
Range Avoidance, Remote Point, and Hard Partial Truth Tables
via Satisfying-Pairs Algorithms

Yeyuan Chen
Xi’an Jiaotong University
yychen9961@gmail.com

Yizhi Huang
IIIS, Tsinghua University
huangyizhi01@gmail.com

Jiatu Li
IIIS, Tsinghua University

lijt19@mails.tsinghua.edu.cn

Hanlin Ren
University of Oxford

h4n1in.r3n@gmail.com

May 18, 2023

Abstract

The range avoidance problem, denoted as C -Avoid, asks to find a non-output of a given
C -circuit C : {0, 1}n → {0, 1}ℓ with stretch ℓ > n. This problem has recently received much
attention in complexity theory for its connections with circuit lower bounds and other explicit
construction problems. Inspired by the Algorithmic Method for circuit lower bounds, Ren,
Santhanam, and Wang (FOCS’22) established a framework to design FPNP algorithms for C -
Avoid via slightly non-trivial data structures related to C . However, a major drawback of their
approach is the lack of unconditional results even for C = AC0.

In this work, we present the first unconditional FPNP algorithm for ACC0-Avoid. Indeed,
we obtain FPNP algorithms for the following stronger problems:

• (ACC0-Remote-Point). Given C : {0, 1}n → {0, 1}ℓ for some ℓ = quasi-poly(n) such
that each output bit of C is computed by a quasi-poly(n)-size AC0[m] circuit, we can find
some y ∈ {0, 1}ℓ in FPNP such that for every x ∈ {0, 1}n, the relative Hamming distance
between y and C(x) is at least 1/2−1/poly(n). This problem is the “average-case” analogue
of ACC0-Avoid.

• (ACC0-Partial-AvgHard). Given x1, . . . , xℓ ∈ {0, 1}n for some ℓ = quasi-poly(n),
we can compute ℓ bits y1, . . . , yℓ ∈ {0, 1} in FPNP such that for every 2log

c(n)-size ACC0

circuit C, Pri[C(xi) ̸= yi] ≥ 1/2 − 1/poly(n), where c = O(1). This problem generalises
the strong average-case circuit lower bounds against ACC0 in a different way.

Our algorithms can be seen as natural generalisations of the best known almost-everywhere
average-case lower bounds against ACC0 circuits by Chen, Lyu, and Williams (FOCS’20). Note
that both problems above have been studied prior to our work, and no FPNP algorithm was
known even for weak circuit classes such as GF(2)-linear circuits and DNF formulas.

Our results follow from a strengthened algorithmic method: slightly non-trivial algorithms
for the Satisfying-Pairs problem for C implies FPNP algorithms for C -Avoid (as well as C -
Remote-Point and C -Partial-AvgHard). Here, given C -circuits {Ci} and inputs {xj}, the
C -Satisfying-Pairs problem asks to (approximately) count the number of pairs (i, j) such that
Ci(xj) = 1.

A technical contribution of this work is a construction of a short, smooth, and rectangular
PCP of Proximity that combines two previous PCP constructions, which may be of independent
interest. It serves as a key tool that allows us to generalise the framework for Avoid to the
average-case scenarios.

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 72 (2023)

mailto:yychen9961@gmail.com
mailto:huangyizhi01@gmail.com
mailto:lijt19@mails.tsinghua.edu.cn
mailto:h4n1in.r3n@gmail.com

Contents

1 Introduction 1
1.1 From Circuit Lower Bounds to Range Avoidance . 1
1.2 Our Results . 4
1.3 Technical Overview . 9
1.4 Further Related Work . 11
1.5 Organisation . 12

2 Preliminaries 12

3 Range Avoidance and Remote Point 23
3.1 Range Avoidance from Satisfying-Pairs . 24
3.2 Remote Point from Satisfying-Pairs . 31
3.3 Variants of Our Frameworks . 42

4 Hard Partial Truth Tables 43
4.1 Hard Partial Truth Tables from Satisfying-Pairs 43
4.2 Average-Case Hard Partial Truth Tables . 46

5 Unconditional Algorithms for Range Avoidance, Remote Point, and Hard Partial
Truth Tables 52
5.1 Algorithms for Satisfying Pairs . 52
5.2 An FPNP Algorithm for XOR-Remote-Point . 54
5.3 Remote Point for ACC0 . 55
5.4 Hard Partial Truth Tables for ACC0 . 56

6 Construction of Smooth and Rectangular PCPP 57
6.1 Rectangular Neighbour Listing and Smoothness . 58
6.2 A Rectangular PCPP with RNL Property . 63
6.3 RNL-Preserving Composition Theorem . 69
6.4 Soundness Amplification Preserving Smoothness and Rectangularity 73
6.5 Final Construction . 76

7 Construction of Rectangular PCPPs with Low Query Complexity 80
7.1 A 3-Query PCPP for Circuit-Eval⊥ . 80
7.2 A 3-Query Rectangular PCPP . 81
7.3 A 2-Query Rectangular PCPP with Imperfect Completeness 83

References 86

A Missing Proofs in Section 3 and 4 90
A.1 Satisfying Pairs for Prodd ◦ Sum ◦ C Circuits . 91
A.2 Verifying PCPP with Satisfying Pairs . 94
A.3 Proof of Claim 3.9 . 98
A.4 Proof of Lemma 3.10 . 100
A.5 An XOR Lemma in [CLW20] . 100

ii

1 Introduction

“You might wonder why should coming up with explicit construction
be so difficult. After all, a proof of existence via the probabilistic
method shows not only that an object with the desired property
exists but in fact the vast majority of objects have the property.”

Sanjeev Arora and Boaz Barak [AB09]

1.1 From Circuit Lower Bounds to Range Avoidance

Proving unconditional lower bounds for non-uniform circuits is one of the grand challenges in
theoretical computer science, with the holy grail of proving NP ̸⊆ P/poly. Unfortunately, progress in
unconditional circuit lower bounds has been slow, and the best lower bound for any explicit function
against general circuits is only slightly above 3n [FGHK16,LY22]. A long-standing, and somewhat
embarrassing, open problem is to find any language in EXPNP (exponential time with an NP oracle)
that cannot be computed by polynomial-size circuits. It seems unlikely that EXPNP ⊆ P/poly, but
we appear to be very far from ruling out this possibility.

To add more embarrassment, it has been known since 1949 [Sha49] that most Boolean functions
over n inputs require circuits of size Ω(2n/n). 70 years later, we still struggle to spell out even a
single such function from a plethora of them! It turns out that circuit lower bounds are not alone,
and the difficulty of “finding hay in a haystack” ([AB09, Chapter 21]) is a general phenomenon
in theoretical computer science. For example, most graphs are Ramsey graphs [Erd59] and most
matrices are rigid matrices [Val77], but it remains major open problems to explicitly construct
Ramsey graphs and rigid matrices with good parameters [CZ19,Li23,AC19,Ram20,BHPT20].

Our lack of progress in such explicit construction problems suggests the necessity of a systematic
study of their difficulty. As a first step towards building a complexity theory for explicit construction
problems, Korten [Kor21] studied the complexity class APEPP defined in [KKMP21], and argued
that this is the complexity class that corresponds to explicit construction problems. APEPP is the
class of total search problems that are polynomial-time reducible to the following problem:

Problem 1.1 (Range Avoidance Problem, denoted as Avoid). Given the description of a circuit C :
{0, 1}n → {0, 1}ℓ, where ℓ > n, output any string y ∈ {0, 1}ℓ that is not in the range of C. That is, for
every x ∈ {0, 1}n, C(x) ̸= y.

The existence of such y follows from the dual weak pigeonhole principle: if we throw 2n pigeons
into 2ℓ holes, where ℓ ≥ n+ 1, then there is an empty hole. Thus Avoid is a total search problem.
Moreover, a random string y ∈ {0, 1}ℓ is a valid solution w.p. 1− 2n−ℓ ≥ 1/2, thus there is a trivial
randomised algorithm for Avoid. Hence, the focus is to design deterministic algorithms for Avoid.

The following is a good example of how Avoid captures the complexity of explicit constructions:

Example 1.2 ([Kor21, Section 3.1]). Proving circuit lower bounds can be rephrased as solving the
following total search problem, denoted as Hard: On input 1N where N = 2n, output the truth table
of a function f : {0, 1}n → {0, 1} that cannot be computed by circuits of size s (say s = 2n/2).

Let TT : {0, 1}O(s log s) → {0, 1}2n be the circuit that takes as input the description of a size-s
circuit and outputs the truth table of this circuit. (The circuit TT is sometimes called the truth table
generator, hence the name TT.) If we could solve Avoid on the particular instance TT, we would find
a truth table tt ∈ {0, 1}2n without size-s circuits, thereby proving a circuit lower bound. It follows that
Hard polynomial-time reduces to Avoid, and thus Hard ∈ APEPP.

More precisely, solving Avoid for TT in polynomial time is equivalent to proving a circuit lower
bound for E, and solving Avoid for TT in FPNP is equivalent to proving a circuit lower bound for ENP.

1

1.1.1 Range Avoidance for Restricted Circuit Classes

In a recent paper, Ren, Santhanam, and Wang [RSW22] suggested studying the range avoidance
problem for restricted circuit classes. Let C be a circuit class and ℓ := ℓ(n) > n be a stretch function.
Consider the following problem:

Problem 1.3 (C -Avoid). Given the description of a circuit C : {0, 1}n → {0, 1}ℓ(n), where each output
bit of C is a C circuit, output any string y ∈ {0, 1}ℓ(n) that is not in the range of C. That is, for every
x ∈ {0, 1}n, C(x) ̸= y.

There are lots of reasons for studying the problem C -Avoid, but we only mention one of them
here. Many interesting explicit construction problems reduce to C -Avoid for restricted circuit
classes C and (sometimes) large stretch functions ℓ. For example:

• For any “nice” circuit class C , the problem of proving circuit lower bounds against C can be
reduced to C -Avoid via the truth table generator in Example 1.2, where the input of the
truth table generator is replaced by a C circuit (instead of a general circuit).

• Guruswami, Lyu, and Wang [GLW22] showed that the problem of finding rigid matrices and
optimal binary linear codes can be reduced to NC1-Avoid. By a further result in [RSW22],
these problems also reduce to NC0-Avoid. A recent work [GGNS23] showed that the problem
of finding rigid matrices can even be reduced to NC0

3-Avoid.

In general, for any explicit construction problem Π, we can identify a circuit class C that is
as “simple” as possible, as well as a stretch function ℓ(n) that is as large as possible, such that Π
reduces to C -Avoid with stretch ℓ(n). The hope is that by making progress on the range avoidance
problem for restricted circuits and by optimising the reduction (i.e., optimising C and ℓ(n)), we
could solve many explicit construction problems systematically.

An “Algorithmic Method” for range avoidance. Inspired by the Algorithmic Method for
proving circuit lower bounds (e.g. [Wil13, Wil14a, MW20, CW19b,Che19, CLW20]), [RSW22] pro-
posed a framework that uses data structures to solve C -Avoid in FPNP. Consider the following
data structure problem.

Problem 1.4 (Hamming Weight Estimation). Let C be a circuit class and ℓ := ℓ(n) be a stretch
function. The data structure problem has two phases:

(Preprocessing) Given the description of a circuit C : {0, 1}n → {0, 1}ℓ, where each output bit of
C is a C circuit, we need to preprocess the circuit in PNP (i.e., in polynomial time with an NP
oracle) and output a data structure DS ∈ {0, 1}poly(ℓ).

(Query) Given an input x and oracle access (i.e., random access) to DS, we need to estimate the
Hamming weight of C(x) in “non-trivial” time, i.e., deterministic ℓ/ logω(1) ℓ time.

It was shown in [RSW22] that for “typical” circuit classes C , a non-trivial data structure for the
Hamming Weight Estimation problem for C implies an FPNP algorithm for C -Avoid.

One drawback of [RSW22] is that their framework does not imply new unconditional algorithms
for range avoidance.1 For comparison, the original Algorithmic Method has made significant progress
on proving unconditional circuit lower bounds that we do not know how to prove otherwise. One
motivation for the current paper is to address this drawback by designing new and unconditional

1Actually, [RSW22] provided an unconditional range avoidance algorithm for de Morgan formulas with non-trivial
parameters. Subsequently, [GLW22] improved this result by using simpler techniques and achieving better parameters;
in particular, the algorithm in [GLW22] does not require the Algorithmic Method.

2

range avoidance algorithms via the Algorithmic Method. In particular, can we solve ACC0-Avoid
with parameters that match the circuit lower bounds in [CLW20]?

1.1.2 The Remote Point Problem

The Algorithmic Method is extremely good at proving average-case circuit lower bounds [CR22,
CLW20,CL21]. Therefore, it is natural to wonder if there is an “average-case analogue” of [RSW22].

For two strings x, y ∈ {0, 1}n, their relative Hamming distance is defined as the fraction of
indices where x and y differ, formally δ(x, y) := 1

n |{i ∈ [n] : xi ̸= yi}|. The “average-case analogue”
of the range avoidance problem is the following problem:

Problem 1.5 (Remote Point Problem, denoted as C -Remote-Point). Given the description of a
circuit C : {0, 1}n → {0, 1}ℓ and a parameter δ > 0, where each output bit of C is a C circuit, output
any string y ∈ {0, 1}ℓ that is δ-far from the range of C. That is, for every x ∈ {0, 1}n, δ(C(x), y) ≥ δ.

By Chernoff bound, if δ < 1/2 − c
√

n/ℓ for some absolute constant c > 0, then a random
length-ℓ string is a valid solution for Remote-Point w.h.p. Therefore, the challenge is to find
deterministic algorithms for Remote-Point.

It is not hard to see that C -Remote-Point for the truth table generator TT corresponds to
average-case circuit lower bounds. In particular, the regime where δ is a small constant corresponds
to proving “weak” average-case lower bounds (e.g. [COS18,Che19]), and the regime where δ is close
to 1/2 (say, δ = 1/2− 1/n) corresponds to proving “strong” average-case lower bounds (e.g. [CR22,
CLW20]).2

The remote point problem was discussed in [KKMP21]. Indeed, an important special case of
the problem has been studied by Alon, Panigrahy, and Yekhanin [APY09], namely the case that
C is a linear transformation over GF(2). In other words, we are given a linear code C : {0, 1}n →
{0, 1}ℓ and we want to find a string far from every codeword. They introduced this problem as
an intermediate step towards constructing rigid matrices. In this paper, we call this special case
XOR-Remote-Point.

It is already quite hard to solve this special case deterministically. Alon, Panigrahy, and
Yekhanin [APY09] designed a polynomial-time algorithm for XOR-Remote-Point when ℓ > 2n
and δ = O(log n/n). For slightly larger δ, say δ = 0.1, no deterministic algorithm is known even with
an NP oracle. Arvind and Srinivasan [AS10] showed that for certain parameters, a polynomial-time
algorithm for XOR-Remote-Point implies a polynomial-time algorithm for AC0-Partial-Hard
(defined later in Section 1.1.3).

1.1.3 Hard Partial Truth Tables

Besides Avoid and Remote-Point, we also consider the following problem that generalises the
task of proving circuit lower bounds (in a different way from Avoid and Remote-Point):

Problem 1.6 (Hard Partial Truth Tables against C , denoted as C -Partial-Hard). Given a list of
input strings z1, z2, . . . , zℓ ∈ {0, 1}n and a parameter s, find a list of output bits b1, b2, . . . , bℓ ∈ {0, 1}
such that the partial function defined by {(zi, bi)}i∈[ℓ] cannot be computed by C circuits of size s. In
other words, for every size-s C circuit C, there exists an index i ∈ [ℓ] such that C(zi) ̸= bi.

2Typically, a strong average-case lower bound states that certain problems cannot be (1/2 + 1/s)-approximated
by size-s circuits. Suppose TT : {0, 1}n → {0, 1}ℓ is the truth table generator, then n is roughly the size of the
circuit (i.e., n ≈ s). In this regard, strong average-case circuit lower bounds correspond to Remote-Point where
δ = 1/2− 1/n.

3

It is easy to see that C -Partial-Hard generalises the problem of proving circuit lower bounds
against C . Indeed, if we take ℓ := 2n and z1, z2, . . . , zℓ be an enumeration of length-n strings, then
C -Partial-Hard becomes exactly the problem of proving circuit lower bounds against C . It is
also easy to see that when ℓ > O(s log s), this problem is in APEPP: given the input (z1, z2, . . . , zℓ),
we can construct a circuit TT′ : {0, 1}O(s log s) → {0, 1}ℓ which takes the description of a C circuit
C as input, and outputs the concatenation of C(z1), C(z2), . . . , C(zℓ). Finding a non-output of TT′

is equivalent to finding a solution of C -Partial-Hard, thus this problem reduces to Avoid.
This problem was introduced by Arvind and Srinivasan [AS10] under the name “circuit lower

bounds with help functions.” Let h1, h2, . . . , hn : {0, 1}m → {0, 1} denote a sequence of help
functions, C be a circuit class, and s ∈ N be a size parameter. The goal is to construct the truth
table of a function f : {0, 1}m → {0, 1} that is hard to compute for size-s C circuits, even when
the circuit has access to these help functions. Formally, for any size-s circuit C : {0, 1}n → {0, 1},
there exists an input x ∈ {0, 1}m such that

C(h1(x), h2(x), . . . , hn(x)) ̸= f(x).

This problem is equivalent to Partial-Hard with ℓ = 2m inputs of length n, namely for every
x ∈ {0, 1}m, there is an input h1(x) ◦ h2(x) ◦ · · · ◦ hn(x) ∈ {0, 1}n in the Partial-Hard instance.

This problem appears to be very hard. Neither [AS10] nor we are aware of an efficient determin-
istic solution for C = AC0 with (say) ℓ, s ∈ quasi-poly(n). That is, although exponential-size lower
bounds against AC0 are known [Ajt83,FSS84,Yao85,Hås89], we do not have any idea about how to
prove such a lower bound for partial functions. Even when C is the class of polynomial-size DNF,
to the best of our knowledge, there is no known deterministic algorithm for C -Partial-Hard.

Besides being a natural problem itself, C -Partial-Hard also arises when we study the closure
of non-uniform complexity classes (under reductions). Recall that AC0 denotes the class of languages
computable by a non-uniform family of polynomial-size constant-depth circuits; in particular, AC0

contains undecidable languages such as unary versions of the halting problem. A language L Turing-
reduces to some language in AC0 if and only if L ∈ P/poly [Pip79], thus proving EXP ̸≤p

T AC0 is likely
beyond current techniques. But what about mapping reducibility? Can we show that EXP ̸≤p

m AC0?
It turns out that a deterministic algorithm for AC0-Partial-Hard implies that EXP ̸≤p

m AC0

[AS10, Theorem 5]. Of course, there is nothing special with AC0, and it can be replaced by other
non-uniform classes. Therefore, C -Partial-Hard sheds light on ruling out many-one reducibility
of EXP (and other complexity classes) to non-uniform classes.

We can also define the average-case version of C -Partial-Hard, which is equivalent to proving
average-case lower bounds with help functions.

Problem 1.7 (Average-Case Hard Partial Truth Tables against C , denoted as C -Partial-AvgHard).
Given a list of input strings z1, z2, . . . , zℓ ∈ {0, 1}n and parameters s, δ, find a list of output bits
b1, b2, . . . , bℓ ∈ {0, 1} such that the partial function defined by {(zi, bi)}i∈[ℓ] is δ-far from being com-
putable by C circuits of size s. In other words, for every size-s C circuit C, there are at least δℓ indices
i ∈ [ℓ] such that C(zi) ̸= bi.

1.2 Our Results

In this sub-section, we describe our results in detail.

1.2.1 Explicit Constructions from Satisfying-Pairs Algorithms

We start with the following observation: In the framework of solving Avoid via the Algorithmic
Method [RSW22], the data structure for Problem 1.4 does not need to be online. Instead, it suffices

4

to design a data structure that preprocesses a circuit C : {0, 1}n → {0, 1}ℓ, receives a batch of
inputs x1, x2, . . . , xM , and estimates the Hamming weight of each C(xi) in non-trivial total time,
i.e., ℓM/ logω(1)(ℓM) time. Moreover, we observe that it is not even necessary to estimate the
individual Hamming weights C(xi); it suffices to estimate the average Hamming weight of C(xi)
for i ∈ [M]. Indeed, we arrive at the following problem called Satisfying Pairs.3

Problem 1.8 (C -Satisfying-Pairs). Let N,M, s, n be parameters. Given (single-output) C circuits
C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s and input strings x1, x2, . . . , xM ∈ {0, 1}n, compute or
estimate

Pr
i←[M],j←[N]

[Cj(xi) = 1]. (1)

We define the decisional and counting versions of the satisfying pairs problem as follows.

• Gapδ-C -Satisfying-Pairs is the problem of distinguishing between (1) = 1 and (1) < 1− δ;
• Approxε-C -Satisfying-Pairs is the problem of estimating (1) within additive error ε;
• C -Satisfying-Pairs is the problem of deciding whether (1) > 0;
• #C -Satisfying-Pairs is the problem of exactly computing (1).

We consider the regime where the input length n and the circuit size s are much smaller than N
and M . In such case, a deterministic algorithm for C -Satisfying-Pairs is said to be non-trivial
if it runs in time NM/ logω(1)(NM).4

Remark 1.9. The circuit-analysis problems that arise in the Algorithmic Method5 are special
cases of Satisfying Pairs problems. For instance, we can solve #SAT of the circuit C by solv-
ing #Satisfying-Pairs with N = 2n/2 and M = 2n/2, where the inputs (x1, x2, . . . , xM) consists
of all strings of length n/2, and the circuits are {Cy : y ∈ {0, 1}n/2}, where Cy(x) := C(x ◦ y).
Similarly, C -Satisfying-Pairs corresponds to C -SAT, Gap-C -Satisfying-Pairs corresponds to
C -GapUNSAT, and Approx-C -Satisfying-Pairs corresponds to C -CAPP.

Range Avoidance from Satisfying-Pairs. By plugging the observation above in [RSW22],
we show that non-trivial algorithms for Satisfying-Pairs imply FPNP algorithms for Avoid.

Theorem 1.10 (Theorem 3.2, Informal). Let C be a typical circuit class and C ′ := OR2 ◦ C .6

Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for every constant
ε > 0, then C -Avoid with certain parameters can be solved in FPNP.

