
Bounded Relativization

Shuichi Hirahara∗ Zhenjian Lu† Hanlin Ren‡

May 9, 2023

Abstract

Relativization is one of the most fundamental concepts in complexity theory, which explains the
difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization
called bounded relativization. For a complexity class C, we say that a statement is C-relativizing if the
statement holds relative to every oracle O ∈ C. It is easy to see that every result that relativizes also
C-relativizes for every complexity class C. On the other hand, we observe that many non-relativizing
results, such as IP = PSPACE, are in fact PSPACE-relativizing.

First, we use the idea of bounded relativization to obtain new lower bound results, including the
following nearly maximum circuit lower bound: for every constant ε > 0,

BPEMCSP/2εn ̸⊆ SIZE[2n/n].

We prove this by PSPACE-relativizing the recent pseudodeterministic pseudorandom generator by Lu,
Oliveira, and Santhanam (STOC 2021).

Next, we study the limitations of PSPACE-relativizing proof techniques, and show that a seem-
ingly minor improvement over the known results using PSPACE-relativizing techniques would imply a
breakthrough separation NP ̸= L. For example:

• Impagliazzo and Wigderson (JCSS 2001) proved that if EXP ̸= BPP, then BPP admits infinitely-
often subexponential-time heuristic derandomization. We show that their result is PSPACE-
relativizing, and that improving it to worst-case derandomization using PSPACE-relativizing
techniques implies NP ̸= L.

• Oliveira and Santhanam (STOC 2017) recently proved that every dense subset in P admits
an infinitely-often subexponential-time pseudodeterministic construction, which we observe is
PSPACE-relativizing. Improving this to almost-everywhere (pseudodeterministic) or (infinitely-
often) deterministic constructions by PSPACE-relativizing techniques implies NP ̸= L.

• Santhanam (SICOMP 2009) proved that pr-MA does not have fixed polynomial-size circuits. This
lower bound can be shown PSPACE-relativizing, and we show that improving it to an almost-
everywhere lower bound using PSPACE-relativizing techniques implies NP ̸= L.

In fact, we show that if we can use PSPACE-relativizing techniques to obtain the above-mentioned
improvements, then PSPACE ̸= EXPH. We obtain our barrier results by constructing suitable oracles
computable in EXPH relative to which these improvements are impossible.

∗National Institute of Informatics, Japan. Email: s hirahara@nii.ac.jp
†University of Oxford, UK. Email: zhenjian.lu@cs.ox.ac.uk
‡University of Oxford, UK. Email: h4n1in.r3n@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 70 (2023)

mailto:s_hirahara@nii.ac.jp
mailto:zhenjian.lu@cs.ox.ac.uk
mailto:h4n1in.r3n@gmail.com

Contents

1 Introduction 1
1.1 Bounded Relativization . 1
1.2 New Lower and Upper Bounds via Bounded Relativization 3
1.3 Barriers for PSPACE-Relativizing Techniques . 5
1.4 Comparison with Algebrization . 8

2 Preliminaries 9
2.1 Definitions and Notations . 9
2.2 Technical Tools . 10

3 New Lower and Upper Bounds via Bounded Relativization 10
3.1 A PSPACE-Relativizing, Pseudodeterministic, Efficient PRG 11
3.2 A Nearly Maximum Circuit Lower Bound for BPEMCSP/2εn 12
3.3 Circuit Lower Bounds for Meta-Complexity Problems . 13
3.4 Pseudodeterministic Construction for Range Avoidance 15

4 Barriers for Derandomization under Uniform Assumptions 17
4.1 PSPACE-Relativizing Derandomization under Uniform Assumptions 17
4.2 Bounded-Relativization Barriers for Uniform Derandomization 19

5 Barriers for Explicit Constructions 27
5.1 PSPACE-Relativizing Pseudodeterministic Constructions 27
5.2 Bounded-Relativization Barriers for Explicit Constructions 28

6 Barriers for Circuit Lower Bounds for Merlin–Arthur Classes 32
6.1 PSPACE-Relativizing Circuit Lower Bounds for Merlin–Arthur Classes 32
6.2 Bounded-Relativization Barriers for Circuit Lower Bounds 33

7 Open Problems 35

References 36

1 Introduction

The relativization barrier, introduced by Baker, Gill, and Solovay [BGS75], is an influential meta-
mathematical barrier in complexity theory. Techniques based on simulation and diagonalization tend to
relativize, in the sense that they also work in an “oracle world” where every machine has access to an oracle
O. On the other hand, the P vs. NP question cannot be solved in a relativizing way: [BGS75] showed
that there exists an oracle A such that PA = NPA, as well as another oracle B such that PB ̸= NPB.
Relativization has been successful not only in explaining the difficulty of resolving the P vs. NP question,
but also in pinning down the exact place where we are stuck — for example, there are oracles relative to
which BPP = EXPNP [Hel86, BT00], or PNP ⊆ SIZE[O(n)] [Wil85].

In the early 1990s, the interactive proof results such as IP = PSPACE [LFKN92, Sha92] generated
much excitement among complexity theorists, as they are the first examples of “truly compelling” ([All90])
non-relativizing results in complexity theory. Indeed, coNPO ̸⊆ IPO relative to a random oracle O
[FS88, CCG+94]. The IP = PSPACE result and its underlying technique, arithmetization, has significantly
expanded our knowledge about circuit lower bounds [BFT98, IKW02, Vin05, Aar06, San09, FSW09],
derandomization [IW01, TV07, CRTY20, CT21, CRT22], Karp–Lipton theorems [LFKN92, BFNW93,
IKV18, CMMW19], meta-complexity [ABK+06, OS17a, IKV18, Oli19, LOS21], and other areas.

Still, it seems that arithmetization alone would not suffice to resolve the P vs. NP question. How
far can we push these techniques? As relativization does not capture the “current techniques” anymore
[CCG+94, BFT98, Aar06], what are the other barriers preventing us from making progress?

Aaronson and Wigderson [AW09] proposed the algebrization barrier to capture the limitations of

arithmetization. Roughly speaking, an inclusion C ⊆ D algebrizes if CO ⊆ DÕ for every oracle O and
every low-degree extension Õ of O. This framework captures most results proved using arithmetization,
such as IP = PSPACE [Sha92] and MIP = NEXP [BFL91].1 On the other hand, [AW09] constructed

oracles O1, O2, and O3 such that NPÕ1 ⊆ PO1 , NEXPÕ2 ⊆ PO2/poly, and RPO3 ̸⊆ PÕ3 . Therefore,
techniques based on arithmetization are not enough for proving long-standing conjectures in complexity
theory such as P ̸= NP, NEXP ̸⊆ P/poly, and RP = P.

It turns out that the algebrization barrier suffers from subtleties. For example, it was unclear how to
formalize algebrization for complexity-theoretic statements that are neither separation nor inclusion;
moreover, algebrization is not closed under modus ponens. Impagliazzo, Kabanets, and Kolokolova
[IKK09] and Aydınlıoğlu and Bach [AB18] revised the definition of algebrization to fix these issues.
For more discussion of algebrization, see Section 1.4.

Unfortunately, algebrization did not become as popular as relativization in proving barrier results
and predicting the limitations of “current techniques”. Perhaps one reason is that algebrization barriers
are harder to demonstrate, as one needs to construct an oracle O that diagonalizes against its low-
degree extension Õ.2 For many complexity theoretic statements that are slightly more complicated than
inclusions (“C ⊆ D”) or separations (“C ̸⊆ D”), it appears much harder to demonstrate algebrization
barriers than relativization barriers.

1.1 Bounded Relativization

This paper takes one step back and considers relativization in the presence of non-relativizing tech-
niques. Our main message is perhaps surprising: the shadow of the relativization barrier has never gone
away, even though we already have powerful non-relativizing techniques at hand!

1A subtle issue on relativizing NEXP is that we need to restrict the NEXP machine to only query O on polynomially-

long inputs. In other words, while we can show that NEXPO[poly] ⊆ MIPÕ for every oracle O and its low-degree extension

Õ, the statement NEXPO ⊆ MIPÕ is false in general. We refer the readers to Remark 2 for more details on relativizing
space-bounded and exponential-time classes.

2Or, one needs to make sure the oracle O satisfies the so-called Arithmetic Checkability Theorem in the sense of [IKK09].

1

Specifically, we put forward a notion of bounded relativization. Roughly speaking, for a complexity
class C, a complexity-theoretic statement is C-relativizing if it is true relative to every oracle O ∈ C. It is
easy to see that every statement that relativizes also C-relativizes, for every complexity class C. On the
other hand, even though IP = PSPACE is not relativizing, it is easily seen to be PSPACE-relativizing:

Proposition 1. For every oracle O ∈ PSPACE, IPO = PSPACEO.

Proof. Since the proof of IP ⊆ PSPACE is relativizing, we have IPO ⊆ PSPACEO.
On the other hand, since O ∈ PSPACE, we have PSPACEO = PSPACE = IP ⊆ IPO.

Remark 2. In this paper, when we relativize space-bounded machines (in particular PSPACE), we assume the
query tape is counted into the space bound. That is, a PSPACEO machine can only query O on polynomially-
long inputs. It is easy to see that under this definition, PSPACEPSPACE = PSPACE.

On the other hand, we allow EXPO or NEXPO machines to issue exponentially-long queries to O. When
we restrict the query length to be a polynomial, we write EXPO[poly] and NEXPO[poly] instead.

How is Proposition 1 helpful in studying the limitation of IP = PSPACE as a technique? Say that we
want to prove “a slight improvement of [IW01]” using “current techniques”. (For now, the exact meaning
of “a slight improvement of [IW01]” is not important; a concrete example will be given in Section 1.3.1.
We also do not formally define “current techniques” here.) Suppose we construct an oracle O, in the
usual, Baker–Gill–Solovay sense of relativization, relative to which the “slight improvement of [IW01]”
is impossible (see, e.g., Theorem 10).

• Suppose, in addition, that O ∈ PSPACE. It follows immediately that, if the term “current tech-
niques” is interpreted as “PSPACE-relativizing techniques”, then “current techniques” cannot prove
the desired “slight improvement”.

• In reality, it is often the case that we do not know how to put O in PSPACE; however, we can
still show that O ∈ EXPH in many cases. Then, the oracle O tells us that, if there is a PSPACE-
relativizing proof of the “slight improvement of [IW01]”, then this proof also implies PSPACE ̸=
EXPH. The latter would be a breakthrough in complexity theory, and in particular, it implies
L ̸= NP.

To summarize, any EXPH-computable oracle presents the following barrier to “current techniques”:

If “current techniques” are PSPACE-relativizing and cannot separate L from NP, then “current
techniques” also cannot prove the “slight improvement of [IW01]” (or any statement that is
not EXPH-relativizing).

How “relativizing” are interactive proof results? The above discussion suggests that IP = PSPACE
is actually “mildly relativizing” in the sense that it requires significant computational power (namely,
super-polynomial space) to create an oracle world in which it is false. Using the same reasoning as
Proposition 1, we can see that other interactive proof results, such as MIP = NEXP [BFL91] and MIP∗ =
RE [JNV+20], are also “mildly relativizing”.

Proposition 3. The following are true:

• (Relativization of MIP = NEXP) For every O ∈ NEXP ∩ coNEXP, MIPO = NEXPO[poly].

• (Relativization of MIP∗ = RE) For every O ∈ R (i.e., O is computable), (MIP∗)O = REO.

Proof. One direction relativizes: MIPO ⊆ NEXPO[poly], and (MIP∗)O ⊆ REO. For the other direction,
notice that NEXPO[poly] ⊆ NEXP = MIP ⊆ MIPO and REO ⊆ RE = MIP∗ ⊆ (MIP∗)O.

2

Consequently, many results proved by combining interactive proof techniques and other relativizing
techniques are also C-relativizing for a large complexity class C.3 (It seems fair to say that most of them
are PSPACE-relativizing.) This paper will explore the following two directions:

1. The positive direction: we relativize some previous results with an oracle O ∈ PSPACE to obtain
new results.

2. The negative direction: we construct oracle worlds in EXPH and demonstrate that certain seemingly
minor improvements over known results might be hard to prove by PSPACE-relativizing techniques.

1.2 New Lower and Upper Bounds via Bounded Relativization

We first explain our positive results. Lu, Oliveira, and Santhanam [LOS21] constructed a pseudo-
deterministic pseudorandom generator (PRG) with sub-polynomial seed length and one bit of advice
that infinitely-often fools uniform algorithms. That is, for every ε > 0, they constructed a function
G : {0, 1}nε → {0, 1}n computable in randomized polynomial time with one bit of advice, such that for
every polynomial-time algorithm A, G fools A on infinitely many input lengths. The term “pseudodeter-
ministic” means that the randomized algorithm for G, on input z ∈ {0, 1}nε

, will output the fixed string
G(z) with high probability.

Although the PRG construction in [LOS21] is not relativizing, we observe that it is still PSPACE-
relativizing. We exploit this fact to prove new circuit lower bounds and design new pseudodeterministic
algorithms for the range avoidance problem.

A Nearly Maximum Circuit Lower Bound. Our first result shows that BPEMCSP/2εn requires
circuits of nearly maximum size. Here, MCSP is the minimum circuit size problem [KC00] that takes as
input the length-N truth table of a function f : {0, 1}logN → {0, 1} and a size parameter s, and decides
whether f can be computed by a size-s circuit.

Theorem 4. For every constant ε > 0, BPEMCSP/2εn cannot be computed by circuits of size 2n/n.

Note that every function can be computed by a circuit of size (1 + o(1))2n/n [Lup58, FM05]. Also,
it is trivial that E/2n contains a language with maximum circuit complexity. For comparison, the advice
length in our lower bound in Theorem 4 is only 2εn, for an arbitrarily small constant ε > 0. Previously,
the smallest complexity class known to require maximum circuit complexity is EΣp

2 [MVW99]. It was
proved in [IKV18] that ZPEXPMCSP does not have polynomial-size circuits, but an exponential-size lower
bound for this class is open.

Proof Idea of Theorem 4. Theorem 4 is proved by PSPACE-relativizing the PRG construction in [LOS21].
Let O := MCSP ∈ PSPACE. We can relativize the PRG in [LOS21] with the MCSP oracle and obtain:

For every ε > 0, there is a function G : {0, 1}nε → {0, 1}n computable in randomized polyno-
mial time with access to an MCSP oracle and one bit of advice, such that for every polynomial-
time algorithm A with access to an MCSP oracle, G fools A on infinitely many input lengths.

Let A be the following algorithm: given the truth table of a function f : {0, 1}logN → {0, 1}, use
the MCSP oracle to determine if the circuit complexity of f is at least 2n/n (where n := logN), and
outputs 1 if and only if this is the case. Since most truth tables have circuit complexity at least 2n/n

3The fact that these results are C-relativizing might not be as obvious as Proposition 3, as one still needs to look into
the proof of these results and replace the usage of interactive proof results by their bounded-relativizing counterparts. For
example, using IP = PSPACE, Santhanam [San09] showed that there is a problem in pr-MA without size-n100 circuits. To
show this result is PSPACE-relativizing, one apparently needs to follow the proof of [San09] and replace all occurrences of
“IP = PSPACE” by Proposition 1.

3

[Sha49, Lup58, FM05], and A is fooled by the PRG G, it follows that there is a seed z ∈ {0, 1}Nε/2
such

that the function whose truth table is G(z) also has circuit complexity at least 2n/n.

Consider the following language L. On input x ∈ {0, 1}n, it takes advice (z, α), where z ∈ {0, 1}2εn/2

is defined as above, and α ∈ {0, 1} is the one-bit advice used by G. It computes the truth table G(z) and
accepts the input x if and only if the x-th bit of G(z) is 1. Then L does not have circuits of size 2n/n.
On the other hand, L can be computed by a BPEMCSP machine taking 2εn bits of advice.

Besides the nearly-maximum circuit lower bound, we also prove new circuit lower bounds for meta-
complexity problems and design new algorithms for range avoidance. We omit the proof ideas below since
the main idea is essentially the same, namely relativizing the PRG in [LOS21] to the MCSP oracle.

Circuit Lower Bounds for Meta-Complexity Problems. Meta-computational problems play a
central role in a recently emerging area of research called meta-complexity, and have diverse applications
in complexity theory, cryptography and learning. Roughly speaking, meta-computational problems are
those that ask about the complexity (e.g., circuit complexity, time-bounded Kolmogorov complexity) of
their inputs, and meta-complexity refers to the complexity of computing these problems themselves.

Before stating our result, we first recall some basic definitions. For a string x and a time bound
function t, Kt(x), the t-time-bounded Kolmogorov complexity of x, is the minimum length of a string d
such that U(d) outputs x within t(|x|) steps, where U is a time-optimal universal Turing machine fixed
in advance. rKt(x), the randomized t-time-bounded Kolmogorov complexity of x, is defined in the same
way as Kt(x) except that U in this case is a randomized universal Turing machine and we want x to be
outputted with probability at least 2/3. We can also define oracle versions of these complexity measures.
For example, rKt,O can be defined in the same way as rKt except that the universal Turing machine in
this case has access to the oracle O. (See Definition 21 for the formal definitions.)

Previously [Hir20b] showed that the problem of computing the Kpoly complexity of a given string
is hard against fixed-polynomial-time deterministic algorithms. Later [LOS21] showed a similar lower
bound for computing rKpoly but against fixed-polynomial-time randomized algorithms. Here, we show
that computing rKpoly,MCSP cannot be done using fixed-polynomial-size circuits.

Theorem 5 (Informal; see Theorem 32). For every k ≥ 1, there is a polynomial t such that the problem
of computing the rKt,MCSP complexity of a given string cannot be done using circuits of size nk.

In proving Theorem 5, we construct an efficient pseudodeterministic PRG, using MCSP oracle and
a short advice string, that can fool polynomial-size circuits, which may be of independent interest. (See
Theorem 33.)

Pseudodeterministic Construction for Range Avoidance. In the range avoidance problem, given
a circuit C : {0, 1}n → {0, 1}n+1, we are asked to find a string x ∈ {0, 1}n+1 that is not in the range
of C. This problem is complete for the class called APEPP that corresponds to explicit constructions
of objects whose existence can be shown using the probabilistic method [KKMP21, Kor21, RSW22]. It
is open whether there is a deterministic polynomial-time algorithm with access to an NP oracle that
solves the range avoidance problem; indeed, this open question is equivalent to the circuit lower bound
ENP ̸⊆ SIZE[2n/2] [Kor21].

Here, we present a new algorithm that pseudodeterministically solves the range avoidance problem
for polynomial-size circuits. A pseudodeterministic algorithm is a probabilistic algorithm that “behaves
like a deterministic algorithm” in the sense that it returns a fixed output with high probability over its
internal randomness. Our algorithm runs in polynomial time, using an NP oracle and an advice of length
nε (that is independent of the input circuit), and it works for infinitely many n, where n is the input
length of the given circuit.

