derive:

Pr
(
E tct′,t,i

)
= Pr

(
t∑

s=t′+1

R′∑
r=9

Ns,r,i ≥
2RTC

5
· (t− t′)

)

≤ e−
RTC·(t−t′)

10 (Lemma 3.1)

≤ 10−100(t−t′).

5.2.2 Bad Iterations

We now define sets of “bad” iterations for a given execution. Intuitively, these are iterations

where our protocol does not make progress. For an instantiation N of N, we have:

Bwo(N) =
{
t ∈ [T ′] | ∃r ∈ [R′] : N ∈ Ewot,r

}
.

Bdc(N) =
{
t ∈ [T ′] | N ∈ Edct,Ld

}
.

Bor(N) = {t ∈ [T ′] | N ∈ Eort }.
(11)

Lemma 5.13. It holds that:

1. Pr(Bwo(N) ̸= ∅) ≤ 2.25−n.

2. Pr
(∣∣Bdc(N) ∪ Bor(N)

∣∣ ≥ T ′

50

)
≤ e−

T ′
100 .

Proof. Let us begin by proving Item 1. Note that Bwo(N) is non-empty if and only if there

exists some t ∈ [T ′] and r ∈ [R′] such that Ewot,r occurs. Lemma 5.9 says that for all t ∈ [T ′],

r ∈ [R′], we have Pr(Ewot,r ) ≤ 5−n. A simple union bound and our assumption that T ≤ 2n

then gives us that Bwo(N) ̸= ∅ with probability at most T ′ · R′ · 5−n ≤ 105TR′ · 5−n ≤
105 · 2n ·R′ · 5−n ≤ 2.25−n.

Now, let us consider Item 2. For this, we will refer to Lemma 5.10 and Lemma 5.11.

Note that for each t ∈ [T ′], Pr
(
Edct,Ld

)
≤ 2ϵ and Pr(Eort ) ≤ 2ϵ. Thus, Pr

(
Edct,Ld ∪ Eort

)
≤ 4ϵ.

Furthermore, as each of these events depends only on the noise in iteration t, they are

independent across different iterations t.

For t ∈ [T ′], let Xt be an indicator random variable for Edct,Ld∪Eort . Note that Pr(Xt = 1) ≤
4ϵ, and Xt = 1 if and only if t ∈ Bdc(N) ∪ Bor(N). Thus, we wish to bound the probability

that
∑

t∈[T ′] Xt ≥ T ′

50
. For this, we use a Chernoff bound.

Pr

(∣∣Bdc(N) ∪ Bor(N)
∣∣ ≥ T ′

50

)
= Pr

∑
t∈[T ′]

Xt ≥
T ′

50


≤ e−

T ′
100 . (Lemma 3.1)

We note that our assumption that T ≤ 2n is only used in Item 1 of Lemma 5.13.
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5.3 Bad Intervals

5.3.1 Critical Players

We now define and show results about players “critical” to the protocol, i.e., those needed

to make sure we make progress in our simulation. For a set S of integers and an integer k

define S≤k to be the set consisting of the k smallest elements of S. If |S| ≤ k, we define

S≤k = S. For a transcript π ∈ Γ∗
cs, we define the set S(π) to be the set of all non-leader

players who would broadcast in the noiseless protocol when their received transcript is π.

Formally,

S(π) =
{
i ∈ P |M i

|π|+1

(
xi, π

)
̸= ⊥

}
.

Definition 5.14 (Critical Players). For π ∈ Γ∗
cs, we define the set of players that are π-

critical as Crit(π) = S(LCP(π,Π))≤2.

We note that this definition is made for analysis purposes and no single player can

necessarily compute the set Crit(·).

5.3.2 Bad Intervals

Next, we define the set of possible augmented transcripts and bad intervals.

Definition 5.15. For 0 ≤ t′ ≤ t ≤ T ′ and an instantiation N≤t′ of N≤t′, define the set:

Augt(N≤t′) =
{
π ∈ Γ∗

cs | ∃N(t′,t] : π
Ld
t (N≤t) = π

}
.

Definition 5.16. Let N be an instantiation of N. We define B†(N) to be the set of all

intervals (t′, t] satisfying 0 ≤ t′ < t ≤ T ′ for which there exists π ∈ Augt(N≤t′) and i ∈ Crit(π)

such that E tct′,t,i occurs when N = N . We also define:

B(N) =
⋃

(t′,t]∈B†(N)

(t′, t].

We will show that the set B(N) is unlikely to be large in Lemma 5.19. But first, we show

the following helper lemma.

Lemma 5.17. Fix 0 ≤ t′ < t ≤ T ′ and an instantiation N≤t′ of N≤t′. It holds that:

Pr
(
(t′, t] ∈ B†(N) | N≤t′ = N≤t′

)
≤ 10−50(t−t′).

