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Abstract

The range avoidance problem, denoted as €-AvoID, asks to find a non-output of a given
%-circuit C : {0,1}™ — {0,1}* with stretch £ > n. This problem has recently received much
attention in complexity theory for its connections with circuit lower bounds and other explicit
construction problems. Inspired by the Algorithmic Method for circuit lower bounds, Ren,
Santhanam, and Wang (FOCS’22) established a framework to design FPNP algorithms for %-
AvoID via slightly non-trivial data structures related to ¢’. However, a major drawback of their
approach is the lack of unconditional results even for 4 = AC’.

In this work, we present the first unconditional FPNY algorithm for ACC°-Avoip. Indeed,
we obtain FPNP algorithms for the following stronger problems:

e (ACC’-REMOTE-POINT). Given C : {0,1}" — {0,1}* for some ¢ = quasi-poly(n) such
that each output bit of C' is computed by a quasi-poly(n)-size AC°[m] circuit, we can find
some y € {0,1}* in FPNP such that for every = € {0,1}", the relative Hamming distance
between y and C'(x) is at least 1/2—1/poly(n). This problem is the “average-case” analogue
of ACC’-AvoIp.

e (ACC’-PARTIAL-AVGHARD). Given xy,...,2, € {0,1}" for some ¢ = quasi-poly(n),
we can compute £ bits y1,...,y, € {0,1} in FPNP such that for every 2!°8°(")_gjze ACCY
circuit C, Pr;[C(x;) # y;] > 1/2 — 1/poly(n), where ¢ = O(1). This problem generalises
the strong average-case circuit lower bounds against ACC? in a different way.

Our algorithms can be seen as natural generalisations of the best known almost-everywhere
average-case lower bounds against ACC? circuits by Chen, Lyu, and Williams (FOCS’20). Note
that both problems above have been studied prior to our work, and no FPNP algorithm was
known even for weak circuit classes such as GF(2)-linear circuits and DNF formulas.

Our results follow from a strengthened algorithmic method: slightly non-trivial algorithms
for the Satisfying-Pairs problem for € implies FPN" algorithms for €-Avoip (as well as €-
REMOTE-POINT and %-PARTIAL-AVGHARD). Here, given %-circuits {C;} and inputs {x;}, the
¢-Satistying-Pairs problem asks to (approximately) count the number of pairs (4,j) such that

A technical contribution of this work is a construction of a short, smooth, and rectangular
PCP of Proximity that combines two previous PCP constructions, which may be of independent
interest. It serves as a key tool that allows us to generalise the framework for AVOID to the
average-case scenarios.
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1 Introduction

“You might wonder why should coming up with explicit construction
be so difficult. After all, a proof of existence via the probabilistic
method shows not only that an object with the desired property
exists but in fact the vast majority of objects have the property.”

Sanjeev Arora and Boaz Barak [ABO0Y|

1.1 From Circuit Lower Bounds to Range Avoidance

Proving unconditional lower bounds for non-uniform circuits is one of the grand challenges in
theoretical computer science, with the holy grail of proving NP & P ,.1,. Unfortunately, progress in
unconditional circuit lower bounds has been slow, and the best lower bound for any explicit function
against general circuits is only slightly above 3n [FGHK16,LY22]. A long-standing, and somewhat
embarrassing, open problem is to find any language in EXPNP (exponential time with an NP oracle)
that cannot be computed by polynomial-size circuits. It seems unlikely that EXPNP C P /poly, but
we appear to be very far from ruling out this possibility.

To add more embarrassment, it has been known since 1949 [Sha49]| that most Boolean functions
over n inputs require circuits of size (2" /n). 70 years later, we still struggle to spell out even a
single such function from a plethora of them! It turns out that circuit lower bounds are not alone,
and the difficulty of “finding hay in a haystack” (JAB09, Chapter 21|) is a general phenomenon
in theoretical computer science. For example, most graphs are Ramsey graphs [Erd59] and most
matrices are rigid matrices [Val77|, but it remains major open problems to explicitly construct
Ramsey graphs and rigid matrices with good parameters [CZ19,Li23, AC19, Ram20, BHPT20].

Our lack of progress in such explicit construction problems suggests the necessity of a systematic
study of their difficulty. As a first step towards building a complexity theory for explicit construction
problems, Korten [Kor21| studied the complexity class APEPP defined in [KKMP21]|, and argued
that this is the complexity class that corresponds to explicit construction problems. APEPP is the
class of total search problems that are polynomial-time reducible to the following problem:

Problem 1.1 (Range Avoidance Problem, denoted as AvoID). Given the description of a circuit C :
{0,1}™ — {0,1}*, where ¢ > n, output any string y € {0, 1}¢ that is not in the range of C. That is, for
every z € {0,1}", C(x) # .

The existence of such y follows from the dual weak pigeonhole principle: if we throw 2" pigeons
into 2¢ holes, where ¢ > n + 1, then there is an empty hole. Thus AvOID is a total search problem.
Moreover, a random string y € {0, 1}Z is a valid solution w.p. 1 —27—¢ > 1/2, thus there is a trivial
randomised algorithm for AvoID. Hence, the focus is to design deterministic algorithms for AvoID.

The following is a good example of how AvVOID captures the complexity of explicit constructions:

Example 1.2 ([Kor2l, Section 3.1]). Proving circuit lower bounds can be rephrased as solving the
following total search problem, denoted as HARD: On input 1V where N = 27, output the truth table
of a function f: {0,1}™ — {0,1} that cannot be computed by circuits of size s (say s = 2"/2).

Let TT : {0,1}9Glgs) — {0 1}2" be the circuit that takes as input the description of a size-s
circuit and outputs the truth table of this circuit. (The circuit TT is sometimes called the truth table
generator, hence the name TT.) If we could solve AvOID on the particular instance TT, we would find
a truth table tt € {0, 1}2n without size-s circuits, thereby proving a circuit lower bound. It follows that
HARD polynomial-time reduces to AvOID, and thus HARD € APEPP.

More precisely, solving AvoiD for TT in polynomial time is equivalent to proving a circuit lower
bound for E, and solving AvoID for TT in FPNP ig equivalent to proving a circuit lower bound for ENP.




1.1.1 Range Avoidance for Restricted Circuit Classes

In a recent paper, Ren, Santhanam, and Wang [RSW22]| suggested studying the range avoidance
problem for restricted circuit classes. Let € be a circuit class and £ := £(n) > n be a stretch function.
Consider the following problem:

Problem 1.3 (%-AvoID). Given the description of a circuit C' : {0,1}™ — {0,1}*™), where each output
bit of C' is a & circuit, output any string y € {0,1}¥(™) that is not in the range of C. That is, for every

z € {0,1}", C(z) # y.

There are lots of reasons for studying the problem %-AvoID, but we only mention one of them
here. Many interesting explicit construction problems reduce to ¥-AvoID for restricted circuit
classes € and (sometimes) large stretch functions ¢. For example:

e For any “nice” circuit class &, the problem of proving circuit lower bounds against % can be
reduced to ¥-AvoID via the truth table generator in Example 1.2, where the input of the
truth table generator is replaced by a & circuit (instead of a general circuit).

e Guruswami, Lyu, and Wang [GLW22] showed that the problem of finding rigid matrices and
optimal binary linear codes can be reduced to NC'-Avoip. By a further result in [RSW22],
these problems also reduce to NC®-AvoID. A recent work [GGNS23] showed that the problem
of finding rigid matrices can even be reduced to NC3-Avoip.

In general, for any explicit construction problem II, we can identify a circuit class € that is
as “simple” as possible, as well as a stretch function ¢(n) that is as large as possible, such that II
reduces to -AvoID with stretch ¢(n). The hope is that by making progress on the range avoidance
problem for restricted circuits and by optimising the reduction (i.e., optimising ¢ and ¢(n)), we
could solve many explicit construction problems systematically.

An “Algorithmic Method” for range avoidance. Inspired by the Algorithmic Method for
proving circuit lower bounds (e.g. [Will3, Willda, MW20, CW19b, Chel9, CLW20]), [RSW22]| pro-
posed a framework that uses data structures to solve @-AvoIp in FPNP. Consider the following
data structure problem.

Problem 1.4 (Hamming Weight Estimation). Let 4 be a circuit class and ¢ := ¢(n) be a stretch
function. The data structure problem has two phases:

(Preprocessing) Given the description of a circuit C' : {0,1}" — {0,1}¢, where each output bit of
C is a € circuit, we need to preprocess the circuit in PNP (i.e., in polynomial time with an NP
oracle) and output a data structure DS € {0, 1}Pe (),

(Query) Given an input z and oracle access (i.e., random access) to DS, we need to estimate the
Hamming weight of C(z) in “non-trivial” time, i.e., deterministic ¢/ log“™ ¢ time.

It was shown in [RSW22] that for “typical” circuit classes ¢, a non-trivial data structure for the
Hamming Weight Estimation problem for ¢ implies an FPNP algorithm for €-AvoIp.

One drawback of [RSW22] is that their framework does not imply new unconditional algorithms
for range avoidance.! For comparison, the original Algorithmic Method has made significant progress
on proving unconditional circuit lower bounds that we do not know how to prove otherwise. One
motivation for the current paper is to address this drawback by designing new and unconditional

! Actually, [RSW22| provided an unconditional range avoidance algorithm for de Morgan formulas with non-trivial
parameters. Subsequently, [GLW22] improved this result by using simpler techniques and achieving better parameters;
in particular, the algorithm in [GLW22] does not require the Algorithmic Method.



range avoidance algorithms via the Algorithmic Method. In particular, can we solve ACC’-AvoID
with parameters that match the circuit lower bounds in [CLW20]?

1.1.2 The Remote Point Problem

The Algorithmic Method is extremely good at proving average-case circuit lower bounds [CR22,
CLW20,CL21|. Therefore, it is natural to wonder if there is an “average-case analogue” of [RSW22].

For two strings z,y € {0,1}", their relative Hamming distance is defined as the fraction of
indices where x and y differ, formally 6(z,y) := L|{i € [n] : 2; # y;}|. The “average-case analogue”
of the range avoidance problem is the following problem:

Problem 1.5 (Remote Point Problem, denoted as ¥-REMOTE-POINT). Given the description of a
circuit C : {0,1}™ — {0,1}* and a parameter § > 0, where each output bit of C is a € circuit, output
any string y € {0, 1} that is §-far from the range of C. That is, for every x € {0,1}", §(C(z),y) > 6.

By Chernoff bound, if § < 1/2 — c\/m for some absolute constant ¢ > 0, then a random
length-¢ string is a valid solution for REMOTE-POINT w.h.p. Therefore, the challenge is to find
deterministic algorithms for REMOTE-POINT.

It is not hard to see that ¥-REMOTE-POINT for the truth table generator TT corresponds to
average-case circuit lower bounds. In particular, the regime where ¢ is a small constant corresponds
to proving “weak” average-case lower bounds (e.g. [COS18,Chel9]), and the regime where ¢ is close
to 1/2 (say, d = 1/2 — 1/n) corresponds to proving “strong” average-case lower bounds (e.g. [CR22,
CLW20]).2

The remote point problem was discussed in [KKMP21]. Indeed, an important special case of
the problem has been studied by Alon, Panigrahy, and Yekhanin [APY09|, namely the case that
C' is a linear transformation over GF(2). In other words, we are given a linear code C : {0,1}" —
{0,1}* and we want to find a string far from every codeword. They introduced this problem as
an intermediate step towards constructing rigid matrices. In this paper, we call this special case
XOR-REMOTE-POINT.

It is already quite hard to solve this special case deterministically. Alon, Panigrahy, and
Yekhanin [APY09] designed a polynomial-time algorithm for XOR-REMOTE-POINT when ¢ > 2n
and § = O(logn/n). For slightly larger §, say 6 = 0.1, no deterministic algorithm is known even with
an NP oracle. Arvind and Srinivasan [AS10| showed that for certain parameters, a polynomial-time
algorithm for XOR-REMOTE-POINT implies a polynomial-time algorithm for AC’-PARTIAL-HARD
(defined later in Section 1.1.3).

1.1.3 Hard Partial Truth Tables

Besides Avoid and REMOTE-POINT, we also consider the following problem that generalises the
task of proving circuit lower bounds (in a different way from Avoib and REMOTE-POINT):

Problem 1.6 (Hard Partial Truth Tables against €, denoted as ¥-PARTIAL-HARD). Given a list of
input strings 21, 2a,...,2¢ € {0,1}" and a parameter s, find a list of output bits by,bo,..., by € {0,1}
such that the partial function defined by {(zi,b;)}ic[¢) cannot be computed by % circuits of size s. In
other words, for every size-s € circuit C, there exists an index i € [¢] such that C(z;) # b;.

2Typically, a strong average-case lower bound states that certain problems cannot be (1/2 + 1/s)-approximated
by size-s circuits. Suppose TT : {0,1}"* — {0,1}¢ is the truth table generator, then n is roughly the size of the
circuit (i.e., n & s). In this regard, strong average-case circuit lower bounds correspond to REMOTE-POINT where
0=1/2—-1/n.



It is easy to see that ¥-PARTIAL-HARD generalises the problem of proving circuit lower bounds
against %. Indeed, if we take £ := 2™ and z1, 29, ..., 2z¢ be an enumeration of length-n strings, then
%@ -PARTIAL-HARD becomes exactly the problem of proving circuit lower bounds against €. It is
also easy to see that when ¢ > O(slog s), this problem is in APEPP: given the input (z1, 22, ..., 2¢),
we can construct a circuit TT : {0, 1}9198) — {0, 1} which takes the description of a € circuit
C as input, and outputs the concatenation of C(z1),C(22),...,C(2¢). Finding a non-output of TT’
is equivalent to finding a solution of ¥-PARTIAL-HARD, thus this problem reduces to AvOID.

This problem was introduced by Arvind and Srinivasan [AS10] under the name “circuit lower
bounds with help functions.” Let hy,ho,...,h, @ {0,1}™ — {0,1} denote a sequence of help
functions, € be a circuit class, and s € N be a size parameter. The goal is to construct the truth
table of a function f : {0,1}™ — {0,1} that is hard to compute for size-s € circuits, even when
the circuit has access to these help functions. Formally, for any size-s circuit C': {0,1}" — {0, 1},
there exists an input x € {0, 1}" such that

C(hi(z), ha(x), ..., ho(x)) # f(x).

This problem is equivalent to PARTIAL-HARD with ¢ = 2™ inputs of length n, namely for every
x € {0,1}™, there is an input hy(x) o ha(x) o --- o hy(z) € {0,1}" in the PARTIAL-HARD instance.

This problem appears to be very hard. Neither [AS10| nor we are aware of an efficient determin-
istic solution for ¢ = ACY with (say) ¢, s € quasi-poly(n). That is, although exponential-size lower
bounds against AC” are known [Ajt83,FSS84, Yao85, Has89|, we do not have any idea about how to
prove such a lower bound for partial functions. Even when % is the class of polynomial-size DNF,
to the best of our knowledge, there is no known deterministic algorithm for 4-PARTIAL-HARD.

Besides being a natural problem itself, ¥-PARTIAL-HARD also arises when we study the closure
of non-uniform complexity classes (under reductions). Recall that AC? denotes the class of languages
computable by a non-uniform family of polynomial-size constant-depth circuits; in particular, ACY
contains undecidable languages such as unary versions of the halting problem. A language L Turing-
reduces to some language in ACY if and only if L € P Jpoly |Pip79], thus proving EXP £7, ACY is likely
beyond current techniques. But what about mapping reducibility? Can we show that EXP £5, AC%?
It turns out that a deterministic algorithm for AC’-PARTIAL-HARD implies that EXP 7, AC®
[AS10, Theorem 5|. Of course, there is nothing special with ACY, and it can be replaced by other
non-uniform classes. Therefore, €-PARTIAL-HARD sheds light on ruling out many-one reducibility
of EXP (and other complexity classes) to non-uniform classes.

We can also define the average-case version of €-PARTIAL-HARD, which is equivalent to proving
average-case lower bounds with help functions.

Problem 1.7 (Average-Case Hard Partial Truth Tables against €, denoted as €-PARTIAL-AVGHARD).
Given a list of input strings z1,2a,...,2¢ € {0,1}™ and parameters s,d, find a list of output bits
bi,b2,...,by € {0,1} such that the partial function defined by {(zi,b;)}icfq is 0-far from being com-
putable by € circuits of size s. In other words, for every size-s € circuit C, there are at least 6¢ indices
i € [{] such that C(z;) # b;.

1.2 Owur Results

In this sub-section, we describe our results in detail.

1.2.1 Explicit Constructions from SATISFYING-PAIRS Algorithms

We start with the following observation: In the framework of solving AvOID via the Algorithmic
Method [RSW22], the data structure for Problem 1.4 does not need to be online. Instead, it suffices



to design a data structure that preprocesses a circuit C' : {0,1}" — {0,1}¢, receives a batch of
inputs x1,x9,...,2, and estimates the Hamming weight of each C(z;) in non-trivial total time,
i.e., £M/log®D(¢M) time. Moreover, we observe that it is not even necessary to estimate the
individual Hamming weights C(z;); it suffices to estimate the average Hamming weight of C(z;)
for i € [M]. Indeed, we arrive at the following problem called Satisfying Pairs.®

Problem 1.8 (4-SATISFYING-PAIRS). Let N, M, s, n be parameters. Given (single-output) % circuits
Cy,Cy...,Cn : {0,1}" — {0,1} of size s and input strings z1,za2,...,zp € {0,1}", compute or

estimate
Pr Ci(z;) = 1]. 1
M [N][ (i) ] (1)

We define the decisional and counting versions of the satisfying pairs problem as follows.

e Gaps-€-SATISFYING-PAIRS is the problem of distinguishing between (1) =1 and (1) < 1 — ;
o Approx.-¢-SATISFYING-PAIRS is the problem of estimating (1) within additive error ¢;

e ¢-SATISFYING-PAIRS is the problem of deciding whether (1) > 0;

o #%-SATISFYING-PAIRS is the problem of exactly computing (1).

We consider the regime where the input length n and the circuit size s are much smaller than N
and M. In such case, a deterministic algorithm for %-SATISFYING-PAIRS is said to be non-trivial
if it runs in time NM/log?™ (N M).!

Remark 1.9. The circuit-analysis problems that arise in the Algorithmic Method® are special
cases of Satisfying Pairs problems. For instance, we can solve #SAT of the circuit C' by solv-
ing #SATISFYING-PAIRS with N = 2%/2 and M = 2"/2, where the inputs (x1,T2,...,xpr) consists
of all strings of length n/2, and the circuits are {C} : y € {0,1}"/2}, where C,(z) := C(z o y).
Similarly, €-SATISFYING-PAIRS corresponds to €-SAT, Gap-€-SATISFYING-PAIRS corresponds to
©@-GapUNSAT, and Approx-%-SATISFYING-PAIRS corresponds to €-CAPP.

Range Avoidance from SATISFYING-PAIRS. By plugging the observation above in [RSW22|,
we show that non-trivial algorithms for SATISFYING-PAIRs imply FPNP algorithms for Avorp.

Theorem 1.10 (Theorem 3.2, Informal). Let € be a typical circuit class and €’ := ORg 0 €.5
Suppose that there is a non-trivial algorithm for Approx.-¢’-SATISFYING-PAIRS for every constant
e > 0, then €-AvoID with certain parameters can be solved in FPNP.

This informal version of Theorem 3.2 hides the trade-off between the parameters of %-AvoiD
and €’-SATISFYING-PAIRS. In general, to solve €-AvoID with smaller stretch ¢ (with respect to
the input length n), we need to have non-trivial algorithms for ¢’-SATISFYING-PAIRS where the

3We remark that our definition of #-SATISFYING-PAIRS is different from the fine-grained complexity literature
(e.g., [AHWW16,CW19a]). The input of the €-SATISFYING-PAIRS problem defined in [AHWW16, CW19a] consists
of a circuit C(—,—) and two sets of input strings {a;} and {b;}, and one wants to compute or approximate the
number of pairs (4,7) such that C(a;,b;) = 1; in our ¢-SATISFYING-PAIRS problem, we receive as input a list of
circuits {C;} and a list of inputs {z;}, and we want to compute or approximate the number of pairs (i, j) such that
Ci(z;) = 1. The new definition fits our purpose better. We also remark that for circuit classes that can “evaluate
themselves” (such as AC®, ACC°, and TC®), these two definitions are computationally equivalent.

4 Analogous to the preprocessing phase in Problem 1.4, one could also add a PNP-preprocessing phase that sees
the circuits but not the inputs. Algorithms with such preprocessing phase would still imply our results, but the
SATISFYING-PAIRs algorithms in this paper do not need this preprocessing phase.

®The definitions of circuit-analysis problems such as SAT or CAPP can be found in Lijie Chen’s PhD thesis [Che22].

SHere, OR4 0 % refers to the composition of a single fan-in-d OR gate being the output gate of the circuit and (at
most) d € circuits feeding the top OR gate.



number of inputs N and the number of circuits M are smaller with respect to the circuit size s and
the input length n. We highlight two typical choices of parameters of Theorem 3.2 as follows.

Corollary 1.11. There is a constant € > 0 such that the following holds. Let € be a typical circuit
class, € := ORg 0 €, and s = s(n) be a non-decreasing size parameter.

e Suppose that there is a non-trivial algorithm for Approx.-¢’'-SATISFYING-PAIRS for N =
nI ) @' _circuits of size 2s(n) and M = n'tN) inputs of length n. Then there is an
FPNP algorithm for €-AvolD with stretch ¢ and circuit size s,” for some £ = ntT1)

e Suppose that there is a non-trivial algorithm for Approx.-¢’'-SATISFYING-PAIRS for N =
quasi-poly(n) €’ -circuits of size 2s(n) and M = quasi-poly(n) inputs of length n. Then there
is an FPNP algorithm for € -Avoip with stretch £ and circuit size s, for some £ = quasi-poly(n).

Remote Point from SATISFYING-PAIRS. With the help of a smooth and rectangular PCPP
(see Section 6) and a linear-sum list-decodable code from [CLW20] (also see Appendix A.5), we show
that non-trivial algorithms for SATISFYING-PAIRS imply FPNP algorithms for REMOTE-POINT.

Theorem 1.12 (Theorem 3.5, Informal). Let € be a typical circuit class and €' := ANDg(1y 0 €.
Suppose that there is a non-trivial algorithm for Approx.-¢’-SATISFYING-PAIRS for every constant
e > 0, then €-REMOTE-POINT with certain parameters can be solved in FPNP.

In particular: suppose for every constant € > 0, there is a non-trivial algorithm for Approx.-¢"-
SATISFYING-PAIRS for N = quasi-poly(n) ¢”-circuits of size O(s) and M = quasi-poly(n) inputs
of length n; then for some stretch function ¢ = quasi-poly(n), there is an FPNP algorithm for € -
REMOTE-POINT that takes as input a circuit C : {0,1}" — {0,1}¢ where each output bit of C is a
€ -circuit of size s, and outputs a y that is 0.49-far from Range(C).

Our framework provides REMOTE-POINT algorithms for the regime corresponding to “strong
average-case lower bounds”, i.e., the distance between the output y and Range(C') is close to 1/2.
In fact, the distance can be as large as 1/2 — 1/poly(n) given an Approx-€-SATISFYING-PAIRS
algorithm with a small enough error. (see Theorem 3.5 for details).

Note that the stretch for #-REMOTE-POINT that we can solve in FPNP depends on both the pa-
rameters of the satisfying pairs algorithms and the rate of the linear-sum list-decodable code. Since
the code from |[CLW20| has a quasi-polynomial rate, our framework cannot solve REMOTE-POINT
with stretch smaller than quasi-polynomial. It is an interesting open problem to improve the stretch
of REMOTE-POINT that can be solved by our framework, possibly by designing new linear-sum de-
codable codes with a better rate; see, e.g., [CL21].

Hard Partial Truth Table from SATISFYING-PAIRS. Similar to the frameworks for AvoiD
and REMOTE-POINT, we can solve PARTIAL-HARD and PARTIAL-AVGHARD via non-trivial algo-
rithms for SATISFYING-PAIRS.

Theorem 1.13 (Theorems 4.2 and 4.3, Informal). Let € be a typical circuit class.
e Suppose that there is a non-trivial algorithm for Approx.-¢"'-SATISFYING-PAIRS for everye > 0
and €' := ORy 0 €, then €-PARTIAL-HARD with certain parameters can be solved in FPNP.

e Suppose that there is a non-trivial algorithm for Approx.-€"-SATISFYING-PAIRS for every
e>0and €¢" = ANDp(1) o €, then € -PARTIAL-AVGHARD with certain parameters can be

solved in FPNP.

"Note that the circuit size parameter of %-AvoID refers to the maximum circuit size of each output bit of C :
{0,1}™ — {0,1}*, instead of the total circuit size of C.



These results are proved using essentially the same approach as the framework for AvoID
and REMOTE-POINT; subsequently, the trade-off between parameters for SATISFYING-PAIRS and
PARTIAL-HARD (resp. PARTIAL-AVGHARD) is similar to that for AvoIiD (resp REMOTE-POINT).
We omit the details and refer the readers to Theorems 4.2 and 4.3.

Remark 1.14. It is not surprising to have a unified framework for AvoID and PARTIAL-HARD (and their
average-case analogues REMOTE-POINT and PARTIAL-AVGHARD), since AvOID and PARTIAL-HARD
can be considered as the dual problem of each other. Let Eval : {0,1}9(1°85) » {0 1} — {0, 1} be the
circuit-evaluation function that takes a circuit C of size s and an input of length n, and outputs C(x).
We can interpret AvOID and PARTIAL-HARD as follows:

e (AvoID). Given size-s circuits Cq,Cq,...,Cy, find y1,92,...,y¢ € {0,1} such that for every
x € {0,1}™, there is an i € [¢] such that Eval(C;,x) # y;.

e (PARTIAL-HARD). Given inputs x1,2s,...,x¢ € {0,1}", find y1,y2,...,y¢ € {0,1} such that
for every size-s circuit C, there is an ¢ € [¢] such that Eval(C, z;) # y;.

Clearly, AvoID and PARTIAL-HARD are essentially the same problem on the table Eval(-,-) with the
rows and columns being exchanged.

1.2.2 Unconditional Results for Explicit Constructions

The seemingly marginal improvement of using SATISFYING-PAIRS instead of its online version
Hamming Weight Estimation (see Problem 1.4) plays an important role in the design of uncon-
ditional FPNP algorithms for ACC’-REMOTE-POINT and ACCO-PARTIAL-HARD, because we can
indeed design non-trivial algorithms for ACC’-SATISFYING-PAIRS.

XOR-REMOTE-POINT from XOR-SATISFYING-PAIRS. We start from a simpler case where the
circuit class € = XOR, i.e., the circuit is an XOR of some of its input bits. Since an XOR circuit C can
be represented by a vector ¥ € {0,1}" such that C(z) = (v, x) mod 2, #XOR-SATISFYING-PAIRS is
nothing but the counting version of the Orthogonal Vector problem over Fo, which admits a non-
trivial algorithm [CW21,AC19|. By combining this with Theorem 1.10, we obtain an unconditional
FPNP algorithm for XOR-REMOTE-POINT.®

Theorem 1.15 (XOR-REMOTE-POINT € FPNP). There is a constant ¢, > 1 such that the following
holds. Let € := e(n) > 2n~% be the error parameter and £ := {(n) > 21080 o the stretch
function, then there is an FPNP algorithm that takes as input a circuit C : {0,1}"* — {0,1}¢, where

each output bit of C' is computed by an XOR gate, and outputs a string y that is (1/2 — €)-far from
Range(C).

A non-trivial algorithm for ACC’-SATISFYING-PAIRS. By slightly adapting the technique
introduced by Williams [Will8c| to design non-trivial #SAT algorithms for ACC circuits with an
earlier quasi-polynomial size simulation of SYMoACCY circuits by SYMoAND circuits [BT94,AG91],
we can obtain a non-trivial algorithm for #ACCY-SATISFYING-PAIRS, formally stated as follows.

Theorem 1.16. For every constants m,t,c, there is a constant € € (0,1) such that the following
holds. Let n := 29°6° N qnd s := 21°6°"  There is a deterministic algorithm running in O((N/n)?)
time that given N strings x1, 2, ..., xx € {0,1}" and N ACY[m] circuits Cy,Cy,...,COn : {0,1}" —
{0,1} of size s, outputs the number of pairs (i,j) € [N] x [N] such that C;(x;) = 1.

8The reduction from REMOTE-POINT to SATISFYING-PAIRS has a small overhead on the circuit class (i.e. the
upper ANDo (1) in Theorem 1.12). By a standard trick using Fourier analysis (see Theorem 2.17; also see [CW19b]),
we can change the upper circuit class to be XORp(1) so that we only need to design SATISFYING-PAIRS algorithms
for XOR4 o XOR = XOR.



Explicit constructions for ACC’. The FPNP algorithm for ACC’-REMOTE-POINT and ACCC-
PARTIAL-AVGHARD follows from this algorithm together with Theorem 1.12 and Theorem 1.13.

Theorem 1.17 (ACC-REMOTE-POINT € FPNP). There is a constant ¢, > 1 such that for every
constant d,m > 1, there is a constant csty := cste(d,m) > 1, such that the following holds.

Let n < s(n) < 22" e  size parameter, € = g(n) > 2n~% be an error parameter and
0 := U(n) > 2'°8""5 be q stretch function, then there is an FPNP algorithm that takes as input a
circuit C = {0,1}" — {0, 1}¢, where each output bit of C' is computed by an ACY[m] circuit of size s,
and outputs a string y that is (1/2 — €)-far from Range(C).

Theorem 1.18 (ACC-PARTIAL-AVGHARD € FPNP). There is a constant ¢, > 1 such that for
every constants d,m > 1, there is a constant csy := cste(d, m) > 1, such that the following holds.

Let n < s(n) < 22" be q size parameter, & = e(n) > 2n=% be an error parameter and { :=
{(n) > 298 s be q stretch function, then there is an FPNP algorithm that given inputs 1, ...,z €
{0,137, it outputs a string y € {0, 1} such that for any s(n)-size ACY[m] circuit C, y is (1/2—¢)-far
from C(x1)o---0C(xg).

It is worth noting that the ACC*-REMOTE-POINT algorithm here recovers the best known almost-
everywhere average-case circuit lower bounds against ACCY [CLW20]. This is done by considering
the special case where the input circuit is the truth table generator TT : {0,1}9(slgs) — (0, 1}2"
that prints the truth table of a given ACCY circuit (see Section 5.3).

Corollary 1.19. For every constants d,m > 1, there is an e > 0 and a language L € ENP such that
L, cannot be (1/2 + 27" )-approzimated by ACY[m] circuits of size 2™, for all sufficiently large n.

Lower bounds on the many-one closure of ACC’. Following the observation of Arvind and
Srinivasan [AS10], the FPNP algorithm for ACCY-PARTIAL-AVGHARD can be used to prove uncon-
ditionally that ENP cannot be mapping reduced to languages decidable by small-size non-uniform
families of ACCY circuits.” To the best of our knowledge, this is the first unconditional result ruling
out the mapping reducibility from uniform classes to non-trivial non-uniform classes.

Corollary 1.20. Let d,m € N be constants, ACg[m] denote the class of languages computable by a
non-uniform family of polynomial-size ACg[m] circuits. Then, there is a language LM € ENP that
does not have polynomial-time mapping reductions to any language in Acg[m],

1.2.3 A Smooth and Rectangular PCPs of Proximity

One of the main technical ingredients in our framework for the average-case explicit construction
problems (i.e. REMOTE-POINT and PARTIAL-AVGHARD) is a PCP of Proximity (PCPP) that is
short, smooth, and (almost) rectangular.

A PCPP verifier V for a language L provides a super-efficient probabilistic proof system for
checking whether x € L or x is far from being in L. Given an input x and a proof , the verifier
with access to some random bits only probes constantly many bits of z and «. If z € L, then it
accepts with an appropriate proof m; if the relative Hamming distance between z and any 2’ € L
is at least ¢, then it rejects with constant probability regardless of the proof 7. (The distance ¢ is
called the prozimity parameter of the PCPP.) In addition, our PCPP verifier is equipped with the
following properties:

9In fact, it suffices to have an FPMP algorithm for ACC’-PARTIAL-HARD (which is a trivial consequence of an FPNP
algorithm for ACC°-PARTIAL-AvGHARD) for this application.



e (Shortness). For any language L € NTIME[T(n)], where n < T'(n) < 2P°W(") the PCPP
proof for L has length T'(n) - polylog(T'(n)).

¢ (Rectangularity). The input and the proof are treated as matrices. Moreover, the queries
of the verifier to the input and proof matrices can be done rectangularly, in the sense that
there are a row verifier Vo and a column verifier Vg, with (almost) independent random
seeds that generate the row and column indices of the queries, respectively.

e (Smoothness). The queries of the verifier to the proof matrix are uniformly random. As a
consequence, it means that the PCPP proof can tolerate errors in a correct proof.

We refer the readers to Section 2.5 for formal definitions of these properties.

Before our work, Bhangale, Harsha, Paradise, and Tal [BHPT20] constructed a short, smooth,
and rectangular PCP (instead of PCPP) built upon [BGHT06] with an application of constructing
rigid matrices (also see [Val77,AC19]). Ren, Santhanam, and Wang [RSW22| constructed a short
and rectangular PCPP based on [BGH'06,BHPT20] for the Algorithmic Method for AvoIp. It turns
out that to generalise [RSW22] to the “average-case” explicit construction problems REMOTE-POINT
and PARTIAL-AVGHARD, we need both smoothness (as in [BHPT20]) and PCPs of prozimity (as in
[RSW22]). A technical contribution of this work is to combine [BHPT20] and [RSW22| to obtain a
smooth PCPP.

Theorem 1.21 (Theorem 2.14, Informal). Let T'(n) be a good function. For every language L €
NTIME[T(n)], there is a short, smooth, and (almost) rectangular PCP of proximity verifier V for
L, with perfect completeness, constant soundness error, and constant query complezity.

Following standard techniques in the algorithmic approach to lower bounds (see, e.g., [CW19b]),
we also construct a short and rectangular (non-smooth) PCPP that makes at most two queries to the
input and the proof matrices (see Theorem 2.13) to minimise the overhead on the circuit class when
we reduce AvOID and PARTIAL-HARD to SATISFYING-PAIRS (i.e. the upper ORg in Theorem 1.10
and Theorem 1.13).

1.3 Technical Overview

As mentioned in Section 1.2.1, the range avoidance algorithm follows from slightly modifying the
framework in [RSW22] and using an algorithm for SATISFYING-PAIRS. In what follows, we briefly
illustrate our techniques for the remote point problem and for constructing hard partial truth tables.
The high-level idea is to reduce these problems to AvOID and invoke our framework for AvOID to
solve them.

Remote Point Problem. Our start point is the following reduction from REMOTE-POINT to
AvoIp. Suppose that C : {0,1}" — {0,1} is the input circuit. Let Enc : {0,1}* — {0,1} be the
encoding procedure of an error correcting code, and Dec : {0,1} — {0,1} be the corresponding
decoding procedure, where Dec can correct a 0 fraction of errors. Define the circuit C'(x) :=
Dec(C(z)), and let z be any string not in the range of C’, then Enc(z) is (1 — 0)-far from Range(C).
To see this, assume for contradiction that Enc(z) is (1 — d)-close to some C(z), then Dec(C(z))
should return exactly z, contradicting that z is a non-output of C".

Suppose that the function Dec can be implemented in the circuit class $pec, then this is a
reduction from ¢-REMOTE-POINT to (épec © €)-AvoID. Therefore, we would like the complexity
of %pec to be as small as possible. There are decoders that tolerate a small constant fraction of
errors in AC’ [GGH'07], so it might be possible to implement %pec in ACY. However, when § is
very close to 1/2 (say 0 = 1/2 —¢), we enter the list-decoding regime where %pec seems to need the



power of majority [GRO8]. Can we solve ¥~-REMOTE-POINT without invoking any circuit-analysis
algorithms for MAJ o €7

Fortunately, the required techniques already appeared in previous works on the Algorithmic
Method for proving strong average-case circuit lower bounds. In [CLW20|, they provided an error-
correcting code that corrects a 1/2 — e fraction of errors, where the decoder Decciw can be imple-
mented as a linear sum, i.e., each output is a linear combination of the input bits.'” Intuitively,
this means that we can reduce ¥-REMOTE-POINT to (Sum o ¥)-AvoID, where Sum denotes the
layer of Deccw. Using the framework for range avoidance established above, it suffices to solve the
SATISFYING-PAIRS problem for Sum o & circuits.!! But it is easy to see that SATISFYING-PAIRS
for Sum o ¥ circuits directly reduces to SATISFYING-PAIRS for % circuits! Therefore, the error-
correcting code in [CLW20] allows us to use an algorithm for ¢-SATISFYING-PAIRS to directly solve
%-REMOTE-POINT, with little or no circuit complexity overhead.

The above discussion omitted several important technical details:

e It turns out that Deccw is only an approximate list-decoding algorithm: given a corrupted
codeword that is (1/2 — ¢)-close to the correct codeword, we can only recover a message that
is d-close to the correct message (instead of perfectly recovering the correct message).

This drawback is handled by smooth PCPPs [Par21|, which has the property that any slightly
corrupted version of a correct proof is still accepted with good probability. As we need a
rectangular PCPP in [RSW22|, what we actually need is a smooth and rectangular PCPP,
which we construct in Section 6. We remark that [CLW20] also encountered this difficulty;
they got around it by combining a PCP and a PCPP for CIRcUIT-EVAL. It is not clear how
to generalise this strategy to our case.

e Another technical complication is that Deccpw outputs real values instead of Boolean values. It
is only guaranteed that the decoded message is close to the original message in £1-norm. Con-
sequently, after guessing the PCPP proof, we also need to verify that it is “close to Boolean”,
This difficulty also appears in [CLW20[; however, we need to carefully define what it means
by “close to Boolean” in our case.

e Since Deccpyw works in the list-decoding regime, it also receives an advice string (specifying
the index of the codeword in the list). In the above discussion, we omitted the advice string
to highlight the main ideas. It turns out that the dependency of the decoder on the advice
string cannot be captured by linear sums. Therefore, we need to define an ad hoc “linear sum”
circuit class (in Section 2.4) that receives both an input and an advice string and computes a
linear combination over the input, where the “linear combination” depends on the advice. It
turns out that we need the dependency on the advice to be local (see Section 2.4 for details),
which is fortunately satisfied by the code in [CLW20].