Theorem 6 (Informal; see Theorem 36). For every ε > 0 and c ≥ 1, there exists a polynomial-time
pseudodeterministic advice-taking oracle-algorithm A such that for infinitely many n, given a circuit

4

C : {0, 1}n → {0, 1}n+1 of size nc, the algorithm A, with access to an NP oracle and nε bits of advice,
outputs an (n+ 1)-bit string that is not in the range of C.

1.3 Barriers for PSPACE-Relativizing Techniques

Next, we explain our negative results. We present EXPH-relativization barriers for “slightly improv-
ing” known results in uniform derandomization, explicit construction, and circuit lower bounds.

1.3.1 Uniform Derandomization

Standard “hardness vs. randomness” paradigm [NW94, IW97] requires lower bounds against non-
uniform circuits, such as E ̸⊆ i. o.SIZE[2εn] for some constant ε > 0. In their seminal work, Impagliazzo
and Wigderson [IW01] showed that hardness against uniform algorithms also implies weak forms of
derandomization: in particular, if EXP ̸= BPP, then every algorithm in BPP can be derandomized in
subexponential time infinitely often on average, i.e., BPP ⊆ i. o. heur-SUBEXP.4

We observe that their techniques are PSPACE-relativizing:

Proposition 7 (Uniform Derandomization in [IW01] is PSPACE-Relativizing).

Let O ∈ PSPACE. If EXPO[poly] ̸= BPPO, then BPPO ⊆ i. o. heur-SUBEXPO[poly].

More recently, Chen, Rothblum, and Tell [CRT22] presented a uniform derandomization result on
almost all input lengths: Given any language in PSPACE that is almost-everywhere hard against proba-
bilistic algorithms, we can derandomize RP and BPP on average on almost every input length, where the
derandomization of BPP requires some advice.5 Their techniques are also PSPACE-relativizing:

Proposition 8 (Uniform Derandomization in [CRT22] is PSPACE-Relativizing).

Let O ∈ PSPACE and suppose that PSPACEO ̸⊆ i. o.BPPO. Then

RPO ⊆ heur-SUBEXPO[poly] and BPPO ⊆ heur-SUBEXPO[poly]/O(logn).

The above results only obtain average-case derandomization instead of worst-case ones. Can we obtain
worst-case derandomization based on uniform hardness assumptions, such as EXP ̸= BPP? Consider the
following “slight improvement of [IW01]”:

Conjecture 9 (Worst-Case Uniform Derandomization). EXP ̸= BPP =⇒ BPP ⊆ i. o. SUBEXP.

We present the following oracle suggesting that resolving Conjecture 9 would require new techniques.

Theorem 10. There is an oracle O ∈ EXPH such that

RPO ̸⊆ i. o.DTIMEO[2n] and UPO ̸⊆ BPTIMEO[2n].

In this oracle world, we have UP ̸⊆ BPTIME[2n] (which is much stronger than EXP ̸= BPP), while
at the same time, worst-case derandomization of RP into deterministic fixed-exponential (2n) time is
impossible. This oracle is in EXPH, and therefore any PSPACE-relativizing proof of Conjecture 9 would
also imply a breakthrough separation PSPACE ̸= EXPH.

An open question left from [CRT22] is whether the O(log n)-bit advice can be removed in their
derandomization of BPP. We present some evidence that this is difficult using current techniques:

4Here, heur-SUBEXP is the class of problems solvable by a deterministic subexponential time heuristic over every samplable
distribution; see Definition 38 for details.

5We only state the “low-end” version of [CRT22] here; note that they also proved some “high-end” derandomization
results.

5

Theorem 11. There is an oracle O such that

BPPO ̸⊆ heur-DTIMEO[2n] and UPO ̸⊆ i. o.BPTIMEO[2n].

Unfortunately, we do not know if the oracle O constructed in Theorem 11 is in EXPH. Nevertheless,
under an assumption that is unlikely yet seems difficult to rule out, we show how to construct the oracle
O in polynomial space. The assumption is that

SAT ∈ DTIME[n · polylog(n)] ∩ NC, (*)

i.e., SAT admits both a near-linear-time sequential algorithm and a polylog(n)-time parallel algorithm.

Theorem 12. Suppose that SAT ∈ DTIME[n ·polylog(n)]∩NC. Then there is an oracle O satisfying the
conclusions of Theorem 11 that can be computed in polynomial space.

It follows that if we use PSPACE-relativizing techniques to eliminate the O(log n)-bit advice in the
derandomization of [CRT22], then we can refute (*), thus proving a non-trivial lower bound for SAT.
Thus, we can still say that the oracle O in Theorem 11 presents some evidence that “current proof
techniques” do not suffice to eliminate the O(log n)-bit advice in Proposition 8.

1.3.2 Explicit Constructions

Next, we consider bounded relativization for explicit constructions. A property Q ⊆ {0, 1}∗ is dense
if for every input length n ∈ N, we have that |Q ∩ {0, 1}n| ≥ 2n/poly(n). Given any dense property Q
decidable in polynomial time and an input length n, how hard is it to construct a length-n string that is
in Q? This is a central open question in derandomization.

Recently, Oliveira and Santhanam [OS17b] showed how to make progress if we allow the construction
algorithm to be pseudodeterministic. Recall that an algorithm is pseudodeterministic if it outputs the
same valid answer with high probability (despite being probabilistic). It was shown in [OS17b] that for
every dense property Q ∈ P, there is a subexponential-time pseudodeterministic construction algorithm
that succeeds infinitely often. We observe that this result is PSPACE-relativizing:

Proposition 13 ([OS17b] is PSPACE-Relativizing; Informal). For every oracle O ∈ PSPACE and every
dense property Q ∈ PO, there is a zero-error pseudodeterministic O-oracle algorithm that on input 1n

outputs some element in Q ∩ {0, 1}n in subexponential time, for infinitely many n ∈ N.

Scott Aaronson’s blog [Aar17] contains a nice description of the result in [OS17b], where he also
mentioned that the result has “merely the following four caveats”: (1) the algorithm runs in subexponential
time instead of polynomial time; (2) the algorithm is not deterministic but pseudodeterministic; (3)
instead of being almost-everywhere, the algorithm only succeeds on infinitely many input lengths; and
(4) [OS17b] only proved the existence of such an algorithm, but were unable to say what the algorithm
is. In this paper, we show that caveats (2) and (3) cannot be improved by EXPH-relativizing techniques.

We start with (3), namely that EXPH-relativizing techniques cannot improve the pseudodeterministic
construction algorithm in [OS17b] to work on almost every input length.

Theorem 14. There is an oracle O ∈ EXPH and a dense property Q ∈ PO such that every pseudodeter-
ministic algorithm that runs in 2o(n) time and attempts to find a string in Q ∩ {0, 1}n fails on infinitely
many input lengths n.

Goldwasser, Impagliazzo, Pitassi, and Santhanam [GIPS21] showed that the pseudodeterministic
query complexity of a certain NP search problem is Ω(

√
N), where N is the input length. We prove

Theorem 14 by using the results in [GIPS21] directly as a black box. Each time we diagonalize against
a certain pseudodeterministic machine by finding the lexicographically first counterexample (which is

6

guaranteed to exist by [GIPS21]). This procedure, even when näıvely implemented, is computable in
EXPH. We think this is the interesting aspect of Theorem 14, as it illustrates our main point that the ghost
of (bounded) relativization has never gone away from complexity theory: for many natural complexity-
theoretic statements that are non-relativizing, the straightforward counterexample oracle construction is
already in EXPH.

Now we move to (2). We show that any deterministic construction algorithm for dense properties has
to overcome an EXP-relativization barrier, even if the algorithm is allowed to only succeed on infinitely
many input lengths:

Theorem 15. There is an oracle O ∈ EXP and a dense property Q ∈ PO such that every deterministic
algorithm that runs in 2n/nω(1) time fails to find a string in Q ∩ {0, 1}n on almost every input length n.

In fact, the complexity of deterministic construction is known to be equivalent to the complexity of
approximating Levin’s Kt-complexity for a certain range of parameters [Hir20a]. Here, the Kt-complexity
of a string x is defined to be the minimum of |M |+log t over all t-time Turing machines M of length |M |
such that M outputs x (see Definition 22 for a precise definition). Informally, MKtP is the problem of
computing Kt(x) for a given string x. Although MKtP is EXP-complete under non-uniform polynomial-
time reductions [ABK+06], it is a long-standing open question to show that MKtP ̸∈ P. Using the
connection between MKtP and deterministic construction [Hir20a], we show that Kt-complexity can be
efficiently approximated under the oracle of Theorem 15.

Theorem 16 (Informal; see Theorem 55). There exists an oracle O ∈ EXP under which Kt(x) can be
approximated to within a factor of (1 + ε) for every constant ε > 0 in time nO(logn) on input x of length
n.

Previously, Ren and Santhanam [RS22] constructed an oracle under which approximating Kt(x) to
within a factor of (2 + ε) is in P. Theorem 16 improves this oracle construction, at the cost of increasing
the running time from nO(1) to nO(logn). We note that there are lower bounds for the randomized variant
of MKtP [Oli19, Hir22]. Their proof techniques are PSPACE-relativizing [Oli19] and relativizing [Hir22],
respectively. Theorem 16 suggests that such proof techniques cannot be used to show a lower bound for
approximating Kt-complexity without resolving L ̸= P.

The property Q of Theorem 15 is a dense subset of
{
x : KtO(x) ≥ n− c log n

}
. To see why any

2n/nω(1)-time algorithm AO fails to find a string in Q ∩ {0, 1}n, observe that the output of AO on input
1n has KtO-complexity at most O(log n) + log(2n/nω(1)) ≤ n − ω(log n), which is not in Q. To obtain
Theorem 16, we regard Q as an errorless heuristic algorithm for KtO, and use the worst-case to average-
case reduction for KtO [Hir18] to obtain a worst-case approximation algorithm for KtO-complexity.

1.3.3 Circuit Lower Bounds

Finally, we consider circuit lower bounds for Merlin–Arthur classes. Santhanam [San09], improv-
ing [BFT98], showed that for every integer k, there is a function computable in MA/1 (Merlin–Arthur
protocols with one bit of advice) that does not have size-nk circuits. We observe that this result is
PSPACE-relativizing:

Proposition 17 ([San09] is PSPACE-Relativizing).

Let O ∈ PSPACE. Then for every constant k ≥ 1, MAO/1 ̸⊆ SIZEO[nk].

By showing that (a variant of) the oracle constructed by [BFT98] is in EXPH, we show that San-
thanam’s circuit lower bound cannot be improved to an almost-everywhere circuit lower bound by EXPH-
relativizing proof techniques.

Theorem 18. There is an oracle O ∈ EXPH such that pr-MATIMEO[2n] ⊆ i. o. SIZEO[O(n)].

7

In fact, it is unknown if the fixed polynomial-size lower bound for Σp
2 due to Kannan [Kan82] (i.e.,

Σp
2 ̸⊆ SIZE[nk] for every constant k) can be improved to an almost-everywhere circuit lower bound. We are

not aware of any relativization barrier for improving Kannan’s lower bound. To the best of our knowledge,
Theorem 18 is the first evidence that “current proof techniques” cannot improve fixed polynomial-size
circuit lower bounds for Σp

2 ⊇ pr-MA to almost everywhere. Note that the smallest complexity class

known to be outside i. o.SIZE[nk] for every k is ∆p
3 = PΣp

2 [MVW99].

Remark 19 (The Infinite-Often Phenomenon). As noticed in [CLW20], almost-everywhere separations in
structural complexity theory are significantly harder to prove than infinitely-often separations. The PSPACE-
relativization barrier provides an explanation of such difficulties — it is much easier to construct oracles (in
EXPH) such that certain separation fails infinitely often. On the other hand, achieving almost-everywhere
separations in oracle worlds might be much harder, and in some cases (such as in Theorem 18) the resulting
oracle is not in EXPH anymore.

Besides circuit lower bounds for pr-MA, another notorious open problem mentioned in [CLW20] is proving
almost-everywhere NTIME hierarchies. Indeed, there is an oracle O relative to which NTIME[2n] ⊆ i. o.RP
[BFS09], and it is easy to see that this oracle can be implemented in EXPH.

1.4 Comparison with Algebrization

Our paper and the line of work on the algebrization barrier [For94, AIV92, AW09, IKK09, AB18] share
a common motivation, namely, to capture the limitations of “current techniques” after the interactive
proof results such as IP = PSPACE were proved via arithmetization. Therefore, we feel it necessary to
compare the two barriers. However, before we make the comparison, let us briefly review the different
variants of algebrization [For94, AW09, IKK09, AB18].

1.4.1 Variants of Algebrization

Already in 1994, Fortnow [For94] showed that every oracle O is many-one reducible to some oracle A
such that IPA = PSPACEA; the oracle A is the “algebraic extension” of O as defined in [For94, Section
5.3]. However, the definition of “algebraic extension” is rather involved and Fortnow did not show any
unprovability results relative to “algebraic-extended” oracles.

Aaronson and Wigderson [AW09] defined an inclusion C ⊆ D to algebrize if for every oracle O and its

low-degree extension Õ, CO ⊆ DÕ. This simplifies Fortnow’s definition in the following sense. Roughly
speaking, Fortnow’s “algebraic extension” of O is another (Boolean) oracle that encodes all information

of O, Õ,
˜̃O,

˜̃̃
O, · · · ; the Aaronson–Wigderson definition is simpler in that it only considers O and Õ.

However, this comes with a price of asymmetry that the RHS of an inclusion has access to Õ but the LHS

does not (e.g., PSPACEO ⊆ IPÕ). Consequently, the Aaronson–Wigderson definition of algebrization is not
closed under modus ponens: for example, although NEXP ̸⊆ P/poly does not algebrize [AW09, Theorem
5.6], it is possible that one could find an intermediate class C such that both C ⊆ NEXP and C ̸⊆ P/poly
algebrizes, thus using algebrizing techniques to separate NEXP from P/poly.

Partially due to the above drawback, there are two subsequent works [IKK09, AB18] that aim at
a more satisfactory definition of algebrization. Both definitions have the spirit that a statement is
algebrizing if it holds relative to every oracle O satisfying certain algebraic properties. For example, a
statement is IKK-algebrizing (IKK stands for Impagliazzo–Kabanets–Kolokolova) if it holds relative to
every oracle O that satisfies the so-called Arithmetic Checkability Theorem (ACT) [IKK09]; a statement
is affine-relativizing [AB18] if it holds relative to every affine extension — the result of a particular error
correcting code applied to the characteristic string of a language. These variants of algebrization are
indeed closed under modus ponens, and an algebrization barrier for a statement is simply an oracle that
satisfies the algebraic property and under which the statement is false.

8

1.4.2 Comparison

Recall that a statement is C-relativizing if it holds relative to every oracle whose complexity is in
C. In bounded relativization, we are interested in the complexity of the oracle instead of its algebraic
properties. Therefore, the notions of (say) PSPACE-relativization and (say) IKK-algebrization appear
incomparable: there are oracles outside PSPACE (in particular, undecidable ones) that satisfy the ACT;
on the other hand, it is unknown if there are oracles in PSPACE that do not satisfy the ACT.

Moreover, as a framework for barrier results, we think that the main advantage of bounded relativiza-
tion is its simplicity :

• To demonstrate a barrier result via bounded relativization, one only needs to construct a corre-
sponding oracle in the usual sense of relativization, and show an upper bound on the complexity of
the oracle (e.g., in EXPH). On the other hand, one needs to work against low-degree extensions of
Boolean oracles or ensure the ACT in order to prove an algebrization barrier result.

• On the other hand, as demonstrated in Propositions 1 and 3, interactive proof characterizations of
complexity classes are bounded-relativizing for trivial reasons. If MIP∗ = RE is true, then there is
a one-liner proof of it being R-relativizing. In contrast, it appears that one needs to examine the
200-page proof of [JNV+20] thoroughly to tell whether it is algebrizing.

However, as we discussed before, the bounded relativization barrier has its own subtle disadvantages.
An oracle construction in EXPH (such as Theorem 10) only tells us the following information: “if PSPACE-
relativizing techniques can prove certain statements (such as Conjecture 9), then we can also separate
EXPH from PSPACE”. We interpret this as limitations of PSPACE-relativizing techniques, since we do
not think such techniques are powerful enough to separate EXPH from PSPACE.6 Hence, the bounded
relativization barrier does not explain the difficulty of (e.g.) proving PSPACE ̸= EXPH, since this difficulty
itself is assumed to indicate barriers for proving other statements. We leave it as an interesting open
problem to justify the statement that although arithmetization-based techniques such as IP = PSPACE are
already available, fundamentally new techniques are needed to prove separation results such as PSPACE ̸=
EXPH.7

2 Preliminaries

2.1 Definitions and Notations

For n, i ∈ N and x ∈ {0, 1}n, where i ≤ n, we let x[i] denote the i-bit prefix of x. We use Un to denote
the uniform distribution over all length-n strings.

We assume the reader is familiar with basic complexity classes such as PSPACE, EXP, IP, BPP,
MA; the definitions of these classes can be found in [Gol08, AB09]. One complexity class that occurs
frequently in this paper and that might not be familiar to the broader audience, though, is EXPH, the
exponential-time hierarchy.

Definition 20. A language L is in EXPH if there is a constant k, an exponential bound e(n) = 2poly(n),
and a poly(e(n))-time algorithm M such that, for every input x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃y1∀y2∃y3∀y4 . . . ∃yk,M(x, y1, . . . , yk) = 1,

where yi ∈ {0, 1}e(n) for each i ∈ [k].

6Although we should not be too pessimistic about the resolution of grand challenges in complexity theory such as PSPACE
vs. EXPH, it seems extremely unlikely to us that they will be resolved by building an EXPH-computable oracle world inside
which a certain statement is false, and proving the same statement using PSPACE-relativizing techniques. We suspect that
techniques fundamentally “deeper” than those used to build oracles (e.g., diagonalization) are needed.

7Or, to refute this statement by proving PSPACE ̸= EXPH!

9

Equivalently, a language is in EXPH if it can be decided in exponential (2poly(n)) time with access to
a PH oracle.

Pseudodeterministic Algorithms. A pseudodeterministic algorithm is a probabilistic algorithm that
returns a fixed output with high probability on any given input. We will also consider pseudodeterministic
oracle (or advice-taking) algorithms. Such an algorithm will maintain its pseudodeterministic behavior
(i.e., outputting a fixed answer with high probability for any input) when a correct oracle (or advice) is
given.

Time-Bounded Kolmogorov Complexity. We fix a time-optimal universal Turing machine U and a
time-optimal randomized Turing machine V .

