
Sampling and Certifying Symmetric Functions

Yuval Filmus1, Itai Leigh2, Artur Riazanov3, and Dmitry Sokolov4

1Technion — Israel Institute of Technology, yuvalfi@cs.technion.ac.il
2Tel-Aviv University; University of Copenhagen; itai.leigh@mail.huji.ac.il

3EPFL, tunyash@gmail.com
4EPFL, sokolov.dmt@gmail.com

May 2022

Abstract

A circuit C samples a distribution X with an error ε if the statistical distance between
the output of C on the uniform input and X is ε. We study the hardness of sampling a
uniform distribution over the set of n-bit strings of Hamming weight k denoted by Un

k for
decision forests, i.e. every output bit is computed as a decision tree of the inputs. For every
k there is an O(log n)-depth decision forest sampling Un

k with an inverse-polynomial error
[Vio12b; Czu15]. We show that for every ε > 0 there exists τ such that for decision depth
τ log(n/k)/ log log(n/k), the error for sampling Un

k is at least 1− ε. Our result is based on
the recent robust sunflower lemma [Alw+21; Rao19].

Our second result is about matching a set of n-bit strings with the image of a d-local
circuit, i.e. such that each output bit depends on at most d input bits. We study the set of
all n-bit strings whose Hamming weight is at least n/2. We improve the previously known
locality lower bound from Ω(log∗ n) [Bey+13] to Ω(

√
log n), leaving only a quartic gap from

the best upper bound of O(log2 n).

1 Introduction

Studying the hardness of sampling has been proposed in the paper [Vio12b], which spurred an
active line of research [Vio12a; LV11; BIL12; Vio14; Vio16; Vio20; GW20; Vio21; Bog+22;
CGZ22]. The basic setting is the following: we are given an infinite supply of independent
uniform random bits as input, and our goal is to design a circuit with multiple output bits
whose output is close in statistical distance to a given target distribution. Sampling circuit
constructions have been applied in cryptography [IN96; Bog+16] and algorithms [Hag91]. Sam-
pling hardness results1 have been instrumental in inspiring and improving two-source extractor
constructions [Vio14; CZ16; CS16] (see [Vio20] for an extended discussion), and have yielded
lower bounds on succinct data structures [Vio12b; Vio20; Vio21].

Sampling hardness results are more challenging than computational ones. For example,
while it is known since Smolensky’s classical work [Smo87] that parity requires an exponential
number of gates to compute by an AC0[3] circuit, no hard distributions are known for the
circuit class AC0[p] for any p, and while AC0 requires exponentially many gates to compute
parity [H̊as87], a random vector with parity 0 can be sampled by an NC0 circuit. Moreover,
this distribution can be sampled by a 2-local circuit, in the sense that each output bit depends
only on two input bits [Bab87; Kil88]. A very simple mapping achieves this: (x1, . . . , xn) 7→
(x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn). A more general and striking fact is that AC0 can
sample random permutations and consequently all distributions of form (X, f(X)) where X is

1That is, showing that any circuit from a certain class produces a distribution that is far from the target.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 71 (2023)

uniform over {0, 1}n and f is symmetric i.e. its value depends only on the Hamming weight of
the input [Vio12b].

We conjecture that the power of NC0 in regard to sampling symmetric distributions is in
essence limited to the parity example above. Observe that a function is computable by an NC0

circuit if and only if it is O(1)-local i.e. each of its output bits depends on at most a constant
number of input bits. For simplicity, we focus only on uniform distributions with symmetric
support: let Un

S be the uniform distribution over strings in {0, 1}n with Hamming weight in the
set S ⊆ {0, . . . , n}.

Conjecture 1.1. For every d ∈ N, ε ∈ (0, 1) for all large enough n, if X is samplable by a
d-local function and is ε-close to Un

S for some S ⊆ {0, . . . , n}, then X is O(ε)-close to Un
T ,

where T is one of the following: {0}, {n}, {0, n}, {0, 2, 4, . . .}, {1, 3, 5, . . .}, [n].

Our results on sampling slices (namely, Theorem 1.2) imply this conjecture for all sets S
which only contain small values, in the sense that maxx∈S x = o(n).

Quantum separations. A stronger version of Conjecture 1.1 would identify the family of
sets S such that every NC0-samplable distribution is 1− o(1)-far from Un

S . There exists a set
S for which this implies a separation between NC0 and QNC0 for sampling. This is due to the
recent partial separation in [WP23]: they show that there exists a symmetric function f such
that (X, f(X)) for uniform X ∼ {0, 1}n can be sampled by a QNC0 circuit. Observe, however,
that if an NC0-samplable distribution Y is at distance η from (X, f(X)), then the first n bits
of Y are (1/2+ η+ o(1))-close to the uniform distribution over f−1(0), due to the fact that the
function f used in [WP23] is almost balanced (in the sense that |f−1(0)| = (1+o(1)) · |f−1(1)|).
Now, if the uniform distribution over f−1(0) is not NC0-samplable within the distance 1−Ω(1),
we get the separation. Conjecture 1.1 implies a weaker lower bound for the distance: a constant
instead of a function approaching 1, but most of the known lower bounds for distribution
sampling have very strong distance guarantees.

Local certificates. One interesting class of sets which is also not covered by our and prior
results is Ma = {x ∈ {0, . . . , n} | x mod a = 0}, where a is a constant. However, the simple
construction for sampling parity-0 vectors can be adapted to match the support of any Un

Ma
,

i.e. generate a (not necessarily uniform) distribution whose support is exactly the set of strings
with Hamming weight in Ma. This construction was given in [Bey+13, Proposition 3.1], where
it was presented as a proof system. The idea is to interpret the input bits as a certificate that
the output is in the target language (in this case, all n-bits strings whose Hamming weight is
divisible by a). This connection motivates our study of locality in the context of proof systems.
We drastically simplify and improve the locality lower bound of [Kre+16] for the language of
n-bit strings whose Hamming weight is at least n/2 (in other words, 1-inputs of the majority
function).

1.1 Sampling Slices

The k-slice is the set of all n-bit strings of Hamming weight k. We denote the uniform distribu-
tion over the k-slice by Un

k . A simple computation (see Section 3.5) shows that Un
S and Un

maxS

are close in statistical distance whenever maxS = o(n). This means that in order to show the
hardness of sampling from symmetric distributions over sublinear-Hamming-weight strings it is
sufficient to study Un

k for k = o(n).
Although in the context of Conjecture 1.1 it is sufficient to lower bound the locality of a

sampler, in the context of slices the more natural complexity measure is decision depth. A
function f : {0, 1}m → {0, 1}n is computable by a decision forest of depth d if every output bit
of f can be computed by a decision tree of depth d, i.e. with at most d adaptive queries to the

2

input (in contrast, a d-local function is computed by d non-adaptive queries). Viola [Vio12b,
Lemma 6.4] shows that a decision depth d sampler for Un

k can be obtained from a depth-
d switching network. Czumaj [Czu15, Theorem 3.7] proves the existence of such switching
networks with d = O(log n). The following theorem shows that for k = o(n), this construction
is almost tight.

Theorem 1.2. Suppose that Un
k can be sampled with decision depth d and error η in variation

distance.

1. For every ε > 0 there exists a constant τ such that d ≤ τ log(n/k)/ log log(n/k) implies
η ≥ 1− ε.

2. There exists a constant τ for which the following holds. For every ε ∈ (0, 1), if k ∈
[log2 n, 2

log1−ε n] and d ≤ τ logε n, then η = 1 − n−Ω(k). The same bound holds for
k ∈ [1, log2 n) and d ≤ τ logε n/ log logn.

Moreover, Item 1 holds for any Un
S with maxx∈S x = k or minx∈S x = n− k.

The first key observation in our proof of Theorem 1.2 is that it is sufficient to prove it for
k = 1, namely:

Theorem 1.3. There exists a constant τ > 0 such that any distribution sampled with decision
depth τ log n/ log logn is (1− n−Ω(1))-far from Un

1 .

To see why this implies Item 1, observe that the marginal distribution of the first n/k bits

of Un
k is (1 − 1/e + o(1))-close to U

n/k
1 . Theorem 1.3 then implies the distance lower bound

1/e−o(1) for sampling Un
k with depth τ log(n/k)/ log log(n/k). The 1−ε distance lower bound

for every ε is achieved by generalizing Theorem 1.3 so it applies to distributions of the form
“first Θ(n/k) bits of Un

k ” directly.
Item 2 is implied by another reduction from Theorem 1.3. Suppose we have a depth-d

sampler for Un
k . Using this sampler, we can construct a depth-kd sampler for U

(nk)
1 as follows.

Identify each output bit with a unique subset of [n] of size k, and assign to it the conjunction of
the corresponding k bits in the output of the sampler for Un

k . It is easy to see that the resulting

distribution has the same distance to U
(nk)
1 as the initial sampler has to Un

k .

1.1.1 Technique for Proving Theorem 1.3

The locality of a sampler is the maximum number of input bits that an output bit depends
on. The locality is always bounded from above by the decision depth. As a warm-up, let us
discuss an Ω(log log n) locality lower bound for sampling Un

1 which is close in spirit to [Vio20,
Theorem 3].