Another reduction via succinct dictionaries. We mention that there is another reduction
from REMOTE-POINT to AvoID which appears in [Kor21, GLW22|. Let C : {0,1}" — {0,1}* be a
circuit, y € {0, 1} be a string that is not J-far from Range(C). Then we can find a string = € {0,1}"
and a ‘“noise” string e € {0,1}"™ of relative Hamming weight at most ¢ such that y = C(z) @ e,

10[CTLW20] stated this result as a non-standard XOR lemma in their Appendix A. We re-prove it in the form of
error-correcting codes in Appendix A.5.

11We made a simplification here. Actually, we need to solve SATISFYING-PAIRS for NC°oSumo% circuits. Using the
distributive property, we can push the NC° circuits below the Sum layer, thus it suffices to solve SATISFYING-PAIRS
for Sum o NC° o % circuits. In this informal exposition, we may assume that % is closed under top NC° gates, which
means that a SATISFYING-PAIRS algorithm for Sum o ¥ now suffices.

10



where @ refers to bit-wise XOR. Consider the circuit C'(z,e) := C(z) @ e. To solve the remote
point problem for C, it suffices to solve the range avoidance problem for C’. Using a “succincter”
dictionary to represent e [Pat08|, [GLW22] managed to show that this reduction also preserves
circuit complexity, and in particular reduces NC!-REMOTE-POINT to NC!-Avoip.

A drawback of this approach is that it only reduces REMOTE-POINT to range avoidance instances
with a small stretch. Indeed, suppose C’ is a circuit from n’ inputs to £ outputs, and § = Q(1), then

W )] 2 og (5, ) = 9

In contrast, the algorithmic method in both [RSW22| and this paper could not solve range
avoidance instances with such a small stretch (¢ = ¢ - n for some constant c¢), even with the best
possible algorithms for SATISFYING-PAIRS. Therefore we do not use this approach in this paper.

Hard Partial Truth Table. There is a simple reduction from PARTIAL-HARD to AVOID. Suppose
we are given strings 1, x2,...,7y. Let TT' be the circuit that receives a size-s circuit C' as input,
and outputs the concatenation of C(z1), C(x2), ..., C(zn). If N > O(slogs) then the circuit TT’
is stretching. It is also easy to see that solving the range avoidance of TT' is equivalent to solving
the PARTIAL-HARD problem.

In Section 4, we essentially combine this reduction with the frameworks in Section 3. In other
words, we could have reduced PARTIAL-HARD to AvOID in a black-box way and derived the main
results in Section 4. However, this reduction only reduces %-PARTIAL-HARD to 4’-AvOID, where
¢’ is any circuit class that can solve ¥-EVAL in the following sense: for every fixed input z, there
is a ¢’ circuit C’ that takes as input the description of a € circuit C, and outputs C(x). For most
circuit classes of interest (e.g., € € {AC®, ACC®, NC!,P /poly } ), we could simply let ¢” = €’; however,
this is not necessarily true for more refined circuit classes (such as ¥ = ACC o THR). We choose to
derive the main results in Section 4 from scratch instead of reducing it to Section 3, partly because
we also want our framework to hold for these more refined circuit classes.

1.4 Further Related Work

SATISFYING-PAIRS and the Polynomial Method. The SATISFYING-PAIRS problems for re-
stricted circuit classes nicely capture a wide range of algorithmic problems that have been ex-
tensively studied. For instance, the Orthogonal Vector Problem over Fy corresponds to XOR-
SATISFYING-PAIRS, and the (decision version of) Nearest Neighbor Problem corresponds to the
SATISFYING-PAIRS of polynomial threshold functions (see, e.g., [Willdb, ACW16]).

There is a successful line of research on non-trivial algorithms for this kind of problems via
the polynomial method |Raz87,Smo87| in circuit complexity. Williams [Will8a] developed an
n3/ 9logm)®™ time algorithm for the All-Pairs Shortest Path problem using the Razborov-Smolensky
polynomial representation of AC%[p] circuits [Raz87, Smo87, Smo93] and a fast batch evaluation of
polynomials via fast rectangular matrix multiplication [Cop82| (also see Theorem 5.1). Similar
techniques were used to design non-trivial algorithms for the Orthogonal Vector Problem over Fo
[CW21, AWY15] and the (approximate) Nearest Neighbor Problems (with respect to Hamming
distance, ¢;-distance, and fo-distance) [AW15, ACW16, ACW20]. Chen and Wang [CW19a| (fol-
lowing [AW17]) generalised the polynomial method in algorithm design by showing a connection
between SATISFYING-PAIRS problems and quantum communication protocols, with an application
in Approx.-XOR-SATISFYING-PAIRS (which is called Approximate #0V in [CW19a]).

11



Explicit obstructions. Related to the PARTIAL-HARD problem is the notion of explicit obstruc-
tions [Mulll, CJW20]: on input 1", one wants to output a list of (x;,;) deterministically, such
that x; # x; for ¢ # j, and for all n-input circuit C' from a certain circuit class €, there is some
i such that C(x;) # y;. This notion is weaker than deterministic algorithms for PARTIAL-HARD,
as one has the freedom of choosing the inputs {z;}. Chen, Jin, and Williams [CJW20] exhibited
a “sharp threshold” phenomenon for explicit obstructions against de Morgan formulas: an explicit
obstruction for Formula[n!-%] provably exists, while an explicit obstruction for Formula[n?%1] would
imply very strong circuit lower bounds.

1.5 Organisation

ORGANISATION OF THE PAPER

e In Section 2, we introduce concepts and tools used in this paper and fix the notation.

e In Section 3, we demonstrate the framework of solving AvoiD and REMOTE-POINT via non-trivial
algorithms for SATISFYING-PAIRS.

e In Section 4, we demonstrate the framework of solving PARTIAL-HARD and PARTIAL-AVGHARD via
non-trivial algorithms for SATISFYING-PAIRS.

e In Section 5, we present a non-trivial algorithm for ACC’-SATISFYING-PAIRS from [Will8¢|, and
combine it with the frameworks to obtain unconditional FPNP algorithms for ACC°-REMOTE-POINT
and ACC’-PARTIAL-AVGHARD. We also demonstrate the consequences of these algorithms.

e In Section 6, we construct short, smooth, and rectangular PCPs of Proximity, used in the frameworks
of solving REMOTE-POINT and PARTIAL-AVGHARD.

e In Section 7, we construct short and rectangular PCPs of Proximity with query complexity only 2 or
3, used in the framework for AvOID and PARTIAL-HARD.

e In Appendix A, we prove some technical lemmas in Section 3 and 4.

2 Preliminaries

Notation. We use O(f(n)) to denote f(n)-(log f(n))°"). The concatenation of the strings  and
y is denoted by x oy. The relative Hamming distance of two strings x and y, denoted by d(x,y), is
the fraction of indices i such that x; # y;. A string z is said to be y-far from (resp. vy-close to) a
string y if §(z,y) > v (resp. d(z,y) < ). We say = € {0,1}" is y-far from L C {0,1}" if = is v-far
from every y € L; otherwise x is «-close to L. For a vector @ € R™ and an integer d > 1, the {4

norm of U is
1/d
fallai= (2 M)
i [n]

Given a function f:{0,1}"™ — {0,1}™, the range of f, denoted by Range(f), is defined as the
set of outputs of f, i.e., Range(f) := {f(z) | z € {0,1}"}.

A function f : N — Nis said to be good if there is a Turing machine such that given n in binary,
it runs in time poly(logn,log f(n)) and outputs f(n) in binary.

A circuit class ¥ is said to be typical if it contains the identity circuit and is closed under
negations and projections. More precisely, (1) every function that always outputs its input bits
is computable by a constant size € circuit; (2) for any € circuit C of size s and projection proj,
both =C and C o proj have ¢ circuits of size poly(s), and the descriptions of these circuits can be
computed in poly(s) time.
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Let S be a finite sample space and F be an event. We use Pr,. g[F] to denote the probability
that F happens if x is sampled uniformly from S. Similarly, for a random variable Y, we use
E.«s[Y] to denote the expectation of Y when x is sampled uniformly from S.

2.1 Circuit Classes

Throughout this paper, the size of a circuit is defined as the number of wires (instead of gates)
in the circuit. We will use the following (single-output) circuit classes.

° ACS refers to depth-d circuits with AND and OR gates of unbounded fan-in, and NOT gates
of fan-in 1. We define AC? := J, ACY.

e ACY[m)] refers to depth-d circuits with AND, OR, and MOD[m] gates of unbounded fan-in, and
NOT gates of fan-in 1. A MOD[m] gate outputs 1 if and only if m does not divide the number of
1 in its inputs. We define AC’[m] := |J, ACY[m]. Furthermore, we define ACC® := J, AC’[m].

e CCY[m] refers to depth-d circuits with only MOD[m] gates of unbounded fan-in. We define
CClm] := U, CCY[m] and CC® :=|J,, CCOlm].

° NC?l refers to constant-size circuits such that the output depends on at most d input bits. We
define NCY := J, NCY.

e Assume that F € {AND, OR,XOR, MOD[ml], ...} is a gate, we define an F circuit as a circuit
with only an F gate fed by some (or all) of the input bits. In particular, we define an F4 circuit
as a circuit with an F gate of fan-in at most d fed by some (or all) of the input bits.

We define SYM as the class of any symmetric Boolean function, i.e., f : {0,1}" — {0,1} such
that f(x) = g(z1 + 22 + - - - + ) for some function g.

Suppose that 47 and %> are circuit classes, we denote €] o %5 as the composition of these two
classes: the input bits feed an n-input m-output %2 circuit Co, and the m output bits of Cy feed
an m-input single-output % circuit C;. For instance, a SYM o ACCY circuit contains a symmetric
output gate whose inputs are ACC? circuits.

For a circuit class €, we use €[s] to represent the sub-class of the € circuits of size at most s.

2.2 Error-Correcting Codes

An error-correcting code with message length n, rate r, and relative distance § is a function
Enc:{0,1}" — {0,1}" such that for every pair of distinct z1, x2 € {0,1}", §(Enc(z1), Enc(z2)) > 0.
It is said to correct v fraction of errors if there is a Dec : {0,1}"™ — {0,1} such that for every y
that is y-close to Enc(x) for some = € {0,1}", Dec(y) = =.

We need the following standard construction of error-correcting codes.

Theorem 2.1 ([Spi96|). There is a GF(2)-linear error-correcting code (Enc,Dec) with a constant
rate, constant relative distance, and can correct a constant fraction of errors. Moreover, both Enc
and Dec are uniformly computable in linear time.

2.3 An Almost-Everywhere NTIME Hierarchy with a Refuter

We need the almost-everywhere NTIME hierarchy against bounded nondeterminism [FS16],
which has an FPNP refuter as shown in [CLW20]. Let T'(n), G(n) be good functions, we define
NTIME[T (n)] to be the class of languages decidable by nondeterministic Turing machines in T'(n)
time, and NTIMEGUESSgTMm[T'(n), G(n)] to be the class of languages decidable by nondeterministic
Random-Access Turing Machines (RTMs) in 7'(n) time with G(n) nondeterministic bits.
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Theorem 2.2 ([FS16, CLW20,RSW22]). Let ¢ be a large universal constant, T : N — N be a good
function such that nlog™tn < T(n) < 2P°W() . There is a language

Lhard ¢ NTIME[T (n)] \ i.0.-NTIMEGUESSgTMm[T(n)/ log® T'(n),1/10] /(1 10)-
Moreover, there is an algorithm R (the “refuter”) such that the following holds.

(Input) R receives three inputs (1, M, a), where M is a nondeterministic RTM and o € {0,1}™/10
is an advice string. It is guaranteed that M runs in T'(n)/log®T(n) time and uses at most
n/10 nondeterministic bits; moreover, the description length of M is O(1).

(Output) For every fired M, every sufficiently large n, and every advice o € {0,1}"10, R(1", M, a)
outputs a string x € {0,1}" such that M (x; ) # Lrd(z).

(Complexity) R runs in poly(T'(n)) time with adaptive access to an NP oracle.

2.4 Linear Sum Circuits and Hardness Amplification with Them

We need an XOR lemma with “linear sum” decoders: given a corrupted codeword f that is
(1/2 — )-close to Amp(f), there is an affine transformation A such that A(f) is é-close to f.

The actual definition of linear sum circuits is more involved for the following reason. Our XOR
lemma works in the list-decoding regime, therefore it also receives an advice string « (i.e., the index
in the list) and outputs the a-th decoded message in the list. When « is fixed, A( f; «) is simply
an affine function over f; but the dependence on a can be more complicated. It turns out that we

need an upper bound on the locality of the dependence on «, defined as follows.

Definition 2.3 (Linear Sum Circuits). Let 2 € {0,1}" and o € {0,1}* be two inputs. A linear
sum circuit on input x with advice « is a function C' : {0,1}" x {0,1}* — R™ of the following form:

C(z,a) = Z coeffi () - Tigy, (a,i)-
ke[A]

Here, A is the fan-in of C. The circuit is described by two functions coeffy(«) and idxg(a,7); note
that coeffy () does not depend on i. For technical convenience, we will also allow idxy(c, ) to take
special values ZERO and ONE, where xzgro is always 0 and zong is always 1.

Besides the fan-in A, the following complexity measures of C' will also be important:

o We say the coefficient sum of C' is at most U, if for every advice «, we have

> Jcoeffy(a)] < U.

ke[A]

o We say that C has locality I, if for every fixed k, there is a subset Sy of [ bits of a such that
the functions coeffi(a) and idxy(«, i) only depends on afg, .

Example 2.4. Counsider the following example (simplified from the proof of Theorem 2.5). Suppose the
advice a consists of a list of sub-advices (a1, ag,...,a. ) where a’ ~ 1/&2; given an index k, coeffy(a)
only depends in ai, and idxg(a, i) only depends on «j and i. Suppose each «y has length [, then
regardless of the number o/, the linear sum has locality .
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We need the following XOR lemma with linear sum decoders. The XOR lemma was proved
in [Lev87, GNW11] and it was shown in [CLW20, Section A| to admit linear sum decoders. For
completeness, we provide a proof of Theorem 2.5 in Appendix A.5 and verify the locality of the
linear sum. Note that the XOR lemma is stated below as an approximately locally list-decodable
code.

Theorem 2.5. Let N € N, 0 < ¢, < 1/10, k := O(log(1/¢)/9), N := N* and a := O(log® N/(e6)?).
There is an algorithm Amp : {0, 1}V — {0,1}N computable in deterministic poly(N) time, and a
linear sum circuit C : {0, 1} x {0,1}* — R such that the following hold.

(List-decoding) For every string f € {0, 1}N that is (1/2 — €)-close to Amp(f) for some hidden

string f, there is an advice a € {0,1}*, such that (1) for every i € [N], C(f,a); € [0,1]; and
(2)lC(f,a) = fllh < 0.

(Complexity) The fan-in, coefficient sum, and locality of C' are at most O(log N/(6)?), O(1/e),
and log N respectively.

We will also use the notation decy(f) to denote C(f,a), emphasising that dec, is an affine
transformation that depends on «a.

2.5 PCPs of Proximity

Now we will introduce Probabilistically Checkable Proofs of Proximity (PCPPs) [BGHT06]
and two properties of PCPPs that will be useful in designing algorithms for explicit construction
problems: rectangularity and smoothness.

In what follows, a pair language is simply a subset of {0,1}* x {0,1}*. For an instance (z,x)
of a pair language, we treat z as the explicit input (which the PCPP verifier can read entirely)
and x as the implicit input (which the PCPP verifier could only read a few bits). For example,
CIRCUIT-EVAL is a pair language with two inputs, i.e., a circuit C' and an input z, and the task
is to evaluate C'(xz). A PCPP verifier for CIRCUIT-EVAL knows the input circuit C' but can only
access a few bits of z.

2.5.1 Basic Definitions

Definition 2.6 (PCP of Proximity Verifiers). Let r = r(n), ¢ = g(n), £ = ¢(n), d = d(n) be
good functions and L C {0,1}* x {0,1}* be a pair language. A PCPP verifier VPCPP for L
with proof length £, randomness complexity r, decision complexity d, and query complexity q is a
tuple of Turing machines (Viype, Vindex; Vdec) that will verify a proof = € {0, 1}¢ of the statement
(z,x2) € LNA{0,1}* x {0,1}™ as follows.

e It randomly samples a seed € {0,1}" and generates
(itype[1], itype[2], ..., itype[q]) <= Viype(seed, 2),
(2[1],4[2], ..., i[q]) < Vindex(seed, z).

For every j € [q], itype[j] € {input, proof} determines the type of the j-th query: If itype[j] =
input, the j-th query probes the i[j]-th bit of the “implicit input” x; otherwise (i.e., itype[j] =
proof), the j-th query probes the i[j]-th bit of the proof .

e Let ansy, ..., ans, be the answers to the queries defined above, we say VPCPP accepts (z, z, ),
denoted by VPCPPIOH(Z, seed) = 1, if and only if Vec(seed, z,ansy, ..., ans,)=1. The machine
Viec 1s said to be the decision predicate of VPCPP, and has circuit complexity d(n).
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We may represent the “implicit input” x as Iinput : [n] — {0, 1} and the proof 7 as Iproof : [(] —
{0,1} to emphasize that they are given as oracles to VPCPP. We sometimes denote the outputs of
Vigpe and Vindex as I and denote the answers (ansi,...,ansy) as (Ilinput © Mproof)| -

We will also consider the PCPP verifier of pure languages (i.e. the first part z of any input is
always the empty string). In such case, we simply omit all the z in the definition above.

Definition 2.7 (PCP of Proximity). Let s = s(n) and § = §(n) be good functions, L C {0,1}* x
{0,1}* be a pair language, and VPCPP = (Viype, Vindex: Vdec) be a PCPP verifier for L. We say
VPCPP is a PCPP verifier for L with completeness error 1 — ¢, soundness error s, and proximity
parameter 0 if the following two conditions hold for every (z,x) € {0,1}* x {0,1}".

e (Completeness). If (z,z) € L, then there is a proof m € {0,1}¢ such that VPCPP accepts
(z,x,7) with probability at least c.

e (Soundness). Denote L(z) to be the set of y € {0, 1}" such that (z,y) € L. If x is d-far from
L(z), then for every proof 7 € {0,1}*, VPCPP accepts (z,,7) with probability at most s.

For most of the constructions of PCPPs, the completeness error can be made 0, which means
that for (z,x) € L, there is a proof such that the verifier accepts with probability 1. Therefore we
assume that the completeness error of a PCPP is 0 when it is not specified.

We need to define a stronger version of the soundness called robust soundness as follows, as an
intermediate step to construct PCPPs with nice parameters.

Definition 2.8 (Robust PCP of Proximity [BGH"06]). Let s = s(n), 6 = §(n), and p = p(n) be
good functions, L € {0,1}* x {0,1}* be a pair language, and VPCPP = (Viype, Vindex, Vdec) be a
PCPP verifier for L. We say VPCPP is a robust PCPP verifier for L with robust soundness error s
with robustness parameter p and proximity parameter ¢ if it satisfies the completeness property of
PCPP and the following robust soundness property.

¢ (Robust Soundness). The following holds for every (z,z) € {0,1}* x {0,1}". Denote
L(z) to be the set of y € {0,1}" such that (z,y) € L. If = is é-far from L(z), then for
every proof 7 € {0, 1}5 , with probability at least 1 — s over the random bits seed, the answer
(ansy,...,ansy) of the queries of VPCPP is p-far from being accepted (i.e. we need to flip at
least a p fraction of the bits of the answers (ansy, ..., ans,) to make the verifier accept).

2.5.2 Rectangular PCPs of Proximity

Following [RSW22|, one of the main technical ingredients in the algorithmic method for explicit
construction problems is a variant of PCPPs, called rectangular PCPPs. Intuitively, a rectangular
PCPP verifier treats the input as an Hi,pur X Winput matrix and the proof as an Hproof X Woroof
matrix, and can generate the query indices in a “rectangular” fashion. In particular, the random seed
is split into two parts denoted as seed.row and seed.col respectively, and there are two algorithms
Viow and Vo such that:

e Viow takes seed.row as input and generates irow[1], ..., irow[q];
o Vo takes seed.col as input and generates icol[1], ..., icol[q];
e The final indices of the queries i[1],...,i[q] are defined as i[j] := (irow[j] — 1) - W + icol[j],

where W = Winpur or W = Wioor depending on the the type of the j-th query.

In other words, the row verifier Vo, (resp. the column verifier Vg, ) takes the row randomness
seed.row (resp. the column randomness seed.col) and generates the row indices (resp. the column
indices) of the queries. Ideally, a rectangular PCPP should satisfy the following properties:
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e (Perfect Rectangularity). The row randomness seed.row and column randomness seed.col
are independent random bits (i.e. the row and column query indices are independent).

¢ (Randomness-Oblivious Type Predicate). The type predicate Viype, which determines
the types of the queries (i.e. whether a query is to the input or the proof oracle), does not
depend on the row and column random seeds.

¢ (Randomness-Oblivious Decision Predicate). The decision predicate Vyec, which decides
whether to accept the proof given the answers to the queries, does not depend on the row and
column random seeds.

However, as in [BHPT20, RSW22|, we do not know how to construct such rectangular PCPPs.
Nevertheless, we could construct a weaker version where the row and column randomness are almost
independent, and the dependency of the decision and type predicates on the random seeds are
relatively simple. We formally define such rectangular PCPPs as follows (for simplicity, we only
define rectangular PCPPs for pure languages).

Definition 2.9 (Rectangular PCPPs with Randomness-Oblivious Predicates). Suppose Hinput =
Hinput(n); VVinput = mnput(n)y Hproof = Hproof(n); Wproof = Wproof(n)y T = T(TL), p= p(n) are gOOd
functions such that Hinput - Winput = O(n) and L C {0,1}* be a language. A PCPP verifier VPCPP
is said to be a T-almost rectangular PCPP that has a randomness-oblivious predicate (ROP) with
parity-check complexity p if the following conditions hold.

e (Randomness). There are good functions row = Trow(n), Tcol = Tcol(N), and Tshared =
Tshared (12) such that the randomness complexity 7 = rrow + Tcol + Tshared, 1-€., the random seed
can be partitioned into three independent parts: the row randomness seed.row, the column
randomness seed.col, and the shared randomness seed.shared. We say rrow, Tcol, and Tshared
are the row, column, and shared randomness complexity of the PCPP verifier, respectively.
Moreover, the shared randomness complexity rshared(n) < 7 - 7(n).

¢ (Query Pattern). There are algorithms Viype, Viow, and Vo to generate the queries in a
rectangular fashion. Concretely speaking:

o (itype[l],...,itypelq]) <= Viype(seed.shared), where itype[j] € {input, proof} for all j € [q].
o (irow[1],...,irow[q]) <= Viow(seed.row, seed.shared)
o (icol[1],...,icol[g]) + Vcoi(seed.col, seed.shared)

o For every j € [g], the index of the j-th query i[j] := irow[j]- W +icol[j], where W = Winput
if itype[j] = input and W = Wpyoof otherwise.

As normal PCPP verifiers, the j-th query is to the i[j]-th bit of the input if itype[j] = input,
and is to the i[j]-th bit of the proof if itype[j] = proof. Note that since Hinpyt - Winput may
be larger than n, the query to the input is not well-defined when i[j] > n. In such case, we
denote the answer to be L.

e (Decision Predicate). There are polynomial-time algorithms Vgec and Vjc such that the
following holds.

o The algorithm Vgec(seed.shared) generates a circuit VDec : {0,1, L}P*7 — {0,1}.

o The algorithm Vj(seed.shared) generates p XOR circuits (i.e. circuits computing GF(2)-
linear functions) pey, ..., pey @ {0, 1} ewtreel — {0, 1}.
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Assume that (ansi,...,ans;) € {0,1, L}9 are the answers to the queries. For every i € [p], we
denote pc; := pc;(seed.row, seed.col). The PCPP verifier accepts the proof if

VDec(ansy, ..., ansq, pci, ..., pcy) = 1.

The decision complexity of this PCPP verifier is said to be the circuit complexity of Vyec.

2.5.3 Smooth PCP of Proximity

Apart from rectangularity, another important property of the PCPPs is their smoothness.
Roughly speaking, it means that the queries to the proof oracle are smooth, in the sense that
each location is probed with equal probability.'> The formal definition is as follows.

Definition 2.10 (Smooth PCPPs for Pure Languages). Let r = r(n), ¢ = g(n) be good functions,
L C {0,1}* be a language, and VPCPP = (Viype, Vindex, Vdec) be & PCPP verifier for L with random-
ness complexity r. It is said to be a smooth PCPP verifier if for all locations locy, locy in the proof
oracle, over a uniformly random seed € {0,1}" and a uniformly random index j € [g], loc; and locy
are probed by VPCPP with equal probability in the j-th query.

Smooth PCPPs can be viewed as PCPPs that can tolerate errors in the proof: since all the
locations in the proof are queried with equal probability, a slightly corrupted version of a correct
proof is still likely to be accepted, as shown in the following lemma.

Lemma 2.11. Let ¢ = q(n), £ ={4(n), s = s(n) be good functions, L C {0,1}* be a language, and
VPCPP be a smooth PCPP verifier for L with soundness error s, proof length £, and query complexity
q. Assume that x € LN {0,1}" and 7 € {0,1} is a correct proof for x € L, i.e., VPCPP"™ (seed)
accepts with probability 1 over seed < {0,1}". Then for every @' such that the relative Hamming

distance between @' and 7 is at most €, VPCPPxoﬂl(seed) accepts with probability at least 1 — q -
over seed ~ {0,1}".

Proof. We say a location ¢ € [¢] of the proof oracle is bad if n[i] # n'[i]. Let B; be the event that
the j-th query of VPCPP probes a bad location in the proof. By the smoothness, we know that

Pr [Bj} <e.
seede{0,1}",5€[q]

By a union bound, we can see that

seedef){%,l}r |:E| ] < [qL B]] = jez[q] seedg{l(‘),l}r {B]] S (2)

Denote E be the event that there exists a j € [g] such that B; happens. Then it follows that

seedg{%,l}f‘ [VPCPPIO”I(seed) rejects}

< Pr [VPCPP’”C’”/(seed) rejects ‘ ﬂE} + Pr [E}
seede{0,1}" seede{0,1}"

< 0+4q-e
= q-¢€,

where the second inequality follows from Equation (2) and the perfect completeness of VPCPP. [

2In some literature (e.g. [Par21]), the smoothness of PCPPs is defined differently: the queries to both the input
oracle and the proof oracle need to be smooth, i.e., each location in the input (resp. the proof) is queried with equal
probability. Here, we only require the queries to the proof oracle to be smooth and have no requirement on the query
distribution over the input oracle.
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Note that smoothness can be defined for rectangular PCPPs, in which case each location in the
proof matrix is probed with equal probability. This further means that each row (resp. column)
index is queried by the row (resp. column) verifier with equal probability.

Remark 2.12. A stronger definition of the smoothness is as follows: for every fixed i € [g], condition
on the i-th query probing the proof oracle, the i-th query is uniformly random over the proof oracle.
By randomly permuting the ¢ queries, we can make a smooth PCPP satisfy this stronger definition
of smoothness. In particular, if we have a smooth and rectangularity PCPP, we can make it satisfy
this stronger definition of smoothness by adding O(gloggq) bits in the shared randomness for a
random permutation over the ¢ queries.

2.5.4 Our Constructions

In this work, we will need two new constructions of rectangular PCPPs: for the range avoidance
problem and worst-case hard partial truth tables, we need a rectangular PCPP with query com-
plexity 3 or 2 (depending whether perfect completeness is required); for the remote point problem
and average-case hard partial truth table, we need a smooth and rectangular PCPP with query
complexity O(1)."

Theorem 2.13 (3-Query and 2-Query Rectangular PCPPs). For every constant § € (0,1), there
are constants s3 € (0,1) and 0 < s9 < co < 1 such that the following holds. Let m = m(n),
T(n), Woroof (1), Winput(n) e good functions such that 1 < m < (logT(n))%, n < T(n) < 2PV (M)

Wproof (1) < logT'(n), and winput(n) < logn. Then there are good functions hifoof(n), hif'oof(n), and
Rinput(n) satisfying
htoe(n), b2 ¢(n) = log T'(n) + ©(mloglog T(n)) — wproof (n), and

hinput (1) = [log n] — Winput(n),

such that the following holds.
Suppose that Wproof, h3  h2% > (5/m)log T(n), and that for some absolute constant C > 1,

proof? '“proof —

Winput () Rinput(1)  Rinput(n) 1 CmloglogT(n)
Woroof (1) (1) hgpooe () log T'(n)
3 2
Let Wproof(n) e 2’wproof(n)} Hs?oof(n) = 2hp?oof(n)’ Hs:loof(n) = 2hp?00f(n)’ I/I/input(n) = 2winput(N)7 and
Hinput (n) := 2"imet(™) - Then NTIME[T(n)] has:

e a rectangular PCP of proximity Vaq with perfect completeness, soundness error s3, an H

proof (n) X
Woroof (1) proof matriz and an Hinput(n) X Winput(n) input matriz;

e a rectangular PCP of proximity Voq with completeness error 1 — co, soundness error sz, an
2
H q

proof (1) X Woroof (n) proof matriz and an Hinput(n) X Winput(n) input matriz.

Other parameters of Vzq and Vaq are specified in Table 1.

Furthermore, given the randomness seed € {0,1}", the total number of queries and parity-check
bits is at most 3 for V39 and 2 for V9, and the decision predicate VDec < Vgec(seed.shared) of the
rectangular PCPP wverifier is an OR of the input bits (including queries and parity-check bits) or
their negations for every seed.shared.

13Unfortunately, our smooth PCPP requires a large (although constant) number of queries, because of the argu-
ments in Section 6.1.
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’ PCPP Verifier V3a ‘ V2

Completeness error 0 1—oco
Soundness error S3 S9
Proximity parameter )
Row randomness hf;?oof — (5/m)logT(n) ‘ hf)?oof — (5/m)log T (n)
Column randomness Wproof — (5/m) logT'(n)
Shared randomness (10/m)log T'(n) + O(loglog T'(n) + mlogm)
Query complexity 3 9
Parity check complexity
Decision complexity poly(loglogT)

Table 1: Parameters of the PCPPs constructed in Theorem 2.13.

Theorem 2.14 (Smooth and Rectangular PCPP). For all constants § € (0,1) and s € (0,1), there
is a constant ¢ > 1 such that the following holds. Let m = m(n), T(n), Woroof(1), Winput(n) be
good functions such that 1 < m(n) < (logT(n))"!, n < T(n) < 2™ 4 o6(n) < logT(n), and
Winput (1) < logn. Then there are good functions hprof(n) and hinput(n) satisfying

hproof (1) == log T'(n) + ©(mloglog T'(n)) — Wereof (1), and
hinput(n) 1= [log n] — Winput(n).

such that the following holds.
Suppose that Wproof s hproof > (5/m)log T'(n), and that for some absolute constant C' > 1,

Winput (n) Rinput (n) <1_ Cm? loglogT'(n)
Wproof (n) ’ hproof (n) o log T(n)

Let Wroof (1)) 1= 2Wereof (M) [ e (n) = 2Peroot () A7 () = 2%t and Hippue(n) = 2hineut (),
Then NTIME[T (n)] has a smooth and rectangular PCP of proximity with an Hinput(n) X Winput(n)

input matriz and an Hpoor(n) X Woroof (0) proof matriz, whose other parameters are specified in
Table 2.

Soundness error s
Proximity parameter )

Row randomness Trow = Nproof — (5/m)log T'(n)
Column randomness Tcol = Wproof — (5/m)log T'(n)

Shared randomness Tshared := (10/m)log T'(n) + O(loglog T'(n) + mlogm)
uery complexit
Query complexity ¢ =0,5(1)

Parity check complexity
Decision complexity poly (T (n)t/™)

Table 2: Parameters of the PCPP constructed in Theorem 2.14.

Details of these two constructions are postponed to Section 6 and Section 7.

2.6 A Stretch Reduction for REMOTE-POINT and PARTIAL-AVGHARD

In our framework for solving REMOTE-POINT (Section 3.2), for technical convenience, we only
consider circuits C : {0,1}" — {0,1}(") where £(n) is a certain stretch function. (For example, it
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might be the case that ¢(n) is rounded to a power of 2 for every n.) In this subsection, we show
that such an algorithm can also solve REMOTE-POINT for circuits of larger stretches. This justifies
that it is without loss of generality to only consider stretch functions that are equal to £(n).

Lemma 2.15 (Stretch Reduction for REMOTE-POINT). Let € be a typical circuit class and s be a
size parameter. Suppose that € [s|-REMOTE-POINT with stretch ¢'(n) and distance parameter 1/2 —
¢'(n) admits an FPNP algorithm. Then for any stretch £ = £(n) > £'(n+1)/2, €[s]-REMOTE-POINT
with stretch £(n) and distance parameter 1/2 — e(n) also admits an FPNP algorithm, where (n) :=
2-'(n+1).

Proof. Denote £/ := ¢'(n+1), & :=&'(n+1), £:=£(n), and € := £(n), and let C: {0,1}" — {0,1}*
be an input circuit. If £ is a multiple of ¢/, we can split the ¢-bit output of C into blocks of size ¢ and
add a dummy input bit to construct m := ¢/ circuits Cy,Cy, ..., Cy, : {0,111 — {0, 1} (+D)
such that for every z € {0,1}" and b € {0,1},

C(z) = C1(x,b) o Cy(x,b) 0 -+ 0 Cpy(x, b).

Using the FPNP algorithm for #-REMOTE-POINT with stretch #/(n41) and error parameter ¢'(n+1),
we can construct y1, v, . .., ym € {0,1}¢ such that each y; is (1/2 — &')-far from Range(C;). It then
follows that the concatenation y3 o ya 0 -+ 0y, is (1/2 — &')-far from Range(C).

We now consider the case where ¢ is not a multiple of ¢'. Let I : {0,1}""1 — {0,1} be
defined as the projection I(z) = zp4+1, that is, it always outputs the last bit. For any ¢, let
It {0,1}"*! — {0,1} denote the concatenation of ¢ copies of I. Therefore, Range(I®") = {0, 1'}.
Since € is typical, we have I® € €.

Let M = k- ¢ be the nearest multiple of ¢ larger than ¢, and ¢ := M — ¢. For a multi-output
% circuit C, we define C : {0,1}"! — {0,1}M as

C(z,b) = C(x) o I (2, b),

where z € {0,1}"™ and b € {0,1}. Since C is of input length n+1 and output length being a multiple
of £, we can get a remote point s € {0, 1}™ in FPNP that is (1/2 — ¢’)-far from Range(C).

Let s = s 0 55, where s; and sy has length ¢ and /, respectively. We then prove that s is
(1/2 — €) far from Range(C). Towards a contradiction, we assume that s; is not (1/2 — ¢)-far from
Range(C'). In other words, there is an = € {0,1}" such that 6(C(z), s1) < 1/2 —e. By considering
the Hamming weight of so we know that there is a b € {0,1} such that §(I®%(x,b),s0) < 1/2. It
then follows that

<5 get)
=2 v 7"
1
<5~ g'(n+1)
This leads to a contradiction as s is (1/2 — &' (n 4 1))-far from Range(C). O

Similar to REMOTE-POINT, another average-case problem PARTIAL-AVGHARD can also be re-
duced to the instances with smaller stretch in the same way.
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Lemma 2.16 (Stretch Reduction for PARTIAL-AVGHARD). Let € be a typical circuit class and s be
a size parameter. Suppose that NC o (€[s])-PARTIAL-AVGHARD with stretch ¢'(n) and the distance
parameter 1/2 —€'(n) admits an FPNP algorithm, then for any stretch £ = £(n) > €'(n+1)/2, €s]-
PARTIAL-AVGHARD with stretch £(n) and distance parameter 1/2 —e(n) admits an FPN® algorithm,
where e(n) :=2-&'(n+1).

Proof Sketch. The proof of this lemma is similar to that of Lemma 2.15. Here we use the same
notation as the proof of Lemma 2.15.

Let X = {z1,..., 2} denote input strings, and let y; := x; 0 0. We create £ copies of 0" o 1 and
use Ye+1,---,Ynm to denote these copies.

we solve NC§ o €-PARTIAL-AVGHARD on {y1,...,ym} and get an average-case hard partial
truth table s = s1 0 so that is (1/2 — &/(n + 1))-far from any truth table of NC3 o & circuit,
where s; and sy has length ¢ and . Then we prove s is a solution for the original problem. For
some ¢ circuit C, if s; is not (1/2 — &(n)) far from partial truth table of C on X, we can define
C1,Cy : {0,1}" x {0,1} — {0,1} as Cy(z;b) := C(x) Vb, Ca(x;b) := C(z) A (=b). Then one of C,
and Cy has partial truth table on Y := {y1,...,ya} not (1/2 — &/(n + 1)) far from s, which leads
to a contradiction. Therefore s; has to be a solution. The analysis is similar to Lemma 2.15. O

2.7 Satisfying Pairs for NC} o ¥ from Satisfying Pairs for (ANDj/XORY}/ORY) 0 ¢

We show that satisfying pairs for NC2 o € circuits can be reduced to the satisfying pairs of
AN Dg 0%, XOR?Z 0%, or ORSO‘K via standard Fourier analysis (see, e.g., [CW19b, Section 4]). This
will be beneficial for the unconditional results for weak circuit classes, such as the remote point
algorithm for GF(2)-linear functions.

