
Colourful TFNP and Propositional Proofs

Ben Davis and Robert Robere
School of Computer Science

McGill University

July 18, 2023

Abstract

Recent work has shown that many of the standard TFNP classes — such as PLS, PPADS,
PPAD, SOPL, and EOPL — have corresponding proof systems in propositional proof complexity,
in the sense that a total search problem is in the class if and only if the totality of the problem
can be efficiently proved by the corresponding proof system. We build on this line of work
by studying coloured variants of these TFNP classes: C-PLS, C-PPADS, C-PPAD, C-SOPL, and
C-EOPL. While C-PLS has been studied in the literature before, the coloured variants of the
other classes are introduced here for the first time. We give a family of results showing that
these coloured TFNP classes are natural objects of study, and that the correspondence between
TFNP and natural propositional proof systems is not an exceptional phenomenon isolated to
weak TFNP classes. Namely, we show that:

• Each of the classes C-PLS, C-PPADS, and C-SOPL have corresponding proof systems char-
acterizing them. Specifically, the proof systems for these classes are obtained by adding
depth to the formulas in the corresponding proof system for the uncoloured class. For
instance, while it was previously known that PLS is characterized by bounded-width Res-
olution (i.e. depth 0.5 Frege), we prove that C-PLS is characterized by depth-1.5 Frege
(Res(polylog(n))).

• The classes C-PPAD and C-EOPL coincide exactly with the uncoloured classes PPADS and
SOPL, respectively. Thus, both of these classes also have corresponding proof systems:
unary Sherali-Adams and Reversible Resolution, respectively.

• Finally, we prove a coloured intersection theorem for the coloured sink classes, showing
C-PLS∩C-PPADS = C-SOPL, generalizing the intersection theorem PLS∩PPADS = SOPL.
However, while it is known in the uncoloured world that PLS ∩ PPAD = EOPL = CLS, we
prove that this equality fails in the coloured world in the black-box setting. More precisely,
we show that there is an oracle O such that C-PLSO ∩ C-PPADO ⊋ C-EOPLO.

To prove our results, we introduce an abstract multivalued proof system — the Blockwise Cal-
culus — which may be of independent interest.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 68 (2023)

Contents

1 Introduction 3
1.1 Introduction to TFNP and Proof Complexity. 3
1.2 Our Results . 5

2 TFNP Classes and Propositional Proof Systems 9
2.1 Propositional Proof Systems . 9
2.2 Search classes . 11

3 The Blockwise Calculus 13
3.1 Multivalued CNFs and Blockwise Calculus Proofs . 13
3.2 Encoding TFNP Problems as Multivalued CNFs . 15
3.3 Blockwise Calculus vs. Boolean Proof Systems . 16

4 Containments and New Characterizations 21
4.1 C-PLS and Res(polylog(n)) . 21
4.2 C-SOPL and Reversible Res(polylog(n)) . 24
4.3 C-PPADS and Circular Res(polylog(n)) . 27
4.4 C-PPAD = PPADS and Unary Sherali-Adams . 30
4.5 C-EOPL = SOPL and Reversible Resolution . 33
4.6 PLS ⊆ C-SOPL . 35
4.7 Coloured Intersection: C-PLS ∩ C-PPADS = C-SOPL 36

5 Separation Results 39
5.1 PLSdt ̸= C-SOPLdt . 39
5.2 C-PLSdt ∩ C-PPADdt ̸= C-EOPLdt . 40

2

1 Introduction

1.1 Introduction to TFNP and Proof Complexity.

This work continues a recent line of research relating the theory of total NP search problems [JPY88,
Pap94] to the theory of propositional proof complexity. A total NP search problem is a search
problem S satisfying:

• Totality. On every input x, some solution y with |y| ≤ |x|O(1) is guaranteed to exist.

• Efficient Certification. Checking if y is a valid solution for x is polynomial-time com-
putable.

The class TFNP contains all such search problems, and many important computational problems
lie inside of this class — such as the problem of computing a Nash equilibrium of a bimatrix game,
or the problem of computing a prime factor of a given number.

Since the initial study of TFNP it has been known that no problem in TFNP can be NP-Hard
unless NP = coNP [MP91]. As a result, in order to understand the internal structure of TFNP,
researchers have defined subclasses of TFNP based on polynomial-time reducibility to fixed total
search problems [Pap94]. For example, some of the most well-studied subclasses of TFNP can be
defined by reductions to the following problems:

• PLS. Given a directed acyclic graph, output a sink node.

• PPAD. Given a directed graph with an unbalanced node (in-degree ̸= out-degree), output
another unbalanced node.

• PPADS. Given a directed graph with a negatively unbalanced node (in-degree < out-degree),
output a positively unbalanced node (in-degree > out-degree).

The theory of TFNP has been an extraordinary success in capturing the complexity of many
computational problems that have avoided classification in other settings. For example, the class
PPAD captures the complexity of computing a Nash Equilibrium [DGP09] along with other impor-
tant problems in economics [CSVY08, CDDT09, CPY17].

Black-Box TFNP Classes and Propositional Proof Systems. An important caveat in the
definitions of the above classes is in the input representation. It is clear that all of the above
problems are computationally easy (i.e. inside of P), if we are given the directed graphs in some
standard encoding like an adjacency list or an adjacency matrix. Instead, in the definitions of the
TFNP classes we assume that the inputs are given implicitly. For instance, we can represent an
(exponentially large) O(1)-degree directed graph G by a polynomial-size boolean circuit C that,
when given a node u ∈ V (G) as input, outputs the list of in- and out-neighbours of u. When
described in this implicit encoding, we can no longer exhaustively search through the graph to
find a solution to the search problem, but, when given a potential solution we can still verify its
correctness in polynomial time.

Another natural way of implicitly representing an input to a total search problem is by using
black-box (also called query) access, where the input is represented by an oracle. Following the
earlier example, now the graph G would be represented by an oracle which receives a node u ∈ V (G)
as input and outputs the list of neighbours of u. For now, we informally define TFNPdt as the class
of total search problems where the inputs are represented as black-boxes in this way. The seminal

3

work of Beame et al. [BCE+98] demonstrated that this model is closely related to oracle separations
between the standard TFNP classes. In particular, if we have two black-box TFNP subclasses Adt

and Bdt, then a containment Adt ⊆ Bdt by a sufficiently uniform simulation implies that A ⊆ B —
since we can always simulate the black-box by evaluating the circuit — but if Adt ̸⊆ Bdt then there
is an oracle O such that AO ̸⊆ BO [BCE+98]. Beame et al. [BCE+98] used this strategy to construct
oracle separations between many pairs of TFNP classes that were not previously separated.

Another major contribution of Beame et al. [BCE+98] was pioneering the use of propositional
proof complexity in the study of TFNP classes. They showed that if a total search problem S lies in
the (black-box) class PPAdt ⊆ TFNPdt, then a particular unsatisfiable CNF formula FS associated
with S has efficient refutations in the well-studied algebraic Nullstellensatz proof system. By
combining this with a lower bound against Nullstellensatz proofs refuting the pigeonhole principle
Phpn+1

n they provided the first oracle separation between the classes PPPO and PPAO. Proof
complexity was also employed as a crucial tool by Buresh-Oppenheim and Morioka [BM04], who
used it to unify previous oracle separations in black-box TFNP and also provide new results about
the class PLSdt.

Very recently, the relationships between TFNPdt subclasses and propositional proof systems
have been revisited [BJ12, GKRS18, GHJ+22b, BFI22]. One surprising outcome of the emerging
work is that: not only can proof complexity lower bounds be used to construct oracle separations
(as in [BCE+98]) but, proof complexity lower bounds in fact turn out to be equivalent to these
oracle separations! More formally, for many of the most well-studied TFNP classes A (e.g. A = PLS,
PPAD, PPADS, CLS = EOPL, SOPL), there is a corresponding propositional proof system PA such
that the following relationship holds:

A total search problem S lies in the class Adt

if and only if
The propositional encoding of the totality of S can be efficiently proved in PA.

These new equivalences led to a number of new results in both the theory of propositional proof
complexity and the theory of TFNP. In the theory of TFNP, for example, for each of the classes
listed above, such propositional proof systems not only exist, but they are natural proof systems
that have been well-studied in the proof complexity literature (cf. Figure 1). In [GHJ+22b] these
new equivalences led to the proofs of oracle separations between the TFNP classes PLS and PPP
as well as between UEOPL and EOPL, finally resolving all oracle separations between the classical
TFNP classes. On the other hand, the breakthrough collapse CLS = PLS∩PPAD [FGHS21] and its
followups EOPL = PLS∩PPAD and SOPL = PLS∩PPADS [GHJ+22a] led to brand-new intersection
theorems in proof complexity. In particular, there are natural proof systems — P1, P2, P3 — such
that a formula F has an efficient proof in P1 if and only if F has efficient proofs in P2 and efficient
proofs in P3. This is illustrated by the work of [GHJ+22b], which showed that the proof system
Reversible Resolution — which is closely related to Max-SAT solving — is the intersection of the
classical Resolution proof system and the Sherali-Adams proof system. Section 2 outlines the formal
definitions of these proof systems.

Next Steps. In light of these results a number of open problems — both concrete and conceptual
— remain, namely:

• Do all TFNP subclasses defined by a syntactic existence principle admit a characterization
by a natural proof system? The recent work of Buss, Fleming, and Impagliazzo [BFI22]
constructs a Cook-Reckhow proof system for every black-box TFNP class, but, it is not clear
if these proof systems are equivalent to standard systems occurring in the literature.

4

FP

UEOPL

EOPL

SOPL PPAD

PPADS

PLS PPP PPA

TFNP

Tree Resolution ∼=

Resolution ∼= ∼= F2-NS

unary SA ∼=

∼= unary Z-NSReversible Resolution ∼=

Reversible Resolution with Terminals ∼=

Figure 1: Class inclusion diagram for TFNP. An arrow A → B means A ⊆ B relative to all oracles. In
the black-box model some classes can be captured using propositional proof systems, as indicated in blue.
Above SA refers to the Sherali-Adams proof system [SA94], NS refers to the Nullstellensatz proof system
[BIK+94], and “unary” refers to the fact that we measure size by the sum of all coefficients occurring in the
proof.

• If the above is not true, what is special about these “weak” TFNP classes that do admit
characterizations by proof systems?

• Are the intersection theorems CLS = EOPL = PLS∩PPAD and SOPL = PLS∩PPADS a unique
phenomenon, or do other instances of intersection theorems exist? If so, do they imply other
intersection results for proof complexity?

• Do other well-studied TFNP classes not depicted above that correspond to natural proof
systems? (Note that many other well-studied TFNP subclasses — such as the classes PPP
and UEOPL — and other classes corresponding to the weak pigeonhole principle or Ramsey’s
theorem are currently not known to admit nice characterizations by proof systems).

1.2 Our Results

In this paper we introduce a new family of TFNP classes and demonstrate that they have natural
corresponding propositional proof systems. Specifically, we consider a systematic way to general-

5

ize the TFNP classes PLS, PPAD, PPADS, EOPL, SOPL, obtaining their coloured generalizations
C-PLS, C-PPAD, C-PPADS, C-EOPL, and C-SOPL. The formulas embodying the class C-PLS have
previously been studied in proof complexity and bounded arithmetic, particularly in connection
with witnessing theorems for the bounded arithmetic theory T 2

2 [KST07, Tha16]. For the other
classes, however, the coloured variants are introduced and systematically studied here for the first
time to the best of our knowledge. Before we discuss our results for these coloured classes, let us
first describe how to generalize a TFNP class to its coloured variant.

From Uncoloured to Coloured TFNP Classes. The key shared property between the classes
PLS, PPADS, PPAD, EOPL, SOPL is the following: the input to each of these problems is a directed
graph — enforced to be acyclic1 in the case of PLS,EOPL, and SOPL — having distinguished source
node s with at least one outgoing edge. The goal of the search problem is to either output a proper
sink node in the input graph (i.e. a sink node with at least one in-neighbour) or, in the case of
PPAD and EOPL, one can also output a proper source node (i.e. a source node with at least one
out-neighbour) other than the distinguished one2.

In the coloured generalization of these problems, we receive a list of n colours Cu ⊆ [n] for each
node u ∈ V (G) along with the directed graph G as input, and the solutions are updated as follows:

• Any proper source node with a colour is a solution,

• Any sink node with no colour (i.e. if Cu = ∅) is a solution, and

• A node u with an out-neighbour v is a solution if there is a colour λ ∈ Cv such that λ ̸∈ Cu.

To state the totality as an unsatisfiable system of constraints: the graph G has at least one proper
source, all proper sources are colourless, all sinks have at least one colour, and colours propagate
backwards across directed edges — if a node u has v as an out-neighbour then Cv ⊆ Cu. All of
these constraints are obviously testable in polynomial time, with the possible exception of testing
for a colourless sink. For this, we require that if a node is a sink node, then there is a polynomial-
time function that points to some colour that is present at that sink. Note that knowing only the
identity of a node, it is no longer simple to test whether it is colourless. This is unlike the analogous
and easily-testable property in the uncoloured problems that a node has a successor, giving some
intuition for the increased difficulty of the coloured problems. See Figure 2 for the hierarchy of
these coloured problems and how they relate to classical TFNP classes, and Section 2.2 for formal
definitions.

Statement of Results. Before stating our main results we require some formal definitions. A
query total search problem is a sequence of relations Rn ⊆ {0, 1}n × On, one for each n ∈ N, such
that ∀x ∈ {0, 1}n∃o ∈ On : (x, o) ∈ Rn. We think of x as being provided to us via query access to
its individual bits, and so an “efficient” algorithm would intuitively be provided by a polylog(n)-
depth decision tree solving the search problem. The search problem R = (Rn)n is in TFNPdt if,
for each o ∈ On, there is a polylog(n)-depth decision tree To such that To(x) = 1 iff (x, o) ∈ Rn.
Furthermore, given a search problem R, we can define a corresponding subclass of TFNPdt, denoted
Rdt, obtained by taking all query total search problems that have low-depth decision-tree reductions
to R (see Section 2.2 for the formal definition of a reduction in this model).

1We can enforce acyclicity by adding in a decreasing potential function on the nodes of the graph, and requiring
that edges must point from nodes of higher potential to nodes of lower potential.

2For the interested reader, we note that this similarity was identified and formalized as a general Grid search
problem in [GHJ+22a].

6

C-EOPL = SOPL

PLS C-SOPL ∩ C-PPAD

C-SOPL C-PPAD = PPADS

C-PPADSC-PLS

TFNP

Resolution ∼=

Res(logO(1) n) ∼= ∼= Circular Res(logO(1) n)

∼= unary SAReversible Res(logO(1) n) ∼=

Reversible Resolution ∼=

Figure 2: The coloured TFNP classes and the corresponding proof systems considered in this paper. A
solid line from A to B indicates that A is contained in B relative to every oracle, while a red dashed line
means A is not contained in B relative to some oracle.

The canonical examples of total search problems in TFNPdt come from low-width unsatisfiable
CNF formulas. Any unsatisfiable CNF formula F = C1 ∧ · · · ∧ Cm over variables x1, . . . , xn yields
a closely related total search problem S(F) ⊆ {0, 1}n× [m]: given an assignment x to the variables
of F , output the index of a falsified clause of F (x). Given a sequence of unsatisfiable CNF formulas
F = (Fn)n, the search problem S(F) := (S(Fn))n ∈ TFNPdt if and only if the width of (some
unsatisfiable subformula of) F is polylog(n). Conversely, given any total search problem Rn ⊆
{0, 1}n × On we can define the unsatisfiable CNF formula

∧
o∈On

¬To, where ¬To is the encoding
of the negation of the decision tree To as a CNF formula. It is easy to see that a query-efficient
algorithm for Rn exists iff one exists for S(

∧
o∈On

¬To), and thus we can focus on search problems

of the form S(F) ∈ TFNPdt without loss of generality.
Given these definitions we can state our main results, summarized in Figure 2. First, we show

that every coloured class defined above has an equivalent propositional proof system. Moreover,
these proof systems are closely related to the proof systems for the uncoloured variants. Given
a black-box TFNP class Adt and a proof system P , we write Adt ∼= P if the following holds: for
every sequence of unsatisfiable CNFs F = (Fn)n ∈ TFNPdt, S(F) ∈ Adt if and only if there is a
npolylog(n)-size, polylog(n)-degree refutation of Fn in P .