Proof. Define Crit′ =
⋃

π∈Augt(N≤t′ )
Crit(π). Observe that:

Pr
(
(t′, t] ∈ B†(N) | N≤t′ = N≤t′

)
= Pr

(
∃π ∈ Augt(N≤t′), i ∈ Crit(π) : E tct′,t,i | N≤t′ = N≤t′

)
= Pr

(
∃i ∈ Crit′ : E tct′,t,i | N≤t′ = N≤t′

)
≤ |Crit′| · max

i∈Crit′
Pr
(
E tct′,t,i | N≤t′ = N≤t′

)
(Union bound)
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≤ |Crit′| · max
i∈Crit′

Pr
(
E tct′,t,i

)
. (E tct′,t,i is independent of N≤t′)

Observe first that the second factor is at most 10−100(t−t′) from Lemma 5.12. To finish

the proof, we claim that |Crit′| ≤ 4(t − t′). For this, note that fixing the inputs X fixes

the value of Π, and therefore also implies that, for all π ∈ Γ∗
cs, LCP(π,Π) is determined

by |LCP(π,Π)|. This together with Definition 5.14 implies that Crit(π) is determined by

|LCP(π,Π)|. To emphasize this fact, we abuse notation and write Crit(ℓ) to denote Crit(π)

for all π such that |LCP(π,Π)| = ℓ. We can now bound |Crit′| as follows:

|Crit′| =

∣∣∣∣∣∣
⋃

π∈Augt(N≤t′ )

Crit(π)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

ℓ s.t. ∃π∈Augt(N≤t′ ):|LCP(π,Π)|=ℓ

Crit(ℓ)

∣∣∣∣∣∣
≤

∑
ℓ s.t. ∃π∈Augt(N≤t′ ):|LCP(π,Π)|=ℓ

|Crit(ℓ)|

≤ 2 · |{ℓ ≥ 0 | ∃π ∈ Augt(N≤t′) : |LCP(π,Π)| = ℓ}|. (Definition 5.14)

To finish the proof, note that regardless of the noise,
∣∣LCP(πLd,Π)

∣∣ changes by at most one

in each iteration, and therefore, the second factor above is at most 2(t− t′).

We borrow the following lemma from [26] and include a proof for completion.

Lemma 5.18 ([26], Lemma 6). Let I be an indexing set and a collection of pairs {t′i, ti}i∈I
be given. Assume that 0 ≤ t′i < ti ≤ T ′ for all i ∈ I. There exists a set I ′ ⊆ I such that the

intervals {(t′i, ti]}i∈I′ are mutually disjoint and satisfy:∣∣∣∣∣⋃
i∈I

(t′i, ti]

∣∣∣∣∣ ≤ 2 ·

∣∣∣∣∣⋃
i∈I′

(t′i, ti]

∣∣∣∣∣.
Proof. To show this, we will create two candidate sets I ′, such that the union of their

contained intervals covers
⋃

i∈I(t
′
i, ti]. From this, it is clear that at least one of the two

candidate sets must satisfy the desired requirements.

We will construct our sets using a simple greedy algorithm. It is straightforward to see

that we can restrict ourselves to the case where J =
⋃

i∈I(t
′
i, ti] is a single interval, as we can

partition I based on its intervals and apply our argument to these separate intervals, then

combine the results into one large set.

Begin by taking an interval which reaches the left endpoint of J and whose right endpoint

is as far right as possible. Put it into one of the candidate sets. Then, repeatedly find the

interval which intersects the union of all intervals processed so far and whose right endpoint
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is as far as possible. Put these intervals into the two candidate sets, alternatingly, until you

eventually reach the right endpoint of J .

Note that this process will terminate after at most |I| steps. Furthermore, the two

generated sets are made of disjoint intervals. The reason is that if the intervals in one of the

sets intersect, then the first interval that was added to this set and caused an intersection

should have been added to the other set on a previous step of this process. Finally, the union

of all of these intervals covers J , which completes the proof.

Lemma 5.19. It holds that:

Pr

(
|B(N)| ≥ T ′

50

)
≤ 10−

T ′
50 .

Proof. For any instantiation N of N such that |B(N)| ≥ T ′

50
, by Definition 5.16, there exists

a set I(N) and a collection of pairs {t′i, ti}i∈I(N) such that (t′i, ti] ∈ B†(N) for all i ∈ I(N)

and: ∣∣∣ ⋃
i∈I(N)

(t′i, ti]
∣∣∣ ≥ T ′

50
.

By Lemma 5.18, this implies that there exists a set I ′(N) ⊆ I(N) such that the intervals

{(t′i, ti]}i∈I′(N) are mutually disjoint and satisfy:

∣∣∣ ⋃
i∈I′(N)

(t′i, ti]
∣∣∣ ≥ T ′

100
. (12)

Now, note that there are at most 3T
′
possible collections of disjoint intervals contained in

[0, T ′] such that 0 is in one of the intervals (for every t ∈ [T ′], indicate if it is the beginning

of one of the intervals, the end of one of the intervals, or neither). As a corollary, there are

at most 3T
′
possible collections of disjoint intervals satisfying Eq. (12). By union bounding

over all such collections I ′ satisfying Eq. (12), we have:

Pr

(
|B(N)| ≥ T ′

50

)
≤
∑
I′

Pr
(
∀i ∈ I ′ : (t′i, ti] ∈ B†(N)

)
≤
∑
I′

∏
i∈I′

Pr
(
(t′i, ti] ∈ B†(N)

∣∣∣ ∀i′ < i ∈ I ′ : (t′i′ , ti′ ] ∈ B†(N)
)

=
∑
I′

∏
i∈I′

∑
N≤t′

i

Pr
(
(t′i, ti] ∈ B†(N)