Definition 21. For a string x ∈ {0, 1}∗, a time bound function t : N → N, and an oracle O, we define

• (t-time-bounded Kolmogorov complexity)

Kt,O(x) := min
d∈{0,1}∗

{
|d| : UO(d) outputs x in at most t(|x|) steps

}
.

• (Randomized t-time-bounded Kolmogorov complexity)

rKt,O(x) := min
d∈{0,1}∗

{
|d| : V O(d) runs in at most t(|x|) steps and Pr[V O(d) = x] ≥ 2/3

}
.

We also consider Levin’s notion of time-bounded Kolmogorov complexity [Lev84].

Definition 22. For a string x ∈ {0, 1}∗ and an oracle O, we define

KtO(x) := min
d∈{0,1}∗, t∈N

{
|d|+ ⌈log t⌉ : UO(d) outputs x in at most t steps

}
.

2.2 Technical Tools

Theorem 23 ([Sip83]). For every oracle O, BPPO ⊆ (Σp
2)

O.

We also need the following theorem for approximate counting that runs in linear time with a constant
number of alternations. (In particular, Theorem 24 implies that approximate counting can be done in
PH.)

Theorem 24 (Approximate Counting in Quasi-Linear-Time Hierarchy).

There is a Σ5TIME[n · polylog(n)] machine M such that on input (φ,K), accepts if φ has at least K
satisfying assignments, and rejects if φ has at most K/2 satisfying assignments.

Proof Sketch. Using universal hashing [Sto83], we can show that there is a BPTIME[n · polylog(n)]SAT
machine M ′ that approximates the number of satisfying assignments of φ′. Let H be a family of pairwise-
independent hash functions whose output range is {0, 1}⌈logK⌉, that is computable in near-linear time.
(See, e.g., [Vad12, Problem 3.3, (2)] for an example based on Toeplitz matrices.) The machine M ′

randomly samples h ∼ H and r ∼ {0, 1}⌈logK⌉, and uses the SAT oracle to decide whether there is a
satisfying assignment x of φ′ such that h(x) = r.

Finally, the lemma follows from the fact that for every oracle O, BPTIMEO[t] ⊆ Σ3TIME[t·polylog(t)]O
[Vio07].

3 New Lower and Upper Bounds via Bounded Relativization

We start by showing a PSPACE-relativizing version of the pseudodeterministic PRG in [LOS21].

10

3.1 A PSPACE-Relativizing, Pseudodeterministic, Efficient PRG

Theorem 25 (A PSPACE-Relativizing Efficient Pseudodeterministic PRG with One Bit of Advice).
For every O ∈ PSPACE, ε > 0 and c, d ≥ 1, there exists a generator G = {Gn}n∈N with Gn : {0, 1}n

ε →
{0, 1}n for which the following holds:

Efficiency: There is a probabilistic polynomial-time algorithm A such that for every n ∈ N, on input
1n and z ∈ nε, A, with oracle access to O and one advice bit α(n) ∈ {0, 1} that is independent of z,
outputs Gn(z) with probability ≥ 2/3.

Pseudorandomness: For every language L ∈ DTIMEO[nc], there exist infinitely many input lengths
n such that ∣∣∣ Pr

x∼{0,1}n
[L(x) = 1]− Pr

z∼{0,1}nε
[L(Gn(z)) = 1]

∣∣∣ ≤ 1

nd
.

To show Theorem 25, we consider two cases.

Case 1: PSPACE ⊆ BPPO.

Lemma 26. Let O ∈ PSPACE. If PSPACE ⊆ BPPO, then there is a PRG with seed length O(log n),
computable in pseudodeterministic polynomial time with oracle access to O, that fools DTIMEO[n] with
error 1/n for all but finitely many n.

We need the following “relativizing version” of a hardness-to-randomness construction.

Lemma 27 ([IW97, KvM02, OS17b]). Let O be any language. If there is an ε > 0 and a Boolean function
h ∈ BPEO that requires O-oracle circuits of size 2εm on all but finitely many input length m, then there is
a PRG with O(log n) seed length, computable in pseudodeterministic polynomial time with oracle access
to O, that fools DTIMEO[n] with error 1/n for all but finitely many n.

Proof of Lemma 26. Since PSPACE ⊆ BPPO, by a simple padding argument, we have that DSPACE
[
2O(n)

]
⊆

BPEO.
By direct diagonalization, there is a language L ∈ DSPACE

[
2O(n)

]
such that, for all but finitely many

input lengths n, L does not have O-oracle circuits of size 20.9n. Indeed, using 2O(n) space, we can find
the lexicographically first truth table of length 2n that cannot be computed by O-oracle circuits of size
20.9n. This can be done because O ∈ PSPACE and we can simulate any such circuit in 2O(n) space. By
the simulation in the previous paragraph, we have that L ∈ BPEO. Now the desired conclusion follows
from Lemma 27.

Case 2: PSPACE ̸⊆ BPPO.

Lemma 28. Let O be any language and suppose PSPACE ̸⊆ BPPO. Then for every ε > 0 and c, d ≥ 1,
there exists a PRG with seed length nε, computable in pseudodeterministic polynomial time with oracle
access to O and one bit of advice, that fools DTIMEO[nc] with error 1/nd for infinitely many n.

Proof Sketch. The proof is essentially the same as that of [LOS21]. The only difference is that instead
of assuming PSPACE ̸⊆ BPP in [LOS21], here we assume PSPACE ̸⊆ BPPO. We provide a high-level
description of the proof here. For details, we refer the reader to [LOS21, Sections 1.2 and 3.1].

As in [LOS21], Lemma 28 can be shown by combining hierarchy theorems for probabilistic classes,
which can be viewed as hardness results against (uniform) probabilistic algorithms, with the hardness-
to-randomness framework under uniform hardness assumptions [IW01, TV07]. More specifically, for any
oracle O and k ≥ 1, we can construct a language Lk ∈ BPPO/1 that is hard against BPTIMEO[nk

]
/1.

(See [LOS21, Lemma 19].)

11

As in [FS04], assuming PSPACE ̸⊆ BPPO, the language Lk is obtained by constructing a padded
version of a certain PSPACE-completed language Lhard that has useful structural properties, such as
downward self-reducibility, random self-reducibility, and instance checkability [TV07, FS04], using the
idea of an “optimal O-oracle algorithm” for Lhard. (See [LOS21, Lemma 17].)

The language Lk constructed in this way will have certain forms of downward self-reducibility and
random self-reducibility. These properties enable us to plug Lk into the hardness-to-randomness con-
struction of [TV07] (with additional “relativization properties” observed by [KvM02]), and get a PRG
that is infinitely-often secure against O-oracle adversaries. Also, the fact that Lk ∈ BPPO/1 allows us to
compute the PRG efficiently with oracle access to O and with one bit of advice, in a pseudodeterministic
manner.

Proof of Theorem 25. The theorem follows directly from Lemma 26 and Lemma 28, since in both the
cases of PSPACE ⊆ BPPO and of PSPACE ̸⊆ BPPO, we get a PRG that satisfies the conditions stated in
the theorem.

3.2 A Nearly Maximum Circuit Lower Bound for BPEMCSP/2εn

Theorem 29. For every ε > 0,
BPEMCSP/2εn ̸⊆ SIZE[2n/n].

We first show the following two lemmas.

Lemma 30. For every ε > 0, there is a probabilistic polynomial-time algorithm A such that the following
holds.

• For every N ∈ N, on input 1N , the algorithm A, with oracle access to MCSP and with an advice
α(N) ∈ {0, 1}N

ε

, outputs with high probability a fixed truth table TN of length 2n:=⌊logN⌋ (which

corresponds to some function f : {0, 1}n=⌊logN⌋ → {0, 1}), and

• for infinitely many N ∈ N, TN has circuit complexity greater than 2n/n.

Proof. Let D be the following algorithm. On input x ∈ {0, 1}N , D lets n := ⌊logN⌋ and checks if
MCSP

(
x[2n], 2

n/n
)
is false. It is clear D can be determined in time DTIMEMCSP[O(N)] and that D

accepts x only if x[2n] is a truth table with circuit complexity greater than 2n/n. Also, since most truth
tables of length 2n have circuit complexity greater than 2n/n [Sha49, Lup58], the acceptance probability
of D is at least 1/2.

Consider the generator {GN}N from Theorem 25 that fools DTIMEMCSP[O(N)] for infinitely many
N . By the security of {GN}N , there exists some seed z ∈ {0, 1}N

ε

such that D(GN (z)) = 1, and with
oracle access to MCSP and with some bit b ∈ {0, 1}, we can compute GN (z) pseudodeterministically in
time poly(N). Therefore, given such z and b as advice (which is of N ε + 1 bits but we can always scale
the parameter ε), we can obtain with high probability some fixed truth table of length 2n with circuit
complexity greater than 2n/n.

Lemma 31. For every ε > 0, there is a probabilistic algorithm B such that the following holds.

• For every n ∈ N, on input 1n, the algorithm B, with oracle access to MCSP and with an advice
α(n) ∈ {0, 1}2

εn

, runs in time 2O(n) and outputs with high probability a fixed truth table Tn of length
2n, and

• for infinitely many n ∈ N, Tn has circuit complexity greater than 2n/n.

Proof. Let ε0 := ε/2. We first describe the advice used by the algorithm B. For input 1n, the first part
of the advice is a number N (if exists) such that

12

• n = ⌊logN⌋, and that

• the algorithm A from Lemma 30 (instantiated with parameter ε0) on input 1N , with oracle access
to MCSP and with N ε0 bits of advice, outputs with high probability a fixed truth table of length
2n with circuit complexity greater than 2n/n.

Note that such a number N can be specified using n + 1 bits. Also, we say that n is good if such an N
exists. By Lemma 30, there are infinitely many good n.

The second part of the advice is the N ε0 bits that are needed to compute A(1N). Note that the total
number of bits for the advice is at most

n+ 1 +N ε0 < 2εn.

We let the output of B(1n) be the output of A(1N). Then whenever n is good, the canonical output
of A(1N) (hence B(1n)) will be a truth table of length 2n with circuit complexity greater than 2n/n.

Theorem 29 now follows easily from Lemma 31.

Proof of Theorem 29. Consider the language L ∈ BPEMCSP/2εn that can be computed as follows. On
input x ∈ {0, 1}n, we run B(1n), where B is the algorithm from Lemma 31, using MCSP as an oracle
and using 2εn bits of advice. With high probability, we obtain the truth table of some fixed function
fn : {0, 1}n → {0, 1}. We then let L(x) := fn(x). By Lemma 31, for infinitely many n, fn has circuit
complexity greater than 2n/n, which implies that L ̸∈ SIZE[2n/n].

3.3 Circuit Lower Bounds for Meta-Complexity Problems

In this subsection, we show that the problem of estimating rKpoly,MCSP (the MCSP-oracle version of
polynomial-time randomized Kolmogorov complexity) does not have fixed-polynomial-size circuits.

Theorem 32 (An Unconditional Circuit Lower Bound for Estimating rKpoly,MCSP). For every ε > 0 and
c ≥ 1 there exists a constant k ≥ 1 such that the following holds. Consider the following promise problem
Πε = (YESn,NOn)n∈N, where

YESn :=
{
x ∈ {0, 1}n : rKt,MCSP(x) ≤ nε

}
,

NOn :=
{
x ∈ {0, 1}n : rKt,MCSP(x) ≥ n− 10

}
,

and t(n) = nk. Then Πε /∈ SIZE[nc].

To show Theorem 32, we first construct an efficient pseudodeterministic PRG, with oracle access to
MCSP and an advice string of length O(log n), that can fool circuits (instead of uniform algorithms in
[LOS21]).

3.3.1 A Pseudodeterministic PRG Fooling Circuits

Theorem 33. For every ε > 0 and every c, d ≥ 1, there is a generator G = {Gn}n∈N with Gn : {0, 1}nε →
{0, 1}n such that the following holds.

Efficiency: There is a probabilistic polynomial-time algorithm A such that for every n ∈ N, on input 1n

and z ∈ {0, 1}n
ε

, A, with oracle access to MCSP and an advice α(n) ∈ {0, 1}O(logn) that is independent
of z, outputs Gn(z) with probability ≥ 2/3.

Pseudorandomness: For infinitely many n ∈ N, for every circuit C : {0, 1}n → {0, 1} of size at most
nc, ∣∣∣∣ Pr

x∼{0,1}n
[C(x) = 1]− Pr

z∼{0,1}nε
[C(Gn(z)) = 1]

∣∣∣∣ ≤ 1

nd
.

13

We need the following hardness-to-randomness construction.

Lemma 34 (Umans [Uma03]). There is a universal constant g and a function GUmans : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ such that, for all s and Y where the circuit complexity of Y (viewed as a truth table) is at least
sg, and for all circuits C of size s,∣∣∣∣ Pr

x∼{0,1}g log |Y |
[C(GUmans(Y, x)) = 1]− Pr

x∼{0,1}s
[C(x) = 1]

∣∣∣∣ ≤ 1

s
.

Moreover, GUmans is computable in time poly(|Y |).

We also need the following variant of Lemma 30, whose proof is essentially the same as that of
Lemma 30. We omit the details here.

Lemma 35. For every ε > 0 and d ≥ 1, there is a probabilistic polynomial-time algorithm A such that
the following holds.

• For every N ∈ N, on input 1N and z ∈ {0, 1}N
ε

, the algorithm A, with oracle access to MCSP
and with an advice αA(N) ∈ {0, 1}, outputs with high probability a fixed truth table TN,z of length
2m:=⌊logN⌋ (which corresponds to some function f : {0, 1}m → {0, 1}), and

• for infinitely many N ∈ N, with probability at least 1− 1/Nd over z, TN,z has circuit complexity at
least 2m/2.

We now present the PRG in Theorem 33.

Proof of Theorem 33. The idea is to combine Lemma 35 and Lemma 34.
Let c′ := max{c, 2d} and ε0 := ε/(7c′g), where g is the constant from Lemma 34.
For n ∈ N, we first specify the advice for computing the generator Gn. The first part of the advice is

a number N (if exists) such that

• n3c′g ≤ N < (n+ 1)3c
′g, and that

• the algorithm A from Lemma 35 (instantiated with parameters ε0 and d := 1), on input 1N and
z ∈ {0, 1}N

ε0
, with oracle access to MCSP and with one advice bit αA(N), outputs (with high

probability) a fixed truth table of length 2⌊logN⌋ that has circuit complexity greater than 2⌊logN⌋/2,
for at least 1− 1/N fraction of the z’s.

Note that N can be encoded using O(log n) bits. We say that n is good if such an N exists. By Lemma 35,
there are infinitely many good n. The second part of the advice is then the bit αA(N) needed to run the
algorithm A.

We computeGn as follow. Given z := (zfirst, zsecond), where zfirst ∈ {0, 1}nε/2
and zsecond ∈ {0, 1}O(logn),

we first invoke the algorithm A from Lemma 35 on 1N (where N is the first part of the advice as described
in the previous paragraph) and zfirst to obtain a truth table Tn,zfirst . We can compute A using MCSP
as oracle and the bit αA(N), which is the second part of the advice. We will then use the hardness-to-
randomness construction in Lemma 34 on Tn,zfirst . Note that since |Tn,zfirst | ≤ nO(1), the input length of
GUmans(Tn,zfirst ,−) can be O(log n). Finally, we output

GUmans

(
Tn,zfirst , z

second
)
[n]
.

It is easy to verify that Gn satisfies the efficiency condition stated in Theorem 33, since A is a pseudo-
deterministic polynomial-time algorithm and GUmans(Tn,zfirst ,−) runs in time poly(n) deterministically.

Next, we show the pseudorandomness condition of Gn. Note that for any good n, with probability at
least 1−1/nc′ over zfirst, the algorithm A will output (with high probability) some fixed truth table Tn,zfirst

14

with circuit complexity at least nc′g. Whenever Tn,zfirst has such circuit complexity, GUmans

(
Tn,zfirst ,−

)
,

by Lemma 34, will be a PRG that (1/nc′)-fools size-(nc′) circuits. In order words, with probability at
least 1− 1/nc′ over zfirst, for every circuit C : {0, 1}n → {0, 1} of size at most nc′ ,∣∣∣∣ Pr

x∼{0,1}n
[C(x) = 1]− Pr

zsecond
[C(GUmans(Tn,zfirst , z

second)) = 1]

∣∣∣∣ ≤ 1

nc′
.

Then by a union bound, we get∣∣∣∣ Pr
x∼{0,1}n

[C(x) = 1]− Pr
z
[C(Gs(z)) = 1]

∣∣∣∣ ≤ 1

nc′
+

1

nc′
≤ 1

nd
,

as desired.

3.3.2 Circuit Lower Bound for rKpoly,MCSP

We complete the proof of Theorem 32 using our PRG in Theorem 33.

Proof of Theorem 32. Let t be a polynomial specified later. For the sake of contradiction, suppose there
exists a circuit C : {0, 1}n → {0, 1} of size at most nc such that for all x ∈ {0, 1}n,

• if rKt,MCSP(x) ≤ nε then C(x) = 1, and

• if rKt,MCSP(x) ≥ n− 10 then C(x) = 0.

Note that by a simple counting argument, for most x ∈ {0, 1}n, we have rKt,MCSP(x) ≥ n − 10. This
gives

Pr
x∼{0,1}n

[C(x) = 0] ≥ 1

2
.

Consider the PRG in Theorem 32 instantiated with parameters ε/2, c and d := 1. We have that for
infinitely many n, Gn (1/n)-fools circuits of size at most nc. On the one hand, this implies

Pr
z∼{0,1}n

ε/2
[C(Gn(z)) = 0] ≥ Pr

x∼{0,1}n
[C(x) = 0]− 1

n
≥ 1

3
. (1)

On the other hand, since Gn can be computed, with oracle access to MCSP and with O(log n) bits
of advice, pseudodeterministically in time poly(n), we have that there exists some polynomial t with

t(n) = poly(n) such that for every z ∈ {0, 1}n
ε/2

rKt,MCSP(Gs(z)) ≤ nε/2 +O(log n) < nε,

which by our assumption implies that

Pr
z∼{0,1}ε/2

[C(Gn(z)) = 1] = 1.

This contradicts Equation (1).

3.4 Pseudodeterministic Construction for Range Avoidance

In this subsection, we show a pseudodeterministic algorithm, using an NP oracle and an advice string
of sub-polynomial length, that solves the range avoidance problem infinitely often.

Theorem 36. For every ε > 0 and every d ≥ 1, there is a probabilistic polynomial-time algorithm A
such that the following holds.

15

• For every m ∈ N, on any input circuit C : {0, 1}m → {0, 1}m+1 of size md, the algorithm A, with
access to an NP oracle and with an advice α(m) ∈ {0, 1}m

ε

,8 outputs with high probability a string
xC ∈ {0, 1}m+1, and

• for infinitely many m ∈ N, xC ̸∈ Range(C) for each input C.