This informal version of Theorem 3.2 hides the trade-off between the parameters of C -Avoid
and C ′-Satisfying-Pairs. In general, to solve C -Avoid with smaller stretch ℓ (with respect to
the input length n), we need to have non-trivial algorithms for C ′-Satisfying-Pairs where the

3We remark that our definition of C -Satisfying-Pairs is different from the fine-grained complexity literature
(e.g., [AHWW16,CW19a]). The input of the C -Satisfying-Pairs problem defined in [AHWW16,CW19a] consists
of a circuit C(−,−) and two sets of input strings {ai} and {bj}, and one wants to compute or approximate the
number of pairs (i, j) such that C(ai, bj) = 1; in our C -Satisfying-Pairs problem, we receive as input a list of
circuits {Ci} and a list of inputs {xj}, and we want to compute or approximate the number of pairs (i, j) such that
Ci(xj) = 1. The new definition fits our purpose better. We also remark that for circuit classes that can “evaluate
themselves” (such as AC0,ACC0, and TC0), these two definitions are computationally equivalent.

4Analogous to the preprocessing phase in Problem 1.4, one could also add a PNP-preprocessing phase that sees
the circuits but not the inputs. Algorithms with such preprocessing phase would still imply our results, but the
Satisfying-Pairs algorithms in this paper do not need this preprocessing phase.

5The definitions of circuit-analysis problems such as SAT or CAPP can be found in Lijie Chen’s PhD thesis [Che22].
6Here, ORd ◦ C refers to the composition of a single fan-in-d OR gate being the output gate of the circuit and (at

most) d C circuits feeding the top OR gate.

5

number of inputs N and the number of circuits M are smaller with respect to the circuit size s and
the input length n. We highlight two typical choices of parameters of Theorem 3.2 as follows.

Corollary 1.11. There is a constant ε > 0 such that the following holds. Let C be a typical circuit
class, C ′ := OR2 ◦ C , and s = s(n) be a non-decreasing size parameter.

• Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for N =
n1+Ω(1) C ′-circuits of size 2s(n) and M = n1+Ω(1) inputs of length n. Then there is an
FPNP algorithm for C -Avoid with stretch ℓ and circuit size s,7 for some ℓ = n1+Ω(1).

• Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for N =
quasi-poly(n) C ′-circuits of size 2s(n) and M = quasi-poly(n) inputs of length n. Then there
is an FPNP algorithm for C -Avoid with stretch ℓ and circuit size s, for some ℓ = quasi-poly(n).

Remote Point from Satisfying-Pairs. With the help of a smooth and rectangular PCPP
(see Section 6) and a linear-sum list-decodable code from [CLW20] (also see Appendix A.5), we show
that non-trivial algorithms for Satisfying-Pairs imply FPNP algorithms for Remote-Point.

Theorem 1.12 (Theorem 3.5, Informal). Let C be a typical circuit class and C ′ := ANDO(1) ◦ C .
Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for every constant
ε > 0, then C -Remote-Point with certain parameters can be solved in FPNP.

In particular: suppose for every constant ε > 0, there is a non-trivial algorithm for Approxε-C ′-
Satisfying-Pairs for N = quasi-poly(n) C ′-circuits of size O(s) and M = quasi-poly(n) inputs
of length n; then for some stretch function ℓ = quasi-poly(n), there is an FPNP algorithm for C -
Remote-Point that takes as input a circuit C : {0, 1}n → {0, 1}ℓ where each output bit of C is a
C -circuit of size s, and outputs a y that is 0.49-far from Range(C).

Our framework provides Remote-Point algorithms for the regime corresponding to “strong
average-case lower bounds”, i.e., the distance between the output y and Range(C) is close to 1/2.
In fact, the distance can be as large as 1/2 − 1/poly(n) given an Approx-C -Satisfying-Pairs
algorithm with a small enough error. (see Theorem 3.5 for details).

Note that the stretch for C -Remote-Point that we can solve in FPNP depends on both the pa-
rameters of the satisfying pairs algorithms and the rate of the linear-sum list-decodable code. Since
the code from [CLW20] has a quasi-polynomial rate, our framework cannot solve Remote-Point
with stretch smaller than quasi-polynomial. It is an interesting open problem to improve the stretch
of Remote-Point that can be solved by our framework, possibly by designing new linear-sum de-
codable codes with a better rate; see, e.g., [CL21].

Hard Partial Truth Table from Satisfying-Pairs. Similar to the frameworks for Avoid
and Remote-Point, we can solve Partial-Hard and Partial-AvgHard via non-trivial algo-
rithms for Satisfying-Pairs.

Theorem 1.13 (Theorems 4.2 and 4.3, Informal). Let C be a typical circuit class.

• Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for every ε > 0
and C ′ := OR2 ◦ C , then C -Partial-Hard with certain parameters can be solved in FPNP.

• Suppose that there is a non-trivial algorithm for Approxε-C ′′-Satisfying-Pairs for every
ε > 0 and C ′′ := ANDO(1) ◦ C , then C -Partial-AvgHard with certain parameters can be
solved in FPNP.

7Note that the circuit size parameter of C -Avoid refers to the maximum circuit size of each output bit of C :
{0, 1}n → {0, 1}ℓ, instead of the total circuit size of C.

6

These results are proved using essentially the same approach as the framework for Avoid
and Remote-Point; subsequently, the trade-off between parameters for Satisfying-Pairs and
Partial-Hard (resp. Partial-AvgHard) is similar to that for Avoid (resp Remote-Point).
We omit the details and refer the readers to Theorems 4.2 and 4.3.

Remark 1.14. It is not surprising to have a unified framework for Avoid and Partial-Hard (and their
average-case analogues Remote-Point and Partial-AvgHard), since Avoid and Partial-Hard
can be considered as the dual problem of each other. Let Eval : {0, 1}O(s log s) × {0, 1}n → {0, 1} be the
circuit-evaluation function that takes a circuit C of size s and an input of length n, and outputs C(x).
We can interpret Avoid and Partial-Hard as follows:

• (Avoid). Given size-s circuits C1, C2, . . . , Cℓ, find y1, y2, . . . , yℓ ∈ {0, 1} such that for every
x ∈ {0, 1}n, there is an i ∈ [ℓ] such that Eval(Ci, x) ̸= yi.

• (Partial-Hard). Given inputs x1, x2, . . . , xℓ ∈ {0, 1}n, find y1, y2, . . . , yℓ ∈ {0, 1} such that
for every size-s circuit C, there is an i ∈ [ℓ] such that Eval(C, xi) ̸= yi.

Clearly, Avoid and Partial-Hard are essentially the same problem on the table Eval(·, ·) with the
rows and columns being exchanged.

1.2.2 Unconditional Results for Explicit Constructions

The seemingly marginal improvement of using Satisfying-Pairs instead of its online version
Hamming Weight Estimation (see Problem 1.4) plays an important role in the design of uncon-
ditional FPNP algorithms for ACC0-Remote-Point and ACC0-Partial-Hard, because we can
indeed design non-trivial algorithms for ACC0-Satisfying-Pairs.

XOR-Remote-Point from XOR-Satisfying-Pairs. We start from a simpler case where the
circuit class C = XOR, i.e., the circuit is an XOR of some of its input bits. Since an XOR circuit C can
be represented by a vector v⃗ ∈ {0, 1}n such that C(x) = ⟨v, x⟩ mod 2, #XOR-Satisfying-Pairs is
nothing but the counting version of the Orthogonal Vector problem over F2, which admits a non-
trivial algorithm [CW21,AC19]. By combining this with Theorem 1.10, we obtain an unconditional
FPNP algorithm for XOR-Remote-Point.8

Theorem 1.15 (XOR-Remote-Point ∈ FPNP). There is a constant cu ≥ 1 such that the following
holds. Let ε := ε(n) ≥ 2n−cu be the error parameter and ℓ := ℓ(n) ≥ 2log

cu+5 n be the stretch
function, then there is an FPNP algorithm that takes as input a circuit C : {0, 1}n → {0, 1}ℓ, where
each output bit of C is computed by an XOR gate, and outputs a string y that is (1/2− ε)-far from
Range(C).

A non-trivial algorithm for ACC0-Satisfying-Pairs. By slightly adapting the technique
introduced by Williams [Wil18c] to design non-trivial #SAT algorithms for ACC0 circuits with an
earlier quasi-polynomial size simulation of SYM◦ACC0 circuits by SYM◦AND circuits [BT94,AG91],
we can obtain a non-trivial algorithm for #ACC0-Satisfying-Pairs, formally stated as follows.

Theorem 1.16. For every constants m, ℓ, c, there is a constant ε ∈ (0, 1) such that the following
holds. Let n := 2log

ε N and s := 2log
c n. There is a deterministic algorithm running in Õ((N/n)2)

time that given N strings x1, x2, . . . , xN ∈ {0, 1}n and N AC0
ℓ [m] circuits C1, C2, . . . , CN : {0, 1}n →

{0, 1} of size s, outputs the number of pairs (i, j) ∈ [N]× [N] such that Ci(xj) = 1.
8The reduction from Remote-Point to Satisfying-Pairs has a small overhead on the circuit class (i.e. the

upper ANDO(1) in Theorem 1.12). By a standard trick using Fourier analysis (see Theorem 2.17; also see [CW19b]),
we can change the upper circuit class to be XORO(1) so that we only need to design Satisfying-Pairs algorithms
for XORd ◦ XOR = XOR.

7

Explicit constructions for ACC0. The FPNP algorithm for ACC0-Remote-Point and ACC0-
Partial-AvgHard follows from this algorithm together with Theorem 1.12 and Theorem 1.13.

Theorem 1.17 (ACC0-Remote-Point ∈ FPNP). There is a constant cu ≥ 1 such that for every
constant d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and

ℓ := ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that takes as input a

circuit C : {0, 1}n → {0, 1}ℓ, where each output bit of C is computed by an AC0
d[m] circuit of size s,

and outputs a string y that is (1/2− ε)-far from Range(C).

Theorem 1.18 (ACC0-Partial-AvgHard ∈ FPNP). There is a constant cu ≥ 1 such that for
every constants d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and ℓ :=

ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that given inputs x1, . . . , xℓ ∈

{0, 1}n, it outputs a string y ∈ {0, 1}ℓ such that for any s(n)-size AC0
d[m] circuit C, y is (1/2−ε)-far

from C(x1) ◦ · · · ◦ C(xℓ).

It is worth noting that the ACC0-Remote-Point algorithm here recovers the best known almost-
everywhere average-case circuit lower bounds against ACC0 [CLW20]. This is done by considering
the special case where the input circuit is the truth table generator TT : {0, 1}O(s log s) → {0, 1}2n
that prints the truth table of a given ACC0 circuit (see Section 5.3).

Corollary 1.19. For every constants d,m ≥ 1, there is an ε > 0 and a language L ∈ ENP such that
Ln cannot be (1/2 + 2−n

ε
)-approximated by AC0

d[m] circuits of size 2n
ε, for all sufficiently large n.

Lower bounds on the many-one closure of ACC0. Following the observation of Arvind and
Srinivasan [AS10], the FPNP algorithm for ACC0-Partial-AvgHard can be used to prove uncon-
ditionally that ENP cannot be mapping reduced to languages decidable by small-size non-uniform
families of ACC0 circuits.9 To the best of our knowledge, this is the first unconditional result ruling
out the mapping reducibility from uniform classes to non-trivial non-uniform classes.

Corollary 1.20. Let d,m ∈ N be constants, AC0
d[m] denote the class of languages computable by a

non-uniform family of polynomial-size AC0
d[m] circuits. Then, there is a language Lhard ∈ ENP that

does not have polynomial-time mapping reductions to any language in AC0
d[m].

1.2.3 A Smooth and Rectangular PCPs of Proximity

One of the main technical ingredients in our framework for the average-case explicit construction
problems (i.e. Remote-Point and Partial-AvgHard) is a PCP of Proximity (PCPP) that is
short, smooth, and (almost) rectangular.

A PCPP verifier V for a language L provides a super-efficient probabilistic proof system for
checking whether x ∈ L or x is far from being in L. Given an input x and a proof π, the verifier
with access to some random bits only probes constantly many bits of x and π. If x ∈ L, then it
accepts with an appropriate proof π; if the relative Hamming distance between x and any x′ ∈ L
is at least δ, then it rejects with constant probability regardless of the proof π. (The distance δ is
called the proximity parameter of the PCPP.) In addition, our PCPP verifier is equipped with the
following properties:

9In fact, it suffices to have an FPNP algorithm for ACC0-Partial-Hard (which is a trivial consequence of an FPNP

algorithm for ACC0-Partial-AvgHard) for this application.

8

• (Shortness). For any language L ∈ NTIME[T (n)], where n ≤ T (n) ≤ 2poly(n), the PCPP
proof for L has length T (n) · polylog(T (n)).

• (Rectangularity). The input and the proof are treated as matrices. Moreover, the queries
of the verifier to the input and proof matrices can be done rectangularly, in the sense that
there are a row verifier Vrow and a column verifier Vcol with (almost) independent random
seeds that generate the row and column indices of the queries, respectively.

• (Smoothness). The queries of the verifier to the proof matrix are uniformly random. As a
consequence, it means that the PCPP proof can tolerate errors in a correct proof.

We refer the readers to Section 2.5 for formal definitions of these properties.
Before our work, Bhangale, Harsha, Paradise, and Tal [BHPT20] constructed a short, smooth,

and rectangular PCP (instead of PCPP) built upon [BGH+06] with an application of constructing
rigid matrices (also see [Val77,AC19]). Ren, Santhanam, and Wang [RSW22] constructed a short
and rectangular PCPP based on [BGH+06,BHPT20] for the Algorithmic Method for Avoid. It turns
out that to generalise [RSW22] to the “average-case” explicit construction problems Remote-Point
and Partial-AvgHard, we need both smoothness (as in [BHPT20]) and PCPs of proximity (as in
[RSW22]). A technical contribution of this work is to combine [BHPT20] and [RSW22] to obtain a
smooth PCPP.

Theorem 1.21 (Theorem 2.14, Informal). Let T (n) be a good function. For every language L ∈
NTIME[T (n)], there is a short, smooth, and (almost) rectangular PCP of proximity verifier V for
L, with perfect completeness, constant soundness error, and constant query complexity.

Following standard techniques in the algorithmic approach to lower bounds (see, e.g., [CW19b]),
we also construct a short and rectangular (non-smooth) PCPP that makes at most two queries to the
input and the proof matrices (see Theorem 2.13) to minimise the overhead on the circuit class when
we reduce Avoid and Partial-Hard to Satisfying-Pairs (i.e. the upper OR2 in Theorem 1.10
and Theorem 1.13).

1.3 Technical Overview

As mentioned in Section 1.2.1, the range avoidance algorithm follows from slightly modifying the
framework in [RSW22] and using an algorithm for Satisfying-Pairs. In what follows, we briefly
illustrate our techniques for the remote point problem and for constructing hard partial truth tables.
The high-level idea is to reduce these problems to Avoid and invoke our framework for Avoid to
solve them.

Remote Point Problem. Our start point is the following reduction from Remote-Point to
Avoid. Suppose that C : {0, 1}n → {0, 1}ℓ is the input circuit. Let Enc : {0, 1}ℓ′ → {0, 1}ℓ be the
encoding procedure of an error correcting code, and Dec : {0, 1}ℓ → {0, 1}ℓ′ be the corresponding
decoding procedure, where Dec can correct a δ fraction of errors. Define the circuit C ′(x) :=
Dec(C(x)), and let z be any string not in the range of C ′, then Enc(z) is (1− δ)-far from Range(C).
To see this, assume for contradiction that Enc(z) is (1 − δ)-close to some C(x), then Dec(C(x))
should return exactly z, contradicting that z is a non-output of C ′.

Suppose that the function Dec can be implemented in the circuit class CDec, then this is a
reduction from C -Remote-Point to (CDec ◦ C)-Avoid. Therefore, we would like the complexity
of CDec to be as small as possible. There are decoders that tolerate a small constant fraction of
errors in AC0 [GGH+07], so it might be possible to implement CDec in AC0. However, when δ is
very close to 1/2 (say δ = 1/2− ε), we enter the list-decoding regime where CDec seems to need the

9

power of majority [GR08]. Can we solve C -Remote-Point without invoking any circuit-analysis
algorithms for MAJ ◦ C ?

Fortunately, the required techniques already appeared in previous works on the Algorithmic
Method for proving strong average-case circuit lower bounds. In [CLW20], they provided an error-
correcting code that corrects a 1/2− ε fraction of errors, where the decoder DecCLW can be imple-
mented as a linear sum, i.e., each output is a linear combination of the input bits.10 Intuitively,
this means that we can reduce C -Remote-Point to (Sum ◦ C)-Avoid, where Sum denotes the
layer of DecCLW. Using the framework for range avoidance established above, it suffices to solve the
Satisfying-Pairs problem for Sum ◦ C circuits.11 But it is easy to see that Satisfying-Pairs
for Sum ◦ C circuits directly reduces to Satisfying-Pairs for C circuits! Therefore, the error-
correcting code in [CLW20] allows us to use an algorithm for C -Satisfying-Pairs to directly solve
C -Remote-Point, with little or no circuit complexity overhead.

The above discussion omitted several important technical details:

• It turns out that DecCLW is only an approximate list-decoding algorithm: given a corrupted
codeword that is (1/2− ε)-close to the correct codeword, we can only recover a message that
is δ-close to the correct message (instead of perfectly recovering the correct message).

This drawback is handled by smooth PCPPs [Par21], which has the property that any slightly
corrupted version of a correct proof is still accepted with good probability. As we need a
rectangular PCPP in [RSW22], what we actually need is a smooth and rectangular PCPP,
which we construct in Section 6. We remark that [CLW20] also encountered this difficulty;
they got around it by combining a PCP and a PCPP for Circuit-Eval. It is not clear how
to generalise this strategy to our case.

• Another technical complication is that DecCLW outputs real values instead of Boolean values. It
is only guaranteed that the decoded message is close to the original message in ℓ1-norm. Con-
sequently, after guessing the PCPP proof, we also need to verify that it is “close to Boolean”,
This difficulty also appears in [CLW20]; however, we need to carefully define what it means
by “close to Boolean” in our case.

• Since DecCLW works in the list-decoding regime, it also receives an advice string (specifying
the index of the codeword in the list). In the above discussion, we omitted the advice string
to highlight the main ideas. It turns out that the dependency of the decoder on the advice
string cannot be captured by linear sums. Therefore, we need to define an ad hoc “linear sum”
circuit class (in Section 2.4) that receives both an input and an advice string and computes a
linear combination over the input, where the “linear combination” depends on the advice. It
turns out that we need the dependency on the advice to be local (see Section 2.4 for details),
which is fortunately satisfied by the code in [CLW20].

Another reduction via succinct dictionaries. We mention that there is another reduction
from Remote-Point to Avoid which appears in [Kor21,GLW22]. Let C : {0, 1}n → {0, 1}ℓ be a
circuit, y ∈ {0, 1}ℓ be a string that is not δ-far from Range(C). Then we can find a string x ∈ {0, 1}n
and a “noise” string e ∈ {0, 1}m of relative Hamming weight at most δ such that y = C(x) ⊕ e,

10[CLW20] stated this result as a non-standard XOR lemma in their Appendix A. We re-prove it in the form of
error-correcting codes in Appendix A.5.

11We made a simplification here. Actually, we need to solve Satisfying-Pairs for NC0◦Sum◦C circuits. Using the
distributive property, we can push the NC0 circuits below the Sum layer, thus it suffices to solve Satisfying-Pairs
for Sum ◦ NC0 ◦ C circuits. In this informal exposition, we may assume that C is closed under top NC0 gates, which
means that a Satisfying-Pairs algorithm for Sum ◦ C now suffices.

10

where ⊕ refers to bit-wise XOR. Consider the circuit C ′(x, e) := C(x) ⊕ e. To solve the remote
point problem for C, it suffices to solve the range avoidance problem for C ′. Using a “succincter”
dictionary to represent e [Pǎt08], [GLW22] managed to show that this reduction also preserves
circuit complexity, and in particular reduces NC1-Remote-Point to NC1-Avoid.

A drawback of this approach is that it only reduces Remote-Point to range avoidance instances
with a small stretch. Indeed, suppose C ′ is a circuit from n′ inputs to ℓ outputs, and δ = Ω(1), then

n′ ≥ |Π(e)| ≥ log

(
ℓ

δℓ

)
= Ω(ℓ).

In contrast, the algorithmic method in both [RSW22] and this paper could not solve range
avoidance instances with such a small stretch (ℓ = c · n for some constant c), even with the best
possible algorithms for Satisfying-Pairs. Therefore we do not use this approach in this paper.

Hard Partial Truth Table. There is a simple reduction from Partial-Hard to Avoid. Suppose
we are given strings x1, x2, . . . , xN . Let TT′ be the circuit that receives a size-s circuit C as input,
and outputs the concatenation of C(x1), C(x2), . . . , C(xN). If N > O(s log s) then the circuit TT′

is stretching. It is also easy to see that solving the range avoidance of TT′ is equivalent to solving
the Partial-Hard problem.

In Section 4, we essentially combine this reduction with the frameworks in Section 3. In other
words, we could have reduced Partial-Hard to Avoid in a black-box way and derived the main
results in Section 4. However, this reduction only reduces C -Partial-Hard to C ′-Avoid, where
C ′ is any circuit class that can solve C -Eval in the following sense: for every fixed input x, there
is a C ′ circuit C ′ that takes as input the description of a C circuit C, and outputs C(x). For most
circuit classes of interest (e.g., C ∈ {AC0,ACC0,NC1,P/poly}), we could simply let C ′ = C ; however,
this is not necessarily true for more refined circuit classes (such as C = ACC ◦ THR). We choose to
derive the main results in Section 4 from scratch instead of reducing it to Section 3, partly because
we also want our framework to hold for these more refined circuit classes.

1.4 Further Related Work

Satisfying-Pairs and the Polynomial Method. The Satisfying-Pairs problems for re-
stricted circuit classes nicely capture a wide range of algorithmic problems that have been ex-
tensively studied. For instance, the Orthogonal Vector Problem over F2 corresponds to XOR-
Satisfying-Pairs, and the (decision version of) Nearest Neighbor Problem corresponds to the
Satisfying-Pairs of polynomial threshold functions (see, e.g., [Wil14b,ACW16]).