∣∣∣ ∀i′ < i ∈ I ′ : (t′i′ , ti′ ] ∈ B†(N); N≤t′i
= N≤t′i

)
· Pr
(
N≤t′i

= N≤t′i

)
,
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where we assume without loss of generality that ti′ ≤ t′i for all i
′ ≤ i, i.e., the collection I ′

is in “increasing” order. Since N≤t′i
determines whether or not (t′i′ , ti′ ] ∈ B†(N) for all i′ ≤ i,

we have:

Pr

(
|B(N)| ≥ T ′

50

)
≤
∑
I′

∏
i∈I′

∑
N≤t′

i

Pr
(
(t′i, ti] ∈ B†(N)

∣∣∣ N≤t′i
= N≤t′i

)
· Pr
(
N≤t′i

= N≤t′i

)
≤
∑
I′

∏
i∈I′

10−50(ti−t′i) (Lemma 5.17)

≤
∑
I′

10−
T ′
2 (Eq. (12))

≤
(
10

9

)−T ′
2

(As there are at most 3T
′
possible I ′)

≤ 10−
T ′
50 .

To finish this subsection, we show that B(·) has all the iterations where a critical player

fails to decode the tree code.

Lemma 5.20. For any instantiation N of N and all t /∈ B(N), for all i ∈ Crit(πLd
t (N)), we

have πi
t(N) = πLd

t (N).

Proof. Fix an instantiation N of N and fix some t /∈ B(N). We will now prove the desired

claim by contradiction. Suppose that there exists some i ∈ Crit(πLd
t (N)) such that πi

t(N) ̸=
πLd
t (N). As πi is determined by ρi, we also get that ρit(N) ̸= ρLdt (N). In turn, we get from

Line 15 that D-TC(τ it (N)) ̸= ρLdt (N). By Definition 3.4 and the fact that τ it (N) is a noisy

version of τLdt (N) = TC
(
ρLdt (N)

)
(recall the notation TC from Definition 3.2), we get that

ρit(N) ̸= ρLdt (N) is possible only if there exists a ρ′ ̸= ρLdt (N) ∈ Γt
csr such that

∀s ∈ [t], j ∈ [RTC] :
(
TCj(ρ

′
≤s) ̸= TCj((ρ

Ld
t (N))≤s) =⇒ (τ it (N))s,j = ⊥

)
.

Define t′ =
∣∣LCP(ρ′, ρLdt (N)

)∣∣ and observe that TC(ρ′≤s) = TC((ρLdt (N))≤s) for all s ∈ [t′].

Now, invoke Definition 3.2 to get that

2RTC

5
· (t− t′) ≤ ∆

(
TC(ρ′),TC(ρLdt (N))

)
=

t∑
s=t′+1

RTC∑
j=1

1
(
TCj(ρ

′
≤s) ̸= TCj((ρ

Ld
t (N))≤s)

)
≤

t∑
s=t′+1

RTC∑
j=1

1
(
(τ it (N))s,j = ⊥

)
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≤
t∑

s=t′+1

R′∑
r=9

Ns,r,i.

By Eq. (10), we get that E tct′,t,i happens, in turn implying that (t′, t] ∈ B†(N), a contradiction

to t /∈ B(N).

5.4 A Potential Function

We now define the potential function that we shall use in the analysis. For t ∈ {0} ∪ [T ′]

and an instantiation N of N, we define:

Φt(N) = 2 ·
∣∣LCP(πLd

t+1(N),Π
)∣∣− ∣∣πLd

t+1(N)
∣∣. (13)

Our definition clearly implies Φ0(N) = 0 and Φt(N) ≤
∣∣LCP(πLd

t+1(N),Π
)∣∣ for all N .

Moreover, as either one symbol is appended to or removed from the end of πLd in every

iteration, we have that Φt(N) ≥ Φt−1(N)− 1 for all N and t ∈ [T ′]. In Lemma 5.27 we will

now show that if t is not in one of the bad sets defined above, then the potential increases

by at least 1. But first, we state some helpful lemmas.

Lemma 5.21. For any instantiation N of N and any t /∈ Bwo(N), we have:

sLdt (N) ∈
{
R, combine-CD

(
zLdt (N), z2t (N), . . . , znt (N)

)}
Proof. If sLdt (N) = R we are done, so we may assume without loss of generality that sLdt (N) ̸=
R.

Thus, by the definition at Line 8, we see that eLdt (N) = ⊥S. By Lemma 5.5 and Eq. (3),

that means that for all i ∈ P , eit(N) = ⊥. As a result, by Line 6, we know that for all i ∈ P ,
either w̃i(N) ̸= ⊥C or wi(N) = ⊥C . In particular, if w̃i(N) = ⊥C , then wi(N) = ⊥C .

Now, note that t /∈ Bwo(N). Thus, for each r ∈ [6], Ewot,r does not occur. This means

that the set of players for whom at least one of the first 6 rounds of communication is

erased has size at most 6n
10
, which implies that there exists at least one player who hears

all these rounds without noise. Let this player be i. Then we know that for this player,

wi
t(N) = combine-CD(⊥, z2t (N), . . . , znt (N)) and w̃i

t(N) = wLd
t (N).

Note that by Lemma 5.4, we thus get that wLd
t (N) ∈ {⊥C , w

i
t(N)}. However, as es-

tablished above, if wLd
t (N) = w̃i

t(N) = ⊥C , then wi
t(N) = ⊥C , so wLd

t (N) = wi
t(N) =

combine-CD(⊥, z2t (N), . . . , znt (N)). An application of Lemma 5.6 finishes the proof.