The main idea in the locality lower bound is a hitting set versus independent set dichotomy:
for a d-local source, it is easy to see that either there are τ2d independent output bits, or there
is a hitting set of input bits of size τd2d such that every output bit depends on one of the
bits in this set. In the former case, we can show that it is very likely that at least two of
the independent bits evaluate to 1, since for each output bit its probability to be 1 is at least
2−d.2 In the latter case, by fixing the hitting set bits in every possible way, we observe that
our source is a mixture (convex combination) of 2τd2

d
many (d − 1)-local sources. If we show

that (d − 1)-local sources must be (1 − ε)-far from the target distribution, then our source is

(1 − ε2τd2
d
)-far by [Vio20, Corollary 18]. Picking d = δ log log n for small enough δ yields a

1− o(1) lower bound on the distance to the target distribution.

2There is a caveat that some bits might be identically zero, but it is not a real issue, since there cannot be
too many of them.

3

In order to improve this lower bound from log log n to log n/ log log n, we introduce several
new ideas.

Monotonization. We observe that it is in some sense sufficient to deal with sources where
each bit is a monotone term in the input bits. The intuitive reason is that the expected number
of output bits evaluating to 1 is 2−d · n3, so there exists an assignment where that many bits
evaluate to 1. By focusing on those bits and replacing them with terms corresponding to the
satisfying assignments, we show that it is likely that at least two of these terms evaluate to 1.

Sunflowers. Let us pretend that all of the output bits are monotone terms. For i ∈ [n],
let Ni be the set of inputs mentioned by the term of the ith output bit. We find a sunflower
S ⊆ {N1, . . . , Nn}, i.e. there exists a kernel K such that the intersection of any pair of sets in S
is K. If the kernel is fixed to 1, the output bits in the sunflower become independent, so if the
sunflower is large enough, it is likely that at least two of them evaluate to 1. For some small
enough d = Ω(

√
log n), a large sunflower always exists among any n sets. Moreover, we can

cover all but o(n) output bits with sunflowers. Then we have the following dichotomy: either
all kernels evaluate to 0, so the source is likely to be identically zero, or at least one kernel
evaluates to 1, which makes it very likely that at least two output bits from the corresponding
sunflower evaluate to 1.

Using robust sunflowers instead of classical sunflowers, we obtain a lower bound of
Ω(log n/ log logn) on the decision depth.

1.2 Local Proof Systems

Local proof systems, introduced in [Bey+13] and further studied in [Kre+16], are defined as
follows: a local proof system for a language L is an NC0-circuit family Cn such that L∩{0, 1}n
is exactly the set of all possible outputs of Cn. A language L has a d-local proof system if for
each n there exists a d-local function whose image is L∩{0, 1}n. In relation to the sampling, it
can be viewed as follows: the “sampler” needs to match the support of the given distribution
exactly, but we do not care about matching the actual probabilities.

The hardness landscape in this setting is different from the setting of sampling distributions.
The most notable difference is that the language of strings with Hamming weight divisible by
p always has an O(1)-local proof system, while we conjecture that sampling from the uniform
distribution over this language requires a super-constant locality, unless p = 1 or p = 2.

Our main contribution is in improving the locality lower bound for another symmetric
language: Maj−1(1) := {x ∈ {0, 1}n | |x| ≥ n/2}. The previous best locality lower bound
for proof systems for this language was Ω(log∗ n) [Kre+16], with a very complex proof which
we expose in Appendix A. We simplify this proof and improve the locality lower bound to
Ω(

√
log n), which is only polynomially smaller than the current best upper bound of O(log2 n).

The key idea is to consider proof systems with bounded locality of both input and output bits.
For such proof systems it is easy to derive very strong requirements on locality. These can then
be used to count the number of input-output bit pairs where the input affects the output, which
yields the output locality lower bounds.

1.3 Switching Networks

The technique behind Theorem 1.2 breaks down for linear slices Un
αn. Does it mean there is a

low-depth sampler for such distributions? The only construction of a sampler we have is based
on switching networks [Czu15, Theorem 3.7].

A switching network of depth d is a layered graph with d layers and n nodes in each layer.
The edges of the switching network do not cross between layers, and in each layer, the edges
form a partial matching. A switching network defines a process over permutations of [n]: we

3Again, this is not always true, since there are identically zero outputs.

4

start with the identity permutation, and then, for each layer, we toss a coin for each edge in the
matching of this layer, and if the coin comes up heads, we transpose the endpoints of the edge.

Currently, the best upper bound on the depth of a switching network which produces a
distribution close to the uniform distribution over all permutations is O(log2 n) [Czu15]. The
situation is better if the switching network only needs to shuffle sequences of zeroes and ones:
the input is now 1k0n−k. [Czu15, Theorem 3.7] gives a O(log n) depth upper bound for this
case (the construction is randomized), [GTS14] gives an explicit lower bound for generating Un

k

for k ≤
√
n.

It is almost immediate that a switching network that samples Un
k within a non-trivial dis-

tance must have depth Ω(log(n/k)): each input bit of a network of depth d has at most 2d

potential positions that it can take in the output, so if d = o(log(n/k)), the switching network
produces a distribution where only o(n) bits have a non-zero probability to have value 1, which
is (1− o(1))-far from Un

k .
In Section 5 we show that switching networks that produce a distribution close to Un

αn must
have depth Ω(log log n). We use the following properties of samplers that are constructed from
switching networks of depth d: the first is that each input bit of such a sampler affects at most
2d output bits, the second is that the error is one-sided, i.e. such a sampler never outputs a
string outside the domain of Un

αn. The second property highlights the similarity with local
certificates, and indeed our lower bound proof uses similar ideas.

1.4 Further Research

Our results on sampling slices with decision forests taken together with results of Viola [Vio12b]
are summarized in Figure 1.

k ≤ 2log
1−ε n k = o(n) k = Θ(n)

Theorem 1.2 d = Ω̃(logε n) d = Ω̃(log(n/k))

∆ = 1− n−Ω(k) ∆ = 1− δ

[Vio12b, Thm 1.6] ∆ = 2−O(d) −O(1/n)

Figure 1: The table above depicts the implications of Theorem 1.2 and [Vio12b, Theorem 1.6]
for sampling Un

k for different k. The plot above it illustrates the size of the corresponding set
of bitstrings in the boolean cube.

Here are some important challenges that are left open:

• Give any non-trivial decision depth (or even locality!) lower bound for linear Hamming
weight in the constant-error regime.

• Tighten up the decision depth lower bound for Un
1 to Ω(log n). This would immediately

yield tight (up to a constant) decision depth lower bounds for all polynomial k.

• Give any locality lower bound for (X, f(X)), where X ∼ {0, 1}n and f = [(x1 + · · · +
xn) mod p ≥ p/2] ⊕ x1 ⊕ · · · ⊕ xn, as this would separate quantum and classical NC0

circuits for sampling, improving on the partial separation of [WP23].

• Find any non-trivial lower bounds for sampling a uniform vector with Hamming weight
divisible by k, for any k > 2. This is likely to give insights on the QNC0 versus NC0

separation for sampling.

5

• Determine the optimal depth of a switching network which samples a uniform permutation
or a uniform vector in a slice.

2 Notation and Tools

We use boldface letters for random variables, e.g. a,A, b,B. We write a ∼ A to say that a is
distributed according to a distribution A, or if A is a set, according to the uniform distribution
over it. For x ∈ {0, 1}n, we denote its Hamming weight by w(x) = |x| := {i ∈ [n] | xi = 1}.
We denote ei = 0i−110n−i ∈ {0, 1}n. For a string x ∈ {0, 1}n and a set T ⊆ [n], we write
xT := (xi)i∈T ∈ {0, 1}T . We write Un

k for the uniform distribution of Hamming weight k
vectors.

For two distributions S and T over the same domain X , the statistical distance is defined as

∆(S, T) := max
A⊆X

∣∣∣∣ Prx∼S
[x ∈ A]− Pr

x∼T
[x ∈ A]

∣∣∣∣ = 1

2

∑
a∈X

∣∣∣∣ Prx∼S
[x = a]− Pr

x∼T
[x = a]

∣∣∣∣ .
The statistical distance between two random variables is the statistical distance between their
distributions. We say that the distribution S is ε-close from the distribution T if ∆(S, T) < ε.
Otherwise, the distributions are ε-far.

A function f : {0, 1}m → {0, 1}n is d-local if each of its output bits depends only on d input
bits. A function f : {0, 1}m → {0, 1}n has decision depth d if each of its output bits can be
computed as a depth-d decision tree, i.e. decided with at most d adaptive input bit queries. If
a function is d-local, then it has decision depth at most d.

We are going to use a very simple form of the FKG inequality:

Theorem 2.1 ([Har60; FKG71]). Suppose that X is a product distribution over {0, 1}n (that
is, Pr[X = x] =

∏
i∈[n] Pr[Xi = xi]). Let A,B ⊆ {0, 1}n be two monotone events (if x ∈ A and

xi ≤ yi for all i ∈ [n] then y ∈ A, and similarly for B). Then

Pr
x∼X

[x ∈ A ∩B] ≥ Pr
x∼X

[x ∈ A] · Pr
x∼X

[x ∈ B].

2.1 Robust Sunflowers

In this section, we discuss robust sunflowers.

Definition 2.2 (Robust sunflower). Let 0 < α, β < 1 be parameters, let F be a set system,
and let K :=

⋂
S∈F S be the intersection of all sets in F , which we refer to as the kernel. The

family F is an (α, β)-robust sunflower if

1. K ̸∈ F ;

2. PrR [∃S ∈ F : S ⊆ R ∪K] ≥ 1−β, where each element of the universe appears in R with
probability α independently.

We can write this condition in the equivalent form PrR[∃S ∈ F : R ⊇ S | R ⊇ K] ≥ 1−β.