The following lemma is implicit in [Kor21], attributed to [Jer04].

Lemma 37 (Adaption of [Kor21]). There exists an algorithm R that runs in deterministic polynomial
time with an NP oracle such that the following holds. For every m ∈ N, given any circuit C : {0, 1}m →
{0, 1}m+1 and a truth table of length 2n with circuit complexity at least 2n/2, where n := 4⌈log(m · |C|)⌉+
⌊logm⌋, the algorithm R outputs a string x ∈ {0, 1}m+1 such that x ̸∈ Range(C).

Proof Sketch. The proof is adapted from those of [Kor21, Lemma 3 and Theorem 7].
First of all, it can be shown that for every m ∈ N and for every circuit C : {0, 1}m → {0, 1}m+1, there

exists a circuit D : {0, 1}m → {0, 1}2m, which can be constructed efficiently from C, of size m · |C|, such
that given a string y ∈ {0, 1}2m that is not in the range D and given access to an NP oracle, one can
compute efficiently a string x ∈ {0, 1}m+1 that is not in the range of C. (See the proof of [Kor21, Lemma
3].) Therefore, to show the lemma, it suffices to show how to find, for a given circuit D of size m · |C|
mapping m bits to 2m bits, a string that is not in the range of D.

Given a circuit D : {0, 1}m → {0, 1}2m, let k := 4 ⌈log(|D|)⌉. It can be shown that one can efficiently

construct a circuit E : {0, 1}m → {0, 1}2
km with the following properties. Given a (2km)-bit string that

is not in the range of E and given access to an NP oracle, we can compute in time poly(|D|) a string

x ∈ {0, 1}2m that is not in the range of D. Moreover, every string y ∈ {0, 1}2
km in the range of E has

small circuit complexity, in the sense that there is a circuit Fy : {0, 1}k+⌈logm⌉ → {0, 1} of size at most
O(|D| log |D|) that computes a truth table (of length 2k+⌈logm⌉) whose prefix is y. (See [Kor21, Figure 1
and Proof of Theorem 7].)

Now if we have a truth table T ∈ {0, 1}2
n

with circuit complexity at least 2n/2, where n = k+⌊logm⌋,
we can construct a (2km)-bit string

yT := T ◦ 02km−2n .

For the sake of contradiction, suppose yT is in the range of E. Then by the discussion in the previous
paragraph, it is easy to construct a circuit from FyT of size at most O(|D| log |D|) that computes T , which
has circuit complexity at least 2n/2 = 2(4⌈log(|D|)⌉+⌊logm⌋)/2 ≥ |D|2. This gives a contradiction.

We are now ready to show Theorem 36.

Proof of Theorem 36. The idea is to use Lemma 31 to obtain a hard truth table, and plug it in Lemma 37
to solve the range avoidance problem.

Let ε0 := ε/(10d), and let B be the pseudodeterministic algorithm from Lemma 31 instantiated with
parameter ε0.

We say that m ∈ N is good if for n := 4⌈(d+ 1) logm⌉+ ⌊logm⌋, the algorithm B on input 1n, with
oracle access to MCSP and with 2ε0n bits of advice, outputs with high probability some fixed truth table
of circuit complexity greater than 2n/n. Note that there are infinitely many good m, since there are
infinitely many n such that B(1n) will successfully output a fixed hard truth table with high probability.

Consider the following algorithm A. Given a circuit C : {0, 1}m → {0, 1}m+1 of size md, A first runs
B(1n), where n := 4⌈(d+1) logm⌉+⌊logm⌋, using an NP-complete oracle (that can simulate MCSP) and
using an advice string of length 2ε0n ≤ mε, to obtain (with high probability) a fixed truth table of length
2n. We then run the algorithm R from Lemma 37 using this truth table and using the NP-complete
oracle again to get a string x ∈ {0, 1}m+1. Note that whenever m is good (and sufficiently large), the
truth table output by B(1n) will have circuit complexity greater than 2n/n ≥ 2n/2, so using such a hard
truth table the algorithm R will successfully output a string that is not in the range of C.

8We stress that the advice α(m) does not depend on the input circuit C.

16

4 Barriers for Derandomization under Uniform Assumptions

4.1 PSPACE-Relativizing Derandomization under Uniform Assumptions

We show that previous results on derandomization under uniform assumptions are PSPACE-relativizing.
This includes the subexponential-time derandomization of Impagliazzo and Wigderson [IW01] (see also
[TV07]) and the recent “unstructured hardness to average-case randomness” [CRT22]. These results only
achieve average-case derandomization, therefore it is helpful to introduce the following definition.9

Definition 38 (Average-Case Complexity Classes). We say a language L is in heur-P if for every
polynomial-time samplable distribution D and every polynomial p, there is a deterministic polynomial-
time algorithm A such that

Pr
x∼D

[A(x) = L(x)] ≥ 1− 1/p(n).

Similarly, if the algorithm A runs in quasi-polynomial time, then we say L ∈ heur-QuasiP; if for every
ε > 0 there is such an algorithm A running in 2n

ε
time, then we say L ∈ heur-SUBEXP.

We start by demonstrating that the techniques in [IW01] are PSPACE-relativizing:

Reminder of Proposition 7.

Let O ∈ PSPACE. If EXPO[poly] ̸= BPPO, then BPPO ⊆ i. o. heur-SUBEXPO[poly].

Proof Sketch. We first prove that if PSPACEO ̸= BPPO, then BPPO ⊆ i. o. heur-SUBEXPO[poly]. Observe
that since O ∈ PSPACE, we have PSPACEO = PSPACE. Let L be a PSPACEO-complete problem that is
both downward self-reducible and random self-reducible (as constructed in [TV07]). One could define a

family of pseudorandom generators Gn : {0, 1}no(1) → {0, 1}n based on the hardness of L such that the
following holds: Let D be any oracle such that for every n ∈ N,

|Pr[D(Un) = 1]− Pr[D(Gn(Uno(1))) = 1]| > 1/n,

then L can be decided in randomized polynomial time with a D oracle. Moreover, Gn is computable
in 2n

o(1)
time. If BPPO ̸⊆ i. o. heur-SUBEXPO[poly], then in particular Gn does not fool certain BPP

algorithm (on average, on every input length). It follows from the reconstruction properties of {Gn} that
PSPACE ⊆ BPPO.

We consider two cases. Suppose that EXPO[poly] ̸⊆ PO/poly, then it follows from standard relativizing

hardness-randomness trade-offs [NW94, IW97] that BPPO ⊆ i. o. SUBEXPO[poly]. On the other hand,
if EXPO[poly] ⊆ PO/poly, then by the relativizing Karp-Lipton theorem [KL80], EXPO[poly] ⊆ (Σp

2)
O ⊆

PSPACEO. Since PSPACEO ̸= BPPO, it follows (again) that BPPO ⊆ i. o. heur-SUBEXPO[poly].

Before we consider [CRT22], it is helpful to define the notion of logspace-uniform low-depth circuits:

Definition 39 (Logspace-Uniform Circuits, see [CRT22, Definition 3.5]). We say that a circuit family
{Cn : {0, 1}n → {0, 1}}n∈N of size T (n) is logspace-uniform if there exists a machine M that on input
1n runs in space O(log T (n)) and prints Cn. For two functions T (n) and d(n), we denote the class of
languages computable by logspace-uniform circuits of size T (n) and depth d(n) by lu-CKT[T, d].

We show the following PSPACE-relativizing version of [CRT22, Theorem 5.2]. Note that we can only
achieve quasi-polynomial time derandomization if we want a PSPACE-relativizing result; this is because
an oracle in PSPACE might require 2poly(n) time (instead of 2O(n) time) to compute, and consequently,

9In the literature, it is more common to define heur-P as a family of distributional problems, which are pairs (L,D) where
L is a language and D is a distribution. In this paper, we only care about whether our derandomization succeeds on all
polynomial-time samplable distributions. Thus, for simplicity, we define heur-P as simply a class of languages that admits
polynomial-time heuristics over all polynomial-time samplable distributions.

17

the HSG in [CRT22] has seed length polylog(n) (instead of O(log n)). It might be possible to obtain a
SPACE[n]-relativizing result that achieves polynomial-time derandomization, but we do not pursue this
direction here.

Theorem 40 (High-End Uniform Derandomization in [CRT22] is PSPACE-Relativizing).

Let O ∈ PSPACE and ε > 0 be a constant. Assume there is a function L computable by logspace-
uniform circuits of size 2poly(n) and depth 2n

o(1)
, making O-oracle queries of poly(n) length, such that

L ̸∈ i. o.BPTIME
[
2n

ε]O
. (That is, lu-CKTO[poly]

[
2poly(n), 2n

o(1)
]
̸⊆ i. o.BPTIMEO[2nε]

.) Then

RPO ⊆ heur-QuasiPO and BPPO ⊆ heur-QuasiPO/logo(1) n.

Proof Sketch. The key observation is that since O ∈ PSPACE, O itself admits a logspace-uniform circuit
of size 2poly(n) and depth poly(n). It follows that the hard language L in our assumption can actually be

computed by a logspace-uniform circuit of size 2poly(n) and depth 2n
o(1)

without any oracles. That is:

L ∈ lu-CKTO[poly]
[
2poly(n), 2n

o(1)
]
⊆ lu-CKT

[
2poly(n), 2n

o(1)
]
.

The rest of the proof follows [CRT22, Theorem 5.2] closely. In what follows, the input length of the

hard problems with low-depth circuits will be denoted as ℓ instead of n. Let L(1) ∈ lu-CKT
[
2O(ℓ), 2ℓ

o(1)
]

be an instance-checkable problem from [CRT22, Proposition 4.4] such that L polynomial-time reduces to

L(1).10 The instance checker for L(1) runs in 2ℓ
o(1)

time. By [CRT22, Lemma A.1], there exists a constant

ε′ > 0 and a language L′ ∈ lu-CKT
[
2O(ℓ), 2ℓ

o(1)
]
that is not in i. o.BPTIMEO

[
2ℓ

ε′
]
and has an instance

checker running in 2ℓ
o(1)

time.
The next step is to create an HSG from the hard function L′. Let A be a probabilistic algorithm

which we want to derandomize, n be its input length, and M := nk be the amount of randomness it
uses. Let ℓ := ⌈log2/ε′ n⌉, f : {0, 1}n → {0, 1}2ℓ be the multi-output function that discards the input and
outputs the truth table of L′

ℓ := L′ ∩ {0, 1}ℓ. We use [CRT22, Theorem 4.5] with parameter δ := ℓε
′/4−1

to obtain a generator Gf and a reconstruction algorithm R.

• The generator Gf runs in time TO(1/δ) ≤ 2ℓ
2 ≤ 2polylog(n) and outputs a list of M -bit strings.

• The reconstruction algorithm R gets oracle access to a function D : {0, 1}M → {0, 1}, and runs in

time 2ℓ
o(1) · T δ ≤ 2ℓ

ε′/3
. Assume that D (1/M)-avoids the generator Gf , then w.p. ≥ 1− O(log2 T)

T ,
RD prints an oracle circuit Cf such that the truth table of CD

f is exactly L′
ℓ.

Given an RPO algorithm A, we use the HSG to fool A, making it run in deterministic TO(1/δ) ≤
2polylog(n) time. Now suppose there is a distribution D samplable in polynomial time with O oracles, as
well as an infinite set of input lengths I ⊆ N such that our derandomization fails on I w.p. 1/poly(n).
This means that w.p. at least 1/poly(n) over x ∼ D, we have Prr[A(x, r) = 1] ≥ 1/2 but A(x,w) = 0 for
every w in the HSG.

We will use a reconstruction argument to compute L′
ℓ in probabilistic 2ℓ

ε′
time with an O oracle,

reaching a contradiction. We say an input length ℓ is nice if there is some n ∈ I such that ℓ = ⌈log2/ε′ n⌉;
there are infinitely many nice input lengths. On input x ∈ {0, 1}ℓ, where ℓ is a nice input length, we
sample uniformly at random an input length n such that ℓ = ⌈log2/ε′ n⌉, and sample x ∼ Dn. With
probability 1/poly(n), the following good event (which we denote G) happens: n is good and A(x,−) is

10Proposition 4.4 of [CRT22] only claimed to hold for L ∈ lu-CKT
[
2O(ℓ), 2ℓ

o(1)
]
instead of lu-CKT

[
2poly(ℓ), 2ℓ

o(1)
]
. We can

use a padding argument to reduce L to some problem in lu-CKT
[
2O(ℓ), 2ℓ

o(1)
]
and then invoke this proposition; the only

difference is that the reduction runs in polynomial time instead of linear time.

18

a distinguisher for our hitting set. Then we invoke the instance checker for L′
ℓ on input x. Whenever the

instance checker asks a query q, we use RA(x,−) to find the answer of L′(q). If G happens then w.h.p. the
instance checker outputs the correct answer L′(x); even if G does not happen, w.h.p. the instance checker
outputs either L′(x) or ⊥. By sampling n and x for poly(ℓ) times, w.h.p. G will happen at least once,

and we compute L′
ℓ(x) successfully. Since there are poly(n) samples, the instance checker runs in 2ℓ

o(1)

time, the oracle A(x,−) runs in poly(n) time, and the reconstruction algorithm runs in 2ℓ
ε′/3

time, the
total running time is

poly(n) · 2ℓo(1) · poly(n) · 2ℓε
′/3 ≪ 2ℓ

ε′
.

The proof for BPPO ⊆ heur-QuasiPO/logo(1) n is similar. The only difference is to notice that the

targeted HSG constructed in [CRT22, Theorem 4.5] is also a targeted somewhere-PRG, consisting of 2ℓ
o(1)

sub-PRGs one of which is guaranteed to be secure. The advice for the derandomized algorithm is the
index of the sub-PRG that is secure, thus has length log(2ℓ

o(1)
) ≤ logo(1) n.

Reminder of Proposition 8. Let O ∈ PSPACE and suppose that PSPACEO ̸⊆ i. o.BPPO. Then

RPO ⊆ heur-SUBEXPO[poly] and BPPO ⊆ heur-SUBEXPO[poly]/O(logn).

Proof Sketch. The proof outline is the same as Theorem 40, but the parameters are a bit different. In
particular, the hard language L′ is in lu-CKT

[
2O(ℓ),poly(ℓ)

]
\ BPPO. Fix any constant ε > 0, the HSG

has the following parameters:

ℓ := nε/3, M := nk, and δ := (3/ε) log ℓ/ℓ.

The generator runs in TO(1/δ) ≤ 2O(ℓ2) ≤ 2n
ε
time and outputs a list of M -bit strings. The reconstruction

algorithm runs inO(nT δ) ≤ poly(ℓ) time. If the generator fails to fool a certain RPO algorithm (on average
and infinitely often), then we can use the reconstruction algorithm to compute L′ in BPPO, contradicting
our hypothesis. Therefore the generator successfully fools every RPO algorithm (on average and infinitely
often), and thus RPO ⊆ heur-SUBEXPO[poly].

Moreover, the generator is a somewhere PRG: It can be partitioned into d′ := poly(ℓ) “sub-PRGs”
such that for every BPPO algorithm, one of the “sub-PRG” fools this algorithm successfully (on average
and infinitely often). We embed the index of the correct “sub-PRG” as advice, taking log d′ = O(log n)
bits. Therefore BPPO ⊆ heur-SUBEXPO[poly]/O(logn).

4.2 Bounded-Relativization Barriers for Uniform Derandomization

4.2.1 Barrier for Worst-Case Derandomization under Uniform Assumptions

Recall that [IW01] showed that if EXP ̸= BPP then BPP ⊆ i. o. heur-SUBEXP. We present some
evidence that current techniques cannot improve this result to worst-case derandomization:

Reminder of Theorem 10. There is an oracle O ∈ EXPH such that

RPO ̸⊆ i. o.DTIMEO[2n] and UPO ̸⊆ BPTIMEO[2n].

Note that UP ̸⊆ BPTIME[2n] is much stronger than EXP ̸= BPP, yet it still does not imply fixed
exponential time worst-case derandomization of RP by EXPH-relativizing techniques.

Corollary 41. If we can use PSPACE-relativizing techniques to show

EXP ̸= BPP =⇒ BPP ⊆ i. o. SUBEXP,

then L ̸= NP follows.

19

Proof of Theorem 10. Our oracle world will consist of two oracles P and Q (it is easy to combine them
into a single oracle). The oracle P creates a hard problem in RP against deterministic algorithms, and
the oracle Q creates a hard problem in UP against probabilistic algorithms. In particular, every input to
the oracle P will be of the form (x, r) where |r| = 100|x|, and let

LP :=
{
x : ∃r ∈ {0, 1}100|x|,P(x, r) = 1

}
.

We will guarantee that for every x, Prr[P(x, r) = 1] is either 0 or greater than 1/2, thus LP ∈ RP. We
also define

LQ :=
{
1n : ∃r ∈ {0, 1}100n,Q(r) = 1

}
.

We will guarantee that for every input length 100n, |Q ∩ {0, 1}100n| ≤ 1, thus LQ ∈ UP.
LetM1,M2, . . . be an enumeration of Turing machines running in deterministic 2n time, andN1, N2, . . .

be an enumeration of probabilistic Turing machines running in 2n time (that does not necessarily satisfy
the BPP promise).11 We want every Mi to fail to solve LP on all but finitely many input lengths, and
every Ni to fail to solve LQ on infinitely many input lengths. In particular, let n1 be a large enough
constant, and ni = 2500ni−1 for each i ≥ 2. Assuming that every machine appears in the sequence {Ni}
infinitely often, we want that for each i ∈ N, Ni fails to solve LQ on input 1ni .

We also need the following terminologies. The n-th slice of P is the set of inputs of the form (x, r)
where |x| = n and |r| = 100n. The ℓ-th slice of Q is simply the set of inputs with length ℓ. During our
construction, there will be some entries P(x, r) and Q(r) that are fixed, meaning that their values will
never change in the subsequent construction. There will also be some inputs x that are frozen, meaning
that for every r ∈ {0, 1}100|x|, the values of P(x, r) are fixed and will never change in the subsequent
construction. If an entry P(x, r) or Q(r) is not fixed and, in the case of P(x, r), x is not frozen, then we
say this entry is free.

Our construction proceeds in stages. During stage n, we will fix the entire n-th slices of P and Q; we
will possibly also fix or freeze some other entries. It will be guaranteed that before the n-th stage:

1. the number of frozen strings beyond the n-th slice (including the n-th slice) is at most 2n/2;

2. the number of fixed strings (except the frozen ones) beyond the n-th slice (including the n-th slice)
is at most 25n; and

3. each fixed or frozen entry beyond the n-th slice (including the n-th slice) is set to be 0.