For i ∈ [n], define the variable r̂i to be the value of r output by Algorithm 3, when run

by player i, with Line 15 replaced13 by ρ← D-TC
(
τLd
)
. This value is only used for analysis

purposes and cannot be computed by the player during the execution of the protocol (as

13We stress that Line 25 still uses τ i and not τLd.
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they may not know τLd). We now claim several useful properties of r̂it, and how it relates

to rit.

Lemma 5.22. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:(
∄j ∈

[∣∣πLd
t (N)

∣∣] : (πLd
t (N)

)
j
̸= Πj

)
=⇒

(
∄i ∈ P : r̂it(N) = true

)
.

Proof. We prove this claim by proving the contrapositive. Suppose that there exists some

i ∈ P such that r̂it(N) = true. We fix this i and analyze what happens during the execution

of Algorithm 3 that player i uses to calculate r̂it in iteration t.

We start by defining some notation for this execution. Let ρ̂ denote the value of ρ during

this execution, and let π̂k and ℓ̂k denote the value of variables π, ℓ at the end of iteration k

of the loop at Line 17. We shall use π̂0 and ℓ̂0 to denote the corresponding values before the

loop starts.

Observe that ρ̂ = D-TC
(
τLdt (N)

)
= ρLdt (N). Thus, by Lemma 5.7, we get that |ρ̂| = t−1,

and thus there will be t− 1 iterations of the loop at Line 17.

Now, recall that r̂it(N) = true. This means that ℓ̂t−1 <∞. As the variable ℓ is at most |π|
when it is finite, we have ℓ̂t−1 ≤ |π̂t−1|. Let k∗ ∈ [t− 1] be the largest such that ℓ̂k∗−1 ̸= ℓ̂t−1

and observe that k∗ is well defined as k∗ = 1 is one such value.

Now, let ℓ∗ = |π̂k∗−1|. Note that by our assumptions, ℓ̂k′ = ℓ∗ + 1 for all k′ ≥ k∗. We

claim that for all k′ ≥ k∗− 1, (π̂k′)≤ℓ∗ = (π̂k∗−1)≤ℓ∗ . This can be seen by induction. For each

k′ where ρk′ ̸= R, π̂k′ = π̂k′−1∥ρk′ , so if (π̂k′−1)≤ℓ∗ = (π̂k∗−1)≤ℓ∗ , then (π̂k′)≤ℓ∗ = (π̂k∗−1)≤ℓ∗ .

Meanwhile, if ρk′ = R then π̂k′ = (π̂k′−1)<|π̂k′−1|. Thus, if |π̂k′−1| > ℓ∗, then (π̂k′)≤ℓ∗ =

(π̂k′−1)≤ℓ∗ .

The only potential issue is if ρk′ = R and |π̂k′−1| ≤ ℓ∗. However, we claim this cannot

occur. Note that π changes in length by at most 1 in each iteration of Line 17. Thus, if such

a situation occurs, then there must be some k′ such that ρk′ = R and such that |π̂k′−1| = ℓ∗.

Then, note that π̂k′ = (π̂k′−1)<ℓ∗ , so we would set ℓ = ∞ at Line 21. But this would imply

that ℓ̂k′ ̸= ℓ̂t−1, which would contradict our assumptions about k∗. Thus, we know this

cannot occur, so the desired property holds.

Thus, to restate the point, for all k′ ≥ k∗, (π̂k′)≤ℓ∗ = (π̂k∗−1)≤ℓ∗ . Thus, we know that

(π̂k∗−1)≤ℓ∗ = (π̂t−1)≤ℓ∗ =
(
πi
t(N)

)
≤ℓ∗

=
(
πLd
t (N)

)
≤ℓ∗

Now, recall that we wish to prove that there exists some j ∈
[∣∣πLd

t (N)
∣∣] such that(

πLd
t (N)

)
j
̸= Πj. Thus, if there exists some j ≤ ℓ∗ such that (π̂k∗)j ̸= Πj, then we are done.

Thus, we may assume without loss of generality that (π̂k∗)≤ℓ∗ = Π≤ℓ∗ .

Now, recall that we have that ℓ̂k∗−1 ̸= ℓ̂k∗ = ℓ̂t−1. This means that Line 26 was executed

in iteration k∗. In turn, we get that Line 25 evaluated to true in iteration k∗. Thus, we

know that ρk ̸= ⊥C and M i
|π̂k∗ |

(
xi, (π̂k∗)<|π̂k∗ |

)
̸= ⊥. This means that M i

ℓ∗+1(x
i,Π≤ℓ∗) ̸= ⊥.

Furthermore, Line 25 also tells us that D-TC
(
τ≤(k∗−1)RTC

)
= fail.
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Now, let us consider iteration k∗ of Algorithm 1. Note that by Lemma 5.2, for all i′ ∈ [n],

πi′

k∗(N) ∈
{
fail, πLdk∗ (N)

}
. Thus, for these players,

zi
′

k∗(N) ∈
{
⊥,M i

ℓ∗+1

(
xi, πLd

k∗ (N)
)}

=
{
⊥,M i

ℓ∗+1

(
xi,Π≤ℓ∗

)}
. (14)

Furthermore, we know that zik∗(N) = ⊥, as πi
k∗(N) = fail. Thus, for all i′ ∈ [n], if zi

′

k∗(N) ̸=
⊥, then M i′

ℓ∗+1(x
∗,Π≤ℓ∗) ̸= ⊥. Furthermore, zik∗(N) = ⊥ ≠ M i

ℓ∗+1(x
∗,Π≤ℓ∗).