A set system is called (α, β)-satisfying if it is an (α, β)-robust sunflower with an empty kernel.

Large enough set systems always contain a robust sunflower, as proved by Rossman [Ros14]
and improved by later authors.

Theorem 2.3 ([Alw+21; BCW21; Rao19]). There exists a constant B > 0 such that the
following holds for all p, ε ∈ (0, 1/2]. Let F be a family of sets of size exactly d such that
|F| ≥ (B log(d/ε)/p)d. Then F contains a (p, ε)-robust sunflower.

6

Corollary 2.4. There exists a constant B > 0 such that the following holds for all p, ε ∈ (0, 1/2].
Let F be a family of non-empty sets of size at most d such that |F| ≥ d · (B log(d/ε)/p)d. Then
F contains a (p, ε)-robust sunflower.

Proof. Let d0 ∈ [d] be the most common size of sets in F . Then the number of sets of size d0
is at least (B log(d/ε)/p)d, which allows us to apply Theorem 2.3 to these sets.

If we remove a single petal from a robust sunflower, then it remains a robust sunflower (with
slightly worse parameters).

Lemma 2.5. Suppose that N1, . . . , Nk ⊆ X is a (p, ε)-robust sunflower with kernel K. Then
for every i, the sets N1, . . . , Ni−1, Ni+1, . . . , Nk form a (2p, 2ε)-robust sunflower with kernel K.

Proof. Let τ be distributed over [3]X\K such that Pr[τi = 1] = Pr[τi = 2] = p, Pr[τi = 3] =
1 − 2p, and the coordinates of τ are independent. For ℓ ∈ [3], let τ ℓ = {j ∈ X | τj = ℓ} ∪K.
The definition of (p, ε)-robust sunflower implies that for every ℓ ∈ [2] we have Pr[∃j ∈ [k] : τ ℓ ⊇
Nj] ≥ 1− ε. An application of the union bound implies that

Pr
[
∃j ∈ [k] : τ 1 ⊇ Nj ∧ ∃j′ ∈ [k] : τ 2 ⊇ Nj′

]
≥ 1− 2ε.

If j = j′, then since τ 1 ∩ τ 2 = K, we have Nj = K, which is impossible by the definition of a
sunflower. Thus j ̸= j′ whenever the event happens. Let R be a distribution of subsets of X
where each element appears in R independently with probability 2p. Then since (R|R ⊇ K)
has the same distribution as τ 1 ∪ τ 2, we have

Pr
R

[
∃j ̸= j′ ∈ [k] : R ⊇ Nj ∧R ⊇ Nj′

∣∣R ⊇ K
]
≥ 1− 2ε.

In particular, for every i ∈ [k] we have

Pr
R

[∃j ̸= i ∈ [k] : R ⊇ Nj |R ⊇ K] ≥ 1− 2ε,

and so the sets N1, . . . , Ni−1, Ni+1, Nk form a (2p, 2ε)-robust sunflower with kernel K.

Another lemma we use is very similar to the standard connection between robust sunflowers
and the classical ones (see e.g. Lemma 1.6 in [Alw+21]):

Lemma 2.6. Suppose that N1, . . . , Nm ⊆ X is a (1/(2k), ε)-robust sunflower with a kernel K.
Then

Pr
R∼2X

[
∃I ∈

(
[m]

k

)
∀i ∈ I : R ⊇ Ni

∣∣∣∣R ⊇ K

]
≥ 1− εk.

Proof. Let τ ∼ [2k]X\K , and τ i := {j ∈ X \K | τj = i} ∪K for i ∈ [2k]. Then τ 1 ∪ · · · ∪ τ k is
distributed equivalently to (R | R ⊇ K) where R ∼ 2X . On the other hand, by the definition
of the (1/(2k), ε)-robust sunflower, for each i ∈ [2k] we get

Pr[∃j ∈ [m] : τ i ⊇ Nj] ≥ 1− ε.

Since τ i ∩ τ i′ = K for any i ̸= i′ ∈ [2k], the lemma follows by the union bound over i ∈ [k].

7

3 Sampling Uniform Hamming Weight k Distributions

In this section we prove the following results mentioned in the introduction, which we restate
here for convenience.

Theorem 1.2. Suppose that Un
k can be sampled with decision depth d and error η in variation

distance.

1. For every ε > 0 there exists a constant τ such that d ≤ τ log(n/k)/ log log(n/k) implies
η ≥ 1− ε.

2. There exists a constant τ for which the following holds. For every ε ∈ (0, 1), if k ∈
[log2 n, 2

log1−ε n] and d ≤ τ logε n, then η = 1 − n−Ω(k). The same bound holds for
k ∈ [1, log2 n) and d ≤ τ logε n/ log logn.

Moreover, Item 1 holds for any Un
S with maxx∈S x = k or minx∈S x = n− k.

Theorem 1.3. There exists a constant τ > 0 such that any distribution sampled with decision
depth τ log n/ log logn is (1− n−Ω(1))-far from Un

1 .

We first prove Theorem 1.3, in Section 3.1. We then prove Item 2 of Theorem 1.2 in
Section 3.3, and Item 1 of the theorem in Section 3.4. We prove the “moreover” part in
Section 3.5.

3.1 Proof of Theorem 1.3

We prove a more general result which immediately yields Theorem 1.3.
First let us sketch a proof of Theorem 1.3 for d-local functions. Suppose that ∆(Un

1 ,X) ≤
1−η. Call a coordinate i good if Pr[X = ei] ≥ 1/n2. Since Pr[U1 = ei] = 1/n, many coordinates
are good: at least Ω(ηn).

Let Y ∼ {0, 1}m denote the random input bits. Each Xi depends on some subset Ni ⊆ [m]
of coordinates of size at most d = τ log n/ log log n, say Xi = fi(YNi).

For each good coordinate i, we choose an assignment αi ∈ f−1
i (1) which maximizes the

conditional probability Pr[X = ei | YNi = αi], that is, the probability that if YNi = αi then all
other output bits are 0. This probability is at least 1/(2dn2) = Ω(1/n3).

The assignments αi do not necessarily agree with each other. However, a random assignment
ρ to Y agrees with at least Ω(ηn/2d) = Ω(ηn1−o(1)) of them. Let T consists of the domains
of the assignments αi which agree with ρ. These domains are distinct since Ni = Nj implies
αi = αj and hence that Pr[X = ei | YNi = αi] = 0. The choice of d guarantees that T supports
a (1/4, ε)-robust sunflower S, for any ε which is inverse-polynomial in n. Let K be the kernel
of S.

If we remove any single petal i from S then by Lemma 2.5 the result is a (1/2, 2ε)-robust
sunflower, and so given that YK agrees with ρ, the probability that Xj = 1 for some j ̸= i
is at least 1 − 2ε. If we replace the condition with “YNi agrees with ρ” (and so with αi),
then intuitively, the probability can only increase, and this can be formalized using the FKG
inequality (Theorem 2.1). By definition of αi, this means that Pr[X = ei] ≤ |f−1

i (1)|2ε ≤ 2d+1ε.
Choosing ε = 1/2d+1n2 shows that i is not good, and we reach a contradiction.

We move on to prove the generalization of Theorem 1.3.

Theorem 3.1. Let Y ∼ {0, 1}m be the input bits of the n-bit source X. Suppose that every
bit of X is computed as a DNF of bits of Y of size at most s and width at most d. For
every κ ∈ R there exists a constant τ such that for d = τ log n/ log logn and s ≤ κnκ, we have
∆(X,Un

1) = 1− η = 1− n−Ω(1).

8

This implies Theorem 1.3 since the output of a decision tree of depth d can be represented
as a DNF of size at most 2d and width at most d. In our case d = o(log n) and so 2d ≤ n (for
large enough n).

Proof. We say that an output bit i ∈ [n] is good if Pr[X = ei] ≥ 1/n2. Let G ⊆ [n] be the set of
all good bits, and let G = [n] \G. Let us estimate the size of G: Pr[X ∈ {ei | i ̸∈ G}] ≤ |G|/n2,
but Pr[Un

1 ∈ {ei | i /∈ G}] = |G|/n), so |G| · (1/n− 1/n2) ≤ 1− η, which yields |G| = Ω(ηn).
For each i ∈ G, since each bit of X is represented as a DNF we have Xi =

∨
j∈[si][YNj

i
= αj

i],

where N1
i , . . . , N

si
i ⊆ [m] are sets, αj

i ∈ {0, 1}N
j
i are truth assignments, and si ≤ s. By the law

of total probability we have

Pr[X = ei] ≤
∑
j∈[si]

Pr[X = ei ∧ Y
Nj

i
= αj

i] ≤ sPr[X = ei ∧ YNmax
i

= αmax
i],

where Nmax
i and αmax

i correspond to the term in the DNF maximizing the probability Pr[X =

ei ∧ Y
Nj

i
= αj

i].

Consider the expected number of good output bits such that YNmax
i

= αmax
i :

E

[∑
i∈G

[YNmax
i

= αmax
i]

]
≥ |G|2−d.

Hence there exists an assignment ρ to the input bits such that for at least |G|2−d good output
bits, we have ρNmax

i
= αmax

i . Let T ⊆ G be the set of those output bits. If i, j ∈ T then
Nmax

i ̸= Nmax
j , since otherwise YNmax

i
= αmax

i implies that also YNmax
j

= αmax
j and so X ̸= ei,

and so Pr[X = ei] = 0, contradicting i ∈ G. Observe moreover that none of the sets Ni for
i ∈ T is empty, since otherwise |T | = 1 and we get an immediate contradiction with the size of
G for any d = o(log n).