Diagonalization against Mi. Let x1, x2, . . . , xn be n inputs of length n that are not frozen. Since
there are at most 2n/2 frozen inputs of length n, it is always possible to select n unfrozen inputs. For
each i ∈ [n], we simulate the machine Mi on input xi. Whenever Mi asks a query P(x, r) or Q(r), if this
query is not free, then we return the corresponding value fixed before; if it is free, then we return 0 as the
answer and also fix this query to be 0. Then Mi will output an answer ansi ∈ {0, 1}. Note that there are
at most 25n + n · 2n ≪ 2100n/3 entries in P that are fixed, thus the vast majority of the entries P(xi, r)
are free. We fix all these entries P(xi, r) to be (1− ansi). It is easy to see that Mi fails to compute LP
on input xi.

Diagonalization against Ni. If n = 10ni for some i ∈ N, then we also need to fix the 100ni-th slice
of Q so that Ni fails to compute LQ on input 1ni . (In stage n, this happens after the above diagonalization
against Mi.) We simulate Ni on input 1ni . Note that Ni is a probabilistic machine running in time
2ni , thus it has B := 22

ni computational branches, where each branch has 1/B probability mass. On
each branch, whenever Ni asks a query P(x, r) or Q(r), if this query is not free, then we return the

11In this paper, whenever we enumerate a list of Turing machines, we assume every machine occurs in the list infinitely
many times.

20

corresponding value fixed before; if it is free, then we return 0 as the answer to the query. Note that we
cannot fix the query as there are potentially as many as B queries to fix. Instead, after simulating all the
computational branches, we pick out the “heavy” queries that occur in a lot of branches and fix them:

• A string x is heavy if at least 1
104|x|3 fraction of branches queried some free entry of the form P(x, r).

• An entry Q(r) is heavy if at least 1
104

fraction of branches queried Q(r).

We freeze every heavy x by setting every unfixed entry P(x, r) to be 0. We also fix every heavy Q(r)
to be 0. Note that each computational branch of Ni only makes at most 2ni queries. Therefore, for each
input length m where n ≤ m ≤ 2ni , the number of heavy strings x ∈ {0, 1}m is at most 1042nim3. The
number of entries Q(r) fixed before this stage is at most 25n, and the number of heavy entries Q(r) is at
most 1042ni , therefore the total number of fixed entries in Q after this stage is at most 26n ≪ 2100ni .

After simulating every computational branch of Ni, let p be the probability that Ni outputs 1 on
input 1n. If p < 0.5, then we pick a free r ∈ {0, 1}100ni and set Q(r) = 1; since the number of fixed
entries Q(r) is ≪ 2100ni , such r always exists. If p ≥ 0.5, then we do nothing.

Now we have that Ni solves LQ on input 1ni with probability less than 2/3 (actually, at most 1/2).
Is this always the case in the future? Consider how the future changes to the oracles might affect the
behavior of Ni. Let m be an input length where n < m ≤ 2n. During stage m (which has not happened
yet), we will pick m inputs x1, x2, . . . , xm ∈ {0, 1}m, then some entries of the form P(xi, r) will be set
to be 1. Also note that the probability mass of computational branches that each xi affects is at most

1
104m3 . Therefore, the total probability mass of computational branches affected is at most∑

m∈N

m

104m3
<

1

103
.

Note that we also set at most one entry Q(r) to be 1, where |r| = 100ni. (The next time we diagonalize
against Ni+1 happens in stage ni+1 ≫ 2n.) Since this entry Q(r) is not heavy, the probability mass of
computational branches that it affects is at most 1

104
.

It follows that only an 11
104

fraction of computational branches of Ni will be affected in the future.
That is, let p′ be the probability that Ni outputs 1 on input 1ni at the end of our construction (i.e., after
stage ≫ 2n), then |p′ − p| < 11

104
. Therefore, it cannot be the case that

Pr[Ni(1
ni) = LQ(1

ni)] ≥ 2/3.

Clean-up. At the end of stage n, we fix every unfixed input P(x, r) in the n-th slice to be 0. If
n = 10ni then we also fix every unfixed input Q(r) in the 10n-th slice to be 0. The number of frozen
strings is at most 1042n/10n3 ≤ 2n/2 (note that at most one Ni contributes to the frozen strings since the
input lengths {ni} are very far apart). The number of fixed entries above the (n+ 1)-st slice is at most

25n + n · 2n +
2n/10∑
m=n

1042n/10m3 < 25(n+1).

The complexity of O. We show that the above oracles P and Q are computable in EXPH. It
suffices to present a deterministic algorithm with access to a Σp

3 oracle that on input 1n, outputs the
truth tables of the n-th slices of P and Q in 2O(n) time.

We simulate each stage n′ ≤ n. Before stage n′, we maintain the set of fixed entries P(x, r), Q(r), as
well as the set of frozen strings x. There are at most 2O(n′) many such strings. In what follows, we use
⟨P,Q⟩ to denote (the length-2O(n′) encoding of) the list of fixed entries and frozen strings.

It is easy to diagonalize against each Mi: we simply choose the inputs x1, x2, . . . , xn′ , simulate each
Mi on input xi, and fix the oracles accordingly. This takes 2O(n′) time.

21

To simulate Ni, we need to define the following language capturing the weight of queries. Consider
simulating the probabilistic machine Ni on the current oracle ⟨P,Q⟩. Whenever Ni makes a query, if
this query is not free, then we return the answer of the query; otherwise we return 0. The following two
claims are immediate corollaries of Theorem 23:

Claim 42. There is a language Heavy-String(⟨P,Q⟩, Ni, x) computable in Σp
2 such that:

• if at least 1.1
104|x|3 fraction of computational branches of Ni queried some free entry of the form

P(x,−), then Heavy-String(⟨P,Q⟩, Ni, x) = 1;

• if at most 0.9
104|x|3 fraction of computational branches of Ni queried some free entry of the form

P(x,−), then Heavy-String(⟨P,Q⟩, Ni, x) = 0.

Claim 43. There is a language Heavy-Entry(⟨P,Q⟩, Ni, r) computable in Σp
2 such that:

• if at least 1.1
104

fraction of branches of Ni queried Q(r), then Heavy-Entry(⟨P,Q⟩, Ni, r) = 1;

• if at most 0.9
104

fraction of branches of Ni queried Q(r), then Heavy-Entry(⟨P,Q⟩, Ni, r) = 0.

(Note that both Heavy-String and Heavy-Entry accepts inputs of length 2O(n′).)
With the aid of these two languages, it is possible to simulate stage n′ now. We say a string x is heavy

if Heavy-String(⟨P,Q⟩, Ni, x) = 1, and an entry Q(r) is heavy if Heavy-Entry(⟨P,Q⟩, Ni, r) = 1.
Since there are at most 2O(n′) heavy strings, we can find all of them in 2O(n′) time with access to an
NPHeavy-String oracle. Similarly, since there are 2O(n′) heavy entries, we can find all of them in 2O(n′)

time with access to an NPHeavy-Entry oracle. We freeze these heavy strings and fix these heavy entries
accordingly.

Finally, we estimate the probability that Ni outputs 1 (given current versions of P and Q) in Σp
2,

within additive error 0.1. If this estimation is less than 1/2, then we pick a free r ∈ {0, 1}10n′
and set

Q(r) = 1; otherwise we do nothing.
At the end of stage n′, we fix every unfixed entry in the n′-th slice of P(x, r) to be 0. If n = 10ni

then we also fix every unfixed input Q(r) in the 10n-th slice to be 0. This takes 2O(n′) time.
It is easy to see that simulating the n stages takes 2O(n) time with access to a Σp

3 oracle.

Remark 44. It is instructive to see why this construction only rules out worst-case derandomization instead
of average-case derandomization. (If we could rule out average-case derandomization, then PSPACE ̸= EXPH
follows from Proposition 7!)

The reason is that we do not want to affect the acceptance probability of Ni(1
ni) by too much. Let

m ∈ [10ni + 1, 2ni] be a “future” input length, we say x ∈ {0, 1}m is “used for diagonalization” if there is
some P(x, r) that is fixed to 1. Each string x used for diagonalization influences the accept probability of
Ni by a small amount (1

104m3 in our proof), therefore we cannot afford to have too many strings used for
diagonalization.

If we only want each Mi to fail in the worst case, we only need to use one input xi ∈ {0, 1}m to diagonalize
against each Mi, hence we only need to use ω(1) strings x for diagonalization. On the other hand, if we want
each Mi to fail on average (say, under the uniform distribution over {0, 1}m), then there has to be a lot of
strings (e.g., 2m/poly(m)) used for diagonalization; our previous guarantees on the acceptance probability of
Ni will be completely destroyed.

4.2.2 Barrier for Almost-Everywhere Derandomization without Advice

It is natural to ask whether the results of [IW01] can be improved to almost-everywhere deran-
domization. Recently, substantial progress was made by Chen, Rothblum, and Tell [CRT22], who
showed average-case derandomization on almost every input length based on uniform assumptions. In
particular, assuming lu-CKT[2O(n), 2o(n)] ̸⊆ i. o.BPTIME[2Ω(n)], they showed that RP ⊆ heur-P and
BPP ⊆ heur-P/O(logn).

22

One open question is whether theO(log n)-bit advice in the derandomization of BPP can be eliminated.
In Theorem 11, we present an oracle world where this improvement is not possible. Unfortunately, we
do not know how to implement this oracle in EXPH; nevertheless, we still show in Theorem 12 that
eliminating the O(log n)-bit advice by PSPACE-relativizing techniques would require proving new lower
bounds for SAT.

Reminder of Theorem 11. There is an oracle O such that

BPPO ̸⊆ heur-DTIMEO[2n] and UPO ̸⊆ i. o.BPTIMEO[2n].

Proof. We use a similar construction as in Theorem 10. The difference is that now we want a problem
in BPP that is infinitely-often hard, and a problem in UP that is almost-everywhere hard, therefore we
need to define the oracles differently. In particular, the oracle P only receives one input r, and the oracle
Q receives two inputs (x, r), where |r| = 10|x|. The hard language in BPP is:

LP =

{
1n : Pr

r∼{0,1}n4
[P(r) = 1] ≥ 1/2

}
.

It is guaranteed that for every n, the fraction of length-n4 strings that are in P is either at most 1/3 or
at least 2/3, therefore LP ∈ BPP. On the other hand, the hard language in UP is:

LQ =
{
x : ∃r ∈ {0, 1}10|x|,Q(x, r) = 1

}
.

It is guaranteed that for every input x, there is at most one string r ∈ {0, 1}10|x| such that Q(x, r) = 1,
therefore LQ ∈ UP. We will construct the oracles P and Q such that LP ̸∈ DTIME[2n] and LQ ̸∈
i. o.BPTIME[2n]. Note that LP is a unary language, therefore we also have BPP ̸⊆ heur-DTIME[2n].

We use the same terminologies as before: M1,M2, . . . is an enumeration of deterministic Turing
machines running in 2n time, and N1, N2, . . . is an enumeration of probabilistic Turing machines running
in 2n time. The ℓ-th slice of P is the set of inputs with length ℓ, and the n-th slice of Q is the set of
inputs of the form (x, r) where |x| = n and |r| = 10n. An entry is fixed if its value will never change
in the subsequent construction. We choose n1 to be a large enough constant and define a sequence {ni}
where ni = 210ni−1 for each i ≥ 2. We want every Ni to fail to solve LQ on all but finitely many input
lengths, and every Mi to fail to solve LP on input 1ni .

Our construction proceeds in stages. We guarantee that:

• For every input length n that is not in the sequence {ni}, the n-th slice of P is identically 0.

• For every input length n, there are at most 2n entries in the entire n-th slice of Q that returns 1.

• Consider only the oracle Q. Before the n-th stage, the number of fixed entries beyond the n-th slice
of Q (including the n-th one) is at most 26n, and all of them are fixed to be 0.

We start from the n⋆-th stage for some large enough constant n⋆. For each n ≥ n⋆, in the n-th stage,
we diagonalize against the machines Ni and Mi, and fix the n-th slice of Q as well as the n4-th slice of
P (when n equals some ni). Details follow.

Diagonalization against Ni. Let n′ be the smallest integer in the sequence {ni} such that n′ ≥ n,
and i′ be the index such that n′ = ni′ . The (n′)4-th slice of P may contain either few or most strings,
and we do not know which is the case yet. Therefore, we will diagonalize each Ni twice, first assuming
the n′-th slice of P is nearly empty and then assuming the n′-th slice of P is nearly full. For this reason,
we will need 2n distinct strings xi,b ∈ {0, 1}n, one for each pair of i ∈ [n] and b ∈ {0, 1}. Note that at the
beginning of the n-th stage, there are at most 26n ≪ 210n strings fixed in the n-th slice of Q, therefore
we can always choose 2n strings xi,b where no entry of the form Q(xi,b, r) is fixed.

23

For each i ∈ [n] and b ∈ {0, 1}, we simulate Ni(xi,b), assuming that most entries in the n′-th slice of P
returns b. Note that Ni is a probabilistic machine running in time 2n, thus it has B := 22

n
computational

branches, where each branch has 1/B probability mass. On each branch, whenever Ni asks a query P(r)
or Q(x, r), if this query is already fixed, then we return the corresponding value fixed before; otherwise:

• Suppose the query is P(r). If |r| is in the sequence {n4
i }, then since P(r) is not fixed and |r| ≤ 2n,

we know that |r| = (n′)4 and we return b as the answer. Otherwise (|r| ≠ (n′)4) we return 0.

• Suppose the query is Q(x, r), then we return 0 as the answer.

Again, we can only afford to fix the heavy entries, defined as follows. Let K be the number of machine-
input pairs that we still need to simulate in the future before fixing the (n′)4-th slice of P; note that this
includes both the current Ni(xi,b) and the final Mi′(1

n′
). That is:

K = 2(n− i) + (2− b) +
n′∑

j=n+1

(2j) + 1.

• An entry P(r) is heavy if |r| = (n′)4 and at least 2−(n′+4)K fraction of branches queried P(r).

• An entry Q(x, r) is heavy if at least 1
104|x|3 fraction of branches queried Q(x, r).

We fix every heavy entry according to the way we answer this entry before. That is, every heavy
entry P(r) is fixed to be b and every heavy entry Q(x, r) is fixed to be 0. The number of heavy entries
in P is at most 2(n

′+4)K · 2n; for each input length m ≥ n, the number of heavy entries in the m-th slice
of Q is at most 2n · 104 ·m3.

Let p be the probability (over the B computational branches) that Ni(xi,b) outputs 1. If p < 1/2
then we find a string r such that Q(xi,b, r) is unfixed yet and set Q(xi,b, r) = 1, making xi,b ∈ LQ. Such
a string r exists since we have fixed strictly less than 210n strings in the n-th slice of Q. If p ≥ 1/2 then
we do nothing.

Assuming that most entries in the (n′)4-th slice of P indeed returns b, at this point the probability
that Ni outputs the correct answer on input xi,b is at most 1/2. However, the oracles P and Q might
change in the future, thus the behavior of Ni might also change. What fraction of computational branches
might be affected in the future?

• Consider the K − 1 machine-input pairs that we will simulate in the future before the (n′)4-th slice
of P is completely fixed. The number of heavy entries in the (n′)4-th slice of P that these machines
fix is at most

K−1∑
k=1

2(n
′+4)k · 2n′ ≤ 2 · 2(n′+4)(K−1) · 2n′

.

Therefore, the probability mass of computational branches of Ni(xi,b) influenced by the future
changes to the (n′)4-th slice of P is at most

2 · 2(n′+4)(K−1) · 2n′ · 2−(n′+4)K ≤ 1/8.

• For each m ≤ 2n, there are at most 2m entries in the m-th slice of Q that we will fix to be 1. The
probability mass of computational branches of Ni(xi,b) influenced by these entries is at most

2n∑
m=n

2m

104m3
<

1

103
.

It follows that the future modifications to the oracles P and Q will only affect the accept probability of
Ni(xi,b) by

1
8 + 1

103
< 1

6 . Therefore, it cannot be the case that

Pr[Ni(xi,b) = LQ(xi,b)] ≥ 2/3.

24

Diagonalization against Mi. If n = ni for some i ∈ N, then we want that Mi does not compute
LP on input 1n correctly. We simulate Mi on the input 1n. When Mi asks a query P(r) or Q(x, r), if
this query is already fixed, then we return the corresponding value fixed before; otherwise we return 0
and fix this queried entry.

After this simulation, we argue that only a small fraction of entries in the n4-th slice of P are fixed.
First, the simulation of Mi(1

n) fixes at most 2n entries. Second, there are at most K =
∑n

j=1(2j) = O(n2)

machine-input pairs Ni(xi,b) simulated so far, and the k-th such machine fixes at most 2(n+4)k ·2n entries.
Therefore, the number of entries fixed by some previous Ni(xi,b) is at most

K∑
k=1

2(n+4)k · 2n ≤ 2O(n3).

It follows that all but 2O(n3) entries in the n4-th slice of P are not fixed yet. Let b ∈ {0, 1} be the output
bit of Mi(1

n), then we set LP(1
n) = 1− b by fixing every unfixed entry in the n4-th slice of P to be 1− b.

We have that on input 1n, LP satisfies the BPP promise, and Mi fails to solve LP .

Clear-up. At the end of stage n, we fix every unfixed input Q(x, r) on the n-th slice to be 0. It is
easy to see that there are at most 2n entries in the n-th slice of Q(x, r) that returns 1.

During the n-th stage, the number of entries we fixed beyond the (n+ 1)-st slice of Q is at most

2n +

2n∑
m=n+1

2n · 104 ·m3 ≤ 25n.

Thus the total number of entries we fixed beyond the (n+1)-st slice ofQ is at most 26n+25n < 26(n+1).

Unfortunately, we do not know how to compute the above oracles in EXPH. The reason is that when we
diagonalizeNi on input length n, the number of heavy entries P(r) we need to fix is 2(n

′+4)K ·2n = 2poly(n
′).

Since n′ might be exponentially large compared to n, this upper bound might be doubly exponential.
Nevertheless, we show that under the assumption that

SAT ∈ DTIME[n · polylog(n)] ∩ NC, (*)

the oracles P,Q in Theorem 11 can be computed in PSPACE. It follows that

Corollary 45. Any PSPACE-relativizing proof of

PSPACE ̸⊆ i. o.BPP =⇒ BPP ⊆ heur-SUBEXP

would also imply a breakthrough lower bound for SAT, i.e., refuting Equation (*).

Reminder of Theorem 12. Suppose that SAT ∈ DTIME[n · polylog(n)] ∩ NC. Then there is an oracle
O satisfying the conclusions of Theorem 11 that can be computed in polynomial space.