Theorem 1.1. The following equivalences between TFNPdt classes and proof systems hold:

• C-PLSdt ∼= Res(polylog(n)),

• C-PPADSdt ∼= CircRes(polylog(n)),

• C-SOPLdt ∼= RevRes(polylog(n)).

In the above theorem, Res(polylog(n)) is the extension of Resolution to DNF formulas with
polylog(n)-width conjunctions on the bottom level (see e.g. [Kra01, SBI04, AB04, Gar20]). The

7

system Res(n) is equivalent to depth-2 Frege, and thus Res(polylog(n)) sits between Resolution
and depth-2 Frege in power. The Reversible Res(polylog(n)) system (denoted RevRes(polylog(n)))
is the natural extension of reversible Resolution to DNF formulas. The Circular Res(polylog(n))
system is exactly the higher-depth analogue of Sherali-Adams which is allowed to “operate” on DNF
formulas. It is obtained by augmenting the RevRes(polylog(n)) system with a new rule that allows
us to introduce any DNF formula D for free, as long as we (eventually) derive a copy of D later
in the proof to make up for the introduced copy. This notion of a “circular, yet sound” proof was
introduced by [AL19] in the setting of Resolution, where it was observed that Circular Resolution is
exactly the same as Sherali-Adams. It is quite remarkable that augmenting the three TFNP classes
PLS,PPADS, and SOPL with colours yields new natural classes whose corresponding proof systems
are simply the proof systems for the uncoloured class where the lines have one greater depth!

Our second main result deals with the coloured “source-or-sink” classes C-PPAD and C-EOPL.
Here, we show an a-priori unexpected collapse actually occurs: the coloured source-or-sink classes
are exactly the same as the uncoloured sink classes. Consequentially, we obtain propositional proof
systems equivalent to these TFNPdt classes by relying on earlier work [GHJ+22b].

Theorem 1.2. The collapses C-EOPL = SOPL and C-PPAD = PPADS hold. As a consequence,
C-EOPLdt ∼= Reversible Resolution and C-PPADdt ∼= Unary Sherali-Adams.

In order to prove the above collapses between TFNP classes, we actually proceed entirely through
proof complexity. That is, we exploit the prior results SOPLdt ∼= RevRes, as well as PPADSdt ∼=
uSA [GHJ+22b], and give refutations of the defining principles of C-EOPL and C-PPAD in the
corresponding proof systems. By applying the known characterization results we then obtain the
collapses between these TFNP classes immediately. While we do not see how to prove these collapses
directly in the language of TFNP, this only further necessitates studying the relationship between
the two areas.

Our third major result is a generalization of the intersection theorem SOPL = PLS∩PPADS to
the coloured setting. This proves, as an immediate consequence, that the proof system RevRes(k)
is the “intersection” of Res(k) and CircRes(k).

Theorem 1.3. C-SOPLdt = C-PLSdt ∩ C-PPADSdt.

Corollary 1.4. For any polylog(n)-width CNF formula F on n variables, there is a npolylog(n)-size
RevRes(polylog(n)) refutation of F if and only if there is a npolylog(n)-size Res(polylog(n)) refutation
of F and a npolylog(n)-size CircRes(polylog(n)) refutation of F .

Finally, and quite surprisingly, we show that the intersection theorem C-EOPL = C-PLS ∩
C-PPAD actually fails relative to an oracle. In other words, there is an oracle O such that
C-EOPLO ̸= C-PLSO ∩ C-PPADO.

Theorem 1.5. C-EOPLdt ⊊ C-PLSdt ∩ C-PPADdt, or, equivalently SOPLdt ⊊ C-PLSdt ∩ PPADSdt.

We show this theorem as follows. Since C-EOPLdt = SOPLdt ⊆ PLSdt, the intersection theorem
would imply that

C-PLSdt ∩ C-PPADdt = C-PLSdt ∩ PPADSdt ⊆ PLSdt.

However, we can actually show the (even stronger) separation that C-SOPLdt ∩ PPADSdt ̸⊆ PLSdt.
The fact that PPADSdt ̸⊆ PLSdt follows from [GHJ+22b], and we can prove directly that C-SOPLdt ̸⊆
PLSdt. We then show that for PLSdt, one can combine the adversary arguments from the previous
two separations to create an adversary for PPADSdt ∩ C-SOPLdt. The combination of adversaries
holds generically, and shows that PLSdt is itself not a non-trivial intersection class (we discuss this
more in Section 5). Taken together, our results paint a intriguing picture for how the coloured
TFNP classes relate to the uncoloured classes.

8

The Blockwise Calculus. The results that we prove in this paper have the unfortunate prop-
erty of becoming quite proof-theoretically technical when trying to proceed directly. Our primary
technical innovation — when compared to the recent work between TFNP and proof complexity
— is the use of multivalued logic to simplify these arugments. In particular, we found it useful to
abstract out a generalized calculus — called the Blockwise Calculus — in which to implement our
proofs. One can think of the Blockwise Calculus as the natural extension of the Resolution proof
system to multivalued variables. In Section 3 we define the Blockwise Calculus and its Reversible
and Circular variants, as well as discuss its basic properties. In particular, we show how to translate
refutations in the Blockwise Calculus and its variants automatically into refutations in Resolution,
Res(k), and their variants.

Open Problems. In general this work suggests that further investigation of the connection
between TFNP subclasses and propositional proof complexity is an avenue ripe for exploration.

• As previously outlined, Atserias and Lauria showed that Sherali-Adams is polynomially equiv-
alent to the Circular Resolution proof system [AL19]. Is there an analogue of this result for
Circular Res(k)? That is, is there a natural semi-algebraic proof system that generalizes
Sherali-Adams and is polynomially equivalent to Circular Res(k)?

• It was recently shown that Resolution does not polynomially-simulate unary Sherali-Adams
and vice-versa [GHJ+22b]. Can we prove similar separations between Res(k) and CircRes(k)?
Note that one direction of this separation is already known: Res(k) cannot simulate CircRes(k)
as the retraction Pigeonhole Principle is easy for CircRes(k) [DMR09] but hard for Res(k)
[SBI04].

• What combinatorial principles capture even higher-depth proof systems? We note that some
principles (e.g. the Game Induction principles) are known using translations from bounded
arithmetic [BB10, ST11].

Paper Organization The rest of the paper proceeds as follows. In Section 2 we introduce the
formal definitions of the propositional proof systems and TFNP subclasses that we consider. In
Section 3 we define the Blockwise Calculus and its variants, as well as prove our main technical
theorems relating the Blockwise Calculus to the boolean proof systems introduced in Section 2.
Finally, in Section 4 and Section 5 we provide the proofs of our new containment and separation
results, respectively.

2 TFNP Classes and Propositional Proof Systems

2.1 Propositional Proof Systems

In this section we recall the definitions of some of the standard proof systems considered in this
paper. First, we recall the simplest proof system, Resolution, and its variant Reversible Resolution
[GHJ+22b]. The Reversible Resolution variant (and, in particular, the “reversible” rules presented
below) were first introduced in the context of MaxSAT solving [BLM07, LHdG08, FMSV20].

Definition 2.1. Let F be a CNF formula and let C be a clause. A Resolution proof of C from
F is given by a sequence of clauses C1, C2, . . . , Cs = C where the sequence is generated as follows.
Starting from the empty sequence we either choose a clause from F to append to the sequence,

9

or, we choose earlier clauses in the sequence and apply one of the proof rules depicted below to
generate new clauses to append to the sequence.

C ∨ ℓ C ∨ ℓ
C

(Resolution)
C

C ∨ ℓ C ∨ ℓ
(Reverse Resolution)

The proof is a refutation if C = ⊥. The length of the proof is s, the number of clauses, and the
width of the proof is the size of the widest clause in the proof. Finally, the proof is a Reversible
Resolution proof if every clause is used as the hypothesis of at most one proof rule.

We will also use Sherali-Adams proofs, which are one of the basic semi-algebraic proof systems
studied in the literature. In particular we need its unary variant.

Definition 2.2. If C =
∧

i∈S xi∨
∧

j∈T xj is a conjunction then we let p(C) :=
∏

i∈S xi
∏

j∈T (1−xj)
denote the encoding of C as a real polynomial. A conical junta is a non-negative combination of
conjunctions

∑
λ λp(C) where all coefficients are positive integers. A Sherali-Adams refutation of

a CNF formula F = C1 ∧ · · · ∧Cm is given by a set of polynomials p1, ..., pm and a conical junta J
such that:

m∑
i=1

pi · p(Ci) + J = −1,

where all polynomial arithmetic is performed modulo the ideal generated by ⟨x2i−xi⟩ni=1. The unary
size of the refutation is the sum of all coefficients of all monomials in the expression above (after
expansion), and the degree of the proof is the maximum degree of any monomial in the expanded
expression above. We write uSA to denote the Sherali-Adams system where we measure size by
unary size.

The main focus of the present work is the higher-depth analogue of Resolution, known as
Res(k), which operates on low-width DNF formulas. We consider three different variants of the
Res(k) system (the standard, reversible, and circular variants), and for the sake of uniformity define
them all using the same proof rules (cf. Figure 3).

∧-Introduction D ∨A D ∨B
D ∨ (A ∧B) D ∨A ∨B

Cut D ∨A D ∨A
D

Reverse Cut
D

D ∨A D ∨A
Axiom Introduction

ℓ ∨ ℓ

Figure 3: The Res(k) Proof Rules. Above D is any DNF formula, A is a conjunction of boolean literals, ℓ
is a boolean literal, and we use the convention that A =

∨
ℓ∈A ℓ.

Definition 2.3. Let F be a CNF formula, let G be a DNF formula, and let k be a positive integer.
A Res(k) proof of G from F is a sequence of k-DNF formulas D1, ..., Ds = G where the sequence is
generated as follows: starting from the empty sequence we either choose a clause from F to append
to the sequence (interpreted as a width-1 DNF), or, we choose earlier DNFs in the sequence and
apply any Res(k)-proof rule (cf. Figure 3) to generate new DNFs and append them to the sequence.
The proof is a refutation of F if G = ⊥, the empty disjunction. The size of the proof is

∑s
i=1 |Di|,

where |Di| represents the size of each DNF. The proof is reversible (or a RevRes(k) proof) if every
DNF is used as a hypothesis of at most one proof rule.

10

We now define Unary Circular Res(k) (or uCircRes(k)) proofs, which are a generalization of
Res(k) in which the proofs can have cycles. As discussed in the introduction this is the higher-depth
analogue of Sherali-Adams [BB22]. To define it we must introduce one additional proof rule called
DNF Creation, defined next, that allows to create any DNF D in one proof step. While this rule
is (obviously) not sound by itself, it turns out that one can make a sound proof system as long as
we require that the proof eventually derives at least as many copies of D from other proof rules
than were created by using the DNF Creation rule, and strictly more if D is the clause we wish to
prove (cf. [AL19]).

(DNF Creation)
D

Definition 2.4. Let F be a CNF formula. A Unary Circular Res(k) proof of a DNF G from F
is a sequence of DNFs D1, D2, . . . , Ds = G that is generated as follows: starting from the empty
sequence we either choose a clause C from F and append it to the sequence, we apply the DNF
Creation rule to generate a new DNF and add it to the list, or we choose earlier DNFs in the
sequence and apply a Res(k) proof rule to generate new DNFs and append them to the sequence.
In addition, we make the following stipulations: each DNF Di in the sequence is used as the
hypothesis of at most one Res(k) rule, and every DNF D appearing in the proof is derived as the
output of some proof rule at least as many times as it is created using DNF Creation, except the
conclusion G which must be derived strictly more times than it is created with DNF-Creation. The
size of the proof is

∑s
i=1 |Di|. If G = ⊥ then we call this a uCircRes(k) refutation of F .

Both Res(k) and CircRes(k) can efficiently simulate RevRes(k), since RevRes(k) is a restriction
of both systems — of the first system because of the fanout restriction, and of the second system
because of its inability to apply DNF Creation.

2.2 Search classes

In this section we define the relevant background for TFNP. We follow the treatment of black-box
TFNP used by [GHJ+22b].

Definition 2.5. A total (query) search problem is a sequence of relations R = {Rn ⊆ {0, 1}n×On},
where On are finite sets, such that for all x ∈ {0, 1}n there is an o ∈ On so that (x, o) ∈ Rn. A total
search problem R is in TFNPdt if for each o ∈ On there is a decision tree To with depth poly(log n)
such that for every x ∈ {0, 1}n, To(x) = 1 iff (x, o) ∈ R.

As discussed in the introduction the canonical problems in TFNPdt are the false clause search
problems associated with an unsatisfiable polylog(n)-width CNF formula F = C1∧ · · ·∧Cm defined
as S(F) ⊆ {0, 1}n× [m] with (x, i) ∈ S(F) iff Ci(x) = 0. Every problem in TFNPdt is equivalent to
S(F) for some polylog(n)-width CNF formula.

Definition 2.6. Let R ⊆ {0, 1}n × O and S ⊆ {0, 1}m × O′ be total search problems. An S-
formulation of R is a decision-tree reduction (fi, go)i∈[m],o∈O′ from R to S. Formally, for each
i ∈ [m] and o ∈ O′ there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → O such that

(x, go(x)) ∈ R ⇐= (f(x), o) ∈ S

where f(x) ∈ {0, 1}m is the string whose i-th bit is fi(x). The depth of the reduction is

d := max
(
{D(fi) : i ∈ [m]} ∪ {D(go) : o ∈ O′}

)
,

11

where D(h) denotes the decision-tree depth of h. The size of the reduction is m, the number of
input bits to S. The complexity of the reduction is logm + d. We write Sdt(R) to denote the
minimum complexity of an S-formulation of R.

We extend these notations to sequences in the natural way. If R is a single search problem
and S = (Sm) is a sequence of search problems, then we denote by Sdt(R) the minimum of Sdt

m(R)
over all m. If R = (Rn) is also a sequence, then we denote by Sdt(R) the function n 7→ Sdt(Rn).

Using the previous definition we can now define complexity classes of total search problems via
reductions. For total search problems R = (Rn),S = (Sn), we write

Sdt := {R : Sdt(R) = polylog(n)}.

Coloured TFNP Classes. With the definition of reductions established, we can define the search
problems characterizing our coloured TFNP classes. We define the notation [n]0 := [n] ∪ {0}.

Definition 2.7 (Coloured Sink-of-Dag). C-SoDn is a total search problem defined on an n× n
grid of nodes, where (1, 1) is a special distinguished node. As input, we receive the following
parameters for each node (i, j) ∈ [n]× [n]:

• An index si,j ∈ [n]0, indicating that the successor of (i, j) is (i + 1, si,j), or if si,j = 0, that
(i, j) is a leaf.

• An indicator ci,j,λ ∈ {0, 1} ∀λ ∈ [n], indicating the presence of colours at each grid node

• An index ei,j ∈ [n], indexing a colour at each node

Here the index ei,j is used to ensure that sinks can be efficiently verified to have a colour.
Any node on the final layer or any node with successor 0 is called a leaf and the node (1, 1) is

called the distinguished source. If the set of colours at each node contains the set of colours at its
successor node, and there is at least one colour at each leaf, then clearly there must be at least one
colour at the source node. The goal of the search problem is to find a witness of this fact. Formally,
a solution to the C-SoDn search problem is

• ((i, j), λ) if si,j = k, ci+1,k,λ = 1, and ci,j,λ = 0 for some k. (colour propagation)

• ((1, 1), λ) if c1,1,λ = 1 (distinguished source should be colourless)

• ((i, j), λ) if (i, j) is a leaf, ei,j = λ, and ci,j,λ = 0 (sinks should have a colour)

Definition 2.8 (Coloured Sink- and End-of-Line). C-SoLn is a search problem defined on a
set of n nodes, denoted [n− 1]0, distinguishing the node 0. We define a graph on these nodes using
the following parameters for each node u ∈ [n− 1]0:

• An index su ∈ [n− 1]0 indexing the successor of u.