Case 1. |T | < d(4B log(d/ε))d. In this case, we immediately get the lower bound on δ. Indeed,
the inequality |G|2−d ≤ |T | < d(4B log(d/ε))d implies |G| ≤ d(8B log(d/ε))d, which together
with |G| = Ω(ηn) yields η ≤ d(8B log(d/ε))d/n. If ε is inverse polynomial in n, then for small
enough τ we get η = n−Ω(1) with d = τ log n/ log logn.

Case 2. |T | ≥ d(4B log(d/ε))d. Then by Corollary 2.4 there exists a (1/4, ε)-robust sunflower
formed by the sets Nmax

t1 , . . . , Nmax
tk

for {t1, . . . , tk} ⊆ T (recall the sets Nmax
i for i ∈ T are all

distinct, and none of them is empty). Let K denote the kernel of this sunflower. Consider an
arbitrary petal ti of this sunflower. By Lemma 2.5 we have that {Nmax

i }i∈T\{ti} is a (1/2, 2ε)-
robust sunflower. Let U be the set of indices such that Yk = ρk. Then

Pr[Xj = 1 for some j ∈ T \ {ti} | YNmax
ti

= ρNmax
ti

] ≥

Pr[U ⊇ Nmax
j for some j ∈ T \ {ti} | U ⊇ Nmax

ti] =

Pr[U ⊇ Nmax
ti and U ⊇ Nmax

j for some j ∈ T \ {ti} | U ⊇ K]

Pr[U ⊇ Nmax
ti

| U ⊇ K]
≥ Theorem 2.1

Pr[U ⊇ Nmax
j for some j ∈ T \ {ti} | U ⊇ K] ≥

1− 2ε,

where the last inequality is due to the definition of a (1/2, 2ε)-robust sunflower. Recall that by
the choice of T , we have ρNmax

ti
= αmax

ti . Therefore

Pr[X ̸= eti | YNmax
ti

= αmax
ti] = Pr[Xj = 1 for some j ∈ T \ {ti} | YNmax

ti
= ρNmax

ti
] ≥ 1− 2ε.

9

Thus Pr[X = eti ∧ Y Nmax
ti = αmax

ti] ≤ 2ε. By the choice of αmax
ti , Pr[X = eti] ≤ s · 2ε.

Picking ε < 1/(2sn2), which is inverse polynomial in n as required in Case 1, we get that
Pr[X = eti] < 1/n2, so ti is bad, which contradicts the choice of T .

3.2 A Generalized Version of Theorem 3.1

In this section, we generalize Theorem 3.1 so it can be used to prove Item 1 of Theorem 1.2.
The proof follows the same path as the proof of Theorem 3.1, we decided to include both proofs
for simplicity.

Theorem 3.2. Let Y ∼ {0, 1}m be the input bits of the n-bit source X. Suppose that every
bit of X is computed as a DNF of bits of Y of size at most s and width at most d. Let t ∈ [n]
be a parameter, α(n) be a function and let F be a distribution over {0, 1}n with the following
properties:

• For every set T ⊆ [n] such that T ≥ n/2 we have Pr[FT = 0T] ≤ α(n);

• Pr[|F | > t] ≤ α(n).

If 2d · t · (40Bt log n)d ≤ n then ∆(X,F) ≥ 1 − 2α(n) − 1/2n. Here B is the constant from
Corollary 2.4.

Proof. We say that an output bit i ∈ [n] is good if Pr[Xi = 1 ∧ |X| ≤ t] ≥ 1/n2. Let G be the
set of good bits and let G := [n] \G. Suppose that |G| ≤ n/2. Then by the conditions on F we

have Pr[FG = 0G] ≤ α(n). On the other hand Pr[XG ̸= 0G ∧ |X| ≤ t] < |G|/n2 < 1/2n. Then
∆(X,F) ≥ 1 − 2α(n) − 1/2n, as required. In the rest of the proof, we derive a contradiction
with |G| ≥ n/2.

As in the proof of Theorem 3.1, we pick the likeliest term in the DNF representation of
each of the output bits. For each i ∈ G, since each bit of X is represented as a DNF, we have

Xi =
∨

j∈[si][YNj
i
= αj

i], where N
1
i , . . . , N

si
i ⊆ [m] are sets, αj

i ∈ {0, 1}N
j
i are truth assignments,

and si ≤ s. By the law of total probability, we have

Pr[Xi = 1 ∧ |X| ≤ t] ≤
∑
j∈[si]

Pr[|X| ≤ t ∧ Y
Nj

i
= αj

i] ≤ sPr[|X| ≤ t ∧ YNmax
i

= αmax
i],

where Nmax
i and αmax

i correspond to the term in the DNF maximizing the probability Pr[|X| ≤
t∧Y

Nj
i
= αj

i]. The expected number of good output bits with YNmax
i

= αmax
i is at least 2−d|G|,

so there exists an assignment ρ to the input bits such that ρNmax
i

= αmax
i for at least |G|2−d

good output bits. Let T ⊆ G be the set of these output bits.
Let us estimate how many distinct elements are in the set N := {Nmax

i | i ∈ T}. Suppose
there exist i1, . . . , it+1 ∈ T such that Nmax

i1
= · · · = Nmax

it+1
. Then, by the definition of ρ, we

have αmax
i1

= · · · = αmax
it+1

as well. Thus YNmax
i1

= αmax
i1

implies that for every j ∈ [t+ 1] we have

YNmax
ij

= αmax
ij

, which in turn implies that |X| ≥ t+1, and so Pr[YNmax
i1

= αmax
i1

∧ |X| ≤ t] = 0,

which contradicts that i1 is good. Hence |N | ≥ |T |/t ≥ |G|2−d/t ≥ 2−dn/2t.
Let ε > n−5 be a parameter to be chosen later. By the condition on n we have |N | ≥

2−dn/2t ≥ d · (4Bt log(d/ε))d, and so N contains a (1/(4t), ε)-robust sunflower S. Let K denote
the kernel of this sunflower.

Fix an arbitrary petal p ∈ N . Then N \{p} is a (1/(2t), 2ε)-robust sunflower by Lemma 2.5.
Now by Lemma 2.6 we have

Pr
R∼2[m]

[There are t distinct petals of N \ {p} contained in R | R ⊇ K] ≥ 1− 2tε.

10

Let P ⊆ T be the indices of the output bits corresponding to the elements of N \ {p}, let i be
the index of the output bit corresponding to the petal p, and let U be the set of indices of input
bits such that Yt = ρt. Then

Pr[|X| > t | YNmax
i

= ρNmax
i

] =

Pr[|X[n]\{i}| ≥ t | YNmax
i

= ρNmax
i

] ≥

Pr

∑
j∈P

[U ⊇ Nmax
j] ≥ t

∣∣∣∣∣∣U ⊇ Nmax
i

 =

Pr[
∑

j∈P∪{i}[U ⊇ Nmax
j] ≥ t | U ⊇ K]

Pr[U ⊇ Nmax
i | U ⊇ K]

≥ Theorem 2.1

Pr

∑
j∈P

[U ⊇ Nmax
j] ≥ t

∣∣∣∣∣∣U ⊇ K

 ≥

1− 2tε.

Recall that by the choice of T we have ρNmax
i

= αmax
i , hence Pr[|X| > t | YNmax

i
= αmax

i] ≥
1− 2tε. Thus

Pr[|X| ≤ t ∧Xi = 1] ≤ s · Pr[|X| ≤ t ∧ YNmax
i

= αmax
i] ≤ 2st · ε.

Picking ε = 1/(4stn2) ≥ n−5, we get a contradiction with i being good.

3.3 Subpolynomial Weights

Although Theorem 3.2 implies Item 2 of Theorem 1.2, we give a simpler proof via a reduction
from Un

1 .

Lemma 3.3. Let S ⊆ {0, 1}n and let S ∼ S. Suppose that S can be sampled with a depth-d
decision forest with error η. Assume furthermore that for each s ∈ S there exists a decision tree
Ts of depth k that accepts s and does not accept any of S \ {s}. Then there exists a decision

depth-kd sampler for U
|S|
1 with error η.

Proof. Let Y be the distribution sampled by the sampler for S. For each output bit of our

sampler for U
|S|
1 we take a unique element s ∈ S and implement each of the queries of Ts via

the query to the bits of Y (which makes at most d queries to the input bits). This results in a
kd-deep decision tree T ′

s. Let X be the sampled distribution. Then

∆(X,U
|S|
1) =

1

2

(
Pr[w(X) ̸= 1] +

∑
s∈S

∣∣Pr[X = es]− 1/|S|
∣∣)

=
1

2

(
Pr[Y ̸∈ S] +

∑
s∈S

∣∣Pr[Y = s]− 1/|S|
∣∣) = ∆(Y ,S) = η.

Corollary 3.4. For some constant τ ′ > 0 and every ε ∈ (0, 1) every (τ ′ logε n)-decision depth

sampler outputs a distribution (1− n−Ω(k))-far from Un
k for k ∈ [log n, 2log

1−ε n]. If k < log2 n,
this holds for every (τ ′ logε n/ log logn)-local sampler.