We sketch some intuition before presenting the full proof of Theorem 12. The bottleneck of putting O
into EXPH is that we do not have enough space to store all the heavy entries P(r) fixed by a probabilistic
machine Ni, as there might be doubly-exponentially many of them. Therefore, whenever we simulate a
machine Ni and it asks a query P(r), we have to compute from scratch whether P(r) was fixed by a
previous machine. If we have an oracle Heavy that given r, decides whether P(r) was already fixed,
then we can simulate Ni in exponential time with a constant number of alternations (using Theorem 24).
However, there are poly(n) machines Nj simulated before Ni, and each time we invoke Heavy, we need
to simulate these machines to see if any of them has already fixed P(r). It follows that the simulation of
Ni actually requires poly(n) alternations and 2poly(n) time. Still, under a strong enough assumption such
as (*), we can simulate these poly(n) alternations in 2poly(n) time.

25

Proof of Theorem 12. Consider the construction in Theorem 11, with the only difference that we do not
calculate the precise probabilities; instead, we compute their approximations in PH. Since SAT ∈ NC,
we have EXP = PSPACE by padding, thus it suffices to construct the oracles in 2poly(n) time.

The most involved part of this proof is to compute the following function Heavy(n, ⟨P,Q⟩, i, b, xi,b, r),
which indicates whether P(r) is a heavy query of the probabilistic machine Ni on input xi,b. Here, the
input of Heavy consists of the description of oracles P and Q, an integer i ≤ n, an input xi,b ∈ {0, 1}n,
and a query r ∈ {0, 1}(ni′)

4
(where ni′ is the smallest element in the sequence {ni} such that ni′ ≥ n). We

may assume |r| ≤ 2n as otherwise Ni could never query P(r). The oracle description ⟨P,Q⟩ will contain
the following information:

• We record a table of all entries in Q that are fixed; there are at most
∑

m≤n 2
m + 26n ≤ 2O(n) such

entries. For each entry, we also record a timestamp indicating when this entry is fixed.

• We record all entries of P up to the ni′−1-th slice (but we do not include any information of the
ni′-th slice of P); the description length of P is also at most 2O(n).

Note that the input length of Heavy is at most 2O(n). Instead of requiring Heavy to decide exactly
whether P(r) is a heavy query, we only require a 2-approximation: if P(r) is queried by Ni(xi,b) w.p. at
least 2−(n′+4)K then Heavy returns 1, while if P(r) is queried w.p. at most 2−(n′+4)K/2 then Heavy
returns 0.

Let k be the number of machine-input pairs we have simulated before Ni(xi,b) (inclusive). That is,

k :=
∑
m<n

(2m) + 2i+ b+ 1 ≤ O(n2).

We will show that:

Claim 46. If SAT ∈ DTIME[n · polylog(n)], then we can compute Heavy in deterministic O(2k
2
) time.

Proof. Consider simulating (a random computational branch of) Ni(xi,b) while answering the oracle
queries of Ni accordingly.12 Note that we have not recorded the ni′-th slice of P in our description
⟨P,Q⟩. As a consequence, whenever Ni(xi,b) asks a query P(rq) where |rq| = ni′ , we need to recursively
call Heavy to decide whether this query was already fixed and which value it was fixed to. We enumerate
every ni′−1 < ñ ≤ n, every machine Nj (j ≤ ñ), and every bit b′. Suppose that we feed the machine
Nj with the input x′j,b′ ∈ {0, 1}ni′ .13 Using the timestamps recorded in the table Q, we can recover the
state of the oracle Q before the simulation of Nj(x

′
j,b′); we call this oracle Q′. (The portion of oracle P

up to the ni′−1-th slice remains the same.) Then, we call Heavy(ñ, ⟨P,Q′⟩, j, b′, x′j,b′ , rq) to see if this
query is a heavy query fixed by N ′

j . If it is, then we return P(rq) := b′; otherwise we search through the
next machine. If the query P(r) was not fixed before and was asked in this simulation. then we return
1; otherwise we return 0.

The above argument implies that Heavy can be computed recursively in the following sense. There is
a machine VHeavy that gets input := (n, ⟨P,Q⟩, i, b, xi,b, r) and some randomness z ∈ {0, 1}2O(n)

(denoting
a random computational branch of Ni(xi,b)), runs in 2O(n) time with poly(n) invocations of the Heavy
oracle, and outputs 0 or 1. Let ε := 2−(n′+4)/K , we want that Heavy(input) = 1 if Prz[VHeavy(input; z) =
1] ≥ ε, and Heavy(input) = 0 if Prz[VHeavy(input; z) = 1] ≤ ε/2.

We can use induction to show that Heavy can be computed in (deterministic) O(2k
2
) time. In

particular, by the induction hypothesis, each call of the Heavy oracle made by VHeavy on input can
be computed in O(2(k−1)2) time. Therefore, VHeavy runs in at most 2(k−1)2 · poly(k) time. By The-

orem 24, there is a Σ5TIME[2(k−1)2 · poly(k)] time machine H̃eavy such that H̃eavy(input) = 1 if

12That is, whenever Ni asks a query P(r) or Q(x, r) that is fixed, we answer accordingly. Whenever Ni asks a query P(r)
that is not fixed, if |r| = (n′)4 then we return b, otherwise we return 0. Whenever Ni asks a query Q(x, r) that is not fixed,
we return 0.

13We assume that there is an easy and deterministic way of assigning the inputs xj,b′ for each pair (j, b′).

26

Prz[VHeavy(input; z) = 1] ≥ ε and H̃eavy(input) = 0 if Prz[VHeavy(input; z) = 1] ≤ ε/2. By our
hypothesis that SAT ∈ DTIME[n · polylog(n)], there is a deterministic machine Heavy that runs in

2(k−1)2 · poly(k) < 2k
2
time and decides the same language as H̃eavy. ⋄

Now we show that given an integer N , it is possible to print the N -th slice of P and Q in deterministic
2poly(N) time. We simulate the stages n for n = 1, 2, · · · , where during each stage we need to diagonalize
against probabilistic machines N1, N2, · · · . If n = ni for some i ∈ N, then we also need to diagonalize
against Mi.

• For each Ni, we can list the set of its heavy queries of the form Q(x, r) in deterministic 2poly(n)

time with a PHHeavy oracle. Note that Heavy can be decided in time quasi-polynomial in its input
length; also recall we assumed that SAT ∈ P. Thus we can enumerate the heavy queries of the form
Q(x, r) in deterministic 2poly(n) time (without additional oracles). We fix all these queries. (Note
that we do not fix the heavy queries of the form P(r); instead, we use the oracle Heavy to decide
whether a query P(r) is fixed.) Then we use the PH oracle to estimate the probability that Ni(xi,b)
outputs 1. If the probability is small then we pick some r such that Q(xi,b, r) is unfixed, and fix
this entry to 1; otherwise we do nothing.

• Before we diagonalize against Mi, we spend 2poly(n) time to retrieve the list of fixed entries in the
n4-th slice of P from the oracle Heavy. Then we simulate Mi, and for every unfixed query, we fix
it to be 0. Let b ∈ {0, 1} be the output of Mi, then we set every unfixed entry in the n4-th slice of
P to be 1− b.

It is easy to see that the above process runs in 2poly(N) time.

Remark 47. A beautiful line of work [For00, LV99, FLvMV05, DvM06, Wil06, Wil08, BW15, MW17] inves-
tigated time-space trade-off lower bounds for SAT. Lower bounds proved in these works come in two flavors:
“SAT cannot be solved by a machine with certain time and space bounds simultaneously”, or “SAT either can-
not be solved in some time bound, or cannot be solved in some space bound (even by two different machines)”.
The state-of-the-art lower bounds of the first flavor is that SAT cannot be solved in nc time and no(1) space
simultaneously, for every c < 2 cos(π/7) ≈ 1.801 [Wil08]; note that such lower bounds do not contradict (*).
The state-of-the-art lower bounds of the second flavor is that SAT either requires more than n ·polylog(n) time

or requires log2−o(1) n depth [MW17]. To the best of our knowledge, it is still an open question to disprove
(*).

5 Barriers for Explicit Constructions

5.1 PSPACE-Relativizing Pseudodeterministic Constructions

In this section, we show that the previous results on pseudodeterministic constructions are PSPACE-
relativizing. A property Q is dense if for every n ∈ N, |Q ∩ {0, 1}n| ≥ 2n/poly(n). For every dense
property Q computable in polynomial time, Oliveira and Santhanam [OS17b] presented a pseudodeter-
ministic algorithm that on input 1n, outputs a canonical element in Qn with high probability. Their
pseudodeterministic algorithm runs in subexponential time, is zero-error (i.e., the algorithm never out-
puts any element besides ⊥ (“failure”) and the canonical one), and is correct on infinitely many input
lengths n. We verify that their argument holds relative to every oracle O ∈ PSPACE.

Proposition 48 (Formal Version of Proposition 13). Let O ∈ PSPACE. Then for every ε > 0 and every
dense property Q ∈ PO, there exist a zero-error pseudodeterministic O-oracle algorithm A with running
time 2n

ε
and an infinite sequence {xni}i∈N such that xni ∈ Q ∩ {0, 1}ni for each i ∈ N and that

Pr
A

[
AO(1ni) = xni

]
≥ 3/4.

27

Proof Sketch. We follow the analysis from [OS17b].
Let c ≥ 1 and Q ∈ DTIMEO[nc] be a dense property. It suffices to show an HSG {Hn}n of seed length

nε such that Hn can be computed pseudodeterministically with zero error in time 2n
ε
with oracle access

to O, and that for infinitely many n, Hn hits Q on input length n. This is because we can then enumerate
all z ∈ {0, 1}n

ε

and find the first z such that Q(Hn(z)) = 1. Such a z exists since Q is a dense property
and Hn hits Q.

First of all, using the “easy witness” method [Kab01], one can show that there exists a family of sets
{Heasy

n ⊆ {0, 1}n}n, such that each Heasy
n is computable deterministically in time 2n

ε
with oracle access to

O, and that if Q avoids {Heasy
n }n on all but finitely many input length n, then BPPO = ZPPO. Roughly

speaking, Heasy
n contains the truth tables of all O-circuits C : {0, 1}logn → {0, 1} of size at most nε/10. If

Q avoids Heasy
n , then we can obtain, with high probability and without error, an n-bit truth table that

has O-circuit complexity at least nε/10, by randomly picking an n-bit string that is accepted by Q. Such
hard truth tables can then be used to derandomize BPPO. (See [OS17b, Proof of Lemma 2] for details.)

If BPPO ̸= ZPPO, {Heasy
n }n will give a valid HSG. Now assume BPPO = ZPPO. It suffices to construct

an infinitely often HSG that can be computed pseudodeterministically with oracle access to O, since it
can be made zero-error using the assumption BPPO = ZPPO.

We consider two cases. Suppose PSPACE ⊆ BPPO. Then the existence of a valid HSG follows easily
from Lemma 26. Now suppose PSPACE ̸⊆ BPPO. We can also use the following hardness-to-randomness
construction to obtain a valid HSG.

Theorem 49 ([IW01, TV07, KvM02]). Let O be any oracle. If PSPACE ̸⊆ BPPO, then for every b, c ≥ 1,

there is a sequence {Gℓ}ℓ≥1, where Gℓ : {0, 1}ℓ → {0, 1}ℓ
b

is computable in time 2O(ℓ), such that for every
language L ∈ DTIMEO[nc], there are infinitely many ℓ such that∣∣∣∣∣ Pr

x∼{0,1}ℓb
[L(x) = 1]− Pr

z∼{0,1}ℓ
[L(Gℓ(z)) = 1]

∣∣∣∣∣ ≤ 1

10
.

This completes the proof of Proposition 48.

5.2 Bounded-Relativization Barriers for Explicit Constructions

5.2.1 Barriers for Almost-Everywhere Pseudodeterministic Constructions

We show that EXPH-relativizing techniques cannot prove almost-everywhere pseudodeterministic con-
structions, even if the construction algorithms are allowed 2o(n) time. The underlying oracle uses the
query complexity lower bounds proved by Goldwasser, Impagliazzo, Pitassi, and Santhanam [GIPS21]
in a black-box fashion. (We thank Rahul Santhanam for pointing out that the query complexity lower
bounds imply an EXPH-computable oracle without almost-everywhere pseudodeterministic constructions
in a black-box fashion.)

Definition 50. A pseudodeterministic decision tree for a search problem S is a distribution T over
decision trees with the following property: For every input x, there is a canonical value o such that with
probability at least 2/3, T (x) = o. Let psPdt(S) denote the minimum depth of any pseudodeterministic
decision tree for S.

Consider the following search problem denoted as Find1. The input is a string x ∈ {0, 1}N where
it is guaranteed that there are at least N/2 bits in x that are equal to 1. The problem is to find some
i ∈ [N] such that xi = 1. The following lower bound on the pseudodeterministic query complexity of
Find1 was proved in [GIPS21]:

Theorem 51 ([GIPS21]). psPdt(Find1) = Ω(
√
N).

28

We use this result as a black box and construct an oracle O ∈ EXPH without almost-everywhere
pseudodeterministic constructions running in 2o(n) time:

Theorem 52. There is an oracle O ∈ EXPH and a dense property Q ∈ PO such that the following holds.
For every randomized (and purportedly pseudodeterministic) algorithm A that runs in 2o(n) time with
oracle access to O and every infinite sequence of outputs {xn}n∈N where each xn ∈ Q∩ {0, 1}n, there are
infinitely many input lengths n ∈ N such that

Pr[A(1n) = xn] ≤ 3/4.

Proof. Let M1,M2, · · · be an enumeration of probabilistic machines running in 20.1n time. Let n1 be a
large enough constant and define the sequence {ni} where ni = 2ni−1 for each i ≥ 2. We let Q = O
itself be the dense property without pseudodeterministic construction algorithms. In particular, we want
that for every i ∈ N, Mi(1

ni) fails to generate a canonical string x ∈ O ∩ {0, 1}ni . Naturally, our oracle
construction proceeds in stages, where for each i ∈ N, the ni-th slice of O is constructed by carefully
diagonalizing against Mi; on the other hand, if n ∈ N is not in the sequence {ni}, then we simply let O
accept every string of length n.

Now we show how to construct the ni-th slice of O in the i-th stage. The idea is simple: construct
the (purportedly pseudodeterministic) decision tree T corresponding to Mi, find an exponential-length
input tt of Find1 on which T fails, and let the truth table of the ni-th slice of O be tt. More precisely:

• Converting Mi into a distribution of decision trees. We define the distribution of decision
trees T . The input to Find1 has length 2ni and is considered as the truth table of the ni-th slice
of O. Note that since 20.1ni ≪ ni+1, for every n′ ≤ 20.1ni such that n′ ̸= ni, the n′-th slice of O are
fixed. To sample a (deterministic) decision tree T from T , sample a sequence of random coins fed
to Mi and simulate Mi on the oracle O. Whenever Mi makes a query O(x), if |x| = ni, then the
decision tree asks the x-th bit of our input; otherwise we return the already-fixed value of O(x).

• Invoking the lower bound. Note that T only makes 20.1ni < o(
√
2ni) queries. By Theorem 51,

there exists an input tt ∈ {0, 1}2ni such that T fails to solve Find1 on input tt pseudodeterministi-
cally. That is, for every valid output x such that ttx = 1, Pr[T (tt) = x] < 2/3. Let the truth table
of the ni-th slice of O to be such a tt.

It is easy to see that for every probabilistic machine A that runs in 2o(n) time with oracle access
to O, and every infinite sequence of outputs {xn}n∈N where each xn ∈ O ∩ {0, 1}n, for every i such
that A = Mi, the probability that A(1ni) outputs xni is at most 3/4.

• Complexity of O. Let O≤ni−1 denote the description of the oracle O up to the ni−1-th slice (note
that O≤ni−1 can be described in poly(2ni−1) ≤ poly(ni) bits), and x ∈ {0, 1}ni . Note that O≤ni−1

and tt together defines the oracle O up to input length ni+1−1, so the behavior of MO
i is completely

determined by Mi,O≤ni−1 , and tt. Let ProbEst(O≤ni−1 , tt,Mi, x) be an oracle such that

Pr[MO
i (1ni) = x] > 3/4 =⇒ ProbEst(O≤ni−1 , tt,Mi, x) = 1,

Pr[MO
i (1ni) = x] < 2/3 =⇒ ProbEst(O≤ni−1 , tt,Mi, x) = 0.

By Theorem 23, the oracle ProbEst can be implemented in DTIME[2O(ni)]PH. Consider the following
algorithm with oracle access to ProbEst that prints a truth table tt. The algorithm maintains the
prefix of a truth table which is initially the empty string, and extends this prefix bit by bit. Suppose
that we have a prefix of length ℓ, denoted as tt′ ∈ {0, 1}ℓ. To fix the (ℓ+ 1)-st bit of tt′, we check
if there exists a truth table tt such that (1) for every x ∈ {0, 1}ni , ProbEst(O≤ni−1 , tt,Mi, x) = 0,
and (2) tt′ ◦ 0 (tt′ concatenated with a bit 0) is a prefix of tt. If there is such a tt, then we append
0 to the end of tt′; otherwise we append 1 to the end of tt′.

29

It is clear that the algorithm always outputs a truth table tt on which Mi fails. Since ProbEst runs
in DTIME[2O(ni)]PH, the whole algorithm also runs in DTIME[2O(ni)]PH. Using this algorithm, it is
easy to construct the oracle O in EXPH.

Corollary 53. If there is a PSPACE-relativizing proof that for every dense property Q computable in
polynomial time, there is a pseudodeterministic construction for Q running in 2o(n) time that is correct
on almost every input length, then L ̸= NP.

5.2.2 Barriers for Deterministic Constructions and Lower Bounds for MKtP

In this section, we construct an oracle in EXP relative to which there is no deterministic construction
in 2n/nω(1) time (even infinitely often), showing that any non-trivial deterministic constructions using
PSPACE-relativizing techniques would separate PSPACE from EXP.

As an interesting corollary, it is easy to approximate the Kt complexity to an (1 + ε) factor in this
oracle world in deterministic nO(logn) time. Therefore, although it is EXP-hard to approximate the Kt
complexity under (P/poly)-truth-table reductions and NP-Turing reductions [ABK+06], any PSPACE-
relativizing proof that the Kt complexity requires deterministic nω(logn) time to approximate would
separate PSPACE from EXP.

Definition 54. For a constant ε > 0, GapεMKtP is defined to be the promise problem (YESn,NOn)n∈N,
where

YESn := {(x, s) ∈ {0, 1}n × N : Kt(x) ≤ s} ,
NOn := {(x, s) ∈ {0, 1}n × N : Kt(x) > (1 + ε) · s} .

Our proof relies heavily on the equivalence between non-trivial derandomization and the hardness of
GapεMKtP [Hir20a]. It is not hard to construct an oracle under which non-trivial derandomization is
impossible, which means that a dense subset of the complement of MKtP can be accepted by an efficient
algorithm A. Then, we use the worst-case to average-case reduction of [Hir18] to transform A into a
worst-case approximation algorithm for GapεMKtP.