• An index pu ∈ [n− 1]0 indexing the predecessor of u.

• An indicator cu,λ ∈ {0, 1} for each λ ∈ [n], indicating the presence of the colour λ at u.

• An index eu ∈ [n], indexing a distinguished colour at each node.

We define a graph G on [n] by including an edge (u, v) if and only if su = v and pv = u. Again,
if the set of colours at each node contains that at its successor, and there is at least one colour at
each sink, then each source must contain at least one colour. The goal of the search problem is to
find a witness of this. A pair (u, λ) is then a solution to an instance of C-SoLn if:

12

• su = v, pv = u, cv,λ = 1 and cu,λ = 0 for some node v ̸= u (colour propagation)

• u = 0 and c0,λ = 1 (distinguished source should be colourless)

• u is a sink node, eu = λ, and cu,λ = 0 (sinks should have a colour)

The C-EoLn problem is obtained by adding the following solutions to the C-SoLn problem:

• u is a source node and cu,λ = 1 (sources should be colourless)

Definition 2.9 (Coloured Sink- and End-of-Potential-Line). The C-SoPLn and C-EoPLn

problems are search problems combining the constraints of C-SoD and C-EoL. As with C-SoD
they are defined on an n×n grid. We have the following parameters for each node (i, j) ∈ [n]× [n]:

• An index si,j ∈ [n− 1]0 indicating that the successor of (i, j) is (i + 1, si,j).

• An index pi,j ∈ [n− 1]0 indicating that the predecessor of (i, j) is (i− 1, pi,j).

• An indicator ci,j,λ ∈ {0, 1} for each λ ∈ [n] indicating the presence of the colour λ at (i, j).

• An index ei,j ∈ [n] indexing a distinguished colour at each node.

As with C-SoPL we define a graph G on [n]× [n] by including an edge ((i, j), (i + 1, k)) if and
only if si,j = k and pi+1,k = j. The solutions are then defined exactly as for C-SoLn and C-EoLn

adapted to the n× n grid.

We denote the TFNPdt classes obtained by taking formulations of the above problems in Sans-
Serif font, e.g. C-SOPLdt = C-SoPLdt.

3 The Blockwise Calculus

3.1 Multivalued CNFs and Blockwise Calculus Proofs

The proof-theoretic results in this paper have the unfortunate property of becoming technical when
proved directly in the boolean proof systems defined in the previous section. To aid exposition we
have found it useful to abstract out a generalized calculus — the Blockwise Calculus — to phrase our
proofs in. In this section we introduce the Blockwise Calculus and prove our main technical results
illustrating its relationship with the proof systems introduced in the previous section. Intuitively
the Blockwise Calculus is the extension of Resolution to variables in a wider range than {0, 1}.

Definition 3.1. A multivalued variable is a pair (x, n) where x is a formal variable and n ∈ N is
a positive integer representing the range [n − 1]0 that the variable x can take values in. We will
suppress the range parameter n when it is obvious from context. An atom is an expression of the
form Jx ̸= iK where i ∈ [n − 1]0 is an element of the range. Given an [n − 1]0-assignment to x the
atom evaluates to true iff the inequality inside the atom is satisfied. A clause is a disjunction (∨)
of atoms, where each variable in the clause can be quantified over its own range. The width of a
clause C is the number of atoms in it.

Using multivalued variables we can introduce the notion of a multivalued CNF formula.

Definition 3.2. Let (x1, r1), (x2, r2), . . . , (xn, rn) be a collection of multivalued variables. A mul-
tivalued CNF formula F = C1 ∧ · · · ∧ Cm over these variables is a conjunction of clauses of atoms
over the same variables. We say that F is unsatisfiable if there is no assignment of each variable
to their respective ranges such that the resulting CNF is satisfied, and define the corresponding
search problem S(F) ⊆ [r1 − 1]0 × · · · × [rn − 1]0 × [m] in the natural way: given a multivalued
assignment to the corresponding variables, output a false clause of F .

13

While the Blockwise Calculus operates on multivalued CNF formulas, we ultimately want to
convert everything back to refutations in boolean logic. For this, we introduce the booleanization
of a multivalued CNF, which is obtained by encoding each multivalued variable (x, r) in binary.

Definition 3.3. Let (xi, ri) for i ∈ [n] be a collection of multivalued variables, and let F =
∧m

i=1Ci

be a multivalued CNF formula over these variables. The booleanization of F is the following CNF
formula Fbool. For each variable (xi, ri) we introduce ti := ⌈log ri⌉ boolean variables in a block,
denoted x⃗i := xi,1 . . . xi,ti ∈ {0, 1}ti , encoding the value of the variable xi in binary. Then, for each
clause in F we substitute each occurrence of an atom Jxi ̸= kK with the disjunction on the variables
x⃗i that is false exactly when xi = k. Finally, for each i ∈ [n] and each value ℓ ∈ [2ti] with ℓ ≥ ri,
we add a clause to Fbool over the variables x⃗i encoding that xi ̸= ℓ.

For each of the search problems defined in the previous section, there is a natural multivalued
encoding of that search problem as an unsatisfiable multivalued CNF formula (cf. Section 3.2).
Our current focus is to define the Blockwise Calculus and its variants. The rules of the Blockwise
Calculus are shared among the three systems and defined in Figure 4, where C is a multivalued
clause and (x, r) is a multivalued variable.

(Reverse Cut)
C

C ∨ Jx ̸= 0K C ∨ Jx ̸= 1K · · ·C ∨ Jx ̸= r − 1K

(Cut)
C ∨ Jx ̸= 0K C ∨ Jx ̸= 1K · · ·C ∨ Jx ̸= r − 1K

C

Figure 4: Proof Rules for the Blockwise Calculus.

Definition 3.4. Let F be a multivalued CNF formula and let C be a clause. A Blockwise Calculus
proof of C from F is a sequence of clauses C1, C2, . . . , Cs = C where the sequence is generated
as follows. Starting from the empty sequence we either choose a clause from F to append to the
sequence, or, we choose earlier clauses in the sequence and apply one of the Blockwise Calculus
proof rules (cf. Figure 4) to generate new clauses and append them to the sequence. The length of
the proof is s, the number of clauses, and the width of the proof is the size of the largest clause in
the proof. The proof is a refutation if C = ⊥, the empty clause. Finally, the proof is a Reversible
Blockwise Calculus proof if every clause is used as the hypothesis of at most one proof rule.

As in the case of Res(k), we can also introduce the Circular variant of Blockwise Calculus. The
analogous rule we need to introduce is the following, for any multivalued clause C:

(Clause Creation)
C

Definition 3.5. Let F be a multivalued CNF formula and let C be a clause. A Circular Blockwise
Calculus proof of C from F is a sequence of clauses C1, C2, . . . , Cs = C where the sequence is
generated as follows. Starting from the empty sequence we can either choose a clause from F and
append it to the end of the sequence, apply the Clause Creation rule to create an arbitrary clause
C and append it to the sequence, or choose earlier clauses in the sequence and apply a Blockwise
Calculus rule to generate new clauses and append them to the sequence. In addition, we make

14

the following stipulations: each clause Ci in the sequence is used as the hypothesis of at most one
Blockwise Calculus rule, and every clause C appearing in the proof is derived as the output of some
proof rule more times than it is created using the Clause Creation rule. The length of this proof is
s and the width of the proof is the maximum width of any clause C in the proof. The proof is a
refutation if C = ⊥.

Similarly to the Res(k) systems, it is easy to see that Reversible Blockwise Calculus is a sub-
system of both the Blockwise Calculus and the Circular Blockwise Calculus.

3.2 Encoding TFNP Problems as Multivalued CNFs

Given any of the total search problems introduced in Section 2, we can create a natural unsatisfiable
multivalued CNF formula F expressing that the search problem has no solution. Intuitively, the
negation of F encodes that the search problem is total.

Coloured Sink-of-Dag. We first show how to encode the Coloured Sink-of-Dag (C-SoDn) prob-
lem. For each i, j ∈ [n] we have a multivalued variable (sij , n + 1) expressing that the pointer of
the node sij is either 0 or points to a node on the next level. For each i, j ∈ [n] and each λ ∈ [n]
we have a multivalued variable (ci,j,λ, 2) expressing whether or not the colour λ is present at node
(i, j). Finally, for each i, j ∈ [n] we have a second multivalued variable (eij , n) indexing a colour at
that node. We can now phrase the totality of the search problem using the following unsatisfiable
multivalued CNF formula C-SoD, containing the following clauses:

• Colourless Distinguished Source. For each λ ∈ [n− 1]0, Jc11λ ̸= 1K.

• Propagating Colours. For each i ∈ [n− 1], each j, k ∈ [n], and each λ ∈ [n− 1]0,

Jsij ̸= kK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K .

• Coloured Sinks. For each i ∈ [n− 1], j ∈ [n], λ ∈ [n− 1]0,

Jsij ̸= 0K ∨ Jeij ̸= λK ∨ Jcijλ ̸= 0K , and

Jenj ̸= λK ∨ Jcnjλ ̸= 0K .

Coloured Sink-of-Line and Coloured End-of-Line. The variables of both C-SoLn and C-EoLn

are the same, but the two formulas differ on their defining constraints. For each u, λ ∈ [n − 1]0
we have multivalued variables (su, n), (pu, n), (eu, n), and (cu,λ, 2) encoding successor pointers, pre-
decessor pointers, colour pointers, and colours for each node. The nodes range in the set [n − 1]0
and we treat 0 as the distinguished source node. The clauses of the C-SoLn formula are defined as
follows:

• Colourless Distinguished Source. For each λ ∈ [n− 1]0, Jc0,λ ̸= 1K.

• Colour Propagation. For each u ̸= v ∈ [n− 1]0 and each λ ∈ [n],

Jsu ̸= vK ∨ Jpv ̸= uK ∨ Jcu,λ ̸= 0K ∨ Jcv,λ ̸= 1K .

• Coloured Sinks. For each u, v, w, λ ∈ [n− 1]0 with u ̸= w:

Jsu ̸= vK ∨ Jpv ̸= wK ∨ Jeu ̸= λK ∨ Jcu,λ ̸= 0K .

15

The C-EoLn formula adds the following clauses to the C-SoLn formula:

• Colourless Sources. For each u ∈ [n− 1], v, w, λ ∈ [n− 1]0 with u ̸= w:

Jpu ̸= vK ∨ Jsv ̸= wK ∨ Jcu,λ ̸= 1K .

Coloured Sink-of-Potential-Line and Coloured End-of-Potential-Line. The variables of
C-SoPLn and C-EoPLn are the same. For each i, j ∈ [n−1]0 and each λ ∈ [n−1]0 we have variables
(sij , n), (pij , n), (eij , n), (cijλ, n) encoding successor pointers, predecessor pointers, colour pointers,
and colours for each node. The clauses of the C-SoPLn formula are defined as follows:

• Colourless Distinguished Source. For each λ ∈ [n− 1]0, Jc0,0,λ ̸= 1K.

• Colour Propagation. For each i ∈ [n− 2]0, j, k ∈ [n− 1]0 and each λ ∈ [n− 1]0,

Jsij ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci,j,λ ̸= 0K ∨ Jci+1,k,λ ̸= 1K .

• Coloured Sinks. For each i ∈ [n− 2]0, j, k, ℓ ∈ [n− 1]0 with ℓ ̸= j and λ ∈ [n− 1]0

Jsij ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Jei,j ̸= λK ∨ Jci,j,λ ̸= 0K , and

Jen−1,j ̸= λK ∨ Jcn−1,j,λ ̸= 0K .

The C-EoPLn formula adds the following clauses to the C-SoPLn formula:

• Colourless Sources. For each i ∈ [n − 1], j, k, ℓ,m ∈ [n − 1]0 with m ̸= j, and each
λ ∈ [n− 1]0

Jpij ̸= ℓK ∨ Jsi−1,ℓ ̸= mK ∨ Jsij ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jcijλ ̸= 1K

and
Js0,j ̸= kK ∨ Jp1,k ̸= jK ∨ Jc0,j,λ ̸= 1K .

3.3 Blockwise Calculus vs. Boolean Proof Systems

In this section we prove the main technical theorem necessary for our main results. Essentially , it
says that if we have a refutation of a formula F in the Blockwise Calculus or one if its variations,
then we can automatically obtain a refutation of any F -formulation in a related boolean proof
system.

Theorem 3.6. Let F,G be any width-c multivalued CNF formulas for which there is a depth-d
S(F)-formulation of S(G). Then

• If there is a size-s Blockwise Calculus refutation of F , then there is a size-s2O(d) Res(O(d))-
refutation of Gbool.

• If there is a size-s Circular Blockwise Calculus refutation of F , then there is a size-s2O(d)

uCircRes(O(d))-refutation of Gbool.

• If there is a size-s Reversible Blockwise Calculus refutation of F , then there is a size-s2O(d)

RevRes(O(d))-refutation of Gbool.

16

Proving this theorem is much easier after we introduce some auxiliary technical lemmas for
working with decision trees. For a given decision tree T , let Pℓ(T) denote the set of all root-leaf
paths ending in a leaf labelled by ℓ, and let P (T) :=

⋃
ℓ Pℓ(T). For a given path p ∈ P (T) let

Cp := x1 ∧ · · · ∧ xk and Cp := x1 ∨ · · · ∨ xk where x1, ..., xk are the queries made along p.
Let DT :=

∨
p∈P (T)Cp, intuitively encoding the fact that some branch of a decision tree must

be followed under an input. We will rely on these formulas heavily, so we now demonstrate that
they can be efficiently derived in Res(k). It is enough to prove this next lemma for RevRes(d) since
both Res(d) and uCircRes(d) simulate RevRes(d).

Lemma 3.7. If T is a decision tree of depth d, then there is a size-22d RevRes(d) proof of the
formula

∨
p∈P (T)Cp.

Proof. If T consists of a single query of some literal ℓ, then DT = ℓ ∨ ℓ, which can be derived in
a single line as an axiom. Otherwise we proceed by induction, so let ℓ be the first literal queried
by T . Let T0 be the subtree of T followed when ℓ is falsified, and T1 be the one followed when ℓ
is satisfied. By induction, we can derive DT0 and DT1 with size 2 · 22(d−1) = 22d−1. We begin by
∨-weakening T0 with ℓ and T1 with ℓ, and introducing the axiom ℓ ∨ ℓ.

Now let p1,, pk be the paths of T0. Weaken the axiom ℓ∨ ℓ by Cpi for all 1 < i ≤ k to obtain∨
1<i≤k Cpi ∨ ℓ ∨ ℓ. ∧-introducing this with DT0 ∨ ℓ on Cp1 and ℓ, we obtain:∨

1<i≤k
Cpi ∨ Cp1∪ℓ ∨ ℓ

Now weaken ℓ ∨ ℓ by Cpi for all 2 < i ≤ k, and by Cpi∪ℓ for 1 ≤ i < 2 to obtain
∨

2<i≤k Cpi ∨∨
1≤i<2Cpi∪ℓ ∨ ℓ ∨ ℓ. We again ∧-introduce this, this time with

∨
1<i≤k Cpi ∨ Cpi∪ℓ ∨ ℓ on Cp2 and

ℓ to obtain: ∨
2<i≤k

Cpi ∨
∨

1≤i≤2
Cpi∪ℓ ∨ ℓ

Repeating this for the remaining paths pj for 2 < j ≤ k, we obtain:∨
p∈P (T0)

Cp∪ℓ ∨ ℓ

and we can repeat this process for T1 to likewise derive:∨
p∈P (T1)

Cp∪ℓ ∨ ℓ

Since P (T) =
⋃

p∈P (T0)
(p∪ ℓ)∪

⋃
p∈P (T1)

(p∪ ℓ), we can finally cut these two formulas on ℓ to obtain∨
p∈P (T)Cp = DT . All conjunctions created in this process have width at most d, as they each

correspond to a path or subpath of a path of T , and since there are 2d−1 paths in each subtree this
process adds an additional 2 · (2d−1)2 = 22d−1 lines to the proof. Thus the total size of the proof is
2 · 22d−1 = 22d. Further, since all root–leaf paths are bounded in length by d, the proof has width
O(d).