Theorem 2.17. For every constants § € [0,1] and d > 1, there is a constant &' such that the fol-
lowing holds. Let N = N(n), M = M(n),n,s = s(n) be parameters, and Cq € {ANDg4, OR4, XOR4}.

Then #(NCo%)-SATISFYING-PAIRS (resp. Approxs-(NCYo®)-SATISFYING-PAIRS ) with parame-
ters (N, M, n, s) is O(n)-time Turing-reducible to #(Cq0€)-SATISFYING-PAIRS (resp. Approxs -(Cgo
€)-SATISFYING-PAIRS ) with parameters (O(N), M, n, s), as long as each input circuit of the #(NCjo
%)-SATISFYING-PAIRS (resp. Approxs-(NC)o@)-SATISFYING-PAIRS) problem are given explicitly as
a top NCS circuit Crop together with d circuits C1,Ca,...,Cq € € feeding Ciop.

Moreover, the oracle algorithm for #(NCY o €)-SATISFYING-PAIRS (resp. Approxs-(NCY o %)-
SATISFYING-PAIRS) only makes O(1) non-adaptive queries to the #(Cq o €)-SATISFYING-PAIRS

(resp. Approxs -(Cq 0 €)-SATISFYING-PAIRS) oracle.

Proof. Let N, M,n,s be the parameters. Suppose that we are given C1,Co,...,Cy € €[s] and
x1,22,...,xp € {0,1}™ as input. We assume that Cp,C5,...,Cy share the same upper NC?l
function computing f : {0,1}¢ — {0,1}, that is for every i € [N], C; = f o D; for some d-output %
circuit D; of size at most s. This is without loss of generality since there are at most 22* = 0O(1)
different NCg functions and we can (approximately) count the number of satisfying pairs for each
of these cases separately.

We first consider the case for C; = AND,. We use the basis {0,1} C R for Boolean values and

write f as
f(CC): § aS'H$ia
SC[d) i€s

where each coefficient ag € [-29,29] N Z. Note that we can compute the coefficients by writing
the truth table of f in the canonical disjunctive normal form, represent z by z, - by 1 — x, A by
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multiplication, and (disjoint) V by addition, and then expending the multi-linear polynomial using
a brute-force algorithm in O(1) time.
Let xs(z) := [[;cg2i for S C [d]. Then the number of (i,7) € [N] x [M] such that Cj(z;) =1

is

=Y > > as-xs(Di(x)))

i€[N] je[M] SC[d]

=> as- | Y. > xs(Dilxy))
SCld] Li€[V] je[M]

- : i 7 )
ag Z Z AND g o D ls(z;)

SC[d] Li€[N]j€[M]

where D;|s : {0,1}51 — {0, 1} representing the circuit obtained from D; by restricting to the output
bits in S. Then our algorithm is as follows: We enumerate all S C [d] and count (resp. approximately
count) the number Ag of satisfying pairs for circuits AND|gj o D1[s,...,AND|g o Dy|g and inputs
r1i,...,TM, then we output the answer ngd} ag - Ag.

For C; = XOR; and C; = ORy, we only need to write f as

fx) =) o P, (3)

SC[d] icS
fla)y=>" a4\ (4)
sCld) ics
where oy, o/, < 20(4). Note that Equation (3) can be obtained using the basis {true := —1,false :=
1} and Equation (4) can be obtained using the basis {true := 0, false := 1}. O

3 Range Avoidance and Remote Point

In this section, we prove our main technical result: non-trivial algorithms for SATISFYING-PAIRS
imply FPNP algorithms for range avoidance and remote point. We first prove our results for range
avoidance and remote point in Section 3.1 and Section 3.2, respectively, and then briefly discuss the
variants of our algorithms in Section 3.3.

The naive algorithm for SATISFYING-PAIRS is to evaluate every circuit on every input, which
requires O(NM - poly(s,n)) time. We will employ non-trivial algorithms (i.e. of time complexity
NM/1log“V(NM)) for SATISFYING-PAIRS to solve the range avoidance problem and the remote
point problem. Indeed, we can even allow the Satisfying Pairs algorithm to have a preprocessing
phase, in which a polynomial-time algorithm with access to an NP oracle is given the circuits
Cy,...,Cn (but not the inputs) and produce a data structure of small (i.e. “fixed polynomial”) size.

Definition 3.1 (Algorithms for SATISFYING-PAIRS with PNP Preprocessing on Circuits). Let P be
one of the problems €-SATISFYING-PAIRS, #%-SATISFYING-PAIRS, Approxs-6-SATISFYING-PAIRS,
Gaps-€-SATISFYING-PAIRS. A t-time algorithm for P with PNP preprocessing of an f-size data
structure on circuits is a pair of algorithms (A;, A2) that solves P in two phases:
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1. Given the circuits C1,Cy,...,Cy : {0,1}" — {0,1} of size s, the polynomial-time algorithm
A; with oracle access to a SAT oracle computes a string DS € {0, 1}€ .

2. Given the inputs 21, o, ...,z € {0,1}" and the string DS € {0,1}¢, the algorithm Aj solves
P on the instance (C1,...,Cn,x1,...,2)) in time ¢.

3.1 Range Avoidance from SATISFYING-PAIRS

In this sub-section, we establish the connection between the AvOID and SATISFYING-PAIRS.
The main result is the following theorem.

Theorem 3.2. There are constants € > 0 and cimp such that the following holds. Let 0 < n < 1/2
be a constant, £(n) > n'*4 be a good function. Let €[s] be a typical circuit class where s = s(n) is
a size parameter, and €'[2s] := ORg 0 €[s] (i.e. a €' circuit of size 2s refers to the OR of at most
two € circuits of size s).

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/log® (N M))-time algo-
rithm for Approx.-¢"-SATISFYING-PAIRS with N := ¢'~"-polylog({) circuits of size 2s(n) and
M = (171 . polylog(€) inputs of length n - polylog(¢), allowing a PNP preprocessing of an
Ne€-size data structure on circuits.

Conclusion: Then there is an FPNP algorithm for €[s]-Avoip with stretch £(n).

3.1.1 Typical Choices of the Parameters

Before proving this general framework, we demonstrate two typical choices of the parameters as
follows that deal with AvOID with polynomial stretch and quasi-polynomial stretch.

Corollary 1.11. There is a constant € > 0 such that the following holds. Let & be a typical circuit
class, €' := ORy 0 €, and s = s(n) be a non-decreasing size parameter.

e Suppose that there is a non-trivial algorithm for Approx.-€¢'-SATISFYING-PAIRS for N =
n W) G circuits of size 2s(n) and M = n' W) inputs of length n. Then there is an
FPNP algorithm for €-AvolD with stretch € and circuit size s,'* for some £ = nt 91,

e Suppose that there is a non-trivial algorithm for Approx.-¢’'-SATISFYING-PAIRS for N =
quasi-poly(n) €”-circuits of size 2s(n) and M = quasi-poly(n) inputs of length n. Then there
is an FPNP algorithm for € -AvoID with stretch £ and circuit size s, for some £ = quasi-poly(n).

Proof. (Polynomial Case). Assume we have an algorithm for Approx,.-¢’-SATISFYING-PAIRS for
N, = n;ﬁ'C” €' circuits of size 2s5(na) and My = nil'mm inputs of length n, that runs in non-
trivial time (i.e. Ny - Ma|/logw(1)(Na| - My)), where ¢, and ¢, are some constants. Denote this
algorithm by (). Note that s(n) = poly(n) (otherwise there cannot be such an algorithm). We
apply Theorem 3.2 with n = 0.1 and s := s;. Let ¢ = 1 be the constant in Theorem 3.2 and
¢(n) = poly(n) to be determined later.

To obtain an FPNP algorithm for %[s]-AvoID with stretch £(n), we need to design an algorithm
for €”'-SATISFYING-PAIRS with N = ¢99 . polylog(¢) circuits of size s(ngy) and M = ¢! - polylog(¥)
inputs of length ng, = n-polylog(¢) that runs in time N M /log® (N M) for some absolute constant
Ccimp- Denote this problem by (x). We set n, = ngy and £(n) = max{(Na|s)1'1/0'9, (Ma|s)1'1/1'9} =
n! U 5o that N > N1 - st and M > ML' - s'!. The algorithm for (x) works as follows.

“Note that the circuit size parameter of ¥-AvoID refers to the maximum circuit size of each output bit of C :
{0,1}™ — {0,1}*, instead of the total circuit size of C.
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e We divide the N circuits into groups of size N, and the M inputs into groups of size M.

e For every i € [N/N,| and j € [M/M,|], we use the algorithm (*) to (approximately) count
the number of satisfying pairs between the i-th circuit group and the j-th input group. (In
particular, we use a brute-force algorithm with running time (Ng - M + M, - N) - O(s) <
NM/ log“’(l)(N M) to deal with the groups, if any, with less than N, circuits or less than M
inputs.) We add all the answers among groups together.

The correctness of the algorithm is obvious, and the running time is at most

N M NaMy  __ NM
Nal Mal logw(l)(Na|Ma|)710g0imp(NM)'

(Quasi-Polynomial Case.) The proof is almost the same as the polynomial case. In particular,
s(n) and ¢(n) as defined above are quasi-polynomial functions; the final running time is non-trivial
since log( Ny Ma) = log® ™ (n) and log(NM) = log®™ (n). The details are omitted. O

3.1.2 Proof of Theorem 3.2

Theorem 3.2. There are constants € > 0 and cimp such that the following holds. Let 0 < n < 1/2
be a constant, £(n) > n'*4 be a good function. Let €[s] be a typical circuit class where s = s(n) is
a size parameter, and €"'[2s] :== ORg 0 €[s] (i.e. a €' circuit of size 2s refers to the OR of at most
two € circuits of size s).

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/log®m (N M))-time algo-
rithm for Approx.-€"-SATISFYING-PAIRS with N := ('~ .polylog({) circuits of size 2s(n) and
M = (171 . polylog(€) inputs of length n - polylog(¢), allowing a PNP preprocessing of an
NE€-size data structure on circuits.

Conclusion: Then there is an FPNP algorithm for €[s]-Avoip with stretch £(n).

Proof. Suppose that we are given a % circuit C : {0,1}" — {0,1}*. Without loss of generality, we
may assume £ is a power of 2 and ¢ > 2. We set the following parameters:

m:=5(c+2)/n=0(1),
Weroof := log ¥, Woroof := 2000 = (,
hproof == (c + 1) log ¥, Hopoof 1= 2Mproet = e+1,
Nhard 1= 10Hproof - 10,
T := Hproof - Wproof / log™™ (£).

The constants €, Cimp, and cym will be determined later.
Let L2 he the hard language constructed in Theorem 2.2. We use npaq and T to denote the
input length and the time complexity of L' respectively, i.e.

Lhard ¢ NTIMErm[T] \ i.0.-NTIMEGUESSgrM[T'/ log™*(T'), nhard /10] ) (np,ra/10)

where charg is some large universal constant. Note that since T = ¢“*2 /polylog(f), nnarg = O£ -
n), £ > n'*t4 we can see that n:];?(l)
Theorem 2.2.

We describe a nondeterministic RAM MPCPP that runs in T/log®(T) time, uses nparg/10

advice bits, guesses nparq/10 nondeterministic bits, and attempts to solve L' on np,q-bit inputs.

< T < nﬁard, which satisfies the technical condition of
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By the definition of Lhd, MPCPP has to fail on some input o € {0, 1} when np,.q is sufficiently
large. Our goal is to design such an algorithm MPCPP that (1) rejects every z ¢ L' and (2)
accepts every x € LM with an easy witness. Thus, if MPCPP fails on some input z, then = € L
and it has only “hard witnesses”, which will be exploited for finding a non-output of C.

Here, to define the inputs = “with an easy witness”, we will need the 2-query rectangular PCPP
in Theorem 2.13 for the following language

L .= {Enc(z) : x € Lhd},

where we fix an error-correcting code (Enc, Dec) as in Theorem 2.1. Let dgnc be the distance of the
code. Suppose a string of length npaq is encoded (via Enc) into a string of length fipad := O(nhard)-
We set the following parameters:

O(loglogT _
hi"PUt = <1 - (10ggj§;)> hproofa Hinput 1= Mineut — Hproof/p(ﬂleg(g),
Winput = ﬂOg ﬁhard—‘ - hinput; I/Vinput 1= 2Wimeut — . p01y10g(€)'

We assume without loss of generality that fihard = Hinput * Winput- (This can always be done by
adding at most Winput < fiharg dummy bits into the codeword of the error-correcting code, where
the resulting code is still of constant rate and distance.)

We can check that the technical conditions of Theorem 2.13 for the 2-query rectangular PCPP

construction holds:'?

log T'(n) = Rproof + Wproof — Ctm loglog ¢ = (¢ + 2)log ¢ — ctm log log ¢
hproof =108 T (1) + ¢tm loglog £ — wpreof = log T'(n) + ©(mloglog T'(n)) — wpreof

Zipnr::: =1- @(li)ggbﬁﬂ <1- lel(jggjl?gT (if the constant in O(-) is large enough)
Winput o ﬂog ﬁhard-l - hinput < hproof + logn + 0(1) - hinput
Wproof log ¢ - log ¢

logn + O(hproof log log T'(n))/log T'(n)

N log ¢

_logn  O(loglogT(n))

~ log/ log T'(n)

<1-9Q(1).

By Theorem 2.13, there is a PCPP verifier VPCPP for L®"® with oracle access to II := Enc(z)om,
where the input Enc(z) is treated as a matrix of size Hinput X Winput, and the proof 7 is treated as
a matrix of size Hproof X Wproof- The PCPP verifier has the following parameters:

o completeness error = 1 — ¢pep,
o soundness error = Spcp,
o proximity parameter = dgnc/3,

o query complexity < 2,

5Strictly speaking, we apply Theorem 2.13 with wpeor to obtain a PCPP with proof size H{,roof X Woroof, Where
Woroof = 2P and Hp oo = 2Mproof for some Ppyoor = log T'(n) +©(mloglog T(n)) — Wereof. We set cum to be sufficiently

large so that Aproof > h;,,oof, hence we can assume without loss of generality that the proof size is actually Hproof X Wproof
(recall that Hpoor = 2"°) by adding dummy bits in the proof.
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o parity-check bits < 2,
o total randomness = r :=logT + O(loglog T' + mlogm),
o row randomness = Trow 1= Rproof — (5/m)logT = (¢ + 1 —n)log ¢ — (5¢em/m) loglog ¢,
o column randomness = reo| 1= Wproof — (5/m)logT = (1 — n)log ¢ — (5¢tm/m) loglog ¢,
o shared randomness = 7ghared := (10/m)log T + ctm loglog T

= 2nlog ¢ + (ctm/m) loglog £ + O(loglog ¢ + mlogm).

Moreover, the total number of parity-check bits and queries is at most 2, and the decision predicate
VDec < Vyec(seed.shared), which takes the parity-check bits and the answers to the queries as the
input, is an OR of its input bits or their negations.

For an input o € Lh4 N {0, 1}, we say that = has an easy witness if there is a proof matrix
7 for the statement “Enc(x) € L®"” such that:

(completeness) Prseed<_{071}r[VPCPPE"C(x)M(seed) accepts| > cpep; and

(easiness) for every row m; of 7, there exists a string w; such that m; = C(w;).

Description of MP PP, Now we define MPPP_ which is a (T/log®=d T)-time non-deterministic
algorithm that takes at most ¢! < Thard/ 10 bits of advice. MPCPP aims to reject every x ¢ L and
accept every z € L with easy witness when appropriate advice is given.

On input = € {0,1}"™d, we guess Hpoof Strings wi,wa, ..., wh,.. € {0,1}". Let 7 be the
Hiproof X Wproof proof matrix where for each i € [Hproof], the i-th row of 7 is equal to C'(w;). Let
Pacc be the acceptance probability of the PCPP verifier VPCPP for L"¢ given the input Enc(z) and
the proof , i.e.,

Dace 1= Pr  [VPCPPE(®)°7 (seed) accepts).
seed«+{0,1}"
We need to distinguish between the case that pacc > cpep and the case that pacc < spep. We set
€ 1= (Cpcp — Spcp)/4 so that this can be done by estimating pacc with an additive error at most e,
which will be done by applying the Approx.-€’-SATISFYING-PAIRS algorithm in the assumption.
(Recall that cpep and spep are absolute constants that only depend on dgne, which means that ¢ is
also an absolute constant.)

In what follows, we reduce the problem of estimating pacc to 27shared instances of Approx.-%¢"-
SATISFYING-PAIRS, where each instance consists of 27 = (177 . polylog(f) circuits and 2" =
£t . polylog(¥) inputs. Then we will utilize the algorithm for Approx_-%’-SATISFYING-PAIRS to
estimate pacc, where the data structure in the preprocessing phase will be treated as an advice of
N[PCPP

For the simplicity of presentation, we define the notation:
(itype[1], ..., itypelq]) < Viype(seed.shared),

[q

[q

(pc1, ..., pep) < Vpc(seed.shared),

(irow[1], ..., irow[q]) ¢+ Viow(seed.shared, seed.row),

(icol[1], ..., icol[q]) < Vol(seed.shared, seed.col), and

where p + ¢ < 2 and pc; : {0,1}7w*7e — {0,1} is an XOR of (some of) its input bits (i.e. a
GF(2)-linear function) for every i € [p).
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Reduction to SATISFYING-PAIRS. Our input strings in the Approx.-¢’-SATISFYING-PAIRS
instance will be of the form (ay,...,aq,pc?®, ... ,pc"). For each j € [g], the meaning of a; is as

follows:

e if itype[j] = input, then a; is interpreted as a row of the input matrix, and we use (a;)co to
denote the col-th bit of a;;

e if itype[j] = proof, then a; is interpreted as a “seed” such that C(a;) is a row of the proof
matrix, and we use (a;j)q to denote the col-th bit of C'(aj). (NOT the col-th bit of a;!)

row

For each j € [p], pc®" is a bit representing the contribution of seed.row in the j-th parity-check bit,

J
i.e. pC;-ow = pe; (SeEd.rOW, 0|Seed.col\)’

We first enumerate seed.shared € {0, 1}"h=<d. For each seed.shared, we create an instance 7 :=
Tseed.shared Of Approx_-%’-SATISFYING-PAIRS as follows. Let Z; be the j-th row of Enc(x) (viewed as
an Hinput X Winput matrix). For each seed.row € {0,1}", we add the following input to Z:

_ row row
Inputseed.shared,seed.lrow - (al, <oy Qg PCL - PC )a

where for every j € [q],

s = jirow[j} if itype[j] = input,

Wirow[4] if itype[j] = proof,
and pc;-°w is the contribution of seed.row to the j-th parity-check bit as defined above. Note that
since 7hard = Hinput : I/Vinputy jirow[j] € {07 1}I/Vinpm when itype[j] = input, lLe., jfirow[j] will not contain
L (see Definition 2.9). The length of a; is at most max{Winput,n} < n - polylog(¢), thus the total
length of Inputseed shared seed.row 15 also bounded by n - polylog(£).
Then, for every seed.col € {0,1}"!, we define a circuit Cseed.shared,seed.col @s follows. On input

(a1,...,aq,pe™, ... pcy™),
it outputs
VDec((al)icol[l]a PR (a’q)ico|[q}7pct;low S2] pciO|7 v 7pc;70W S pc;d) .

Here, VDec <— Vyec(seed.shared) is the decision predicate of VPCPP and pc© represents the con-

i
tribution of seed.col to the i-th parity-check bit, i.e., pc§! := pe;(0lseed-rowl seed.col). Note that
by definition, pc;(seed.row, seed.col) = pc® @ pcg"'. Also note that Cseed.shared,seed.col 1S indeed an
ORs o & circuit, since VDec is always the OR of its two input bits or their negation.
c'=C!

seed.shared seed.col

=0y

seed.shared seed.col

C(al) L

[ 1
—
ay

Figure 1: Examples of the circuit Cseed.shared,seed.col- I the left example, there are two queries and
no parity-check bits, the first query has type proof and the second query has type input. In the
right example, there are one query with type proof and one parity-check bit.
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Now, our instance Z contains M := 2" inputs and N := 27« circuits. By definition, we have

E
VPCPP nc(x)Oﬂ-(seed) - Cseed.shared,seed.co|(lnpUtseed_shared7seed_row)'

Since M = (“177 . polylog(¢) and N = ¢'=" . polylog(f), there is a non-trivial algorithm for
Approx.-%’'-SATISFYING-PAIRS with N circuits of size s and M inputs of length n - polylog(¢). In
particular, we can estimate pacc(seed.shared) using this algorithm on Zgeed shared Up to an additive
error €, where

Pacc(seed.shared) := Pr [VPCPPE”C(@W(seed)} :

seed.row,seed.col

In other words, we can obtain a p,..(seed.shared) € pacc(seed.shared) & . The overall acceptance
probability of VPCPP on the input Enc(z) and proof 7 is

Pacc *= Pr [VPCPPE"C(I)OW(seed)} .
seed«+{0,1}"

Pr [VPCPPE”C@W(seed)H

seed.shared |:seed‘row,seed‘col

= E  [pacc(seed.shared)]

seed.shared

E  [phcc(seed.shared)| +e.

seed.shared

m

Hence we can estimate paec up to an additive error £ by taking average over all p,_.(seed.shared)
obtained by the Approx.-¢’-SATISFYING-PAIRS algorithm over Zgeed.shared-

To summarise, our algorithm MPCPP works as follows. It first computes Enc(z) in O(n)
time. Then, it enumerates seed.shared, produces the instance Zgeed.shared, and feeds it to the al-
gorithm for Approx.-¢’-SATISFYING-PAIRS to obtain p/..(seed.shared). Let pl.. be the average of
Phcc(seed.shared) over all seed.shared € {0, 1}"shred . Tt accepts if and only if pl.. > cpep — €.

Correctness of MPPP. For every = € {0,1}™, we know by the discussion above that:
o If x ¢ LM we know that Enc(z) is dgnc far from being in L. By the soundness of VPCPP,
Pacc < Spep, Which further means that pl.. < pacc +€ < ¢pep — €, hence MPCPP will reject x.

o If x € Lhd has an easy witness, we can see by the definition of easiness that there is a proof
7 of Enc(x) € L such that for every row m; € {0, 1}Wereof of 7, there is a string w; € {0, 1}
such that m; = C'(w;). These w; can be found by non-deterministic guessing at the beginning
of MPCPPIn such case, we know by the completeness of VPCPP that pacc > Cpcps Which
further means that pl.. > pacc — € > ¢pep — €. Therefore MPCPP will accept x.

Complexity of MP PP, Each instance Z of Approx.-¢’-SATISFYING-PAIRS contains M :=
27w inputs and N := 2"« circuits. Since each instance can be solved in NM/logm (N M) time,
the total time are

2rshared . NM/ logcimp (NM)
S 2rshared . 27"row . 2TCO|/rcimp
<27 reme,
Recall that r = log T + O(loglog T + mlogm), where O(-) hides some absolute constant, we can

see that 27 /rcme = Tlogo(l) T/logm T'. By setting cimp to be an sufficiently large absolute con-
stant depending on cpad, we can make 27 /r¢me < T'/log®d T'. Also, we can compute Enc(x) in
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2 fPCPP

O(nharg) time and this is not the bottleneck. Therefore, the total running time of is at most

T/ log®=d T'.

It then suffices to determine the advice and non-determinism complexity of MPPP. For every
seed.shared, the machine MPPP needs the data structure DSceedshared s advice to support the
algorithm for Satisfying Pairs. Since |DSseed.shared| < N¢ = 29« by the assumption, the advice
complexity of MPCPP s

QT col FTshared < ge—ent2n < petl < Nhard/10.

Also, the number of nondeterministic bits that MPCPP

Therefore we can see that

MPCPP € NTlMEGUESSRTM [T/ logchard (T), nhard/lo]/(nhard/lo)'

guesses is at most Hproof - 7 < 7hard/10.

The final algorithm. Given a multi-output circuit C' : {0,1}* — {0,1}*, our algorithm for
finding a non-output of C' works as follows. First, we construct the hard language L' and the
algorithm MPCPP. Since MPCPP is a nondeterministic algorithm that runs in 7'/ log®=d(T') time,
uses at most nparg/10 bits of nondeterminism and at most npaq/10 bits of advice, it follows that
there is an input Thag € {0, 1} such that MPPP (24..4) # L' (2harg). Moreover, let o be the
advice string fed to MPCPP ie. the data structures DSceed.shared fOr each seed.shared. (Note that
we can obtain « since the avoidance algorithm has an NP oracle.) We can find such an input zpaq
by running R(1™hard, M PCPP. a), where R is the refuter guaranteed by Theorem 2.2. Thus, we can
find zharg in poly(7') time with an NP oracle.

If Tharg & LM, then MPCPP also rejects Tharg, which means MPPP (zy,.4) = LM (2,,4). Thus
it has to be the case that zhaq € LM but MPPP rejects zparg. Therefore, zhaq does not have an
easy witness. We can then use the NP oracle to find the lexicographically first proof matrix 7 such
that

Pr  [VPCPPE(®)°™ (seed) accepts] > cpep-
seed«+{0,1}"

Treating m as a matrix of dimension Hproor X Wiroof, there has to be a row that is not in the range
of C. We can pick such a row by using the NP oracle. O

Remark 3.3. In Theorem 3.2, we assumed a non-trivial SATISFYING-PAIRS algorithm for the circuit
class ORy 0 ¥. By Theorem 2.17, a non-trivial SATISFYING-PAIRS algorithm for ANDs o € or
XOR3 0 € also suffices. This property might be useful for some circuit classes with a better closure
property under top XORz gates (or ANDy gates).

By replacing the 2-query PCPP (with imperfect completeness) with the 3-query PCPP (with
perfect completeness) in Theorem 2.13, we can show that non-trivial algorithms for Gap.-%"-
SATISFYING-PAIRS where 4’ = OR3 o % also imply FPNP algorithms for %-Avoip. We state
the result below but omit the proofs.

Corollary 3.4. There are constants € > 0 and cimp such that the following holds. Let 0 <n < 1/2
be a constant, £(n) > n'*4" be a good function. Let s = s(n) be a size parameter, €[s] be a typical
circuit class where s is a size parameter, and €' [3s] :== OR30€[s] (i.e. a €’ circuit of size 3s refers
to an ORg3 of at most two € circuits of size s).

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/logm (N M))-time algo-
rithm for Gap.-¢’-SATISFYING-PAIRS with N := (1" . polylog(f) circuits of size s(n) and
M := (¢t . polylog(¢) inputs of length n - polylog(£), allowing a PNP preprocessing of an
N¢-size data structure.

Conclusion: Then there is an FPNP algorithm for €[s]-AvoiD with stretch £(n).
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3.2 Remote Point from SATISFYING-PAIRS

Theorem 3.5. There is a universal constant ¢,, > 1 such that the following holds. Let N := N(n)

be a parameter such that 21°8™" < N < on®? e = g(n) > n=% be the error parameter, and

¢ := Neu18(1/e) - Let €[s] be a typical circuit class, where s == s(n) < N is a size parameter, and

denote €'[cys] := AND,, o €[s] (i.e. a €' circuit of size cys refers to the AND of at most ¢, €

circuits of size s).

Assumption: Let P := (log N)log(l/s). Suppose there is a deterministic algorithm running in time
T8 := N2/P¢ that, given as input a list of N €"[cys] circuits {C;} and a list of N inputs
{x;} with input length n - polylog(€), estimates Pr; ;. n)[Ci(;)] with additive error n = .

Conclusion: Then there is an FPNP algorithm that takes as input a circuit C : {0,1}"* — {0,1}¢,

where each output bit of C' can be computed in € [s], and prints a string y that is (1/2 — ¢)-far
from Range(C).

The rest of this section is devoted to proving Theorem 3.5.

OVERVIEW OF SECTION 3.2

e In Section 3.2.1, we define a circuit class called Prod; o Sum o %, and show that a SATISFYING-PAIRS
algorithm for AND 0% implies a SATISFYING-PAIRS algorithm for this class. This will be a convenient
tool for our subsequent arguments.

e To solve the remote point problem, we need to define a nondeterministic machine called MPCPP
trying to contradict the nondeterministic time hierarchy (Theorem 2.2). In Section 3.2.2, we set the
framework for this machine: it uses the PCPP theorem in Theorem 2.14, guesses a “compressed”
version of the PCPP proof, and verifies the validity of this PCPP proof without decompressing it.

e The first problem we encounter is the “non-Booleanness” of the PCPP proof. As we use Theorem 2.5,
the decompressed proof consists of real numbers instead of Boolean values, and we need to check
whether the decompressed proof is “close to Boolean” (in a carefully defined technical sense). This is
done in Section 3.2.3 via the SATISFYING-PAIRS algorithm.

e In Section 3.2.4, we use the faster algorithm for SATISFYING-PAIRS to verify the PCPP proof. This
step is straightforward but tedious.

e After we obtain a non-trivial algorithm for verifying the PCPP proof, we conclude the machine
MPCPP in Section 3.2.5. Then we use this machine to build an FPNY algorithm for the remote point
problem in Section 3.2.6.

e Finally, Appendix A contains postponed proofs.

3.2.1 SATISFYING-PAIRS for Prod; o Sum o % Circuits

It turns out that as an intermediate step, we need a SATISFYING-PAIRS algorithm for the
following class of multi-output circuits that output real numbers. Let d > 1 be a constant, Prod,; o
Sum o € denotes the class of multi-output circuits which takes two inputs = € {0,1}" and «, and
has the following components:

e Let {4 denote the number of bottom % circuits. For each i € [{y], the i-th circuit is a €
circuit computing a function C; : {0,1}" — {0, 1}.

e Let ¢sym denote the number of middle “linear sum” gates. For each i € [lsym], the i-th gate
outputs

Sum;(z, @) Z coeffy () - Cigy, (i) (T)-
ke[A]
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| Prodl | Prodl

Figure 2: Example of a Prod; o Sum o € circuit.

(See Definition 2.3 for the definition of linear sum circuits, in particular the coefficient sum
and locality of a linear sum circuit. Note that this definition is different from the definitions
in [Will8b, CW19b].)

e Let lp,oq denote the number of output gates. Each output gate is a product (i.e., multipli-
cation) gate of fan-in d, and is connected to the q1(7),q2(7), ..., qq(i)-th linear sum gate. Its
output is

d
CiPrOd (z,a) := H Sumg, (7, a).
t=1

Remark 3.6. The important measures of a Prodg o Sum o € circuit are:
e the number of gates in each level (Y4, lsum, Lrrod);
e the fan-in of the top Prod gates (d);

e the fan-in (A), coefficient sum (U), and locality (I) of the linear sum layer.

We show that a SATISFYING-PAIRS algorithm for AND; 0% circuits implies a “SATISFYING-PAIRS
algorithm” for Prodg o Sum o & circuits that given a list of Prod; o Sum o & circuits and a list of
input strings, estimates the expected output value (as a real number) for a random circuit and a
random input string in the lists. The proof is deferred to Appendix A.1.

Theorem 3.7. Let € be a typical circuit class, M' > 1 and n € (0,1) be parameters. Suppose
there is a deterministic algorithm running in time T™% = T*8(N, M) that, given as input a list of
N < N AND, o € circuits {C;} and a list of M < M inputs {z;}, estimates the following quantity
with additive error n:
Pr [Ci(x;)].
i« [N],j«[M]

Then, there is a deterministic algorithm running in time A%(2% + M'/M) - (€prog/N) - O(T8)
that, given as input a ProdgoSumo € circuit O™ with parameters specified in Remark 3.6, and a
list of M' inputs {(z;,;)}, estimates the following quantity with additive error n - U¢:

E ol
i(—[gprod],j%[M/}
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3.2.2 Set Up

Suppose that we are given a € circuit C' : {0,1}" — {0,1}* as input. Let g, ¢y, ctm be constants
that will be determined later. Define

5 = (10%) ™7,
m = ¢y log(1/e) /4,
Wproof 1= (60g/m) log ¢, Wroof = 2proet = (O(3/108(1/2)),
Pproof := (5g + 1) log ¢, Hioof = 2Morost = (51,

Thard ‘= 20I—Iproof " n,
T:= Hproof : Wproof/ logm (E)

Let Lhd be the hard language constructed in Theorem 2.2, i.e.,
Lhard € NTIMEy [T] \ 1.0.-NTIMEGUESSRrTM [T/ 10gcha’d (T), nhard/lo]/(nhard/lo),

where npaq refers to the input length and cpaq is an absolute constant.

Since T = ¢5a+t1+0(1/log(1/¢)) /19g%m (p) = 54+ . p@(1) and npaq = 200%F 10, we can see that
Nhard - Polylog(nhard) < T < ZPOIY(”hard), which satisfies the technical condition of Theorem 2.2.

Like in the proof of Theorem 3.2, we describe a nondeterministic RAM MPCPP that runs in
T/log®=d(T) time, guesses npard/10 nondeterministic bits, and attempts to solve LM, We will
show that for every input z € {0,1}™ed if o ¢ LM then MPPP(2) rejects; while if z € Lhard
and has an easy witness, then MPCPP(H}) accepts. However, to solve €-REMOTE-POINT, we need a
slightly different definition for “easy witness”.

Let VPCPP be the verifier for the smooth and rectangular PCPP (Theorem 2.14) for the language

L .= {Enc(z) : = € Lhrd},

where we fix an error-correcting code (Enc,Dec) as in Theorem 2.1. Let dgnc be the (relative)
distance of the error-correcting code. Suppose a string of length npaq is encoded (via Enc) into a
string of length Mpard := O (nhard). We set the following parameters:

O(m?loglogT) .
hinput = <1 - log T hproofa Hinput = QMinput — Hproof/p()lylog(g)a
Winput = ﬂog ﬁhard-‘ - hinputa VVinput 1= 2Wineut — . . pOlleg(Z).

Again, we assume without loss of generality that 7ihard = Hinput - Winput-
We invoke Theorem 2.14 for L®"¢ to obtain a verifier VPCPP with proof size Hproor X Wiroof and

~

input size Hinput X Winput, Where prroof — 9hwroof for some! hproof = logT + ©(mloglog T') — Wproof -
We can check the technical requirements of Theorem 2.14 as follows:
T > Heroof - £90/1°801/2) > H_ o O(n) = Tihard,
m =0(logn/d) < (logT)%,
Wproof = (60g/m)log{ > (5/m)log T,
ﬁproof = hproof + O(lognloglog¢) > (5¢ + 1)logl > (5/m)logT,

6Note that the function ilpyoof that Theorem 2.14 produces might not be exactly equal to hproor. However, this
difference is minor as these two quantities are close to each other.
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Winput _ hproof +logn + 0(1) - hinput

Wproof Wproof

_logn N hproof  ©(m?loglog T')

Wproof Wproof log T
mlogn O(m3loglogT)
log ¢ logT
<1-Q(1).

By Theorem 2.14, VPCPP has the following parameters:

o soundness error = 1/2,

o proximity parameter = dgpc,

o query complexity = ¢ := O(1),

o parity-check complexity = ¢ := O(1),

o total randomness = r :=log T + O(loglog T + mlogm),

~

o row randomness = 7o := Rproof — (5/m)logT = O(log ¢),
o column randomness = reo| 1= Wproof — (5/m)logT = O(logl/m),

o shared randomness = rgpared := (10/m)log T+ O(loglog T + mlogm) = O(log £/m).

Here, all the ©(-) hides constants that may depend on g, ¢, ctm. Moreover, as we choose the
soundness error and the proximity parameters to be absolute constants, the query complexity ¢ is
also an absolute constant.

Note that if ¢, is large enough, then we have 22(wl) < N < 27« Therefore we can solve the
Approx, -SATISFYING-PAIRS problem for 2"« inputs and 2"« AND,, o ¢ circuits, by partitioning
the inputs and circuits into groups of size N. The time complexity is still at most 227« / P« where
P = (rco|)log(1/ ¢). Without loss of generality, we may assume N = 2"« in what follows.

We also fix the hardness amplification procedure Amp : {0,1}Weroof — {0,1}¢ described by

Theorem 2.5 that amplifies hardness 0 to hardness (1/2—¢). Here, ¢/ := W Oles(l/e)/3) _ yO(60g/em).

proof
We set the parameter ¢, such that ¢ < ¢. Without loss of generality, we may assume that ¢ = ¢.'7

Let (idx,coeff) be the family of linear sum circuit described in Theorem 2.5, then (idx, coeff) has
the following parameters:

advice complexity = a = O(log? Wpoot/(e6)?) = O(log?(/e?),
fan-in = A = O(log Wyoof/(e6)?) = O(logt/e?),
coefficient sum = U := O(1/e),
locality = [ := log/.

We say an input = has an easy witness if there is a proof matrix 7w such that:
(completeness) for every seed € {0,1}", VPCPPE"“(®)°™ (seed) accepts;

(approximate easiness) for every row m; of 7, there exists an input w; € {0,1}" and an advice
a; € {0,1}? such that the decoding of C(w;) with advice «; is d-close to m; with respect to
f1-norm. (Recall that decy(z) denotes the decoding of x under advice «.) In particular:

1. for every j € [Wpyroof), (decq, (C(w;))); € [0,1];

171f ¢/ <« ¥, we can partition the outputs of the circuit into blocks of size £, and solve the remote point problem
for each block of output bits.
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2. ||decq, (C(w;)) — mil|1 < 6.

Recall that P = (rc0|)l°g(1/ ¢). By our hypothesis, there is an algorithm that takes as input a list
of N ANDy, o € circuits {C;} and a list of N inputs {z;}, runs in deterministic 718 := 2%l / Pcu

time, and estimates E; ;[C;(z;)] within additive error 5 := e < U~1%.
3.2.3 Guessing and Verifying the PCPP

On input = € {0, 1}™rd we guess ﬁproof strings w1, wa, . . Swh € {0,1}" as well as ﬁproof
advice strings a1, Q2, .. Qg € {0,1}% Let wlRea| := decy, (C(w;)), and 7riBoo| be the Boolean

string that is closest to 7TZReaI. We will think of the matrix 78°° as the PCPP proof, although our
algorithm MPCPP will operate on wRe2!.