Theorem 55. There exists an oracle O ∈ EXP such that

1. there is a dense property Q ∈ PO such that every deterministic algorithm that runs in time 2n/nω(n)

fails to find a string in Q ∩ {0, 1}n on almost every input length n, and

2. GapεMKtPO ∈ DTIMEO[nO(logn)] for every constant ε > 0.

To show the worst-case to average-case reduction, we use the following pseudorandom generator
construction.

Lemma 56 (cf. [Hir18]). For any d,m ≤ 2n, ε > 0, there exists a “pseudorandom generator construction”

G : {0, 1}n × {0, 1}d → {0, 1}m

such that for any distinguisher D : {0, 1}m → {0, 1}, if

Pr
w∼{0,1}m

[D(w) = 1]− Pr
z∼{0,1}d

[D(G(x, z)) = 1] ≥ 1

2
,

then
Kpoly(n),D(x) ≤ exp(ℓ2/d) ·m+ d+O(log n),

where ℓ = O(log n). Moreover, G(x, z) can be computed in time poly(n).

30

Proof of Theorem 55. We construct an oracle O ∈ EXP under which a dense subset of MKtP is in P. We
start with n := 1, O := ∅, and F := ∅, where F is a set of “frozen” strings. The construction of O in
Stage n is as follows. Let On denote the state of the oracle O at the beginning of stage n. Let En be the
set of all strings x ∈ {0, 1}n such that KtOn(x) ≤ n− c log n, where c is a sufficiently large constant (e.g.,
c := 3). Let Fn be the set of all strings q ∈ {0, 1}∗ such that there exist k ∈ [n− c log n] and a description
d ∈ {0, 1}k of a Turing machine such that the universal Turing machine UOn on input d makes the query
q in time 2n−k−c logn. Then, we update F := F ∪Fn and On+1 := On ∪ ({0, 1}n \ (En ∪F)) and move on
to the next stage n+1. This completes the description of the oracle O :=

⋃
n∈NOn. It is easy to observe

that O ∈ EXP.
The oracle O is a dense subset of

{
x : KtO(x) > n− c log n

}
in the following sense:

1. x ̸∈ O for every string x ∈ {0, 1}n such that KtO(x) ≤ n− c log n.

2. x ∈ O for at least half of the strings x ∈ {0, 1}n.

To see the first property, it suffices to show that if x ∈ {0, 1}n satisfies KtO(x) ≤ n − c log n, then
KtOn(x) ≤ n − c log n (which implies x ∈ En and thus x ̸∈ O). Assuming that there exists a string d
such that UO(d) outputs x in time 2n−c logn−|d|, we claim that UOn(d) also outputs x. If not, there exists
a query in O \ On made by UO(d). Let q be the first query in O \ On. The same query is also queried
during the computation of UOn(d). Thus, q ∈ Fn, which implies q ̸∈ O, which is a contradiction.

To see the second property, we bound the size of En ∪ F at Stage n. The size of En is at most∑
k∈[n−c logn] 2

k ≤ 2n/nc−1. The number |Fn| of frozen strings in Stage n is at most∑
k∈[n−c logn]

2k · 2n−k−c logn ≤ 2n/nc−1.

Thus, the number |F | of frozen strings until Stage n is at most
∑n

n′=1 |Fn′ | ≤ 2n/nc−2. Overall, we obtain

|O ∩ {0, 1}n | ≥ 2n − |En| − |F | ≥ 1

2
· 2n.

Let Q := O. We prove that Q ∈ PO is a dense property such that every 2n/nω(1)-time deterministic
algorithm A fails to find a string in Q∩{0, 1}n on input 1n. By the definition of Kt, we have KtO(A(1n)) ≤
O(log n) + log(2n/nω(1)) ≤ n− ω(log n). Thus, the output A(1n) of A is not in O.

We now use the worst-case to average-case reduction of [Hir20a] to obtain an approximation algorithm
AO for GapεMKtP. Let x ∈ {0, 1}n and s ∈ N be an instance of GapεMKtP. Let d = k ·O(log2 n), where
k = k(ε) is a sufficiently large constant that will be chosen depending on ε > 0. We may assume without
loss of generality that O(k2 · log2 n) ≤ s ≤ n + O(log n) because whether Kt(x) ≤ O(k2 · log2 n) or not
can be decided in time nO(k2·logn) by an exhaustive search. Let m be a parameter chosen later. Let G
be the pseudorandom generator construction of Lemma 56. The algorithm AO accepts (x, s) if and only
if G(x, z) ̸∈ O for every z ∈ {0, 1}d. The running time of AO is 2dpoly(n) = nO(logn).

We prove the correctness of AO. Assume that KtO(x) ≤ s. Then, for every z ∈ {0, 1}d, we have

KtO(G(x, z)) ≤ KtO(x) +O(d+ log n) ≤ s+O(d+ log n) ≤ m− c logm,

where the last inequality holds by choosing a sufficiently large m = s + O(d + log n). It follows that
G(x, z) ̸∈ O and that AO accepts (x, s). Conversely, assume that AO accepts (x, s), which means that
Prz∼{0,1}d [O(G(x, z)) = 1] = 0. We claim that KtO(x) ≤ (1 + ε) · s. Since O is dense, we have

Pr
w∼{0,1}m

[O(w) = 1]− Pr
z∼{0,1}d

[O(G(x, z)) = 1] ≥ 1

2
.

31

By Lemma 56, we obtain

Kpoly(n),O(x) ≤ exp(O(log2 n)/d) ·m+ d+O(log n) ≤ exp(1/k) ·m+O(k · log2 n).

In particular,

KtO(x) ≤ exp(1/k) ·m+O(k · log2 n) ≤ (1 +O(1/k)) ·m+O(k · log2 n) ≤ (1 + ε) ·m,

where we choose a sufficiently large k := O(1/ε) and use that m ≥ O(k2 · log2 n) in the last inequality.

6 Barriers for Circuit Lower Bounds for Merlin–Arthur Classes

Buhrman, Fortnow, and Thierauf [BFT98] showed that MA-EXP ̸⊆ P/poly and Santhanam [San09]
proved that MA/1 ̸⊆ SIZE[nk] for every constant k. Their techniques rely heavily on win-win analysis
and thus only yield circuit lower bounds that hold infinitely often.

This section presents an EXPH-relativizing barrier for proving almost-everywhere versions of these
lower bounds. In Section 6.1, we show that Santhanam’s circuit lower bound is PSPACE-relativizing. In
Section 6.2, we construct an EXPH oracle under which the almost-everywhere lower bound fails.

6.1 PSPACE-Relativizing Circuit Lower Bounds for Merlin–Arthur Classes

Theorem 57. Let O ∈ PSPACE. For every k ∈ N, MAO/1 ̸⊆ SIZEO[nk].

We need the notion of an instance checker.

Definition 58 (Instance-Checkable Languages). A language L is said to be same-length instance-
checkable if there is a probabilistic polynomial-time oracle machine I(−) with output in {0, 1,⊥} such
that for any input x:

1. I(−) only makes oracle queries of length |x|.

2. IL(x) = L(x) with probability 1.

3. IA(x) ∈ {L(x),⊥} with probability at least 2/3 for any oracle A.

Lemma 59 ([TV07, FS04]). There is a PSPACE-complete language Lhard that is same-length instance-
checkable.

We now show Theorem 57. The proof follows closely to that of [San09], which employs a win-win
argument. Let Lhard be the language from Lemma 59. We will consider two cases: Lhard ∈ SIZEO[poly]
and Lhard ̸∈ SIZEO[poly].

Lemma 60. Let O ∈ PSPACE. If Lhard ∈ SIZEO[poly], then for every k ∈ N, MAO ̸⊆ SIZEO[nk].

Proof. We first note that Lhard ∈ SIZEO[poly] implies Lhard ∈ MAO. More specifically, the MAO protocol
for Lhard on input x ∈ {0, 1}n is as follows. Merlin sends to Arthur the polynomial-size O-oracle circuit
Cn that computes Lhard on inputs of length n. Then Arthur, which has access to the oracle O, runs the
(same-length) instance checker I for Lhard on x while answering its queries using Cn and outputs 1 if
and only if ICn(x) = 1. The correctness follows from the property of the instance checker. Since Lhard is
PSPACE-complete, we have PSPACE ⊆ MAO.

Following the (folklore) diagonalization argument showing that PSPACE does not have fixed-polynomial-
size circuits, one can show that for every k ≥ 1, there is a language L ∈ PSPACE that does not have
O-oracle circuits of size nk. This argument works because O ∈ PSPACE and we can simulate any size-(nk)
O-oracle in polynomial space. Then by the previous paragraph, we have L ∈ PSPACE ⊆ MAO.

32

Lemma 61. Let O be any oracle. If Lhard ̸∈ SIZEO[poly], then for every k ∈ N, MAO/1 ̸⊆ SIZEO[nk].

The proof of Lemma 61 is essentially the same as the original proof in [San09]. We present the detail
here for completeness.

Proof of Lemma 61. We define the following padded version of Lhard, called Lk, as follows.

x ∈ Lk iff x = yz, where y ∈ Lhard, |z| > |y|, |z| = 2ℓ for some integer ℓ and (|y| + |z|)k+1 ≤
s(|x|) < (|y|+2|z|)k+1, where s(m) is the minimum size of an O-oracle circuit that computes
Lhard on inputs of length m.

We will show that Lk is in MAO/1, but does not have O-oracle circuits of size nk.
For the upper bound, we first specify the sequence of advice bits. We say that input length n ∈ N

is good for Lk if n = m + 2ℓ for non-negative integers m and ℓ, n > 2m and (m + 2ℓ)k+1 ≤ s(m) ≤
(m+ 2 · 2ℓ)k+1, where s(m) is the minimum size of an O-oracle circuit that computes Lhard on inputs of
length m. Note that if n is good for Lk, m = m(n) and ℓ = ℓ(n) are well-defined, since in this case, we
can obtain ℓ by looking at the most significant bit of the binary representation of n. For input length n,
we let the corresponding advice bit bn = 1 iff n is good.

Consider the following procedure for deciding Lk. On input x ∈ {0, 1}n, Arthur first checks if the
advice bit bn is 1. If not, reject immediately, Otherwise, we have n = m + 2ℓ for some m, ℓ ∈ N and
Arthur can obtain yz := x, where |y| = m, |z| = 2ℓ. Note that in this case, x ∈ Lk if and only if y ∈ Lhard.
Then Merlin sends to Arthur the minimum O-oracle circuit Cm that computes Lhard on inputs of length
m. Note that the size of this circuit is s(m) < (m + 2 · 2ℓ)k+1 ≤ nO(1) since n is good. Then Arthur,
which has oracle access to O, runs the (same-length) instance checker I for Lhard on y while answering its
queries using Cm, and he outputs 1 if and only if ICm(y) = 1. The correctness follows from the property
of the instance checker.

For the lower bounds, suppose for the sake of contradiction that Lk ∈ SIZEO[nk]. Let {Dn}n be a
circuit family that computes Lk, where each Dn is an O-oracle circuit of size nk.

For each m ∈ N, let s(m) be the minimum size of an O-oracle circuit that computes Lhard on inputs
of length m. By assumption, Lhard ̸∈ SIZEO[poly], so there is an infinite set I ⊆ N such that for each
m ∈ N ,

s(m) > (m+ 1)k+1.

Consider the following sequence of circuits {Cm}m∈I that computes Lhard on the input lengths in I. For
each m ∈ I, consider the the unique integer ℓ such that

(m+ 2ℓ)k+1 ≤ s(m) < (m+ 2 · 2ℓ)k+1. (2)

Such an ℓ exists since (m + 1)k+1 < s(m) ≤ 2m for m ∈ I. Then on input x ∈ {0, 1}m, Cm simulates

Dm+2ℓ on x12
ℓ
. Since m + 2ℓ is a good length and Dm+2ℓ computes Lk correctly on inputs of length

m + 2ℓ, Cm+2ℓ

(
x12

ℓ
)
= 1 if and only if x ∈ Lk. Note that the size of Cm is at most the size of Dm+2ℓ ,

which is at most (m+ 2ℓ)k+1 < s(m). This contradicts Equation (2).

Proof of Theorem 57. Theorem 57 follows directly from Lemma 60 and Lemma 61.

6.2 Bounded-Relativization Barriers for Circuit Lower Bounds

We present an EXPH-relativization barrier for proving an almost-everywhere version of Santhanam’s
lower bound. The oracle construction is based on [BFT98]. Although the construction in [BFT98] does
not seem to be in EXPH, by modifying the construction using approximation counting in PH, we obtain
an EXPH-computable oracle under which MA/1 is computable by linear-sized circuits infinitely often.

33

Lemma 62. There exists an oracle O ∈ EXPH such that

MATIMEO[2n]/1 ⊆ i. o.SIZEO[O(n)].

Proof. We prove pr-MATIMEO[2n] ⊆ i. o. SIZEO[O(n)] for some oracle O. We enumerate all the 2n-time
randomized machine M1,M2, · · · , where each Mi takes an input x of length n and a certificate y ∈ {0, 1}2

n

and runs in time 2n. Note that any MA-type algorithm that runs in time 2n can be simulated by Mi for
some i.

Let c be some universal constant (c := 5 suffices). Let Rn := {0, 1}cn. The input to O is of the form
(r, i, x), where r ∈ Rn, i ∈ [n], and x ∈ {0, 1}n for some n ∈ N. For any r ∈ {0, 1}cn, let Sr be the set of
(r, i, x) such that i ∈ [n] and x ∈ {0, 1}n.

We will construct an oracle O and a family of “advice strings” r∗n ∈ Rn for infinitely many n such
that

1. if PrMi [M
O
i (x, y) = 1] ≥ 3

4 for some y, then (r∗n, i, x) ∈ O, and

2. if PrMi [M
O
i (x, y) = 1] ≤ 1

4 for any y, then (r∗n, i, x) ̸∈ O.

Assuming this, it is easy to construct an O-oracle linear-size circuit that simulates Mi as follows. The
circuit takes r∗n as hard-wired input and accepts an input x ∈ {0, 1}n if and only if (rn, i, x) ∈ O.

Here is the construction of O. We start with O := ∅. Some pairs (i, x) will be marked “forced”,
meaning that Mi accepts on input x. Some strings r will be marked “frozen”, meaning that the behavior
of O on inputs in Sr will not be changed after r is frozen. Initially, no pair is forced and no advice string
is frozen. We start with Stage n := 1. In Stage n, we construct an oracle as follows.

Stage n: Consider the following condition, which we call (∗)θ for a threshold θ ∈ (0, 1).

There exist an unfrozen string r ∈ Rn, an unforced pair (i, x) ∈ [n]× {0, 1}n, an oracle B ⊆ Sr, and
a certificate y ∈ {0, 1}2

n

such that

Pr
Mi

[
MO∪B

i (x, y) = 1
]
≥ θ,

where the probability is taken over the coin flip of the randomized machine Mi.

We need to argue that the final oracle O can be computed in EXPH. It may not be possible to check
(∗)3/4 exactly in EXPH, but using approximate counting in PH (Theorem 23), we can check whether
a promise variant of (∗)3/4 is satisfied or not in EXPH. Specifically, by Theorem 23, there exists an

algorithm in PH that, given as input n and O (which can be encoded as a binary string of length 2O(n)),
accepts if (∗)3/4 holds, and rejects if (∗)1/2 does not hold. By the standard search-to-decision reduction,
we obtain a PH-oracle polynomial-time algorithm S that outputs r ∈ Rn, (i, x) ∈ [n]× {0, 1}n, B ⊆ Sr,
and y ∈ {0, 1}2

n

that satisfy (∗)1/2 if (∗)3/4 holds, and outputs ⊥ if (∗)1/2 does not hold. (Note that S

runs in time 2O(n) on inputs of length 2O(n) with a PH oracle.)
While the search algorithm S outputs a certificate (r, i, x,B) for (∗)1/2 on input (n,O) (instead of

⊥), we do the following. Update O := O ∪ B. Let r be frozen and let (i, x) be forced. Let Rθ be
the set of r′ ∈ Rn such that (r′, i′, x′) is queried during the computation of MO

i (x, y) for some (i′, x′)
with probability at least θ over the internal randomness of Mi. By Theorem 24, some set A such that
R2−2n ⊆ A ⊆ {0, 1}∗ \ R2−2n−1 can be enumerated in EXPH. Note that |A| ≤ 22n+1 · 2n because Mi can
make at most 2n queries on each computation path. Let r′ be frozen for every r′ ∈ A. If S outputs ⊥
(and thus (∗)3/4 does not hold), then let r∗n ∈ Rn be the first string that is not frozen. (We will later claim
that such a string r∗n exists.) Then, we add to O all the tuples (r∗n, i, x) such that (i, x) ∈ [n]× {0, 1}n is
forced. This completes the description of Stage n. Then we move on to the next stage n′ := 2n + 1, so
that the construction in each stage is independent.

It is evident from the construction that O ∈ EXPH.

34

Fix any n and consider Stage n. We claim that there exists a string r∗n ∈ Rn that is not frozen at the
end of Stage n. We say that (∗) is satisfied if S does not output ⊥. Observe that the number of times that
(∗) is satisfied is at most n2n. The reason is that there are at most n2n pairs (i, x) ∈ [n] × {0, 1}n, and
each time (∗) is satisfied, (i, x) becomes forced. Each time (∗) is satisfied, at most 1 + 22n+1 · 2n ≤ 23n+2

strings r ∈ Rn can be frozen. Thus, the number of frozen strings in Rn in Stage n is at most n2n · 23n+2.
Since there are at most n stages before Stage n, in total, there are at most n · n2n · 23n+2 < 25n ≤ |Rn|
frozen strings in Rn. (Here, we used that c := 5.) Thus, there exists some unfrozen string r∗n ∈ Rn, which
shows that the construction of O is well defined.

It remains to show that for every pair (i, x) ∈ [n]× {0, 1}n,

1. if PrMi [M
O
i (x, y) = 1] ≥ 3

4 for some y, then (i, x) is forced (and thus (rn, i, x) ∈ O), and

2. if PrMi [M
O
i (x, y) = 1] ≤ 1

4 for any y, then (i, x) is not forced (and thus (rn, i, x) ̸∈ O).

Fix any n and consider any unforced pair (i, x) ∈ [n]× {0, 1}n. We claim that for every y ∈ {0, 1}2
n

,
it holds that

Pr
Mi

[
MO

i (x, y) = 1
]
<

3

4
.

Fix any y ∈ {0, 1}2
n

. Let On be the oracle O right after the while loop of Stage n. Since (∗)3/4 is not
satisfied at that point, for every r ∈ Rn and for every oracle B ⊆ Sr,

Pr
Mi

[
MOn∪B

i (x, y) = 1
]
<

3

4
.