We now show that cutting and weakening along negated paths of decision trees can be done
inside of Reversible Resolution.

Lemma 3.8. Let C be a width-w clause and let T be a depth-d decision tree. Then there is a
size-2d, width-(w + d) RevRes derivation of C from the set of clauses {C ∨ Cp | p ∈ P (T)} and
vice-versa.

17

Proof. We proceed by induction on d. In the base case, d = 1 and a single variable x is queried by
T ; in this case we have the formulas C ∨ x and C ∨ x and we resolve on x to obtain C.

By induction suppose that the claim holds for a decision tree of depth at most d− 1. Let T0 be
the decision tree obtained by discarding all leaves of T (the new leaves may be labelled arbitrarily).
For each path p ∈ P (T), let x be the final variable it queries, let q be the path of T which differs
from p only on x, and let p0 be the path of T0 obtained by truncating p before x. Then we may cut
the formulas C ∨ p0 ∨x and C ∨ p0 ∨x, corresponding to p and q, on x to obtain C ∨ p0. Repeating
this for each such pair of paths in T yields C ∨ p0 for each p0 ∈ T0 in 2d−1 steps, allowing us to
apply the induction hypothesis to complete the derivation of C in a further 2d−1 steps, for a total
size of 2d as desired. Furthermore, this is reversible, as each path of T belongs to a single such pair.
The width claims are also clear as all formulas are of the form C ∨ p for some path p of a depth-d
decision tree.

Now, let F be a multivalued CNF formula on variables (xi, ri) for i ∈ [n], let G be a multivalued
CNF formula on variables (yi, si) for i ∈ [m], and suppose that we have a depth-d S(F)-formulation
of S(G). This means that each variable xi is computed by a depth-d decision tree fi which queries
variables yj and outputs a value in [ri − 1]0, and we also have, for each clause C in F , a decision
tree gC which queries yj variables and outputs a clause of S(G). For simplicity, we will identify the
variable xi with its decision tree fi that computes it.

Suppose that we have a Blockwise Calculus refutation Π of F . Our goal is to give a Res(O(d))
refutation of G. In order to prove this theorem we need to encode atoms Jxi ̸= jK into boolean
formulas. We introduce two such encodings: the positive and negative encoding. In the positive
encoding we encode each atom as a d-DNF formula, while in the negative encoding we encode the
atom as a family of width-d clauses. We emphasize that in the definitions below we identify the
variable xi of the formula F with the decision tree fi outputting the value of xi in the reduction
from G.

D+(Jxi ̸= jK) :=
∨
k ̸=j

∨
p∈Pk(xi)

Cp

D−(Jxi ̸= jK) := {Cp : p ∈ Pj(xi)}

If C is a clause over multivalued atoms we write D+(C) to denote the DNF formula obtained by
substituting each atom A in C with its positive encoding D+(A), and write D−(C) to denote the
CNF formula obtained by substituting

∧
D−(A) for each atom in C and then re-writing the result

in CNF by distributing the ∨ over the ∧s.
The next lemma is arguably the main technical lemma used in the proof of Theorem 3.6. It

shows that it is possible to derive positive encodings of multivalued clauses from negative encodings
and vice-versa efficiently in RevRes(d).

Lemma 3.9. Suppose that x is computed by a depth-d decision tree and G is a DNF. Then there
is a RevRes(d) proof of all the DNFs in {G ∨ C | C ∈ D−(Jx ̸= jK)} from G ∨ D+(Jx ̸= jK) and
vice-versa in size |G|2 · 2O(d)

Proof. We begin by proving G ∨ D+(Jx ̸= jK) from {G ∨ C | C ∈ D−(Jx ̸= jK)}. This direction
is simpler. By applying Lemma 3.7 we can derive the DNF

∨
p∈P (x)Cp in size 22d from axioms,

and then by applying reverse cut repeatedly we can derive G∨
∨

p∈P (x)Cp in size O(|G|22d). From

G∨
∨

p∈P (x)Cp we can repeatedly cut on G∨C for each C ∈ D−(Jx ̸= jK) to in sequence to derive

G ∨ D+(Jx ̸= jK). The total size is |G|22O(d).

18

We now prove the other direction. Without loss of generality suppose that j = 0 and let
D := G ∨ D+(Jx ̸= 0K) for the sake of brevity. By definition we have D = G ∨

∨
k ̸=j

∨
p∈Pk(x)

Cp.
Let P =

⋃
k ̸=0 Pk(x) denote the set of all paths appearing in the above disjunction and write

P = {p1, p2, . . . , ps}.
We begin by applying reverse cut repeatedly along the variables in the decision tree computing

x to derive the set of DNFs {D ∨ Cq | q ∈ P (x)}. Fix an arbitrary path q ∈ P0(x). For each path
pi ∈ P there is a literal ℓi such that ℓi is queried positively in pi and negatively in q. Therefore,
by using an axiom-introduction we can introduce the clause ℓ1 ∨ ℓ1 and then repeatedly using
reverse-cut we can derive G ∨

∨s
i=2Cpi ∨ Cq ∨ Cp1 We can then cut this result with D ∨ Cq to

derive G ∨
∨s

i=2Cpi ∨ Cq. We can now repeat this process: there is another literal ℓ2 appearing
positively in p2 and negatively in q, and thus we can axiom-introduce ℓ2 ∨ ℓ2 and then use reverse
cut to derive G ∨

∨s
i=3Cpi ∨ Cp2 ∨ Cq. Cutting this with the result of the previous stage yields

G ∨
∨s

i=3Cpi ∨Cq, and we can repeat this process s times in order to derive G ∨Cq. We can then
repeat this for each q ∈ P0(x) to derive D−(Jxi ̸= jK).

We now estimate the size of the derivation. The first line has size at most |G|+2d, and we begin
by deriving a set of 2d DNFs, each of size O(|G|+2d), and thus the cost of the first step is O(|G|22d).
To cut each of the paths Cp1 , Cp2 , . . . , Cps we must pay O(|G|22d) to derive the corresponding DNF
to cut our preserved formula with, and this will repeat s ≤ 2d times, for a total cost of O(|G|222d).
Finally, we must repeat this entire process ≤ 2d times for each q ∈ P0(x), and thus the final size is
O(|G|223d) = |G|22O(d).

Using the lemma we can now prove Theorem 3.6.

Proof of Theorem 3.6. The basic idea of this proof is simple: for each clause C ∈ Π we replace C
with the width-d DNF encoding D+(C), noting that the final clause ⊥ remains empty. We prove
two claims:

Claim 1. For each clause C in F we can deduce D+(C) from the clauses of Gbool in RevRes(O(d)).

Claim 2. For each proof rule of the Blockwise Calculus we can deduce the positive encodings
of each consequent of the rule from the positive encodings of each antecedent of the rule
efficiently in RevRes(O(d)).

To prove the first claim, let F = C1 ∧ · · · ∧ Cs and Gbool = C ′1 ∧ · · · ∧ C ′t, let (xi, ri) for i ∈ [n]
denote the variables of F , and let y⃗1, . . . , y⃗m denote the (boolean block) variables of Gbool. By
the definition of an S(F)-formulation, for each variable (xi, ri) of F we have a depth-d decision
tree fi querying variables of Gbool and outputting a value for xi, as well as a decision tree gk for
each k ∈ [s] such that (f(y), k) ∈ S(F) ⇒ (y, gk(y)) ∈ S(G). We can interpret this definition in
terms of proofs as follows. Let Ck = A1 ∨ · · · ∨ Aw be any clause of F and assume w.l.o.g. that
Ai := Jxi ̸= ℓiK for some ℓi. For each i ∈ [w] let pi ∈ Pℓi(xi) be any path in the corresponding
decision tree from the formulation outputting ℓi, and let q ∈ P (gk) be any path in the tree gk.
Then the clause

∨w
i=1Cpi ∨ Cq is a weakening of clause of G. Since there are at most 2d paths in

each decision tree and the width of Ck is w it follows that there are at most 2wd ≤ 2cd such clauses,
and each can be deduced from clauses of G using weakening rules. Next, we observe that from the
collection of clauses {

∨w
i=1Cpi ∨ Cq | q ∈ P (gk)} we can use reversible cuts up the decision tree

gk in order to deduce the family of clauses {
∨w

i=1Cpi}, and taking the union over all such paths
pi ∈ Pℓi(xi) yields exactly D−(Ck). Finally, applying Lemma 3.9 yields D+(Ck). Applying this
strategy to all clauses of F we can deduce D+(Ck) for each clause of F , as desired.

19

We move on to proving the second claim. We first consider the Cut rule

C ∨ Jxi ̸= 0K C ∨ Jxi ̸= 1K · · · C ∨ Jxi ̸= ri − 1K
C

for which we need to show how to derive D+(C) from D+(C)∨D+(JxiK ̸= ℓ) for each ℓ ∈ [ri − 1]0.
We can apply Lemma 3.9 to D+(C) ∨ D+(Jxi ̸= ℓK) for each ℓ = 0, 1, . . . , ri − 1 in order to derive
the family

ri−1⋃
ℓ=0

{D+(C) ∨D | D ∈ D−(Jx ̸= ℓK)} =
⋃

p∈P (xi)

{D+(C) ∨ Cp}.

From this family we can apply Lemma 3.8 in order to derive D+(C), as desired.
We now consider the Reverse Cut rule

C
C ∨ Jxi ̸= 0K C ∨ Jxi ̸= 1K · · · C ∨ Jxi ̸= ri − 1K.

Starting from D+(C) we must derive the family {D+(C) ∨ D+(Jxi ̸= ℓK) | ℓ ∈ [ri − 1]0}. This
direction is easy: since this rule is the reverse of the previous rule, and since we gave a RevRes(d)
simulation of the previous rule, running the previous construction in reverse handles this case as
well.

Using the two claims we can now complete the proof of the theorem. For Res(d) and RevRes(d)
the result follows immediately by induction over the proof Π. For Circular Res(d) we can similarly
apply induction over Π, additionally observing that if we ever apply the Clause Creation rule in a
Circular Blockwise Calculus proof to create a clause C, we can simply apply the DNF creation rule
in Circular Res(d) to create D+(C). Since the Circular Blockwise Calculus proof must derive each
clause C more times than it is introduced by a Clause Creation rule, the same property holds for
the uCircRes(d) proof. This completes the proof of the theorem.

A similar result can also be obtained for low-width Resolution, which we will use to show
collapses to uncoloured classes. The main difference in this proof is that we do not use the positive
encoding, only the negative encoding.

Theorem 3.10. Let F,G be any multivalued CNF formulas for which there is a depth-d S(F)-
formulation of S(G). Then

• If there is a size-s, width-logO(1) s Blockwise Calculus refutation of F , then there is a size-
sO(1)2O(d), width-d · logO(1) s Resolution refutation of Gbool.

• If there is a size-s, width-logO(1) s Circular Blockwise Calculus refutation of F , then there is
a size-sO(1)2O(d), width-d · logO(1) s uCircRes-refutation of Gbool.

• If there is a size-s, width-logO(1) s Reversible Blockwise Calculus refutation of F , then there
is a size-sO(1)2O(d), width-d · logO(1) s RevRes-refutation of Gbool.

Proof. Let Π be the size-s, width-logO(1) s Blockwise Calculus refutation (potentially reversible
or circular) of F . We construct a Resolution refutation of G from Π By first proving D−(F) :=∧

C∈F D−(C), then converting Π into a refutation of D−(F), so we may finally combine these proofs
into a refutation of G. Again, this requires us to show the following:

• For each clause C of F , there is an efficient proof of D−(C) from G

20

• Each rule of the blockwise calculus can be efficiently simulated by Reversible Resolution using
the negative encoding of blocks

Let C1, ..., Cs denote the clauses of F , and C ′1, ..., C
′
t the clauses of Gbool. Likewise, dnote the

variables of F by (x1, r1), ..., (xn, rn) and the variables of Gbool by y⃗1, ..., y⃗m. For each variable
xi of F , we have a depth-d decision tree fi decision tree in the formulation over variables of
Gbool computing it, and for each clause Ci of F , we have a depth-d decision tree gi outputting a
corresponding clause of G. By definition of a S(F)-formulation then, for each such clause Ci, each
clause C ′ ∈ D−(Ci), and each path p ∈ P (gi), the clause C ′ ∨ Cp is a weakening of at least one
clause of G – if C ′ and Cp are both falsified under some assignment a⃗ to the variables of G, then
so too must the clause output by p be falsified under a⃗. Thus, for each such C ′, we can derive the
clause C ′ ∨ Cp from G for every p ∈ P (gi), at which point we may apply Lemma 3.8 to obtain
D−(Ci). Repeating for all clauses of F yields D−(F).

We proceed now to show that we can simulate the rules of the blockwise calculus in Reversible
Resolution:

• If some clause C was derived by cutting earlier clauses C ∨ Jx ̸= 0K , ..., C ∨ Jx ̸= n− 1K, then
we have the set of clauses C ′∨p for each C ′ ∈ C and p ∈ P (Tx), from which we wish to derive
each C ′ ∈ C. Thus, by Lemma 3.8 this can be done in 2d steps with width d + d · logO(1) s.

• If C was derived by weakening some earlier clause C0 on some variable x, then begin with each
C ′ ∈ C, from which we wish to derive C ′ ∨ p for each C ′ ∈ C and p ∈ P (Tx). By reversibility
of Lemma 3.8, this can be done in 2d steps with width d + d · logO(1) s.

Since all families of clauses C corresponding to an original clause C of Π have size sO(1)2O(d)

and each new clause requires 2d additional steps to derive, this results in a proof of size nO(1)2O(d)

overall. Furthermore, all clauses in the new proof consist of logO(1) s negated paths of depth-d
decision trees, and thus have width d · logO(1) s overall.

4 Containments and New Characterizations

4.1 C-PLS and Res(polylog(n))

We will show the following characterization:

Theorem 4.1. C-PLSdt ∼= Res(polylog(n))

We prove this in two parts.

Theorem 4.2. Let m be an integer, and let F be a width-w CNF. If there exists a Res(d) refutation
of F of size m, then there is a depth-O(w + d) C-SoDO(mw)-formulation of S(F).

Theorem 4.3. Let F be a CNF formula. If there exists a depth-d C-SoDn-formulation of S(F),
then there is a Res(d) refutation of F of size nO(1) · 2O(d)

We begin with the first direction:

Proof of Theorem 4.2. Let m and F be as above, and let P be a Res(d)-refutation of F of size m.
We construct a C-SoDO(mw)-formulation as follows. Regardless of input, we introduce a colour λC

for each conjunction C appearing in some line of P . Likewise, for each DNF D appearing as a line in
the proof, we have a corresponding node uD. We implicitly assume that these nodes are embedded

21

in a grid, the size of which we will determine later. If we select a node as the successor for some
uD which cannot be placed on the immediate next layer, we can easily remedy this by duplicating
uD to the layer below and pointing to that instead, repeating until we reach the required layer. If
these nodes do not fill the grid, we can deactivate each remaining node v by introducing a single
additional colour λ0, then setting cv,λ0 = 1, sv = 0 and ev = λ0. This will ensure these extraneous
nodes do not give rise to a solution.

Now suppose we have an assignment a⃗ to the variables of F . For each node uD in the C-SoD-
formulation, we must define functions suD , euD , and cuD,λ, for all colours λ, on input a⃗ which
output the corresponding parameters with sufficiently low decision tree depth.