Therefore, before we proceed, we need to verify that m and 7 are “close”, so that it does
no harm to operate on 7~¢ even if the correct PCPP proof should be 7B°  This verification
phase also occurs in previous works proving lower bounds against linear combinations of circuits
[Wil18b, CW19b, CR22, CLW20|. Like in previous work, we only provide an “approximate” verifica-
tion algorithm: if the input has an easy witness, then the PCPP proof 7R¢ corresponding to this
easy witness is accepted; on the other hand, we reject every 7R that is “too far” from Boolean.

In what follows, denote

Real Bool

(itype[l],itype[2], ..., itype[q]) < Viype(seed.shared),
(irow[1],irow[2], ... irow[q]) < Viow(seed.shared, seed.row), and

(icol[1],icol[2], ..., icol[g]) +— Vol (seed.shared, seed.col).

For each seed.shared € {0,1}"sheed and each ¢ € [g] such that itype[:] = proof, we define the
following functions:

Bool
seed.shared,.

Real
seed.shared,.

(seed.row, seed.col) = w2° and

ol
irow|[¢],icol[¢]

Real
(seed.row, seed.col) =501 icoll-

We will speak about the ¢;4-norms of the above functions. For example, let d € N be a constant,
then

Bool

Bool Real
H Tirow[d],icol[1]

o H _ _ﬂ_Rea
seed.shared,. seed.shared,.lld = irow[e],icol[¢]

seed.row<—{0,1}"row |:
seed.col<—{0,1}"col

Lemma 3.8. Let € be a typical circuit class and d > 2 be an even number. Suppose there is an
algorithm that takes as input a list of N = 2"« ANDggo € circuits {C;} and a list of N inputs {x;},
runs in deterministic T*# time, and estimates the following quantity with additive error 1:

Pr  [Ci(z))].

i,j4[27col]

Then there is an algorithm that takes the circuit C, (wi,wa, ..., wy f), and (a1, 2, ..., f)
proo proo
as input, runs in deterministic O((3A)%4T2) . (22‘11”5"“" + T'log?™ T/227’C°'> time, and satisfies

the following:

(Completeness) If for every i € [ﬁpmof], it holds that (1) for every j € [Wproof], mReal € [0,1]; (2)

»J
Imfe! — 7222l

< 4, then the algorithm accepts.
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(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared € {0, 1} and v € [q], || fR& g req I < 1427 U,
Real _ __Bool|d d d+1 2d
8 B ol Wil [T~ Ty |7 S 470+ 27020 + 1),

To prove this lemma, we need to reduce the task of checking whether the real proof is close to
the Boolean proof to the satisfying pairs of Prodj o Sum o % circuits, and then apply the non-trivial
algorithm in Theorem 3.7. The details are given in Appendix A.2.

We substitute d := 2¢ in the above lemma. If x has an easy witness, then there is some
(w1, wa, ..., prmof) and (a1, a9,... ,aHpmf) that passes the test; on the other hand, if the test is
passed, then both soundness properties in Lemma 3.8 hold:

1. for every seed.shared and ¢, || fRe H%g <1+2n- U,

seed.shared,. =

2+ Eie {Hpl e W] T = 72E920] < 167 - 5 + 128004,

3.2.4 Estimating the Acceptance Probability

After checking that the PCPP proof is “close to Boolean”, the next step is to use it to speed up
Lhard We estimate

O7rBool

Pacc i = Pr [VPCPPE”C(m) (seed) accepts]|.

seed«{0,1}"
(Indeed, it suffices to distinguish between the case that pacc > 5/6 and the case that pacc < 1/2 as
we will explain later.)
We enumerate seed.shared. After fixing seed.shared, each itype[] is completely fixed, each irow|[t]
only depends on seed.row, and each icol[] only depends on seed.col. We now need to estimate

Pacc(seed.shared) := e rowEEO o VPCPPEne(z)orte (seed) accepts].
seed.col%{OZl}Tcol

Suppose that we also fix seed.row. Then, we know the ¢ rows of the input matrix Enc(x) and the
proof matrix 7 that could influence the PCPP verifier. We call them row5°° row5°°! ... roqu°°'.
In particular, for each ¢ € [q]:

Bool __ {i‘irowm if itype[t] = input,

row, %% =
Bool " if itype[t] = proof.

¢
7TiroW[L]

We also let pei,pe, ..., peq <= Vpc(seed.shared) be the parity-check functions of the PCPP
verifier, where each pc, : {0,1}7ov+7el — {0,1}. In particular, let pc® (resp. pct®) denote the

L
contribution of seed.row (resp. seed.col) to pc,, i.e.,

pe;™ (seed.row) := pe,(seed.row, 07!,

pc® (seed.col) := pe, (07, seed.col).

col
L

Then pc, (seed.row, seed.col) = pc[°®"(seed.row) @ pc

seed.col when they are clear from the context.

Let VDec be the decision predicate of the PCPP verifier; note that as seed.shared is fixed,
VDec < Vgec(seed.shared) is also fixed. The input of VDec includes the answers to the ¢ queries and
the parity-check bits pcy,...,pcg. On seed.row and seed.col, the PCPP verifier outputs

(seed.col). For simplicity, we omit seed.row and

VDec ((rOW?OOI)icoI[l}a (row5°ico2] - - - » (rowF)icorq pe1, pea, - - 7p0q> :
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As every Boolean function over 2¢ bits can be written as a degree-2q polynomial over the reals,
we write

VDec(aq, az, ..., aq,pc1,pca, ..., pcq) = Z g5 (Hab> . (H pcb>,

SClg],5"Clal Les es’

where 0g ¢ € [-2%4,2%]. Now, define

Pacc(seed.shared, S, ) := B [H(row?“')ico'm gl ch] .
seed.col«—{0,1}"col L€S LeS
We have
Pacc(seed.shared) = Z 05,5 Pacc (seed.shared, S, S'),

SClqg],S"Cla

thus it suffices to estimate each p,c.(seed.shared, S, S").

Fix S and S’. Since we only have access to a real proof matrix m instead of a Boolean
proof matrix, we use the following number as an estimation of p,cc(seed.shared, S, S’), with the only
difference being 7TZ»BOOI being replaced by mReal:

Real

pReal(seed.shared, S, 5") = E [H(rOW?GaI)icom] . H pe, |,

seed.row<—{0,1}"row
seed.col<—{0,1}"col LeS 1es’

where

row e = {jirowhl if itype[] = input,
s

Real if itype[t] = proof.

irow(¢]
The following claim bounds the accuracy of the estimation given the f4-distance between the
functions fSB°°| and ste?il.shared ,- The proof is deferred to Appendix A.3.

eed.shared,. ee

Claim 3.9. For every S, S’ C [q],
|Pacc(seed.shared, S, S") — paRff'(seed.shared, S, 8N < (1+ 5seed.shared)2q_1 - Oseed.shared -

Here,

) - H Bool _ rReal H
seed.shared -— seed.shared,. seed.shared,¢ 112g
L:itype[t]=proof

(recall) = > E [ rBool

! o — qgReal
seed.row<{0,1}7row irow|[¢],icol[¢] irow([¢],icol[¢]
vitype[t]=proof seed.col<{0,1}"col

Qq] 1/(2q)

Now we fix S, S’ and estimate pR<!(seed.shared, S, S’). Let dg := |S|,dg := |S’|, it is without

acc

loss of generality to assume that S = {1,2,...,ds} and S" = {1,2,...,ds/}. We construct a

Prodds+ds, o Sum o & circuit CProd .= sire%c.ishared,S,S” as well as a list of inputs (Zseed.row, Xseed.row)s
such that
Prod Real
Cseed,col(zseed.rowaaseed.row) = I |(r0WL )icol[t} . | | pe,. (5)

€S Les’
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Ocge!

[ ] 2

=

[ ] 2

COPY

—

21

itype =  input proof input proof

Figure 3: Construction of the circuit C?"9. Note that for convenience, we only drew the “relevant”
parts of this circuit, e.g., C'(z;) when itype[i] = proof and the copying circuit for z; when itype[i] =
input.

Construction of C”¢ and inputs. For each seed.row and each ¢ € S, define

(Zseed.row)s i= Tirow[i] if itype[t] = input,
seed.row ). - Wirow]:] if itype[L] — PI’OOf.

Then we concatenate each (Zseed.row); and the (row-)parity-check bits to obtain

._ row __row row
Zseed.row -— ((Zseed.row)la (Zseed.row)2a ceey (Zseed.row)dsapcl ,PCy e e apcds/ ) .

It is easy to check that given seed.row (and seed.shared), we can compute zseed.row €asily. We also
define

Olseed.row ‘= (O‘irow[l]v Qirow[2]s + + > airow[ds]) :

Next, we define the circuit CP9 that takes two inputs (2, «) and outputs glseed-coll 1oa] numbers.
Fix seed.col, we want that

Prod
seed.col (Zseed.row s aseed.row)

= H(rowfeal)icol[d ) H pc,

€S les
= [ (decayony (Cwironi)icotiy = [T Fieowliticoti = [ [ (0™ @ pes®),
LeSproof L€ Sinput 1es’

where
(deca;row[L](C(wirow[L])))icol[L} = Z Coeffk(airowm) ’ Cidxk(airow[bl,icol[d)(wirow[d)
ke[A]

denotes the icol[¢]-th bit of the string obtained by decoding C(wjrow()) With the advice ajrou) using
the decoder dec, SP°°f := SN {i € [q] | itype[i] = proof}, S"PUt .= SN {i € [q] | itype[i] = input}.

This motivates the definition of the circuit CProd (see Figure 3 for graphic exposition and Figure 4
for detailed definition). The parameters of the circuit CP™9 are as follows.

e The number of gates: ly = dg(l + Wproof) + ds7, €sum = Woroof - ds + 2dgr, lprog = 27,

e The fan-in of the top Prod gates dg + dg < 2q.

e The fan-in A" := A - dg + 2, coefficient sum dg - U + 2, and locality [ of the linear sum layer.
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Circuit CProd

(Inputs) The input z will have the form z = (21, 22, ..., zag, pc1,PC2, . . ., pCa,) and the input o will
have the form a = (a1, @a, ..., aq,). The intended meanings are z; = (Zseed.row )i PC; = pci™, and

A = jrowld] -
(Bottom circuits) We make dg copies to C, where the i-th copy is applied to the input z;. (The i-th

copy is useful only when itype[i] = proof, but we make all ds copies for convenience.) We also
add Worof - ds + dg/ gates to copy the input.

Thus, there are ly := dg - £ + ds - Wyroof + ds/ output gates; we identify [¢¢] with the disjoint
union of {1} x [dg] x [€], {2} % [ds] X [Wpreof], and {3} x [dg/].
— For each j € [ds] and i € [€], the (1,7,)-th gate is C(y ;:)(2) := C(2;):.
— For each j € [ds] and i € [Wioof], the (2, 7,4)-th gate is C(2;,4)(2) := (2;)i-
— For each j € [dg/], the (3, j)-th gate is C5 ;(2) := pc;.
(Intermediate linear sum gates) There are fsym = Wyeof - ds + 2dgs linear sum gates and we
identify [¢sym] with the disjoint union of [Wyreof] X [ds] and [dg/] x {0,1}.
Let i € [Wroof] and j € [ds]. If itype[j] = proof, then the (7, j)-th intermediate gate is

Sum; ;) (z, @) Z coeffy () - Ciaxy (ay.i)-ds+5 (%)
ke[A]

It is easy to verify that

Sum(i,j) (ZseedArOWa Oéseed.row) = (decaimw[j] (C(wirow[j])))i'
On the other hand, if itype[j] = input, then the (7, j)-th intermediate gate is Sum; ;)(z, @) := (z;);-
(If i > Winput then we simply set Sum; ;y(z,a) = 0 and this intermediate gate would not be used.)
Finally, for each i € [dg/], we have two intermediate gates

Sum(i,O)(zaa) = P&, Sum(i,l)(zva) =1-pe.

Implementation of the linear sum layer: The linear sum has fan-in A’ := A-dg+2 and we identify

[A’] with the disjoint union of [A] x [ds] and {+,—}. Let idx' and coeff’ be the idx and coeff
functions of the linear sum layer of CP™4, then

(Function idx, (v, 7)) Suppose i = (i',j) € [Wyoof] X [ds]. If itype[j] = proof and k = (K, j')
where j = j/, then we return idxj, (v, i) = (1, j,idxg (v, 7')); if itype[j] = input and k = +,
then idxj,(a, i) = (2, 4,4'). Otherwise idx},(c, i) = ZERO.

On the other hand, suppose i = (4,b) € [ds/] x {0,1}. If (b =0and k =+) or (b =1
and k = —) then idx},(c,i) = (3,7). If b =1 and k = + then idx},(c,i) = ONE. Otherwise
idx),(v,7) = ZERO.

(Function coeff) (a)) If k = + then coeffi(a) = 1; if K = — then coeff, (o) = —1; otherwise, if
k= (K',j") then coeff} (o) = coeffys ().

The locality of (idx, coeff’) is still /. The coefficient sum becomes ds - U + 2.

(Output product gates) There are 2" product gates. For each seed.col, the seed.col-th output gate

is
Prod _
C’seed col( ) - H SumiCO|[i]-ds+i(Z7 Oé) ’ H Sumeroof'dS+2i+pC§°|(2, a),
ieS €S’

Figure 4: Detailed definition of CProd,
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Given the above construction, it is easy to check that Eq. (5) holds for every seed.row and
seed.col. We can see that

Real ! Prod
Pacc (Seed'Shared7 S, S ) = ceed rowE{O 1row Cseed,col(zseed.rOW7 aseed.row)i| .
seed.col«—{0,1}"col

Since ds < g and dg' < ¢, by Theorem 3.7, we can estimate pR<2!(seed.shared, S, S) with additive

acc

error 1 - (qU 4 2)%7 in deterministic O((gA)%4(224" 4 27w /N') - T418) time.

Analysis. First, the verification step takes

O((3A)4qT&lg) . (24ql+Tshared + T 10g0(m) T/22Tcol)
< O((3A)4q) . (T IOgO(m) T)/(TCO|)Cu log(1/e)
<T(log T)O(m)—cu log(1/¢)/2

time, which is at most T'/log®d T if ¢, is a large enough constant.

Our algorithm estimates pRe?!(seed.shared, S,5’). By Claim 3.9, the same algorithm estimates

Pacc(seed.shared, S, ") within additive error n(qU + 2)%4 + 6! where

seed.shared”

2q—1

/
5seed.shared = (1 + 5seed.shared) . 5seed.shared~

Running this algorithm for every possible (S,S’), we obtain an algorithm that runs in determin-
istic (O(qA))29(22¢" + 2mow /M) - T?!8 time and estimates pacc(seed.shared) within additive error

< Sseed.shared =41 Z(n ' (qU + 2)2q + 5;eed.shared)
S,S’

<n- (4qU + 8)2q + 167 - 5éeed.shared'

Finally, running this algorithm for every seed.shared € {0, 1}"shared we obtain an algorithm that runs
in deterministic

O(qA)2q<22ql —+ 2Tr°W /N) . 2Tshared . O(Talg)
< O(lOng £/€4q)27’row/27'col . QTshared 22TC°|/(TCOI)CU log(1/¢)
S 27‘/ IOgQ(C“) f < T/ logchard (T)

time that estimates pacc within additive error of at most

E [gseed.shared] <n- (4qU + 8)2q + 167 E [(Zeed.shared]'

seed.shared seed.shared

It remains to upper bound the quantity Eseed.shared|[0. |. We abstract this task in the

seed.shared
following lemma and defer the proof to Appendix A.4.

Lemma 3.10. Let f : [N] x [¢] = R>¢ be a function and d > 1 be a constant. Suppose that

1. for every s € [N] and i € [q], f(s,i) < a (where o> 1);
2. Egilf(s,9)%] < 6.

Let f(s) =3 icq f(s,7). Then

E[(1+ f(s)"" - f(5)] < q6"/%(2q0)" ",
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To see how this lemma corresponds to our scenario: Let d = 2¢ and [IN] = {0, 1}"shared | For

seed.shared and ¢, if itype[t] = proof, then define f(seed.shared,t) = ||fBodl . ~— fReal . llag;

otherwise define f(seed.shared,:) = 0. Since the verification algorithm did not reject ¢ we have

1. For every seed.shared and ¢,

f(seed.shared, L) < ”fsligg?shared,L |2q <242 UQq'

Real
2¢ + Hfse(é?j.shared,L

2. Since the PCPP is smooth, the distribution of (irow[¢], icol[¢]) for random (seed, ¢) (conditioned
on itype[t] = proof) is the same as the uniform distribution over [Hproof] X [Wproof]. Therefore

E seed.shared, 1)%7] = E Bool __Real 2
seed.shared,L[f( ’ ) ] seed,a:itype[L]:proof[ irow[¢],icol[¢] IYOW[L],ICO”L]’ ]
Bool Real |2
= Bflmiy” —mg™ 1]

<1678 + 128U,

It follows from Lemma 3.10 that
(6 | <q(167 -6 + 128U /24(2¢(2 + 21 - U7))%0!

seed shared seed.shared

<q(177- 8)1/%7 . (100¢)% < 10079,
Therefore, the algorithm estimates pyec within additive error at most
n(4qU + 8)* + 167 - 10077 < 1/6,

thus successfully distinguishes between the case that paec > 5/6 and that paec < 1/2.

3.2.5 Wrap Up: Description of MPCPP

On input z, we consider the smooth and rectangular PCPP for the language L*" = {Enc(z) :
x € Lhd} . (Recall that MPPP aims to reject every x ¢ L and accepts every z € L with easy

witness.) We guess (w1, ..., wh, ) and (a1, ..., am, ), which implicitly defines the PCPP proof
Bool and 7.(.Real Real

Real

using Lemma 3.8, reject immediately if 7R¢' did not
Bool)

matrices m . Then we verify w
pass the test. If 7 passes the test (which means that it is “close” to a Boolean proof = , wWe
use the algorithm described above to estimate pacc. We accept x if and only if our estimation is
above 2/3.

The correctness of MPPP is easy to see:

Claim 3.11. For every input z, if x & L then MPPP rejects x; while if x € L and = has an easy
witness then MPCPP accepts x.

Proof. If x ¢ L, then it always holds that pacc < 1/2, so MPCPP rejects. If 2 € L and z has an easy
witness, then there exists a proof 7, (w1,...,wm,) and (a1,...,am,,) such that

1. for every j € [Wproof), ﬂsjal € [0,1];

2. for every i € [(Wproof], 7 € [Hproof); |rReal — |l < 6.

7

Note that [|zReal — gBool||; < ||zReal — 7,||; < § since 7B°° is the closest Boolean string to €3l

and thus ||m; — 72°°!||; < 2§. Since the probability that VPCPP accepts 7 is 1, by Lemma 2.11,
Pace > 1 —¢q-20 >5/6, so MPPP accepts. 0

The machine MPCPP guesses Hproof (N +a) < nhard/10 bits of nondeterminism, and uses O(sﬁ) <

Nhard /10 bits of advice. Thus L(MPPP) € NTIMEGUESSgrwm [T/ log™ (T), nthard /10] /(ny.ra/10)-
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3.2.6 The FPN? Algorithm for REMOTE-POINT

Let C : {0,1}" — {0, 1}¢ be the input circuit. We first construct the hard language L' and the
algorithm MPCPP. Since MPCPP is a nondeterministic RAM algorithm that runs in 7'/ log=d(T)
time, uses at most 7pard/10 nondeterministic bits and at most nparq/10 advice bits, it follows that
there is an input Zpag € {0,1}"=d such that MPPP(zy.q) # LM (24.4). Moreover, let a be
the advice string fed to MPCPP ie., the circuit C. We can find such an input Zharq by running
R(17erd, MPCPP o) where R is the refuter guaranteed by Theorem 2.2. Thus, we can find Zpag in
deterministic poly(7') time with an NP oracle.

It follows from Claim 3.11 that Zharq € L' but xharg does not have an easy witness. Thus, we
can use the NP oracle to find the lexicographically first PCPP proof matrix 7 such that

Pr  [VPCPPE(®)°7 (seed) accepts] = 1.
seed«+{0,1}"

Then, there must exist a row m; that is (1/2 — ¢)-far from Range(C). To see this, suppose that for
every i, the i-th row m; is (1/2 — ¢)-close to Range(C). Then there exists some w; € {0,1}" such
that d(Amp(m;), C(w;)) < 1/2 —e. By Theorem 2.5, there is an advice «; such that dec,, (C(w;))
satisfies (1) for every j € [Wproof], (decq, (C(w;))); € [0,1]; (2) ||decq, (C(w;)) — |1 < 6. It follows
that 7 is an easy witness for zparg, a contradiction.

Finally, we use the NP oracle to find the first row 7;, such that Amp(m;) is (1/2 — ¢)-far from
Range(C). The overall procedure takes deterministic poly(7T") < poly(¢) time with an NP oracle.

3.3 Variants of Our Frameworks

In this sub-section, we discuss two variants of our frameworks in Theorems 3.2 and 3.5.

Allowing FPNP preprocessing in Theorem 3.5. Notice that in Theorem 3.2, we allow the
non-trivial algorithm for SATISFYING-PAIRS to have a polynomial-time preprocessing with an NP
oracle on the circuits before seeing the inputs. In our framework for remote point problems (see
Theorem 3.5), we did not consider the preprocessing phase, as we do not need any preprocessing
in our unconditional results, and the trade-off between parameters will be too complicated. We
now argue informally that by modifying our framework as follows, it suffices to have algorithms for
SATISFYING-PAIRS with an FPNP preprocessing phase that generates a “short” data structure.

e Fix any integer d. Recall that Theorem 3.7 states that non-trivial algorithms for (approximate
counting version, omitted below) AND 0% -SATISFYING-PAIRS imply non-trivial algorithms for
Prod; o Sum o €-SATISFYING-PAIRS. By verifying the proof of Theorem 3.7, we can show that
if the ProdgjoSumo % circuit has fan-in A, the algorithm will call ANDy 0% -SATISFYING-PAIRS
for A% times. Moreover, if the Prod; o Sum o € circuit is fixed, then the circuit parts of these
A% instances for AND, o €-SATISFYING-PAIRS are also fixed.

e In the proof of Theorem 3.5, we need to apply the non-trivial algorithm for Prod; o Sum o €-
SATISFYING-PAIRS on three types of circuits: circuits C"™ and C9ff in Lemma 3.8 (see
Appendix A.2), and circuit CP™4 in Section 3.2.4. There are O(2"hed) < O(£1/™) circuits in
total, all of which are constructible given the input circuit C : {0,1}" — {0,1}*. Moreover,
the fan-in of these Prody o Sum o @-SATISFYING-PAIRS circuits are O(log/), and d = O(1).
Therefore we will need to call the ANDy o €-SATISFYING-PAIRS for O(£}/™) - (log £)¢ = ¢°(1)
times, and the circuits are fixed given the input circuit C. (That is, the circuits do not depend
on the input of the machine MPCPP))
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e Now we assume that our non-trivial algorithm for AND, o €-SATISFYING-PAIRS has an FPNP
preprocessing phase. Similar to the proof of Theorem 3.2, the final FPNP algorithm for -
REMOTE-POINT works as follows. Given any input circuit C : {0, 1}" — {0, 1}¢, we construct
the circuits in all £°) instances of ANDy o ¥-SATISFYING-PAIRS that will be needed in the
proof, run the FPNP preprocessing on these instances, and put the generated data structure
into the advice of MPCPP. It remains to verify that there are enough space to store these
data structures in the advice. The non-deterministic time hierarchy theorem allows us to have
Thard /10 bits of advice (see Theorem 2.2), where nparg = 20H proof - 10 > ¢54+1 The circuit C
of size s - £, which can be properly encoded using O(s -f) < /2 bits, needs to be put in the
advice; therefore the rest npaq/10 — €2 bits in advice can be used to store the data structure
generated in the preprocessing phase.

Algorithm for “weak” remote point. We can see that Theorem 3.5 requires the input circuit C'
to have quasi-polynomial stretch. This is because the hardness amplification procedure Amp (i.e. the
XOR lemma with linear-sum decoder, see Section 2.4 and Appendix A.5) requires quasi-polynomial
stretch. An interesting open problem is then to improve the amplification procedure to achieve a
better stretch in Theorem 3.5.

The application of the hardness amplification procedure is to reduce the “strong” remote point
(i.e. the distance is 1/2 — n*M) to “weak” remote point (i.e. the distance is Q(1)). If we only want
to have an FPNP algorithm in the “weak” remote point regime, it suffices to follow the proof of The-
orem 3.2 and replace the rectangular PCPP to the smooth and rectangular PCPP in Theorem 2.14,
which can deal with ¥-REMOTE-POINT with polynomial stretch. (The key is that smooth PCPP
can tolerate errors in the proof, see Lemma 2.11 and Section 3.2.5).

4 Hard Partial Truth Tables

In this section, we employ the same technique to construct algorithms for PARTIAL-HARD
and PARTIAL-AVGHARD from non-trivial SATISFYING-PAIRS algorithms. We only consider cir-
cuit classes that are both typical and complete. Recall that a circuit class € is typical if it is closed
under negations and projections. We say % is complete if given a truth table ¢t of length 2", we
can compute a € circuit of size 20 whose truth table is ¢ in deterministic 2 time.

4.1 Hard Partial Truth Tables from SATISFYING-PAIRS

Instead of allowing a PNP preprocessing on the circuits, the algorithm for SATISFYING-PAIRS
used to solve PARTIAL-HARD allows a PNP preprocessing on inputs, formally defined as follows.

Definition 4.1 (Algorithms for SATISFYING-PAIRS with PNP Preprocessing on Inputs). Let P be
one of the problems €-SATISFYING-PAIRS, #%-SATISFYING-PAIRS, Approxs-%6-SATISFYING-PAIRS,
Gaps-€-SATISFYING-PAIRS. A t-time algorithm for P with PNP preprocessing of an f-size data
structure on inputs is a pair of algorithms (Aj, As) that solves P in two phases:

1. Given the inputs z1,z2,...,2p € {0,1}", the polynomial-time algorithm A; with oracle
access to a SAT oracle computes a string DS € {0, 1}*.

2. Given the circuits C1,Cy,...,Cn : {0,1}"™ — {0,1} of size s and the string DS, the algorithm
Ag solves P on the instance (C1,...,Cn,21,...,2)) in time ¢.
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Theorem 4.2. There are constants € > 0 and cimp such that the following holds. Let 0 < n < 1/2

be a constant, €[s] be a typical and complete circuit class where s = s(n) > n is a size parameter,
and €'[2s] := ORy 0 €[s]. Let £(n) be a good function such that s(n) 1) < f(n) < 27,

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/logm (N M))-time al-
gorithm for Approx.-%€’-SATISFYING-PAIRS with N := (t1=7 . polylog(f) circuits of size
poly(s(n)) and M := £=" . polylog(¢) inputs of length 2n, allowing a PNP preprocessing
of an M¢-size data structure on inputs.

Conclusion: There is an FPNY algorithm for €|[s]-PARTIAL-HARD with (n) input strings. More

precisely, given a list of inputs z1, z2, . .., z¢ € {0,1}", we can compute a list of bits by, by, . .., by
such that for every € circuit C : {0,1}" — {0,1} of size s, there exists an i € [¢] such that
C(zi) # b;.

Proof Sketch of Theorem 4.2. The proof is very similar to the proof of Theorem 3.2; in fact, it is
(nearly) equivalent to first reducing PARTIAL-HARD to AvOID and then invoking Theorem 3.2.
Therefore we only highlight the differences.

It is without loss of generality to assume ¢ is a power of 2 and ¢ > 2. We set the following
parameters:

m = 5(c+2)/n=0(1),
Wproof = log, Woroof 1= 2Wpoof = [
hproof = (c—|— 1) log& Hproof p— 2hproof — EC—H,
Nhard = 100H proof - slog s,
T = Hproof : Wproof/ lOgCtm (E)a
hinput = (1 - eU%%ﬂgjw))hproofa Hinput = 2l = Hproof/p()lylog(g)’
Winput = |10g Tthard | — Rinput, Winput = 2Wmt = slogs - polylog(¥).
Here Tiharg = O(nNhard) is the codeword length of a length-npaq string encoded via Enc where

(Enc, Dec) is a fixed error-correcting code in Theorem 2.1; and ¢y, is a sufficiently large constant.
We can check the technical condition npaq!TV) < T < 2Poly(mhar) 50 it is valid to invoke
Theorem 2.2. Also, (5/m)logT < wproof, SO it is valid to invoke the 2-query rectangular PCPP in
Theorem 2.13. There are other checks for technical conditions that we omit here.
The first difference is the definition of “easy witness”. We say x has an easy witness if there is
a proof matrix 7 (of size Hproof X Wproof) for the statement “Enc(x) € L®"“” such that:

(completeness) for every seed € {0,1}", VPCPPE"C(x)OW(seed) accepts with probability at least cpep;

(easiness) for every row m; of 7, there exists a size-s € circuit C; : {0,1}"™ — {0, 1} such that for
every ’i, T4 = C](zz)

Then, our machine MPCPP guesses Hproof size-s € circuits C1, Co, ..., Ch, oo + {0, 1} — {0, 1}.

Let 7 be the Hproof X Wproof proof matrix where for each j € [Hproof), @ € [Wproof], Tji = Cj(2i). We
need to estimate
PDace 1= Pr [VPCPPE“C(I)OW(seed) accepts.
seed<—{0,1}"
We still reduce the problem of estimating pacc to 2"shared instances of Approx.-¢"’-SATISFYING-PAIRS,
where € := (cpep — Spep)/4. However, now, each instance consists of N := 27w = 2hproof = (5/m) log T
circuits and M := 27cel = 2Wproof —(5/m)10gT )54 18

8That is, the role of inputs and circuits are swapped as compared to Theorem 3.2.
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We enumerate seed.shared. For each seed.shared, we create an Approx.-%’-SATISFYING-PAIRS
instance Zseed.shared COrTesponding to seed.shared, which contains an input Inputseed shared seed.col fOT
every seed.col and a circuit Cseed shared seed.row for every seed.row. We elaborate on how this instance
is constructed as this is different from Theorem 3.2.

Each seed.col corresponds to an input Inputseeq shared seed.col ©f the following form:

col col
(a1, ... aq,pci®, ... pcy),

where p + ¢ < 2, for each i € [q],

icol[z] if itype[i] = input;
a; :=
' Zicolly)  1f itypeli] = proof,

and pc§°' represents the contribution of seed.col in the i-th parity-check bit.
The circuit Cseed.shared,seed.row corresponding to seed.row is as follows:

e It receives input (aq,... ,aquc?', . ,pc;°|).

e For each j € [¢], let

ans. — Enc(l')irow[j],aj if itype[j] = input
T Cirow[j] (@;) if itype[j] = proof -

Note that since ¢ is complete, we can compute a ¢ circuit of size poly(Winput) = poly(s)
whose truth table is the irow[j]-th row of Enc(x). That is, we can compute a % circuit of size
poly(s) that on input a;, outputs ans;.

e For each j € [g], let pc;"‘” be the contribution of seed.row in the j-th parity-check bit.

e It returns
col I’OW) )

VDec(ansy, ..., ansq,pcﬁOI ® pci™, ..., pey” @ pey
Here, VDec is the decision predicate of VPCPP, and is an ORy of its input bits or their nega-
tions. Since % is typical, C' is a ORy o & circuit. And one can easily verify that for each
seed = (seed.shared, seed.row, seed.col), Cseed shared,seed.row (INPUtseed shared seed.col) = 1 if and only if

VPCPPEnc(@)om (seed) accepts. It follows that we can estimate pacc by solving the instances Zgeed shared
for every seed.shared.

To summarise, our algorithm MPCPP works as follows. It first computes Enc(x) and guesses
C1,Cs,...,Ch, - Then, it enumerates seed.shared, produces the instances Zseed shared, and feeds
them to the algorithm for Approx.-¢-SATISFYING-PAIRS to obtain an estimation p)_.(seed.shared).
Let pl.. be the average of p) . (seed.shared) over all seed.shared € {0, 1} shared

We can still see that MPPP rejects every « ¢ LM and accepts every x with an easy witness. The
machine MPPP runs in T/ log® T time, guesses H, proof * D810g 5 < Mhard/10 nondeterministic bits
(since a size-s circuit can be encoded with at most 5slog s bits), and uses at most £°T! < np,q4/10
advice bits. By Theorem 2.2, MPPP cannot compute Lhrd.

The hard partial truth table algorithm. Given a list of inputs z1,29,...,2 € {0,1}", our
algorithm for finding a hard partial truth table ((z1,b1), (22,b2), ..., (z¢, bg)) works as follows. First,
we construct the hard language L' and the algorithm MPCPP. Let a be the advice string fed
to MPPP and R be the refuter in Theorem 2.2, we can use R(1™rd, MPCPP o) to find an input
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Tharg Where MPCPP fails on zpaq; in particular, MPPP(zy.4) = 0 but zpaq € L', This takes
deterministic poly(Hproof) = poly(£) time with an NP oracle.

Then we find the lexicographically first proof matrix 7 such that VPCPPEM(#hard)o™ accepts
w.p. at least cpep, using the NP oracle. There has to be some j € [Hyoof| such that for every size-s
¢ circuit C, there exists i € [Wyroof| such that C(z;) # m;;; moreover, the first such j can be found
in poly(Hproof) = poly(¢) time with an NP oracle. We can pick

((217 Fj,l)? (227 7Tj72>7 R (ZWproof’ ﬂjvaroof))

as the partial truth table hard for size-s ¥ circuits. O

4.2 Average-Case Hard Partial Truth Tables

Theorem 4.3. There is a universal constant ¢,, > 1 such that the following holds. Let s = s(n) > n
be a circuit size parameter, N := N(n) be a parameter such that 21°8™ % < N < 250'99, e:=¢e(n) >
s be the error parameter, and ¢ := N¢=108(1/€)  [ef €'ls| be a typical and complete circuit class,
and denote €’ [c,s] := AND,, 0 €[s] (i.e. a €' circuit of size c,s refers to the AND of at most ¢, €
circuits of size s).

Assumption: Let P := (log N)log(l/e). Suppose there is a deterministic algorithm running in time
T38 .= N2/P¢ that, given as input a list of N €"[cys] circuits {C;} and a list of N inputs
{x;} with input length n - polylog(¢), estimates Pr; ;. n)[Ci(;)] with additive error n = .

Conclusion: There is an FPNP algorithm for €[s|-PARTIAL-AVGHARD with £(n) input strings.
More precisely, given a list of inputs wi,wa,...,wy € {0,1}", we can compute a list of bits
bi,ba, ..., by such that for every € circuit C : {0,1}" — {0,1} of size s,

i[{]

N | =

Proof Sketch of Theorem /.3. The proof is similar to that of Theorem 3.5, so here we only highlight
the difference. Roughly speaking, the main difference is that we swap the role of inputs and circuits.
For a circuit C' and a list of inputs wy,wo,...,wy, with slight abuse of notation, we define

C(w) := C(wy) o C(wz) o --- 0 C(wy).
Analysing Prod o Sum circuits. Let d > 1 be a constant. We use Prod o Sum to denote the class
of multi-output circuits that take inputs y € {0, l}éy and «, and has the following components:

e Let ¢sym denote the number of middle “linear sum” gates. For each i € [lsyn], the i-th gate
outputs

Sum;(y,a) := Z coeffi () - Yidwy (i) -
ke[A]

e Let fp;oq denote the number of output gates. The i-th output gate is a product gate of fan-in
d, and is connected to the q1(i), g2(i), . .., qq(7)-th linear sum circuits. Its output is

d
Cfrc’d (y,a) := H Sumg, ) (y, ).
t=1
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Remark 4.4. The important measures of a Prodg o Sum circuit are:

e the number of gates in each level ({sym, Lprod);
e the fan-in of the top Prod gates (d);

e the fan-in (A), coefficient sum (U), and locality (I) of the linear sum layer.

It turns out that as an intermediate step, we need an algorithm provided by the following lemma.

Lemma 4.5. Let € be a typical circuit class, M’ > 1 and n € (0,1) be parameters. Suppose there is
a deterministic algorithm running in time T*& = T&(N M) that, given as input a list of M<M
ANDg o € circuits {C;} and a list of N < N inputs {z;} of length n - polylog(¥), estimates the
following quantity with additive error n:

- Pr [Ci(z))]
i [M],j<[N]

Then, for any constant by > 0, there is a deterministic algorithm running in time A% . (Edcg +
lprod/N) - (24 + M' /M) - O(T™8) that, given as input a Prodg o Sum circuit C¥*4 with parameters
specified in Remark 4.4, a list of Uy strings {x;}, a list of M inputs {a;}, and a list of M" € circuits
{C}} from {0, 1Yol t0 {0,1}0¢, estimates the following quantity with additive error n - U?:

E[oPed(Ci@),ap)].

i [lproal.j (ML
Recall here that Cj(x) = Cj(x1) o Cj(x2) o -+ 0 Cj(xe, ).
The proof is similar to that of Theorem 3.7 and is deferred to Appendix A.1.

Set up. We set the parameters as follows.

§:= (109q)_q2,
m :=cpy log(1l/e)/0,
Wproof 1= (60g/m) log ¢, Woroof 1= 2"Proof = 60(5/1°g(1/5)),
hproof = (5q —|— 1) log E’ Hproof — 2hproof — 6511—"17

Nhard *= 200L[proof - slog s,
T .= Hproof . meof/ logct’“ (5)

O(m2loglogT _
hinput = <1 - ( 10ggT g )>hproofa Hinput = th'm = Hproof/pob’log(g)a
Winput ‘= Hog ﬁhard—‘ - hinputa VVinput 1= 2Winput — slogs - pOlleg(é)'

a := O(log? Wproof/(55)2) = O(log? ¢/,
A :=0(log Wproof/(fsé)Q) = O(log £/e%),
U:=0(1/e),

l:=logt.