There is a successful line of research on non-trivial algorithms for this kind of problems via
the polynomial method [Raz87, Smo87] in circuit complexity. Williams [Wil18a] developed an
n3/2(logn)

Ω(1)-time algorithm for the All-Pairs Shortest Path problem using the Razborov-Smolensky
polynomial representation of AC0[p] circuits [Raz87, Smo87, Smo93] and a fast batch evaluation of
polynomials via fast rectangular matrix multiplication [Cop82] (also see Theorem 5.1). Similar
techniques were used to design non-trivial algorithms for the Orthogonal Vector Problem over F2

[CW21, AWY15] and the (approximate) Nearest Neighbor Problems (with respect to Hamming
distance, ℓ1-distance, and ℓ2-distance) [AW15, ACW16, ACW20]. Chen and Wang [CW19a] (fol-
lowing [AW17]) generalised the polynomial method in algorithm design by showing a connection
between Satisfying-Pairs problems and quantum communication protocols, with an application
in Approxε-XOR-Satisfying-Pairs (which is called Approximate #OV in [CW19a]).

11

Explicit obstructions. Related to the Partial-Hard problem is the notion of explicit obstruc-
tions [Mul11, CJW20]: on input 1n, one wants to output a list of (xi, yi) deterministically, such
that xi ̸= xj for i ̸= j, and for all n-input circuit C from a certain circuit class C , there is some
i such that C(xi) ̸= yi. This notion is weaker than deterministic algorithms for Partial-Hard,
as one has the freedom of choosing the inputs {xi}. Chen, Jin, and Williams [CJW20] exhibited
a “sharp threshold” phenomenon for explicit obstructions against de Morgan formulas: an explicit
obstruction for Formula[n1.99] provably exists, while an explicit obstruction for Formula[n2.01] would
imply very strong circuit lower bounds.

1.5 Organisation

Organisation of the Paper

• In Section 2, we introduce concepts and tools used in this paper and fix the notation.

• In Section 3, we demonstrate the framework of solving Avoid and Remote-Point via non-trivial
algorithms for Satisfying-Pairs.

• In Section 4, we demonstrate the framework of solving Partial-Hard and Partial-AvgHard via
non-trivial algorithms for Satisfying-Pairs.

• In Section 5, we present a non-trivial algorithm for ACC0-Satisfying-Pairs from [Wil18c], and
combine it with the frameworks to obtain unconditional FPNP algorithms for ACC0-Remote-Point
and ACC0-Partial-AvgHard. We also demonstrate the consequences of these algorithms.

• In Section 6, we construct short, smooth, and rectangular PCPs of Proximity, used in the frameworks
of solving Remote-Point and Partial-AvgHard.

• In Section 7, we construct short and rectangular PCPs of Proximity with query complexity only 2 or
3, used in the framework for Avoid and Partial-Hard.

• In Appendix A, we prove some technical lemmas in Section 3 and 4.

2 Preliminaries

Notation. We use Õ(f(n)) to denote f(n) ·(log f(n))O(1). The concatenation of the strings x and
y is denoted by x ◦ y. The relative Hamming distance of two strings x and y, denoted by δ(x, y), is
the fraction of indices i such that xi ̸= yi. A string x is said to be γ-far from (resp. γ-close to) a
string y if δ(x, y) ≥ γ (resp. δ(x, y) < γ). We say x ∈ {0, 1}n is γ-far from L ⊆ {0, 1}n if x is γ-far
from every y ∈ L; otherwise x is γ-close to L. For a vector u⃗ ∈ Rn and an integer d ≥ 1, the ℓd
norm of u⃗ is

∥u⃗∥d :=

(
E

i←[n]
[|ui|d]

)1/d

.

Given a function f : {0, 1}n → {0, 1}m, the range of f , denoted by Range(f), is defined as the
set of outputs of f , i.e., Range(f) := {f(x) | x ∈ {0, 1}n}.

A function f : N→ N is said to be good if there is a Turing machine such that given n in binary,
it runs in time poly(log n, log f(n)) and outputs f(n) in binary.

A circuit class C is said to be typical if it contains the identity circuit and is closed under
negations and projections. More precisely, (1) every function that always outputs its input bits
is computable by a constant size C circuit; (2) for any C circuit C of size s and projection proj,
both ¬C and C ◦ proj have C circuits of size poly(s), and the descriptions of these circuits can be
computed in poly(s) time.

12

Let S be a finite sample space and E be an event. We use Prx←S [E] to denote the probability
that E happens if x is sampled uniformly from S. Similarly, for a random variable Y , we use
Ex←S [Y] to denote the expectation of Y when x is sampled uniformly from S.

2.1 Circuit Classes

Throughout this paper, the size of a circuit is defined as the number of wires (instead of gates)
in the circuit. We will use the following (single-output) circuit classes.

• AC0
d refers to depth-d circuits with AND and OR gates of unbounded fan-in, and NOT gates

of fan-in 1. We define AC0 :=
⋃

d AC
0
d.

• AC0
d[m] refers to depth-d circuits with AND, OR, and MOD[m] gates of unbounded fan-in, and

NOT gates of fan-in 1. A MOD[m] gate outputs 1 if and only if m does not divide the number of
1 in its inputs. We define AC0[m] :=

⋃
d AC

0
d[m]. Furthermore, we define ACC0 :=

⋃
m AC0[m].

• CC0
d[m] refers to depth-d circuits with only MOD[m] gates of unbounded fan-in. We define

CC0[m] :=
⋃

d CC
0
d[m] and CC0 :=

⋃
m CC0[m].

• NC0
d refers to constant-size circuits such that the output depends on at most d input bits. We

define NC0 :=
⋃

dNC
0
d.

• Assume that F ∈ {AND,OR,XOR,MOD[m], . . . } is a gate, we define an F circuit as a circuit
with only an F gate fed by some (or all) of the input bits. In particular, we define an Fd circuit
as a circuit with an F gate of fan-in at most d fed by some (or all) of the input bits.

We define SYM as the class of any symmetric Boolean function, i.e., f : {0, 1}n → {0, 1} such
that f(x) = g(x1 + x2 + · · ·+ xn) for some function g.

Suppose that C1 and C2 are circuit classes, we denote C1 ◦ C2 as the composition of these two
classes: the input bits feed an n-input m-output C2 circuit C2, and the m output bits of C2 feed
an m-input single-output C1 circuit C1. For instance, a SYM ◦ ACC0 circuit contains a symmetric
output gate whose inputs are ACC0 circuits.

For a circuit class C , we use C [s] to represent the sub-class of the C circuits of size at most s.

2.2 Error-Correcting Codes

An error-correcting code with message length n, rate r, and relative distance δ is a function
Enc : {0, 1}n → {0, 1}rn such that for every pair of distinct x1, x2 ∈ {0, 1}n, δ(Enc(x1),Enc(x2)) ≥ δ.
It is said to correct γ fraction of errors if there is a Dec : {0, 1}rn → {0, 1} such that for every y
that is γ-close to Enc(x) for some x ∈ {0, 1}n, Dec(y) = x.

We need the following standard construction of error-correcting codes.

Theorem 2.1 ([Spi96]). There is a GF(2)-linear error-correcting code (Enc,Dec) with a constant
rate, constant relative distance, and can correct a constant fraction of errors. Moreover, both Enc
and Dec are uniformly computable in linear time.

2.3 An Almost-Everywhere NTIME Hierarchy with a Refuter

We need the almost-everywhere NTIME hierarchy against bounded nondeterminism [FS16],
which has an FPNP refuter as shown in [CLW20]. Let T (n), G(n) be good functions, we define
NTIME[T (n)] to be the class of languages decidable by nondeterministic Turing machines in T (n)
time, and NTIMEGUESSRTM[T (n), G(n)] to be the class of languages decidable by nondeterministic
Random-Access Turing Machines (RTMs) in T (n) time with G(n) nondeterministic bits.

13

Theorem 2.2 ([FS16,CLW20,RSW22]). Let c be a large universal constant, T : N→ N be a good
function such that n logc+1 n ≤ T (n) ≤ 2poly(n). There is a language

Lhard ∈ NTIME[T (n)] \ i.o.-NTIMEGUESSRTM[T (n)/ logc T (n), n/10]/(n/10).

Moreover, there is an algorithm R (the “refuter”) such that the following holds.

(Input) R receives three inputs (1n,M, α), where M is a nondeterministic RTM and α ∈ {0, 1}n/10
is an advice string. It is guaranteed that M runs in T (n)/ logc T (n) time and uses at most
n/10 nondeterministic bits; moreover, the description length of M is O(1).

(Output) For every fixed M , every sufficiently large n, and every advice α ∈ {0, 1}n/10, R(1n,M, α)
outputs a string x ∈ {0, 1}n such that M(x;α) ̸= Lhard(x).

(Complexity) R runs in poly(T (n)) time with adaptive access to an NP oracle.

2.4 Linear Sum Circuits and Hardness Amplification with Them

We need an XOR lemma with “linear sum” decoders: given a corrupted codeword f̃ that is
(1/2− ε)-close to Amp(f), there is an affine transformation A such that A(f̃) is δ-close to f .

The actual definition of linear sum circuits is more involved for the following reason. Our XOR
lemma works in the list-decoding regime, therefore it also receives an advice string α (i.e., the index
in the list) and outputs the α-th decoded message in the list. When α is fixed, A(f̃ ;α) is simply
an affine function over f̃ ; but the dependence on α can be more complicated. It turns out that we
need an upper bound on the locality of the dependence on α, defined as follows.

Definition 2.3 (Linear Sum Circuits). Let x ∈ {0, 1}n and α ∈ {0, 1}a be two inputs. A linear
sum circuit on input x with advice α is a function C : {0, 1}n×{0, 1}a → Rm of the following form:

C(x, α)i =
∑

k∈[A]

coeffk(α) · xidxk(α,i).

Here, A is the fan-in of C. The circuit is described by two functions coeffk(α) and idxk(α, i); note
that coeffk(α) does not depend on i. For technical convenience, we will also allow idxk(α, i) to take
special values ZERO and ONE, where xZERO is always 0 and xONE is always 1.

Besides the fan-in A, the following complexity measures of C will also be important:

• We say the coefficient sum of C is at most U , if for every advice α, we have
∑

k∈[A]

|coeffk(α)| ≤ U.

• We say that C has locality l, if for every fixed k, there is a subset Sk of l bits of α such that
the functions coeffk(α) and idxk(α, i) only depends on α|Sk

.

Example 2.4. Consider the following example (simplified from the proof of Theorem 2.5). Suppose the
advice α consists of a list of sub-advices (α1, α2, . . . , αa′) where a′ ≈ 1/ε2; given an index k, coeffk(α)
only depends in αk, and idxk(α, i) only depends on αk and i. Suppose each αk has length l, then
regardless of the number a′, the linear sum has locality l.

14

We need the following XOR lemma with linear sum decoders. The XOR lemma was proved
in [Lev87, GNW11] and it was shown in [CLW20, Section A] to admit linear sum decoders. For
completeness, we provide a proof of Theorem 2.5 in Appendix A.5 and verify the locality of the
linear sum. Note that the XOR lemma is stated below as an approximately locally list-decodable
code.

Theorem 2.5. Let N ∈ N, 0 < ε, δ < 1/10, k := O(log(1/ε)/δ), Ñ := Nk, and a := O(log2N/(εδ)2).
There is an algorithm Amp : {0, 1}N → {0, 1}Ñ computable in deterministic poly(Ñ) time, and a
linear sum circuit C : {0, 1}Ñ × {0, 1}a → RN such that the following hold.

(List-decoding) For every string f̃ ∈ {0, 1}Ñ that is (1/2 − ε)-close to Amp(f) for some hidden
string f , there is an advice α ∈ {0, 1}a, such that (1) for every i ∈ [N], C(f̃ , α)i ∈ [0, 1]; and
(2) ∥C(f̃ , α)− f∥1 ≤ δ.

(Complexity) The fan-in, coefficient sum, and locality of C are at most O(logN/(εδ)2), O(1/ε),
and log Ñ respectively.

We will also use the notation decα(f) to denote C(f, α), emphasising that decα is an affine
transformation that depends on α.

2.5 PCPs of Proximity

Now we will introduce Probabilistically Checkable Proofs of Proximity (PCPPs) [BGH+06]
and two properties of PCPPs that will be useful in designing algorithms for explicit construction
problems: rectangularity and smoothness.

In what follows, a pair language is simply a subset of {0, 1}∗ × {0, 1}∗. For an instance (z, x)
of a pair language, we treat z as the explicit input (which the PCPP verifier can read entirely)
and x as the implicit input (which the PCPP verifier could only read a few bits). For example,
Circuit-Eval is a pair language with two inputs, i.e., a circuit C and an input x, and the task
is to evaluate C(x). A PCPP verifier for Circuit-Eval knows the input circuit C but can only
access a few bits of x.

2.5.1 Basic Definitions

Definition 2.6 (PCP of Proximity Verifiers). Let r = r(n), q = q(n), ℓ = ℓ(n), d = d(n) be
good functions and L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. A PCPP verifier VPCPP for L
with proof length ℓ, randomness complexity r, decision complexity d, and query complexity q is a
tuple of Turing machines (Vtype, Vindex, Vdec) that will verify a proof π ∈ {0, 1}ℓ of the statement
(z, x) ∈ L ∩ {0, 1}∗ × {0, 1}n as follows.

• It randomly samples a seed ∈ {0, 1}r and generates

(itype[1], itype[2], . . . , itype[q])← Vtype(seed, z),

(i[1], i[2], . . . , i[q])← Vindex(seed, z).

For every j ∈ [q], itype[j] ∈ {input, proof} determines the type of the j-th query: If itype[j] =
input, the j-th query probes the i[j]-th bit of the “implicit input” x; otherwise (i.e., itype[j] =
proof), the j-th query probes the i[j]-th bit of the proof π.

• Let ans1, . . . , ansq be the answers to the queries defined above, we say VPCPP accepts (z, x, π),
denoted by VPCPPx◦Π(z, seed) = 1, if and only if Vdec(seed, z, ans1, . . . , ansq)=1. The machine
Vdec is said to be the decision predicate of VPCPP, and has circuit complexity d(n).

15

We may represent the “implicit input” x as Πinput : [n]→ {0, 1} and the proof π as Πproof : [ℓ]→
{0, 1} to emphasize that they are given as oracles to VPCPP. We sometimes denote the outputs of
Vtype and Vindex as I and denote the answers (ans1, . . . , ansq) as (Πinput ◦Πproof)|I .

We will also consider the PCPP verifier of pure languages (i.e. the first part z of any input is
always the empty string). In such case, we simply omit all the z in the definition above.

Definition 2.7 (PCP of Proximity). Let s = s(n) and δ = δ(n) be good functions, L ⊆ {0, 1}∗ ×
{0, 1}∗ be a pair language, and VPCPP = (Vtype, Vindex, Vdec) be a PCPP verifier for L. We say
VPCPP is a PCPP verifier for L with completeness error 1 − c, soundness error s, and proximity
parameter δ if the following two conditions hold for every (z, x) ∈ {0, 1}∗ × {0, 1}n.

• (Completeness). If (z, x) ∈ L, then there is a proof π ∈ {0, 1}ℓ such that VPCPP accepts
(z, x, π) with probability at least c.

• (Soundness). Denote L(z) to be the set of y ∈ {0, 1}n such that (z, y) ∈ L. If x is δ-far from
L(z), then for every proof π ∈ {0, 1}ℓ, VPCPP accepts (z, x, π) with probability at most s.

For most of the constructions of PCPPs, the completeness error can be made 0, which means
that for (z, x) ∈ L, there is a proof such that the verifier accepts with probability 1. Therefore we
assume that the completeness error of a PCPP is 0 when it is not specified.

We need to define a stronger version of the soundness called robust soundness as follows, as an
intermediate step to construct PCPPs with nice parameters.

Definition 2.8 (Robust PCP of Proximity [BGH+06]). Let s = s(n), δ = δ(n), and ρ = ρ(n) be
good functions, L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language, and VPCPP = (Vtype, Vindex, Vdec) be a
PCPP verifier for L. We say VPCPP is a robust PCPP verifier for L with robust soundness error s
with robustness parameter ρ and proximity parameter δ if it satisfies the completeness property of
PCPP and the following robust soundness property.

• (Robust Soundness). The following holds for every (z, x) ∈ {0, 1}∗ × {0, 1}n. Denote
L(z) to be the set of y ∈ {0, 1}n such that (z, y) ∈ L. If x is δ-far from L(z), then for
every proof π ∈ {0, 1}ℓ, with probability at least 1− s over the random bits seed, the answer
(ans1, . . . , ansq) of the queries of VPCPP is ρ-far from being accepted (i.e. we need to flip at
least a ρ fraction of the bits of the answers (ans1, . . . , ansq) to make the verifier accept).

2.5.2 Rectangular PCPs of Proximity

Following [RSW22], one of the main technical ingredients in the algorithmic method for explicit
construction problems is a variant of PCPPs, called rectangular PCPPs. Intuitively, a rectangular
PCPP verifier treats the input as an Hinput ×Winput matrix and the proof as an Hproof ×Wproof

matrix, and can generate the query indices in a “rectangular” fashion. In particular, the random seed
is split into two parts denoted as seed.row and seed.col respectively, and there are two algorithms
Vrow and Vcol such that:

• Vrow takes seed.row as input and generates irow[1], . . . , irow[q];
• Vcol takes seed.col as input and generates icol[1], . . . , icol[q];
• The final indices of the queries i[1], . . . , i[q] are defined as i[j] := (irow[j] − 1) ·W + icol[j],

where W = Winput or W = Wproof depending on the the type of the j-th query.

In other words, the row verifier Vrow (resp. the column verifier Vcol) takes the row randomness
seed.row (resp. the column randomness seed.col) and generates the row indices (resp. the column
indices) of the queries. Ideally, a rectangular PCPP should satisfy the following properties:

16

• (Perfect Rectangularity). The row randomness seed.row and column randomness seed.col
are independent random bits (i.e. the row and column query indices are independent).

• (Randomness-Oblivious Type Predicate). The type predicate Vtype, which determines
the types of the queries (i.e. whether a query is to the input or the proof oracle), does not
depend on the row and column random seeds.

• (Randomness-Oblivious Decision Predicate). The decision predicate Vdec, which decides
whether to accept the proof given the answers to the queries, does not depend on the row and
column random seeds.

However, as in [BHPT20,RSW22], we do not know how to construct such rectangular PCPPs.
Nevertheless, we could construct a weaker version where the row and column randomness are almost
independent, and the dependency of the decision and type predicates on the random seeds are
relatively simple. We formally define such rectangular PCPPs as follows (for simplicity, we only
define rectangular PCPPs for pure languages).

Definition 2.9 (Rectangular PCPPs with Randomness-Oblivious Predicates). Suppose Hinput =
Hinput(n), Winput = Winput(n), Hproof = Hproof(n), Wproof = Wproof(n), τ = τ(n), p = p(n) are good
functions such that Hinput ·Winput = O(n) and L ⊆ {0, 1}∗ be a language. A PCPP verifier VPCPP
is said to be a τ -almost rectangular PCPP that has a randomness-oblivious predicate (ROP) with
parity-check complexity p if the following conditions hold.

• (Randomness). There are good functions rrow = rrow(n), rcol = rcol(n), and rshared =
rshared(n) such that the randomness complexity r = rrow + rcol + rshared, i.e., the random seed
can be partitioned into three independent parts: the row randomness seed.row, the column
randomness seed.col, and the shared randomness seed.shared. We say rrow, rcol, and rshared
are the row, column, and shared randomness complexity of the PCPP verifier, respectively.
Moreover, the shared randomness complexity rshared(n) ≤ τ · r(n).

• (Query Pattern). There are algorithms Vtype, Vrow, and Vcol to generate the queries in a
rectangular fashion. Concretely speaking:

◦ (itype[1], . . . , itype[q])← Vtype(seed.shared), where itype[j] ∈ {input, proof} for all j ∈ [q].

◦ (irow[1], . . . , irow[q])← Vrow(seed.row, seed.shared)

◦ (icol[1], . . . , icol[q])← Vcol(seed.col, seed.shared)

◦ For every j ∈ [q], the index of the j-th query i[j] := irow[j]·W+icol[j], where W = Winput

if itype[j] = input and W = Wproof otherwise.

As normal PCPP verifiers, the j-th query is to the i[j]-th bit of the input if itype[j] = input,
and is to the i[j]-th bit of the proof if itype[j] = proof. Note that since Hinput ·Winput may
be larger than n, the query to the input is not well-defined when i[j] > n. In such case, we
denote the answer to be ⊥.

• (Decision Predicate). There are polynomial-time algorithms Vdec and Vpc such that the
following holds.

◦ The algorithm Vdec(seed.shared) generates a circuit VDec : {0, 1,⊥}p+q → {0, 1}.
◦ The algorithm Vpc(seed.shared) generates p XOR circuits (i.e. circuits computing GF(2)-

linear functions) pc1, . . . , pcn : {0, 1}rrow+rcol → {0, 1}.

17

Assume that (ans1, . . . , ansq) ∈ {0, 1,⊥}q are the answers to the queries. For every i ∈ [p], we
denote pci := pci(seed.row, seed.col). The PCPP verifier accepts the proof if

VDec(ans1, . . . , ansq, pc1, . . . , pcp) = 1.

The decision complexity of this PCPP verifier is said to be the circuit complexity of Vdec.

2.5.3 Smooth PCP of Proximity

Apart from rectangularity, another important property of the PCPPs is their smoothness.
Roughly speaking, it means that the queries to the proof oracle are smooth, in the sense that
each location is probed with equal probability.12 The formal definition is as follows.

Definition 2.10 (Smooth PCPPs for Pure Languages). Let r = r(n), q = q(n) be good functions,
L ⊆ {0, 1}∗ be a language, and VPCPP = (Vtype, Vindex, Vdec) be a PCPP verifier for L with random-
ness complexity r. It is said to be a smooth PCPP verifier if for all locations loc1, loc2 in the proof
oracle, over a uniformly random seed ∈ {0, 1}r and a uniformly random index j ∈ [q], loc1 and loc2
are probed by VPCPP with equal probability in the j-th query.

Smooth PCPPs can be viewed as PCPPs that can tolerate errors in the proof: since all the
locations in the proof are queried with equal probability, a slightly corrupted version of a correct
proof is still likely to be accepted, as shown in the following lemma.