Proof. The decision tree that queries all the elements of a k-size set and accepts iff all of them
are 1 satisfies the condition in Lemma 3.3. If we had a (1− δ)-error sampler for Un

k , we would

get a (1− δ)-error sampler for U
(nk)
1 with decision depth kd, which by Theorem 1.3 yields that

δ =
(
n
k

)−Ω(1)
= n−Ω(k) whenever kd ≤ τ log

(
n
k

)
/ log log

(
n
k

)
. Since log

(
n
k

)
= Θ(k log(n/k)), we

get d = Ω(log(n/k)/(log k + log log n)).

11

3.4 Sublinear Weights

In this section, we prove Item 1 of Theorem 1.2.

Lemma 3.5. Suppose X is sampled with decision depth d. Then for every small enough ε > 0
there exists a constant τ such that if d ≤ τ log(n/k)/ log log(n/k) then ∆(X,Un

k) ≥ 1−2ε− 1
2n .

Proof. Consider the first ℓ := ε−1 · n/k bits of the sampler: X≤ℓ := X1, . . . ,Xℓ. Let Y be the
first ℓ bits of the distribution Un

k . We show that Y satisfies the conditions of Theorem 3.2 for
t = ε−2 and α(n) = ε. First, we have

Pr[|Y | > t] = Pr
[
|Y | > ε−1 E[|Y |]

]
< ε.

Now let T be any subset of [ℓ] of size at least ℓ/2. Then

Pr[YT = 0T] =

(
n− ℓ/2

k

)(
n

k

)−1

=

k−1∏
i=0

n− i− ℓ/2

n− i
≤
(
1− ℓ

2n

)k

=

(
1− 1

2εk

)k

≤ e−2ε−1
< ε.

Here we assumed k < n/2, since otherwise the lemma is trivially true.
Applying Theorem 3.2, for small enough τ (which depends on ε) we have ∆(X≤ℓ,Y) =

1 − 2ε − 1/2n. To finish the proof, observe that ∆(X,Un
k) ≥ ∆(X≤ℓ,Y), since the random

variables on the RHS are the marginals of the variables on the LHS.

3.5 Unions of Slices

In this section, we prove the “moreover” part of Theorem 1.2 by observing that the distribution
Un

S is close to Un
maxx∈S x as long as maxx∈S x = o(n).

Proposition 3.6. Let k = o(n) and suppose that S ⊆ {0, 1, . . . , k} with k ∈ S. Then we have
∆(Un

k ,U
n
S) = o(1).

Proof. We use the notation
(
n
S

)
:=
∑

i∈S
(
n
i

)
.

∆(Un
k ,U

n
S) =

1

2

(
n

S \ {k}

)(
n

S

)−1

+
1

2

(
1−

(
n

k

)(
n

S

)−1
)

=

(
n

S \ {k}

)(
n

S

)−1

≤
(
n

k

)−1 ∑
i∈S\{k}

(
n

i

)

≤
k−1∑
i=0

(
k

n− i

)i−k

= Θ(k/n).

The case of S with n − minx∈S x = o(n) reduced to the case where maxx∈S x = o(n) by
observing that flipping all output bits can be done with no increase in the decision depth of the
sampler.

4 Local Certificates

In this section, we explore the power of local proof systems. Section 4.1 gives an example of a
language that requires locality Ω(n), which is inspired by a similar lower bound in the context
of sampling [LV12]. Section 4.2 then gives our main result, a lower bound on the locality of
proof systems for Maj−1(1).

12

We say that an input bit i ∈ [m] affects an output bit j ∈ [n], or equivalently that the
output bit j depends on the input bit i, if there exist inputs x, x′ ∈ {0, 1}m, differing only in
the ith bit, such that f(x)j ̸= f(x′)j . A function f : {0, 1}m → {0, 1}n is d-local if each of its
output bits depends on at most d input bits.

4.1 Error-correcting codes

In this section, we show that a good error-correcting code requires a proof system of a linear
locality. This showcases the simple counting technique that we also use for our majority lower
bound.

Proposition 4.1. Let C ⊆ {0, 1}n be a good code, that is, |C| ≥ 2αn and for every x ̸= y ∈ C,
the Hamming distance between x and y is at least βn, where α and β are constants in (0, 1).

If f : {0, 1}m → {0, 1}n is a d-local function and f({0, 1}m) = C then d ≥ αβn

Proof. We may assume w.l.o.g. that all input bits of f affect some output bits. Take an arbitrary
input bit i ∈ [m] and an output bit j ∈ [n] that depends on i. Then take x, x′ ∈ {0, 1}m that
differ only in the ith coordinate and such that f(x)j ̸= f(x′)j . Since f(x) ̸= f(x′) ∈ C, they
must be at Hamming distance at least βn, hence i must affect at least βn output bits, as x and
x′ only differ in i. Thus every bit affects at least βn output bits.

There are at least αn input bits since |C| = 2αn. Therefore there are αβn2 input-output
pairs in which the input bit affects the output bit. On the other hand, there are at most dn
such pairs, hence d ≥ αβn.

4.2 Majority

Let Majn be the the set {x ∈ {0, 1}n | |x| ≥ n/2}. First, let us give a simple upper bound on
locality which is implicit in [Kre+16].

Proposition 4.2 (essentially Theorem 3.9 and Corollary 3.10 in [Kre+16]). There exists an
O(log2 n)-local function f : {0, 1}m → {0, 1}n such that f({0, 1}m) = Maj−1

n (1).

Proof. For simplicity, suppose that n is odd. Construct a binary tree whose root is the interval
[1, n], whose leaves are the singletons {1}, . . . , {n}, and in which each internal node [ℓ, r] has
two children [ℓ, c], [c + 1, r], where c = ⌊(ℓ + r)/2⌋. We can construct such a tree whose depth
is O(log n). For each interval [ℓ, r] in the tree we will have a label w(ℓ, r) whose value ranges
from 0 to r− ℓ+1, which is supposed to indicate xℓ+ · · ·+xr (where x1, . . . , xn is the output).
We implement the variables using O(log n) input bits.

An internal node [ℓ, r] with children [ℓ, c], [c+1, r] is consistent if w(ℓ, r) = w(ℓ, c)+w(c+1, r).
In addition, if the internal node is the root [1, n], we require w(1, n) ≥ (n+1)/2. Each position
i ∈ {1, . . . , n} corresponds to the leaf w(i, i), which has O(log n) ancestors. We say that position
i is good if all its non-leaf ancestors are consistent. The i’th output is w(i, i) if i is good, and 1
otherwise. Since each w(ℓ, r) is encoded using O(log n) bits, this system has locality O(log2 n).

Every vector x1, . . . , xn of weight at least (n + 1)/2 can be generated using this system by
taking w(ℓ, r) = xℓ + · · ·+ xr. In the other direction, consider any assignment of weights to the
tree. If the root is inconsistent, then the output is 1, . . . , 1, so we can assume that the root is
consistent. Prune the tree by removing all children of inconsistent nodes. If [ℓ, r] is any node in
the pruned tree then either ℓ = r and xℓ = w(ℓ, r), or ℓ < r and xℓ+· · ·+xr = r−ℓ+1 ≥ w(ℓ, r).
It follows that x1 + · · ·+ xn ≥ w(1, n) ≥ (n+ 1)/2.

The Ω(log∗ n) locality lower bound in [Bey+13] is inspired by the following observation:

Proposition 4.3. Let f : {0, 1}m → {0, 1}n be such that every output bit is a function of at
most c input bits, and every input bit affects at most d output bits. Suppose that cd ≤ (n+1)/2.
Then f({0, 1}m) ̸= Maj−1(1).

13

Input bits

Output bits

J

SN

I T

j

< k

Figure 2: I is the set of k-influential inputs bits, and S is the given set. The set T consists of
all inputs bits affecting S, and the set N consists of all bits influenced by T \ I

Proof. Let i ∈ [n] be an arbitrary output bit. There are at most cd many output bits in
the “neighborhood” N(i) of i, which is the set of outputs that share an input bit with i. If
|N(i)| ≤ (n + 1)/2 then we can find an output y of weight (n + 1)/2 such that yN(i) = 1N(i).
Suppose that y is generated by the input x. There must be some setting to the inputs of i
which sets it to zero (since there is a valid output z with zi = 0). If we modify x using this
setting then the new output z agrees with y outside of N(i), and furthermore zi = 0. Since
yN(i) = 1N(i), it follows that |z| < |y|, which is impossible, since y had the smallest possible
weight.

One of the steps in our proof (namely, Lemma 4.5) is essentially an adaptation of the proof
of Proposition 4.3 for the sources with influential input bits.

We give a simplified exposition of their proof in Appendix A. Our own lower bound is
contained in the following theorem.

Theorem 4.4. Let f : {0, 1}m → {0, 1}n be a d-local function such that f({0, 1}m) =
Maj−1

n (1), where n is odd. Then d = Ω(
√
log n).

Proof. We say that an input bit i ∈ [m] is k-influential if at least k output bits of f depend
on it. We are going to show that there are Ω(n/(dk)) many k-influential bits for every k.
Then the number of input-output bit pairs where the output depends on the input is at least∑

k∈[n] cn/(dk) = Ω(n log n/d). On the other hand, there are at most nd such pairs since f is

d-local. Therefore d = Ω(
√
log n).

It remains to show the lower bound on the number of k-influential bits. This is done by
combining the following two lemmas.