Here ¢, and c¢ym are sufficiently large constants, ¢ is the query complexity of the smooth and
rectangular PCPP in Theorem 2.14, and fiharg = ©(nharg) is the length of Enc(z) when the length
of x is Mparg. Let ﬁproof be the number of rows of the PCPP proof in Theorem 2.14, and let
ilproof = log prroof. Also let 7, 7shared, Tcols Trow b€ the total, shared, column, row randomness in
Theorem 2.14 respectively.
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We use a different definition of “easy witness ” as follows. We say = has an easy witness if there
is a proof matrix 7 such that:

(completeness) for every seed € {0,1}", VPCPPE“(®)°™ (seed) accepts;

(approzimate easiness) for every row m; of 7, there exists a size-s € circuit C; : {0,1}" — {0,1} and
an advice a; € {0,1} such that the decoding of the string C;(w) with advice «; is d-close to
m; with respect to ¢1-norm. (Recall that w = (w1, we, ..., wy) is our input and C(w) denotes
the concatenation of C'(wy), C(ws), ..., C(wy).) In particular:

1. for every j € [Wproof]a (decai(ci(w)))j € [0, 1];
2. || deca, (Cs(w)) — mill1 < 6.

A~

Our machine guesses Hproof Size-s € circuits Cp,Co,...,Cp L {0,1}" — {0,1} as well as
proo
S Let wReal := dec,, (C;(w)), and 72°° be the Boolean string that is

. For ¢ € [¢], we define

Hproof advices g, ao, ..
Real

closest to m;

Bool
seed.shared,.

Real
seed.shared,.

(seed.row, seed.col) = w2°°! and

irgz[L] Jicol[¢]
(seed.row, seed.col) = WES\?\II[L]JCOHL]'

Bool Real

Real

The next lemma shows that we can verify whether a
are close. The proof is deferred to Appendix A.3.

Verifying closeness of = and 7
Boolean proof 8% and a real proof 7

Lemma 4.6. Let € be a typical circuit class and d > 2 be an even number. Suppose there is an
algorithm that takes as inputs a list of 2"« ANDgg o € circuits {C;} and a list of 2" inputs {x;}
of length n - polylog(¢), runs in deterministic T*® time, and estimates the following quantity with
additive error n:

Pr [Ci(zx;)].
P (G
Then there is an algorithm that takes the strings wy, wa, . . ., wy, circuits (C1,Ca, . . ., Cﬁpmof)’ and
(a1, g, .. og ;) as inputs, runs in deterministic O((3A)24T21g) . (22dl+Tshared 4T 1og (™) T'/22reol ) )

time, and satisfies the following:

(Completeness) If for every i € [Hyoof], it holds that (1) for every j € [Wroof), 77553' € [0,1]; (2)

lReaI . 7.[.E';ool || 1

|| < 6, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared € {0, 1}"shred and 1 € [q], || fRed |9 <1+2n-U4

seed.shared,¢

rReal _ Bool d} < 49 .5 + 2d+177(2U 4 1)2d'

2' Ei(‘[Hproof]vj%[Wproof} |:| 1,3 1,3

Real Bool

Estimating p,cc. Now we verified that w is close to 7 using Lemma 4.6, with parameter
d = 2q. After that, the next step is to use it to speed up LM, We estimate

Pace = seedf{ro . [VPCPPE”C(“")O”BOOI (seed) accepts]|.

Actually, it suffices to distinguish between the case that pacc > 5/6 and the case that pacc < 1/2.
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We still enumerate seed.shared, and we now need to estimate

Pacc (seed.shared) := o row(li%{o o VPCPpPEnc(@)or™ (seed) accepts].
Seed.CO|<—{0:1}TcoI

Let pcyi,pca, ..., pcq < Vpc(seed.shared) be the parity-check bits of the PCPP verifier, and let

pc®” (resp. pcc®) denote the contribution of seed.row (resp. seed.col) to pc,, then pe, = pc @ pc®.

As in the proof of Theorem 3.5, here it suffices to estimate for every S, 5" C [¢]

pReal(seed.shared, S, S') = E Haf{ea' : H e |,
seed.row<—{0,1}"row
LeS Les’

seed.col<+—{0,1}"col

where

Real . __
a, =

‘%irOW[L],iCOHL] itype[L] = input,
Real itype[t] = proof.

irow|[¢],icol[¢]

We want to invoke Lemma 4.5 to estimate this, so we want to construct a 2"-output Prod o Sum
circuit CPred, 2mow circuits {Cseed.row t and 27" strings {seed.row} Such that

Cszgch (Cseed .row (w) ; Olseed.row )

— Hafkeal . HPCL

LeS Les’

= H Z Coeffk(airow[L]) ’ Cirow[L] <widxk(o¢imw[L],icol[L})) ’ H i'irow[L],icoI[L] ’ H (PCZOW @pCfOI)
]

Legproof \ ke[A LeSinput €S’
(6)

where SP°f = [, € S : itype[t] = proof} and S"PUt = {, € S : itype[t] = input}. This motivates the
following definitions.
For i € [¢], let z; € {0,1}" %t be the string such that the first n bits of z; is w;, and the last
Winput bit is
i Z S [I/Vinput]a
L i ¢ [Winputl-

Here we identify [Winpyt with {0, 1}%imneut,

For any string v, define C,, : {0,1}1°1°I1 — {0, 1} as the circuit that on input i < |v], outputs
v;. Since € is complete, C, is an efficiently computable 4 circuit of size poly(|v|). Let PrOjinput :
{0, 1} Fimeu — {0, 1}%imeut be the circuit that outputs the last winpye bits of its input, and let
Projuroof © {0, 1} %mew — {0, 1}" be the circuit that outputs the first n bits of its input.

Now for fixed seed.row, define

o — éjirow[L] © Projinput itype[t] = input
' Cirow[a] o P"ijroof itypeM = proof

for © € S, and CF° be the circuit that outputs pc’® for + € S’ regardless of its input. Let
Cseed.row := (C¢,CY, .. .,CgS,CfC,C’gC, . ,C’g;) where dg := |S| and dg = |S’|, that is, Cseed.row
is a circuit with dg + dg/ outputs and each of its outputs is a circuit C® or C¥*.

Now we define the Prod o Sum circuit CProd.
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Circuit CProd

(Inputs) The input y has the form ¥ = Yseedrow = (Y1,¥2,...,¥y¢) and the input & has the form
& = Gseed.row = (G1, G2, . . ., Ggg ). The intended meanings are y; = Cseed.row(2i), and &; = Qirow[i]-

For convenience, we will use the following labels to refer to bits of y, assuming the intended
meaning above:

— For ] € Sproof7 1€ M]) let (yZ)J = Cja(zl> = C1irow[j] (wl)7
— For j € S™ i € [Winput], let (43); 1= C%(2;) = C,iy (1) = Tivows), i
— For j € 8, let (yi)jtas := Cf(2:) = pcP™.
(Linear sum gates) There are sym := Wproof - ds + 2dss linear sum gates and we identify [(sym] with
the disjoint union of [Wyeof] X S and S’ x {0, 1}.
Let ¢ € [Wproof] and j € S. If itype[j] = proof, then the (i, j)-th linear sum gate is

Sum(z 7) yv Z COEﬂ:k aj yldxk((x],z))
ke[A]

It is easy to verify that
Sum(i,j)(y’ a) = (decairow[j](CiFOW[j] (w)))l

On the other hand, if itype[j] = input, then the (4, j)-th linear sum gate is Sum; ;(y, @) := (vi);-
(If 4 > Winput then we simply set Sum, ;)(y, @) = 0 and this gate would not be used.)

Finally, for each j € S’, we have two intermediate gates
Sumgjo) (¥, @) = (Y1)j+ds:  Sumny (¥, @) = 1= (Y1) 4ds-

Implementation of the linear sum layer: The linear sum has fan-in A’ := A-dg+2 and we identify
[A'] with the disjoint union of [A] x S and {4+, —}. Also, the length of y is ¢, := ¢ - (dg + dg'),
and we identify [¢,] with [¢] x (S W .S’). Let idx" and coeff’ be the idx and coeff functions of the
linear sum layer of CP™9, then

(Function idx (v,4)) Suppose i = (i’,7) € [Wroof] x S. If itype[j] = proof and k = (k’,j’) where
j = j', then we return idxj (v, i) = (idx (aj,4'), 7); if itype[j] = input and i’ € [Winpu and
k = +, then idx) (a, i) = (i, 7). Otherwise idx} (c,i) = ZERO.
On the other hand, suppose i = (j,b) € S’ x {0,1}. If (b =0and k = +) or (b =1 and
k = —) then idx}(,i) = (1,5). If b = 1 and k = + then idx},(c,i) = ONE. Otherwise
idx), (v, i) = ZERO.

(Function coeff) (o)) If k = + then coeff (o) = 1; if k = — then coeff} (o) = —1; otherwise, if
k= (k',j") then coeff} (o) = coeffy ().

The locality of (idx’, coeff’) is still I. The coefficient sum becomes ds - U + 2.

(Output product gates) There are 2" product gates. For each seed.col, the seed.col-th output gate

is
Chatea(y, @) = [ ] Sumiecais) (v, @) - TT Sumj peser (9, @)
jeSs jes’

To summarise, the parameters of the circuit CP4 are as follows.

e The number of gates in each layer: fs,m = Wyroof - dg + 2dsr, lprog = 27

e The length of input y: ¢, = ¢(ds + dg);

e The fan-in of the top Prod gates: dg + dg' < 2q.

e The fan-in A" := A - dg + 2, coefficient sum dg - U + 2, and locality [ of the linear sum layer.
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Given the above construction, it is easy to see that Eq. (6) holds for every seed.row and seed.col.
We can thus see that

Real ! Prod
Pace (Seed.Shared, S, S) = E Cseed,co|(cseed.row(w)> aseed.row) .
seed.row<—{0,1}"row

seed.col<—{0,1}"col

Since dg < q,dgr < gand e < ds+dg < 2q, by Lemma 4.5, we can estimate pR<!(seed.shared, S, S’)
with additive error 1 - (qU 4 2)?¢ in deterministic time

(A ds -+ 2 (241 + 27 N) - (220 4 27 /N) - O(T%)
Analysis. First, the verification step takes

O((3A)4qTalg) . (24ql+7"shared 4 T]Ogo(m) T/22rco|>

< O((3A)%) - (T1ogP™ T) / (reo )+ 108(1/2)
< T(]og T)O(m)—cu log(1/€)/2

time, which is at most T'/(4log®=4 T) if ¢, is a large enough constant.
Then, the algorithm of Lemma 4.5 on CP™9 runs for every seed.shared, S, S, and in total takes
time

(A-dg + 2)2'1 . ((2q)2q + 27l /N - (22ql + 2w /N) O(Talg) . 924 . 9Tshared
< O(long 5/5461) . O(QTC"' /N) . O(2Trow/N) . O(Nz/ logcu log(1/e) N) . QTshared
< 2" /logt¥ew) ¢ < T/ (41ogs T),

when ¢, is sufficiently large. Therefore, the whole algorithm runs in 7'/ log®=d T" time.
Besides, by the same argument as in the proof of Theorem 3.5, which we omit here, the algorithm
estimates pacc within additive error at most

n(4qU + 8)% + 167 - 10077 < 1/6,

thus successfully distinguishes between the case that paec > 5/6 and that paec < 1/2.

Description of MPPP  We summarise the algorithm MPPP. On input , we consider the smooth
and rectangular PCPP for the language L™ = {Enc(z) : € L"9}. (Recall that MP PP aims

to reject every z ¢ L and accepts every x € L with easy witness.) We guess (C1,...,Cp,,) and

Bool Real

(a1,...,« Hovoor ), Which implicitly defines the PCPP proof matrices 7 and m

7.I_Real

. Then we verify
using Lemma 3.8 and reject immediately if 7R¢! did not pass the test. If 7R¢! passes the test
(which means that it is “close” to a Boolean proof 7rB°°'), we use the algorithm described above to
estimate paec. We accept z if and only if our estimation is above 2/3.

The correctness of MPPP is easy to see (and is exactly the same as Claim 3.11):

Claim 4.7. For every input x, if x ¢ L then MPPP

witness then MPCPP qccepts x.

rejects x; while if x € L and x has an easy

The machine MPPP guesses H, proof (05108 s +a) < nharg/10 bits of nondeterminism (the number
of size-s € circuits is at most 2°91°8%) and uses £49 < npaq/10 bits of advice. Thus it computes a
language in NTIMEGUESSgrm[T'/ log™=(T'), nhard/10] /(e /10)-
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The FPNP algorithm for average-case hard partial truth table. Let wi,ws,...,wy € {0,1}"
be the input. We first construct the hard language LM and the algorithm MPPP. Since MPCPP
is a nondeterministic RAM algorithm that runs in 7'/ log®(7") time, uses at most nparq/10 nonde-
terministic bits and at most npaq/10 advice bits, it follows that there is an input xpag € {0, 1}hard
such that MPPP(zy.4) # L' (2pard). Moreover, let o be the advice string fed to MPCPP ie. the
circuit C. We can find such an input 2paq by running R(17%ed, MPPP o) where R is the refuter
guaranteed by Theorem 2.2. Thus, we can find zh,g in deterministic poly(7') time with an NP
oracle.

It follows from Claim 4.7 that Zhaq € LM but zhaq does not have an easy witness. Thus, we
can use the NP oracle to find the lexicographically first PCPP proof matrix 7 such that

Pr  [VPCPPE(*)°7 (seed) accepts] = 1.
seed<{0,1}"

Then, there must exist a row 7; such that Amp(m;) is (1/2—¢)-far from C(w) = C'(wy)o- - -oC(wy) for
any size-s € circuit C'. To see this, suppose that for every i, there exists a size-s € circuit C; such that
Amp(m;) is (1/2 — e)-close to C;(w). By Theorem 2.5, there is an advice a; such that decy, (C;(w))
satisfies (1) for every j € [Wpyroof), (decq, (Ci(w))); € [0,1]; (2) ||decq, (Ci(w)) — m;]|1 < 6. It follows
that 7 is an easy witness for xpad, a contradiction.

Finally, we use the NP oracle to find the first row 7;, such that Amp(m;) is (1/2 — e)-far from
C(w) for any size-s € circuit C, and output Amp(m;). The overall procedure takes deterministic
poly(T) < poly(¢) time with an NP oracle. O

5 Unconditional Algorithms for Range Avoidance, Remote Point,
and Hard Partial Truth Tables

In this section, we apply the frameworks in Section 3 and Section 4 to obtain unconditional
results for XOR-REMOTE-POINT, ACC’-REMOTE-POINT, and ACC’-PARTIAL-AVGHARD.

5.1 Algorithms for Satisfying Pairs

In this section, we present some algorithms for €-SATISFYING-PAIRS for various circuit classes
% that run in non-trivial time.

The algorithms in this section require the following algorithm for the batch evaluation of low-
degree polynomials via fast rectangular matrix multiplication. This algorithm has been extensively
used in previous works on the polynomial method and circuit complexity (see, e.g., [Will4a, Will8a]).
We provide a proof sketch for completeness.

Theorem 5.1. Let x1,x3,...,zn € {0,1}" be N input strings, and p1,p2,...,pn : {0,1}" — N be
N integer polynomialspf degree at most d. Suppose that n?°% < N. Then there is a deterministic
algorithm running in O(N?) time that outputs the table of pj(x;) for every i, j € [N].

Theorem 5.2 (|[Cop82]; see also [Will8a, Appendix C|). There is a (deterministic) algorithm for
multiplying an N x N%' matriz and an N%' x N matriz using O(N?) arithmetic operations.

Proof of Theorem 5.1. There are m := Z?:o () < (en/d)? < N°! monomials of degree at most d.
We number these monomials from 1 to m. Let S; denote the set of indices in the j-th monomial.

That is, the j-th monomial is ersj T
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We construct two matrices My € ZV*™ and My € Z™*N. For each i € [N] and j € [m], M[i, j]
is the evaluation of the j-th monomial on input z;. (That is, Mi[i,j] = ersj (z;)k.) For each
j € [m] and k € [N], Ma[j, k] is the coefficient of the j-th monomial in py.

Let M := Mj - My. It follows that for every i,j € [N], M[i,j] = p;(z;). Since m < N°! we can
compute M in O(N?) time using Theorem 5.2. O

5.1.1 An Algorithm for #XOR-SATISFYING-PAIRS

We start by demonstrating a non-trivial algorithm for #XOR-SATISFYING-PAIRS, i.e., the exact
counting version of SATISFYING-PAIRS problem where each circuit consists of a single XOR gate
(with unbounded fan-in). We observe that #XOR-SATISFYING-PAIRS is essentially Fa-#0V (i.e.,
the counting version of Orthogonal Vectors problem over Fs), which has been studied in the literature
before (see, e.g., [CW21,AC19)]).

In more details, an unbounded fan-in XOR gate over n input bits can be represented by a vector
y € {0,1}" and a bit b € {0,1} such that on input = € {0,1}", the gate outputs 1 if (z,y) = b and
outputs 0 otherwise. Suppose that we have N inputs z1,z2,...,zxy € {0,1}" and N XOR gates
(y1,01),-- -, (yn,bn). Let o} € {0,1}"F1 be the vector that is the concatenation of x; and the bit 1,
and let yg» € {0,1}"*! be the vector that is the concatenation of y; and b;. Then the gate (y;,b;)
accepts the input z; if and only if (], y;> = 0. Hence we can reduce #XOR-SATISFYING-PAIRS to
the counting version of Fo-OV, which has a non-trivial algorithm [AC19,CW21].

Theorem 5.3 ([AC19, Theorem 2.9]). Let n < N°D. There is a deterministic algorithm running in
N2-9(1/log(n/10g N)) time that gwen 2N length-n vectors x1,x2,...,TN,Y1,Y2,...,YNn € Fy, outputs
the number of pairs (i,7) such that (z;,y;) = 0.

5.1.2 An Algorithm for #ACC’-SATISFYING-PAIRS

We present a non-trivial algorithm for #ACC-SATISFYING-PAIRS, generalising the algorithm for
XOR-circuits (since XOR C AC°[2] € ACC?). This algorithm utilises a quasi-polynomial simulation
of SYM o ACCY circuits with SYM o AND circuits.

Theorem 5.4 (From SYMoACC? to SYMoAND [BT94,AG91,Will8c]|). Let m,{ be any constants,
there exists an integer ¢’ such that every SYM o AC?[m] circuit of size s can be simulated by a

SYM o AND circuit of 2(1°8 9 size, Moreover, the AND gates of the final circuit have only (log s)¢
fan-in, the final circuit can be constructed from the original one in 20(1°89)°) time, and the final

symmetric function at the output can be computed in 20(1°85)%) time.

Combining Theorem 5.4 with Theorem 5.1, we can derive the #ACCY-SATISFYING-PAIRS algo-
rithm in non-trivial time as follows.

Theorem 1.16. For every constants m, ¥, c, there is a constant € € (0,1) such that the following
holds. Let n := 29°5° N qnd s := 21°6°" There is a deterministic algorithm running in O((N/n)?)
time that given N strings x1, 22, ...,xx € {0,1}" and N ACY[m] circuits C1,Csy,...,Cn : {0,1}" —
{0,1} of size s, outputs the number of pairs (i,j) € [N] x [N] such that C;(z;) = 1.

Proof. Let € be a constant to be determined. We divide C1, Cy, . ..,Cy into N/n groups where each
group has size n. Let C;; denote the j-th circuit in the i-th group. We also partition the inputs
x1,%2,...,TN into N/n groups of size n and define z;; similarly. Let X; 1=z oxj00 -+ 0 Zjp.
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For each group i, we can construct g := [2logn] SYM o Acg[m] circuits D;1, Dj2, ..., Dig -
{0, 1}"2 — {0, 1}, each of size s’ := O(n? - s), such that for any group j, we have:

n n g
DO Cinlwjg) =Y 2"Din(Xy).
k=0

i'=1j'=1

That is, D;i(X;) computes the k-th bit of the number of satisfying pairs between the i-th group of
circuits and the j-th group of inputs.

Let ¢’ be the constant in Theorem 5.4 depending on ¢ and m. We can transform each SYM o
ACY[m] circuit D;j into a SYM o AND circuit ng of size 209650 such that each AND gate has
fan-in at most d := (logs’)¢. We can write each Di;(x) as fij(pij(z)), where p;;(x) : {0, 1" -
{0,1,..., o(log s')cl} is a polynomial of degree at most d that only outputs integers upper bounded by
2(0g )" on Boolean inputs, and f;; is some function that can be evaluated in 20((1°g8/)6l) time. We
can construct the polynomials p;; and (the truth tables of) the functions fi; in (N/n)g20((lg )
time. Let € := 1/(10cc’) (and recall n = 28" N and s = 21°8°"), this time bound is at most (N/n)2.

Then, for each k = 1,2,...,g, since (n?)?%¢ < N/n, we can compute the table of p;x(X;) for

every i,j € [N/n] in O((N/n)?) time by invoking Theorem 5.1. In fact, by checking the truth-tables
of fi;, we actually get the table for D}, (X;) = D;x(X;). Finally it follows that:

N N N/nN/n n n N/nN/n g
YD Ci) =D 33" Curlag) =D 3> 2" Di(X;).
i=1 j=1 i=1 j=14'=1j'=1 i=1 j=1 k=0
The total run-time is bounded by 2(N/n)% + gO((N/n)?) = O((N/n)?). O

5.2 An FP"* Algorithm for XOR-REMOTE-POINT

As a warm-up, we show an FPN? algorithm for XOR-REMOTE-POINT. This result is subsumed
by the algorithm for ACC-REMOTE-POINT (Theorem 1.17) as well as previous results on rigid
matrices [AC19, BHPT20, CLW20, CL21,HV21]|, but we still mention it for several reasons:

1. This is an important special case for REMOTE-POINT.

2. This result only requires the algorithm for #F5-OV, and is a nice illustration that many special
cases of SATISFYING-PAIRS problems are widely studied by algorithm designers.

Theorem 1.15 (XOR-REMOTE-POINT € FPNP). There is a constant ¢, > 1 such that the following
holds. Let € := e(n) > 2n= be the error parameter and £ := {(n) > 208 b the stretch
function, then there is an FPNP algorithm that takes as input a circuit C : {0,1}" — {0,1}¢, where

each output bit of C is computed by an XOR gate, and outputs a string y that is (1/2 — €)-far from
Range(C).

Proof. Let ¢, be the constant in Theorem 3.5. In order to make XOR a typical circuit class (closed

under negation and projection), we here allow XOR using bias, denoted by XOR. That is, an XOR
gate g can be represented by parameters w € {0,1}" and b € {0,1}, such that for any = € {0,1}",
we have g(z) := (w,z) ®b. To obtain an FPNP algorithm of XOR-REMOTE-POINT by Theorem 3.5,

we need to design an efficient algorithm for AND,, o XOR-SATISFYING-PAIRS.
Since an XOR gate can be regarded as an XOR gate with (or without) a NOT gate on its output
wire, it follows that AND,, o XOR C NC? o XOR. Furthermore, by Theorem 2.17, It suffices to solve
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#XOR,, o XOR-SATISFYING-PAIRS with roughly the same parameters. As XOR., o XOR C XOR,
we only need to consider #XOR-SATISFYING-PAIRS.

Let d := max{c,, 2.02} be a constant, we apply Theorem 5.3 with N := N(n) = 21°gd”, Neat :=
9log? 47 N > glog! ™ n > poly(n) as parameters. (That is, we pad nsst — n bits to the inputs of the
SATISFYING-PAIRS instance.) It gives an algorithm for #XOR-SATISFYING-PAIRS (and therefore
also for AND,,, o XOR) with running time 7' = N2~2(1/1og(nsat/10g8 N)  We can check the technical
requirement for 7"

T = N2—Q(1/log(nsat/logN)) < N22—Q(logN/lognsat) < N22—10g0‘5001N

26— log!-01 26—c2 1 loglog N 2 "
§N2 og n§N2cuognogog SN/PC,

where P := (log N )log(l/ ¢). Other technical requirements for Theorem 3.5 can be easily verified, so
we can invoke it and get an FPNP Remote Point algorithm for XOR gates with error &'(n) > n ¢
and stretch ¢/(n) = N°1°2(1/¢) " Finally, we can check £(n) > ¢ (n + 1) and (n) > 2¢’'(n + 1), then
get a desired FPNP algorithm for original parameters by Lemma 2.15. O

5.3 Remote Point for ACC°

Theorem 1.17 (ACCY-REMOTE-POINT € FPNP). There is a constant ¢, > 1 such that for every
constant d,m > 1, there is a constant csyr := csie(d, m) > 1, such that the following holds.

Let n < s(n) < 2" e o size parameter, e = g(n) > 2n~% be an error parameter and
0 := f(n) > 28" be q stretch function, then there is an FPNP algorithm that takes as input a
circuit C = {0,1}" — {0, 1}¢, where each output bit of C' is computed by an ACY[m] circuit of size s,
and outputs a string y that is (1/2 — €)-far from Range(C).

Proof. Let ¢, be the constant from Theorem 3.5, and cg, be a constant to be determined later. We
then set parameters for invoking Theorem 3.5.

We set ngat 1= max{ZIOgcu+2”, glog™ ™! #}. Then we can invoke Theorem 1.16 with input length
nsat and size parameter also ngyp to get a #ACS +1[m]-SATISFYING-PAIRS algorithm for N circuits
and N inputs, where N := N(n) = 218"/ nsat o1 some constant ey € (0,1). This algorithm runs
in time 7' = O((N/ngat)?).

Set cetr := (cy +2)/esat + 3. Let ' := £'(n) > n~% be the error parameter and ¢’ := ¢'(n) =
Newlog(1/€) he the stretch, then we can check these parameters satisfy the requirements of Theo-
rem 3.5 as follows.

Qlogcu n < N < 2n0.99

/' (n) = N log (1/¢') > ¢ s

T < N2/2logc"+2n < NQ/TLC% log€u n < N2/(log N)ci log® n < N2/Pcu
(That is, we use the aforementioned algorithm to solve SATISFYING-PAIRS with N circuits of size s
and N inputs of length n by padding ns,;:—n dummy bits to each input, and then apply Theorem 3.5).
By Theorem 3.5, we get an FPNP algorithm for ACC’-REMOTE-POINT with error ¢/(n) > n~, and
stretch #/(n) = Ne:1°86(1/2)  We can check that both £(n) > £'(n + 1) and e(n) > 2¢/(n + 1) hold,

so we can invoke Lemma 2.15 and get a desired FPNP algorithm for remote point with the original
parameters. O

We can easily recover the state-of-the-art almost-everywhere average-case circuit lower bounds
against ACC? [CLW20| by giving the truth table generator as the input.
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Corollary 5.5. For every constants d,m > 1, there is an € > 0 and a language L € ENP such that
Ly, cannot be (1/2 + 27"°)-approzimated by ACY[m] circuits of size 2, for all sufficiently large n.

Proof Sketch. Let TT, : {0,1}9001085) — {0 112" be the truth table generator of ACY[m] circuits,
where s = 2" for some constant £ to be determined later. Each output bit of TT, is computable
by an ACY [m] circuit of size s’ = poly(s) for some d’ = O(1).

For clarity we define ny = O(slogs) to be the input length of TTy, sit(ny) := ¢" and dy := d’
to be the size and depth of TTg, respectively. Let ¢, and cstr := csir(dir, m) be the constants in
Theorem 1.17. Then there is an FPNP algorithm Ap,.q that takes as input a circuit C : {0,1}™ —
{0,1}% and outputs a string y that is (1/2 — eg)-far from Range(C), where £y > 2198 5w and
eyt = 2ng . By choosing € to be a sufficiently small constant, we can make

Cstr _E
on > log™ s and 27 S gy

We then fix the input of the FPNP algorithm Ap,q above to be TTy to obtain an FPNP algorithm
A that takes 12" as input and produces a truth table of length 2" that cannot be (1/2 4 27)-
approximated by any size-s circuits. The required hard language is then defined as

L= {:c € {0,1}" :n e N,tt « A(12") € {0,1}2", tt, = 1}. 0

5.4 Hard Partial Truth Tables for ACC

Theorem 1.18 (ACCO—PARTIAL-AVGHARD € FPNP). There is a constant ¢, > 1 such that for
every constants d,m > 1, there is a constant csy := cste(d, m) > 1, such that the following holds.

Let n < s(n) < 22" be g size parameter, & 1= g(n) > 2n=% be an error parameter and { :=
l(n) > 208" s pe o stretch function, then there is an FPNP algorithm that given inputs x1,...,xp €
{0,1}7, it outputs a string y € {0,1} such that for any s(n)-size ACY[m] circuit C, y is (1/2—¢)-far
from C(z1) 00 C(xy).

Proof Sketch. The proof is similar to Theorem 1.17, so we only sketch the proof.

Let ¢, be the constant from Theorem 4.3, and then we set values'? of cer, Nsat, N, €sat, T, €' (1)
and ¢'(n) in the same way as proof Theorem 1.17.

Since parameter constraints of Theorem 4.3 are similar to those of Theorem 3.5, These parameter
settings can be used to invoke Theorem 4.3 and get an FPNP algorithm for O(s(n))-size ACitro0(1)lm]-
PARTIAL-AVGHARD with stretch ¢/(n) and error €'(n). We can check that both £(n) > ¢ (n+1)/2
and e(n) > 2¢'(n + 1) hold, so it is valid to invoke Lemma 2.16 and get a desired FPNP algorithm
for average-case hard partial truth tables with the original parameters.

Alternatively, we can reduce ACCY-PARTIAL-AVGHARD to ACCY-REMOTE-POINT (see Sec-
tion 1.3) and simply apply Theorem 1.17, since the evaluation of ACC? circuits can be implemented
in ACC. O

As a consequence, we show (following the observation in [AS10]) that there is no efficient mapping
reduction from ENP to any language decidable by small-size non-uniform ACC? circuits.

Corollary 1.20. Let d,m € N be constants, ACg[m] denote the class of languages computable by a
non-uniform family of polynomial-size /—\Cg[m] circuits. Then, there is a language LM ¢ ENP that
does not have polynomial-time mapping reductions to any language in ACS[m].

9Tn order to invoke Lemma 2.16, we actually use s'(n) = O(s(n)) as size function and d’ := d 4+ O(1) as depth.
These are rather minor changes, so we can still use the same parameter settings strategy.
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Proof. Our ENP language LM receives two inputs: a Turing machine R and a string y. Here, the
lengths of (R) (the encoding of R) and y are [n/2] and n’ := |n/2] respectively, thus LM receives

n-bit strings as inputs. The machine R is interpreted as a reduction that runs in T'(n) := n!°8"
time (which we diagonalise against).
We run R on all inputs of the form ((R),z’), where |2/| = n’. Let x1,22,...,Z, be an enu-

meration of length-n’ strings, and z; := R((R),z;) be a string of length at most T(n). Note that
the strings z; may not be of the same length, but the length of each z; is at most 7'(n). By an
averaging argument, there is an ¢ < T'(n) such that there are at least 2" /T(n) > 27" strings z
with length exactly £. Let N be the number of strings z; with length exactly ¢ and denote these
strings to be z;,, 2i,, ..., 2iy. We can check the technical constraints and invoke Theorem 1.18 to
get an FPNP algorithm for solving the ACY[m]-PARTIAL-HARD problem on inputs z;,, 2i,, - - -, Zin -
We obtain a sequence of bits y;,, ¥i,, - - -, Yiy € {0, 1} such that for every size-£1°¢¢ ACY[m] circuit C,
there is some j € [N] such that C(z;;) # y;;. This can be done in deterministic 20(") time with an
NP oracle. Finally, we define L' as follows: suppose z is the i-th string of length n’ (i.e., z = x;),
then 2 € LM if and only if |z = ¢ and y; = 1.

Clearly, L' runs in deterministic 20 time with an NP oracle. We still need to show that for
every language L € Acg[m}, there is no polynomial time reduction from L' to L. Suppose, for
the sake of contradiction, that there is a polynomial-time reduction R from L' to L. Let n be a
sufficiently large number such that n/2 > (R) and T'(n) = n'°8™ is larger than the running time of
R. Consider running R on inputs of the form ((R),z) where |z| = |[n/2]. Let x;, yi, z;, £, and N
be defined as above, and C' be an ACY[m] circuit that decides L on input length £. Since the size of
C is at most poly(¢) < £°¢, there is some j < N such that C(z;,) # y;,. In other words,

Ji € N,C(R((R),x;)) # LM ((R), z;).

It follows that R is not a correct reduction from Lhad to L. O

6 Construction of Smooth and Rectangular PCPP

Recall that a PCPP verifier is smooth if every bit of the proof is equally likely to be queried,
i.e., the distribution of a random query position over a random seed is uniformly random. We do
not impose any smoothness requirement on the input oracle.

In this section, we construct a smooth and rectangular PCP of proximity. There is essentially
nothing new in our construction: With a careful inspection of their techniques, we can combine
[RSW22] (a rectangular PCP of proximity) and [BHPT20] (a smooth and rectangular PCP) to
obtain our PCPPs. This is not a coincidence as [BHPT20,RSW22] are both variants of [BGHT06].
Nevertheless, we present an (almost) self-contained proof of the construction for the convenience of
the reader, as there are several components and many parameters in [BHPT20, RSW22|. As this
section is quite technical, we give a brief overview of the construction.

OVERVIEW OF SECTION 6

e Instead of constructing a smooth PCPP verifier directly, we will construct a rectangular PCPP
verifier with the rectangular neighbour listing (RNL) property, following [BHPT20]. In Section 6.1,
we will give the definition of RNL property and verify that the transformation from rectangular PCP
verifiers with RNL property to smooth and rectangular PCP verifiers in [BHPT20] also works for
PCPP verifiers.

e In Section 6.2, we show that the PCPP verifier in [BGHT06] is a robust and rectangular PCPP
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verifier with RNL property. This combines the observations in [BHPT20] (for constructing robust and
rectangular PCP verifiers with RNL property) and [RSW22] (for constructing robust and rectangular
PCPP verifiers).

e In Section 6.3, we prove a composition theorem that generalizes the counterparts in [BHPT20,
RSW22|: we can compose a robust and rectangular PCPP verifier for L (called the outer PCPP
verifier) and a PCPP verifier for a variant of the circuit-evaluation problem (called the inner PCPP
verifier) to obtain a rectangular PCPP verifier for L whose query complexity is at most the query
complexity of the inner PCPP verifier. Moreover, the composed PCPP verifier has RNL property
if the outer PCPP verifier has RNL property. Due to technical limitations, this rectangular PCPP
verifier will also take some ROP parity-check bits (see Definition 2.9).

e By composing the robust PCPP verifier in Section 6.2 with a PCPP with query complexity O(1), we
can construct a rectangular PCPP verifier with query complexity O(1) and RNL property. Moreover,
we can transform it into a smooth and rectangular PCPP verifier with query complexity O(1).
However, the soundness error of this PCPP verifier could be a constant that is very close to 1. In
Section 6.4, we show that the soundness error can be reduced to an arbitrarily small constant with
an O(1) blow-up to the query complexity, using an expander-walk-based technique developed in
[RSW22, Section 7.1.3].

e We wrap all these components up and set the parameters in Section 6.5.

6.1 Rectangular Neighbour Listing and Smoothness

Definition 6.1. Let V be a rectangular PCPP verifier for some language L with randomness
complexity r and query complexity q. A configuration is defined as a pair (seed, k) € {0,1}" X [q].
It is said to be a proof (resp. input) configuration if the verifier with randomness seed will query
the proof (resp. input) oracle on the k-th query.

Two configurations (seedi, k1) and (seeds, k2) are said to be neighbours if the verifier will access
the same bit of the same oracle with randomness seed; on the ki-th query, or with randomness seeds
on the ko-th query.

Definition 6.2 (Rectangular Neighbour Listing). Let L be a language and V' be a rectangular
PCPP verifier for L with row randomness complexity 7oy, column randomness complexity reol,
and shared randomness complexity r'shared. We say V' has tryL(n)-time rectangular neighbour listing

property if there are two tryL(n)-time algorithms Aoy and Ao such that the following conditions
hold:

1. The shared randomness seed.shared € {0,1}"shrd consists of seed.shared.row € {0, 1}"shered/
and seed.shared.col € {0, 1}7snrd/2 j.c., seed.shared = (seed.shared.row, seed.shared.col).

2. Let (seed,k) = (seed.row,seed.col,seed.shared, k) be a configuration, where seed.shared =
(seed.shared.row, seed.shared.col). The algorithms A, and A, can list all the neighbours
of (seed, k) in a “rectangular and synchronized” fashion:

e Given the row-part randomness (seed.row, seed.shared, k) as input, A will output an
ordered list NList,o (seed, k) := {(seed;.row, seed;.shared.row, k;.row) };c(,.,] and an index
selfrow (seed, k) € [lrow]

e Given the column part randomness (seed.col,seed.shared, k) as input, A, will output
an ordered list NListco((seed, k) := {(seed;.col, seed;.shared.col, k;.col) };c|. ) and an index
selfeoi(seed, k) € [leol]-
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’ Verifier ‘ yold ‘ Jnew

Soundness error s S+ p
Proximity parameter 0 0
Row randomness Trow Trow
Column randomness T'col Tcol
Shared randomness Tshared T'shared
Proof matrix height Hproof q - 2TrowF Tshared/2
Proof matrix width Woroof QTcol F7shared /2
Query complexity q poly(q/p)
Parity check complexity P P
Decision complexity d poly(d, q/u, trnr(n))

Table 3: The parameters of the “smoothened” PCPP V"W,

e It holds that low = leol and kj.row = k;.col for every i € [lrow]. Let £ := oy and
k; := kj.row for every i € [¢]. Then the “zipped” list of NListyoy and NListe,

NList(seed, k) := {(seedi.row,seedi.col,seedi.shared.row, seedi.shared.col,ki)}‘ ’
e

is a list of all the neighbours of (seed, k). Moreover, self o (seed, k) = self.(seed, k) and

the self,ow (seed, k)-th entry of NList(seed, k) is the configuration (seed, k) itself.

e For every pair of neighbours (seed;, k1) and (seeds, k2), NList(seed;, k1) = NList(seeds, k2)
(i.e., these two ordered lists are the same).