We begin with the colour indicators. For each line D and colour λC , we set cud,λC
(⃗a) = C (⃗a) if

the conjunction C appears in D and 0 otherwise. Here C (⃗a) denotes the function which outputs 1
exactly when C is satisfied under a⃗, and 0 otherwise.

We now select a successor for each node uD, which we will do to ensure our colouring does not
create a violation except at initial clauses of F . We have multiple cases according to the rule used
to derive D:

• Initial Clause. If D is an initial clause of F , then uD has no successor (we set suD = 0 and
place it on the final layer).

• Axiom Introduction. If D was derived as an axiom, then suD (⃗a) = 0 as exactly one of ℓ
and ℓ are satisfied.

• Reverse-Cut. If D was derived by Reverse-Cut on the premise D0, we set suD (⃗a) = uD0 .

• ∧-Introduction. If D was derived by ∧-introduction on D0 ∨ A and D0 ∨ B, then either
D = D0 ∨ (A ∧ B) or D = D0 ∨ A ∨ B. In the first case, suD (⃗a) = uD0∨A if A is falsified
under a⃗, uD0∨B if B is falsified, and 0 if A∧B is satisfied under a⃗. In the second case, we set
suD = uD0∨A.

• Cut. Finally, if D was derived by cutting on some conjunction C = ℓ1 ∧ · · · ∧ ℓk and its
negation C = ℓ1 ∨ · · · ∨ ℓk, then suD (⃗a) = uD∨C if C is falsified by a⃗ and uD∨C otherwise.

Finally, we define the decision trees outputting the pointer euD for each node. If D is an initial
clause of F , euD (⃗a) = ℓ, where ℓ is the first satisfied literal of D if one exists and an arbitrary
(unsatisfied) literal of D otherwise, to intentionally create a violation whenever D is falsified. If D
is not an initial clause of F , then as before we will define euD in order to avoid a contradiction.
By the construction above either uD is not a leaf, in which case euD has no impact, or uD is a leaf
(which can be checked by running the corresponding successor decision tree) and by construction
D contains a conjunction C which is satisfied under a⃗. Thus we set euD (⃗a) = λC if the latter case
holds, and choose an arbitrary colour otherwise.

Notice that since all conjunctions appearing as disjuncts in P must either appear as literals in
F or be derived by rule applications, the number of colours is O(mw). Thus, since we only require
a grid of size m×m, our formulation has size O(mw) overall. Further, since each function in our
construction can be computed by either querying each literal in at most two conjunctions of the
proof or querying each literal in an initial clause of F , the depth of this formulation is O(w + d).

It remains to show that all solutions to this formulation correspond to solutions of S(F). Let
uD be a node in our construction above. We again have multiple cases depending on the rule used
to derive D:

• If D is an initial clause of F , uD was placed on the bottom layer and suD = 0. If D is
satisfied, then euD points to the colour of a satisfied literal ℓ in D, so uD does not form part of

22

a solution. Otherwise, euD points to the colour of an unsatisfied literal, so uD, ℓ is a solution
as desired. In fact, we will see that this case is the only one which can produce a solution.

• If D was derived as an axiom, then suD = 0 and euD points to the colour of a satisfied literal
ℓ, so uD does not give rise to a solution.

• If D was derived by Reverse-Cut D0 by A, then since suD = uD0 and D contains D0, uD
does not give rise to a solution.

• If D was derived by ∧-introduction on D0 ∨A and D0 ∨B, then either D = D0 ∨ (A ∧B)
or D = D0 ∨ A ∨ B. In the latter case, suD = uD0∨A, which contains no new colours. In the
first case suD = 0 if A ∧ B is satisfied, in which case euD = λA∧B. Otherwise, suD points
to whichever of uD0∨A and uD0∨B contains no additional colours. In all cases, no solution is
created.

• If D was derived by cutting on a conjunction C and its negation C, then exactly one of
C and C is falisified. So since suD = uD∨C if C is falsified and uD∨C otherwise, the chosen
successor contains no additional colours, and uD does not give rise to a solution.

Thus, the only solutions of this formulation consist of nodes corresponding to falsified clauses of F ,
as desired.

We now move on to the reverse direction. To prove this direction, we recall the formulation of
the principle underlying C-SoD as an unsatisfiable multivalued CNF formula (cf. Section 3.2) and
show that this can be refuted by Resolution with a size-nO(1) block-respecting proof.

• ∀i, j, k, λ ∈ [n]0, Jsi,j ̸= kK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K

• ∀λ ∈ [n]0, Jc1,1,λ ̸= 1K

• ∀i, j, λ ∈ [n]0, Jsi,j ̸= 0K ∨ Jei,j ̸= λK ∨ Jci,j,λ ̸= 0K

• ∀j, λ ∈ [n]0, Jen,j ̸= λK ∨ Jcn,j,λ ̸= 0K

Lemma 4.4. C-SoDn has a width-O(n), size-O(n5) Blockwise Calculus refutation.

Proof. We will prove that for all i, j ∈ [n], we can derive the clause:

Ii,j :=
∨

λ∈[n]

Jci,j,λ ̸= 0K

which encodes that some colour is present at (i, j). Once this is derived for the node (1, 1), we can
cut Ii,j with the clause Jc1,1,λK for each λ ∈ [n] to derive ⊥ and conclude the refutation.

We derive Ii,j as follows. For each bottom node (n, j), resolve all initial clauses of the form
Jej ̸= λK ∨ Jcn,j,λ ̸= 0K together on ej to obtain

∨
λ∈[n] Jcn,j,λ ̸= 0K.

For all other nodes (i, j):

• For each k ∈ [n], begin with the clause Jsi,j ̸= kK ∨ Jci+1,k,1 ̸= 1K ∨ Jci,j,1 ̸= 0K and cut it with
Ii+1,k on ci+1,k,1 to obtain:

Jsi,j ̸= kK ∨
∨

1<λ≤n
Jci+1,k,λ ̸= 0K ∨ Jci,j,1 ̸= 0K

23

We then cut this result with the clause Jsi,j ̸= kK ∨ Jci+1,k,2 ̸= 1K ∨ Jci,j,2 ̸= 0K on ci+1,k,2 to
obtain:

Jsi,j ̸= kK ∨
∨

2<λ≤n
Jci+1,k,λ ̸= 0K ∨

∨
1≤λ≤2

Jci,j,λ ̸= 0K

Repeating this for each remaining clause Jsi,j ̸= kK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K for λ ∈ [n],
we obtain the clause:

Jsi,j ̸= kK ∨
∨

λ∈[n]

Jci,j,λ ̸= 0K

• Successively cut all clauses of the form Jsi,j ̸= 0K∨ Jei,j ̸= λK∨ Jci,j,λ ̸= 0K for λ ∈ [n] together
on ei,j to obtain:

Jsi,j ̸= 0K ∨
∨

λ∈[n]

Jci,j,λ ̸= 0K

• Finally, resolve all the resulting clauses of the form Jsi,j ̸= kK∨
∨

λ∈[n] Jci,j,λ ̸= 0K for k ∈ [n]∪
{0} together on Jsi,j ̸= kK to eliminate the successor indices and obtain

∨
λ∈[n] Jci,j,λ ̸= 0K = Ii,j

as desired.

Since for each (i, j) there are n2 clauses of the form Jsi,j ̸= kK∨ Jci+1,k,λ ̸= 1K∨ Jci,j,λ ̸= 0K and n of
the form Jsi,j ̸= 0K∨ Jei,j ̸= λK∨ Jci,j,λ ̸= 0K, each recursive step contributes O(n3) to the size of the
proof. Thus, since we have n2 vertices, the proof has size O(n5) overall. Furthermore, the proof
has width O(n) as desired.

Theorem 4.3 now follows immediately by applying Theorem 3.6.

4.2 C-SOPL and Reversible Res(polylog(n))

We will show the characterization:

Theorem 4.5. C-SOPLdt ∼= RevRes(polylog(n))

We again split this into two directions:

Theorem 4.6. Let F be a width-w CNF. If there exists a RevRes(d) refutation of F of size m,
then there is a depth-O(w + d) C-SoPLO(mw)-formulation of S(F).

Theorem 4.7. Let F be a CNF formula. If there is a depth-d C-SoPLn-formulation of S(F), then
there is a size-n32O(d) RevRes(d) refutation of F .

Proof. Let F be as above, and let P be a RevRes(d) refutation of F of size m. The construction
of our formulation will follow the proof of Theorem 4.2 closely.

We again include a colour λC for each bottom-level conjunction C appearing in the proof, and
a node uD for each DNF appearing as a line in the proof. We implicitly assume these nodes are
embedded in a grid, padding with intermediate nodes as required. We also insert an additional
column labelled ”NULL” to the grid to allow us to treat nodes as having no predecessor or successor
as we require. All nodes u in this column point to NULL as both their successor and predecessor,
and contain a single distinct colour λNULL which eu points to. We can now deactivate an unused
node u by setting cu,λNULL

= 1, then setting su = pu = NULL and eu = λNULL.

24

Now consider an assignment a⃗ to the variables of F . For each node u of our formulation, we
must define the behaviour of functions su, pu, eu, and for each colour λ, cu,λ, on input a⃗. The
colour indicators are defined as in the proof of Theorem 4.2 – for each node uD and conjunction C
in the proof, cuD,λC

(⃗a) = C (⃗a) if C appears in D, and 0 otherwise.
We proceed to define the successor and predecessor pointers. We begin with the successor

pointers, which for a given node uD are defined according to the rule used to derive D:

• Initial Clause If D is an initial clause of F , we place uD on the final layer.

• Axiom Introduction If D was derived as an axiom, then we make uD a leaf by setting
suD,i = NULL

• ∧-Introduction If D was derived by ∧-introducing on D0 ∨ A and D0 ∨ B, then either
D = D∨(A∧B) or D0∨A∨B. In the first case, suD (⃗a) = uD0∨A if A is falsified under a⃗, uD0∨B
if B is falsified, and NULL if both are satisfied. In the second case, we set suD = NULL if
A or B are satisfied under a⃗ and uD0∨B otherwise.

• Cut If D was derived by cutting on some conjunction C = ℓ1 ∧ · · · ∧ ℓk and its negation
C = ℓ1∨· · ·∨ℓk, then we point suD to uD∨C if C is falsified under a⃗, and uD∨C if C is falsified
(exactly one of these must be true).

• Reverse-Cut If D was derived from D0 by Reverse-Cut, then suD (⃗a) = uD0 .

The predecessors are defined similarly, this time according to the rule which consumes D:

• ∧-Introduction If D is ∧-introduced on to produce formulas D0 ∨ (A∧B) and D0 ∨A∨B,
then at most one of these formulas’ nodes points to uD as its successor. We can run the
corresponding successor trees to determine which, and point to this as the predecessor. If
neither do, set puD = NULL.

• Cut If D is cut on to produce D0, then puD (⃗a) = uD0 .

• Reverse-Cut If D is reverse-cut on on some conjunction C to produce formulas D ∨ C and
D ∨ C, then we point suD to uD∨C if C is falsified under a⃗, and uD∨C if C is falsified.

It remains only to define the colour pointer euD , which we do exactly as before, pointing to the
first satisfied literal, if one exists, of D if D is derived as an axiom or is an initial clause of F . In
any other situation where a node is made into a sink, there is again some conjunction C, of width
at most k, which must be satisfied, so if this occurs we point to the colour corresponding to C.

Since we include colours for each conjunction in the proof, each of which is either a literal of some
initial clause of F or was derived at some line of the proof, the number of colours is O(mw) overall.
Thus, since we only need a grid of size at most m, this is a C-SoPLn-formulation. Furthermore, all
functions can be computed by either querying at most w literals or a constant number of width-k
conjunctions, so the depth is O(w + d) as desired.

It remains to see that this formulation is correct. Again suppose we have an assignment a⃗ to the
variables of F and consider a node uD from our construction above. We will show that solutions
can only arise at a node uD if D is an unsatisfied initial clause of F . We again have multiple cases
depending on how D was derived:

• Initial Clause If D is an initial clause of F , then suD = NULL. If D is satisfied under a⃗,
euD points to some λℓ, where ℓ is a satisfied literal of D and thus λℓ is present at uD. Thus,
a solution can only arise at uD if D is unsatisfied.

25

• Axiom Introduction If D was derived as an axiom, it is a sink in our construction, but
one of its literals is satisfied by definition and the corresponding colour will be pointed to by
euD . Thus no solution can arise at uD.

• ∧-Introduction If D was derived by ∧-introducing on D0 ∨ A and D0 ∨ B, then either
D = D0 ∨ (A ∧ B) or D0 ∨ A ∨ B. In the latter case, uD contains all colours of suD , whose
predecessor pointer points to uD. In the first case, uD is a sink if both A and B are satisfied,
in which case euD points to λA∧B, which is present. Otherwise, suD points to whichever of
uD0∨A and uD0∨B introduces no additional colours, as our construction always selects the one
containing the unsatisfied conjunction. Further, suD points to uD as its predecessor, so it is
not a sink. Thus, in all cases, no solution arises.

• Cut If D was derived by cutting on some conjunction C, then exactly one of C and C is
falsified, and as with ∧-introduction suD points to whichever of uD∨C and uD∨C introduces no
additional colours. Each of these nodes points back to uD as its predecessor, so no solutions
arise.

• Reverse-Cut If D is of the form D0 ∨D′ and was derived from D0 by reverse-cut, then uD
points to uD0 as its successor, which contains no additional colours as D0 is a sub-formula of
D. uD0 points back to uD as its predecessor unless D′ is falsified under a⃗, in which case uD
becomes a sink but euD points to D′, which is satisfied, creating no solutions.

Thus the only solutions to this formulation which can arise occur at the bottom layer and correspond
to unsatisfied initial clauses of F , as desired.

We proceed to the reverse direction, and again recall the formulation of the principle underlying
C-SoPL as a multivalued unsatisfiable CNF formula (cf. Section 3.2).

1. ∀i ∈ [n− 2]0, j, k, λ ∈ [n− 1]0, Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K

2. ∀λ ∈ [n− 1]0, Jc0,0,λ ̸= 1K

3. ∀j, λ ∈ [n− 1]0, Jen−1,j ̸= λK ∨ Jcn−1,j,λ ̸= 0K

4. ∀i ∈ [n− 2]0, j ̸= ℓ, j, λ ∈ [n− 1]0, Jsi,j ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Jei,j ̸= λK ∨ Jci,j,λ ̸= 0K

As in the case of C-PLSdt and Res(k), by Theorem 3.6 it suffices to instead show the following:

Lemma 4.8. There is a reversible blockwise calculus refutation of C-SoPLn with size O(n5) and
width O(n).

Proof. We will prove that for all nodes (i, j) in the formulation, we can derive the formula

Ii,j :=
∨

λ∈[n]

Jci,j,λ ̸= 0K

encoding that some colour is present at (i, j). Once this is derived for the node (0, 0), we may cut
it with each clause (2) to derive ⊥ and reach a contradiction.

We proceed to derive each Ii,j . For i = n−1 and j ∈ [n−1]0, we simply resolve all corresponding
clauses (3) together on ei,j to obtain Ii,j . For i < n− 1, we proceed as follows:

26

• For each k ∈ [n− 1]0, take Ii+1,k and split along all values of pi+1,k to obtain:

Jpi+1,k ̸= jK ∨
∨

λ∈[n−1]0

Jci+1,k,λ ̸= 0K

for each j ∈ [n− 1]0. Weakening each of these by Jsi,j ̸= kK yields:

Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨
∨

λ∈[n−1]0

Jci+1,k,λ ̸= 0K

for each j ∈ [n− 1]0.

• Take all clauses (1) of the form Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K and cut
in order with the corresponding clause from the previous step to derive:

Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨
∨

λ∈[n−1]0

Jci,j,λ ̸= 0K = Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Ii,j

for each j ∈ [n− 1]0

To complete the proof, we will exploit reversibility and show that this set of formulas can be
derived in reverse from

∧
j∈[n−1]0 Ii,j without producing any additional formulas.