Lemma 4.5. Let I be the set of all k-influential input bits. Then for every set of output bits
S of size at most n/(4kd) there exists an assignment ρ to I such that

1. All bits in S are fixed to 1 by ρ, i.e. for every total extension ρ′ of ρ we have f(ρ′)S = 1S .

2. ρ fixes to 1 at most (n+ 1)/2 output bits.

Proof. Fix a set S of size at most n/(4kd).
Let T be the set of input bits that affect S, so |T | ≤ d|S|. Let N be the set of all bits

influenced by T \ I. See Figure 2 for a pictorial representation of these definitions.
Since I contains all k-influential input bits, |N | ≤ kd|S|. Let ρ′ be a total assignment such

that f(ρ′)N = 1N and |f(ρ′)| = (n+ 1)/2. This is possible since |N | ≤ n/4 by the statement of
the lemma. Let ρ := ρ′I .

Since |f(ρ′)| = (n + 1)/2, in particular ρ fixes to 1 at most (n + 1)/2 bits. We claim that
ρ fixes all bits in S to 1. Suppose for the sake of contradiction that it doesn’t fix to 1 the bit

14

j ∈ S. Let J be the set of input bits affecting j. Let ρ′′ be a total assignment consistent with
ρ′ everywhere except J \ I such that f(ρ′′)j = 0. Observe that f(ρ′′)[n]\N = f(ρ′)[n]\N , hence
f(ρ′′) ≤ f(ρ′) coordinate-wise. Since f(ρ′′)j = 0 and f(ρ′)j = 1, we have |f(ρ′′)| < n/2, which
contradicts the fact that the image of f is Maj−1

n (1).

Lemma 4.6. Let I be an arbitrary set of input bits of size at most n/20. Then there exists a
set S of output bits such that |S| = O(|I|) and for every assignment ρ to I that fixes to 1 at
most (n+ 1)/2 output bits, there exists a bit in S that is not fixed to 1 by ρ.

Proof. Let ρ1, . . . , ρK be all assignments to I that fix at most (n + 1)/2 output bits. Denote
by U1, . . . , UK ⊆ [n] the sets of bits that are not fixed by ρ1, . . . , ρK , respectively, so that
|U1|, . . . , |UK | ≥ (n− 1)/2 ≥ n/3. Then

K
n

3
≤

K∑
i=1

|Ui| =
∑
j∈[n]

|{i ∈ [K] | Ui ∋ j}|.

Hence there exists j such that |{i ∈ [K] | Ui ∋ j}| ≥ K/3. Let S1 := {j}, and continue this
process for the set of bits [n]\{j} and the set of assignments {ρi : Ui ̸∋ j}. Suppose the previous
iteration yields a set Sk ⊆ [n] of size k and a set of indices Tk ⊆ [K]. Then let U ′

i := Ui \ Sk

for i ∈ Tk. Then |U ′
1|, . . . , |U ′

K | ≥ (n − 1)/2 − k ≥ n/3, where the last inequality is true if
k < n/6. As before, there exists j ̸∈ Sk such that |{i ∈ Tk | U ′

i ∋ j}| ≥ |Tk|/3. We then let
Sk+1 := Sk ∪ {j} and Tk+1 := {i ∈ Tk | U ′

i ̸∋ j}.
Clearly |Tk| ≤ K · (2/3)k−1, hence in τ = ⌈log3/2K⌉ ≤ 2 log2K ≤ 2|I| ≤ n/10 steps we

eliminate all assignments from the set, i.e. Sτ satisfies that for every assignment ρ to I that
fixes at most (n + 1)/2 output bits, there exists j ∈ Sτ that is not fixed by ρ. (The bound
2|I| ≤ n/10 guarantees that the condition k < n/6 holds).

Let I be the set of all k-influential bits. If |I| ≥ n/20 we get the desired lower bound
immediately, so assume otherwise. Then let S be the set given by Lemma 4.6, |S| = O(|I|). By
Lemma 4.5 we get that |S| = Ω(n/(dk)), so |I| = Ω(n/(dk)) as well.

5 Switching Networks for Sampling Linear Slices

In this section, we discuss the limitations of switching networks for constructing decision tree
samplers.

Definition 5.1. A switching network of depth d is a sequence of d matchings M1, . . . ,Md. Each
Mi is a set of n/2 disjoint pairs of elements from [n]. The distribution generated by a switching

network over a slice
([n]

ℓ

)
is defined as follows:

• Initialize the string as 1ℓ0n−ℓ;

• For each i ∈ [d]: for every pair in (a, b) ∈ Mi, we toss a fair coin, and if it comes up heads,
we swap the ath and the bth bits of the current sequence.

Lemma 5.2 (A variation of [Vio12b]). Suppose there exists a switching network of depth d

that generates the variable X over
([n]

ℓ

)
. Then there exists a decision depth d sampler for X

such that each input bit affects at most 2d output bits. Moreover, the support of X is a subset
of
([n]

ℓ

)
.

Proof. The input bits correspond to the coin tosses in the switching network. Each output bit
is computed by tracing back its initial position: first, we query the coin corresponding to the
pair in Md containing the bit, then we query the coin corresponding to the pair in Md−1 and
so on until we compute the location of the bit in the initial sequence. Then if the location is

15

in [ℓ] we output 1 and otherwise output 0. It is easy to see that the described sampler has the
required properties.

Lemma 5.3. Let α ∈ (0, 1) be a constant. Suppose X is samplable with a d-local sampler
such that each input bit affects at most c output bits, the support of X is within

(
[n]
αn

)
, and

n/(cd)2 = ω(2cd). Then ∆(X,Un
αn) = 1− o(1).

Proof. For each output bit i ∈ [n] of X, let N(i) ⊆ [n], the neighborhood of i, be the set of
output bits that share an affecting input bit with i. By assumption, |N(i)| ≤ cd. Let us greedily
choose a set of output bits with disjoint neighborhoods: t1 = 1, and for j > 1, tj ∈ [n] is a bit
such that N(tj) ∩ (N(t1) ∪ · · · ∪ N(tj−1)) = ∅. For each output bit i there are at most (cd)2

output bits j for which N(i) ∩N(j) ̸= ∅, so the greedy process yields ℓ ≥ n/(cd)2 bits.
Suppose that there is a bit i ∈ {t1, . . . , tℓ} such that Pr[Xi = 0] > 0 and Pr[XN(i) = 1N(i)] >

0. Then we use the approach from Proposition 4.3: let x ∈
(
[n]
αn

)
be a string in the support of

X such that xN(i) = 1N(i), and let ρ be the input bits that yield x. Since Pr[Xi = 0] > 0, we
can change the bits of ρ affecting the ith output bit such that its value switches to 0. Denote
the resulting input by x′. Observe then that x[n]\N(i) = x′[n]\N(i), since N(i) is the set of output

bits that are affected by the input bits affecting the ith bit. Then |x′| < |x|, hence x′ ̸∈
(
[n]
αn

)
,

so it does not lie in the support of X, which is a contradiction.
Now let us analyze the case when there are no bits satisfying the condition. Let I ⊆

{t1, . . . , tℓ} consist of those output bits for which Pr[Xi = 0] = 0. If |I| ≥ ℓ/2 then

∆(X,Un
αn) ≥

∣∣Pr[XI = 1I]− Pr[(Un
αn)I = 1I]

∣∣ = 1−
(
n− |I|
αn

)(
n

αn

)−1

= 1−
αn−1∏
j=0

n− |I| − j

n− j
≥ 1−

(
1− |I|

n− αn+ 1

)αn

≥ 1− 2−Ω(α
1−α

|I|) = 1− 2−Ω(ℓ).

Since ℓ = Ω(n/(cd)2) = ω(1), in this case ∆(X,Un
αn) = 1− o(1).

Now suppose that |I| ≤ ℓ/2, and let J = {t1, . . . , tℓ} \ I. Assume that all bits in J satisfy
Pr[XN(i) ̸= 1N(i)] = 1. Let us compute the probability of this event for Un

αn:

Pr[(Un
αn)N(i) ̸= 1N(i)] = 1−

(
n− |N(i)|

αn

)(
n

αn

)−1

= 1−
αn−1∏
j=0

n− |N(i)| − j

n− j

≤ 1 −
(
1− |N(i)|

n

)αn

≤ 1 − 2−Ω(α|N(i)|) = 1 − 2−Ω(cd).

Therefore

Pr[(Un
αn)N(i) ̸= 1N(i) for all i ∈ J] =

∏
i∈J

(1− 2−Ω(cd)) ≤ (1− 2−Ω(cd))ℓ/2.

Since ℓ/2 = n/(2(cd)2) = ω(2cd), we get the desired lower bound on the statistical distance in
this case as well.

Corollary 5.4. Let α ∈ (0, 1) be a constant. Any switching network that generates a distribu-
tion that is 1− Ω(1) close to Un

αn has depth Ω(log log n).

Proof. Consider a switching network of depth d that generates a distribution that is 1 − Ω(1)
close to Un

αn. Lemma 5.2 translates it to a decision depth d sampler for Un
αn such that each

input bit affects at most c = 2d output bits. The sampler is 1−Ω(1) close to Un
αn, and supported

within
(
[n]
αn

)
. The result now follows from Lemma 5.3.

16

Acknowledgements. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 802020-ERC-HARMONIC.

This work was supported by the Swiss State Secretariat for Education, Research and Inno-
vation (SERI) under contract number MB22.00026.

We thank Mika Göös, Aleksandr Smal, and Anastasia Sofronova for fruitful discussions and
suggestions.