By slightly generalizing the technique of [BHPT20], we can smoothen a rectangular PCPP with
the rectangular neighbour listing property.

Theorem 6.3. Suppose that L has a rectangular PCPP verifier Vo4 with ROP and trny (n)-time
RNL property, where the parameters are specified in Table 3. Then for every p € (0,1), L has a
smooth and rectangular PCPP verifier V" with ROP and the parameters specified in Table 3.

Proof. Let T1° : {0,1}* — {0,1} be the proof oracle of V°9. Assume that V°!(seed,i) outputs
the index of the i-th query of V' given the randomness seed € {0,1}". The “smoothened” verifier
Ve expects the proof TI"" : {0,1}2" x [¢] — {0,1} to be

1" (seed, i) := I1°[V°!(seed, 7)].

Concretely, V" works as follows: It firstly checks that TI"®" is (close to being) defined as above,
i.e., there is a proof matrix I1°¢ such that A(II"®"(seed, 1), I1°[V°!d(seed, 7)]) is sufficiently small;
then it runs V' using II"®" as the proof oracle, i.e., the verifier randomly chooses a seed € {0,1}",
queries I1"*"(seed, 1), [I"*"(seed, 2), ..., [I"*"(seed, ¢), and decides whether to accept using the de-
cision predicate of Vo9, In fact, as in [BHPT20, Section 4.1], the first step can be combined into
the second step: we only need to check the consistency of II"®" on the fly during the simulation of
Vold.

The verifier V™. For a € (0, 1), we say a graph G = (V, E) is an a-sampler if for every S C V,
S| T)nS cal <
r || — ——— | >al <a
vV |[|V] I'(v) ’
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where I'(v) is the set of neighbours of v in G. By [Golll], there is a poly(n)-time algorithm that
constructs a (4/a*)-regular graph on n vertices that is an a-sampler, given n and a € (0,1). The
new PCPP verifier works as follows:

e Let seed € {0,1}" be the random bits and i € [g] be the index of a query. If V°9(seed, i)
makes a query to the input oracle, it firstly makes the same query to the input oracle, and then
probes 11" (seed, i) for A times. The last A queries to II"®"(seed, ?) are for the smoothness
property.

e Now we assume that 1°'4(seed, i) makes a query to the proof oracle. Let NList := NList(seed, k)
be the ordered list of neighbours of (seed, k) from the rectangular neighbour listing property,
m := |NList|, and self € [m] be the index of (seed, i) in the list. Let a := y/(10q), and GNUist
be an explicit (A — 1)-regular a-sampler with m nodes from [Goll1]. Let jo, j3,...,ja € [m]
be the neighbours of self in Gg‘LiSt, and j; := self. The verifier probes

"™ (NList[1]), II"*"(NList[j2]), . . . , II"®(NList[ja]),

and rejects if the answers are not the same. Otherwise, the verifier treats the consistent answer
as the answer to the i-th query of V°4 and simulates V9.

Rectangularity. Recall that the proof oracle is II"® : {0,1}?" x [¢] — {0,1}, where r = 7o +
Teol + Tshared 1S the randomness complexity. By the rectangular neighbour listing property of Vo4,
we know that the shared randomness can be partitioned into (seed.shared.row, seed.shared.col) €
{0, 1}7shered/2 5 £, 1}7shored/2 We define WNeW := 27coltTshared/2 [IeW .— ¢ . 9TowtTshared /2 and the
H™W x W™ proof matrix

M"%u,v] = TI"*"(seed,1);
where u := (seed.row,seed.shared.row, ) € {0, 1} row+7sharea/2Hl08 7
v := (seed.col,seed.shared.col) € {0, 1}7colF7sharea/2,
seed := (seed.row,seed.col,seed.shared := (seed.shared.row, seed.shared.col)).

Now it suffices to construct the type predicate Vigod' and the row and column verifiers Vgg" and
new

. Recall that the new verifier V" simulates Vold as follows: If VO makes a query to the
proof oracle, it makes A queries to the proof oracle using the RNL property; otherwise, it makes
the same query to the input oracle and A queries to the same bit of the proof oracle.

e The type predicate Vigpe (given the shared randomness) calls the type predicate Vt‘;,'fe of the old
PCPP verifier, obtains the list of types of the queries, replaces each “proof” by A continuous
“proof” and replaces each “input” by an “input” and A continuous “proof”.

e For a query of V°! to the proof oracle, the row verifier V2 (resp. the column verifier V1$%)

calls the row verifier V,39 (resp. the column verifier VC%'Id) of the old PCPP. By the rectangular
neighbour listing property, it can list the “row-part” (resp. the “column-part”) of the neighbour
list NList and know the index self in the list. It then constructs the sampler G, finds the A
selected neighbours of self (including itself), and outputs the “row-parts” (resp. the “column-
parts”) of them.

e For a query of V°! to the input oracle, the row verifier V2" (resp. the column verifier V1$%)

calls the row verifier V.29 (resp. the column verifier ch)'f') of the old PCPP to obtain the query
to the input oracle rectangularly. It is easy to see that the remaining A queries to the proof

oracle can be done rectangularly.
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Smoothness. We need to show that for uniformly random seed € {0,1}" and i € [¢- A], each bit
of the proof oracle II"®" is equally likely to be probed given rz}ndpmness seed on the i-th query. Let
ip:=|(i—1)/A] +1and ig := (i — 1) mod A+ 1. Let G = (V, E) be the “union” of all GNUst that

o V:={0,1}* x[q].

e Let (seed,iy), (seed’,i}) be two configurations given which Vold will probe the proof oracle.
Then ((seed,4;), (seed’,#})) € E if and only if the configurations (seed,i;) and (seed’,}) are
neighbours, and there is an edge between them in GNYst, where NList is the neighbourhood
containing these two configurations.

e For each (seed, i1) such that Vold(seed, i1) probes the input oracle, we add A self-loops on the
node (seed,i;) € V.

Assume that seed € {0,1}" and i € [¢- A] are uniformly chosen. The query pattern of V" to
the proof oracle is as follows: It firstly selects a node (seed,i1) € V uniformly, and then chooses a
uniform neighbour of it. It is easy to see that each bit of the proof oracle is probed with probability

A 1
or.qg-A 2r.q

Soundness. The soundness of V¢ follows from [BHPT20, Appendix A.1] (which is for PCP
instead of PCPP); for completeness, we present a self-contained proof here. Assume that x is J-far
from being in L and TI" : {0,1}2" x [g] is a proof, we need to show that the verifier accepts with
probability at most s 4 p. Let T19¢ : {0,1}* — {0,1} be defined as follows:

9] = Majority {H”ew(seed, i) : Vo(seed, i) = j } ’
(seed,i)€{0,1}7 x[q]

By the soundness of V°4, we know that V° will accept (x, H°'d) with probability at most s.

Let idx’(seed) € [¢] be the i-th query of V°!¢ given randomness seed. An index j € [¢] is said to
be B-consistent if for at least /3 fraction of (seed, i) such that idx’(seed) = j, TI"®¥(seed, i) = I1°!9[5].
We define the following events over the random variable seed:

e H is the event that for every i € [q], idx(seed) is (1 — 2a)-consistent (recall that a := p/(10q)

is the parameter of the sampler).

e M is the event that for every i € [q], TI"®¥(seed, i) = I1°9(idx’(seed)).

o A is the event that V" accepts (z,I1I"®") on the randomness seed.

e C; is the event that the A queries made by V" corresponding to the i-th query of V°d
returns the same answer (i.e. the “consistency check” passes on the simulation of the i-th
query of Vold),

Claim 6.4. Pr[A A H] < qa.
Claim 6.5. Pr[M A H] < 2qa.
Claim 6.6. Pr[A A H] < 2ga + s.

From the claims above we can see that

Pr = Pr [AAH|+ Pr [AAH]
seed<—{0,1}" seed<—{0,1}" seed<—{0,1}"
<s 4 qa+ 2qa
<s-+pu.
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Proof of Claim 6.4. Let (seed,i) be a configuration, NList := NList(seed,i) be the list of all its
neighbours, Gg"i“ = (V,E) be the explicit sampler graph corresponding to the neighbourhood
NList (i.e. V contains the configurations in NList), and self be the node corresponding to (seed, 7).
We say that a configuration (seed, ) is an error configuration if

18] [D(self) N S| S a
V] [T (self)| ’

where S := {(seed’,i’) € V | TI"®¥(seed’,i’) # II"®"(seed,i)}. Since GN'*t is an a-sampler, there
are at most a fraction of error configurations in each neighbourhood. Suppose H happens, then
there is some 7 such that idx’(seed) is not (1 — 2a)-consistent, which means that |S|/|V| > 2a.
Suppose in addition that C; happens (i.e., the “consistency check” on the i-th query passes), then
['(self) NS = &, which means that (seed, ) is an error configuration.

Let E be the set of error configurations. We can then calculate that

Pr [AANH]< Pr  [CiA---ANCyAH)|
seed<—{0,1}" seed<—{0,1}"
< P Jie di)e ENH
_seed<—{rO,1}T[ ! [Q] (See Z) ]
q- Pr [(seed,i) € EAH|
seed+{0,1}"
i[q]

IN

<q - a. o

Proof of Claim 6.5. For every j € [q], we denote Hj to be the event that idx’ (seed) is (1 — 2a)-
consistent (and thus H = /\ ;. H;). Let H* be the event that idx’(seed) is (1 — 2)-consistent over
the random variable (seed,7) € {0,1}" x [g]. We can see that:

P MAH] <q- P 1"V (seed, 1) # I1°9(idx’ (seed)) A H;
Seed“{ro’l}r[ ] =4 seed%{O,{}T,iG[Q} (see 71) ?é (I X (see )) Jé[\q} J

< [Hnew(seed,i) # 11°(idx'(seed)) A HZ}

<gq- Pr
seed<{0,1}",i€[q]

. new . old/: y i *
S [n (seed, i) # I19(idx (seed)) A H } (7)

Let N be the set of all neighbourhoods that contain a configuration (seed,4) € H* (i.e. idx’(seed) is
(1 — 2a)-consistent). By the definition of H* and the neighbours of configurations, we can see that
for each h € N, all the configurations in A are also in H*. Thus the uniform distribution over H*
is identical to the following distribution: we first sample a neighbourhood h € N (with probability
proportional to the size of h), then uniformly sample a configuration (seed, i) € h. Thus we have:

< - new . old/: 4.1 *
M<a  Pro (117" (seed, 1) 7 T1°!(idx! (seed)) ‘ H|
. new . old/: y i
=gq hiEN Lseeir)%h [H (seed, i) # 1% (idx (seed))H
<q- E [2a) 8
< 2qa,

where N is some distribution over N, and Eq. (8) holds by the definition of (1 —2«)-consistency. ¢
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Proof of Claim 6.6. We can see that:

Pr [ANH]< Pr [MAH]+ Pr [ANHAM]
seed«—{0,1}" seed<—{0,1}" seed<—{0,1}"

<2qa+  Pr [VOId accepts (z, 1) A H A M}
seed«+{0,1}"

<2qa+ Pr [Vdd accepts (z, H°|d)}
seede{0,1}"

<2qa+ s.

Note that the first inequality follows from the definition of V"W and II°!. o

Other Properties. The query complexity, parity-check complexity, and decision complexity can
be easily checked by the definition. O

6.2 A Rectangular PCPP with RNL Property

In this section, we construct a rectangular PCPP with rectangular neighbour listing property,
by combining [BHPT20| and [RSW22, Section 7.1].

Lemma 6.7 (Lemma 7.3 of [RSW22]). Let A < 0.1, g,m be integers such that q > logﬁ, and
let F = GF(29). There is a deterministic polynomial-time algorithm that on input (1™, 19, 1[1/”),
outputs a A-biased set Sy C (F\ {0}) x F™~1 of size O((gm/\)?).

Theorem 6.8. For all constants § > 0, there is a constant p € (0,1) such that the following
holds. Let m =m(n), T(n), Wproof (1), Winput(n) be good functions such that 1 < m < (logT(n))’*,
n < T(n) < 2P0 gy ooe(n) < logT(n), and winpue(n) < logn. Then there are good functions
hproof(n) and hinput(n) Satisfying

hproof (n) = log T(n) + ®(m log log T(n)) - wproof(n)7 and
hinPUt(n) = ﬂog n-l - winput(n)-

such that the following holds.
Suppose that hproof, Weroof > (4/m)log T'(n), and that for some absolute constant C > 1,20

Winput(1)  Ninput (1) 1 CmloglogT(n)
Wproof (n) ’ hproof(n) o IOgT(n)

Let WprOOf(n) = 2wpr00f(n)? HPVOOf(n) = 2hpr°°f(n); VVinput(n) = Qwi"p”t(n), and Hinput(n) := Qhinpue(n)
Then NTIME[T (n)] has a rectangular neighbour listable, robust, and rectangular PCP of proximity
with an Hyroof (1) X Wroof (n) proof matriz and an Hinput(n) X Winput(n) input matriz, whose other
parameters are specified in Table /.

2ONote that in this theorem, we allow m to be a super-constant. Plugging in the inequalities winpe < k and
kE + hinpwe < hm in [RSW22, Section 7.1.2, Eq. (7)], it turns out that both ™ and Rt eeds to be at most

Wproof Pproof
CloglogT
log T .

1— Cmloglog T

TouT instead of simply 1 —
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Soundness error 1—0p

Proximity parameter o
Robustness parameter P

Row randomness hproof — (4/m) log T'(n)
Column randomness Wproof — (4/m)log T (n)

Shared randomness | (7/m)logT(n) 4+ O(loglog T'(n) + mlogm)

Query complexity L/m
Decision complexity T'(n) polylog(T'(n))

RNL time complexity poly(log T'(n), m™)

Table 4: Parameters of the PCPP constructed in Theorem 6.8.

Basic Definitions. Let «,t, h, f be defined as in [RSW22, Section 7.1.1], where: « is a universal
constant, t := logT(n), h := [(t+3)/m], f := h+alogyt. Let X := min{1/(ct), 1/m?*™} for some
universal constant c.?!’ We work with the field F := GF(2/).

By field theory, we know that I is an f-dimensional vector space over [Fa. Let e1,e2,...,e; be a
basis, then each element in F can be uniquely represented by 2{21 e;b; for (by,be,...,by) € {0, 1},
Let H :=span{ey,ea,...,en}. Let bingm : H™ — {0,1}" and binpm : F™ — {0,1}/™ be the two
bijections in [RSW22, Section 7.1.1], where

f f f
binFm : <Z eibi, Z eibf_H-, cey Z eib(m_l)f+i> — (bl, bQ, cey bmf).
i=1 =1 =1

The bijection bingm will be used to define the queries to the input oracle (see [RSW22, Section
7.1.2|), which is not needed for our purpose of verifying the rectangular neighbour listing property.

We identify the binary strings as numbers where the leftmost bit is the least significant bit. Let
I; : [n] — H™ be the map to project the input to H™ defined as I;(i) := bin;lin(Zt‘H + 1), and
I:={L(k): k < |Iinput|}-

The Proof. The PCPP proof is a Boolean string of length ¢ - |F|™ for some ¢ = polylog(T"). We
consider the PCPP proof as an oracle Ilyoer : F™ — {0, 1}5, where the i-th bit of the proof is
the j’-th bit of Mpeof[bings (j)] for j := [i/¢] and j’ := i mod £.?> Without loss of generality we
assume that £ is a power of 2. Note that to ensure rectangularity, the actual proof is treated as an
Hiroof X Woroof Boolean matrix, where Hproor = £ - [F|™ /Wproof and thus

hproof = loge + mlog |F‘ — Wproof
= O(loglogT'(n)) + mh 4+ m - aloglog T'(n) — Wproof
=log T (n) + ©(mloglog T'(n)) — Weroof-

The layout of the proof matrix which will be discussed later.

Query Pattern. The line over F™ with intercept £ € F™ and direction i € F™ is the set
{Z+ty:t €F}, denoted by & + Fy. We now describe the query pattern of the PCPP verifier.

2n [RSW22, Section 7.1.2] they set A = 1/(ct), since when m is a constant 1/(ct) < 1/m?*™ always holds in
sufficiently large n. We set A as this to satisfy the technical requirement in the soundness proof, which will be
discussed later.

22The ¢-bit output of Iproof is actually a word of a non-Boolean PCPP encoded by some linear-time computable
error-correcting code, see [BHPT20, Section 5.2]. We omit the details as it is not important to us.
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Let S\, C F™ be the explicit A-biased set in Lemma 6.7 and seed be the randomness of the
verifier, defined as seed := (Rz, R3, ..., R, Ry) € F™71 x [|S,[]. Note that [Sy| = O((fm/\)?). We
define ¥ := (0, R, R3, ..., Rm), ¥e := (1,0,...,0), § := Sx\[R,], Lo := £+ Fye, and Ly := & + Fy.
Denote

shift(x1, e, ..., xm) := (2,23, ..., T, T1),
and shift(£) := {shift(Z) : x € L} for a line L. The PCPP verifier will query the following locations
(see [BHPT20, Section C]):

e For every & € Ly Ushift(Ly) U Ly, it makes a query to Ilyeef(Z].

e For every ¥ € £1 N1, it makes a query to Minput[I; (F)].

It is easy to see that the type predicate Viype is pretty simple: the first 3¢- [F| queries are to the
proof (i.e., the first 3|F| queries to Ilpeof for Lo, shift(Ly), and L), and the remaining |F| queries are
to the input (i.e., the |F| queries to £ NI). To verify the rectangular neighbour listing property, we

only need to consider the 3|F| queries to the proof oracle. Denote these queries to be (a1, ..., dg)),
(GF|+15 - - - > Aopr)); and (@yp|41, - - -, d3pw)), for Lo, shift(L), and L1, respectively.

Rectangularity of the Proof. Let k := [(wproof —log¥) - (h/f)] and ¢ := [k/h]. We partition
the random bits seed = (Rg, R3, ..., R, Ry) € F"1 x [|S,]] as follows:
seed.col := (R3, Ry, ..., Rey—1),
seed.row := (Rey4+2, Rey43, - -+ s Rim—1),
(R2, Rey, Reyi1, B,y Ry).
Lemma 6.9 ([RSW22|, Lemma 7.5). Let seed = (R2, R3,...,Rpn, Ry) as defined above, Ri =

Ryp1 =0f, a; = (aigy---saim) € F™ be the queries. For every j € [m], (a1j,a2,...,az3| ;) can
be efficiently computed given Rj;, Rji1, and Ry.

Proof. Let F = {h1, hg,..., hyp} and j € [m]. We can see that

seed.shared :=

(a1j,a25, .. agr);) = (Rj+h1-y15, Ry +ha -y, Bj + hyg| - 91,5,
Rji1+ht-y25, Rjv1 + ha-y2 g, | - Y24,
Rj+h1-ysj, Rj+h2-ysj,..., Rj+ g - ysj)-

where 1 := (1,0,...,0) € F™, 95 := (0,...,0,1) € F™, and 43 = S\[R,]. O
By Lemma 6.9, we can see that: Given seed.shared and seed.col, we can recover ay j, ..., a3
for every j € [1,ca]; given seed.shared and seed.row, we can recover ai j,agj,. .. ,agpp|,; for every

J € [ca,m]. Note that

seed.col| = (c2 — 3) f > Wproof — 4t/m >0,
|seed.row| = (m — ca — 2) f > hproof — 4t/m > 0.
We assume without loss of generality that ¢/m is an integer. Similar to [RSW22, Section 7.1.2],
we move some bits to the shared randomness so that [seed.col| = wproof — 4t/m and |seed.row| =
hproof — 4t/m, then
|seed.shared| = (m — 1) f + |Ry| — (Wproof + Rproof) + 8t/m.
< (m—=1)f+O(log(fm/\)) — (log £ +mf) + 8t/m
< 8t/m + O(logt + mlogm) — f
< 7t/m + O(logt + mlogm).
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Let i € [3¢-|F|] be an index, j := [(i —1)/¢] + 1, and j' := (i — 1) mod ¢. The i-th query asks
for the j'-th bit of Ilof[d;], or equivalently, the (bingm(@;) - ¢ + j')-th bit of the proof. We will
construct Viow and Vo such that

Viow (seed.row, seed.shared, i) — irow([i],
Veol(seed.col, seed.shared, i) — icolli],
irow[] - Woroof + icol[i] = bingm (@;) - £ + 5.

That is, if we place the proof into a matrix such that the (p, ¢)-th entry represents the p- Wyroof + ¢
bit of the proof, the first 3¢ - |F| queries to the proof can be made rectangular.

o Voi(seed.col, seed.shared, i) computes a;1,a;2, ..., a; by Lemma 6.9; it outputs icol[i] as the
concatenation of j' and aj1,a;2,...,ajc,—1 and the lowest wproof — (c2 — 1) f — log £ bits of

ajm .

o Viow(seed.row, seed.shared, i) computes a; c,, @jco+1,---,ajm by Lemma 6.9; it outputs irow/[i]
as the concatenation of the highest co f +1log £ —wproof bits of ajc, and aj co41,ajcot1s -5 Qjm-

Wproof — (€2 — 1) f — log ¢ bits cof + log £ — Wproof bits

] @51 Q5.2 . Qjco . 5. — 1 aj.m

Wproof bits hpmof bits

Figure 5: The binary representation of bingm(@;) - £ 4+ j’, where the leftmost bits are the least
significant ones.

Recall that we identify binary strings and numbers with the leftmost bit as the least significant
bit. It is then easy to see that irow[i] - Wpyroof + icol[i] is the concatenation of irow[i] and icol[i], and
bingm (@;) - £ 4 j' is the concatenation of j' and bingm (d;). Both of them are the concatenation of
J'iaj1,a52,...,a5m, hence irow[i] - Woof + icol[i] = bingpm (@;) - £ + j'. Similarly, we arrange the
input matrix as in [RSW22| so that the queries to the input oracle are also rectangular.

neighbours of (seed,i). Let F = {hy,hs,...,h} Let seed = (Rg, R3,..., R,y), i € [3(- |F|],
j=1G—-1)/¢] +1, and j/ := (i — 1) mod £. Assume that this query probes the j’-th bit of

Moroof (@], Where @ = (aj1,a42,-..,a5m). We define the canonical neighbour (seedy, i) of (seed, 1)
as follows:

seed) := (R = a2, Ry = aj3,..., Ry, = ajm, Ry 1= 0) (9)

i1i=01—1)-L+4;+1 (10)

where j; € [1, |F|] such that hj, = a;1, and ji = j'. It is easy to see that the canonical neighbours
are the representative elements of the equivalence class induced by the neighbourhood relation.
Denote S as the set of canonical neighbours, then (seed, ) € S if and only if i € [1,|F|] and R, = 0.

To list all the neighbours of (seed, 7), it suffices to find its canonical neighbour (seeds, 1) and list
all the neighbours of (seedy,i1). Let seedy = (R3, R3, ..., Ry, RY), i € [3C-|F|], jo := [(ia—1)/€]+1,
Jb = (i2 — 1) mod £. Suppose that (seeds, i) is a neighbour of (seedi, 1), then they represent the
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queries to the same bit of the same entry of IIpoof. This means that ji = jj, and one of the following
conditions holds:

jo € [1,|F|] and (hj,, R3, R3,...,R2) = (hj, RS, ..., Rh_1, R} (11)

jo € [|[F|+ 1,2|F] and (R3,R3,...,R% hjy_w) = (hj,, Ry, ..., R},_1, Ry,); (12)
jo € [2|F| 4+ 1,3|F]] and (h-y;, R3+h-y2,...,R% +h-yn) = (hj,, R, ..., RL)

where h := hj, o), (1,92, - - Ym) = SA[Rz]. (13)

We will list the neighbours of (seedi,i1) in the following order: the |S\| configurations satisfying
(11) in the lexicographic order of R (note that this includes (seedy,i1)), the |Sy| configurations
satisfying (12) in the lexicographic order of Rz, and then the |Sy| configurations satisfying (13) in
the lexicographic order of RZ.%

Rectangular neighbour Listing of S. Now we need to verify that the aforementioned listing
of the neighbours satisfies the rectangular neighbour listing property (see Definition 6.2). To start
with, we consider the case when (seed,?) = (seedi,i1), i.e., (seed,i) € S. Recall that

seed;.col := (RL, R}, ... ,RiQ_l),

seed;.row := (RiQH, Ri2+3, . RL ),
seed;.shared := (R}, R. Riﬁl,R,ln,R;).

c2?

Let low(+) and high(-) denote the lower and higher halves of a Boolean string, respectively. We
partition seed.shared = (R3, R.,, Rl |, R}, R}) into two parts (seed.shared.row, seed.shared.col),

where seed.shared.col := (R}, R.,,low(R,)) and seed.shared.row := (R, +1, R}, high(R,)).
e The column algorithm A (seed;.col, seed;.shared, 1) outputs NListco(seed, 1) as follows:

1. It firstly outputs the column-part of the |Sy| neighbours (seeds, i2) satisfying (11), includ-
ing (seedy,iq) itself. We can see that iy = i1, seedy.col = seed;.col, and seedy.shared =
(R3, RY,, R., .1, R}, R2), where R2 enumerates over all |Sy| possibilities in lexicographic
order.

2. It then aims to output the column-part of the |Sy| neighbours (seeds, i2) satisfying (12).
We will enumerate all RZ in lexicographic order and output:

seeds.col = (R = Rj,...,R2,_, = R} _,),

seeds.shared.col = (R3 = h;,, R2 = R} |OW(R§)).

62717
Let jo := [(ia—1)/¢| +1 and j} := (i2 — 1) mod ¥, we can see that j5 = j; and h;, = RL
hence i can also be computed efficiently.

3. Finally, it aims to output the column-part of the neighbours (seeds, i) satisfying (13). We
enumerate R% in lexicographic order. Let (y1,y2,...,Ym) = Sx [RZQI] Denote h := yfl -hjp,
and let j2 be the unique number in [2[F| + 1, 3[F|] such that h = h, _or|, We output:

io = (jo— 1) - £+ 41 +1
seeds.col = (R§ =R —h-ys,...,R2,_{ =R, _| —h-ye_1)
seedy.shared.col = (R3 = Ri — h - s, Rzz = R; —h - Yey, |ow(R§)).

*3Recall that for every (y1,y2,...,ym) = Sa[R2], y1 # 0. Thus for every R2, there is exactly one j2 € [2|F|+ 1, 3|F|]
that satisfies (13), namely the jo such that hj, om = y; ' - hy,.
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e Similarly, the row algorithm A, (seed;.row,seed;.shared,i;) can output NListyow(seeds,i1).
We omit the details since it can be adapted from A, directly.

It is clear that the “zipped” list of NList,on and NListe, is the list of neighbours of (seedq, ).
Since (seedq, 1) appears at the head of the list, Aoy and Ao can simply output self oy = selfeo) = 1.

Rectangular neighbour Listing for S. For the general case when (seed, i) ¢ S, the algorithms
Arow and A need to find its canonical neighbour (seed;, 1) “rectangularly” Let (seed;,i;) be the
canonical neighbour of (seed, i), then Aoy (resp. Aco) can output the row-part (resp. the column-
part) of (seedq,i1) given (seed.row,seed.shared,i) (resp. (seed.col, seed.shared,i)). This can be done
by checking Equation (9), Equation (10), and Lemma 6.9.

Finally, we need to verify that both Ao, and Aco know the index of (seed, ) itself in this list.
Let j:= [(i —1)/¢] + 1 and j’ := (i — 1) mod ¢. The list of (seed,i1) contains three parts: the
neighbours specified by (11), (12), and (13). By checking j, which is known by both Ao, and Ay,
we can find the part that contains (seed, 7). The index of (seed, ) within the part is then determined
by the lexicographic order of R, in seed.shared.

Complexity of A, and Agy. Recall that log|F| = f = (logT(n) + 3)/m + O(loglogT'(n)),
IS\ = O((mf/A\)?) = poly(m™,logT(n)). It is then easy to check that the running time of both
Arow and Ay is poly(m©PU™, £ log T'(n)) = poly(m™,log T(n)).

Robust Soundness. Finally, we prove a weak version of robust soundness here. This PCPP only
guarantees an expected version of robust soundness: the expected fraction of bits that we need to
flip in order to make the verifier accept is at least p, where the expectation is over the choice of
seed. (See [BGH'06, Lemma 8.11].) We use a Markov bound to turn this into a standard robust
soundness property, but only with soundness parameter very close to 1. Since the robust soundness
amplification (Section 6.4) preserves smoothness but does not seem to preserve RNL, we do not
apply it here.

Let Oproof(seed) (resp. dinput(seed)) be the fraction of bits of Ilpreof (resp. Ilinput) read by the
verifier that we need to flip to make the verifier accept given the randomness seed. Let 5 (seed) be
the fraction of bits (of both Ilyeer and Ilinpyt) read by the verifier that we need to flip to make
the verifier accept given the randomness seed. By [BGH 06, Lemma 8.11| (also see [RSW22, Proof
of Theorem 7.1]),>* there is a constant py € (0,1) such that for every constant 6 € (0,1), if
Iinput is o-far from being in L, then for any proof oracle Iyoof, €ither Eseed[dproof(seed)] > po or
Eseed [Oinput (seed)] > §/3. Fix this constant po.

Recall that the verifier V" makes |F| queries to ITinpye and 3¢ - |F| queries to Ilyeer. We repeat
each query to the input oracle for 9(po/d)¢ times. Then if ITiypye is d-far from being in L, the fraction
of bits read by the verifier that we need to flip on expectation to make the verifier accept is

E [5(seed)] _ min{pg - 3¢ - [F|,(6/3) - 9(po/0)¢ - |F|} - 3¢po S £0
seed 30 - |]F| —|—9(,00/5)€' |F| - 3€+9(p0/5)f B 1+3p0/5'
Let p:= ﬁ%- By a Markov bound,

Pr [3(seed) < p} <1-p.

seed

24Recall that we assume m < (logT(n))%! and set A = min{1/(ct),1/m?**™}, so that m™ < T(n)l/m2 and
A < min{1/(ct),1/m°™}, which satisfies the technical requirement of [BGH" 06, Lemma 8.11].
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y Verifier v v ] Veomp

Soundness error 1—got | 1 —¢gn 1 — gout . gin
Proximity parameter gout on gout
Robustness parameter pout - -
out out
Row randomness roey - rrey
Column randomness rout - rout
q out n out n
Shared randomness T chared r T ohared t—}— r
: : out out roUtpin out
Proof matrix height H3o o - HYoor +2 /W groof
B : out out
Proof matrix width Wproof - Wproof
Query complexity q°ut q" q"
Parity check complexity - - q"
Decision complexity devt dm dm
out in out out roUt L gein
Proof length ¢ l Hooor - Woroot 12

Table 5: The parameters of the PCPPs in the composition theorem. Note that the input length of
the inner PCPP is d°"* = d°"*(n), e.g., '™ in the table actually refers to ' (d°“t(n)).

Thus, the PCPP verifier has robust soundness error 1 — p with robustness parameter p and proximity
parameter 0.

6.3 RNL-Preserving Composition Theorem

Now we verify that the composition theorem in [RSW22, Section 7.2] preserves the rectangular
neighbour listing property, using essentially the same approach of [BHPT20, Section 7.2]. This will
be used to reduce the number of queries of our rectangular PCPP with RNL property.

Theorem 6.10. Let n < T(n) < 2P°Y") . Suppose that NTIME[T (n)] has a robust and rectangular
PCPP verifier VOU and CIRCUIT-EVAL' has a (not necessarily rectangular) PCPP verifier V'™ with
parameters specified in Table 5. Moreover, assume that ¢" = O(1), p°Ut > §in, ¢in = 2 2 W;’r‘(’)tof

is a power of 2, and royf <log Wl <rdf +1qi oy Then NTIME[T'(n)] has a rectangular PCPP
verifier VP with parameters specified in Table 5.
Furthermore, if VU has t3x, (n)-time rectangular neighbour listing property, then V<™ has

trnL(n)-time rectangular neighbour listing property, where trnL(n) := poly (3, (n), €™, ¢, d™).

The composed PCPP verifier. Assume that we have a robust and rectangular PCPP verifier
Vout for L € NTIME[T(n)] and a PCPP verifier V" for CIRcUIT-EVAL®T. We now describe the
composed PCPP verifier V™ for L (also see [BGHT06, Section 2.4], [BHPT20, Section 7.2],
[RSW22, Section 7.2]). In a nutshell, we will reduce the verification of the outer PCPP V! to
CIRCUIT-EVAL™T, where the circuit represents the decision predicate of V°U and the input consists
of the input of L and the proof for the outer PCPP. As in [BHPT20, RSW22|, we need to carefully
arrange the proof matrix to maintain the rectangularity.

Assume that IT°Ut  TI%U _ and seed®“! are the proof matrix, the input matrix, and the random

input’ ~“proof>
seed of VO respectively. The input matrix of V<°™P is simply the input matrix of V°!'t denoted

25This is without loss of generality, because o< o ¢™, and in our case ¢" will be a constant. We could always
add O(log ¢") = O(1) dummy bits to the inner verifier’s randomness and pad the inner verifier’s proof oracle to length

2

69



by II". The proof of V<°™P is the concatenation of Io ¢ and Hproof(seed°”t) for every seed® €
{0,1}"*", where each Hproof(seed"“t) is a PCPP proof for “V" accepts seed®*.” The random seed is

seed := seed°Ut o seed™. The verifier VP works as follows:
1. Obtain the decision circuit Dec®* and the list of query indices I°Ut <— V°!(seed®"") of Vout,

2. Use the inner PCPP to verify the following CirculT-EvAaL® instance (C, H:ﬂput(seed“t)):
the (explicit) circuit C : {0 1, L} ) X {0,1}"" — {0,1, L} and the (implicit) input
ITin_  (seed®t) € {0,1 J_}qout x {0,1}7" are defined as follows:

Input

C(u,v) := Dec®*(u, Dec(v)),
Tt (seed®™®) 1= ((Ilinput © II35of) | owe, Enc(seed™)),
where (Enc,Dec) is a linear-time encodable and decodable error-correcting code such that
Enc:{0,1}"™ — {0,1}"" is linear over GF(2).%° Specifically:
(a) The decision circuit Dec®™™P of V<™ is defined as the decision circuit Dec™ of V",
(b) The queries are sampled using V"(seed’) for the CIRCUIT-EVAL* instance defined above

with the proof Hg‘roof(seedo”t), i.e., we sample the queries I'™ < V" (seed™) and “redirect”

them to the input oracle and the proof of the composed PCPP to obtain I<°mP 27

Rectangularity of V<°™P. We now verify the rectangularity of the composed PCPP verifier.
Recall that: the proof T - € {0, 1} of V°Ut is arranged as an HUt - x WUt - matrix, where the

proo proof proo
i-th row and the j-th column IS ([4, j] := II0W ([(i—1)- Wit e+j]; the inner proofs Hproof(seed"“t) €
{0,1}¢" for every seed®t € {0,1}"".
out

Let proof mln{ OrL:)tof/QTCOI gm} and proof - gm/ proof Note that both I/V”r]oof and proof
are powers of 2, and Wor‘gtof > 27l . We arrange the proof matrix as follows: The first H °‘:)Of rOWS
contain the ng”oto W;r‘étof proof matrix of the outer PCPP; the rest part of the matrix is divided
into blocks of size Wp’;oof x H p';oof, each of which contains a proof of the inner PCPP Hproof(seedO“t)

for some seed®* € {0, 1}€ , sorted in the lexicographic order of seed®t. Clearly, the proof matrix
height of the composed PCPP verifier is

H;?ruotof + 0" o /I/VOUt = Hout 1 27‘°”t+ri"/Wout

proof — *+proof proof *

Recall that the seed of the composed PCPP verifier is seed := (seed®t, seed’™). Assume that the
partition of random bits of V°Ut is seed®* = (seed®"*.row, seed®"*.col, seed®"*.shared). We partition
the random bits as follows:

seed.shared := (seed®"*.shared, seed™).
seed.row := seed®"t.row.

seed.col :=seed®“*.col.

26The reason to apply an error-correcting code on the randomness is that we want Dec®® to have robust sound-
ness. Let (IT', Enc(seed®")) be the input of Dec®™, if given seed®, II' is far from being accepted by Dec®™', then
(IT', Enc(seed®")) is also far from being accepted by Dec®*. This is not true if we do not encode seed***.

*"In fact, there are three kinds of queries: the queries to (Ilinput © IIgmor) | rout, Enc(seed®), and IIjy,.¢(seed®"). The
queries of the first and the third kinds will be redirected as queries, and the second kind will be treated as a parity-
check bit, since Enc is a linear function over GF(2). Details are contained in the verification of the rectangularity,

also see [RSW22, Algorithm 2].
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out
Wproof

A

Hout Hout

proof ) proof

Hipnroof (0) Hipnroof(l) Hipnroof (2) 1_[ipnroof (3)
H;i)r;oof { Hipnroof (4) 1_Iipnroof (5) 1_Iipnroof (6) 1_[ipr:'oof (7)

in
proof

Figure 6: The layout of the proof matrix of the composed PCPP.

Now we describe the type predicate Viype and rectangular verifiers Vigw © and ‘{:Cocl’mp of the
composed PCPP.