Lemma 2.11. Let q = q(n), ℓ = ℓ(n), s = s(n) be good functions, L ⊆ {0, 1}∗ be a language, and
VPCPP be a smooth PCPP verifier for L with soundness error s, proof length ℓ, and query complexity
q. Assume that x ∈ L ∩ {0, 1}n and π ∈ {0, 1}ℓ is a correct proof for x ∈ L, i.e., VPCPPx◦π(seed)
accepts with probability 1 over seed ← {0, 1}r. Then for every π′ such that the relative Hamming
distance between π′ and π is at most ε, VPCPPx◦π′(seed) accepts with probability at least 1 − q · ε
over seed ∼ {0, 1}r.
Proof. We say a location i ∈ [ℓ] of the proof oracle is bad if π[i] ̸= π′[i]. Let Bj be the event that
the j-th query of VPCPP probes a bad location in the proof. By the smoothness, we know that

Pr
seed∈{0,1}r,j∈[q]

[
Bj

]
≤ ε.

By a union bound, we can see that

Pr
seed∈{0,1}r

[
∃ j ∈ [q], Bj

]
≤
∑

j∈[q]

Pr
seed∈{0,1}r

[
Bj

]
≤ q · ε. (2)

Denote E be the event that there exists a j ∈ [q] such that Bj happens. Then it follows that

Pr
seed∈{0,1}r

[
VPCPPx◦π′(seed) rejects

]

≤ Pr
seed∈{0,1}r

[
VPCPPx◦π′(seed) rejects

∣∣∣ ¬E
]
+ Pr

seed∈{0,1}r

[
E
]

≤ 0 + q · e
= q · e,

where the second inequality follows from Equation (2) and the perfect completeness of VPCPP.
12In some literature (e.g. [Par21]), the smoothness of PCPPs is defined differently: the queries to both the input

oracle and the proof oracle need to be smooth, i.e., each location in the input (resp. the proof) is queried with equal
probability. Here, we only require the queries to the proof oracle to be smooth and have no requirement on the query
distribution over the input oracle.

18

Note that smoothness can be defined for rectangular PCPPs, in which case each location in the
proof matrix is probed with equal probability. This further means that each row (resp. column)
index is queried by the row (resp. column) verifier with equal probability.
Remark 2.12. A stronger definition of the smoothness is as follows: for every fixed i ∈ [q], condition
on the i-th query probing the proof oracle, the i-th query is uniformly random over the proof oracle.
By randomly permuting the q queries, we can make a smooth PCPP satisfy this stronger definition
of smoothness. In particular, if we have a smooth and rectangularity PCPP, we can make it satisfy
this stronger definition of smoothness by adding O(q log q) bits in the shared randomness for a
random permutation over the q queries.

2.5.4 Our Constructions

In this work, we will need two new constructions of rectangular PCPPs: for the range avoidance
problem and worst-case hard partial truth tables, we need a rectangular PCPP with query com-
plexity 3 or 2 (depending whether perfect completeness is required); for the remote point problem
and average-case hard partial truth table, we need a smooth and rectangular PCPP with query
complexity O(1).13

Theorem 2.13 (3-Query and 2-Query Rectangular PCPPs). For every constant δ ∈ (0, 1), there
are constants s3 ∈ (0, 1) and 0 < s2 < c2 < 1 such that the following holds. Let m = m(n),
T (n), wproof(n), winput(n) be good functions such that 1 ≤ m ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n),
wproof(n) ≤ log T (n), and winput(n) ≤ log n. Then there are good functions h3qproof(n), h

2q
proof(n), and

hinput(n) satisfying

h3qproof(n), h
2q
proof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) = ⌈log n⌉ − winput(n),

such that the following holds.
Suppose that wproof , h

3q
proof , h

2q
proof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

h3qproof(n)
,
hinput(n)

h2qproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), H3q
proof(n) := 2h

3q
proof(n), H2q

proof(n) := 2h
2q
proof(n), Winput(n) := 2winput(n), and

Hinput(n) := 2hinput(n). Then NTIME[T (n)] has:

• a rectangular PCP of proximity V3q with perfect completeness, soundness error s3, an H3q
proof(n)×

Wproof(n) proof matrix and an Hinput(n)×Winput(n) input matrix;

• a rectangular PCP of proximity V2q with completeness error 1 − c2, soundness error s2, an
H2q

proof(n)×Wproof(n) proof matrix and an Hinput(n)×Winput(n) input matrix.

Other parameters of V3q and V2q are specified in Table 1.
Furthermore, given the randomness seed ∈ {0, 1}r, the total number of queries and parity-check

bits is at most 3 for V 3q and 2 for V 2q, and the decision predicate VDec← Vdec(seed.shared) of the
rectangular PCPP verifier is an OR of the input bits (including queries and parity-check bits) or
their negations for every seed.shared.

13Unfortunately, our smooth PCPP requires a large (although constant) number of queries, because of the argu-
ments in Section 6.1.

19

PCPP Verifier V 3q V 2q

Completeness error 0 1− c2
Soundness error s3 s2

Proximity parameter δ

Row randomness h3qproof − (5/m) log T (n) h2qproof − (5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
3 2Parity check complexity

Decision complexity poly(log log T)

Table 1: Parameters of the PCPPs constructed in Theorem 2.13.

Theorem 2.14 (Smooth and Rectangular PCPP). For all constants δ ∈ (0, 1) and s ∈ (0, 1), there
is a constant q ≥ 1 such that the following holds. Let m = m(n), T (n), wproof(n), winput(n) be
good functions such that 1 ≤ m(n) ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and
winput(n) ≤ log n. Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) := ⌈log n⌉ − winput(n).

such that the following holds.
Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm2 log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a smooth and rectangular PCP of proximity with an Hinput(n) ×Winput(n)
input matrix and an Hproof(n) × Wproof(n) proof matrix, whose other parameters are specified in
Table 2.

Soundness error s

Proximity parameter δ

Row randomness rrow := hproof − (5/m) log T (n)

Column randomness rcol := wproof − (5/m) log T (n)

Shared randomness rshared := (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
q = Os,δ(1)Parity check complexity

Decision complexity poly(T (n)1/m)

Table 2: Parameters of the PCPP constructed in Theorem 2.14.

Details of these two constructions are postponed to Section 6 and Section 7.

2.6 A Stretch Reduction for Remote-Point and Partial-AvgHard

In our framework for solving Remote-Point (Section 3.2), for technical convenience, we only
consider circuits C : {0, 1}n → {0, 1}ℓ(n), where ℓ(n) is a certain stretch function. (For example, it

20

might be the case that ℓ(n) is rounded to a power of 2 for every n.) In this subsection, we show
that such an algorithm can also solve Remote-Point for circuits of larger stretches. This justifies
that it is without loss of generality to only consider stretch functions that are equal to ℓ(n).

Lemma 2.15 (Stretch Reduction for Remote-Point). Let C be a typical circuit class and s be a
size parameter. Suppose that C [s]-Remote-Point with stretch ℓ′(n) and distance parameter 1/2−
ε′(n) admits an FPNP algorithm. Then for any stretch ℓ = ℓ(n) ≥ ℓ′(n+1)/2, C [s]-Remote-Point
with stretch ℓ(n) and distance parameter 1/2− ε(n) also admits an FPNP algorithm, where ε(n) :=
2 · ε′(n+ 1).

Proof. Denote ℓ′ := ℓ′(n+1), ε′ := ε′(n+1), ℓ := ℓ(n), and ε := ε(n), and let C : {0, 1}n → {0, 1}ℓ
be an input circuit. If ℓ is a multiple of ℓ′, we can split the ℓ-bit output of C into blocks of size ℓ′ and
add a dummy input bit to construct m := ℓ/ℓ′ circuits C1, C2, . . . , Cm : {0, 1}n+1 → {0, 1}ℓ′(n+1)

such that for every x ∈ {0, 1}n and b ∈ {0, 1},

C(x) = C1(x, b) ◦ C2(x, b) ◦ · · · ◦ Cm(x, b).

Using the FPNP algorithm for C -Remote-Point with stretch ℓ′(n+1) and error parameter ε′(n+1),
we can construct y1, y2, . . . , ym ∈ {0, 1}ℓ′ such that each yi is (1/2− ε′)-far from Range(Ci). It then
follows that the concatenation y1 ◦ y2 ◦ · · · ◦ ym is (1/2− ε′)-far from Range(C).

We now consider the case where ℓ is not a multiple of ℓ′. Let I : {0, 1}n+1 → {0, 1} be
defined as the projection I(x) = xn+1, that is, it always outputs the last bit. For any t, let
I⊗t : {0, 1}n+1 → {0, 1}t denote the concatenation of t copies of I. Therefore, Range(I⊗t) = {0t, 1t}.
Since C is typical, we have I⊗t ∈ C .

Let M = k · ℓ′ be the nearest multiple of ℓ′ larger than ℓ, and ℓ̄ := M − ℓ. For a multi-output
C circuit C, we define C̃ : {0, 1}n+1 → {0, 1}M as

C̃(x, b) = C(x) ◦ I⊗ℓ̄(x, b),

where x ∈ {0, 1}n and b ∈ {0, 1}. Since C̃ is of input length n+1 and output length being a multiple
of ℓ′, we can get a remote point s ∈ {0, 1}M in FPNP that is (1/2− ε′)-far from Range(C̃).

Let s = s1 ◦ s2, where s1 and s2 has length ℓ and ℓ̄, respectively. We then prove that s1 is
(1/2− ε) far from Range(C). Towards a contradiction, we assume that s1 is not (1/2− ε)-far from
Range(C). In other words, there is an x ∈ {0, 1}n such that δ(C(x), s1) < 1/2− ε. By considering
the Hamming weight of s2 we know that there is a b ∈ {0, 1} such that δ(I⊗ℓ̄(x, b), s2) ≤ 1/2. It
then follows that

δ(s, C̃(x, b)) = δ(s1 ◦ s2, C(x) ◦ I⊗ℓ̄(x, b)))

≤ ℓ

ℓ+ ℓ̄
·
(
1

2
− ε(n)

)
+

ℓ̄

ℓ+ ℓ̄
· 1
2

≤ 1

2
− ℓ

ℓ+ ℓ̄
· ε(n)

<
1

2
− ε′(n+ 1).

This leads to a contradiction as s is (1/2− ε′(n+ 1))-far from Range(C̃).

Similar to Remote-Point, another average-case problem Partial-AvgHard can also be re-
duced to the instances with smaller stretch in the same way.

21

Lemma 2.16 (Stretch Reduction for Partial-AvgHard). Let C be a typical circuit class and s be
a size parameter. Suppose that NC0

2 ◦ (C [s])-Partial-AvgHard with stretch ℓ′(n) and the distance
parameter 1/2− ε′(n) admits an FPNP algorithm, then for any stretch ℓ = ℓ(n) ≥ ℓ′(n+1)/2, C [s]-
Partial-AvgHard with stretch ℓ(n) and distance parameter 1/2−ε(n) admits an FPNP algorithm,
where ε(n) := 2 · ε′(n+ 1).

Proof Sketch. The proof of this lemma is similar to that of Lemma 2.15. Here we use the same
notation as the proof of Lemma 2.15.

Let X = {x1, . . . , xℓ} denote input strings, and let yi := xi ◦ 0. We create ℓ̄ copies of 0n ◦ 1 and
use yℓ+1, . . . , yM to denote these copies.

we solve NC0
2 ◦ C -Partial-AvgHard on {y1, . . . , yM} and get an average-case hard partial

truth table s = s1 ◦ s2 that is (1/2 − ε′(n + 1))-far from any truth table of NC0
2 ◦ C circuit,

where s1 and s2 has length ℓ and ℓ̄. Then we prove s1 is a solution for the original problem. For
some C circuit C, if s1 is not (1/2 − ε(n)) far from partial truth table of C on X, we can define
C̃1, C̃2 : {0, 1}n × {0, 1} → {0, 1} as C̃1(x; b) := C(x) ∨ b, C̃2(x; b) := C(x) ∧ (¬b). Then one of C̃1

and C̃2 has partial truth table on Y := {y1, . . . , yM} not (1/2 − ε′(n + 1)) far from s, which leads
to a contradiction. Therefore s1 has to be a solution. The analysis is similar to Lemma 2.15.

2.7 Satisfying Pairs for NC0
d ◦ C from Satisfying Pairs for (AND0

d/XOR
0
d/OR

0
d) ◦ C

We show that satisfying pairs for NC0
d ◦ C circuits can be reduced to the satisfying pairs of

AND0
d ◦C , XOR0

d ◦C , or OR0
d ◦C via standard Fourier analysis (see, e.g., [CW19b, Section 4]). This

will be beneficial for the unconditional results for weak circuit classes, such as the remote point
algorithm for GF(2)-linear functions.

Theorem 2.17. For every constants δ ∈ [0, 1] and d ≥ 1, there is a constant δ′ such that the fol-
lowing holds. Let N = N(n),M = M(n), n, s = s(n) be parameters, and Cd ∈ {ANDd,ORd,XORd}.

Then #(NC0
d◦C)-Satisfying-Pairs (resp. Approxδ-(NC

0
d◦C)-Satisfying-Pairs) with parame-

ters (N,M,n, s) is Õ(n)-time Turing-reducible to #(Cd◦C)-Satisfying-Pairs (resp. Approxδ′-(Cd◦
C)-Satisfying-Pairs) with parameters (Θ(N),M, n, s), as long as each input circuit of the #(NC0

d◦
C)-Satisfying-Pairs (resp. Approxδ-(NC

0
d ◦C)-Satisfying-Pairs) problem are given explicitly as

a top NC0
d circuit Ctop together with d circuits C1, C2, . . . , Cd ∈ C feeding Ctop.

Moreover, the oracle algorithm for #(NC0
d ◦ C)-Satisfying-Pairs (resp. Approxδ-(NC

0
d ◦ C)-

Satisfying-Pairs) only makes O(1) non-adaptive queries to the #(Cd ◦ C)-Satisfying-Pairs
(resp. Approxδ′-(Cd ◦ C)-Satisfying-Pairs) oracle.

Proof. Let N,M,n, s be the parameters. Suppose that we are given C1, C2, . . . , CN ∈ C [s] and
x1, x2, . . . , xM ∈ {0, 1}n as input. We assume that C1, C2, . . . , CN share the same upper NC0

d

function computing f : {0, 1}d → {0, 1}, that is for every i ∈ [N], Ci ≡ f ◦Di for some d-output C

circuit Di of size at most s. This is without loss of generality since there are at most 22
d
= O(1)

different NC0
d functions and we can (approximately) count the number of satisfying pairs for each

of these cases separately.
We first consider the case for Cd = ANDd. We use the basis {0, 1} ⊆ R for Boolean values and

write f as
f(x) =

∑

S⊆[d]

αS ·
∏

i∈S
xi,

where each coefficient αS ∈ [−2d, 2d] ∩ Z. Note that we can compute the coefficients by writing
the truth table of f in the canonical disjunctive normal form, represent x by x, ¬x by 1− x, ∧ by

22

multiplication, and (disjoint) ∨ by addition, and then expending the multi-linear polynomial using
a brute-force algorithm in O(1) time.

Let χS(x) :=
∏

i∈S xi for S ⊆ [d]. Then the number of (i, j) ∈ [N]× [M] such that Ci(xj) = 1
is

∑

i∈[N]

∑

j∈[M]

f(Di(xj))

=
∑

i∈[N]

∑

j∈[M]

∑

S⊆[d]

αS · χS(Di(xj))

=
∑

S⊆[d]

αS ·

∑

i∈[N]

∑

j∈[M]

χS(Di(xj))

=
∑

S⊆[d]

αS ·

∑

i∈[N]

∑

j∈[M]

AND|S| ◦Di|S(xj)

 ,

where Di|S : {0, 1}|S| → {0, 1} representing the circuit obtained from Di by restricting to the output
bits in S. Then our algorithm is as follows: We enumerate all S ⊆ [d] and count (resp. approximately
count) the number AS of satisfying pairs for circuits AND|S| ◦D1|S , . . . ,AND|S| ◦DN |S and inputs
x1, . . . , xM , then we output the answer

∑
S⊆[d] αS ·AS .

For Cd = XORd and Cd = ORd, we only need to write f as

f(x) =
∑

S⊆[d]

α′S ·
⊕

i∈S
xi, (3)

f(x) =
∑

S⊆[d]

α′′S ·
∨

i∈S
xi, (4)

where α′S , α
′′
S ≤ 2O(d). Note that Equation (3) can be obtained using the basis {true := −1, false :=

1} and Equation (4) can be obtained using the basis {true := 0, false := 1}.

3 Range Avoidance and Remote Point

In this section, we prove our main technical result: non-trivial algorithms for Satisfying-Pairs
imply FPNP algorithms for range avoidance and remote point. We first prove our results for range
avoidance and remote point in Section 3.1 and Section 3.2, respectively, and then briefly discuss the
variants of our algorithms in Section 3.3.

The naïve algorithm for Satisfying-Pairs is to evaluate every circuit on every input, which
requires O(NM · poly(s, n)) time. We will employ non-trivial algorithms (i.e. of time complexity
NM/ logω(1)(NM)) for Satisfying-Pairs to solve the range avoidance problem and the remote
point problem. Indeed, we can even allow the Satisfying Pairs algorithm to have a preprocessing
phase, in which a polynomial-time algorithm with access to an NP oracle is given the circuits
C1, . . . , CN (but not the inputs) and produce a data structure of small (i.e. “fixed polynomial”) size.

Definition 3.1 (Algorithms for Satisfying-Pairs with PNP Preprocessing on Circuits). Let P be
one of the problems C -Satisfying-Pairs, #C -Satisfying-Pairs, Approxδ-C -Satisfying-Pairs,
Gapδ-C -Satisfying-Pairs. A t-time algorithm for P with PNP preprocessing of an ℓ-size data
structure on circuits is a pair of algorithms (A1, A2) that solves P in two phases:

23

1. Given the circuits C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s, the polynomial-time algorithm
A1 with oracle access to a SAT oracle computes a string DS ∈ {0, 1}ℓ.

2. Given the inputs x1, x2, . . . , xM ∈ {0, 1}n and the string DS ∈ {0, 1}ℓ, the algorithm A2 solves
P on the instance (C1, . . . , CN , x1, . . . , xM) in time t.

3.1 Range Avoidance from Satisfying-Pairs

In this sub-section, we establish the connection between the Avoid and Satisfying-Pairs.
The main result is the following theorem.

Theorem 3.2. There are constants ε > 0 and cimp such that the following holds. Let 0 < η < 1/2
be a constant, ℓ(n) > n1+4η be a good function. Let C [s] be a typical circuit class where s = s(n) is
a size parameter, and C ′[2s] := OR2 ◦ C [s] (i.e. a C ′ circuit of size 2s refers to the OR of at most
two C circuits of size s).

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logcimp(NM))-time algo-
rithm for Approxε-C ′-Satisfying-Pairs with N := ℓ1−η ·polylog(ℓ) circuits of size 2s(n) and
M := ℓc+1−η · polylog(ℓ) inputs of length n · polylog(ℓ), allowing a PNP preprocessing of an
N c-size data structure on circuits.

Conclusion: Then there is an FPNP algorithm for C [s]-Avoid with stretch ℓ(n).

3.1.1 Typical Choices of the Parameters

Before proving this general framework, we demonstrate two typical choices of the parameters as
follows that deal with Avoid with polynomial stretch and quasi-polynomial stretch.

Corollary 1.11. There is a constant ε > 0 such that the following holds. Let C be a typical circuit
class, C ′ := OR2 ◦ C , and s = s(n) be a non-decreasing size parameter.

• Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for N =
n1+Ω(1) C ′-circuits of size 2s(n) and M = n1+Ω(1) inputs of length n. Then there is an
FPNP algorithm for C -Avoid with stretch ℓ and circuit size s,14 for some ℓ = n1+Ω(1).

• Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for N =
quasi-poly(n) C ′-circuits of size 2s(n) and M = quasi-poly(n) inputs of length n. Then there
is an FPNP algorithm for C -Avoid with stretch ℓ and circuit size s, for some ℓ = quasi-poly(n).

Proof. (Polynomial Case). Assume we have an algorithm for Approxε-C ′-Satisfying-Pairs for
Nal = n1+cn

al C ′ circuits of size 2sal(nal) and Mal = n1+cm
al inputs of length nal that runs in non-

trivial time (i.e. Nal ·Mal/ log
ω(1)(Nal ·Mal)), where cn and cm are some constants. Denote this

algorithm by (∗). Note that s(n) = poly(n) (otherwise there cannot be such an algorithm). We
apply Theorem 3.2 with η = 0.1 and s := sal. Let c = 1 be the constant in Theorem 3.2 and
ℓ(n) = poly(n) to be determined later.

To obtain an FPNP algorithm for C [s]-Avoid with stretch ℓ(n), we need to design an algorithm
for C ′-Satisfying-Pairs with N = ℓ0.9 · polylog(ℓ) circuits of size s(nfw) and M = ℓ1.9 · polylog(ℓ)
inputs of length nfw = n ·polylog(ℓ) that runs in time NM/ logcimp(NM) for some absolute constant
cimp. Denote this problem by (⋆). We set nal = nfw and ℓ(n) = max{(Nals)

1.1/0.9, (Mals)
1.1/1.9} =

n1+Ω(1), so that N ≥ N1.1
al · s1.1 and M ≥M1.1

al · s1.1. The algorithm for (⋆) works as follows.
14Note that the circuit size parameter of C -Avoid refers to the maximum circuit size of each output bit of C :

{0, 1}n → {0, 1}ℓ, instead of the total circuit size of C.

24

• We divide the N circuits into groups of size Nal and the M inputs into groups of size Mal.
• For every i ∈ [N/Nal] and j ∈ [M/Mal], we use the algorithm (∗) to (approximately) count

the number of satisfying pairs between the i-th circuit group and the j-th input group. (In
particular, we use a brute-force algorithm with running time (Nal ·M + Mal · N) · Õ(s) ≤
NM/ logω(1)(NM) to deal with the groups, if any, with less than Nal circuits or less than Mal

inputs.) We add all the answers among groups together.

The correctness of the algorithm is obvious, and the running time is at most

N

Nal
· M
Mal
· NalMal

logω(1)(NalMal)
≤ NM

logcimp(NM)
.

(Quasi-Polynomial Case.) The proof is almost the same as the polynomial case. In particular,
s(n) and ℓ(n) as defined above are quasi-polynomial functions; the final running time is non-trivial
since log(NalMal) = logΩ(1)(n) and log(NM) = logO(1)(n). The details are omitted.

3.1.2 Proof of Theorem 3.2

Theorem 3.2. There are constants ε > 0 and cimp such that the following holds. Let 0 < η < 1/2
be a constant, ℓ(n) > n1+4η be a good function. Let C [s] be a typical circuit class where s = s(n) is
a size parameter, and C ′[2s] := OR2 ◦ C [s] (i.e. a C ′ circuit of size 2s refers to the OR of at most
two C circuits of size s).