Now, note that ρ̂k∗ = sLdk∗(N) due to Line 8, so we know that sLdk∗(N) /∈ {R,⊥C}. Thus,

by Lemma 5.21,

sLdk∗(N) = combine-CD
(
zLdk∗ (N), z2k∗(N), . . . , znk∗(N)

)
.

On the other hand,

Πℓ∗ = combine-CD
(
MLd

ℓ∗

(
xLd,Π≤ℓ∗

)
, . . . ,Mn

ℓ∗

(
xLd,Π≤ℓ∗

))
.

Now, we use Eq. (14) and the two equations above, combined with Lemma 5.1 and the

fact that sLdk∗(N) ̸= ⊥C to conclude that sLdk∗(N) ̸= Πℓ∗ . This implies that ρ̂k∗ ̸= Πℓ∗ , so(
πLd
t (N)

)
ℓ∗
̸= Πℓ∗ .

We also prove a modified converse version of the previous lemma.

Lemma 5.23. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:(
∃j ∈

[∣∣πLd
t (N)

∣∣] : (πLd
t (N)

)
j
̸= Πj

)
=⇒

(
∃i ∈ Crit(πLd

t (N)) : r̂it(N) = true

)
,

Proof. Suppose that there exists j ∈
[∣∣πLd

t (N)
∣∣] such that

(
πLd
t (N)

)
j
̸= Πj.

Consider the execution of the leader’s call to Algorithm 3 at Line 2 during iteration t. This

call will have t−1 iterations of Line 17 due to Lemma 5.7. Let ρ̂ = D-TC
(
τLdt (N)

)
= ρLdt (N)

be the value of ρ during this execution of Algorithm 3, and let π̂k and ℓ̂k denote the value

of variables π, ℓ at the end of iteration k of the loop at Line 17. We shall use π̂0 and ℓ̂0 to

denote the corresponding values before the loop starts. Note that π̂t−1 = πLd
t (N).

For each such k, we also define a function ptrk : [|π̂k|]→ [k], which is assembled iteratively

as follows:

• ptr0 is a function from [|π̂0|] = [0] = ∅, so it is trivial.

• For k > 0, if ρk = R, then ptrk(j) = ptrk−1(j) for all j ∈ [|π̂k|].

• Otherwise, ptrk is defined for j ∈ [|π̂k|] by

ptrk(j) =

{
k, if j = |π̂k|
ptrk−1(j), otherwise

. (15)
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Informally, ptrk is used to denote the mapping of symbols of π̂k to the iteration of Algo-

rithm 1 that that symbol was written to the tree code. We also denote by ptr the function

ptrt−1.

We now claim a few useful sublemmas about the function ptr, which we will use in our

proof. Note that it is evident from this description that ptrk(j) ≤ k for all k and all j.

Lemma 5.24. For all k ∈ [t− 1], for all j ∈ [|π̂k|],
∣∣π̂ptrk(j)

∣∣ = j and

(π̂k)j = ρptrk(j).

Proof. We will prove this statement by induction, and will in fact prove it for k ∈ {0}∪[t− 1].

Let us begin by considering k = 0. As |π̂0| = 0, this makes the desired claim vacuously

true, as desired.

Now, consider some k ∈ [t− 1], and suppose that the statement was true for k − 1. In

other words, for all j ∈ [|π̂k−1|],
∣∣π̂ptrk−1(j)

∣∣ = j and (π̂k−1)j = ρptrk−1(j).

We have two different cases, depending on if ρk = R or not.

First, suppose that it is. Thus, ptrk(j) = ptrk−1(j) for all j ∈ [|π̂k|], and |π̂k| ≤ |π̂k−1|.
Thus, [|π̂k|] ⊆ [|π̂k−1|], so we know that all the statements that held for k − 1 also hold for

k, which gives us exactly the desired claim.

Now, suppose that ρk ̸= R. Recall that ptrk(j) is given by Eq. (15). Note that this means

that for j ̸= |π̂k|, ptrk(j) = ptrk−1(j). Furthermore, we know that |π̂k| = |π̂k−1| + 1, so

we thus get that by the inductive hypothesis, all the desired claims hold for j ∈ [|π̂k| − 1].

As such, it suffices to prove the claims for j = |π̂k|. However, note that ptrk(|π̂k|) = k by

definition. Thus, the first claim follows. And the second claim follows as the last symbol of

π̂k is ρk, exactly as desired.

By induction, the desired claims follow.

Lemma 5.25. For all k ∈ [t− 1], for all j ∈ [|π̂k|], for all k′ ∈ {ptrk(j), ptrk(j) + 1, . . . , k}

(π̂k′)≤j = (π̂k)≤j.

As a corollary, |π̂k′| ≥ j for all such k′.

Proof. Fix k and fix j as in the statement of the result. We wish to prove this claim by

contradiction.

As such, suppose that there exists some k′ ∈ {ptrk(j), ptrk(j) + 1, . . . , k} such that

(π̂k′)≤j ̸= (π̂k)≤j. Clearly, k
′ ̸= k.

Now, let us consider the largest such k′. In other words, (π̂k′)≤j ̸= (π̂k)≤j but (π̂k′′)≤j =

(π̂k)≤j for all k
′ < k′′ ≤ k.