The type predicate and the row/column verifier firstly obtain seed™ in seed.shared and compute
the queries I'™ < V"(seed™) of the inner PCPP for CIRCUIT-EVALL. There can be three cases for
each query in I'™:

1. It probes the i-th cell of H:ﬂput(seedo“t) and ¢ < ¢°**(n), i.e., it queries (Hjnpyt © Hgfgof)\put.

e The type predicate can call the type predicate of V°!t to compute the type of the query,
since it has seed®*.shared and the index of the query in hand.

e The row/column verifier of the composed PCPP runs the row/column verifier of the
outer PCPP to obtain the row/column index of the query in (Hinput,HO“t ). By the

proof
definition of H;fg;’;, the row/column index is also the row/column index of the query in
comp
(Hi"P“t7 Hproof)'

2. It probes the i-th cell of H:ﬂput(seed“t) and i > ¢°"*(n), i.e., it queries Enc(seed®"). Instead

of making a query, we fix this input of Dec®®™P to be Enc(seed®)[i — ¢°“t(n)]. This bit will
be considered as a parity-check bit.

3. It probes the i-th cell of II"__(seed®). This is a query to the proof, so the type predicate

proof ] } )
always outputs proof. Recall that 'p”roof(seedou") is placed in some W, ¢ x HL ¢ size block

in the proof matrix. Let Nproof 1= W;?rlézf/W;i)?ooﬁ i.e., there are Nproor blocks of inner PCPP
proofs in a row of the proof matrix. It is then easy to see that the column (resp. row) index of
the query depends on seed™ and the lowest log Npoof bits (resp. the highest 7" — log Nproof
bits) of seed®. Note that since

108 Novoof > log(W°“t J(weut /2’“&?")) > |seed®t.coll,

proof proof

log Nproof < log Woers < |seed®“*.col| + [seed®"* .shared|,

proof =
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we can arrange
seed®"t := seed®t.col o seed®"t.shared o seed®"t.row

such that the lowest log Nproof bits (resp. the highest 7°"* — log Nproor bits) can be obtained
from seed®*.col (resp. seed®'*.row) and seed®.shared. Concretely, the row/column verifier
will firstly identify the row/column index of the block that contains L"roof(seedo“t) and then
obtain the row/column index of the query within the block by running the inner PCPP verifier

Vin(seed™).

Rectangular neighbour Listing of V°™P. Now we verify that the composed PCPP verifier
V€MP has the rectangular neighbour listing property with tgyi (n) := poly (t&n (n), €™, ¢™,d™). Let
(seed, k) be a configuration of V<°™P  where

seed = (seed.row := seed®“*.row, seed.col := seed®"*.col, seed.shared := (seed®"*.shared, seed™)).

comp

and k € [¢°°™P]. Assume that the verifier probes the proof matrix Hproof on the k-th query given
the randomness seed. By the discussion above, we know that the k-th query of the composed PCPP
verifier can be one of the following two cases: a query to IS c[s,, for Tour < Vout(seed®t), or a
query to IT7  c(seed®).

Assume that the rectangular neighbour listing algorithm for V°Ut partitions seed®*.shared into
(seed®“.shared.row, seed®*.shared.col). We now partition seed.shared as follows:

seed.shared.row := (seed®"t shared.row, low(seed™)),
seed.shared.col := (seed®“t.shared.col, high(seed™)).

The row and column algorithms Ay, and A for the rectangular neighbour listing of V<°™P work
as follows.

Case 1. Given the configuration (seed, k), the verifier V<°™P probes the i-th bit of IS |, = where

} proof
the index 7 depends on the seed". In other words, the composed PCPP verifier probes the
answer of the i-th query made by the outer PCPP verifier when it is “simulating” the outer
verifier using the inner PCPP verifier. A neighbour (seed’ = (seed’®"*, seed™), k') of (seed, k)

must be a query of the same type, i.e., it is a query to the #’-th bit of Hgfgofhgut where the

index i’ depends on seed™. Furthermore, the i-th query index in Ioy must be the same as the
i’-th query index in I/ ,. In such case, the row/column algorithms for rectangular neighbour

listing will generate the following list:

1. The row algorithm Afow™ (resp. the column algorithm Azglmp) firstly runs the outer PCPP

verifier and generates the row part (resp. the column part) of Iy, and runs the inner
PCPP verifier using seed™ to obtain the index i defined above.

2. Then it runs the row algorithm A% (resp. the column algorithm AY) for the outer

PCPP to generate the row part (resp. the column part) of the list of neighbours of
(seed®“t, i), denoted by Lyow (resp. Leo)).

out out : out out
3. For every (seed$".row, seed}"".shared.row, i;) (resp. (seed$"".col, seed;.shared

.col,i;)) in
the list Lyow (resp. Leoy), we enumerate (seed™ k') € {0,1}"" x [¢"] in lexicographic
order. If the k’-th query of V" given the seed'" as the seed is a query to the i’-th bit of
(Iinput 0 TISE )|z (where @' depends on seed'"), and i’ = i, then append

proof
(seed$"*.row, seed$"*.shared.row, low(seed’'), k') (for Afow")
(seed%"*.col, seed?" shared.col, high(seed™"), k') (for AZ™)
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to Lyow (resp. Leop).
It is easy to check that the requirements of RNL property are satisfied.

Case 2. Given the configuration (seed, k), the verifier V<°™P probes the i-th cell of H'“ of (seed®t).
Recall that for every seed®“t € {0,1}7", Ipnroof

Wl?oof in the proof matrix. The neighbours of (seed, k) need to query the same block, therefore
the neighbours must have the same random seed for the outer PCPP verifier. Hence the
row/column algorithms will work as follows:

(seed®"t) is arranged in a block of size H" broof X

1. The row algorithm Aygw® (resp. the column algorithm Acomp) firstly finds the list £'" :=
{(seed'j" i) € {0, 1)@ () 5 [P} sorted in lexicographic order such that the in-
ner PCPP will query the 7;-th bit of the inner proof on the k;-th query given seedijn

as randomness. This can be done in poly(¢™, ¢, d")-time by enumerating all possible
(seed'n k;) and running the inner PCPP verifier.

2. We define the final list of neighbours as
L:= {(seedj = (seed°”t,seedij",kj)) : (seedij",k:j) € Ei”}.

It is easy to check that the list satisfies the promises of the rectangular neighbour listing
property.

Other properties. The soundness error and proximity parameter can be found in [BGHT06,
Section 2.4]. The query complexity, ROP parity-check complexity, and decision complexity can be
found in [RSW22, Section 7.2]. We can see that the proof matrix of the composed PCPP verifier has
width WC;TF VV"r‘(‘)tOf and height H ;f:;fp W°rl“)t0f-|—2T°”t( n)+r'"(d* (n)) /{/Vortcl)to - (recall that £n = 27",
By the deﬁnltlons of the random seeds, we can see that: The row and column randomness complexity
of V°MP is the same as the row and column randomness complexity of V°Ut, respectively; the shared
randomness complexity of V<°™P is the sum of the shared randomness complexity of V°Ut and the

randomness complexity of V",

Remark 6.11. The composed PCPP verifier V°™P will use the inner PCPP verifier V" to simulate
the outer PCPP verifier V°Ut. This means that the total number of queries and parity-check func-
tions is at most the query complexity of the inner PCPP verifier. Moreover, the decision predicate
of V<™mP (after fixing the random seed) is the decision predicate of Vin_ where the input bits of the
decision circuit of V<°™P are the parity-check bits and the answers to the queries. For instance, if
the decision predicate of V" given seed™ is an OR of the answers or their negations, then the deci-
sion predicate of V™ given seed = (seed”, seed®?) is also the same OR of its input bits (i.e. the
answers to the queries and the parity-check bits).

6.4 Soundness Amplification Preserving Smoothness and Rectangularity

Now we use the technique from [RSW22, Section 7.1.3| to boost the soundness error of a rect-
angular PCPP. In addition to their original analysis, we need to verify that their expander-walk
construction preserves smoothness.

Lemma 6.12 ([VW18, RSW22|). For every A € (0,1), there is some d = poly(A™1) such that
the following holds. For every m, there is an expander graph G, = (V,, E,) with second largest
eigenvalue at most X, where V,, := {0,1}". Moreover, there are d explicit projections (i.e., NC{
circuits) C1,Ca,...,Cq : {0,1}" — {0,1}" such that for every x € V,,, the d neighbours of x are
Cl(l'), Cg(l'), ceey Cd(l’)
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’ Verifier ‘ yold ‘ Jnew

Soundness error s i
Proximity parameter o 0
Row randomness Trow T'row
Column randomness Tcol Tcol
Shared randomness Tshared Tshared + O((1 — s)2log(u1) log((1 — s)7 1))
Proof matrix height Hproof Hproof
Proof matrix width Woroof Woroof
Query complexity q O(q-(1—5)"2-log(p™ 1))
Parity check complexity P O(p-(1—s)"2-log(p™1))
Decision complexity d O(d - (1 — 8)"21og(pn 1) + poly(Tshared, Trows Tcol))

Table 6: The parameters of the soundness amplification (O(-) hides absolute constants).

Lemma 6.13 (Expander Walk, [AB09, Theorem 21.12]|). Let G = (V, E) be a d-regular graph with
second largest eigenvalue X. For every S C V' such that |S| < (- |V| for some 8 € (0,1), let
(X1, Xo,...,X¢) be a random walk in G with random starting point, then

Prlvi e [(],X; € 8] < ( f+A)

Lemma 6.14 (Expander Chernoff Bound, [Vad12, Theorem 4.22]). Let G = (V, E) be a d-reqular
graph with second largest eigenvalue A\, B C 'V be a set of size |B| = B|V|. Let X1, Xa,..., Xy be

random variables denoting a length-£ random walk from a random starting point. For every i € [{],
we define B; =1 if X; € B and B; = 0 otherwise. Then:

14

%ZBz’—ﬁ

=1

Pr

> 2)\] < 2exp (—Q(N*0)).

Theorem 6.15. Suppose that L has a rectangular PCPP verifier VO (resp. a rectangular PCPP
verifier Vo' with ROP), where the parameters are specified in Table 6. Then for every p € (0,1),
L has a rectangular PCPP verifier V"V (resp. a rectangular PCPP wverifier with ROP), whose
parameters are specified in Table 6.

Moreover, if VO is smooth, then V"V is also smooth; if VO has robust soundness (instead of
soundness) s with robustness parameter p, then VO has robustness soundness p with robustness
parameter (1 — s)p/3.

Proof. Let € :== 1 — s, A 1= ¢/3, and 7 := Trow + Tcol + Tshared- We construct the following d-
regular expander graphs with second largest eigenvalue A by Lemma 6.12: Grow = (Viow, Frow) With
Viow = {Ovl}rmwv Gcol = (V;:olyEcoI) with Vcol = {Oal}rwl, and Gshared = (Vshared7Eshared) with
Vahared := {0, 1}"shared . Let G = (V, E) be the tensor product of these expanders:

V= Viow X Vol X Vshared = {0, 1}Tr°W X {0, 1}T°°' X {07 ]_}TShared;
E = {((u,v,w), (@, v, w) : (u,u') € Erow, (v,0") € Ecol, (w,w") € Eghared}-

Note that G is a d3-regular graph with second largest eigenvalue \ (see [AB09, Lemma 21.17]).
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The Construction of V", The new verifier has the same proof matrix, row randomness, and
column randomness as the old verifier V°'9. The shared random seed of the new verifier V"W
consists of the shared random seed seed.shared of V9 and seed.walk, which is used to sample a
random walk in G of length £ := O(A\~2?log(~!)). Concretely:

e The random seed seed.walk will be used to sample o1, 09,...,03-1) € [d]. We can see that
|seed.walk| = O(£ - logd) = O(A"2log(p 1) log(A™1)).

e Let uy := seed.row, v := seed.col, and w; := seed.shared. We use 01,09,...,0¢_1 to specify
a length-¢ random walk (uj,usg,...,up) in Gyow. In particular, let Cy,Cs,...,Cy be the pro-
jections in Lemma 6.12 for Giow. For every j € {1,2,...,¢ — 1}, we define uj1 := Cy, (u;).
Similarly, we can use the remaining 2(¢ — 1) bits to specify a random walk (vy,va,...,v¢) in
Geol and a random walk (w1, we, ..., wy) in Gshared-

The verifier V' will run the verifier V" for ¢ times with the seeds:

(ula 1, wl)a (Uz,’[}g,’wg), ey (ufa Ufawf)a

and will accept the proof if Vo9 accepts given all these £ seeds. Since seed.walk is treated as the
shared randomness of V™" and G is obtained from the tensor product of Gow, Geol, and Gshared, it
is easy to see that V" is still a rectangular PCPP verifier. The query complexity (and parity-check
complexity when V°!4 has ROP) increases by an £ = O(e~?log(x~!)) multiplicative factor.

Smoothness. Let idx € [Hproof - Wproof] be an index in the proof. Assume that V"*¥(seed,?)
(resp. V" (seed, i)) denotes the index in the proof probed by V"W (resp. V°4) for the i-th query.
We can see that

= P Vnew d d. lk.i) = id
i seed,seed.V\glk,ie[qZ}[ (See © seed.wa 7Z) IX]

= E P V" (seed o seed.walk, (j — 1){ +1¢) = id
3y seed,seed.v{/.alk,ie[q}[ ( ° W (J ) ’L) ! X]

Fix a j € [(]. By the definition of V" we know that V" (seed o seed.walk, (j — 1)¢ + i) will
work as follows: Let (u,v,w) := (seed.row, seed.col, seed.shared), and 01,09, ...,03; be defined as
above; V™" will choose the j-th node in the random walk on G seeded by seed.walk starting from
(u1 := u,v1 := v,w; := w) as the seed for V°9 and probe the proof according to the i-th query of
Veld. Since the expander graph is regular, each seed € {0,1}" is equally likely to be selected from
a random walk with a random starting point. Hence

Pr [V (seed o seed.walk, (j — 1)¢ + i) = idx]
seed,seed.walk,i€[q]

= Pr |V°(seed,i) = idx
seed,i€[q]

- 1
Hproof ' Wproof ‘

This means that v = 1/(Hproof - Wproof ), i-€., every bit in the proof is equally likely to be probed.
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Soundness. Assume that z € {0,1}" is d-far from being in L and II be an arbitrary proof. We
say a node (u,v,w) in the expander graph G = (V, E) to be bad if V°9 accepts (z,1I) with the
random seed seed.row := u, seed.col := v, and seed.shared := w. Let B be the set of all bad nodes,
then |B| < s-|V|. Note that the new verifier accepts (x,II) if and only if a length-¢ random walk
on G from a random starting point only accesses bad nodes. By Lemma 6.13, we can see that

Pr [V accepts (z,II)] < ((1 — M)v/s + )\)E_l < (1 - %)hl < exp (—E(e; 1)> <

when £ > 10 -~ In(u~1).

Robust Soundness. Assume that the original PCPP verifier V°!9 has robust soundness s with ro-
bustness parameter p (instead of only soundness s), we need to show that V" has robustness sound-
ness pu. Let x € {0,1}" be d-far from L and II be an arbitrary proof. We say a node (u,v,w) in the
expander graph G = (V, E) is bad if given the randomness seed = (seed.row, seed.col, seed.shared) :=
(u,v,w), the fraction of bits read by the old PCPP verifier that we need to change to make 17
accepts (x,II), denoted by ) (seed), is at most p.

Let B be the set of bad nodes and X7, Xo,..., X, be the random variables denoting a random
walk from a random starting point (equivalently, denoting the randomness V" used to simulate
Veld). By the robustness soundness of Vo4 we know that |B| < s-|V|. Let B; = 1 when X; € B
and 0 otherwise. By Lemma 6.14, we can see that

4
1
Pr LZBizsmA

=1

< 2exp(—Q(A\*0) < p

when £ = O(A~2log(1~1)). As a result, with probability as least 1 — j, the fraction of bits read by
VMW that we need to change to make V" accepts (z,1I) is at least

(1= (s+2X))p >ep/3.

This satisfies the requirement of robust soundness p with robustness parameter ep/3. 0l

6.5 Final Construction

Theorem 6.16 (|Mie09,RSW22|). Let L be a pair language in NTIME[T'(n)] for some non-decreasing
function T : ZT — ZT. For all constants 5,5 > 0, L has a PCPP verifier with randomness complez-
ity log T'(n) + O(loglogT'(n)), soundness error s, proximity parameter &, query complexity O(1),
and decision complezity polylog(T'(n)).

Theorem 2.14 (Smooth and Rectangular PCPP). For all constants 6 € (0,1) and s € (0,1), there
is a constant ¢ > 1 such that the following holds. Let m = m(n), T(n), Woroof(1), Winput(n) be
good functions such that 1 < m(n) < (logT(n))%!, n < T(n) < 2PN 4y 00¢(n) < log T(n), and
Winput (1) < logn. Then there are good functions hproof(n) and hinput(n) satisfying

hproof () := log T'(n) + ©(mloglogT(n)) — Wproof (M), and

Rinput (1) = [log | — Winput(n).

such that the following holds.
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Soundness error s
Proximity parameter 4]
Row randomness Trow = Rproof — (5/m)log T'(n)
Column randomness Tcol := Wproof — (5/m)log T'(n)
Shared randomness Tshared := (10/m)logT'(n) + O(loglog T'(n) 4+ mlog m)
Query complexity q
Parity check complexity q
Decision complexity poly (T (n)!/™)

Table 7: Parameters of the PCPP constructed in Theorem 2.14.

Suppose that Wproof s hproof = (5/m)log T'(n), and that for some absolute constant C' > 1,

winput(n) hinput(n) <1_ Cm? loglogT'(n)
Wproof (n) ’ hproof (n) o log T(n)

Let WPFOOf(n) = 2wpr00f(n)’ HPFOOf(n) = 2hpr°°f(n); VVinPut(n) = 2winPUt(n); and Hinput(n) = 2hi"”“t(n),
Then NTIME[T'(n)] has a smooth and rectangular PCP of proximity with an Hinput(n) X Winput(n)

input matriz and an Hpoof(n) X Woroof (0) proof matriz, whose other parameters are specified in
Table 2.

Proof. The high-level roadmap of the proof is as follows.

1. By Theorem 6.8, we can obtain a robust and rectangular PCPP verifier V°' with RNL
property for tgyy = poly(log T'(n), m™) and query complexity T'(n)'/™ - polylog(T(n)).

2. Let V" be a PCPP verifier for CIRCUIT-EVAL™ with constant query complexity. We compose
Vout and V'™ by Theorem 6.10 to obtain a rectangular PCPP verifier V<°™P with RNL property.

3. We smoothen V°™P by Theorem 6.3 to obtain a smooth and rectangular PCPP Vs™h with
constant query complexity, whose soundness error is some constant s*™t € (0,1).

4. By Theorem 6.15, we reduce the soundness error to s while still maintaining the query com-
plexity to be a (larger) constant.

Robust and Rectangular PCPP. Let § € (0,1) and s € (0,1) be some constants; ¢ be a
large constant to be determined that only depends on ¢ and s; C be a large constant; m = m(n),
T(n), Winput (1), Rinput (1), Wproof (1), and Aproof (1) be defined as above. Let wg:‘(fof(n) '= Wproof (1) —
O(loglogT'(n) 4+mlogm) where the concrete value will be determined later. We will set hproof(n) =
horeof () + O(loglog T'(n) + mlogm) for some good function oyl ¢(n) (which is actually the proof

height parameter of the outer PCPP). We check the technical conditions of Theorem 6.8 holds; in
particular we need to ensure that

Claim 6.17. For some constant C' that could be made large enough (depending on C'),

out 7 pout —
wproof hproof logT(n)

Winput  Ninput <1 C'mloglog T'(n)

7



Proof. Since wproof > (5/m)logT(n), and wprof — Wiyeer < ai1(loglogT(n) + mlogm) for some

constant o, it follows that

Winput _ Winput <1 N a1 (loglog T(n) + mlogm) >
wgfgof  Wproof Wproof — (v1(loglog T'(n) + mlogm)
Cm?loglog T (n) n ©(m) - (loglogT(n) +mlogm)
- logT'(n) log T'(n)
C'mloglogT(n)
B log T'(n)

h.
The same argument works for h'%‘i“t o

proof

By Theorem 6.8, we can construct a robust and rectangular PCPP verifier V°U for L with RNL
property and other parameters as follows:
e Proximity parameter §°Ut :=§.

e Robust soundness error s := 1 — p°* with robustness parameter p°t, where p°'t € (0,1) is
some constant depending on 4.

: : out out out _ ohS¥. out __ quiu .
e Proof matrix size Hptroof(n) X Woreor(1), where Holl o = 2ol WIS = 2%rof. The proof
ou

height parameter h which is given by Theorem 6.8, satisfies

proof’

howt - =logT(n) + ©(mloglogT(n)) — w;:gof(n)'

proof
¢ Row randomness complexity rigy = ho e — (4/m)log T'(n).
o Column randomness complexity roof = wSt ¢ — (4/m)log T'(n).

e Shared randomness complexity r3'% , = (7/m)log T'(n) + O(loglog T'(n) + mlog m).
e Query complexity ¢°*t(n) = T'(n)"/™ - polylog(T'(n)).
e Decision complexity d°'t(n) = T'(n)Y/™ - polylog(T'(n)).

out

e RNL time complexity Ry, (n) = poly(log T'(n), m™).

Reducing the Query Complexity. By Theorem 6.16, we can construct a PCPP verifier V" for
CIRCUIT-EVAL® with input length d°“*(n) and other parameters specified as follows.

e Randomness complexity r'"(n) = log d°"*(n)+O(log log d®"*(n)) = L log T'(n)+O(loglog T'(n)).

e Soundness error s := p°t/2.

Proximity parameter 6" := p°Ut/2.
e Query complexity ¢ = O(1) is a constant depends on s" and 6™, which further means that
it only depends on 4.
e Decision complexity d"(d°“*(n)) = polylog(T(n)).
Without loss of generality, we assume that the proof length £"(n) = 2r"(n),

We now construct V™ by composing V!t and V" by Theorem 6.10. We firstly check the
requirements of the composition theorem.

in

° qin — 0(1)7 pout > 5in — pout/2’ gin — 9r'"
o logWeout . — yout 4 (4/m)logT(n) > roit.

proof col col
t t t t
* 1Og W;;)rlc]mf - ngl + (4/m) 1Og T(n) < Tf:)gl + T?ﬁared'

78



Hence we can obtain a rectangular PCPP V°™P with ROP that has RNL property. The parameters
of the composed PCPP are as follows.

Soundness error s©°MP :=1 — (1 — s°%) . (1 — s™") < 1 that only depends on 4.

Proximity parameter §°MP := §°Ut = §.

Row randomness complexity rrow" = Trow = horaor — (4/m)log T'(n).

Column randomness complexity reg/™ = o4} = wdi  — (4/m)log T'(n).

Shared randomness complexity rior, = rt 4+ ri" = (7/m)log T(n) + O(loglog T'(n) +

mlogm) + (1/m)logT(n) + O(loglog T'(n)) = (8/m)log T'(n) + O(loglog T'(n) + mlog m).
Proof matrix height H™P = Hout 4 or*+r" /ppout

proof — “~proof proof *
Proof matrix width W::gf = W:r‘étof.
Query complexity ¢©°™ = ¢ = O(1) that only depends on 4.

ROP parity check complexity p©™P = ¢i" = O(1).

Decision complexity d°™P(n) = d"(d°"t(n)) = polylog(T'(n)).

RNL time complexity tgpy " (n) = poly (1% (n), €™, ¢, d") = poly(T(n)l/m)7 where poly(+)
hides some absolute constant on the exponent. Note that ¢y, (n) = poly(logT'(n),m™) <
poly(T'(n)Y/™), since m < (log T'(n))"!.

Smoothening via RNL. Now we apply Theorem 6.3 to obtain a smooth and rectangular PCPP
Vsmth with 4= (1 — s°™P)/2 and other parameters as follows.

Soundness error sS™" := 5°°MP 4, < 1 that only depends on 4.

Proximity parameter gsmth . gscomp — 5.

Row randomness complexity r$mth .= proitP = horeof — (4/m)log T'(n).

Column randomness complexity rSmth := pM = Woror — (4/m)log T'(n).

Shared randomness complexity rsmith . = 7™ = (8 /m) log T'(n) + O(loglog T'(n) + mlogm).
Proof matrix width W;;gg} = el Hrimea/2 = 2proof - poly(log T'(n),m™). Note that here we
set wdn e carefully so that roo™ + 7Py /2 = wie o + O(loglog T'(n) + mlogm) = Wpreof-

This means that the proof matrix width is exactly 2%ereof,

o comp

Proof matrix height H ;;‘(‘g} — COmP . Qo TGt — Qlpraor -poly(log T'(n), m™). Since ¢©°™P =

O(1), we can add O(1) dummy queries to the composed PCPP V<°™P g0 that ¢“°™P becomes
a power of two. We then set

hproof = log Hsmth

proof

= horeor + O(loglog T + mlog m)
= log T'(n) + O(mloglogT(n)) + O(loglog T+ mlogm)
— (Wproof(n) — O(loglog T' + mlogm))

= logT(n) + O(mloglog T'(n)) — Wproof (12)-

Query complexity ¢™™ = poly(¢®™/u) = O(1) that only depends on 4.

ROP parity check complexity ps™th = p<©™P = O(1).

Decision complexity d™"(n) = poly(d®°™P(n), g™ /u, tani” (n)) = poly(T(n)/™), where
poly(-) hides some absolute constant on the exponent.
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Amplifying the Soundness Error. Finally, we boost the soundness error of V™" to be s by
Theorem 6.15, to obtain a smooth and rectangular PCPP with parameters specified as follows.

e Soundness error s.

e Proximity parameter 9.

¢ Row randomness complexity Aot ¢ — (4/m)log T(n) > hproof — (5/m) log T'(n).

e Column randomness complexity we c — (4/m)log T(n) > wproof — (5/m)log T'(n).

e Shared randomness complexity (8/m)logT(n) + O(loglog T'(n) + mlogm).

e Proof matrix height 2"wef and proof matrix width 2eroof

e Query complexity ¢ = poly(¢°™*") = O(1) that depends on ¢ and s.

e ROP parity check complexity poly(p*™h) = O(1) that depends on § and s.

e Decision complexity poly(d*™"(n)) = poly (T (n)'/™).
We can move some bits from the row and column randomness to the shared randomness, so that
the row and column randomness complexity become exactly hproof — (5/m)logT'(n) and wproof —
(5/m)logT'(n), respectively, and the shared randomness complexity becomes (10/m)logT (n) +
O(loglog T'(n) + mlogm). This completes the construction. O

7 Construction of Rectangular PCPPs with Low Query Complexity

Recall that in our framework of solving range avoidance and hard partial truth table, the query
complexity of the PCPPs will affect the circuit class for which we need to construct satisfying-
pair algorithms. In this section, we construct a rectangular (but not necessarily smooth) PCPP
with query complexity 3. We further construct a 2-query PCPP with a constant gap between the
completeness and soundness parameters (instead of having perfect completeness).

7.1 A 3-Query PCPP for CircuIT-EvaL’t

Theorem 7.1 (|[CW19b|, Lemma 24). For every constant 6 > 0, there is a constant s € (0,1) and
a PCP of prozimity for CIRCUIT-EVAL with proximity 8, soundness error s, randomness complexity
O(logn), query complezity q = 3, and decision complexity polylog(n). Moreover, the decision
predicate is an OR of the 3 answers to the queries or their negations.

We need the following standard composition theorem for PCP of Proximity from [BGHT 06| to
construct 3-query PCPPs for any pair language in NTIME[T (n)].
Theorem 7.2 ([BGHT06]). Let r°Ut, 7", d°Ut d" ¢ : N — N and £°Ut, &, pout, §in 5°Ut : N — [0, 1].
Suppose that:

e Language L has a robust PCPP wverifier V' with randomness complexity r°*(n), decision

complexity d°"*(n), robust soundness error 1 — €°"%(n), robustness parameter p°**(n), and
proximity parameter 6°“t(n).

e CIRCUIT-EVAL has a PCPP verifier VI" with randomness complexity " (n), query complexity
q"™(n), decision complexity d™(n), soundness error 1 —e™(n), and prozimity parameter 5 (n).

. 5in<dout(n)) < p°t(n) for every n.

Then L has a PCPP Verifier V™ with randomness complexity ro¥t(n) 4 " (d°“*(n)), query com-
plexity ¢"(d°"(n)), decision complexity d™(d°"*(n)), soundness error 1 — et (n) - "™ (d°®"*(n)), and
proximity parameter 6°'t(n).

80



Theorem 7.3. Let L be a pair language in NTIME[T(n)] for some non-decreasing function T :
Zt — Z7T. For every constant &, there is a constant s € (0,1) and a PCP of proximity for L with
randomness complexity log T (n)+O(loglog T'(n)), decision complezity poly(loglogT'(n)), soundness
error s, proximity parameter §, and query complexity q = 3.

Proof. Let L be a pair language in NTIME[T'(n)] and 6 > 0. We will compose the following two
PCPP verifiers with Theorem 7.2:

e By Theorem 7.1, for every 6™ > 0, there is a constant s" € (0,1) and a PCPP verifier vin

for CIRCUIT-EVAL with randomness complexity ™ = O(logn), soundness error s, proximity
parameter 0", query complexity ¢™ = 3, and decision complexity d"™ = polylog(n).

e By Theorem 6.16, for all constants §°Ut, s°t > (, there is a constant ¢°“* and a PCPP V°ut
with randomness complexity r°“t = log T'(n) +O(log log T'(n)), soundness error s°*, proximity
parameter §°'*, query complexity ¢°'*, and decision complexity d°“t = polylog(T'(n)). Since
q°"t = O(1), VU is trivially a robust PCPP with robustness parameter p°t = 1/¢°!".

Fix 6%t = §, st = 0.5, §" = 1/(2¢°%), and s = 1 — 0.5- (1 — s'"). It is clear that §"(d°"*(n)) <
p°"(n). By Theorem 7.2, we can obtain a PCPP verifier V°™P for L with the following parameters:
Randomness complexity r°Ut 4 7" (d°“t(n)) = log T'(n) + O(loglog T'(n)).

Decision complexity d"(d°“*(n)) = poly(loglog T'(n)).

Soundness error 1 — (1 — s°t(n)) - (1 — s"(d°“(n))) = s.

Proximity parameter §°*(n) = 4.

e Query complexity ¢™"(d°“*(n)) = 3.

This satisfies our requirements. O

7.2 A 3-Query Rectangular PCPP

Now we construct a 3-query rectangular PCPP by composing the PCPP constructions in The-
orem 6.8 and Theorem 7.3 using the composition theorem (see Theorem 6.10).

Theorem 7.4 (3-Query Rectangular PCPP). For every constant § € (0,1), there is a constant
s € (0,1) such that the following holds. Let m = m(n), T(n), Wproof (1), Winput(n) be good functions
such that 1 < m < (logT(n))!, n < T(n) < 2P0 06 (n) < log T(n), and winpu(n) < logn.
Then there are good functions hproof(1) and hinput(n) satisfying

hproof (n) = log T(n) + 9(m log IOg T(n)) — wproof(n), and
hinPUt(n) = flog n~| - winput(n)~

such that the following holds.
Suppose that Wproof s hproof > (5/m)log T'(n), and that for some absolute constant C' > 1,

Winput (1) ,nput(n) 1 CmloglogT(n)
wproof( ) proof(n) logT'(n)

Let Wproof(n) := QWproof (1) Hyroof () 1= Qtproot (1) Winput(n) = 2Winput (1) g Hinput(n) = Qhinput (1),
Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n) X Woreof (1) proof matrix
and an Hinput(n) X Winput(n) input matriz, whose other parameters are specified in Table 8.

Moreover, the total number of queries and parity-check bits is at most 3; and for every seed.shared,
the decision predicate VDec <— Vyec(seed.shared) of the rectangular PCPP verifier is an OR of its 3
input bits or their negations, where each input is either a query answer or a parity-check bit.
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Soundness error s

Proximity parameter 4]
Row randomness hproof — (5/m) log T'(n)
Column randomness Wproof — (5/m)log T'(n)

Shared randomness (10/m)log T'(n) + O(loglog T'(n) + mlogm)
Query complexity
Parity check complexity

Decision complexity poly(loglog T'(n))

3

Table 8: Parameters of the PCPP constructed in Theorem 7.4.

Proof. Let L € NTIME[T'(n)] and m > 1, > 0 be constants; T'(n), Wproof (1), Rproof (1), Winput(7),
hinput(n), and C be defined as above. In one sentence, we compose the robust and rectangular
PCPP verifier (Theorem 6.8) with the 3-query PCPP verifier (Theorem 7.3) using the composition
theorem (Theorem 6.10).

Outer PCPP. Let w3 «(n) := Wpoof(n). By Theorem 6.8, we can construct a robust and

rectangular PCPP verifier V°! for L with parameters as follows:

e Robust soundness error st € (0,1) with robustness parameter p°t := 1 — s°Ut.

e Proximity parameter §°Ut := §.

e Proof matrix size Hoo ¢(n) x Woit «(n), where Ho ¢ = 2throor e = 2Wpeo and AGE L =
log T'(n) + ©(mloglog T'(n)) — Wproof ().

¢ Row randomness complexity rigy = ho e — (4/m)log T'(n).

e Column randomness complexity 72" = wproor — (4/m)log T'(n).

e Shared randomness complexity r3'% , = (7/m)log T'(n) 4+ O(loglog T'(n) + mlog m).

e Query complexity ¢°*t(n) = T'(n)"/™ - polylog(T'(n)).
e Decision complexity d°'t(n) = T'(n)Y/™ - polylog(T'(n)).

Inner PCPP. Let 6" := p°t/2. By Theorem 7.3, there is a constant s" € (0,1) and a
PCPP verifier V" for CIrcUIT-EVAL' with randomness complexity logT(n) + O(loglogT(n)),
soundness error s™, proximity parameter 6™, query complexity ¢ = 3, and decision complexity
d™ = poly(loglog T(n)). Without loss of generality, we assume that the proof length is ¢ = 2™,

Composition. We now compose V°U with the inner PCPP V" by Theorem 6.10. We first check
that the technical conditions are satisfied.

° qin =3 = 0(1)’ pout > 5in’ gin =o'

o Since royf = wt ¢ —(4/m)log T'(n) and rg% 4 > (7/m)log T'(n), we know that 7o < wd ¢ <
Tout + Tout

col shared*
By Theorem 6.10, we can obtain a rectangular PCPP V°™P with ROP, whose parameters are as
follows:

e Soundness error s°™ =1 — (1 —si") - (1 — &%) < 1.

Proximity parameter §°MP = §°Ut = §.

e Query complexity and ROP parity checking complexity ¢°™P = ¢ = 3.

e Proof matrix width Wyoof = W;’rzgf = QWeroof
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e Proof matrix height Hproor = H2M « + 27”0“t(")+7’i"(d°“t(”))/I/I/OOOf Note that

proof

nguc;cof = T(n) 1og®™ T(n) /Wss(n),
=(1—-1/m)logT(n) + ©(mloglogT(n)),
(d°”t) (1/m)log T (n) 4+ O(loglog(T'(n))),

hence Hproor = T'(1) 1og®™)(T'(n))/ Woroof- Without loss of generality, we assume that Hproof
is a power of two. We then define

hproof := log Hproof = log T'(n) + ©(mloglog T'(n)) — Wproof -

e Decision complexity d"(d°“*(n)) = poly(loglog T'(n)).

Now we determine the randomness complexity of the composed PCPP verifier. Note that

Tshared = T'shared T+ ri"
= (7/m)log T'(n) + O(loglog T'(n) + mlogm) + (1/m)log T'(n) + O(loglog T'(n))
= (8/m)logT(n) + O(loglog T(n) + mlogm),
Trow = Teay = Rproof — (4/m)log T'(n) — ©(mloglog T(n)) > hproot — (5/m)log T (n),
)-

Teol = rco| = Wproof — (4/m)logT'(n

Since we can always move some portion of seed.row or seed.col into seed.shared, we can simply assume
that 7row = Rproof — (5/m) 108 T (), Tcol = Wproof — (5/m)log T'(n), and rshared = (10/m)logT'(n) +
O(loglog T'(n) + mlogm).

Moreover, by Remark 6.11 and the fact that the decision predicate of V" is an OR of the
answers or their negations (see Theorem 7.3), we know that the total number of queries and parity-
check bits of V°™P is at most 3, and that for every seed.shared, the decision predicate VDec <
V. oMP (seed.shared) of V°™P is an OR of its input bits (i.e., query answers and parity-check bits) or

dec
their negations. O

7.3 A 2-Query Rectangular PCPP with Imperfect Completeness

Following the construction in [CW19b, Appendix A|, we can also construct a 2-query rectangular
PCPP with a constant gap between the completeness and soundness parameters, using the following
classical gadget due to [GJS76].

Lemma 7.5. Let x1,x9,x3 € {0,1} be Boolean variables. If x1V xaV x3, then there is any € {0,1}
such that at least 7 of the following 10 constraints are satisfied:

T1, %2, 23, %1 V T2, T1 V T3, T2 V T3, Yy, 21 VY, 22 VY, 23 V . (14)

Otherwise, at most 6 of the constraints in Eq. (14) are satisfied for any y € {0,1}. Moreover, every
x1,x9,x3,y € {0,1} satisfies at most 7 of the above 10 constraints.

Theorem 7.6 (2-Query Rectangular PCPP). For every constant § € (0, 1), there are constants 0 <
s < ¢ < 1 such that the following holds. Let m = m(n), T(n), Wproof (1), Winput(n) be good functions
such that 1 < m < (logT(n))!, n < T(n) < 2P0y, 0e(n) < log T(n), and winpu(n) < logn.
Then there are good functions hproof(n) and hinput(n) satisfying

hproof () = log T'(n) + ©(mloglog T'(n)) — wproof (1), and

hinput(n) = ﬂOg ’I’L—I - winput(n)a
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such that the following holds.
Suppose that Wproof s hproof = (5/m)log T'(n), and that for some absolute constant C' > 1,

Winput (1) Pinput (1) 1 CmloglogT(n)
Wproof (n) ’ hproof(n) o log T(n)

Let Wyroot(n) == QWproof (12) Hproof(n) == Qproof (1) Winput(n) = 2Winput (1) g Hinput(n) = Qhinput (1)
Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n) X Woreof (1) proof matrix
and an Hinpyt(n) X Winput(n) input matriz, whose other parameters are specified in Table 9.