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logcimp(NM))-time algo-
rithm for Approxε-C ′-Satisfying-Pairs with N := ℓ1−η ·polylog(ℓ) circuits of size 2s(n) and
M := ℓc+1−η · polylog(ℓ) inputs of length n · polylog(ℓ), allowing a PNP preprocessing of an
N c-size data structure on circuits.

Conclusion: Then there is an FPNP algorithm for C [s]-Avoid with stretch ℓ(n).

Proof. Suppose that we are given a C circuit C : {0, 1}n → {0, 1}ℓ. Without loss of generality, we
may assume ℓ is a power of 2 and c ≥ 2. We set the following parameters:

m := 5(c+ 2)/η = O(1),

wproof := log ℓ, Wproof := 2wproof = ℓ,

hproof := (c+ 1) log ℓ, Hproof := 2hproof = ℓc+1,

nhard := 10Hproof · n,
T :=Hproof ·Wproof/ log

ctm(ℓ).

The constants ε, cimp, and ctm will be determined later.
Let Lhard be the hard language constructed in Theorem 2.2. We use nhard and T to denote the

input length and the time complexity of Lhard, respectively, i.e.

Lhard ∈ NTIMETM[T] \ i.o.-NTIMEGUESSRTM[T/ logchard(T), nhard/10]/(nhard/10),

where chard is some large universal constant. Note that since T = ℓc+2/polylog(ℓ), nhard = O(ℓc+1 ·
n), ℓ > n1+4η, we can see that n

1+Ω(1)
hard ≤ T ≤ n2

hard, which satisfies the technical condition of
Theorem 2.2.

We describe a nondeterministic RAM MPCPP that runs in T/ logchard(T) time, uses nhard/10
advice bits, guesses nhard/10 nondeterministic bits, and attempts to solve Lhard on nhard-bit inputs.

25

By the definition of Lhard, MPCPP has to fail on some input x ∈ {0, 1}nhard when nhard is sufficiently
large. Our goal is to design such an algorithm MPCPP that (1) rejects every x ̸∈ Lhard, and (2)
accepts every x ∈ Lhard with an easy witness. Thus, if MPCPP fails on some input x, then x ∈ L
and it has only “hard witnesses”, which will be exploited for finding a non-output of C.

Here, to define the inputs x “with an easy witness”, we will need the 2-query rectangular PCPP
in Theorem 2.13 for the following language

Lenc := {Enc(x) : x ∈ Lhard},

where we fix an error-correcting code (Enc,Dec) as in Theorem 2.1. Let δEnc be the distance of the
code. Suppose a string of length nhard is encoded (via Enc) into a string of length ñhard := O(nhard).
We set the following parameters:

hinput :=

(
1− Θ(log log T)

log T

)
hproof , Hinput := 2hinput =Hproof/polylog(ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput =n · polylog(ℓ).

We assume without loss of generality that ñhard = Hinput · Winput. (This can always be done by
adding at most Winput ≤ ñhard dummy bits into the codeword of the error-correcting code, where
the resulting code is still of constant rate and distance.)

We can check that the technical conditions of Theorem 2.13 for the 2-query rectangular PCPP
construction holds:15

log T (n) = hproof + wproof − ctm log log ℓ = (c+ 2) log ℓ− ctm log log ℓ

hproof = log T (n) + ctm log log ℓ− wproof = log T (n) + Θ(m log log T (n))− wproof

hinput
hproof

= 1− Θ(log log T)

log T
≤ 1− Cm log log T

log T
(if the constant in Θ(·) is large enough)

winput

wproof
=
⌈log ñhard⌉ − hinput

log ℓ
≤ hproof + log n+O(1)− hinput

log ℓ

=
log n+Θ(hproof log log T (n))/ log T (n)

log ℓ

=
log n

log ℓ
+

O(log log T (n))

log T (n)

≤ 1− Ω(1).

By Theorem 2.13, there is a PCPP verifier VPCPP for Lenc with oracle access to Π := Enc(x)◦π,
where the input Enc(x) is treated as a matrix of size Hinput ×Winput, and the proof π is treated as
a matrix of size Hproof ×Wproof . The PCPP verifier has the following parameters:

◦ completeness error = 1− cpcp,

◦ soundness error = spcp,

◦ proximity parameter = δEnc/3,

◦ query complexity ≤ 2,

15Strictly speaking, we apply Theorem 2.13 with wproof to obtain a PCPP with proof size H ′proof × Wproof , where
Wproof = 2wproof and H ′proof = 2h

′
proof for some h′proof = log T (n)+Θ(m log log T (n))−wproof . We set ctm to be sufficiently

large so that hproof ≥ h′proof , hence we can assume without loss of generality that the proof size is actually Hproof×Wproof

(recall that Hproof = 2hproof) by adding dummy bits in the proof.

26

◦ parity-check bits ≤ 2,

◦ total randomness = r := log T +O(log log T +m logm),

◦ row randomness = rrow := hproof − (5/m) log T = (c+ 1− η) log ℓ− (5ctm/m) log log ℓ,

◦ column randomness = rcol := wproof − (5/m) log T = (1− η) log ℓ− (5ctm/m) log log ℓ,

◦ shared randomness = rshared := (10/m) log T + ctm log log T

= 2η log ℓ+ (ctm/m) log log ℓ+O(log log ℓ+m logm).

Moreover, the total number of parity-check bits and queries is at most 2, and the decision predicate
VDec ← Vdec(seed.shared), which takes the parity-check bits and the answers to the queries as the
input, is an OR of its input bits or their negations.

For an input x ∈ Lhard ∩ {0, 1}nhard , we say that x has an easy witness if there is a proof matrix
π for the statement “Enc(x) ∈ Lenc” such that:

(completeness) Prseed←{0,1}r [VPCPP
Enc(x)◦π(seed) accepts] ≥ cpcp; and

(easiness) for every row πi of π, there exists a string wi such that πi = C(wi).

Description of MPCPP. Now we define MPCPP, which is a (T/ logchard T)-time non-deterministic
algorithm that takes at most ℓc+1 ≤ nhard/10 bits of advice. MPCPP aims to reject every x /∈ L and
accept every x ∈ L with easy witness when appropriate advice is given.

On input x ∈ {0, 1}nhard , we guess Hproof strings w1, w2, . . . , wHproof
∈ {0, 1}n. Let π be the

Hproof ×Wproof proof matrix where for each i ∈ [Hproof], the i-th row of π is equal to C(wi). Let
pacc be the acceptance probability of the PCPP verifier VPCPP for Lenc given the input Enc(x) and
the proof π, i.e.,

pacc := Pr
seed←{0,1}r

[VPCPPEnc(x)◦π(seed) accepts].

We need to distinguish between the case that pacc ≥ cpcp and the case that pacc ≤ spcp. We set
ε := (cpcp − spcp)/4 so that this can be done by estimating pacc with an additive error at most ε,
which will be done by applying the Approxε-C ′-Satisfying-Pairs algorithm in the assumption.
(Recall that cpcp and spcp are absolute constants that only depend on δEnc, which means that ε is
also an absolute constant.)

In what follows, we reduce the problem of estimating pacc to 2rshared instances of Approxε-C ′-
Satisfying-Pairs, where each instance consists of 2rcol = ℓ1−η · polylog(ℓ) circuits and 2rrow =
ℓc+1−η · polylog(ℓ) inputs. Then we will utilize the algorithm for Approxε-C ′-Satisfying-Pairs to
estimate pacc, where the data structure in the preprocessing phase will be treated as an advice of
MPCPP.

For the simplicity of presentation, we define the notation:

(itype[1], . . . , itype[q])←Vtype(seed.shared),

(irow[1], . . . , irow[q])←Vrow(seed.shared, seed.row),

(icol[1], . . . , icol[q])←Vcol(seed.shared, seed.col), and
(pc1, . . . , pcp)←Vpc(seed.shared),

where p + q ≤ 2 and pci : {0, 1}rrow+rcol → {0, 1} is an XOR of (some of) its input bits (i.e. a
GF(2)-linear function) for every i ∈ [p].

27

Reduction to Satisfying-Pairs. Our input strings in the Approxε-C ′-Satisfying-Pairs
instance will be of the form (a1, . . . , aq, pc

row
1 , . . . , pcrowp). For each j ∈ [q], the meaning of aj is as

follows:

• if itype[j] = input, then aj is interpreted as a row of the input matrix, and we use (aj)col to
denote the col-th bit of aj ;

• if itype[j] = proof, then aj is interpreted as a “seed” such that C(aj) is a row of the proof
matrix, and we use (aj)col to denote the col-th bit of C(aj). (NOT the col-th bit of aj !)

For each j ∈ [p], pcrowj is a bit representing the contribution of seed.row in the j-th parity-check bit,
i.e. pcrowj := pcj(seed.row, 0

|seed.col|).
We first enumerate seed.shared ∈ {0, 1}rshared . For each seed.shared, we create an instance I :=

Iseed.shared of Approxε-C ′-Satisfying-Pairs as follows. Let x̃j be the j-th row of Enc(x) (viewed as
an Hinput ×Winput matrix). For each seed.row ∈ {0, 1}rrow , we add the following input to I:

Inputseed.shared,seed.row = (a1, . . . , aq, pc
row
1 , . . . , pcrowp),

where for every j ∈ [q],

aj :=

{
x̃irow[j] if itype[j] = input,

wirow[j] if itype[j] = proof,

and pcrowj is the contribution of seed.row to the j-th parity-check bit as defined above. Note that
since ñhard = Hinput ·Winput, x̃irow[j] ∈ {0, 1}Winput when itype[j] = input, i.e., x̃irow[j] will not contain
⊥ (see Definition 2.9). The length of aj is at most max{Winput, n} ≤ n · polylog(ℓ), thus the total
length of Inputseed.shared,seed.row is also bounded by n · polylog(ℓ).

Then, for every seed.col ∈ {0, 1}rcol , we define a circuit Cseed.shared,seed.col as follows. On input

(a1, . . . , aq, pc
row
1 , . . . , pcrowp),

it outputs
VDec

(
(a1)icol[1], , . . . , (aq)icol[q], pc

row
1 ⊕ pccol1 , . . . , pcrowp ⊕ pccolp

)
.

Here, VDec ← Vdec(seed.shared) is the decision predicate of VPCPP and pccoli represents the con-
tribution of seed.col to the i-th parity-check bit, i.e., pccoli := pci(0

|seed.row|, seed.col). Note that
by definition, pci(seed.row, seed.col) = pcrowi ⊕ pccoli . Also note that Cseed.shared,seed.col is indeed an
OR2 ◦ C circuit, since VDec is always the OR of its two input bits or their negation.

C

a1 a2

C(a1)

VDec

C′ = C′
seed.shared,seed.col

C

a1

C(a1)

VDec

C′ = C′
seed.shared,seed.col

pc1

Figure 1: Examples of the circuit Cseed.shared,seed.col. In the left example, there are two queries and
no parity-check bits, the first query has type proof and the second query has type input. In the
right example, there are one query with type proof and one parity-check bit.

28

Now, our instance I contains M := 2rrow inputs and N := 2rcol circuits. By definition, we have

VPCPPEnc(x)◦π(seed) = Cseed.shared,seed.col(Inputseed.shared,seed.row).

Since M = ℓc+1−η · polylog(ℓ) and N = ℓ1−η · polylog(ℓ), there is a non-trivial algorithm for
Approxε-C ′-Satisfying-Pairs with N circuits of size s and M inputs of length n · polylog(ℓ). In
particular, we can estimate pacc(seed.shared) using this algorithm on Iseed.shared up to an additive
error ε, where

pacc(seed.shared) := Pr
seed.row,seed.col

[
VPCPPEnc(x)◦π(seed)

]
.

In other words, we can obtain a p′acc(seed.shared) ∈ pacc(seed.shared) ± ε. The overall acceptance
probability of VPCPP on the input Enc(x) and proof π is

pacc := Pr
seed←{0,1}r

[
VPCPPEnc(x)◦π(seed)

]
.

= E
seed.shared

[
Pr

seed.row,seed.col

[
VPCPPEnc(x)◦π(seed)

]]

= E
seed.shared

[pacc(seed.shared)]

∈ E
seed.shared

[
p′acc(seed.shared)

]
± ε.

Hence we can estimate pacc up to an additive error ε by taking average over all p′acc(seed.shared)
obtained by the Approxε-C ′-Satisfying-Pairs algorithm over Iseed.shared.

To summarise, our algorithm MPCPP works as follows. It first computes Enc(x) in O(n)
time. Then, it enumerates seed.shared, produces the instance Iseed.shared, and feeds it to the al-
gorithm for Approxε-C ′-Satisfying-Pairs to obtain p′acc(seed.shared). Let p′acc be the average of
p′acc(seed.shared) over all seed.shared ∈ {0, 1}rshared . It accepts if and only if p′acc ≥ cpcp − ε.

Correctness of MPCPP. For every x ∈ {0, 1}nhard , we know by the discussion above that:

• If x /∈ Lhard, we know that Enc(x) is δEnc far from being in Lenc. By the soundness of VPCPP,
pacc ≤ spcp, which further means that p′acc ≤ pacc + ε < cpcp − ε, hence MPCPP will reject x.

• If x ∈ Lhard has an easy witness, we can see by the definition of easiness that there is a proof
π of Enc(x) ∈ Lenc such that for every row πi ∈ {0, 1}Wproof of π, there is a string wi ∈ {0, 1}n
such that πi = C(wi). These wi can be found by non-deterministic guessing at the beginning
of MPCPP. In such case, we know by the completeness of VPCPP that pacc ≥ cpcp, which
further means that p′acc ≥ pacc − ε ≥ cpcp − ε. Therefore MPCPP will accept x.

Complexity of MPCPP. Each instance I of Approxε-C ′-Satisfying-Pairs contains M :=
2rrow inputs and N := 2rcol circuits. Since each instance can be solved in NM/ logcimp(NM) time,
the total time are

2rshared ·NM/ logcimp(NM)

≤ 2rshared · 2rrow · 2rcol/rcimp

≤ 2r/rcimp .

Recall that r = log T + O(log log T + m logm), where O(·) hides some absolute constant, we can
see that 2r/rcimp = T logO(1) T/ logcimp T . By setting cimp to be an sufficiently large absolute con-
stant depending on chard, we can make 2r/rcimp ≤ T/ logchard T . Also, we can compute Enc(x) in

29

O(nhard) time and this is not the bottleneck. Therefore, the total running time of MPCPP is at most
T/ logchard T .

It then suffices to determine the advice and non-determinism complexity of MPCPP. For every
seed.shared, the machine MPCPP needs the data structure DSseed.shared as advice to support the
algorithm for Satisfying Pairs. Since |DSseed.shared| ≤ N c = 2crcol by the assumption, the advice
complexity of MPCPP is

2crcol+rshared ≤ ℓc−cη+2η ≤ ℓc+1 ≤ nhard/10.

Also, the number of nondeterministic bits that MPCPP guesses is at most Hproof · n ≤ nhard/10.
Therefore we can see that

MPCPP ∈ NTIMEGUESSRTM[T/ logchard(T), nhard/10]/(nhard/10).

The final algorithm. Given a multi-output circuit C : {0, 1}n → {0, 1}ℓ, our algorithm for
finding a non-output of C works as follows. First, we construct the hard language Lhard and the
algorithm MPCPP. Since MPCPP is a nondeterministic algorithm that runs in T/ logchard(T) time,
uses at most nhard/10 bits of nondeterminism and at most nhard/10 bits of advice, it follows that
there is an input xhard ∈ {0, 1}nhard such that MPCPP(xhard) ̸= Lhard(xhard). Moreover, let α be the
advice string fed to MPCPP, i.e., the data structures DSseed.shared for each seed.shared. (Note that
we can obtain α since the avoidance algorithm has an NP oracle.) We can find such an input xhard
by running R(1nhard ,MPCPP, α), where R is the refuter guaranteed by Theorem 2.2. Thus, we can
find xhard in poly(T) time with an NP oracle.

If xhard ̸∈ Lhard, then MPCPP also rejects xhard, which means MPCPP(xhard) = Lhard(xhard). Thus
it has to be the case that xhard ∈ Lhard but MPCPP rejects xhard. Therefore, xhard does not have an
easy witness. We can then use the NP oracle to find the lexicographically first proof matrix π such
that

Pr
seed←{0,1}r

[VPCPPEnc(x)◦π(seed) accepts] ≥ cpcp.

Treating π as a matrix of dimension Hproof ×Wproof , there has to be a row that is not in the range
of C. We can pick such a row by using the NP oracle.

Remark 3.3. In Theorem 3.2, we assumed a non-trivial Satisfying-Pairs algorithm for the circuit
class OR2 ◦ C . By Theorem 2.17, a non-trivial Satisfying-Pairs algorithm for AND2 ◦ C or
XOR2 ◦ C also suffices. This property might be useful for some circuit classes with a better closure
property under top XOR2 gates (or AND2 gates).

By replacing the 2-query PCPP (with imperfect completeness) with the 3-query PCPP (with
perfect completeness) in Theorem 2.13, we can show that non-trivial algorithms for Gapε-C ′-
Satisfying-Pairs where C ′ = OR3 ◦ C also imply FPNP algorithms for C -Avoid. We state
the result below but omit the proofs.

Corollary 3.4. There are constants ε > 0 and cimp such that the following holds. Let 0 < η < 1/2
be a constant, ℓ(n) > n1+4η be a good function. Let s = s(n) be a size parameter, C [s] be a typical
circuit class where s is a size parameter, and C ′[3s] := OR3 ◦C [s] (i.e. a C ′ circuit of size 3s refers
to an OR3 of at most two C circuits of size s).

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logcimp(NM))-time algo-
rithm for Gapε-C ′-Satisfying-Pairs with N := ℓ1−η · polylog(ℓ) circuits of size s(n) and
M := ℓc+1−η · polylog(ℓ) inputs of length n · polylog(ℓ), allowing a PNP preprocessing of an
N c-size data structure.

Conclusion: Then there is an FPNP algorithm for C [s]-Avoid with stretch ℓ(n).

30

3.2 Remote Point from Satisfying-Pairs

Theorem 3.5. There is a universal constant cu ≥ 1 such that the following holds. Let N := N(n)
be a parameter such that 2log

cu n < N < 2n
0.99 , ε := ε(n) > n−cu be the error parameter, and

ℓ := N cu log(1/ε). Let C [s] be a typical circuit class, where s := s(n) ≤ N is a size parameter, and
denote C ′[cus] := ANDcu ◦ C [s] (i.e. a C ′ circuit of size cus refers to the AND of at most cu C
circuits of size s).

Assumption: Let P := (logN)log(1/ε). Suppose there is a deterministic algorithm running in time
T alg := N2/P cu that, given as input a list of N C ′[cus] circuits {Ci} and a list of N inputs
{xj} with input length n · polylog(ℓ), estimates Pri,j←[N][Ci(xj)] with additive error η := εcu.

Conclusion: Then there is an FPNP algorithm that takes as input a circuit C : {0, 1}n → {0, 1}ℓ,
where each output bit of C can be computed in C [s], and prints a string y that is (1/2− ε)-far
from Range(C).

The rest of this section is devoted to proving Theorem 3.5.

Overview of Section 3.2

• In Section 3.2.1, we define a circuit class called Prodd ◦ Sum ◦C , and show that a Satisfying-Pairs
algorithm for ANDd◦C implies a Satisfying-Pairs algorithm for this class. This will be a convenient
tool for our subsequent arguments.

• To solve the remote point problem, we need to define a nondeterministic machine called MPCPP

trying to contradict the nondeterministic time hierarchy (Theorem 2.2). In Section 3.2.2, we set the
framework for this machine: it uses the PCPP theorem in Theorem 2.14, guesses a “compressed”
version of the PCPP proof, and verifies the validity of this PCPP proof without decompressing it.

• The first problem we encounter is the “non-Booleanness” of the PCPP proof. As we use Theorem 2.5,
the decompressed proof consists of real numbers instead of Boolean values, and we need to check
whether the decompressed proof is “close to Boolean” (in a carefully defined technical sense). This is
done in Section 3.2.3 via the Satisfying-Pairs algorithm.

• In Section 3.2.4, we use the faster algorithm for Satisfying-Pairs to verify the PCPP proof. This
step is straightforward but tedious.

• After we obtain a non-trivial algorithm for verifying the PCPP proof, we conclude the machine
MPCPP in Section 3.2.5. Then we use this machine to build an FPNP algorithm for the remote point
problem in Section 3.2.6.

• Finally, Appendix A contains postponed proofs.

3.2.1 Satisfying-Pairs for Prodd ◦ Sum ◦ C Circuits

It turns out that as an intermediate step, we need a Satisfying-Pairs algorithm for the
following class of multi-output circuits that output real numbers. Let d ≥ 1 be a constant, Prodd ◦
Sum ◦ C denotes the class of multi-output circuits which takes two inputs x ∈ {0, 1}n and α, and
has the following components:

• Let ℓC denote the number of bottom C circuits. For each i ∈ [ℓC], the i-th circuit is a C
circuit computing a function Ci : {0, 1}n → {0, 1}.

• Let ℓSum denote the number of middle “linear sum” gates. For each i ∈ [ℓSum], the i-th gate
outputs

Sumi(x, α) :=
∑

k∈[A]

coeffk(α) · Cidxk(α,i)(x).

31

C1 C2 C3

Sum Sum Sum
α α α

Sum
α

Sum
α

. . .

. . .

Prod
.

Prod ProdProd

Figure 2: Example of a Prodd ◦ Sum ◦ C circuit.

(See Definition 2.3 for the definition of linear sum circuits, in particular the coefficient sum
and locality of a linear sum circuit. Note that this definition is different from the definitions
in [Wil18b,CW19b].)

• Let ℓProd denote the number of output gates. Each output gate is a product (i.e., multipli-
cation) gate of fan-in d, and is connected to the q1(i), q2(i), . . . , qd(i)-th linear sum gate. Its
output is

CProd
i (x, α) :=

d∏

t=1

Sumqt(i)(x, α).

Remark 3.6. The important measures of a Prodd ◦ Sum ◦ C circuit are:

• the number of gates in each level (ℓC , ℓSum, ℓProd);
• the fan-in of the top Prod gates (d);
• the fan-in (A), coefficient sum (U), and locality (l) of the linear sum layer.

We show that a Satisfying-Pairs algorithm for ANDd◦C circuits implies a “Satisfying-Pairs
algorithm” for Prodd ◦ Sum ◦ C circuits that given a list of Prodd ◦ Sum ◦ C circuits and a list of
input strings, estimates the expected output value (as a real number) for a random circuit and a
random input string in the lists. The proof is deferred to Appendix A.1.