References

[Alw+21] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. “Improved bounds
for the sunflower lemma”. In: Annals of Mathematics 194.3 (2021), pp. 795 –815.
doi: 10.4007/annals.2021.194.3.5. url: https://doi.org/10.4007/annals.
2021.194.3.5.

[Bab87] Lászió Babai. “Random oracles separate PSPACE from the polynomial-time hi-
erarchy”. In: Information Processing Letters 26.1 (1987), pp. 51–53. issn: 0020-
0190. doi: https://doi.org/10.1016/0020-0190(87)90036-6. url: https:
//www.sciencedirect.com/science/article/pii/0020019087900366.

[BCW21] Tolson Bell, Suchakree Chueluecha, and Lutz Warnke. “Note on sunflowers”. In:
Discrete Mathematics 344.7 (2021), p. 112367. issn: 0012-365X. doi: https://doi.
org/10.1016/j.disc.2021.112367. url: https://www.sciencedirect.com/
science/article/pii/S0012365X21000807.

[Bey+13] Olaf Beyersdorff, Samir Datta, Andreas Krebs, Meena Mahajan, Gido
Scharfenberger-Fabian, Karteek Sreenivasaiah, Michael Thomas, and Heribert
Vollmer. “Verifying proofs in constant depth”. In: ACM Trans. Comput. Theory
5.1 (2013), Art. 2, 23. issn: 1942-3454. doi: 10.1145/2462896.2462898. url:
https://doi.org/10.1145/2462896.2462898.

[BIL12] Chris Beck, Russell Impagliazzo, and Shachar Lovett. “Large Deviation Bounds for
Decision Trees and Sampling Lower Bounds for AC0-Circuits”. In: 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science. 2012, pp. 101–110. doi:
10.1109/FOCS.2012.82.

[Bog+16] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson.
“Bounded indistinguishability and the complexity of recovering secrets”. In: Ad-
vances in Cryptology–CRYPTO 2016: 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III. Springer.
2016, pp. 593–618.

[Bog+22] Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan,
and Akshayaram Srinivasan. “Bounded Indistinguishability for Simple Sources”. In:
13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA. Ed. by Mark Braverman. Vol. 215.
LIPIcs. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2022, 26:1–26:18. doi:
10.4230/LIPIcs.ITCS.2022.26. url: https://doi.org/10.4230/LIPIcs.ITCS.
2022.26.

[CGZ22] Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. “The Space Com-
plexity of Sampling”. In: 13th Innovations in Theoretical Computer Science Con-
ference (ITCS 2022). Ed. by Mark Braverman. Vol. 215. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022, 40:1–40:23. isbn: 978-3-95977-217-4. doi: 10.4230/
LIPIcs.ITCS.2022.40. url: https://drops.dagstuhl.de/opus/volltexte/
2022/15636.

17

https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/https://doi.org/10.1016/0020-0190(87)90036-6
https://www.sciencedirect.com/science/article/pii/0020019087900366
https://www.sciencedirect.com/science/article/pii/0020019087900366
https://doi.org/https://doi.org/10.1016/j.disc.2021.112367
https://doi.org/https://doi.org/10.1016/j.disc.2021.112367
https://www.sciencedirect.com/science/article/pii/S0012365X21000807
https://www.sciencedirect.com/science/article/pii/S0012365X21000807
https://doi.org/10.1145/2462896.2462898
https://doi.org/10.1145/2462896.2462898
https://doi.org/10.1109/FOCS.2012.82
https://doi.org/10.4230/LIPIcs.ITCS.2022.26
https://doi.org/10.4230/LIPIcs.ITCS.2022.26
https://doi.org/10.4230/LIPIcs.ITCS.2022.26
https://doi.org/10.4230/LIPIcs.ITCS.2022.40
https://doi.org/10.4230/LIPIcs.ITCS.2022.40
https://drops.dagstuhl.de/opus/volltexte/2022/15636
https://drops.dagstuhl.de/opus/volltexte/2022/15636

[CS16] Gil Cohen and Leonard J Schulman. “Extractors for near logarithmic min-entropy”.
In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2016, pp. 178–187.

[CZ16] Eshan Chattopadhyay and David Zuckerman. “Explicit two-source extractors and
resilient functions”. In: Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing. 2016, pp. 670–683.

[Czu15] Artur Czumaj. “Random Permutations Using Switching Networks”. In: Proceedings
of the Forty-Seventh Annual ACM Symposium on Theory of Computing. STOC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, 703–712. isbn:
9781450335362. doi: 10.1145/2746539.2746629. url: https://doi.org/10.
1145/2746539.2746629.

[FKG71] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. “Correlation inequalities on some
partially ordered sets”. In: Communications in Mathematical Physics 22 (1971),
89–103. issn: 0010-3616. doi: 10.1007/bf01651330.

[GTS14] Efraim Gelman and Amnon Ta-Shma. “The Benes Network is q(q−1)/2n-Almost q-
set-wise Independent”. In: 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS 2014). Ed. by Venkatesh
Raman and S. P. Suresh. Vol. 29. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014, pp. 327–338. isbn: 978-3-939897-77-4. doi: 10.4230/LIPIcs.FSTTCS.2014.
327. url: http://drops.dagstuhl.de/opus/volltexte/2014/4853.

[GW20] Mika Göös and Thomas Watson. “A lower bound for sampling disjoint sets”. In:
ACM Trans. Comput. Theory 12.3 (2020), Art. 20, 13. issn: 1942-3454. doi: 10.
1145/3404858. url: https://doi.org/10.1145/3404858.

[Hag91] Torben Hagerup. “Fast parallel generation of random permutations”. In: Automata,
Languages and Programming: 18th International Colloquium Madrid, Spain, July
8–12, 1991 Proceedings 18. Springer. 1991, pp. 405–416.

[Har60] T. E. Harris. “A lower bound for the critical probability in a certain percolation
process”. In: Proc. Cambridge Philos. Soc. 56 (1960), pp. 13–20.

[H̊as87] Johan H̊astad. “Computational limitations of small-depth circuits”. In: MIT Press
(1987).

[IN96] Russell Impagliazzo and Moni Naor. “Efficient cryptographic schemes provably as
secure as subset sum”. In: Journal of cryptology 9.4 (1996), pp. 199–216.

[Kil88] Joe Kilian. “Founding Crytpography on Oblivious Transfer”. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. STOC ’88. New York,
NY, USA: Association for Computing Machinery, 1988, 20–31. isbn: 0897912640.
doi: 10.1145/62212.62215. url: https://doi.org/10.1145/62212.62215.

[Kre+16] Andreas Krebs, Nutan Limaye, Meena Mahajan, and Karteek Sreenivasaiah. “Small
depth proof systems”. In: ACM Trans. Comput. Theory 9.1 (2016), Art. 2, 26. issn:
1942-3454. doi: 10.1145/2956229. url: https://doi.org/10.1145/2956229.

[LV11] Shachar Lovett and Emanuele Viola. “Bounded-Depth Circuits Cannot Sample
Good Codes”. In: Proceedings of the 26th Annual IEEE Conference on Computa-
tional Complexity, CCC 2011, San Jose, California, USA, June 8–10, 2011. IEEE
Computer Society, 2011, pp. 243–251. doi: 10.1109/CCC.2011.11. url: https:
//doi.org/10.1109/CCC.2011.11.

18

https://doi.org/10.1145/2746539.2746629
https://doi.org/10.1145/2746539.2746629
https://doi.org/10.1145/2746539.2746629
https://doi.org/10.1007/bf01651330
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.327
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.327
http://drops.dagstuhl.de/opus/volltexte/2014/4853
https://doi.org/10.1145/3404858
https://doi.org/10.1145/3404858
https://doi.org/10.1145/3404858
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/2956229
https://doi.org/10.1145/2956229
https://doi.org/10.1109/CCC.2011.11
https://doi.org/10.1109/CCC.2011.11
https://doi.org/10.1109/CCC.2011.11

[LV12] Shachar Lovett and Emanuele Viola. “Bounded-depth circuits cannot sample good
codes”. In: Comput. Complexity 21.2 (2012), pp. 245–266. issn: 1016-3328. doi:
10.1007/s00037-012-0039-3. url: https://doi-org.ezlibrary.technion.ac.
il/10.1007/s00037-012-0039-3.

[Rao19] Anup Rao. Coding for Sunflowers. 2019. doi: 10.48550/ARXIV.1909.04774. url:
https://arxiv.org/abs/1909.04774.

[Ros14] Benjamin Rossman. “The monotone complexity of k-clique on random graphs”.
In: SIAM J. Comput. 43.1 (2014), pp. 256–279. issn: 0097-5397. doi: 10.1137/
110839059. url: https://doi- org.ezlibrary.technion.ac.il/10.1137/
110839059.

[Smo87] R. Smolensky. “Algebraic Methods in the Theory of Lower Bounds for Boolean Cir-
cuit Complexity”. In: Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing. STOC ’87. New York, NY, USA: Association for Comput-
ing Machinery, 1987, 77–82. isbn: 0897912217. doi: 10.1145/28395.28404. url:
https://doi.org/10.1145/28395.28404.

[Vio12a] Emanuele Viola. “Extractors for Turing-Machine Sources”. In: Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques — 15th
International Workshop, APPROX 2012, and 16th International Workshop, RAN-
DOM 2012, Cambridge, MA, USA, August 15–17, 2012. Proceedings. Ed. by Anu-
pam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio. Vol. 7408. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 663–671. doi: 10.1007/978-
3-642-32512-0_56. url: https://doi.org/10.1007/978-3-642-32512-0_56.