Note that by how π̂ is constructed, π̂k′ and π̂k′+1 differ in only one coordinate, the last

one. Furthermore, note that π̂k′+1 has to be one longer than π̂k′ , as otherwise π̂k′+1 would

either have the same prefix of length j as π̂k′ , or it would be shorter than length j, in which

case it clearly can’t match the prefix of length j of π̂k. Thus, we get that π̂k′+1 has to be one
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longer than π̂k′ . As such, we know that ρk′+1 ̸= R. Thus, π̂k′+1 = π̂k′∥ρk′+1. Furthermore,

since if π̂k′ has length greater than or equal to j then (π̂k′+1)≤j = (π̂k′)≤j, we get that π̂k′

must have length less than j. At the same time, π̂k′+1 must have length at least j, so we get

that |π̂k′| = j−1 and |π̂k′| = j. Note that this rules out k′ equalling ptrk(j), by Lemma 5.24.

Now, let us again consider the behaviour of ptrk. Note that for all k′′ > k′, by our

assumption, |π̂k′′ | ≥ j, so ptrk′′(j) is well-defined.

Now, note that each such k′′, either ptrk′′(j) = k′′ or ptrk′′(j) = ptrk′′−1(j). Thus, we see

that ptrk′′(j) ≥ ptrk′′−1(j), as ptrk′′−1(j) ≤ k′′ − 1.

But note that because |π̂k′+1| = j, we thus know that ptrk′+1(j) = k′+1. Thus, ptrk(j) ≥
ptrk′+1(j) = k′ + 1. But on the other hand, we also know that k′ ≥ ptrk(j) due to how we

picked k′ in the first place. Thus, we get a contradiction, and the desired claim is shown.

Note that πLd
t (N) = π̂t−1, and recall that by our assumption, there exists j ∈

[∣∣πLd
t (N)

∣∣]
such that

(
πLd
t (N)

)
j
̸= Πj. Fix the smallest such j. In other words, for j′ < j,

(
πLd
t (N)

)
j′
=

Πj′ .

Now, fix ptr to be ptrt−1 and consider t′ = ptr(j). We thus know that
(
πLd
t (N)

)
j
= ρt′ =

sLdt′ (N) due to Lemma 5.7.

Now, recall that Bwo(N) = ∅. Thus, t′ /∈ Bwo(N), so by Lemma 5.21,

sLdt′ (N) ∈
{
R, combine-CD

(
zLdt′ (N), z2t′(N), . . . , znt′(N)

)}
.

Note that as
(
πLd
t (N)

)
j
= sLdt′ (N), this implies that sLdt′ (N) ̸= R, since if sLdt′ (N) = R,

then we would instead shrink the string π. We never actually allow the symbol R to appear

in π. Thus, we know that

sLdt′ (N) = combine-CD
(
zLdt′ (N), z2t′(N), . . . , znt′(N)

)
. (16)

Now, note that for all players i ∈ PLd, Line 3 gives that if πi
t′(N) ̸= fail, then zit′(N) =

M i

|πi
t′ (N)|+1

(xi, πi
t′(N)). Otherwise, zit′(N) = ⊥. Applying Lemma 5.2, we thus get that

zit′(N) ∈
{
⊥,M i

|πLd
t′ (N)|+1

(
xi, πLd

t′ (N)
)}

.

Now, we apply Lemma 5.25 to see that (πLd
t′ (N))<j =

(
πLd
t (N)

)
<j

= Π<j. Furthermore,

by Lemma 5.24, we also get that
∣∣πLd

t′ (N)
∣∣ = j. As such, we see that

zit′(N) ∈
{
⊥,M i

j

(
xi,Π<j

)}
.

Now, for all i ∈ [n], let z′it′(N) = M i
j(x

i,Π<j). Then we see that

Πj = combine-CD
(
z′Ldt′ (N), z′2t′ (N), . . . , z′nt′ (N)

)
. (17)
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Now, note that zit′(N) and z′it′(N) satisfy the condition of Eq. (4) in Lemma 5.1. Thus,

we can apply Lemma 5.1 on these variables, and use Eq. (16) and Eq. (17) to obtain a

relationship between sLdt′ (N) and Πj.

First of all, note that if sLdt′ (N) = ⊥C , then Lemma 5.1 gives that Πj = ⊥C . But that

would imply that
(
πLd
t (N)

)
j
= sLdt′ (N) = Πj, which contradicts our assumptions. Thus,

sLdt′ (N) ̸= ⊥C .

Now, we can use the final result of Lemma 5.1 to conclude that there must exist some

i ∈ [n] such that zit′(N) ̸= z′it′(N). Fix this i. This implies that zit′(N) = ⊥ but z′it′(N) ̸= ⊥.
Note that this can only occur if M i

j(x
i,Π<j) ̸= ⊥ but πi

t′(N) = fail. This, in turn, can only

occur if D-TC
(
τ≤(k−1)RTC

)
= fail.

Now, let us return to the execution of Algorithm 3 that gives us the r̂. In paricular, let

us look at the execution of player i, to see how r̂it(N) is obtained. We thus see that when we

are processing iteration t′ of the loop at Line 17, all the conditions at Line 25 are satisfied.

Thus, at Line 26, player i sets ℓ̂i = j <∞.