Theorem 3.7. Let C be a typical circuit class, M ′ ≥ 1 and η ∈ (0, 1) be parameters. Suppose
there is a deterministic algorithm running in time T alg = T alg(N,M) that, given as input a list of
N̂ ≤ N ANDd ◦ C circuits {Ci} and a list of M̂ ≤M inputs {xj}, estimates the following quantity
with additive error η:

Pr
i←[N̂],j←[M̂]

[Ci(xj)].

Then, there is a deterministic algorithm running in time Ad(2dl +M ′/M) · (ℓProd/N) · O(T alg)
that, given as input a Prodd ◦ Sum ◦C circuit CProd with parameters specified in Remark 3.6, and a
list of M ′ inputs {(xj , αj)}, estimates the following quantity with additive error η · Ud:

E
i←[ℓProd],j←[M ′]

[
CProd
i (xj , αj)

]
.

32

3.2.2 Set Up

Suppose that we are given a C circuit C : {0, 1}n → {0, 1}ℓ as input. Let q, cm, ctm be constants
that will be determined later. Define

δ := (109q)−q
2
,

m := cm log(1/ε)/δ,

wproof := (60q/m) log ℓ, Wproof := 2wproof = ℓO(δ/ log(1/ε)),

hproof := (5q + 1) log ℓ, Hproof := 2hproof = ℓ5q+1,

nhard := 20Hproof · n,
T :=Hproof ·Wproof/ log

ctm(ℓ).

Let Lhard be the hard language constructed in Theorem 2.2, i.e.,

Lhard ∈ NTIMETM[T] \ i.o.-NTIMEGUESSRTM[T/ logchard(T), nhard/10]/(nhard/10),

where nhard refers to the input length and chard is an absolute constant.
Since T = ℓ5q+1+Θ(1/ log(1/ε))/ logctm(ℓ) = ℓ5q+1 · nω(1) and nhard = 20ℓ5q+1n, we can see that

nhard · polylog(nhard) ≤ T ≤ 2poly(nhard), which satisfies the technical condition of Theorem 2.2.
Like in the proof of Theorem 3.2, we describe a nondeterministic RAM MPCPP that runs in

T/ logchard(T) time, guesses nhard/10 nondeterministic bits, and attempts to solve Lhard. We will
show that for every input x ∈ {0, 1}nhard , if x ̸∈ Lhard then MPCPP(x) rejects; while if x ∈ Lhard

and has an easy witness, then MPCPP(x) accepts. However, to solve C -Remote-Point, we need a
slightly different definition for “easy witness”.

Let VPCPP be the verifier for the smooth and rectangular PCPP (Theorem 2.14) for the language

Lenc := {Enc(x) : x ∈ Lhard},

where we fix an error-correcting code (Enc,Dec) as in Theorem 2.1. Let δEnc be the (relative)
distance of the error-correcting code. Suppose a string of length nhard is encoded (via Enc) into a
string of length ñhard := Θ(nhard). We set the following parameters:

hinput :=

(
1− Θ(m2 log log T)

log T

)
hproof , Hinput := 2hinput = Hproof/polylog(ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput = n · polylog(ℓ).

Again, we assume without loss of generality that ñhard = Hinput ·Winput.
We invoke Theorem 2.14 for Lenc to obtain a verifier VPCPP with proof size Ĥproof ×Wproof and

input size Hinput ×Winput, where Ĥproof = 2ĥproof for some16 ĥproof = log T +Θ(m log log T)−wproof .
We can check the technical requirements of Theorem 2.14 as follows:

T ≥Hproof · ℓΘ(δ/ log(1/ε)) ≥ Hproof ·Θ(n) = ñhard,

m =Θ(log n/δ) ≤ (log T)0.1,

wproof =(60q/m) log ℓ ≥ (5/m) log T,

ĥproof =hproof +Θ(log n log log ℓ) ≥ (5q + 1) log ℓ ≥ (5/m) log T,

16Note that the function ĥproof that Theorem 2.14 produces might not be exactly equal to hproof . However, this
difference is minor as these two quantities are close to each other.

33

winput

wproof
=

hproof + log n+O(1)− hinput
wproof

=
log n

wproof
+

hproof
wproof

· Θ(m2 log log T)

log T

≤ m log n

log ℓ
+

Θ(m3 log log T)

log T

≤ 1− Ω(1).

By Theorem 2.14, VPCPP has the following parameters:

◦ soundness error = 1/2,

◦ proximity parameter = δEnc,

◦ query complexity = q := O(1),

◦ parity-check complexity = q := O(1),

◦ total randomness = r := log T +O(log log T +m logm),

◦ row randomness = rrow := ĥproof − (5/m) log T = Θ(log ℓ),

◦ column randomness = rcol := wproof − (5/m) log T = Θ(log ℓ/m),

◦ shared randomness = rshared := (10/m) log T +O(log log T +m logm) = Θ(log ℓ/m).

Here, all the Θ(·) hides constants that may depend on q, cm, ctm. Moreover, as we choose the
soundness error and the proximity parameters to be absolute constants, the query complexity q is
also an absolute constant.

Note that if cu is large enough, then we have 2Ω(rcol) ≤ N ≤ 2rcol . Therefore we can solve the
Approxη-Satisfying-Pairs problem for 2rcol inputs and 2rcol ANDcu ◦ C circuits, by partitioning
the inputs and circuits into groups of size N . The time complexity is still at most 22rcol/P cu , where
P := (rcol)

log(1/ε). Without loss of generality, we may assume N = 2rcol in what follows.
We also fix the hardness amplification procedure Amp : {0, 1}Wproof → {0, 1}ℓ′ described by

Theorem 2.5 that amplifies hardness δ to hardness (1/2−ε). Here, ℓ′ := W
O(log(1/ε)/δ)
proof = ℓO(60q/cm).

We set the parameter cm such that ℓ′ ≤ ℓ. Without loss of generality, we may assume that ℓ′ = ℓ.17

Let (idx, coeff) be the family of linear sum circuit described in Theorem 2.5, then (idx, coeff) has
the following parameters:

advice complexity = a := O(log2Wproof/(εδ)
2) = O(log2 ℓ/ε2),

fan-in = A := O(logWproof/(εδ)
2) = O(log ℓ/ε2),

coefficient sum = U := O(1/ε),
locality = l := log ℓ.

We say an input x has an easy witness if there is a proof matrix π such that:

(completeness) for every seed ∈ {0, 1}r, VPCPPEnc(x)◦π(seed) accepts;

(approximate easiness) for every row πi of π, there exists an input wi ∈ {0, 1}n and an advice
αi ∈ {0, 1}a such that the decoding of C(wi) with advice αi is δ-close to πi with respect to
ℓ1-norm. (Recall that decα(x) denotes the decoding of x under advice α.) In particular:

1. for every j ∈ [Wproof], (decαi(C(wi)))j ∈ [0, 1];
17If ℓ′ ≪ ℓ, we can partition the outputs of the circuit into blocks of size ℓ′, and solve the remote point problem

for each block of output bits.

34

2. ∥decαi(C(wi))− πi∥1 ≤ δ.

Recall that P = (rcol)
log(1/ε). By our hypothesis, there is an algorithm that takes as input a list

of N AND4q ◦ C circuits {Ci} and a list of N inputs {xj}, runs in deterministic T alg := 22rcol/P cu

time, and estimates Ei,j [Ci(xj)] within additive error η := εcu ≤ U−10q.

3.2.3 Guessing and Verifying the PCPP

On input x ∈ {0, 1}nhard , we guess Ĥproof strings w1, w2, . . . , wĤproof
∈ {0, 1}n as well as Ĥproof

advice strings α1, α2, . . . , αĤproof
∈ {0, 1}a. Let πReal

i := decαi(C(wi)), and πBool
i be the Boolean

string that is closest to πReal
i . We will think of the matrix πBool as the PCPP proof, although our

algorithm MPCPP will operate on πReal.
Therefore, before we proceed, we need to verify that πReal and πBool are “close”, so that it does

no harm to operate on πReal even if the correct PCPP proof should be πBool. This verification
phase also occurs in previous works proving lower bounds against linear combinations of circuits
[Wil18b,CW19b,CR22,CLW20]. Like in previous work, we only provide an “approximate” verifica-
tion algorithm: if the input has an easy witness, then the PCPP proof πReal corresponding to this
easy witness is accepted; on the other hand, we reject every πReal that is “too far” from Boolean.

In what follows, denote

(itype[1], itype[2], . . . , itype[q])←Vtype(seed.shared),

(irow[1], irow[2], . . . , irow[q])←Vrow(seed.shared, seed.row), and
(icol[1], icol[2], . . . , icol[q])←Vcol(seed.shared, seed.col).

For each seed.shared ∈ {0, 1}rshared and each ι ∈ [q] such that itype[ι] = proof, we define the
following functions:

fBool
seed.shared,ι(seed.row, seed.col) =πBool

irow[ι],icol[ι] and

fReal
seed.shared,ι(seed.row, seed.col) =πReal

irow[ι],icol[ι].

We will speak about the ℓd-norms of the above functions. For example, let d ∈ N be a constant,
then

∥fBool
seed.shared,ι − fReal

seed.shared,ι∥d = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∣∣∣πBool
irow[ι],icol[ι] − πReal

irow[ι],icol[ι]

∣∣∣
d
]1/d

.

Lemma 3.8. Let C be a typical circuit class and d ≥ 2 be an even number. Suppose there is an
algorithm that takes as input a list of N = 2rcol AND2d ◦C circuits {Ci} and a list of N inputs {xj},
runs in deterministic T alg time, and estimates the following quantity with additive error η:

Pr
i,j←[2rcol]

[Ci(xj)].

Then there is an algorithm that takes the circuit C, (w1, w2, . . . , wĤproof
), and (α1, α2, . . . , αĤproof

)

as input, runs in deterministic O((3A)2dT alg) ·
(
22dl+rshared + T logO(m) T/22rcol

)
time, and satisfies

the following:

(Completeness) If for every i ∈ [Ĥproof], it holds that (1) for every j ∈ [Wproof], πReal
i,j ∈ [0, 1]; (2)

∥πReal
i − πBool

i ∥1 ≤ δ, then the algorithm accepts.

35

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared ∈ {0, 1}rshared and ι ∈ [q], ∥fReal
seed.shared,ι∥dd ≤ 1 + 2η · Ud;

2. Ei←[Ĥproof],j←[Wproof]

[
|πReal

i,j − πBool
i,j |d

]
≤ 4d · δ + 2d+1η(2U + 1)2d.

To prove this lemma, we need to reduce the task of checking whether the real proof is close to
the Boolean proof to the satisfying pairs of Prodd ◦ Sum ◦C circuits, and then apply the non-trivial
algorithm in Theorem 3.7. The details are given in Appendix A.2.

We substitute d := 2q in the above lemma. If x has an easy witness, then there is some
(w1, w2, . . . , wĤproof

) and (α1, α2, . . . , αĤproof
) that passes the test; on the other hand, if the test is

passed, then both soundness properties in Lemma 3.8 hold:

1. for every seed.shared and ι, ∥fReal
seed.shared,ι∥

2q
2q ≤ 1 + 2η · U2q;

2. Ei←[Hproof],j←[Wproof]

[
|πReal

i,j − πBool
i,j |2q

]
≤ 16q · δ + 128qηU4q.

3.2.4 Estimating the Acceptance Probability

After checking that the PCPP proof is “close to Boolean”, the next step is to use it to speed up
Lhard. We estimate

pacc := Pr
seed←{0,1}r

[
VPCPPEnc(x)◦πBool

(seed) accepts
]
.

(Indeed, it suffices to distinguish between the case that pacc ≥ 5/6 and the case that pacc < 1/2 as
we will explain later.)

We enumerate seed.shared. After fixing seed.shared, each itype[ι] is completely fixed, each irow[ι]
only depends on seed.row, and each icol[ι] only depends on seed.col. We now need to estimate

pacc(seed.shared) := Pr
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
VPCPPEnc(x)◦πBool

(seed) accepts
]
.

Suppose that we also fix seed.row. Then, we know the q rows of the input matrix Enc(x) and the
proof matrix π that could influence the PCPP verifier. We call them rowBool

1 , rowBool
2 , . . . , rowBool

q .
In particular, for each ι ∈ [q]:

rowBool
ι =

{
x̃irow[ι] if itype[ι] = input,

πBool
irow[ι] if itype[ι] = proof.

We also let pc1, pc2, . . . , pcq ← Vpc(seed.shared) be the parity-check functions of the PCPP
verifier, where each pcι : {0, 1}rrow+rcol → {0, 1}. In particular, let pcrowι (resp. pccolι) denote the
contribution of seed.row (resp. seed.col) to pcι, i.e.,

pcrowι (seed.row) := pcι(seed.row, 0
rcol),

pccolι (seed.col) := pcι(0
rrow , seed.col).

Then pcι(seed.row, seed.col) = pcrowι (seed.row)⊕pccolι (seed.col). For simplicity, we omit seed.row and
seed.col when they are clear from the context.

Let VDec be the decision predicate of the PCPP verifier; note that as seed.shared is fixed,
VDec← Vdec(seed.shared) is also fixed. The input of VDec includes the answers to the q queries and
the parity-check bits pc1, . . . , pcq. On seed.row and seed.col, the PCPP verifier outputs

VDec
(
(rowBool

1)icol[1], (row
Bool
2)icol[2], . . . , (row

Bool
q)icol[q], pc1, pc2, . . . , pcq

)
.

36

As every Boolean function over 2q bits can be written as a degree-2q polynomial over the reals,
we write

VDec(a1, a2, . . . , aq, pc1, pc2, . . . , pcq) =
∑

S⊆[q],S′⊆[q]

θS,S′

(∏

ι∈S
aι

)
·
(∏

ι∈S′
pcι

)
,

where θS,S′ ∈ [−22q, 22q]. Now, define

pacc(seed.shared, S, S
′) := E

seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowBool

ι)icol[ι] ·
∏

ι∈S′
pcι

]
.

We have
pacc(seed.shared) =

∑

S⊆[q],S′⊆[q]

θS,S′pacc(seed.shared, S, S
′),

thus it suffices to estimate each pacc(seed.shared, S, S
′).

Fix S and S′. Since we only have access to a real proof matrix πReal instead of a Boolean
proof matrix, we use the following number as an estimation of pacc(seed.shared, S, S′), with the only
difference being πBool

i being replaced by πReal:

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowReal

ι)icol[ι] ·
∏

ι∈S′
pcι

]
,

where

rowReal
ι =

{
x̃irow[ι] if itype[ι] = input,

πReal
irow[ι] if itype[ι] = proof.

The following claim bounds the accuracy of the estimation given the ℓd-distance between the
functions fBool

seed.shared,ι and fReal
seed.shared,ι. The proof is deferred to Appendix A.3.

Claim 3.9. For every S, S′ ⊆ [q],

|pacc(seed.shared, S, S′)− pRealacc (seed.shared, S, S′)| ≤ (1 + δseed.shared)
2q−1 · δseed.shared.

Here,

δseed.shared :=
∑

ι:itype[ι]=proof

∥fBool
seed.shared,ι − fReal

seed.shared,ι∥2q

(recall) =
∑

ι:itype[ι]=proof

E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∣∣∣πBool
irow[ι],icol[ι] − πReal

irow[ι],icol[ι]

∣∣∣
2q
]1/(2q)

.

Now we fix S, S′ and estimate pRealacc (seed.shared, S, S′). Let dS := |S|, dS′ := |S′|, it is without
loss of generality to assume that S = {1, 2, . . . , dS} and S′ = {1, 2, . . . , dS′}. We construct a
ProddS+dS′ ◦ Sum ◦ C circuit CProd := CProd

seed.shared,S,S′ , as well as a list of inputs (zseed.row, αseed.row),
such that

CProd
seed.col(zseed.row, αseed.row) =

∏

ι∈S
(rowReal

ι)icol[ι] ·
∏

ι∈S′
pcι. (5)

37

C C

z1 z2 z3 zdS

. . .

C(zdS)C(z2)

. . . pc1 pcdS′

itype = input inputproof proof

COPY

z1

COPY

z3

COPY

. . .pc1 pcdS′

SumCOPY

z1 decα2(C(z2))

α2

COPY

z3

Sum

decαdS
(C(zdS))

αdS

pc1 1− pc1 pcdS′ 1− pcdS′

CProd
seed.colCProd

0rcol CProd
1rcol

.

Figure 3: Construction of the circuit CProd. Note that for convenience, we only drew the “relevant”
parts of this circuit, e.g., C(zi) when itype[i] = proof and the copying circuit for zi when itype[i] =
input.

Construction of CProd and inputs. For each seed.row and each ι ∈ S, define

(zseed.row)ι :=

{
x̃irow[ι] if itype[ι] = input,

wirow[ι] if itype[ι] = proof.

Then we concatenate each (zseed.row)j and the (row-)parity-check bits to obtain

zseed.row :=
(
(zseed.row)1, (zseed.row)2, . . . , (zseed.row)dS , pc

row
1 , pcrow2 , . . . , pcrowdS′

)
.

It is easy to check that given seed.row (and seed.shared), we can compute zseed.row easily. We also
define

αseed.row :=
(
αirow[1], αirow[2], . . . , αirow[dS]

)
.

Next, we define the circuit CProd that takes two inputs (z, α) and outputs 2|seed.col| real numbers.
Fix seed.col, we want that

CProd
seed.col(zseed.row, αseed.row)

=
∏

ι∈S
(rowReal

ι)icol[ι] ·
∏

ι∈S′
pcι

=
∏

ι∈Sproof

(decαirow[ι]
(C(wirow[ι])))icol[ι] ·

∏

ι∈Sinput

x̃irow[ι],icol[ι] ·
∏

ι∈S′
(pcrowι ⊕ pccolι),

where
(decαirow[ι]

(C(wirow[ι])))icol[ι] =
∑

k∈[A]

coeffk(αirow[ι]) · Cidxk(αirow[ι],icol[ι])(wirow[ι])

denotes the icol[ι]-th bit of the string obtained by decoding C(wirow[ι]) with the advice αirow[ι] using
the decoder dec, Sproof := S ∩ {i ∈ [q] | itype[i] = proof}, S input := S ∩ {i ∈ [q] | itype[i] = input}.

This motivates the definition of the circuit CProd (see Figure 3 for graphic exposition and Figure 4
for detailed definition). The parameters of the circuit CProd are as follows.

• The number of gates: ℓC = dS(ℓ+Wproof) + dS′ , ℓSum = Wproof · dS + 2dS′ , ℓProd = 2rcol .
• The fan-in of the top Prod gates dS + dS′ ≤ 2q.
• The fan-in A′ := A · dS + 2, coefficient sum dS · U + 2, and locality l of the linear sum layer.

38

Circuit CProd

(Inputs) The input z will have the form z = (z1, z2, . . . , zdS
, pc1, pc2, . . . , pcdS′) and the input α will

have the form α = (α1, α2, . . . , αdS
). The intended meanings are zi = (zseed.row)i, pci = pcrowi , and

αi = αirow[i].

(Bottom circuits) We make dS copies to C, where the i-th copy is applied to the input zi. (The i-th
copy is useful only when itype[i] = proof, but we make all dS copies for convenience.) We also
add Wproof · dS + dS′ gates to copy the input.
Thus, there are ℓC := dS · ℓ + dS ·Wproof + dS′ output gates; we identify [ℓC] with the disjoint
union of {1} × [dS]× [ℓ], {2} × [dS]× [Wproof], and {3} × [dS′].

– For each j ∈ [dS] and i ∈ [ℓ], the (1, j, i)-th gate is C(1,j,i)(z) := C(zj)i.
– For each j ∈ [dS] and i ∈ [Wproof], the (2, j, i)-th gate is C(2,j,i)(z) := (zj)i.
– For each j ∈ [dS′], the (3, j)-th gate is C3,j(z) := pcj .

(Intermediate linear sum gates) There are ℓSum := Wproof · dS + 2dS′ linear sum gates and we
identify [ℓSum] with the disjoint union of [Wproof]× [dS] and [dS′]× {0, 1}.
Let i ∈ [Wproof] and j ∈ [dS]. If itype[j] = proof, then the (i, j)-th intermediate gate is

Sum(i,j)(z, α) =
∑

k∈[A]

coeffk(αj) · Cidxk(αj ,i)·dS+j(z).

It is easy to verify that

Sum(i,j)(zseed.row, αseed.row) = (decαirow[j]
(C(wirow[j])))i.

On the other hand, if itype[j] = input, then the (i, j)-th intermediate gate is Sum(i,j)(z, α) := (zj)i.
(If i > Winput then we simply set Sum(i,j)(z, α) = 0 and this intermediate gate would not be used.)
Finally, for each i ∈ [dS′], we have two intermediate gates

Sum(i,0)(z, α) = pci, Sum(i,1)(z, α) = 1− pci.

Implementation of the linear sum layer: The linear sum has fan-in A′ := A ·dS+2 and we identify
[A′] with the disjoint union of [A] × [dS] and {+,−}. Let idx′ and coeff ′ be the idx and coeff
functions of the linear sum layer of CProd, then

(Function idx′k(α, i)) Suppose i = (i′, j) ∈ [Wproof] × [dS]. If itype[j] = proof and k = (k′, j′)
where j = j′, then we return idx′k(α, i) = (1, j, idxk′(αj , i

′)); if itype[j] = input and k = +,
then idx′k(α, i) = (2, j, i′). Otherwise idx′k(α, i) = ZERO.
On the other hand, suppose i = (j, b) ∈ [dS′] × {0, 1}. If (b = 0 and k = +) or (b = 1
and k = −) then idx′k(α, i) = (3, j). If b = 1 and k = + then idx′k(α, i) = ONE. Otherwise
idx′k(α, i) = ZERO.

(Function coeff ′k(α)) If k = + then coeff ′k(α) = 1; if k = − then coeff ′k(α) = −1; otherwise, if
k = (k′, j′) then coeff ′k(α) = coeffk′(αj′).

The locality of (idx′, coeff ′) is still l. The coefficient sum becomes dS · U + 2.

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output gate
is

CProd
seed.col(z, α) =

∏

i∈S
Sumicol[i]·dS+i(z, α) ·

∏

i∈S′

SumWproof ·dS+2i+pccoli
(z, α).

Figure 4: Detailed definition of CProd.