[Vio12b] Emanuele Viola. “The Complexity of Distributions”. In: SIAM J. Comput. 41.1
(2012), pp. 191–218. doi: 10.1137/100814998. url: https://doi.org/10.1137/
100814998.

[Vio14] Emanuele Viola. “Extractors for Circuit Sources”. In: SIAM J. Comput. 43.2 (2014),
pp. 655–672. doi: 10 . 1137 / 11085983X. url: https : / / doi . org / 10 . 1137 /

11085983X.

[Vio16] Emanuele Viola. “Quadratic Maps Are Hard to Sample”. In: ACM Trans. Comput.
Theory 8.4 (2016), 18:1–18:4. doi: 10.1145/2934308. url: https://doi.org/10.
1145/2934308.

[Vio20] Emanuele Viola. “Sampling Lower Bounds: Boolean Average-Case and Permuta-
tions”. In: SIAM J. Comput. 49.1 (2020), pp. 119–137. doi: 10.1137/18M1198405.
url: https://doi.org/10.1137/18M1198405.

[Vio21] Emanuele Viola. New sampling lower bounds via the separator. 2021.

[WP23] Adam Bene Watts and Natalie Parham. Unconditional Quantum Advantage for
Sampling with Shallow Circuits. 2023. arXiv: 2301.00995 [quant-ph].

A Exposition of the Ω(log∗ n) lower bound for Majority

The following is an exposition of the proof of [Bey+13, Theorem 5.1].
Suppose that n is odd, and consider a locality c proof system for the vectors containing more

1s than 0s, that is, having Hamming weight at least (n+ 1)/2. We can assume that c ≥ 2.4

The proof system has inputs and outputs. The number of outputs is n, and each one depends
on at most c input bits. An input bit is d-influential if at least d output bits depend on it.
There are at most cn/d many d-influential input bits.

4Alternatively, change B(0) or redefine d-influential as having more than d output bits depending on it.

19

https://doi.org/10.1007/s00037-012-0039-3
https://doi-org.ezlibrary.technion.ac.il/10.1007/s00037-012-0039-3
https://doi-org.ezlibrary.technion.ac.il/10.1007/s00037-012-0039-3
https://doi.org/10.48550/ARXIV.1909.04774
https://arxiv.org/abs/1909.04774
https://doi.org/10.1137/110839059
https://doi.org/10.1137/110839059
https://doi-org.ezlibrary.technion.ac.il/10.1137/110839059
https://doi-org.ezlibrary.technion.ac.il/10.1137/110839059
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1007/978-3-642-32512-0_56
https://doi.org/10.1007/978-3-642-32512-0_56
https://doi.org/10.1007/978-3-642-32512-0_56
https://doi.org/10.1137/100814998
https://doi.org/10.1137/100814998
https://doi.org/10.1137/100814998
https://doi.org/10.1137/11085983X
https://doi.org/10.1137/11085983X
https://doi.org/10.1137/11085983X
https://doi.org/10.1145/2934308
https://doi.org/10.1145/2934308
https://doi.org/10.1145/2934308
https://doi.org/10.1137/18M1198405
https://doi.org/10.1137/18M1198405
https://arxiv.org/abs/2301.00995

Let 1 = B(0) < B(1) < · · · < B(c+ 1) be a sequence of constants (depending on c but not
on n), and let d(ℓ) = cn/B(ℓ), so that cn = d(0) > d(1) > · · · > d(c + 1) = Ω(n). Thus there
are at most B(ℓ) many input bits which are d(ℓ)-influential.

We will construct a sequence of sets ∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rc ⊆ [n] with the following
property: If ρ is a truth assignment to the d(ℓ)-influential variables which extends to a complete
truth assignment setting all coordinates in Rℓ to zero, then for each coordinate i /∈ Rℓ, ρ also
extends to a complete truth assignment setting coordinate i to zero.5

Given Rℓ−1, here is how we construct Rℓ. We start with R := Rℓ−1, and will potentially
add more output coordinates to R. At any point, suppose that there is a truth assignment
ρ to the d(ℓ)-influential variables which (i) extends to a complete truth assignment setting all
coordinates in R to zero, and (ii) for some coordinate i /∈ R, any complete truth assignment
extending ρ sets coordinate i to one. If that happens, then we add i to R. Henceforth, ρ will
not come up again, since no complete truth assignment extending ρ sets i to one, and i belongs
to R. Eventually, there is no such “bad” truth assignment, and we set Rℓ := R.

If i ∈ Rℓ then there exists some r ≤ ℓ, some R ⊆ Rr, and some truth assignment ρi to
the d(r)-influential variables, such that ρi extends to a complete truth assignment setting all
coordinates in R to zero, and any complete truth assignment extending ρi sets i to one. If
j ∈ Rℓ was added after i then the truth assignment ρj extends to a complete truth assignment
which sets all coordinates in R ∪ {i} to zero. In particular, ρj doesn’t extend ρi (as a special
case, ρj ̸= ρi). It follows that if we extend each ρi arbitrarily to a truth assignment to the
d(ℓ)-influential variables, then the resulting assignments will all be different. Consequently,

|Rℓ| ≤ 2B(ℓ).

For large enough n, this will be at most n−1
2 .

We show below that for a proper choice of parameters, there is an output coordinate i which
satisfies the following, for all ℓ ∈ {0, . . . , c}: i /∈ Rℓ, and all inputs to i which are also inputs to
Rℓ are d(ℓ + 1)-influential. We will show that for each ℓ ∈ {0, . . . , c}, i has an input which is
d(ℓ + 1)-influential but not d(ℓ)-influential. For different ℓ these inputs are different (since an
input which is not d(ℓ)-influential is also not d(r)-influential for all r < ℓ), and so i depends on
c+ 1 inputs, which is impossible.

Let ℓ ∈ {0, . . . , c}. Let us show that i has an input which is d(ℓ + 1)-influential but not
d(ℓ)-influential. We do this by contradiction: suppose that all d(ℓ + 1)-influential inputs of i
are d(ℓ)-influential. By assumption, i /∈ Rℓ and all inputs to i which are also inputs to Rℓ

are d(ℓ)-influential. Let N(i) consist of i together with all other output bits which share some
non-d(ℓ)-influential bit with i. All of these shared input bits are in fact non-d(ℓ+1)-influential,
and so

|N(i)| ≤ 1 + cd(ℓ+ 1) ≤ 1 + cd(1) = 1 +
c2n

B(1)
.

If B(1) > 2c2 then |N(i)| < 1 + n
2 and so |N(i)| ≤ (n + 1)/2. Since |Rc| ≤ n−1

2 , the proof
system generates some vector v of weight (n + 1)/2 in which all coordinates of Rc are zero
and all coordinates of N(i) are one. Consider an arbitrary complete truth assignment α which
generates v, and let ρ be its restriction to the d(ℓ)-influential coordinates. Since i /∈ Rℓ, by
construction, we know that ρ extends to some complete truth assignment β which sets i to zero.
Now consider the following complete truth assignment:

γ(j) =

ρ(j) if j is d(ℓ)-influential,

β(j) if j is not d(ℓ)-influential and influences N(i),

α(j) if j is not d(ℓ)-influential and doesn’t influence N(i).

5In the paper, ρ extends to a complete truth assignment setting both Rℓ and i to zero.

20

Since α, β both extend ρ, γ agrees with them on the d(ℓ)-influential variables. Therefore the
output generated by γ agrees with that generated by α except for the coordinates in N(i), which
could change from one to zero. Moreover, the i’th output of γ agrees with the i’th output of β,
namely, it is zero. Therefore the output generated by γ has Hamming weight strictly less than
(n+ 1)/2, which is impossible.

It remains to show that there exists an output bit i such that i /∈ Rc, and for all ℓ ∈ {0, . . . , c},
all inputs to i which are also inputs to Rℓ are d(ℓ+1)-influential. We do this by giving an upper
bound on the number of bad output bits. An output bit is bad if it either belongs to Rc, or
for some ℓ ∈ {0, . . . , c}, there is a joint input of i and Rℓ which is not d(ℓ + 1)-influential. If i
is bad due to some ℓ, then there must be some non-d(ℓ+ 1)-influential input of Rℓ which is an
input of i. Therefore the number of bad inputs is at most

|Rc|+
c∑

ℓ=0

|Rℓ| · c · d(ℓ+ 1) ≤ 2B(c) + n · c2
c∑

ℓ=0

2B(ℓ)

B(ℓ+ 1)
.

For a judicious choice of the sequence B(ℓ), the coefficient of n will be strictly less than 1, and
so for large enough n, there are fewer than n bad inputs.

One choice for the sequence B(ℓ) is

B(ℓ+ 1) = 2B(ℓ) · 2c2(c+ 1).

In particular, B(1) = 4c2(c + 1) > 2c2, which was needed above. For this choice of
B(0), . . . , B(c), the number of bad inputs is at most

2B(c) +
n

2
,

which less than n if 2B(c) ≤ n−1
2 , a condition which was required at a different step of this proof.

Roughly speaking, B(ℓ+ 1) ≈ 2c3 · 2B(ℓ), and so B(c) ≈ 2 ↑↑ c. Therefore 2B(c) ≤ n−1
2 , and

so the argument works, for c ≤ κ log∗ n, for an appropriate constant κ.

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