• We first split Ii,j along all values of si,j to obtain:

Jsi,j ̸= kK ∨ Ii,j

for all k ∈ [n− 1]0.

• For each k ∈ [n−1]0, take the corresponding clause from the previous step and split on pi+1,k

to obtain:
Jsi,j ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Ii,j

for each ℓ ∈ [n − 1]0. If ℓ = j, we are done. Otherwise, we can split this clause on ei,j to
obtain weakenings of clauses (4) for each λ ∈ [n− 1]0:

Jsi,j ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Jei,j ̸= λK ∨ Ii,j

Each step above contributes at most O(n3) to the size of the proof, so since we have n2 nodes,
this proof has size O(n5) overall. Furthermore, the width of this proof is O(n).

Theorem 4.7 now follows.

4.3 C-PPADS and Circular Res(polylog(n))

We wish now to characterize C-PPADSdt as follows:

Theorem 4.9. C-PPADSdt ∼= uCircRes(polylog(n))

As usual, we prove this in two directions:

Theorem 4.10. Let F be a width-w CNF. If there exists a uCircRes(d) refutation of F of size m,
then there is a depth-O(w + d) C-SoLO(mw)-formulation of S(F).

27

Theorem 4.11. Let F be a CNF formula. If there is a depth-d C-SoLn-formulation of S(F), then
there is a size-nO(1) · 2O(d) uCircRes(d)-refutation of F .

Proof. Let F be a width-w CNF, and let P be a uCircRes(d) refutation of F of size m. We
construct a C-SoLO(mw)-formulation as follows. As before, we include a colour λC for each bottom-
level conjunction C in P , and a node uD for each DNF appearing as a line.

Now consider an assignment a⃗ to the variables of F . Again, for each node u we must define
functions su, pu, eu, and for each colour λ, cu,λ. The definitions of these functions will be largely
taken from the proof of Theorem 4.6 – for each line D and conjunction C in P , cuD,λC

= C (⃗a) if C
appears in D and 0 otherwise.

We first define the successor and predecessor pointers for each node uD for the usual rules of
Res(k), as these behave as usual. We will later show how to handle the new rules of uCircRes(k).
The successor pointers for the usual rules are as follows:

• Initial Clause. If D is an initial clause of F , we set suD = uD.

• Axioms Introduction. If D is introduced as an axiom, set suD = uD.

• ∧-Introduction. If D was derived by ∧-introducing on D0 ∨ A and D0 ∨ B, then either
D = D0 ∨ (A ∧B) or D0 ∨A ∨B. In the first case, suD (⃗a) = uD0∨A if A is falsified under a⃗,
uD0∨B if B is falsified, and uD otherwise. In the second case, suD (⃗a) = uD if either A or B
are satisfied under a⃗, and uD0veeB otherwise.

• Cut. If D was derived by cutting on some conjunction C = ℓ1 ∧ · · · ∧ ℓk and its negation
C = ℓ1 ∨ · · · ∨ ℓk, then we point suD to uD∨C if C is falsified under a⃗ and uD∨C otherwise.

• Reverse Cut. If D was derived by reverse cutting some premise D0, then point suD to uD0 .

And we likewise define the predecessor pointers as follows:

• ∧-Introduction. If D was consumed by ∧-Introducing to produce some formulas D0∨(A∧B)
and D0 ∨A∨B, then at most one of uD0∨(A∧B) and uD0∨A∨B point to uD as their successor.
If either do, then point puD back to it. Otherwise, set puD = uD.

• Cut. If D was consumed by cutting to produce some formula D0, then set puD = uD0 .

• Reverse-Cut. If D was reverse-cut on some conjunction C to produce D ∨ C and D ∨ C,
then point suD to uD∨C if C is falsified under a⃗ and C otherwise.

These will be the only rules which may create sink nodes, so we can already define the colour
pointers euD for each node D. We do this as usual: If D is an axiom or initial clause of F , then set
euD to be the first satisfied literal of D. Otherwise, if uD is a sink in the formulation under input
a⃗, then there is a conjunction C of width ≤ k which must be satisfied, so set euD = λC .

Since we have changed nothing major so far, the same reasoning as for Theorem 4.6 holds to
see that the only solutions arising from these rules under input a⃗ occur at clauses of F falsified by
a⃗. The same arguments also hold to verify the size and depth of this formulation so far.

We finally extend this by defining pointers for formulas involved in DNF-Introduction. By
definition of uCircRes(k), we may match each formula D derived by DNF-Introduction to a unique
D′ which is never consumed in a rule application. We then simply set suD = uD′ , and puD′ = uD.
Since these nodes contain identical colour sets, this creates no additional solutions, and since the
functions are constant this only requires decision tree depth 1, completing the formulation.

28

Recall now the reverse direction:

Theorem 4.11. Let F be a CNF formula. If there is a depth-d C-SoLn-formulation of S(F), then
there is a size-nO(1) · 2O(d) uCircRes(d)-refutation of F .

As usual, we will use the formulation of the principle underlying C-SoL as a CNF formula.
Recall that C-SoLn has the following clauses:

1. Jsu ̸= vK ∨ Jpv ̸= uK ∨ Jcv,λ ̸= 1K ∨ Jcu,λ ̸= 0K ∀u, v, λ ∈ [n− 1]0

2. Jc0,λ ̸= 1K ∀λ ∈ [n− 1]0

3. Jsu ̸= 0K ∀u ∈ [n− 1]0

4. Jsu ̸= vK ∨ Jpv ̸= wK ∨ Jeu ̸= λK ∨ Jcu,λ ̸= 0K ∀u, v, w ̸= u, λ ∈ [n− 1]0

As with the other characterizations, by Lemma 3.6 it suffices to instead show the following:

Lemma 4.12. There is a circular blockwise calculus refutation of C-SoLn with size O(n5) and
width O(n).

Proof. The proof will heavily mirror the refutation of C-SoPLn in RevRes. As usual, we will prove
the following formula for each node u of the formulation, encoding that some colour is present at
u:

Iu :=
∨

λ∈[n−1]0

Jcu,λ ̸= 0K

In particular, we will show that an extra copy of I0 is derived, after which we may cut it with
each clause (2) as before to obtain ⊥ and conclude the refutation.

To derive each Iu, we will use the following intermediate formula:

Iu,v := Jsu ̸= vK ∨ Jpv ̸= uK ∨ Iu

for each pair of nodes u, v. We will show that Iu,v can be derived for each u ∈ [n − 1] and
v ∈ [n − 1]0 both in the forward direction from the formulas Iu for each u ∈ [n − 1], and in the
backward direction from the formulas Iu for all u ∈ [n − 1]0 (without producing any additional
clauses). This will produce an extra copy of I0, as desired.

We begin with the forward direction. We begin by DNF-Introducing the formula Iu for each
u ∈ [n − 1], and fix some v ∈ [n − 1]0. If v = 0, then each Iu,v is simply a weakening of the
corresponding clause (3). Otherwise, we derive each Iu,v as follows:

• Take Iv and split along the negated values of pv to obtain:

Jpv ̸= uK ∨ Iv

for each u ̸= v ∈ [n− 1]0. Weakening each of these formulas by Jsu ̸= vK gives the formula:

Jsu ̸= vK ∨ Jpv ̸= uK ∨ Iv

again for each u ̸= v ∈ [n− 1]0.

29

• Take all clauses (1) of the form Jsu ̸= vK∨Jpv ̸= uK∨Jcv,λ ̸= 1K∨Jcu,λ ̸= 0K and cut in succession
with the corresponding formula from the previous step to obtain:

Jsu ̸= vK ∨ Jpv ̸= uK ∨ Iu = Iu,v

for all u ̸= v ∈ [n− 1]0.

Repeating this process for each v ∈ [n−1]0 derives all Iu,v. We now proceed to the reverse direction.
Suppose we have the formulas Iu for all u ∈ [n− 1]0, and fix some u ∈ [n− 1]0. We derive each Iu,v
as follows:

• Take the clause Iu and split along the negation of all values of su to obtain:

Jsu ̸= vK ∨ Iu

for all v ̸= u ∈ [n− 1]0.

• For each v ̸= u ∈ [n− 1]0, take the corresponding clause from the previous step and split on
pv to obtain formulas:

Jsu ̸= vK ∨ Jpv ̸= wK ∨ Iu

for all w ̸= v ∈ [n− 1]0. If w = u, this is Iu,v as desired. Otherwise, we split this formula on
all values of eu to obtain:

Jsu ̸= vK ∨ Jpv ̸= wK ∨ Jeu ̸= λK ∨
∨

λ∈[n−1]0

Jcu,λ ̸= 0K

for each λ ∈ [n− 1]0, which are weakenings of initial clauses (4).

As desired, both directions derive exactly one copy of each Iu,v, and I0 is derived but never con-
sumed, except at the final step.

This proof again has width O(n), and as each step above contributes O(n3) to the size of the
proof and is applied to O(n2) nodes or pairs of nodes, the proof has size O(n5).

Theorem 4.11 now follows.

4.4 C-PPAD = PPADS and Unary Sherali-Adams

We now show that, unlike the previous three characterizations, the characterization for C-PPADdt

is in fact by a depth-0 proof system.

Theorem 4.13. C-PPADdt ∼= degree-polylog(n) uSA

This is shown in two parts:

Theorem 4.14. Let F be a CNF formula. If there is a degree-d, size-m uSA refutation of F , then
there is a depth-O(d) C-EoLO(m)-formulation of S(F).

Theorem 4.15. Let F be a CNF formula. If there exists a depth-d C-EoLn-formulation of S(F),
then there is a size-O(n2) · 2O(d), degree-O(d) uSA refutation of F .

We begin with the first part, which follows from the following characterization:

30

Theorem 4.16. [GHJ+22a] Let F be a CNF formula. If there is a degree-d, size-m uSA refutation
of F , then there is a depth-O(d) SoLO(m)-formulation of S(F). Conversely, if there is a depth-d

SoLn-formulation of S(F), then there is a degree-O(d), size-n · 2O(d) uSA refutation of F .

Proof of Theorem 4.14. It suffices to observe that any instance of SoLn is trivially equivalent to an
instance of C-EoLn where no nodes contain any colours.

We may now proceed to show the more interesting direction.

Proof of Theorem 4.15. Let F = C1 ∧ · · · ∧ Cm be a CNF formula and suppose we have a depth-d
C-EoLn-formulation of S(F). Let V = [n− 1]0 × [n− 1]0 be the vertex set of this formulation and
let v∗ ∈ V denote the distinguished source node. For each u ∈ V , let su be the function outputting
its successor, pu be the function outputting its predecessor, and for each colour λ ∈ [n−1]0, let cu,λ
denote the function indicating whether λ is present at u. For each of these parameters k, let Tk

denote the depth-d decision tree computing it, let Qk denote the degree-d polynomial form of Tk,
and for any path p of a decision tree, let Qp denote the polynomial form of the conjunction which
represents it. Finally, for a given input string x, we denote by Gx the graph obtained by including
each edge (u, v) if and only if su(x) = v and pv(x) = u.

To support the intuition of the proof, we will construct a counting function for each node which
sums to −1 over all nodes, for which we will first define several simpler expressions. For a given
input string x and node u, we define Nu(x) to be the number of colours present at u on input x,
and we define ∆u(x) to be Nsu(x)(x)−Nu(x). Intuitively, ∆u represents the change in the number
of colours between u and its successor. Thus, this quantity can only be positive if the number
of colours at u is less than that at its successor, corresponding to a solution. Furthermore, both
quantities can be computed by O(d)-degree polynomials. When we compute Nu as a polynomial,
we include the colour pointer eu so that we can handle solutions at sink nodes, as follows:

Nu =
∑

λ∈[n−1]0

 ∑
p∈Pλ(Teu)

QpQcu,λ +
∑

p∈Pλ′ (Teu) : λ ̸=λ′

QpQcu,λ


Since all decision trees in the formulation have depth at most d, clearly this has degree O(d). We
similarly define the polynomial computing ∆u in order to facilitate handling solutions arising from
colouring mismatches, as follows:

∆u =
∑

p∈P (Tsu) outputting v,
q∈Pu(Tpv)

QpQq

∑
λ∈[n−1]0

Qcv,λ(1−Qcu,λ)−Qcu,λ(1−Qcv,λ)

The first portion of this expression detects the successor, while the second detects colouring mis-
matches. In particular, all terms of this expression are non-positive except the first term inside the
sum, which is positive exactly when a colouring violation occurs on the corresponding colour and
is thus a weakening of a clause of F . Furthermore, this also has degree O(d), as again all decision
trees in the formulation have depth at most d.

We can finally use these two quantities to define our counting function fu as follows for each
node u. For all u ̸= v∗:

fu(x) :=


1−∆u(x)−Nu(x) u is a proper source in Gx

−∆u(x) u is not a source nor sink in Gx

Nu(x)− 1 u is a proper sink in Gx

0 u is isolated in Gx

31

and for u = v∗:

fv∗(x) :=


−∆v∗(x)−Nv∗(x) v∗ is a proper source in Gx

−∆v∗(x)− 1 v∗ is not a source nor sink in Gx

Nv∗(x)− 2 v∗ is a proper sink in Gx

−1 v∗ is isolated in Gx

It is easy to see that for any x and any path P in Gx not containing v∗,
∑

u∈P fu = 0, as ∆u

telescopes between nodes to leave the difference Ns −Nt in number of colours between the sink t
and source s, which is then compensated for by those nodes’ counting functions. Furthermore, since
fv∗ is always 1 less than fu for an identical non-distinguished node u,

∑
u∈P fu = −1 for any path

P containing v∗. Thus,
∑

u∈V fu = −1, as desired. However, we need to find a static proof. To do
this, we simply sum up each case of fu for all nodes u, multiplied by the degree-O(d) polynomial
which determines when the case occurs. This results in a degree-O(d) polynomial overall, and since
all decision trees in the formulation contain at most 2O(d) paths, it has size O(n2) · 2O(d).

It remains to show that it can be separated into the form
∑

i∈[m] piC̃i + J = −1 for some
polynomials p1, ..., pm and conical junta J . Any non-negative terms can be treated as part of J ,
so we only need to show that the portions of the proof which may be negative on some input x can
be derived from the clauses of F . We consider the cases of fu. If u ̸= v∗:

• Proper source. If u is a proper source on input x, then fu(x) only contains negative terms
if either u contains a colour or its successor v contains a colour which u does not. In either
case, by construction of Nu and ∆u, the negative terms are weakenings of a clause of C-EoL
and thus of F .

• Middle node. If u is not a proper source nor sink, then fu(x) contains negative terms
exactly when its successor v contains a colour which u does not, so all negative terms are
again weakenings of a clause of F .

• Proper sink. If u is a proper sink, fu(x) contains a negative constant term we must show
we can derive. If u is on the bottom layer, we do this by summing all constraints of the
form −Qp(1−Qq) = −Qp + QqQp for each p ∈ P (Teu) outputting some λ and q ∈ P1(Tcu,λ),
which are each a weakening of some clause of F . This sums all paths of P (Teu) to 1 and
yields −1 +

∑
λ∈[n−1]0

∑
p∈Pλ(Teu),q∈P1(Tcu,λ

)QqQp = −1 +
∑

λ∈[n−1]0
∑

p∈PλλTeu
QpQq. The

remaining terms of fu are non-negative, so they can simply be added as part of J . If u is
not on the bottom layer, the derivation is analogous; we simply multiply everything by the
polynomial determining that u is a proper sink.

• Isolated node. If u is isolated, all terms of fu(x) are non-negative by definition

For u = v∗, we only need to consider the case where v∗ is a proper source, as all other cases
inherently give rise to solutions and their terms are thus weakenings of clauses of F . But in this
case, the same argument as for non-distinguished proper sources still holds and we are done. Thus,
all terms which are not non-negative can be expressed as weakenings of clauses of F , and this is a
valid SA refutation of F .

A corollary of this characterization is the following surprising collapse:

Corollary 4.17. C-PPADdt = PPADSdt

Proof. This follows from Theorems 4.15, 4.16, and 4.14.