39

Given the above construction, it is easy to check that Eq. (5) holds for every seed.row and
seed.col. We can see that

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
CProd
seed.col(zseed.row, αseed.row)

]
.

Since dS ≤ q and dS′ ≤ q, by Theorem 3.7, we can estimate pRealacc (seed.shared, S, S′) with additive
error η · (qU + 2)2q in deterministic O((qA)2q(22ql + 2rrow/N) · T alg) time.

Analysis. First, the verification step takes

O((3A)4qT alg) ·
(
24ql+rshared + T logO(m) T/22rcol

)

≤O((3A)4q) · (T logO(m) T)/(rcol)
cu log(1/ε)

≤T (log T)O(m)−cu log(1/ε)/2

time, which is at most T/ logchard T if cu is a large enough constant.
Our algorithm estimates pRealacc (seed.shared, S, S′). By Claim 3.9, the same algorithm estimates

pacc(seed.shared, S, S
′) within additive error η(qU + 2)2q + δ′seed.shared, where

δ′seed.shared := (1 + δseed.shared)
2q−1 · δseed.shared.

Running this algorithm for every possible (S, S′), we obtain an algorithm that runs in determin-
istic (O(qA))2q(22ql + 2rrow/M) · T alg time and estimates pacc(seed.shared) within additive error

≤ δ̄seed.shared := 4q ·
∑

S,S′

(η · (qU + 2)2q + δ′seed.shared)

≤ η · (4qU + 8)2q + 16q · δ′seed.shared.

Finally, running this algorithm for every seed.shared ∈ {0, 1}rshared , we obtain an algorithm that runs
in deterministic

O(qA)2q(22ql + 2rrow/N) · 2rshared ·O(T alg)

≤O(log2q ℓ/ε4q)2rrow/2rcol · 2rshared · 22rcol/(rcol)cu log(1/ε)

≤ 2r/ logΩ(cu) ℓ < T/ logchard(T)

time that estimates pacc within additive error of at most

E
seed.shared

[
δ̄seed.shared

]
≤ η · (4qU + 8)2q + 16q E

seed.shared
[δ′seed.shared].

It remains to upper bound the quantity Eseed.shared[δ
′
seed.shared]. We abstract this task in the

following lemma and defer the proof to Appendix A.4.

Lemma 3.10. Let f : [N]× [q]→ R≥0 be a function and d ≥ 1 be a constant. Suppose that

1. for every s ∈ [N] and i ∈ [q], f(s, i) ≤ α (where α ≥ 1);
2. Es,i[f(s, i)

d] ≤ δ.

Let f(s) :=
∑

i∈[q] f(s, i). Then

E
s
[(1 + f(s))d−1 · f(s)] ≤ qδ1/d(2qα)d−1.

40

To see how this lemma corresponds to our scenario: Let d = 2q and [N] = {0, 1}rshared . For
seed.shared and ι, if itype[ι] = proof, then define f(seed.shared, ι) = ∥fBool

seed.shared,ι − fReal
seed.shared,ι∥2q;

otherwise define f(seed.shared, ι) = 0. Since the verification algorithm did not reject πReal, we have

1. For every seed.shared and ι,

f(seed.shared, ι) ≤ ∥fBool
seed.shared,ι∥2q + ∥fReal

seed.shared,ι∥2q ≤ 2 + 2η · U2q.

2. Since the PCPP is smooth, the distribution of (irow[ι], icol[ι]) for random (seed, ι) (conditioned
on itype[ι] = proof) is the same as the uniform distribution over [Hproof]× [Wproof]. Therefore

E
seed.shared,ι

[f(seed.shared, ι)2q] = E
seed,ι:itype[ι]=proof

[|πBool
irow[ι],icol[ι] − πReal

irow[ι],icol[ι]|2q]

= E
i,j
[|πBool

i,j − πReal
i,j |2q]

≤ 16q · δ + 128qηU4q.

It follows from Lemma 3.10 that

E
seed.shared

[δ′seed.shared] ≤ q(16q · δ + 128qηU4q)1/2q(2q(2 + 2η · U2q))2q−1

≤ q(17q · δ)1/2q · (100q)2q < 100−q.

Therefore, the algorithm estimates pacc within additive error at most

η(4qU + 8)2q + 16q · 100−q < 1/6,

thus successfully distinguishes between the case that pacc > 5/6 and that pacc < 1/2.

3.2.5 Wrap Up: Description of MPCPP

On input x, we consider the smooth and rectangular PCPP for the language Lenc = {Enc(x) :
x ∈ Lhard}. (Recall that MPCPP aims to reject every x /∈ L and accepts every x ∈ L with easy
witness.) We guess (w1, . . . , wHproof

) and (α1, . . . , αHproof
), which implicitly defines the PCPP proof

matrices πBool and πReal. Then we verify πReal using Lemma 3.8, reject immediately if πReal did not
pass the test. If πReal passes the test (which means that it is “close” to a Boolean proof πBool), we
use the algorithm described above to estimate pacc. We accept x if and only if our estimation is
above 2/3.

The correctness of MPCPP is easy to see:

Claim 3.11. For every input x, if x ̸∈ L then MPCPP rejects x; while if x ∈ L and x has an easy
witness then MPCPP accepts x.

Proof. If x /∈ L, then it always holds that pacc < 1/2, so MPCPP rejects. If x ∈ L and x has an easy
witness, then there exists a proof π, (w1, . . . , wHproof

) and (α1, . . . , αHproof
) such that

1. for every j ∈ [Wproof], πReal
i,j ∈ [0, 1];

2. for every i ∈ [Wproof], j ∈ [Hproof], ∥πReal
i − πi∥1 ≤ δ.

Note that ∥πReal
i − πBool

i ∥1 ≤ ∥πReal
i − πi∥1 ≤ δ since πBool

i is the closest Boolean string to πReal
i ,

and thus ∥πi − πBool
i ∥1 ≤ 2δ. Since the probability that VPCPP accepts π is 1, by Lemma 2.11,

pacc ≥ 1− q · 2δ > 5/6, so MPCPP accepts.

The machine MPCPP guesses Hproof(n+a) < nhard/10 bits of nondeterminism, and uses Õ(sℓ) <
nhard/10 bits of advice. Thus L(MPCPP) ∈ NTIMEGUESSRTM[T/ logchard(T), nhard/10]/(nhard/10).

41

3.2.6 The FPNP Algorithm for Remote-Point

Let C : {0, 1}n → {0, 1}ℓ be the input circuit. We first construct the hard language Lhard and the
algorithm MPCPP. Since MPCPP is a nondeterministic RAM algorithm that runs in T/ logchard(T)
time, uses at most nhard/10 nondeterministic bits and at most nhard/10 advice bits, it follows that
there is an input xhard ∈ {0, 1}nhard such that MPCPP(xhard) ̸= Lhard(xhard). Moreover, let α be
the advice string fed to MPCPP, i.e., the circuit C. We can find such an input xhard by running
R(1nhard ,MPCPP, α), where R is the refuter guaranteed by Theorem 2.2. Thus, we can find xhard in
deterministic poly(T) time with an NP oracle.

It follows from Claim 3.11 that xhard ∈ Lhard but xhard does not have an easy witness. Thus, we
can use the NP oracle to find the lexicographically first PCPP proof matrix π such that

Pr
seed←{0,1}r

[VPCPPEnc(x)◦π(seed) accepts] = 1.

Then, there must exist a row πi that is (1/2− ε)-far from Range(C). To see this, suppose that for
every i, the i-th row πi is (1/2 − ε)-close to Range(C). Then there exists some wi ∈ {0, 1}n such
that δ(Amp(πi), C(wi)) ≤ 1/2 − ε. By Theorem 2.5, there is an advice αi such that decαi(C(wi))
satisfies (1) for every j ∈ [Wproof], (decαi(C(wi)))j ∈ [0, 1]; (2) ∥decαi(C(wi))− πi∥1 ≤ δ. It follows
that π is an easy witness for xhard, a contradiction.

Finally, we use the NP oracle to find the first row πi, such that Amp(πi) is (1/2 − ε)-far from
Range(C). The overall procedure takes deterministic poly(T) ≤ poly(ℓ) time with an NP oracle.

3.3 Variants of Our Frameworks

In this sub-section, we discuss two variants of our frameworks in Theorems 3.2 and 3.5.

Allowing FPNP preprocessing in Theorem 3.5. Notice that in Theorem 3.2, we allow the
non-trivial algorithm for Satisfying-Pairs to have a polynomial-time preprocessing with an NP
oracle on the circuits before seeing the inputs. In our framework for remote point problems (see
Theorem 3.5), we did not consider the preprocessing phase, as we do not need any preprocessing
in our unconditional results, and the trade-off between parameters will be too complicated. We
now argue informally that by modifying our framework as follows, it suffices to have algorithms for
Satisfying-Pairs with an FPNP preprocessing phase that generates a “short” data structure.

• Fix any integer d. Recall that Theorem 3.7 states that non-trivial algorithms for (approximate
counting version, omitted below) ANDd◦C -Satisfying-Pairs imply non-trivial algorithms for
Prodd ◦Sum◦C -Satisfying-Pairs. By verifying the proof of Theorem 3.7, we can show that
if the Prodd◦Sum◦C circuit has fan-in A, the algorithm will call ANDd◦C -Satisfying-Pairs
for Ad times. Moreover, if the Prodd ◦ Sum ◦ C circuit is fixed, then the circuit parts of these
Ad instances for ANDd ◦ C -Satisfying-Pairs are also fixed.

• In the proof of Theorem 3.5, we need to apply the non-trivial algorithm for Prodd ◦ Sum ◦ C -
Satisfying-Pairs on three types of circuits: circuits Cnorm and Cdiff in Lemma 3.8 (see
Appendix A.2), and circuit CProd in Section 3.2.4. There are O(2rshared) ≤ O(ℓ1/m) circuits in
total, all of which are constructible given the input circuit C : {0, 1}n → {0, 1}ℓ. Moreover,
the fan-in of these Prodd ◦ Sum ◦ C -Satisfying-Pairs circuits are O(log ℓ), and d = O(1).
Therefore we will need to call the ANDd ◦ C -Satisfying-Pairs for O(ℓ1/m) · (log ℓ)d = ℓo(1)

times, and the circuits are fixed given the input circuit C. (That is, the circuits do not depend
on the input of the machine MPCPP.)

42

• Now we assume that our non-trivial algorithm for ANDd ◦C -Satisfying-Pairs has an FPNP

preprocessing phase. Similar to the proof of Theorem 3.2, the final FPNP algorithm for C -
Remote-Point works as follows. Given any input circuit C : {0, 1}n → {0, 1}ℓ, we construct
the circuits in all ℓo(1) instances of ANDd ◦ C -Satisfying-Pairs that will be needed in the
proof, run the FPNP preprocessing on these instances, and put the generated data structure
into the advice of MPCPP. It remains to verify that there are enough space to store these
data structures in the advice. The non-deterministic time hierarchy theorem allows us to have
nhard/10 bits of advice (see Theorem 2.2), where nhard = 20Hproof · n ≥ ℓ5q+1. The circuit C
of size s · ℓ, which can be properly encoded using Õ(s · ℓ) ≤ ℓ2 bits, needs to be put in the
advice; therefore the rest nhard/10− ℓ2 bits in advice can be used to store the data structure
generated in the preprocessing phase.

Algorithm for “weak” remote point. We can see that Theorem 3.5 requires the input circuit C
to have quasi-polynomial stretch. This is because the hardness amplification procedure Amp (i.e. the
XOR lemma with linear-sum decoder, see Section 2.4 and Appendix A.5) requires quasi-polynomial
stretch. An interesting open problem is then to improve the amplification procedure to achieve a
better stretch in Theorem 3.5.

The application of the hardness amplification procedure is to reduce the “strong” remote point
(i.e. the distance is 1/2− nΩ(1)) to “weak” remote point (i.e. the distance is Ω(1)). If we only want
to have an FPNP algorithm in the “weak” remote point regime, it suffices to follow the proof of The-
orem 3.2 and replace the rectangular PCPP to the smooth and rectangular PCPP in Theorem 2.14,
which can deal with C -Remote-Point with polynomial stretch. (The key is that smooth PCPP
can tolerate errors in the proof, see Lemma 2.11 and Section 3.2.5).

4 Hard Partial Truth Tables

In this section, we employ the same technique to construct algorithms for Partial-Hard
and Partial-AvgHard from non-trivial Satisfying-Pairs algorithms. We only consider cir-
cuit classes that are both typical and complete. Recall that a circuit class C is typical if it is closed
under negations and projections. We say C is complete if given a truth table tt of length 2n, we
can compute a C circuit of size 2O(n) whose truth table is tt in deterministic 2O(n) time.

4.1 Hard Partial Truth Tables from Satisfying-Pairs

Instead of allowing a PNP preprocessing on the circuits, the algorithm for Satisfying-Pairs
used to solve Partial-Hard allows a PNP preprocessing on inputs, formally defined as follows.

Definition 4.1 (Algorithms for Satisfying-Pairs with PNP Preprocessing on Inputs). Let P be
one of the problems C -Satisfying-Pairs, #C -Satisfying-Pairs, Approxδ-C -Satisfying-Pairs,
Gapδ-C -Satisfying-Pairs. A t-time algorithm for P with PNP preprocessing of an ℓ-size data
structure on inputs is a pair of algorithms (A1, A2) that solves P in two phases:

1. Given the inputs x1, x2, . . . , xM ∈ {0, 1}n, the polynomial-time algorithm A1 with oracle
access to a SAT oracle computes a string DS ∈ {0, 1}ℓ.

2. Given the circuits C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s and the string DS, the algorithm
A2 solves P on the instance (C1, . . . , CN , x1, . . . , xM) in time t.

43

Theorem 4.2. There are constants ε > 0 and cimp such that the following holds. Let 0 < η < 1/2
be a constant, C [s] be a typical and complete circuit class where s = s(n) > n is a size parameter,
and C ′[2s] := OR2 ◦ C [s]. Let ℓ(n) be a good function such that s(n)1+Ω(1) ≤ ℓ(n) ≤ 2n.

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logcimp(NM))-time al-
gorithm for Approxε-C ′-Satisfying-Pairs with N := ℓc+1−η · polylog(ℓ) circuits of size
poly(s(n)) and M := ℓ1−η · polylog(ℓ) inputs of length 2n, allowing a PNP preprocessing
of an M c-size data structure on inputs.

Conclusion: There is an FPNP algorithm for C [s]-Partial-Hard with ℓ(n) input strings. More
precisely, given a list of inputs z1, z2, . . . , zℓ ∈ {0, 1}n, we can compute a list of bits b1, b2, . . . , bℓ
such that for every C circuit C : {0, 1}n → {0, 1} of size s, there exists an i ∈ [ℓ] such that
C(zi) ̸= bi.

Proof Sketch of Theorem 4.2. The proof is very similar to the proof of Theorem 3.2; in fact, it is
(nearly) equivalent to first reducing Partial-Hard to Avoid and then invoking Theorem 3.2.
Therefore we only highlight the differences.

It is without loss of generality to assume ℓ is a power of 2 and c ≥ 2. We set the following
parameters:

m := 5(c+ 2)/η = O(1),
wproof := log ℓ, Wproof := 2wproof = ℓ,
hproof := (c+ 1) log ℓ, Hproof := 2hproof = ℓc+1,
nhard := 100Hproof · s log s,

T := Hproof ·Wproof/ log
ctm(ℓ),

hinput :=
(
1− Θ(log log T)

log T

)
hproof , Hinput := 2hinput = Hproof/polylog(ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput = s log s · polylog(ℓ).

Here ñhard = O(nhard) is the codeword length of a length-nhard string encoded via Enc where
(Enc,Dec) is a fixed error-correcting code in Theorem 2.1; and ctm is a sufficiently large constant.

We can check the technical condition nhard
1+Ω(1) ≤ T ≤ 2poly(nhard), so it is valid to invoke

Theorem 2.2. Also, (5/m) log T ≤ wproof , so it is valid to invoke the 2-query rectangular PCPP in
Theorem 2.13. There are other checks for technical conditions that we omit here.

The first difference is the definition of “easy witness”. We say x has an easy witness if there is
a proof matrix π (of size Hproof ×Wproof) for the statement “Enc(x) ∈ Lenc” such that:

(completeness) for every seed ∈ {0, 1}r, VPCPPEnc(x)◦π(seed) accepts with probability at least cpcp;

(easiness) for every row πj of π, there exists a size-s C circuit Cj : {0, 1}n → {0, 1} such that for
every i, πj,i = Cj(zi).

Then, our machine MPCPP guesses Hproof size-s C circuits C1, C2, . . . , CHproof
: {0, 1}n → {0, 1}.

Let π be the Hproof ×Wproof proof matrix where for each j ∈ [Hproof], i ∈ [Wproof], πj,i = Cj(zi). We
need to estimate

pacc := Pr
seed←{0,1}r

[VPCPPEnc(x)◦π(seed) accepts].

We still reduce the problem of estimating pacc to 2rshared instances of Approxε-C ′-Satisfying-Pairs,
where ε := (cpcp − spcp)/4. However, now, each instance consists of N := 2rrow = 2hproof−(5/m) log T

circuits and M := 2rcol = 2wproof−(5/m) log T inputs.18

18That is, the role of inputs and circuits are swapped as compared to Theorem 3.2.

44

We enumerate seed.shared. For each seed.shared, we create an Approxε-C ′-Satisfying-Pairs
instance Iseed.shared corresponding to seed.shared, which contains an input Inputseed.shared,seed.col for
every seed.col and a circuit Cseed.shared,seed.row for every seed.row. We elaborate on how this instance
is constructed as this is different from Theorem 3.2.

Each seed.col corresponds to an input Inputseed.shared,seed.col of the following form:

(a1, . . . , aq, pc
col
1 , . . . , pccolp),

where p+ q ≤ 2, for each i ∈ [q],

ai :=

{
icol[i] if itype[i] = input;

zicol[i] if itype[i] = proof,

and pccoli represents the contribution of seed.col in the i-th parity-check bit.
The circuit Cseed.shared,seed.row corresponding to seed.row is as follows:

• It receives input (a1, . . . , aq, pc
col
1 , . . . , pccolp).

• For each j ∈ [q], let

ansj =

{
Enc(x)irow[j],aj if itype[j] = input

Cirow[j](aj) if itype[j] = proof
.

Note that since C is complete, we can compute a C circuit of size poly(Winput) = poly(s)
whose truth table is the irow[j]-th row of Enc(x). That is, we can compute a C circuit of size
poly(s) that on input aj , outputs ansj .

• For each j ∈ [q], let pcrowj be the contribution of seed.row in the j-th parity-check bit.

• It returns
VDec(ans1, . . . , ansq, pc

col
1 ⊕ pcrow1 , . . . , pccolp ⊕ pcrowp).

Here, VDec is the decision predicate of VPCPP, and is an OR2 of its input bits or their nega-
tions. Since C is typical, C is a OR2 ◦ C circuit. And one can easily verify that for each
seed = (seed.shared, seed.row, seed.col), Cseed.shared,seed.row(Inputseed.shared,seed.col) = 1 if and only if
VPCPPEnc(x)◦π(seed) accepts. It follows that we can estimate pacc by solving the instances Iseed.shared
for every seed.shared.

To summarise, our algorithm MPCPP works as follows. It first computes Enc(x) and guesses
C1, C2, . . . , CHproof

. Then, it enumerates seed.shared, produces the instances Iseed.shared, and feeds
them to the algorithm for Approxε-C -Satisfying-Pairs to obtain an estimation p′acc(seed.shared).
Let p′acc be the average of p′acc(seed.shared) over all seed.shared ∈ {0, 1}rshared .

We can still see that MPCPP rejects every x ̸∈ Lhard and accepts every x with an easy witness. The
machine MPCPP runs in T/ logchard T time, guesses Hproof · 5s log s < nhard/10 nondeterministic bits
(since a size-s circuit can be encoded with at most 5s log s bits), and uses at most ℓc+1 < nhard/10
advice bits. By Theorem 2.2, MPCPP cannot compute Lhard.

The hard partial truth table algorithm. Given a list of inputs z1, z2, . . . , zℓ ∈ {0, 1}n, our
algorithm for finding a hard partial truth table ((z1, b1), (z2, b2), . . . , (zℓ, bℓ)) works as follows. First,
we construct the hard language Lhard and the algorithm MPCPP. Let α be the advice string fed
to MPCPP and R be the refuter in Theorem 2.2, we can use R(1nhard ,MPCPP, α) to find an input

45

xhard where MPCPP fails on xhard; in particular, MPCPP(xhard) = 0 but xhard ∈ Lhard. This takes
deterministic poly(Hproof) = poly(ℓ) time with an NP oracle.

Then we find the lexicographically first proof matrix π such that VPCPPEnc(xhard)◦π accepts
w.p. at least cpcp, using the NP oracle. There has to be some j ∈ [Hproof] such that for every size-s
C circuit C, there exists i ∈ [Wproof] such that C(zi) ̸= πj,i; moreover, the first such j can be found
in poly(Hproof) = poly(ℓ) time with an NP oracle. We can pick

((z1, πj,1), (z2, πj,2), . . . , (zWproof
, πj,Wproof

))

as the partial truth table hard for size-s C circuits.

4.2 Average-Case Hard Partial Truth Tables

Theorem 4.3. There is a universal constant cu ≥ 1 such that the following holds. Let s = s(n) > n
be a circuit size parameter, N := N(n) be a parameter such that 2log

cu s < N < 2s
0.99, ε := ε(n) >

s−cu be the error parameter, and ℓ := N cu log(1/ε). Let C [s] be a typical and complete circuit class,
and denote C ′[cus] := ANDcu ◦C [s] (i.e. a C ′ circuit of size cus refers to the AND of at most cu C
circuits of size s).

Assumption: Let P := (logN)log(1/ε). Suppose there is a deterministic algorithm running in time
T alg := N2/P cu that, given as input a list of N C ′[cus] circuits {Ci} and a list of N inputs
{xj} with input length n · polylog(ℓ), estimates Pri,j←[N][Ci(xj)] with additive error η := εcu.

Conclusion: There is an FPNP algorithm for C [s]-Partial-AvgHard with ℓ(n) input strings.
More precisely, given a list of inputs w1, w2, . . . , wℓ ∈ {0, 1}n, we can compute a list of bits
b1, b2, . . . , bℓ such that for every C circuit C : {0, 1}n → {0, 1} of size s,

Pr
i←[ℓ]

[C(wi) ̸= bi] ≥
1

2
− ε.