Now, consider Lemma 5.25. By this lemma, past this point, |π̂i
t′| ≥ j. Thus, the check

at Line 20 will never be satisfied. Thus, ℓi will never be set to be ∞ again.

Thus, eventually, this player will output r̂i = true. Furthermore, as this was a player

that had M i
j(x

i,Π<j) ̸= ⊥ and as Π<j = LCP
(
πLd
t (N),Π

)
, we get that i ∈ Crit

(
πLd
t (N)

)
, so

all the conditions in the proof hold.

Lemma 5.26. For t ∈ [T ′], i ∈ [n] and any instantiation N of N, rit(N) ∈ {r̂it(N), false}.
Furthermore, if πi

t(N) = πLd
t (N), then rit(N) = r̂it(N).

Proof. Let ρit(N) denote the value of ρ during player i’s execution of Algorithm 3 at Line 2

during iteration t of Algorithm 1, and let ρLdt (N) be define analogously for the leader. By

Claim 3.5, we know that ρit(N) ∈
{
ρLdt (N), fail

}
. Furthermore, note that if we run Algo-

rithm 3 on τLdt (N) in order to get r̂it(N), then the ρ in that execution is ρLdt (N).

Thus, we can consider the two cases. If ρit(N) = fail, then the algorithm will terminate

and return at Line 16, so we get that rit(N) = false.

Otherwise, if ρit(N) = ρLdt (N), then the execution of Algorithm 3 will continue identically

as it would during the execution to compute r̂it(N). As such, rit(N) = r̂it(N), as desired.

To show the second claim, we note that if ρit(N) = fail, then πi
t(N) = fail. Meanwhile,

πLd
t (N) ̸= fail always so the only way to have πi

t(N) = πLd
t (N) is if ρit(N) ̸= fail. As shown

above, in that case, rit(N) = r̂it(N).

Lemma 5.27. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:

t /∈ Bdc(N) ∪ Bor(N) ∪ B(N) =⇒ Φt(N) ≥ Φt−1(N) + 1.

Proof. Fix an instantiation N such that Bwo(N) = ∅. Fix t ∈ [T ′] such that t /∈ Bdc(N) ∪
Bor(N) ∪ B(N).

We now consider two separate cases depending on whether there exists j ∈
[∣∣πLd

t (N)
∣∣]

such that
(
πLd
t (N)

)
j
̸= Πj.
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Case 1: ∃j ∈
[∣∣πLd

t (N)
∣∣] : (πLd

t (N)
)
j
̸= Πj: First, note that LCP

(
πLd
t (N),Π

)
̸= πLd

t (N),

so the last symbol of πLd
t (N) is not part of the longest common prefix, which implies that

LCP
((

πLd
t (N)

)
<|πLd

t (N)|,Π
)
= LCP

(
πLd
t (N),Π

)
̸= πLd

t (N)

As Bwo = ∅, Lemma 5.23 gives us that there exists some i ∈ Crit(πLd
t (N)) such that

r̂it(N) = true. Furthermore, as t /∈ B(N), Lemma 5.20 then states that πi
t(N) = πLd

t (N).

Thus, we conclude from Lemma 5.26 that rit(N) = r̂it(N) = true.

As a result, due to Line 6, player i will set eit(N) = 1. Then, by the contrapositive of

Lemma 5.5, the leader will set eLdt (N) ̸= ⊥S, and will thus write R to the tree code at Line 8.

Thus, by Lemma 5.8, we get that πLd
t+1(N) =

(
πLd
t (N)

)
<|πLd

t (N)|, so

Φt(N) = 2 ·
∣∣LCP(πLd

t+1(N),Π
)∣∣− ∣∣πLd

t+1(N)
∣∣

= 2 ·
∣∣LCP(πLd

t (N),Π
)∣∣− (

∣∣πLd
t (N)

∣∣− 1)

= Φt−1(N) + 1.

Case 2: ∀j ∈
[∣∣πLd

t (N)
∣∣] :

(
πLd
t (N)

)
j
= Πj: Note that LCP

(
πLd
t (N),Π

)
= πLd

t (N), so

Φt−1(N) =
∣∣πLd

t (N)
∣∣. For convenience, define ℓ =

∣∣πLd
t (N)

∣∣.
Now, note that if the leader sets sLdt (N) = Πℓ+1 at Line 8, then Lemma 5.8 gives us that

πLd
t+1(N) = Π≤ℓ+1, so

Φt(N) = 2 ·
∣∣LCP(πLd

t+1(N),Π
)∣∣− ∣∣πLd

t+1(N)
∣∣

=
∣∣πLd

t+1(N)
∣∣

= ℓ+ 1

= Φt−1(N) + 1.

As such, it suffices to show that sLdt (N) = Πℓ+1.

By Lemma 5.20, all players i ∈ Crit(πLd
t (N)) set πi

t(N) = πLd
t (N). Thus, all such players

set

zit(N) = M i
ℓ+1

(
xi, πLd

t (N)
)
= M i

ℓ+1

(
xi,Π≤ℓ

)
(18)

Now, we consider two separate cases for γ = combine-CD(zLdt (N), z2t (N), . . . , znt (N)),

depending on the size of Crit(πLd
t (N)): In particular, note that

Crit(πLd
t (N)) = S(LCP(πLd

t (N),Π))≤2 = S(πLd
t (N))≤2.

Thus,
∣∣Crit(πLd

t (N)
∣∣ ≤ 2.