32

4.5 C-EOPL = SOPL and Reversible Resolution

In this section we prove the following collapse theorem.

Theorem 4.18. C-EOPLdt = SOPLdt, and thus S(F) ∈ C-EOPLdt if and only if there is a
polylog(n)-width Reversible Resolution refutation of F .

To prove this theorem we will crucially rely on the intersection theorem for SOPLdt.

Theorem 4.19. [GHJ+22a] SOPLdt = PLSdt ∩ PPADSdt

We know that C-EOPLdt ⊆ C-PPADdt = PPADSdt by Corollary 4.17. It therefore suffices to
show that C-EOPLdt ⊆ PLSdt, since C-EOPLdt ⊇ SOPLdt trivially (to obtain SOPLdt we just turn
off all colours in a C-EOPLdt instance). To do this, we will use the following characterization of
PLSdt:

Theorem 4.20. [BKT14, Kam20] For any unsatisfiable CNF formula F on n variables, S(F) ∈
PLSdt if and only if there is a polylog(n)-width Resolution refutation of F .

It thus suffices to refute C-EoPLn in low-width Resolution.

Theorem 4.21. Let F be a CNF formula. If there exists a depth-d C-EoPLn-formulation of S(F),
then there is a size-nO(1) · 2O(d), width-O(d) Resolution refutation of F .

Proof. We will use the CNF encoding of C-EoPLn, with clauses as follows:

1. Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K ∀i ∈ [n− 2]0, j, k, λ ∈ [n− 1]0

2. Jc0,0,λ ̸= 1K ∀λ ∈ [n− 1]0

3. Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jc1,j,λ ̸= 1K ∀j ̸= 1, k, λ ∈ [n− 1]0

4. Jpi,j ̸= kK ∨ Jsi−1,k ̸= gK ∨ Jsi,j ̸= hK ∨ Jpi+1,h ̸= jK ∨ Jci,j,λ ̸= 1K ∀i > 1, j, k, g ̸= j, h, λ ∈
[n− 1]0

5. Jen,j ̸= λK ∨ Jcn,j,λ ̸= 0K ∀j, λ ∈ [n− 1]0

6. Jsi,j ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Jei,j ̸= λK ∨ Jci,j,λ ̸= 0K ∀i < n, j, k, ℓ ̸= k, λ ∈ [n− 1]0

By Theorem 3.10, it suffices to instead show the following:

Claim. There is a blockwise calculus refutation of C-EoPLn with size O(n3) and width O(1).

Proof of Claim. Our refutation will proceed in two stages. In the first, we will prove the following
clause for each node (i, j) for i < n, each k, and each colour λ, encoding that either (i+ 1, k) is not
the successor of (i, j) or λ is not present at (i, j):

I→i,j,k,λ := Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci,j,λ ̸= 1K

Together, these formulas imply that (i, j) either has no successor or contains no colours. In the
next stage, we will prove from this that for each k, (i+ 1, k) is not the successor of (i, j) (and thus
(i, j) has no successor), encoded by the following:

I←i,j,k := Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK

We begin by deriving each I→i,j,k,λ. For i = 1, these are simply clauses (3). For i > 1, we proceed
as follows for each i, j, k, λ:

33

• For each h ∈ [n−1]0, take the clause Jsi−1,h ̸= jK∨ Jpi,j ̸= hK∨ Jci,j,λ ̸= 1K∨ Jci−1,h,λ ̸= 0K and
cut with I→i−1,h,j,λ on ci−1,h,λ to obtain the clause:

Jsi−1,h ̸= jK ∨ Jpi,j ̸= hK ∨ Jci,j,λ ̸= 1K =: D→i,j,h,λ

• Again for each h ∈ [n−1]0, successively cut all clauses (4) of the form Jpi,j ̸= hK∨Jsi−1,h ̸= gK∨
Jsi,j ̸= kK∨Jpi+1,k ̸= jK∨Jci,j,λ ̸= 1K together with the corresponding formula D→i,j,h,λ on si−1,h
to obtain:

Jpi,j ̸= hK ∨ I→i,j,k,λ

We finally cut these formulas together on pi,j to obtain I→i,j,k,λ as desired.

We now proceed to prove each clause I←i,j,k. For i = n and each j, k ∈ [n−1]0, we take all clauses
(5) of the form Jen,j ̸= λK ∨ Jcn,j,λ ̸= 0K and cut in succession with I→n,j,k,λ to obtain:

Jsn,j ̸= kK ∨ Jpn+1,k ̸= jK ∨ Jen,j ̸= λK = I ←i,j,k ∨ Jen,j ̸= λK

for all λ ∈ [n − 1]0. Cutting these formulas together on en,j yields I←i,j,k. Now for each remaining
i ∈ [n− 2]0, j, k ∈ [n− 1]0, we proceed as follows:

• For each λ ∈ [n− 1]0, take the clause Jsi,j ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K =
I←i,j,k ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K and cut with I→i,j,k,λ on ci,j,λ to obtain:

I←i,j,k ∨ Jci+1,k,λ ̸= 1K =: D←i,j,k,λ

• Again for each λ ∈ [n − 1]0, take each clause (6) of the form Jsi+1,k ̸= hK ∨ Jpi+2,h ̸= ℓK ∨
Jei+1,k ̸= λK∨ Jci+1,k,λ ̸= 0K and cut them together with the corresponding formula I←i+1,k,h on
pi+2,h to obtain:

Jsi+1,k ̸= hK ∨ Jei+1,k ̸= λK ∨ Jci+1,k,λ ̸= 0K

for each h, λ ∈ [n−1]0. Cutting these formulas together for each λ on si+1,k yields Jei+1,k ̸= λK∨
Jci,j,λ ̸= 0K

• Finally, take the clauses from the previous step and cut with the corresponding formula D←i,j,k,λ
on ci+1,k,λ to obtain:

I←i,j,k ∨ Jei+1,k ̸= λK

for all λ ∈ [n− 1]0. These can then be cut together on ei+1,k to obtain I←i,j,k.

Once I→0,0,k is derived for all k ∈ [n−1]0, we are ready to conclude the refutation. We do this by
first taking all axioms (6) of the form Js0,0 ̸= kK ∨ Jp2,k ̸= ℓK ∨ Je0,0 ̸= λK ∨ Jc0,0,λ ̸= 0K and cutting
with the corresponding clauses (2) to obtain:

Js0,0 ̸= kK ∨ Jp1,k ̸= ℓK ∨ Je0,0 ̸= λK

for all k, ℓ ̸= k, λ ∈ [n− 1]0. Cutting these together for each k, ℓ ̸= k ∈ [n− 1]0 on e0,0 yields:

Js0,0 ̸= kK ∨ Jp1,k ̸= ℓK

which we can then cut together with I←0,0,k for each k ∈ [n− 1]0 on p2,k to obtain Js0,0 ̸= kK for all
k ∈ [n− 1]0. We can finally cut these together to obtain ⊥.

The width of this proof is O(1), as all clauses contain at most 3 blocks of at most log n literals,
and the size is O(n5), as each step above is applied to n2 nodes and contributes O(n3) to the
size.

Corollary 4.22. C-EOPLdt ⊆ SOPLdt

Proof. This follows from Theorems 4.19, and 4.21, 4.20.

34

4.6 PLS ⊆ C-SOPL

We recall the definition of the Sink-of-Dag problem encoded as a CNF.

Definition 4.23. Let n = 2k − 1 be a positive integer. The Sink-of-Dag problem has, for each
i ∈ [n− 1], j ∈ [n] a block of variables si,j ∈ {0, 1}k encoding a value in [n]0. The clauses of SoDn

are defined as follows, corresponding to the constraints of the SoD search problem:

• Active Source Node. Js1,1 ̸= 0K,

• No Proper Sinks. Jsi,j ̸= kK ∨ Jsi+1,k ̸= 0K for each i, j, k ∈ [n],

• No Proper Sinks. Jsn−1,j ̸= kK for each j, k ∈ [n]

We first show that this has an efficient Reversible Blockwise Calculus refutation.

Lemma 4.24. There is a polynomial-size Reversible Blockwise Calculus refutation of SoDn.

Proof. We will prove the following formula for each layer 2 < i < n:

Ii :=
∨
j∈[n]

Jsi,j ̸= 0K

Once we have derived In−1, we may with all clauses of the form Jsn−1,j ̸= kK for each j in
succession to obtain ⊥.

We derive Ii as follows for each i. If i = 2, this may be obtained by first weakening each clause
Js1,1 ̸= kK ∨ Js2,k ̸= 0K by

q
s2,k′ ̸= 0

y
for all k′ ̸= k. This yields the clause:

Js1,1 ̸= kK ∨ I2

for each k ∈ [n]. We can then cut these with the clause Js1,1 ̸= 0K to obtain I2.
For i > 2, we take all clauses of the form Jsi−1,1 ̸= kK ∨ Jsii, k ̸= 0K and weaken as before to

obtain Jsi−1,1 ̸= kK∨Ci for each k ∈ [n]. We may then cut this with Ci−1 =
∨

1≤j≤n Jsi−1,j ̸= 0K on
si−1,1 to obtain: ∨

2≤j≤n
Jsi−1,j ̸= 0K ∨ Ci

We then likewise weaken all clauses Jsi−1,2 ̸= kK ∨ Jsii, k ̸= 0K and cut with this result to obtain:∨
3≤j≤n

Jsi−1,j ̸= 0K ∨ Ci

Continuing this for each remaining set of clauses Jsi−1,j ̸= kK ∨ Jsii, k ̸= 0K with 3 ≤ j ≤ n, we cut
away the remaining blocks of Ci−1 to leave us with Ci as desired.

By Theorems 3.6 and 4.6, the desired containment now follows:

Theorem 4.25. PLSdt ⊆ C-SOPLdt

35

4.7 Coloured Intersection: C-PLS ∩ C-PPADS = C-SOPL

We finally prove the coloured intersection theorem for sink classes. Our proof is inspired by the
proof of the uncoloured intersection theorem SOPLdt = PLSdt∩PPADSdt [GHJ+22a], but the colours
introduce an extra complication.

Theorem 4.26. C-SOPLdt = C-PLSdt ∩ C-PPADSdt

To prove this, since C-SOPLdt ⊆ C-PPADSdt and C-SOPLdt ⊆ C-PLSdt, it suffices to show the
following:

Theorem 4.27. Let S be a total query search problem. If there is both a depth-d C-SoLn and
C-SoD-formulation of S, then there is also a depth-2d C-SoPLn2-formulation of S.

Rather than work directly with C-SoL, we will instead interpret it as an instance of a the
injective coloured pigeonhole problem inj-C-PHP, which is defined identically but now each node
is instead interpreted as an index of both a hole and pigeon – the successor pointers map pigeons
to holes, the predecessor pointers map holes to pigeons, and as before edges are added when these
pointers agree. Pigeons without an outgoing edge are then required to have a colour while the
distinguished pigeon may not have any colours and the corresponding hole may not be mapped to,
so as in the usual interpretation of C-SoL a solution is guaranteed by the fact that the component
attached to the distinguished source must contain an unmatched pigeon.

We could imagine using copies of formulations of this problem to “merge” paths in a larger
formulation, but this only allows us to merge two paths at a time. To make this more useful we
will massage this problem even further into something which can merge a larger number of paths,
allowing us to resolve one of the key incompatibilities between C-SoD and C-SoPL:

Definition 4.28. Path-inj-C-PHPn
m (where n > m) is a problem defined on an n×n grid, where

each node (i, j) has the following parameters:

• a successor pointer si,j ∈ [n] ∪ 0, indicating that the successor is (i + 1, si,j) if si,j ̸= 0, and
that there is no successor otherwise.

• a predecessor pointer pi,j ∈ [n] ∪ 0, indicating that the predecessor is (i − 1, pi,j) if pi,j ̸= 0
and that there is no predecessor otherwise.

• for each λ ∈ [n], an indicator ci,j,λ determining whether the colour λ is present at (i, j).

• a colour pointer ei,j ∈ [n] indexing a colour

Intuitively, we will include edges between nodes (i, j) and (i+1, k) whenever si,j = k and pi+1,k = j.
We require that all but the first m nodes on the first layer contain no colours, and that if a node
has no outgoing edge then the colour it points to is present. Furthermore, only the first m nodes
on the final layer may be pointed to. Formally then, a node-colour pair ((i, j), λ) is a solution if
one of the following is true:

• pi,j = k, si−1,k = j, ci,j,λ = 1, and ci−1,k,λ = 0,

• i = 1, j > m, and ci,j,λ = 1,

• i = n− 1 and si,j > m, or

• i < n, (i, j) has no outgoing edge, ei,j = λ, and ci,j,λ = 0

36

Lemma 4.29. Let S be a search problem. If there is a depth-d inj-C-PHPm-formulation of S, then
for any n > m there is a depth-d Path-inj-C-PHPn

m−1-formulation of S. Furthermore, the colours
in this formulation are identical between all layers.

Proof. The construction of the Path-inj-C-PHP-formulation is very simple. We will simply dupli-
cate the inj-C-PHP-formulation on each layer of the grid. We can then feed the additional nodes
one-at-a-time into the copies of the distinguished node, merging into m− 1 paths after n− (m− 1)
layers.

Formally, we have a grid of n×n nodes. For each node i of the original formulation, let sinj-C-PHP
i

denote its forward mapping, pinj-C-PHP
i its backward mapping, einj-C-PHP

i its guaranteed colour, and
for each λ ∈ [n], let cinj-C-PHP

i,λ denote the corresponding colour indicator.
We define the parameters as follows for a node (i, j). The colours are copied from the original

formulation:

ci,j,λ =


cinj-C-PHP
i,λ i ≤ n

1 i > n, λ = 1, and n− j < i− 1

0 o/w

ei,j =

{
einj-C-PHP
i i ≤ n

1 o/w

For the successors and predecessors, we must handle the merging of the extra. We do so as
follows:

si,j =


sinj-C-PHP
i i ≤ n

j − 1 i > n and n− j ≥ i− 1

0 o/w

pi,j =


pinj-C-PHP
i i ≤ n

j + 1 i > n and n− j ≥ i− 1

0 o/w

It is easy to verify that any solution formed from the first n nodes of a layer corresponds
to a solution of the original formulation, and furthermore, since the remaining nodes all either
have a successor with no colours or are deactivated, no additional solutions can arise. All pa-
rameters can also clearly be computed by a depth-d decision tree, as they are either constant or
require simulating a single decision tree from the original formulation. Thus, this is a valid depth-d
Path-inj-C-PHPn

m−1-formulation of S.

We are now ready to prove Theorem 4.26.

Proof of Theorem 4.26. Suppose there are depth-d inj-C-PHPn and C-SoDn-formulations of some
search problem S. By Lemma 4.29 we may derive a depth-d Path-inj-C-PHPn2

n−1-formulation of S
in which all layers are coloured identically. Intuitively, we will convert the C-SoD-formulation into
a C-SoPL-formulation by using the path-pigeonhole formulation to handle multiple predecessors.
This process will also simplify the computation of predecessors, as it will inherently ”split” the
original C-SoD nodes and allow them to point to a single fixed predecessor.

More precisely, we proceed by first replacing each node in the n×n grid of the C-SoD-formulation
with an n2 × n2 sub-grid, resulting in a n3 × n3 overall. This will be used to plant a copy of the
Path-inj-C-PHP-formulation in place of u. For convenience, we will use (u, v) to index the copy

37

of the node v of the Path-inj-C-PHP-formulation used to replace u in the C-SoD-formulation –
ie. ((i, j), (i′, j′)) indexes the node ((i− 1) · n2 + i′, (j − 1) · n2 + j′).