Let B ⊆ Sr∗n be the set of strings added to O at the end of Stage n. Then, the final oracle O coincides
with On ∪B on any inputs of length at most 2n; thus, we obtain

Pr
Mi

[
MO

i (x, y) = 1
]
= Pr

Mi

[
MOn∪B

i (x, y) = 1
]
<

3

4
.

Next, fix any n and consider any forced pair (i, x) ∈ [n] × {0, 1}n. Let Oi,x be the oracle right after
(i, x) is forced and y be the certificate that satisfies (∗). Then, we have

Pr
[
M

Oi,x

i (x, y) = 1
]
≥ 1

2
.

We claim that this probability does not decrease by 1
4 even if we replace Oi,x with the final oracle O.

After (i, x) is forced, (∗) can be satisfied at most n2n times, and each time (∗) is satisfied, at most one Sr

whose subset is added to O. Thus, there are at most n2n unfrozen strings r ∈ Rn such that some strings
in Sr are added to O. Note that any string r that is queried by Mi with probability 2−2n is frozen right
after (i, x) is forced. Thus, each unfrozen string can decrease the probability that MO

i (x, y) accepts by
2−2n. In total, the unfrozen strings can affect the probability of acceptance by n2n · 2−2n < 1

4 . Thus, we
obtain

Pr
[
MO

i (x, y) = 1
]
>

1

2
− 1

4
≥ 1

4
.

Corollary 63. If there is a PSPACE-relativizing proof that for every constant k ≥ 1, MA/1 ̸⊆ i. o. SIZE[nk],
then L ̸= NP follows.

7 Open Problems

We believe that the perspective of bounded relativization will lead to a better understanding of current
proof techniques, in particular interactive proofs. There are many interesting questions left open:

35

1. Find some reason that “current techniques” have not been able to separate PSPACE from EXPH. We
interpret the results in this paper as: If “current techniques” are PSPACE-relativizing and cannot
separate PSPACE from EXPH, then they also cannot prove “slight improvements of known results”
for which an EXPH-relativization barrier exists.

The “conventional wisdom” seems to indicate that it is difficult for “current techniques” to separate
PSPACE from EXPH, but we have not been able to find any formal justification. Instead, an optimist
might treat the oracles in this paper as first steps for attacking the PSPACE vs. EXPH problem —
IP = PSPACE indicates some weakness of PSPACE, thus making it vulnerable to separate from
EXPH.

2. Find new oracles in EXPH that rules out “slight” improvements of known results. For example,
can we show that EXPH-relativizing techniques cannot prove MA ̸⊆ SIZE[nk]? (Santhanam’s lower
bound [San09] is for the class MA/1, and it has been an open problem since then to eliminate the
one-bit advice in the lower bound.) Can we show that EXPH-relativizing techniques cannot yield
fast derandomization from strong uniform lower bounds for EXP, such as EXP ̸⊆ BPSUBEXP =⇒
BPP ⊆ i. o. heur-QuasiP?14

3. What can bounded relativization say about the Algorithmic Method for proving circuit lower
bounds? Williams [Wil13, Wil14] showed that non-trivial circuit-analysis (e.g., satisfiability or
derandomization) algorithms for polynomial-size circuits imply that NEXP ̸⊆ P/poly. The general
implication from non-trivial algorithms to circuit lower bounds does not relativize as shown in
[VW23, Theorem 11]; however, it is unclear whether the corresponding oracle is in EXPH.

4. Finally, is there an oracle world under which Σp
2 has linear-size circuits on infinitely many input

lengths? Our construction showed that if we replace Σp
2 by pr-MA then such an oracle world exists

and can be computed in EXPH. This problem is connected to the Missing-String problem studied
in [VW23].

Acknowledgment

We thank Rahul Santhanam for helpful discussions and for pointing out that the oracle in Theorem 52
can be constructed in EXPH, using [GIPS21] only as a black-box. We thank Lijie Chen for helpful
discussions regarding [CRT22], Ian Mertz for discussions about the statement (*), and Ryan Williams for
useful discussions about time-space tradeoffs for SAT. We thank Lijie Chen (again) and an anonymous
CCC reviewer for pointing out an error in a previous version of this paper. Shuichi Hirahara was supported
by JST, PRESTO Grant Number JPMJPR2024, Japan. Hanlin Ren received support from DIMACS
through grant number CCF-1836666 from the National Science Foundation. Part of this work was
completed when the authors are visiting the Simons Institute for the Theory of Computing, participating
in the Meta-Complexity program.

References

[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In Conference on Computational Complexity
(CCC), pages 340–354. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.32. 1

[Aar17] Scott Aaronson. The teaser. https://scottaaronson.blog/?p=3054, 2017. Accessed: Feb 6, 2023.
6

14Note that we might need to assume P ̸= L for this problem, since if P = L then EXPO[poly] = PSPACEO for every oracle
O. It is known that strong uniform lower bound for PSPACE implies fast derandomization of BPP [TV07, CRTY20], and
the proofs are likely PSPACE-relativizing.

36

https://doi.org/10.1109/CCC.2006.32
https://scottaaronson.blog/?p=3054

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264. 9

[AB18] Barış Aydınlıoğlu and Eric Bach. Affine relativization: Unifying the algebrization and relativization
barriers. ACM Trans. Comput. Theory, 10(1):1:1–1:67, 2018. doi:10.1145/3170704. 1, 8

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger. Power
from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:10.1137/050628994. 1, 7, 30

[AIV92] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrelativizing tech-
niques: the role of local checkability. Manuscript, 1992. URL: https://people.eecs.berkeley.edu/

~vazirani/pubs/relativizing.pdf. 8

[All90] Eric Allender. Oracles versus proof techniques that do not relativize. In SIGAL International Sympo-
sium on Algorithms, volume 450 of Lecture Notes in Computer Science, pages 39–52. Springer, 1990.
doi:10.1007/3-540-52921-7_54. 1

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM Trans.
Comput. Theory, 1(1):2:1–2:54, 2009. doi:10.1145/1490270.1490272. 1, 8

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover
interactive protocols. Comput. Complex., 1:3–40, 1991. doi:10.1007/BF01200056. 1, 2

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318, 1993.
doi:10.1007/BF01275486. 1

[BFS09] Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower bounds against advice.
In International Colloquium on Automata, Languages and Programming (ICALP), pages 195–209,
2009. doi:10.1007/978-3-642-02927-1_18. 8

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In Conference
on Computational Complexity (CCC), pages 8–12, 1998. doi:10.1109/CCC.1998.694585. 1, 7, 32,
33

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP question. SIAM J.
Comput., 4(4):431–442, 1975. doi:10.1137/0204037. 1

[BT00] Harry Buhrman and Leen Torenvliet. Randomness is hard. SIAM J. Comput., 30(5):1485–1501, 2000.
doi:10.1137/S0097539799360148. 1

[BW15] Samuel R. Buss and R. Ryan Williams. Limits on alternation trading proofs for time-space lower
bounds. Comput. Complex., 24(3):533–600, 2015. doi:10.1007/s00037-015-0104-9. 27

[CCG+94] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan H̊astad, Desh Ranjan, and
Pankaj Rohatgi. The random oracle hypothesis is false. J. Comput. Syst. Sci., 49(1):24–39, 1994.
doi:10.1016/S0022-0000(05)80084-4. 1

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from non-trivial
derandomization. In Symposium on Foundations of Computer Science (FOCS), pages 1–12. IEEE,
2020. doi:10.1109/FOCS46700.2020.00009. 8

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and equivalences
between circuit lower bounds and Karp–Lipton theorems. In Computational Complexity Conference
(CCC), volume 137 of LIPIcs, pages 30:1–30:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.CCC.2019.30. 1

[CRT22] Lijie Chen, Ron D. Rothblum, and Roei Tell. Unstructured hardness to average-case randomness. In
Symposium on Foundations of Computer Science (FOCS), pages 429–437. IEEE, 2022. doi:10.1109/
FOCS54457.2022.00048. 1, 5, 6, 17, 18, 19, 22, 36

37

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/3170704
https://doi.org/10.1137/050628994
https://people.eecs.berkeley.edu/~vazirani/pubs/relativizing.pdf
https://people.eecs.berkeley.edu/~vazirani/pubs/relativizing.pdf
https://doi.org/10.1007/3-540-52921-7_54
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01275486
https://doi.org/10.1007/978-3-642-02927-1_18
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1137/0204037
https://doi.org/10.1137/S0097539799360148
https://doi.org/10.1007/s00037-015-0104-9
https://doi.org/10.1016/S0022-0000(05)80084-4
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.1109/FOCS54457.2022.00048
https://doi.org/10.1109/FOCS54457.2022.00048

[CRTY20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypotheses, deran-
domization, and circuit lower bounds. In Symposium on Foundations of Computer Science (FOCS),
pages 13–23. IEEE, 2020. doi:10.1109/FOCS46700.2020.00010. 1, 36

[CT21] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and instance-
wise. In Symposium on Foundations of Computer Science (FOCS), pages 125–136. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00021. 1

[DvM06] Scott Diehl and Dieter van Melkebeek. Time-space lower bounds for the polynomial-time hierarchy
on randomized machines. SIAM J. Comput., 36(3):563–594, 2006. doi:10.1137/050642228. 27

[FLvMV05] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space lower
bounds for satisfiability. J. ACM, 52(6):835–865, 2005. doi:10.1145/1101821.1101822. 27

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit size of the
hardest functions. Inf. Process. Lett., 95(2):354–357, 2005. doi:10.1016/j.ipl.2005.03.009. 3, 4

[For94] Lance Fortnow. The role of relativization in complexity theory. Bull. EATCS, 52:229–243, 1994. 8

[For00] Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci., 60(2):337–353, 2000.
doi:10.1006/jcss.1999.1671. 27

[FS88] Lance Fortnow and Michael Sipser. Are there interactive protocols for coNP languages? Inf. Process.
Lett., 28(5):249–251, 1988. doi:10.1016/0020-0190(88)90199-8. 1

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Symposium on Foundations of Computer Science (FOCS), pages 316–324, 2004. doi:10.1109/FOCS.
2004.33. 12, 32

[FSW09] Lance Fortnow, Rahul Santhanam, and R. Ryan Williams. Fixed-polynomial size circuit bounds.
In Computational Complexity Conference (CCC), pages 19–26. IEEE Computer Society, 2009. doi:

10.1109/CCC.2009.21. 1

[GIPS21] Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the pseudo-
deterministic query complexity of NP search problems. In Computational Complexity Conference
(CCC), volume 200 of LIPIcs, pages 36:1–36:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CCC.2021.36. 6, 7, 28, 36

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University Press,
2008. 9

[Hel86] Hans Heller. On relativized exponential and probabilistic complexity classes. Inf. Control., 71(3):231–
243, 1986. doi:10.1016/S0019-9958(86)80012-2. 1

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Symposium on
Foundations of Computer Science (FOCS), pages 247–258, 2018. doi:10.1109/FOCS.2018.00032. 7,
30

[Hir20a] Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudorandom
generator constructions. In Computational Complexity Conference (CCC), volume 169 of LIPIcs,
pages 20:1–20:47. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.

CCC.2020.20. 7, 30, 31

[Hir20b] Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform reductions.
In Symposium on Theory of Computing (STOC), pages 1038–1051, 2020. doi:10.1145/3357713.

3384251. 4

[Hir22] Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational Complexity
Conference (CCC), volume 234 of LIPIcs, pages 26:1–26:41. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.26. 7

38

https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1137/050642228
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1006/jcss.1999.1671
https://doi.org/10.1016/0020-0190(88)90199-8
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://doi.org/10.1016/S0019-9958(86)80012-2
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.4230/LIPIcs.CCC.2022.26

[IKK09] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach to al-
gebrization. In Symposium on Theory of Computing (STOC), pages 695–704. ACM, 2009. doi:

10.1145/1536414.1536509. 1, 8

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties as
oracles. In Computational Complexity Conference (CCC), volume 102 of LIPIcs, pages 7:1–7:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CCC.2018.7. 1, 3

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness: exponential
time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002. doi:10.1016/

S0022-0000(02)00024-7. 1

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. In Symposium on Theory of Computing (STOC), pages 220–229. ACM, 1997.
doi:10.1145/258533.258590. 5, 11, 17

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a uniform
assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. doi:10.1006/jcss.2001.1780. 1, 2, 5, 11,
17, 19, 22, 28

[Jer04] Emil Jerábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann. Pure
Appl. Log., 129(1-3):1–37, 2004. doi:10.1016/j.apal.2003.12.003. 16

[JNV+20] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗ = RE. CoRR,
abs/2001.04383, 2020. doi:10.48550/arXiv.2001.04383. 2, 9

[Kab01] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. J. Comput.
Syst. Sci., 63(2):236–252, 2001. doi:10.1006/jcss.2001.1763. 28

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control., 55(1-3):40–
56, 1982. doi:10.1016/S0019-9958(82)90382-5. 8

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Symposium on Theory of
Computing (STOC), pages 73–79. ACM, 2000. doi:10.1145/335305.335314. 3

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total functions
in the polynomial hierarchy. In Innovations in Theoretical Computer Science (ITCS), volume 185 of
LIPIcs, pages 44:1–44:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/

LIPIcs.ITCS.2021.44. 4

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Symposium on Theory of Computing (STOC), pages 302–309. ACM, 1980.
doi:10.1145/800141.804678. 17

[Kor21] Oliver Korten. The hardest explicit construction. In Symposium on Foundations of Computer Science
(FOCS), pages 433–444. IEEE, 2021. doi:10.1109/FOCS52979.2021.00051. 4, 16

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002. doi:

10.1137/S0097539700389652. 11, 12, 28

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information and independence in mathemat-
ical theories. Information and Control, 61(1):15–37, 1984. doi:10.1016/S0019-9958(84)80060-1.
10

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. J. ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605. 1

[LOS21] Zhenjian Lu, Igor Carboni Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms and the
structure of probabilistic time. In Symposium on Theory of Computing (STOC), pages 303–316. ACM,
2021. doi:10.1145/3406325.3451085. 1, 3, 4, 10, 11, 12, 13

39

https://doi.org/10.1145/1536414.1536509
https://doi.org/10.1145/1536414.1536509
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.48550/arXiv.2001.04383
https://doi.org/10.1006/jcss.2001.1763
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/335305.335314
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1145/800141.804678
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/3406325.3451085

[Lup58] Oleg B Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk SSSR, 119(1):23–26,
1958. 3, 4, 12

[LV99] Richard J. Lipton and Anastasios Viglas. On the complexity of SAT. In Symposium on Foundations
of Computer Science (FOCS), pages 459–464. IEEE Computer Society, 1999. doi:10.1109/SFFCS.

1999.814618. 27

[MVW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus half-
exponential circuit size in the exponential hierarchy. In International Computing and Combinatorics
Conference (COCOON), pages 210–220, 1999. doi:10.1007/3-540-48686-0_21. 3, 8

[MW17] Cody D. Murray and R. Ryan Williams. Easiness amplification and uniform circuit lower bounds. In
Computational Complexity Conference (CCC), volume 79 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.8. 27

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1. 5, 17

[Oli19] Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 32:1–32:14, 2019. doi:

10.4230/LIPIcs.ICALP.2019.32. 1, 7

[OS17a] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness. In Computational Complexity Conference (CCC), pages 18:1–18:49,
2017. doi:10.4230/LIPIcs.CCC.2017.18. 1

[OS17b] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential time. In
Symposium on Theory of Computing (STOC), pages 665–677, 2017. doi:10.1145/3055399.3055500.
6, 11, 27, 28

[RS22] Hanlin Ren and Rahul Santhanam. A relativization perspective on meta-complexity. In International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 219 of LIPIcs, pages 54:1–
54:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.
54. 7

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits. In
FOCS, pages 640–650. IEEE, 2022. doi:10.1109/FOCS54457.2022.00067. 4

[San09] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput., 39(3):1038–
1061, 2009. doi:10.1137/070702680. 1, 3, 7, 32, 33, 36

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J., 28(1):59–98,
1949. doi:10.1002/j.1538-7305.1949.tb03624.x. 4, 12

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. doi:10.1145/146585.146609. 1

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Symposium on Theory of Com-
puting (STOC), pages 330–335, 1983. doi:10.1145/800061.808762. 10

[Sto83] Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In Symposium
on Theory of Computing (STOC), pages 118–126. ACM, 1983. doi:10.1145/800061.808740. 10

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007. doi:10.1007/s00037-007-0233-x. 1,
11, 12, 17, 28, 32, 36

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci., 67(2):419–
440, 2003. doi:10.1016/S0022-0000(03)00046-1. 14

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012. doi:

10.1561/0400000010. 10

40

https://doi.org/10.1109/SFFCS.1999.814618
https://doi.org/10.1109/SFFCS.1999.814618
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.4230/LIPIcs.CCC.2017.8
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.4230/LIPIcs.STACS.2022.54
https://doi.org/10.4230/LIPIcs.STACS.2022.54
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1137/070702680
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/800061.808740
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1561/0400000010
https://doi.org/10.1561/0400000010

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-2):415–418,
2005. doi:10.1016/j.tcs.2005.07.032. 1

[Vio07] Emanuele Viola. On approximate majority and probabilistic time. In Conference on Computational
Complexity (CCC), pages 155–168. IEEE Computer Society, 2007. doi:10.1109/CCC.2007.16. 10

[VW23] Nikhil Vyas and R. Ryan Williams. On oracles and algorithmic methods for proving lower bounds. In
Innovations in Theoretical Computer Science Conference (ITCS), volume 251 of LIPIcs, pages 99:1–
99:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.99.
36

[Wil85] Christopher B. Wilson. Relativized circuit complexity. J. Comput. Syst. Sci., 31(2):169–181, 1985.
doi:10.1016/0022-0000(85)90040-6. 1

[Wil06] R. Ryan Williams. Inductive time-space lower bounds for SAT and related problems. Comput.
Complex., 15(4):433–470, 2006. doi:10.1007/s00037-007-0221-1. 27

[Wil08] R. RyanWilliams. Time-space tradeoffs for counting NP solutions modulo integers. Comput. Complex.,
17(2):179–219, 2008. doi:10.1007/s00037-008-0248-y. 27

[Wil13] R. Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X. 36

[Wil14] R. Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014. doi:

10.1145/2559903. 36

41

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1016/j.tcs.2005.07.032
https://doi.org/10.1109/CCC.2007.16
https://doi.org/10.4230/LIPIcs.ITCS.2023.99
https://doi.org/10.1016/0022-0000(85)90040-6
https://doi.org/10.1007/s00037-007-0221-1
https://doi.org/10.1007/s00037-008-0248-y
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903