Furthermore, given the randomness seed € {0,1}", the total number of queries and parity-check
bits is at most 2, and the decision predicate VDec < Vyec(seed.shared) of the rectangular PCPP
verifier is an OR of the 2 input bits (including queries and parity-check bits) or their negations for
every seed.shared.

Completeness error l1—c
Soundness error s
Proximity parameter )
Row randomness hproof — (5/m) log T'(n)
Column randomness Wproof — (5/m) logT'(n)

Shared randomness (10/m)log T'(n) + O(loglog T'(n) + mlogm)
Query complexity
Parity check complexity

Decision complexity poly(loglog T'(n))

2

Table 9: Parameters of the PCPP constructed in Theorem 7.6.

Proof. Let § be an arbitrary constant. By Theorem 7.4, that there is a rectangular PCPP verifier
V39 with perfect completeness and parameters:

e Soundness error 39 € (0, 1).

e Proximity parameter 6.

e Query complexity and parity-check complexity 3.
=log H 34

e Proof matrix size H> proof X W3d broof with wpmof Weproof = 10g Wproof and p3a proof =

log T'(n) + ©(mloglog T'(n)) — wproof (1)
e Shared randomness complexity rshared = (10/m)logT'(n) 4+ O(loglogT'(n) + mlogm).

proof —

e Row randomness complexity 7ow = hproof (5/m)log T'(n).

e Column randomness complexity reo| = iroof (5/m)log T'(n).
e Decision complexity poly(loglogT'(n)).

Let 7 = Trow + Tcol + Tshared be the length of total randomness. Moreover, we know that the total
number of queries and parity-check bits is at most 3, and that the decision circuit of V' is an OR of
its input bits (i.e. the answers to the queries and parity-check bits) or their negations after fixing
the random seed. We will now combine V39 and the gadget in Lemma 7.5 to construct a 2-query
PCPP.

28Note that the final matrix height is Rproof < p3a : + O(loglogT(n)), hence the technical requirement

—= proo

Rinput (10 )/hproof < 1 — C'loglogT(n)/logT(n) for large C’ holds, given the assumption that hinput(n)/proof <

1 — Cloglog T(n)/log T(n) for large C, hpoot > (5/m)log T(n), and m < (log T'(n))°*, as shown in Claim 6.17.
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Suppose, for the simplicity of presentation, that the PCPP verifier V' always probes 2 bits of the
input and proof oracles, and has 1 parity-check bit. (The other cases can be considered similarly
and we omit the details.) Then the decision predicate VDec <— Vjec(seed.shared) for every fixed
seed.shared € {0, 1}"shred is a function

VDec(ansy, ansy, pci(seed)) := (ansy @ by) V (ansy @ ba) V (pey(seed) @ bs).

where b1,bg,b3 € {0,1}. The new PCPP verifier V' is defined as follows.

e The proof of the new PCPP verifier V is the concatenation of the proof for V39 and an
y:{0,1}" — {0,1} of length 2" used as the additional variable y in Lemma 7.5.

e The randomness of V is the concatenation of the randomness seed for V39 and an j € [10].

Queries and parity-check bits. Assume that (seed, j) € {0, 1}" x[10] is given as the randomness.
The verifier V first generates the indices i1, i3 of the queries to the input and proof oracles (denoted
by a single oracle II for simplicity) and the parity-check function pc;. Instead of making all these
queries and doing the parity-check, we identify ans; @ by, anse @ bo, pci(seed) @ bs, y(seed) with
x1,x2,x3,y in the gadget given by Lemma 7.5, respectively, and queries the j-th gadget. (For
instance, if j = 5, the corresponding constraint is 1 V T3, so that we will query the i1-th of IT and
do the parity-check pecy; if 7 = 8, the constraint is x1 V¥, so that we will query the ¢;-th bit of IT and
the y(seed).) The decision predicate will accept if and only if either the j-th constraint is satisfied
when identifying ans; @ by, ansg @ by, pci(seed) @ bs, y(seed) with x1, x9, x3,y, respectively.

3q

Completeness. For every input o € L, by the completeness of V39, there is a proof oracle Hproof

such that V39 accepts given the oracle z o H;?;?oof with probability 1, which means that for every

seed € {0,1}", the answers ansj, ansg to the queries and the parity-check bits pc; (seed) satisfies
VDec(ansy, ansg, pci (seed)) = (ans; @ by) V (ansg @ ba) V (pcy (seed) @ bs) = 1.

By Lemma 7.5, there is an yseeq such that at least 7 of the 10 constraints in the gadgets are
satisfied. This means that given the proof oracle IT o y for y(seed) := yYseed, the verifier will accept
with probability at least ¢ := 7/10.

Soundness. Assume that z € {0,1}" that is -far from being in L, and Ilp o0 = ik

proof

proof, where Hiq is a proof for V34 and y : {0,1}" — {0,1}. By the soundness of V39, we know

roof

that for each least 1 — s; fraction of seed € {0,1}",

oy is any

VDec(ansy, ansg, pci(seed)) = (ans; @ by) V (ansy @ ba) V (per(seed) @ bs) = 0.

By Lemma 7.5, we can see that for these seed, the accept probability of V' is at most 6/10, whereas
in other cases the accept probabilistic of V' is at most 7/10. Thus the accept probability of V' is at
most s := (7/10) - s; + (6/10) - (1 — s1) < c.

Rectangularity. Since we only need to introduce O(1) bits of randomness representing j ~ [10],

we can put it into the shared randomness. We only need to show that the new proof Hg?oof oy can

. . 3
be arranged as a matrix so that the queries can be done rectangularly. Let Wyoof := Wp:lof and
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+ 2"/ ngof' Without loss of generality, we assume that Hpoof is a power of two,

. 3q
Hproof =H

proof
therefore we define

proof proof

¢+ O(loglog T'(n))
= logT'(n) + ©(mloglog T'(n)) — Wproof-

hproof := 108 Hproof = log <H3q + QT/VV3q )

< R

proo

The final proof matrix will be of size Hproof X Wiroof, arranged as follows: The first Hsrqoof rows will

contain the proof Hz:‘oof of V39, The remaining 2" /Wpreof contains the proof y : {0,1}" — {0,1},
represented as the string y(0)oy(1)o---oy(2" — 1) of length 2". Recall that there will be two kinds
of queries to the proof oracle.

3q
proo

column verifier of V39 to generate the queries rectangularly.

2. Otherwise, the query is to the proof y(seed) for the randomness seed € {0,1}" of V39, Then
the column (resp. row) index of this query only depends on the lowest wproor bits (resp. the
highest 7 — wproof bits) of the random seed of V. Recall that the random seed of V' is the
concatenation of seed and a j € [10]. If we arrange the randomness as

1. If the query is to the proof oracle I, _ of V39 or to the input oracle, we can use the row and

seed.col o seed.shared o j o seed.row,

then the lowest wproof bits (resp. the highest 7 — wproof bits) of the random seed only depends
on the (seed.col, seed.shared) (resp. (seed.shared, j, seed.row)), since

Tcol = Wproof — (5/m) log T(n) < Wproof
Tcol + T'shared = Wproof + (5/m) 10g T(n) + O(log log n+m IOg m) > Wproof -

As a result, the queries can be done rectangularly. O
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A.1 Satisfying Pairs for Prod; o Sum o % Circuits

Theorem 3.7. Let € be a typical circuit class, M' > 1 and n € (0,1) be parameters. Suppose
there is a deterministic algorithm running in time T8 = T®8(N, M) that, given as input a list of
N < N ANDy o € circuits {C;} and a list of M < M inputs {x;}, estimates the following quantity
with additive error n:

- Pro[Ci(ag)]-
=[N, [2]

Then, there is a deterministic algorithm running in time AY(2% + M'/M) - (bproq/N) - O(T?18)
that, given as input a ProdgoSumo € circuit CP™d with parameters specified in Remark 5.6, and a
list of M’ inputs {(z;, )}, estimates the following quantity with additive error 7 - Ue:

CPrOd . 3.
ie[epmdl,HM@[ @ )

Proof. For any fixed ¢ and j, we know that

Prod
C; "% x5, o) HSum Yz, )

= H Z coeffy( Oé] |ka(Oéj,qt(i))(xj)

t=1ke[A]

= Z Z Z H(Coeffkt(aj)‘Cidxkt(aj,qt(i))<xj))' (15)

ki1€[A] ko€[A]  kq€[A] t=1

As we can enumerate ki, ks, ..., kg € [A] in A? time, it suffices to estimate

d
E [H (Coeffkt (@) - Cidxy, (a.00(6)) (%’))] : (16)
=1

— [EProd} ) [Ml] t

Fix kq,ko,...,kq € [A]. Since CP¢ is of locality I, we can see that Eq. (16) only depends on dI
bits of ;. We partition j € [M'] into 2% groups as follows: For each a € {0,1}%, let 7, be the set
of j € [M'] such that the dl bits of a; (that Eq. (16) for this j depends on) equals to a. We will
estimate Eq. (16) by enumerating o € {0,1}%, estimating it for j < J, (instead of j < [M’]), and
then taking the average over all possible «.

Now we fix any a € {0,1}%. We can rephrase the following two items as they no longer depend
on «;:

coeffy, (aj) =: coeffy;
Claxy, (5,000 (T3) =2 Cig (i) (25)-

It then suffices to estimate

coeff}, - coeff;
ZProd »]<_\704 [H IdX Z ] <H EProd 7]<_\7a

Each expression of the form E; ; [/\td:1 idx, (i )(x])] can be reduced to the SATISFYING-PAIRS

/\ CIdX 1 (4) ZL‘] ] (17)

problem for AND, o € circuits. More precisely, we split J, into blocks of size M, split [¢p,oq] into
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blocks of size N, and use the assumed algorithm (which works for N AND, o € circuits and M
inputs) to estimate Eq. (17) within additive error (77 . thzl‘coeff;‘) in T - [|Jo| /M1 - [lprod/N]

time.?” We substitute this estimation in Eq. (16) and then in Eq. (15) to obtain our final algorithm.
It remains to upper bound the running time and the additive error of our algorithm.

Running time. Consider the subroutine for estimating Eq. (16). This subroutine itself is reduced
to subroutines for each J,, which takes T®8 - [|7,|/M] - [¢prod/N] time. The time complexity of
this subroutine is

O(T™®) - [lroa/NT- D _[1Tal/M] < O(T™5) - (2" + M /M) - (tproa/N).

We invoked this subroutine A times by enumerating ki, ks, ..., kg € [A] to estimate Eq. (15), so
the total time complexity of our algorithm is A%(2% 4 M’ /M) (proa/N)O(T?8).

Additive error. Our estimation of Eq. (17) is within additive error (n Ht 1}coeff }) Thus our

estimation of Eq. (16) is within additive error of

d

Z |J\‘7;’ ~H[coeff’| =n- E

ae{0,1}4 i=1

d
1 Icoeffr, (aj)|] .

i=1
It follows that our estimation of Eq. (15) is within additive error of

d
ey Y ey E H|coeffkt(aj)|]

k1€[A] k2€[A] kq€ A]
d

<n-U° O

Lemma 4.5. Let € be a typical circuit class, M' > 1 and n € (0,1) be parameters. Suppose there is
a deterministic algorithm running in time T*& = T&(N M) that, given as input a list of M<M
ANDg o € circuits {C;} and a list of N < N inputs {z;} of length n - polylog(¥), estimates the
following quantity with additive error n:
Pr [Ci(x))].
i [M],j+[N]

Then, for any constant Ly > 0, there is a deterministic algorithm running in time A% . (ﬁféﬂ +
lprod/N) - (24 + M'/M) - O(T™8) that, given as input a Prodg o Sum circuit C¥*4 with parameters
specified in Remark /., a list of £y strings {x;}, a list of M inputs {«;}, and a list of M € circuits
{C;} from {0, 1}121 to {0,1}5%, estimates the following quantity with additive error n - U?:

E CPrd(Ci(z), al)|.
i—loroal j—[M L (C5(), )

Recall here that Cj(x) = Cj(x1) o Cj(z2) 0 --- 0 Cj(zy,).

2%Note that at most one of the block may contain less than M inputs. However, the assumed algorithm works for
input number < M as well, and this will not have any blow-up on the error factor.
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Proof Sketch of Lemma 4.5. We identify idxy(c, i) € [€,] with (idxE (e, i),idx} (a,7)) € [fa] X [le]
(note that £, = £,l4). Then,

d
ClPrOd(Cj($)7aj) = HSumqt(i)(C]‘(l’)aaj)
t=1
d
_ H Z Coeka(Oéj) . (Cj)idxf(aj7qt(i))(xidxi(aj,qt(i)))
t=1ke[A]

= Z Z Z H(Coeﬁkt (a;) C‘)idx;ft(a]-,qt(z'))(ﬂfidxit(ag’:qt(i)))>‘ (18)

ki€[A] kac[A]  kqe[A]t=1

As we can enumerate ki, ko, ..., kg € [A] in A% time, it suffices to estimate
d
[lproa],j+[M’] E(Coeff’” (a) - (€} )idxli(aj7Qt(i>>(x‘dxit (%ﬂt("))))] ' 19)

Fix ky,ko,. .., kq € [A]. Since CP¢ is of locality I, we can see that Eq. (19) only depends on dI
bits of ;. We partition j € [M'] into 2% groups as follows: For each a € {0,1}%, let J, be the set
of j € [M'] such that the dl bits of a; (that Eq. (19) for this j depends on) equals to oe. We will
estimate Eq. (19) by enumerating a € {0, 1}%, estimating it for j < J, (instead of j + [M’]), and
then taking the average over all possible «.
Now we fix any a € {0,1}%. We can rephrase the following items as they no longer depend on
ay:
coeffy, (aj) =: coeff};
idx, (aj, qi(4)) == idx (i);
idx? (aj, qu(4)) =: idx{ (4).

It then suffices to estimate
d
ie[epmlﬁ,jwa !1;[1 coeff; (Ci)ige” o (xidX?'(i)>]
d
(H coeff’) Epri%,jeja /\I(Cj)idng/(i) (:pidxf/(i»]. (20)
Now for B € [lg]?, let Zg := {i € [lprod] : Vt € [d],idx?" (i) = B;}. We enumerate over 3, and

now it suffices to estimate .
WIBIEeJa t:/\l(cj ) (midx?'(i))] ' (21)

Each expression of the form E; ; [/\f:1 (Cj)g, (xidxz/(i)>] can be reduced to the SATISFYING-PAIRS

problem for AND 0% circuits. More precisely, we split Zg into blocks of size NV and J, into blocks of
size M, and use the assumed algorithm to estimate Eq. (21). By similar argument as in Theorem 3.7,
the additive error of our algorithm is bounded by n - U¢.
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Complexity. The subroutine for estimating Eq. (21) takes O(T®8) - [|Ja|/M] - [|Zs/N|] time.
Therefore, the subroutine for estimating Eq. (20) takes

Y O(T™) - [|Tal /M1 - T|Zs|/NT = O(T™%) - [|Tal /M - (5 + tproa/N)
BElt<]
time. It then follows that the subroutine for estimating Eq. (19) takes
Y OT™8) [|Tal/M] - (Eg + lprog/N) = O(T™5) - (2% + M'/M) - (€ + lproa/N)
ae{0,1}4
time, and finally, estimating Eq. (18) takes
O(T*#) - (2" + M'/M) - (¢4 + lprog/N) - A

time, which is the total time complexity of our algorithm. o

A.2 Verifying PCPP with Satisfying Pairs

Lemma 3.8. Let € be a typical circuit class and d > 2 be an even number. Suppose there is an
algorithm that takes as input a list of N = 2"« ANDggo € circuits {C;} and a list of N inputs {x;},
runs in deterministic T*& time, and estimates the following quantity with additive error 1:

Pr [Cl(a:])]

i (2]

Then there is an algorithm that takes the circuit C, (wi,wa, ..., wy f), and (a1, 2, ..., ap f)
proo proo

as input, runs in deterministic O((3A)%4T218) . (22dl+r5hafed + T'1og®™ T/22”C°'> time, and satisfies
the following:

(Completeness) If for every i € [Hpwof], it holds that (1) for every j € [Woroof], 775?3' € [0,1]; (2)

ZReal _ 7.[.lBooI Hl

|7 < 0, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared € {0, 1}"shred and ¢ € [q], || iiz'.shared7b||g <1+2n-U%
2 B 1 e W |17 — 7E9] < 4764 201 (20 4 1)24.

Proof. Fix seed.shared and ¢, we first estimate

Real

I foeed I3 = ¢
seed.shared,.lld *— irow[c] icol[¢]! |-

seed.row,seed.col [

Recall that

”Eye'al = Z coeffy () - Cidxk(ai,j)<wi)-
ke[A]

Therefore, we can build a Prodg o Sum o € circuit Chorm := Chorm(seed.shared, ¢) as follows.

Circuit Chorm

(Inputs) The input consists of (w,a) with the intended meaning that w = Wiew[,) and a = Ajrow[,-

(Bottom circuits) The bottom circuit is exactly C' (taking input w). Thus, there are £ output gates
of & circuits with the i-th one being precisely the i-th output gate of C.
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(Intermediate linear sum gates) There are 2"« intermediate linear sum gates. For each seed.col,

SuUMgeed. col w, 05 Z Coeffk : |dxk(a,icol[b])(w)'
ke[A]

(Output product gates) There are 2"« product gates. For each seed.col, the seed.col-th output gate
is simply
d
(Cnorm)seed.col(wa OL) = (Sumseed.col(wa a)) .

Recall that this circuit Cporm has parameters as follows:
e the number of gates in each layer: £y = £, lgym = 27, Ipyoq = 27<!;
e the fan-in of the top Prod gates d;

e the fan-in A, coefficient sum U, and locality I of the linear sum layer.

We invoke Theorem 3.7 on the circuit Chorm and M’ := 2" inputs {(Wirow[]> Qirow[]) }seed.row- We
obtain an estimation ESTporm = ESTnorm(seed.shared, ¢) where

ESTnorm | Real ||fjl’ S n- Ud'

seed.shared,¢

If ESThorm > 147 -U?, then we reject the input. Otherwise, we proceed to verify that 7R and
7B are close. Consider the polynomial P(z) := 2%(1 — 2)?, which intuitively measures how close
z is to Boolean. We will estimate

E P(W.Refa')} . (22)

i [Hproof} ,j<— [Wproof]

Similarly, we estimate Eq. (22) by building a Prodsg o Sum o € circuit Cyf.

Circuit Cdiff

(Inputs and bottom circuits) The inputs and bottom circuits of Cyi are exactly the same as Crorm.-

then the 2j-th linear sum gate computes (7R¢);, and the (2j + 1)-th one computes 1 — (wReal);.
That is,

Sumy;(w, a) Z coeffy (@) - Ciguy (a,j)(w);  Sumgjii(w,a) = 1 — Sumg;(w, ).
ke[A]

Implementation of the linear sum layer: Since we did not allow coeffi(«) to depend on ¢ (the
output index in [2Wpyeof]), we need to be careful when implementing the linear sum layer. The
fan-in of this layer will be 24 + 1 (instead of A). We identify [2A + 1] with the disjoint union of
[A] x {0,1} and {*} (where x denotes the constant term 1 in Suma; 1 (w,a)). Let idx" and coeff’
be the idx and coeff functions of the intermediate linear sum gates of Clys:

(Function idx) (v, 7)) We write i = 2j + b where j € [Wyoof] and b € {0,1}. If k = (K',b') €
[A] x {0,1}, then idx}, (v, ) returns idxg (cv, j) if b =b" and returns ZERO if b # b'. If k =
then idx} (v, i) returns ZERO if b = 0 and returns ONE if b = 1.

(Function coeff} () If k = (k’,b') € [A] x {0,1}, then coeff} (o) = (—=1)* - coeffy (). If k = »
then coeff) () = 1.

The locality of (idx, coeff’) is still /. The coefficient sum becomes 2U + 1.

95



(Output product gates) There are W0t product gates. For each j € [Wpoof], the j-th output gate
is
Ciff(w, &) = (Sumg;(w, @) - Sum2j+1(w,a))d.

The parameters of the circuit Cy; are as follows:

e the number of gates in each layer: ly = £, lsym = 2Wproof, LProd = Woroof;
e the fan-in of the top Prod gates 2d;
e the fan-in 24 + 1, coefficient sum 2U + 1, and locality [/ of the linear sum layer.

We invoke Theorem 3.7 on the circuit Cyi and the set of M’ := H proof inputs {(wj, ai)}ie[ o]’
proo

and obtain an estimation EST g where
|ESTairr — (22)] < - (2U + 1),

We then accept if and only if ESTqir < 2¢- 6 + n(2U + 1)2¢

Complexity. Our algorithm calls the algorithm in Theorem 3.7 as a subroutine on the circuits
Crorm and Cgigr. It is easy to see that A4(2% 4 27w /2Teol) . O(T?18) time is spent on each Chom.
Similarly, it takes (24 + 1)24(22% + Hproof/27) - (Wproof /27<') - O(T?#) time to process Cair. It
follows that our algorithm runs in deterministic time

O(2T5hared) . Ad(2dl + 2rrow/2rcol) . O(Talg) + (2A + 1)2d(22dl + ﬁproof/QTwl) . (meof/Qrco|) . O(Talg)
— O((?)A)ZdTalg) . (le-i-rshared + =2 col 4 22dl . Wproof/QrCOI + ﬁproof . Wproof/22r°°l)

_ O((SA)QdTalg) . (22dl+rshared +T logO(m) T/227"c0|) '

(Recall that since log(Wproof/2"<) = (5/m)10og T, Tshared > (10/m)logT, we have Wiproof /2"
2rshared - Also, from r := log T + O(loglog T+ mlogm) and m = O(logn/§) we know that 2" 2"cl
T1log®(™) T /2270l )

Now it suffices to prove the completeness and soundness requirements. Before that, we need
the following fact regarding the polynomial P. Let z € R, dp;,(2) be the distance between z to the

closest Boolean value; namely dp;,(2) := min{|z|, |1 — z|}.

<
<

Fact A.1. For every z € R, dpin(2)? - 277 < P(2) < dpin(2)? - (1 4 dpin(2))%. o
Completeness. Suppose that for every i € [Hpoof] and j € [Wiroof], 775;3' € [0,1]. Then for every
L € [q] and seed.shared € {0, 1}"shared ||fs§:3|.shared,L”g <1, and thus ESTporm < 1417 -U%

Suppose in addition that for every i € [I;T oroof], ||mReal — qBool|| | < '§. Then:

(22) < E [diin(mf5™)* - (14 diin(nf5*))

Z?J

7’7‘7
<2d.5.

<2l | [dbin(ﬂRgal)d}

Therefore, ESTgir < 2¢ -6 + n(2U + 1)?¢ and our algorithm accepts.
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Soundness. Suppose our algorithm accepts.

1. For every seed.shared and ¢, we have EST norm < 1-+7-U¢ and thus || sizg'_shared7b d< 142U
2. We have (22) < 2¢.§ 4 2n(2U +1)?? and
E ReaI 7rBQO| } _ E |:d ( Real)d}
ie[Hproof]aje[Wproof} 27] ! Z /
<2%.(22) (Fact A.1)
<4%.5 429y (2U + 1)%7. O

Lemma 4.6. Let € be a typical circuit class and d > 2 be an even number. Suppose there is an
algorithm that takes as inputs a list of 2" ANDgg o € circuits {C;} and a list of 27 inputs {x;}

of length n - polylog(f), runs in deterministic T*® time, and estimates the following quantity with
additive error n:

Pr  [Ci(x;)].
i,j(—[?rcol][ l( ])]
Then there is an algorithm that takes the strings wy, ws, ..., wy, circuits (C1,Cy,...,Cy f), and
proo
(a1, 9, ... ,aﬁpmf) as inputs, runs in deterministic O((3A)20TI8) . (22t 7shared 1T 10gO (M) T'/22reol))

time, and satisfies the following:

(Completeness) If for every i € [Hooof], it holds that (1) for every j € [Wproof], 7 Rea' €[0,1]; (2)

Real __ Bool | | 1
T

|| < 4, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared € {0, 1}"shrd and ¢ € [q], || fREY |9 <1+2n U4

seed.shared,.lld =

Real _ _Bool|d| < 4d d+1 2d
2 B oot i [Woroar] [|7T 5~ iy } < 4.5 422U +1)

Proof Sketch. We first estimate || £33 |4 for fixed seed.shared and ¢. Recall that

seed.shared,.

Real Z COeka a7, ( Ika(am]))
ke[A]

We build a Prodg o Sum circuit Chorm := Chorm(seed.shared, 1) as follows.

Circuit Ciom

(Inputs) The input consists of (y, ) with the intended meaning that y = (y1,ya2,...,ye) where y; =
Cil’OW[L] (wL)7 and a = Xirow]e] -

(Linear sum gates) There are 2" linear sum gates. For each seed.col,

SuUMseed.col y7 Z Coeﬂ:k * Yidxy, (v,icol[e]) -
ke[A]

(Output product gates) There are 2" product gates. For each seed.col, the seed.col-th output gate
is simply

(Cnorm)seed.col (y, a) = (Sumseed.col(ya a))d .

Recall that this circuit Corm has parameters as follows:
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e the number of gates in each layer: fg,y, = 27, lpoq = 27<!;
e the fan-in of the top Prod gates d;
e the fan-in A, coefficient sum U, and locality [ of the linear sum layer.
We invoke Lemma 4.5 on the circuit Cnorm, strings wy, wa, . . ., wy, alist of 27 inputs { irow,] }seed.row>

and a list of 2" size-s € circuits {Cirow[,}seed.row- Here f = 1. We thus obtain an estimation
ESTrorm = ESTrorm (seed.shared, 1) where

Real d d
ESTnorm - H sezz.shared,LHd’ < n- U*.

If ESThorm > 141 - U?, then we reject the input. Otherwise, we proceed to verify that 7Rea!

and 78 are close. Consider the polynomial P(z) := z%(1 — 2)9. we will estimate
E P(WR@')} . (23)

1,J

i [Hproof} 7.7% [Wproof]
Similarly, we estimate Eq. (23) by building a Prodsg o Sum circuit Cygs.

Circuit Cy

(Inputs) The inputs are exactly the same as Chorm.

(Linear sum gates) There are 2Wpoof linear sum gates. Let j € [Wproof], then the 2j-th linear sum
gate computes (7R¢"); and the (24 + 1)-th one computes 1 — (7). That is,

Sumg;(y, o) = Z coeffr (@) * Yiaxy (ar,j);  SUM2jy1(y, @) = 1 — Suma;(y, a).
ke[A]
The implementation of the linear sum layer is the same as in Lemma 3.8, and we omit it here.

(Output product gates) There are W0t product gates. For each j € [Wpyoof], the j-th output gate
is
Caife (y, @) = (Suma;(y, o) - Sum2j+1(yaa))d'

The parameters of the circuit Cy;r are as follows:

e the number of gates in each layer: lsym = 2Wproof; £Prod = Woroof;
e the fan-in of the top Prod gates 2d;
e the fan-in 24 + 1, coefficient sum 2U + 1, and locality [ of the linear sum layer.

We invoke Lemma 4.5 on the circuit Cyis, strings wi, ws, ..., wy, a list of ﬁpmof inputs {o;},
and a list of Hproof size-s € circuits {C;}. Here £ = 1. We obtain an estimation EST g where

’ESTdiff — (23)| < n- (2U + 1)2d.
We accept if and only if EST g < 2¢ -6 + n(2U + 1)2¢.
The correctness and complexity are analysed the same as in Lemma 3.8, so we omit it here. <
A.3 Proof of Claim 3.9
We need the following technical lemma (see [CW19b, Lemma 28| and [RSW22, Lemma 4.9]):

Lemma A.2. Let d > 2 be an integer, f1, fa,..-, fa,91,92,---,94 : [N] = R be functions. For all
i € [d], suppose that || filla < 1, and define ¢ := Z?:l |\ fi — gilla- Then

d d
i i

=1

<(1+e)% e
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The above lemma is a consequence of the following generalisation of Holder’s inequality:

Fact A.3. Let fi, fo,...,fa : [N] = R be functions, f : [N] — R be their product, i.e., f(x) =
I, fiw). Then (|1l < Ty Il filla-
Proof of Lemma A.2. Let &; := ||f; — gilla, then e = Y% &;. Define

d
Hyb = E_ [T50- 1T 5

j=1 j=i+1

Then, for every 1 <i < d,

1—1
Hyb; —Hybia| < E | ] fi(@)- IIgj (filx) = gi())

Jj=1 j=i+1
SH 1£illa - H lgjlla - 11 £: = gilla (Fact A.3)
Jj=1 Jj=i+1
d
< H(l +e5)-&

It follows that

d d
o[ fLs00 Lot

d
= [Hybg — Hybo[ < Z IHyb; — Hyb; ;| < (1+¢)%" . O

i=1 =1
Recall that for S, S’ C [¢], we define
! Bool
PDacc(seed.shared, S, ") := E H(rowL °Dicol] - H e,
seed.row<—{0,1}"row y
seed.col<—{0,1}"col Lees LES
Real d.sh d. S Sl L E Real
Pace (seed.shared, S, S") := (row, )lcoI[L] ) PC. |,
seed.row<—{0,1}"row y
seed.col<—{0,1}"col Les tes
5 . H Bool _ fReal H
seed.shared - — seed.shared,. seed.shared,.112q+

L:itype[t]=proof
Claim 3.9. For every S, S’ C [q],
|Pacc(seed.shared, S, S') — QDI.:,RCe(f"(seed.shared7 S, 9N < (1+ 5seedlshared)2q_1 - Oseed.shared -

Proof. Define the following 2(|S| + |S’|) functions fP°°!, gf‘°°', fReal ijea' where 7 € S and j € 5.
Each function takes (seed.row, seed.col) as inputs, and:

Bool Real

B I
f%° icolli];  and  g;°% = g7 = pe;.

fReaI . Real)

(rOWB l)lcol[z’]; (I’OW

(Note: for convenience, we omit the input (seed.row, seed.col).) It follows that || £E°°||24, ||g B°°'H2q <
1; for every j € S, ||gB°° — gRe3||5, = 0; and for every i € 9,

0 if itype[i] = input;
Bool _ ¢Real ;
177 = 7% l2g = {‘

Bool op - g
seed.shared,i fseed shared,: if Itypem - proof.
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Therefore, by Lemma A.2,
|pacc(seed.shared, S, §") — pRe (seed.shared, S, 5")|

= E Bool | Bool Real Real
seed.row+—{0,1}"row H fz H 9j H fz H 9;

seed.col«{0,1}7col L?€S jes’ i€S jes’

2q—1
g(l + 5seed.shared) 777 - Oseed.shared- U

A.4 Proof of Lemma 3.10

Lemma 3.10. Let f : [N] x [q] = R>¢ be a function and d > 1 be a constant. Suppose that
1. for every s € [N] and i € [q], f(s,i) < a (where o > 1);
2. B, [f(s,9)% < 6.

Let f(s) := Y1y f(5,7). Then
E[(1+ ()" f(s)] < 0"/ (2q)"".
Proof. By Jensen’s inequality,
E[f(s)] = ¢ E[f(s, )] < ¢8"/".
It follows that for every k > 1,
E[f(s)"] < E[f(s)] - max{f(s)}* " < q6"/* - (qa)*~".

Finally, we have

U
—_

E[(1+ f()" - f(s)] = (d - 1) E[f(s)"*] < g6/4(2q0)" . 0

1

Il
o

A.5 An XOR Lemma in [CLW20]

Theorem 2.5. Let N € N, 0 <¢,§ < 1/10, k := O(log(1/¢)/9), N := N* and a := O(log® N/(6)?).
There is an algorithm Amp : {0, Y = {0,1}N computable in deterministic poly(N) time, and a
linear sum circuit C : {0,1}" x {0,1}% — RY such that the following hold.

(List-decoding) For every string f € {0, I}N that is (1/2 — €)-close to Amp(f) for some hidden

string f, there is an advice a € {0,1}*, such that (1) for every i € [N], C(f,a); € [0,1]; and
(2) C(f,0) = flln < 6.

(Complexity) The fan-in, coefficient sum, and locality of C are at most O(log N/(£6)?), O(1/¢),
and log N respectively.

The lemma is implied by the XOR lemma in [CLW20|. For simplicity, we identify a string f of
length N and a Boolean function f : [N] — {0, 1}, where f(x) outputs the z-th bit of f. For a string
f € {0,1}", denote f® to be the following string of length N*. For each (z1,zs,...,z%) € [N]*,
we have

f@k(ﬂfl,l’g, R RRES @f(ﬂ?z)

And we simply let Amp(f) := f&F,
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The decoder. For a length-k vector o+ € ([N]JU {L})* and i € [N], let @ denote the Vector
where each L in ¢ is replaced by i. (In the decoder, we will only need the case where each o
contains exactly one L, so ¥" simply replaces that single L by i.)

Let f : [N]¥ — {0,1} be a codeword (treated as a Boolean function). For A’ := O(log N/(£6)?)
and r := %, our decoder will take a list of vectors 9{, vy, ..., 045 € ([N]JU{L})¥ and a list of
signs 01,09,...,04 € {0,1} as advice. Intuitively, 171-1- denotes a segment of f that has noticeable

correlation with f, and o; denotes whether the correlation is positive or negative; our linear sum
decoder uses the average of f (U ) ® o; as a prediction of f;.
More formally, given an 1nput i € [N], the decoder outputs

dec(f)i =~ E [Fa) @) -12] 4172 (24)

r ](—[A’

Correctness. We establish the correctness of this decoder by the following lemma.

Lemma A.4. Let k > 1,5 € (0,1/10), € := (1 —6)*1(1/2 — 9), and A’ := O(log N/(£6)?). For
every string f € {0, 1}Nk that is (1/2 —¢)-close to fO for some hidden string f € {0,1}, there is
a list of A’ vectors vi-, Uy, .. UA/ C (I[NJU{L}*, and a list of signs 01,09,...,04 € {0,1}, such
that (1) for every i € [N], dec( )i € [0,1]; and (2) ||dec(f) — f]l1 <.

Proof. We use induction on k. Suppose k = 1, then one can verify by direct calculation that the
lemma holds by setting #- = (L) and o1 = 0. Now suppose k > 1 and the lemma holds for k — 1.

Fix i € [N] and let o+ € ([N]U{L})¥ denote some vector whose first coordinate is | and other
coordinates are from [N]. Think of every coordinate of ¥, except the first, is drawn independently
and uniformly from [/V]. Define

- Fli @k (i ]
pii= P T = 7@
Case I: Suppose there is some ig € [N] such that |[p;, —1/2| > /(1 —0). Let b € {0,1} be a bit,
consider the sub-string f" € {0, l}Nki1 such that f'(7+) = f(¢") @ b. Then, for some b € {0,1}, f’

is (1/2 —e/(1 — §))-close to fE*-1),
By the induction hypothesis, there is a list of A’ vectors @y ,...,d5 C ([N — 1] U {L}*) and

a list of signs of,...,0’, € {0,1} such that the vector dec’ satisﬁes the conclusion of the lemma,
where )
dec) = - i oty —1 2] 1/2.
= B [F@ e -1+

For each 7, let z7j- be the concatenation of iy and z_[jL, and let 0; = a; @ b. We have that dec(f)i is
exactly dec; and we are done.

30Eq. (24) is perhaps easier to understand when we change the basis from {0,1} to {1, —1}; we choose the basis
{0,1} only to be consistent with other parts of this paper. When we change the basis to {1, —1}, XOR becomes
multiplication and the assertion “a = b” becomes simply a - b. Thus Eq. (24) becomes

dec()i= 1 E_[f@)-0i],

r J<—[A’]

which is simply the average of all A’ predictions, amplified by a factor of 1/r.
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Case II: Suppose for every i € [N], we have |p; — 1/2| < ¢/(1 — ).

(1/2 — ¢)-close to fF, we have
E [pi]>1/2+e.

i+ [N]

We sample each 17jl < {1} x [N]*~! independently at random. Let

pii= Pr |f(5) = foh()].

J[A]

Note that, since f is

Let n := (1 57- By a Chernoff bound, w.p. 1— Ne 21t > 0, for every i € [N], we have |p; — pi| < 7.

Let 0, = fOD (5 )5r) = @fy F((F1)1), then we have

pi= Pr [fi:f(@';-)@aj}_

51t
Note that
dec() =+ (i (fi = 1/2)+ (L= 5) - (1/2 = f)) +1/2
RUSTEIC N
Claim A.5. For every i € [N], dec(f); € [0,1].
Proof.
dec((f)s = 1/2 = |(i ~ 1/2)(251 — 1)
= pi—1/2
1—9¢ €
= (2—1—(5)5(1—5 +’7)
~1/2.

Claim A.6. ||dec(f) — f||1 = Ei%[]\/][’dec(f)i —fill <6
Proof.
E [|dec(f)i — fi]

i+ [N]

i+ [N] T
o

i+ [N] r

E, 5] — 1/2
:1/2_ 1<—[N][p] /
T
<1/2-"T <y,
T

(25)

where Eq. (25) is because we have shown in the proof of Claim A.5 that |; —1/2| < 1/2 for every

1.

Combining Claim A.5 and A.6, the lemma is proved.
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Complexity. It remains to determine the complexity of the decoder defined in Eq. (24). The
advice string o contains the vectors 17%, 175-, cee Uj, and the signs 1,09, ...,04/. It is clear that the
fan-in is at most A’ + 1 = O(log N/(¢6)?). The coefficient sum is O(1/r) = O(e~!). Since the k-th
term is

coeff(a) = (=1)77/(A'r), and idxy(a,i) = o,

it follows that each term only depends on log N bits of a.
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