Before we define the decision trees computing the new parameters, for any node u ∈ [n] × [n]
of the C-SoD-formulation, let sC-SoD

u denote its successor, eC-SoD
u denote its guaranteed colour,

and for each λ ∈ [n], let cu,λ denote the corresponding colour indicator. Likewise, for any node
u ∈ [n2] × [n2] of the C-PHP-formulation, let sC-PHP

u denote its successor, pC-PHP
u its successor,

eC-PHP
u its guaranteed colour, and for each λ ∈ [n2], let cC-PHP

u,λ denote the corresponding colour
indicator. Colours are defined for each node (u, v) by simply taking the union of the colour sets of
u and v in their respective original formulations, as follows:

cu,v =

{
1 cC-SoD

u = 1 or cC-PHP
v = 1

0 o/w

Now suppose u = (i, j) and v = (i′, j′). The remaining parameters will be defined depending
on the position of v within the Path-inj-C-PHP-formulation. If i′ < n2 or j′ > n, we define the
successor and colour pointer according to the Path-inj-C-PHP-formulation – su,v = (u, sv) and
eu,v = ev. Otherwise, these are instead defined by the C-SoD-formulation, so in order to ensure
each node maps to a distinct node on the next layer we set su,v = (su, ((j − 1) · n + j′, 1)) and
eu,v = eu.

We finally proceed to define the predecessor pointer pu,v. If i′ > 1, we define the predecessor
according to the Path-inj-C-PHP-formulation and pu,v = (u, pv). Otherwise, we wish to match
the indices chosen by the successor pointers on the previous layer, so divide [n2] into n consecutive
blocks of size n and suppose j′ is the kth element of the bth block. Then pu,v = ((i−1, b−1), (n2, k)).

Finally, let v∗0 be the distinguished node of the C-SoD-formulation. We conclude the construc-
tion by selecting the distinguished source node v∗ to be (v∗0, (1, n))

Clearly, all parameters as described above can be computed by depth-2d decision trees, as we
need only simulate at most two decision trees of the original formulations to compute each. This
formulation also has size n3, as we only define n2 colours and have a grid of size n3. It then remains
to show that any solution of this formulation can be mapped back to a solution of one the original
formulations.

Suppose then that ((u, v), λ) forms a solution to the C-SoPL-formulation. Again let u = (i, j)
and v = (i′, j′). We have multiple cases:

• If (u, v) = v∗ and cu,v,λ = 1, then u is the distinguished node of the C-SoD-formulation,
j′ > n − 1, and either cC-SoD

u = 1 or cC-PHP
v = 1, so either (u, λ) is a solution to the C-SoD-

formulation or (v, λ) is a solution to the Path-inj-C-PHP-formulation.

• If (u, v) has no successor and cu,v,eu,v = 0, then either u has no successor in the C-SoD-
formulation and cC-SoD

u,eC-SoD
u

= 0, in which case (u, eC-SoD
u) forms a solution, or i′ < n, v has no

successor in the Path-inj-C-PHP-formulation, and cC-PHP
v,eC-PHP

v
= 0, so (v, eC-PHP

v) is a solution

of the Path-inj-C-PHP-formulation.

• If (u, v) is a solution because cu,v,λ = 1 and cpu,v ,λ = 0, we have further cases:

– If i′ > 1 then observe that all colours from the C-SoD-formulation remain constant
between (u, v) and its predecessor. Thus, we must have that cC-PHP

v,λ = 1 while cC-PHP
pC-PHP
v ,λ

=

0, and (v, λ) forms a solution to the Path-inj-C-PHP-formulation.

38

– Otherwise, i′ = 1 and the colouring violation occurred between copies of the
Path-inj-C-PHP-formulation. But now notice that by our construction, if j′ <= n, all
colours originating from the Path-inj-C-PHP-formulation are constant between (u, v)
and its predecessor, and if j′ > n, v contains no colours in the Path-inj-C-PHP-
formulation. Thus, cC-SoD

u,λ = 1 and cC-SoD
u,λ = 0, so (u, λ) is a solution to the C-SoD-

formulation

This covers all possible solutions, so this is indeed a valid C-SoPL-formulation of S.

5 Separation Results

In this section, we will show our results by separations from PLSdt, using resolution width. As such,
we begin by defining a useful tool for bounding resolution width:

Definition 5.1. [AD03, dRGN+21] Let F be a CNF formula on n variables x1, ..., xn. The Prover-
Delayer game on F is a game played in multiple rounds between two players, a Prover and a
Delayer. In each round of the game, the state of the game is captured by a partial assignment
ρ ∈ {0, 1, ∗}n to the variables of F . The game begins with ρ = ∗n, and in each round the Prover
may update ρ by one of the following two moves:

• Querying: The prover may choose to query some variable xi of F with ρi = ∗. The Delayer
selects some value b ∈ {0, 1}, and ρ is updated by setting ρi ← b.

• Forgetting: The prover may choose to forget some variable xi with ρi ̸= ∗, at which point
ρ is updated by setting ρi ← ∗.

The Prover wins once ρ falsifies some clause of F . A Prover strategy is a function of the current
game state, and a Delayer strategy is a function of the current game state and a selected move, each
of which induce a tree of states which are reachable under that strategy. The width of such a Prover
strategy is then the maximum number of non-∗ entries of ρ over all nodes in the corresponding
strategy tree, while the width of a Delayer strategy is instead the minimum width required by any
prover strategy playing against it. The resolution width of F is exactly the minimum width of all
Prover strategies for F , or the maximum width of all Delayer strategies for F .

5.1 PLSdt ̸= C-SOPLdt

Theorem 5.2. PLSdt ̸= C-SOPLdt

Proof. By Theorem 4.20 and Lemma 4.8, it suffices to show the following:
Claim. C-SoPLn requires width-Ω(n) to refute in Resolution.

Proof of Claim. We give a delayer strategy for C-SoPLn guaranteeing high width. Here we use the
boolean encoding of C-SoPLn. Let ρ denote the current state of the game. To handle queries to
variables encoded by more than one coordinate, we maintain a superset ρ∗ of ρ throughout the
game. We say that ρ∗ encodes a path P if the values of su and pu for each u ∈ P agree with their
assignments under ρ∗. Let P0 denote the maximal such path starting from the distinguished source
v∗, and denote the final node of P0 by v. A new path P is then obtained from P0 by selecting a
successor for v for which no parameter is defined by ρ∗, and which does not lie in the final column.
If no choice of P with the desired properties remains, the Delayer may simply respond arbitrarily,
as exhausting all possibilities requires width Ω(n). Otherwise, we update ρ∗ as follows:

39

• If the prover queries a bit which is already assigned by ρ∗, do nothing.

• If the prover queries a bit of su for some u, update ρ∗ with its successor in P if u ∈ P and
otherwise point to the last column. Likewise, if the prover queries a bit of pu for some u ∈ P ,
answer according to P . Otherwise, point it to the last column.

• If the prover queries cu,λ for some u, λ, update it to 0 in ρ∗ unless:

– λ is the last unassigned colour at u

– u ̸∈ P and eu is assigned λ under ρ∗

– u ̸∈ P and either cw,λ = 1 or ew is assigned λ for some descendant w of u under ρ∗, or

– u ∈ P , u is on the final layer n, and eu is assigned λ by ρ∗.

In these cases, we update cu,λ to 1.

• If a bit of eu is queried for some u, return any λ such that cu,λ and cw,λ for every ancestor w
of u are not assigned under ρ∗.

• If all bits of a variable are forgotten by the prover, reset all corresponding bits of ρ∗ to ∗.

We now simply respond to the query according to ρ∗.

We claim that after concluding any round of the game, ρ∗, and thus ρ, will not falsify any
clause of C-SoPLn unless its width exceeds o(n). For the first round this is clear – the only clauses
which could be falisfied by a single query are the clauses enforcing that no colour is present at v∗.
However, since this is the first round the prover will always respond to such queries with 0.

For later rounds, assume that the claim held for all previous rounds, so any falsified clauses must
involve a newly-queried variable. Assuming the width of ρ∗ is at most o(n), there exists some path
P as specified above, as in order to exhaust all possibilities ρ∗ must assign at least one parameter
to n nodes on some layer. Thus, the delayer responded as above. The colours and colour pointers
returned by the strategy are specifically constructed to avoid contradicting any clauses unless cv∗,λ
is assigned for some λ and cu,λ = 1 under ρ∗ for some descendant u of v∗. However, this can only
occur if a final-layer node is present in P , in which case ρ∗ must have assigned the predecessor and
successor pointers for the preceding Ω(n) nodes, contradicting the width requirement. Thus, this
cannot occur.

If a successor or predecessor for some u ̸∈ P was queried, no contradiction can arise, as the
colours are chosen such that such a node will simply become inactive. If those parameters were
queried for some u ∈ P , again no contradiction can arise – by construction the predecessors and
successors will agree along P , and again, a final-layer node can only be present in P if we have
exceeded the width requirement, so no colours can be present along P to cause a contradiction.

5.2 C-PLSdt ∩ C-PPADdt ̸= C-EOPLdt

Recall that C-EOPLdt ⊆ PLSdt. We will show that C-PLSdt ∩ C-PPADdt ̸⊆ PLSdt, and thus cannot
be equal to C-EOPLdt. To do this, we first prove a general statement about Delayer strategies:

Theorem 5.3. Let A(x) and B(y) be unsatisfiable CNF formulas over disjoint sets of variables.
If there is a Delayer strategy for A(x) of width wA and a Delayer strategy for B(y) of width wB,
then there is a Delayer strategy for A(x) ∧B(y) of width min(wA, wB).

40

Proof. The combined strategy is simple: If the Prover queries a variable of x, respond according
to the Delayer strategy for A(x). Otherwise, respond according to the strategy for B(y).

We prove by induction that no Prover can falsify a clause of A(x) ∧ B(y) against this Delayer
without reaching the required width. In the first round, this is clear, as width at least 1 is required
to falsify any clause.

For later rounds, assume the claim held for all previous rounds. Thus, any falsified clauses under
the current assignment ρ must be newly-falsified by the last variable queried. Assume wlog. this was
some variable of x and suppose for contradiction that the width of ρ is less than min(wA, wB) ≤ wA.
Then less than wA variables of x are assigned by ρ. But each of these were assigned according to
the strategy for A(x), so that strategy has width less than wA, a contradiction.

We will also require the following separation between PLSdt and PPADSdt:

Theorem 5.4. [GHJ+22a] PPADSdt ̸⊆ PLSdt

Theorem 5.5. C-SOPLdt ∩ C-PPADdt ̸⊂ PLSdt

Proof. By Theorems 5.2 and 5.4, and since C-PPAD = PPADS by Theorem 4.15, there are delayer
strategies for both C-SoPLn and C-EoLn of width Ω(n). Thus, by Theorem 5.3, there is a delayer
strategy for C-SoPLn ∧ C-EoLn of width Ω(n), so by Theorem 4.20 S(C-SoPLn ∧ C-EoLn) ̸∈
PLSdt.

Corollary 5.6. C-EOPLdt ⊊ C-SOPLdt ∩ C-PPADdt

Proof. This follows as discussed from the previous theorem and Theorem 4.21.

References

[AB04] Albert Atserias and Maria Luisa Bonet. On the automatizability of resolution and
related propositional proof systems. Inf. Comput., 189(2):182–201, 2004.

[AD03] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. In 18th Annual IEEE Conference on Computational Complexity (Complexity
2003), 7-10 July 2003, Aarhus, Denmark, pages 239–247. IEEE Computer Society,
2003.

[AL19] Albert Atserias and Massimo Lauria. Circular (yet sound) proofs. In Proceedings of
the 22nd Theory and Applications of Satisfiability Testing (SAT), pages 1–18. Springer,
2019.

[BB10] Arnold Beckmann and Samuel R. Buss. Characterising definable search problems in
bounded arithmetic via proof notations. In Ways of Proof Theory, ONTOS Series in
Mathematical Logic, pages 65–134, 2010.

[BB22] Ilario Bonacina and Maria Luisa Bonet. On the strength of sherali-adams and nullstel-
lensatz as propositional proof systems. In Christel Baier and Dana Fisman, editors,
LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, August 2 - 5, 2022, pages 25:1–25:12. ACM, 2022.

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of NP search problems. Journal of Computer and System
Sciences, 57(1):3–19, 1998.

41

[BFI22] Sam Buss, Noah Fleming, and Russell Impagliazzo. Tfnp characterizations of proof
systems and monotone circuits. Electron. Colloquium Comput. Complex., TR22-141,
2022.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings
of the 35th Symposium on Foundations of Computer Science (FOCS), pages 794–806,
1994.

[BJ12] Samuel R. Buss and Alan S. Johnson. Propositional proofs and reductions between
NP search problems. Annals of Pure and Applied Logic, 163(9):1163–1182, 2012.

[BKT14] Samuel Buss, Leszek Aleksander Ko lodziejczyk, and Neil Thapen. Fragments of ap-
proximate counting. The Journal of Symbolic Logic, 79(2):496–525, 2014.

[BLM07] Maŕıa Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial
Intelligence, 171(8-9):606–618, 2007.

[BM04] Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems
and propositional proof systems. In Proceedings of the 19th IEEE Conference on
Computational Complexity (CCC), pages 54–67, 2004.

[CDDT09] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of Arrow-
Debreu equilibria in markets with additively separable utilities. In Proceedings of the
50th Symposium on Foundations of Computer Science (FOCS), pages 273–282, 2009.

[CPY17] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone
markets. Journal of the ACM, 64(3):20:1–20:56, 2017.

[CSVY08] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. The complexity of
equilibria: Hardness results for economies via a correspondence with games. Theoretical
Computer Science, 408(2–3):188–198, 2008.

[DGP09] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity
of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[DMR09] Stefan S. Dantchev, Barnaby Martin, and Mark Nicholas Charles Rhodes. Tight
rank lower bounds for the sherali-adams proof system. Theor. Comput. Sci., 410(21-
23):2054–2063, 2009.

[dRGN+21] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere,
and Dmitry Sokolov. Automating algebraic proof systems is np-hard. In Samir Khuller
and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
209–222. ACM, 2021.

[FGHS21] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The
complexity of gradient descent: CLS = PPAD ∩ PLS. In Proceedings of the 53rd
Symposium on Theory of Computing (STOC), pages 46–59, 2021.

[FMSV20] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. MaxSAT resolution
and subcube sums. In Proceedings of the 23rd Theory and Applications of Satisfiability
Testing (SAT), pages 295–311. Springer, 2020.

42

[Gar20] Michal Garĺık. Failure of feasible disjunction property for k-dnf resolution and np-
hardness of automating it. CoRR, abs/2003.10230, 2020.

[GHJ+22a] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Further collapses in TFNP. In Proceedings of the 37th
Computational Complexity Conference (CCC), pages 33:1–33:15, 2022.

[GHJ+22b] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Separations in proof complexity and TFNP. Electron.
Colloquium Comput. Complex., TR22-058, 2022.

[GKRS18] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in
monotone complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical
Computer Science Conference (ITCS), volume 124, pages 38:1–38:19, 2018.

[JPY88] David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[Kam20] Pritish Kamath. Some hardness escalation results in computational complexity theory.
PhD thesis, Massachusetts Institute of Technology, 2020.

[Kra01] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-
3):123–140, 2001.

[KST07] Jan Kraj́ıcek, Alan Skelley, and Neil Thapen. NP search problems in low fragments of
bounded arithmetic. J. Symb. Log., 72(2):649–672, 2007.

[LHdG08] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient
Max-SAT solving. Artificial Intelligence, 172(2-3):204–233, 2008.

[MP91] Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.

[Pap94] Christos Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

[SA94] Hanif Sherali and Warren Adams. A hierarchy of relaxations and convex hull charac-
terizations for mixed-integer zero–one programming problems. Discrete Applied Math-
ematics, 52(1):83–106, jul 1994.

[SBI04] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for
small restrictions and lower bounds for k-dnf resolution. SIAM J. Comput., 33(5):1171–
1200, 2004.

[ST11] Alan Skelley and Neil Thapen. The provably total search problems of bounded arith-
metic. Proceedings of the London Mathematical Society, 103(1):106–138, 2011.

[Tha16] Neil Thapen. A tradeoff between length and width in resolution. Theory Comput.,
12(1):1–14, 2016.

43
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