• When
∣∣Crit(πLd

t (N))
∣∣ < 2: In this case, Crit(πLd

t (N)) = S(πLd
t (N))≤2 = S(πLd

t ). Thus,

by Eq. (18), for all i ∈ S(πLd
t ), player i has zit(N) = M i

ℓ+1(x
i,Π≤ℓ).
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Now, consider all players i ∈ PLd \ S(πLd
t (N)). Note that by definition of S, all these

players have M i
ℓ+1(x

i,Π≤ℓ) = ⊥. By Lemma 5.2, each such player i has πi
t(N) ∈{

fail, πLd
t (N)

}
. If πi

t(N) = fail, then this player will set

zit(N) = ⊥ = M i
ℓ+1

(
xi,Π≤ℓ

)
.

On the other hand, if πi
t(N) = πLd

t (N), then they will set

zit(N) = M i
ℓ+1

(
xi, πLd

t (N)
)
= M i

ℓ+1

(
xi,Π≤ℓ

)
.

Thus, for all players i ∈ PLd, zit(N) = M i
ℓ+1(x

i,Π≤ℓ). As such,

γ = combine-CD(zLdt (N), z2t (N), . . . , znt (N))

= combine-CD(MLd
ℓ+1(x

Ld,Π≤ℓ), . . . ,M
n
ℓ+1(x

n,Π≤ℓ))

= Πℓ+1.

• When
∣∣Crit(πLd

t (N))
∣∣ = 2: Thus, there exist 2 players i′, i′ ∈ Crit

(
πLd
t (N)

)
who have

M i
ℓ+1

(
xi, πLd

t (N)
)
̸= ⊥ ≠ M i′

ℓ+1

(
xi′ , πLd

t (N)
)
. By Eq. (18), this means that both of

these players will set zit(N) ̸= ⊥ ≠ zi
′
t (N). As such,

γ = combine-CD(zLdt (N), z2t (N), . . . , znt (N))

= ⊥C (Eq. (3))

= combine-CD(MLd
ℓ+1(x

Ld,Π≤ℓ), . . . ,M
n
ℓ+1(x

n,Π≤ℓ)) (Eq. (3))

= Πℓ+1.

Thus, we see that γ = Πℓ+1 in all cases. Now, note that t /∈ Bdc(N), so we know that

Edct,Ld does not occur, so wLd
t (N) = combine-CD(⊥, z2t (N), . . . , znt (N)).

Now, we invoke Lemma 5.4 to see that if wLd
t (N) = ⊥C , then for all i ∈ P , wi

t(N) = ⊥C .

Furthermore, note that for all i ∈ P , w̃i
t(N) ∈ {⊥, wLd

t (N)}. Thus, if w̃i
t(N) = ⊥C , then

wLd
t (N) = ⊥C , so wi

t(N) = ⊥C . As such, we see that it is impossible to have a situation

where some player i ∈ P sees w̃i
t(N) = ⊥C ̸= wi

t(N).

Now, note that by Lemma 5.22, there will be no player i ∈ P that has r̂it(N) = false. By

Lemma 5.26, we thus see that rit(N) = false for all i ∈ P . This, combined with the claim in

the previous paragraph, means that each player i ∈ P will set eit(N) = ⊥ at Line 6.

Now, note that t /∈ Bor, so Eort does not occur. Thus, by Lemma 5.11 and Eq. (3),

eLdt (N) = combine-CD
(
⊥, e2t (N), . . . , ent (N)

)
= ⊥S.

Then, by Lemma 5.6, we get that the leader sets

sLdt (N) = combine-CD(z1t (N), . . . , znt )(N) = Πℓ+1.
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5.5 Finishing the proof of Theorem 4.1

We are now ready to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. Let C ≥ 100RTC. Fix ϵ, n and Γ as in the statement of the theorem.

We claim that the algorithm provided in Algorithm 1 satisfies all the properties claimed by

the theorem. It can be observed that Algorithm 1 takes at most CT rounds of communica-

tion, so it just suffices to just show that Pr
(
Π′Ld(X) ̸= Π(X)

)
≤ 2−min(n,T ).

By Lemmas 5.13 and 5.19 and a union bound, we get that an instantiation N of N satisfies∣∣Bdc(N) ∪ Bor(N) ∪ B(N)
∣∣ ≤ T ′

25
and Bwo(N) = ∅ except with probability at most

10−
1
50

T ′
+ e−

1
100

T ′
+ 2.25−n ≤ 2−min(n, 1

100
T ′) ≤ 2−min(n,T ).

Lemma 5.27 then states that for all such N , for all t /∈ Bdc(N)∪Bor(N)∪B(N), Φt(N) ≥
Φt−1(N) + 1. At the same time, we recall that Eq. (13) also gives that for all t ∈ [T ′],

Φt(N) ≥ Φt−1(N)− 1. Thus, we see that

ΦT ′(N) ≥
(
T ′ − T ′

25

)
− T ′

25
≥ 9

10
T ′ ≥ T.

Furthermore, we consult Eq. (13) to get that∣∣LCP(πLd
T ′+1(N),Π

)∣∣ ≥ ΦT ′(N) ≥ T,

which implies that
(
πLd
T ′+1(N)

)
≤T

= Π≤T . so the leader’s output at Line 10 is equal to Π≤T .

As this happens except with probability at most 2−min(n,T ), this concludes the proof.
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