Proof Sketch of Theorem 4.3. The proof is similar to that of Theorem 3.5, so here we only highlight
the difference. Roughly speaking, the main difference is that we swap the role of inputs and circuits.

For a circuit C and a list of inputs w1, w2, . . . , wℓ, with slight abuse of notation, we define
C(w) := C(w1) ◦ C(w2) ◦ · · · ◦ C(wℓ).

Analysing Prod ◦ Sum circuits. Let d ≥ 1 be a constant. We use Prod ◦ Sum to denote the class
of multi-output circuits that take inputs y ∈ {0, 1}ℓy and α, and has the following components:

• Let ℓSum denote the number of middle “linear sum” gates. For each i ∈ [ℓSum], the i-th gate
outputs

Sumi(y, α) :=
∑

k∈[A]

coeffk(α) · yidxk(α,i).

• Let ℓProd denote the number of output gates. The i-th output gate is a product gate of fan-in
d, and is connected to the q1(i), q2(i), . . . , qd(i)-th linear sum circuits. Its output is

CProd
i (y, α) :=

d∏

t=1

Sumqt(i)(y, α).

46

Remark 4.4. The important measures of a Prodd ◦ Sum circuit are:

• the number of gates in each level (ℓSum, ℓProd);
• the fan-in of the top Prod gates (d);
• the fan-in (A), coefficient sum (U), and locality (l) of the linear sum layer.

It turns out that as an intermediate step, we need an algorithm provided by the following lemma.

Lemma 4.5. Let C be a typical circuit class, M ′ ≥ 1 and η ∈ (0, 1) be parameters. Suppose there is
a deterministic algorithm running in time T alg = T alg(N,M) that, given as input a list of M̂ ≤M
ANDd ◦ C circuits {Ci} and a list of N̂ ≤ N inputs {xj} of length n · polylog(ℓ), estimates the
following quantity with additive error η:

Pr
i←[M̂],j←[N̂]

[Ci(xj)].

Then, for any constant ℓC > 0, there is a deterministic algorithm running in time Ad · (ℓdC +
ℓProd/N) · (2dl +M ′/M) ·O(T alg) that, given as input a Prodd ◦ Sum circuit CProd with parameters
specified in Remark 4.4, a list of ℓx strings {xj}, a list of M ′ inputs {αj}, and a list of M ′ C circuits
{Cj} from {0, 1}|x| to {0, 1}ℓC , estimates the following quantity with additive error η · Ud:

E
i←[ℓProd],j←[M ′]

[
CProd
i (Cj(x), αj)

]
.

Recall here that Cj(x) = Cj(x1) ◦ Cj(x2) ◦ · · · ◦ Cj(xℓx).

The proof is similar to that of Theorem 3.7 and is deferred to Appendix A.1.

Set up. We set the parameters as follows.

δ := (109q)−q
2
,

m := cm log(1/ε)/δ,

wproof := (60q/m) log ℓ, Wproof := 2wproof = ℓO(δ/ log(1/ε)),

hproof := (5q + 1) log ℓ, Hproof := 2hproof = ℓ5q+1,

nhard := 200Hproof · s log s,
T :=Hproof ·Wproof/ log

ctm(ℓ).

hinput :=

(
1− Θ(m2 log log T)

log T

)
hproof , Hinput := 2hinput = Hproof/polylog(ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput = s log s · polylog(ℓ).
a :=O(log2Wproof/(εδ)

2) = O(log2 ℓ/ε2),

A :=O(logWproof/(εδ)
2) = O(log ℓ/ε2),

U :=O(1/ε),

l := log ℓ.

Here cm and ctm are sufficiently large constants, q is the query complexity of the smooth and
rectangular PCPP in Theorem 2.14, and ñhard = Θ(nhard) is the length of Enc(x) when the length
of x is nhard. Let Ĥproof be the number of rows of the PCPP proof in Theorem 2.14, and let
ĥproof = log Ĥproof . Also let r, rshared, rcol, rrow be the total, shared, column, row randomness in
Theorem 2.14 respectively.

47

We use a different definition of “easy witness ” as follows. We say x has an easy witness if there
is a proof matrix π such that:

(completeness) for every seed ∈ {0, 1}r, VPCPPEnc(x)◦π(seed) accepts;

(approximate easiness) for every row πi of π, there exists a size-s C circuit Ci : {0, 1}n → {0, 1} and
an advice αi ∈ {0, 1}a such that the decoding of the string Ci(w) with advice αi is δ-close to
πi with respect to ℓ1-norm. (Recall that w = (w1, w2, . . . , wℓ) is our input and C(w) denotes
the concatenation of C(w1), C(w2), . . . , C(wℓ).) In particular:

1. for every j ∈ [Wproof], (decαi(Ci(w)))j ∈ [0, 1];

2. ∥decαi(Ci(w))− πi∥1 ≤ δ.

Our machine guesses Ĥproof size-s C circuits C1, C2, . . . , CĤproof
: {0, 1}n → {0, 1} as well as

Ĥproof advices α1, α2, . . . , αĤproof
. Let πReal

i := decαi(Ci(w)), and πBool
i be the Boolean string that is

closest to πReal
i . For ι ∈ [q], we define

fBool
seed.shared,ι(seed.row, seed.col) =πBool

irow[ι],icol[ι] and

fReal
seed.shared,ι(seed.row, seed.col) =πReal

irow[ι],icol[ι].

Verifying closeness of πBool and πReal. The next lemma shows that we can verify whether a
Boolean proof πBool and a real proof πReal are close. The proof is deferred to Appendix A.3.

Lemma 4.6. Let C be a typical circuit class and d ≥ 2 be an even number. Suppose there is an
algorithm that takes as inputs a list of 2rcol AND2d ◦ C circuits {Ci} and a list of 2rcol inputs {xj}
of length n · polylog(ℓ), runs in deterministic T alg time, and estimates the following quantity with
additive error η:

Pr
i,j←[2rcol]

[Ci(xj)].

Then there is an algorithm that takes the strings w1, w2, . . . , wℓ, circuits (C1, C2, . . . , CĤproof
), and

(α1, α2, . . . , αĤproof
) as inputs, runs in deterministic O((3A)2dT alg) ·(22dl+rshared +T logO(m) T/22rcol))

time, and satisfies the following:

(Completeness) If for every i ∈ [Ĥproof], it holds that (1) for every j ∈ [Wproof], πReal
i,j ∈ [0, 1]; (2)

∥πReal
i − πBool

i ∥1 ≤ δ, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared ∈ {0, 1}rshared and ι ∈ [q], ∥fReal
seed.shared,ι∥dd ≤ 1 + 2η · Ud;

2. Ei←[Ĥproof],j←[Wproof]

[
|πReal

i,j − πBool
i,j |d

]
≤ 4d · δ + 2d+1η(2U + 1)2d.

Estimating pacc. Now we verified that πReal is close to πBool using Lemma 4.6, with parameter
d = 2q. After that, the next step is to use it to speed up Lhard. We estimate

pacc := Pr
seed←{0,1}r

[
VPCPPEnc(x)◦πBool

(seed) accepts
]
.

Actually, it suffices to distinguish between the case that pacc > 5/6 and the case that pacc < 1/2.

48

We still enumerate seed.shared, and we now need to estimate

pacc(seed.shared) := Pr
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
VPCPPEnc(x)◦πBool

(seed) accepts
]
.

Let pc1, pc2, . . . , pcq ← Vpc(seed.shared) be the parity-check bits of the PCPP verifier, and let
pcrowι (resp. pccolι) denote the contribution of seed.row (resp. seed.col) to pcι, then pcι = pcrowι ⊕pccolι .

As in the proof of Theorem 3.5, here it suffices to estimate for every S, S′ ⊆ [q]

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
aRealι ·

∏

ι∈S′
pcι

]
,

where

aRealι :=

{
x̃irow[ι],icol[ι] itype[ι] = input,

πReal
irow[ι],icol[ι] itype[ι] = proof.

We want to invoke Lemma 4.5 to estimate this, so we want to construct a 2rcol-output Prod ◦ Sum
circuit CProd, 2rrow circuits {Cseed.row} and 2rrow strings {αseed.row} such that

CProd
seed.col(Cseed.row(w), αseed.row)

=
∏

ι∈S
aRealι ·

∏

ι∈S′
pcι

=
∏

ι∈Sproof

∑

k∈[A]

coeffk(αirow[ι]) · Cirow[ι]

(
widxk(αirow[ι],icol[ι])

)

 ·

∏

ι∈Sinput

x̃irow[ι],icol[ι] ·
∏

ι∈S′
(pcrowι ⊕ pccolι)

(6)

where Sproof = {ι ∈ S : itype[ι] = proof} and S input = {ι ∈ S : itype[ι] = input}. This motivates the
following definitions.

For i ∈ [ℓ], let zi ∈ {0, 1}n+winput be the string such that the first n bits of zi is wi, and the last
winput bit is {

i i ∈ [Winput],

1 i /∈ [Winput].

Here we identify [Winput] with {0, 1}winput .
For any string v, define Ĉv : {0, 1}⌈log |v|⌉ → {0, 1} as the circuit that on input i ≤ |v|, outputs

vi. Since C is complete, Ĉv is an efficiently computable C circuit of size poly(|v|). Let projinput :
{0, 1}n+winput → {0, 1}winput be the circuit that outputs the last winput bits of its input, and let
projproof : {0, 1}n+winput → {0, 1}n be the circuit that outputs the first n bits of its input.

Now for fixed seed.row, define

Ca
ι :=

{
Ĉx̃irow[ι]

◦ projinput itype[ι] = input

Cirow[ι] ◦ projproof itype[ι] = proof

for ι ∈ S, and Cpc
ι be the circuit that outputs pcrowι for ι ∈ S′, regardless of its input. Let

Cseed.row := (Ca
1 , C

a
2 , . . . , C

a
dS
, Cpc

1 , Cpc
2 , . . . , Cpc

dS′
) where dS := |S| and dS′ := |S′|, that is, Cseed.row

is a circuit with dS + dS′ outputs and each of its outputs is a circuit Ca
ι or Cpc

ι .
Now we define the Prod ◦ Sum circuit CProd.

49

Circuit CProd

(Inputs) The input y has the form y = yseed.row = (y1, y2, . . . , yℓ) and the input α̂ has the form
α̂ = α̂seed.row = (α̂1, α̂2, . . . , α̂dS

). The intended meanings are yi = Cseed.row(zi), and α̂i = αirow[i].
For convenience, we will use the following labels to refer to bits of y, assuming the intended
meaning above:

– For j ∈ Sproof , i ∈ [ℓ], let (yi)j := Ca
j (zi) = Cirow[j](wi);

– For j ∈ S input, i ∈ [Winput], let (yi)j := Ca
j (zi) = Ĉx̃irow[j]

(i) = x̃irow[j],i;
– For j ∈ S′, let (yi)j+dS

:= Cpc
j (zi) = pcrowj .

(Linear sum gates) There are ℓSum := Wproof · dS + 2dS′ linear sum gates and we identify [ℓSum] with
the disjoint union of [Wproof]× S and S′ × {0, 1}.
Let i ∈ [Wproof] and j ∈ S. If itype[j] = proof, then the (i, j)-th linear sum gate is

Sum(i,j)(y, α) =
∑

k∈[A]

coeffk(αj) · (yidxk(αj ,i))j .

It is easy to verify that
Sum(i,j)(y, α) = (decαirow[j]

(Cirow[j](w)))i.

On the other hand, if itype[j] = input, then the (i, j)-th linear sum gate is Sum(i,j)(y, α) := (yi)j .
(If i > Winput then we simply set Sum(i,j)(y, α) = 0 and this gate would not be used.)
Finally, for each j ∈ S′, we have two intermediate gates

Sum(j,0)(y, α) = (y1)j+dS
, Sum(j,1)(y, α) = 1− (y1)j+dS

.

Implementation of the linear sum layer: The linear sum has fan-in A′ := A ·dS+2 and we identify
[A′] with the disjoint union of [A] × S and {+,−}. Also, the length of y is ℓy := ℓ · (dS + dS′),
and we identify [ℓy] with [ℓ] × (S ∪· S′). Let idx′ and coeff ′ be the idx and coeff functions of the
linear sum layer of CProd, then

(Function idx′k(α, i)) Suppose i = (i′, j) ∈ [Wproof]× S. If itype[j] = proof and k = (k′, j′) where
j = j′, then we return idx′k(α, i) = (idxk′(αj , i

′), j); if itype[j] = input and i′ ∈ [Winput] and
k = +, then idx′k(α, i) = (i′, j). Otherwise idx′k(α, i) = ZERO.
On the other hand, suppose i = (j, b) ∈ S′ × {0, 1}. If (b = 0 and k = +) or (b = 1 and
k = −) then idx′k(α, i) = (1, j). If b = 1 and k = + then idx′k(α, i) = ONE. Otherwise
idx′k(α, i) = ZERO.

(Function coeff ′k(α)) If k = + then coeff ′k(α) = 1; if k = − then coeff ′k(α) = −1; otherwise, if
k = (k′, j′) then coeff ′k(α) = coeffk′(αj′).

The locality of (idx′, coeff ′) is still l. The coefficient sum becomes dS · U + 2.

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output gate
is

CProd
seed.col(y, α) =

∏

j∈S
Sum(icol[j],j)(y, α) ·

∏

j∈S′

Sum(j,pccolj)(y, α).

To summarise, the parameters of the circuit CProd are as follows.

• The number of gates in each layer: ℓSum = Wproof · dS + 2dS′ , ℓProd = 2rcol .
• The length of input y: ℓy = ℓ(dS + dS′);
• The fan-in of the top Prod gates: dS + dS′ ≤ 2q.
• The fan-in A′ := A · dS + 2, coefficient sum dS · U + 2, and locality l of the linear sum layer.

50

Given the above construction, it is easy to see that Eq. (6) holds for every seed.row and seed.col.
We can thus see that

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
CProd
seed.col(Cseed.row(w), αseed.row)

]
.

Since dS ≤ q, dS′ ≤ q and ℓC ≤ dS+dS′ ≤ 2q, by Lemma 4.5, we can estimate pRealacc (seed.shared, S, S′)
with additive error η · (qU + 2)2q in deterministic time

(A · dS + 2)2q · ((2q)2q + 2rcol/N) · (22ql + 2rrow/N) ·O(T alg)

Analysis. First, the verification step takes

O((3A)4qT alg) ·
(
24ql+rshared + T logO(m) T/22rcol

)

≤O((3A)4q) · (T logO(m) T)/(rcol)
cu log(1/ε)

≤T (log T)O(m)−cu log(1/ε)/2

time, which is at most T/(4 logchard T) if cu is a large enough constant.
Then, the algorithm of Lemma 4.5 on CProd runs for every seed.shared, S, S′, and in total takes

time

(A · dS + 2)2q · ((2q)2q + 2rcol/N) · (22ql + 2rrow/N) ·O(T alg) · 22q · 2rshared

≤ O(log2q ℓ/ε4q) ·O(2rcol/N) ·O(2rrow/N) ·O(N2/ logcu log(1/ε)N) · 2rshared

≤ 2r/ logΩ(cu) ℓ < T/(4 logchard T),

when cu is sufficiently large. Therefore, the whole algorithm runs in T/ logchard T time.
Besides, by the same argument as in the proof of Theorem 3.5, which we omit here, the algorithm

estimates pacc within additive error at most

η(4qU + 8)2q + 16q · 100−q < 1/6,

thus successfully distinguishes between the case that pacc > 5/6 and that pacc < 1/2.

Description of MPCPP We summarise the algorithm MPCPP. On input x, we consider the smooth
and rectangular PCPP for the language Lenc = {Enc(x) : x ∈ Lhard}. (Recall that MPCPP aims
to reject every x /∈ L and accepts every x ∈ L with easy witness.) We guess (C1, . . . , CHproof

) and
(α1, . . . , αHproof

), which implicitly defines the PCPP proof matrices πBool and πReal. Then we verify
πReal using Lemma 3.8 and reject immediately if πReal did not pass the test. If πReal passes the test
(which means that it is “close” to a Boolean proof πBool), we use the algorithm described above to
estimate pacc. We accept x if and only if our estimation is above 2/3.

The correctness of MPCPP is easy to see (and is exactly the same as Claim 3.11):

Claim 4.7. For every input x, if x ̸∈ L then MPCPP rejects x; while if x ∈ L and x has an easy
witness then MPCPP accepts x.

The machine MPCPP guesses Hproof(5s log s+a) < nhard/10 bits of nondeterminism (the number
of size-s C circuits is at most 25s log s), and uses ℓ4q < nhard/10 bits of advice. Thus it computes a
language in NTIMEGUESSRTM[T/ logchard(T), nhard/10]/(nhard/10).

51

The FPNP algorithm for average-case hard partial truth table. Let w1, w2, . . . , wℓ ∈ {0, 1}n
be the input. We first construct the hard language Lhard and the algorithm MPCPP. Since MPCPP

is a nondeterministic RAM algorithm that runs in T/ logchard(T) time, uses at most nhard/10 nonde-
terministic bits and at most nhard/10 advice bits, it follows that there is an input xhard ∈ {0, 1}nhard

such that MPCPP(xhard) ̸= Lhard(xhard). Moreover, let α be the advice string fed to MPCPP, i.e., the
circuit C. We can find such an input xhard by running R(1nhard ,MPCPP, α), where R is the refuter
guaranteed by Theorem 2.2. Thus, we can find xhard in deterministic poly(T) time with an NP
oracle.

It follows from Claim 4.7 that xhard ∈ Lhard but xhard does not have an easy witness. Thus, we
can use the NP oracle to find the lexicographically first PCPP proof matrix π such that

Pr
seed←{0,1}r

[VPCPPEnc(x)◦π(seed) accepts] = 1.

Then, there must exist a row πi such that Amp(πi) is (1/2−ε)-far from C(w) = C(w1)◦· · ·◦C(wℓ) for
any size-s C circuit C. To see this, suppose that for every i, there exists a size-s C circuit Ci such that
Amp(πi) is (1/2− ε)-close to Ci(w). By Theorem 2.5, there is an advice αi such that decαi(Ci(w))
satisfies (1) for every j ∈ [Wproof], (decαi(Ci(w)))j ∈ [0, 1]; (2) ∥decαi(Ci(w))− πi∥1 ≤ δ. It follows
that π is an easy witness for xhard, a contradiction.

Finally, we use the NP oracle to find the first row πi, such that Amp(πi) is (1/2 − ε)-far from
C(w) for any size-s C circuit C, and output Amp(πi). The overall procedure takes deterministic
poly(T) ≤ poly(ℓ) time with an NP oracle.

5 Unconditional Algorithms for Range Avoidance, Remote Point,
and Hard Partial Truth Tables

In this section, we apply the frameworks in Section 3 and Section 4 to obtain unconditional
results for XOR-Remote-Point, ACC0-Remote-Point, and ACC0-Partial-AvgHard.

5.1 Algorithms for Satisfying Pairs

In this section, we present some algorithms for C -Satisfying-Pairs for various circuit classes
C that run in non-trivial time.

The algorithms in this section require the following algorithm for the batch evaluation of low-
degree polynomials via fast rectangular matrix multiplication. This algorithm has been extensively
used in previous works on the polynomial method and circuit complexity (see, e.g., [Wil14a,Wil18a]).
We provide a proof sketch for completeness.

Theorem 5.1. Let x1, x2, . . . , xN ∈ {0, 1}n be N input strings, and p1, p2, . . . , pN : {0, 1}n → N be
N integer polynomials of degree at most d. Suppose that n20d ≤ N . Then there is a deterministic
algorithm running in Õ(N2) time that outputs the table of pj(xi) for every i, j ∈ [N].

Theorem 5.2 ([Cop82]; see also [Wil18a, Appendix C]). There is a (deterministic) algorithm for
multiplying an N ×N0.1 matrix and an N0.1 ×N matrix using Õ(N2) arithmetic operations.

Proof of Theorem 5.1. There are m :=
∑d

i=0

(
n
i

)
≤ (en/d)d ≤ N0.1 monomials of degree at most d.

We number these monomials from 1 to m. Let Sj denote the set of indices in the j-th monomial.
That is, the j-th monomial is

∏
k∈Sj

xk.

52

We construct two matrices M1 ∈ ZN×m and M2 ∈ Zm×N . For each i ∈ [N] and j ∈ [m], M1[i, j]
is the evaluation of the j-th monomial on input xi. (That is, M1[i, j] =

∏
k∈Sj

(xi)k.) For each
j ∈ [m] and k ∈ [N], M2[j, k] is the coefficient of the j-th monomial in pk.

Let M := M1 ·M2. It follows that for every i, j ∈ [N], M [i, j] = pj(xi). Since m ≤ N0.1, we can
compute M in Õ(N2) time using Theorem 5.2.

5.1.1 An Algorithm for #XOR-Satisfying-Pairs

We start by demonstrating a non-trivial algorithm for #XOR-Satisfying-Pairs, i.e., the exact
counting version of Satisfying-Pairs problem where each circuit consists of a single XOR gate
(with unbounded fan-in). We observe that #XOR-Satisfying-Pairs is essentially F2-#OV (i.e.,
the counting version of Orthogonal Vectors problem over F2), which has been studied in the literature
before (see, e.g., [CW21,AC19]).

In more details, an unbounded fan-in XOR gate over n input bits can be represented by a vector
y ∈ {0, 1}n and a bit b ∈ {0, 1} such that on input x ∈ {0, 1}n, the gate outputs 1 if ⟨x, y⟩ = b and
outputs 0 otherwise. Suppose that we have N inputs x1, x2, . . . , xN ∈ {0, 1}n and N XOR gates
(y1, b1), . . . , (yN , bN). Let x′i ∈ {0, 1}n+1 be the vector that is the concatenation of xi and the bit 1,
and let y′j ∈ {0, 1}n+1 be the vector that is the concatenation of yj and bj . Then the gate (yj , bj)
accepts the input xi if and only if ⟨x′i, y′j⟩ = 0. Hence we can reduce #XOR-Satisfying-Pairs to
the counting version of F2-OV, which has a non-trivial algorithm [AC19,CW21].

Theorem 5.3 ([AC19, Theorem 2.9]). Let n ≤ No(1). There is a deterministic algorithm running in
N2−Ω(1/ log(n/ logN)) time that given 2N length-n vectors x1, x2, . . . , xN , y1, y2, . . . , yN ∈ Fn

2 , outputs
the number of pairs (i, j) such that ⟨xi, yi⟩ = 0.

5.1.2 An Algorithm for #ACC0-Satisfying-Pairs

We present a non-trivial algorithm for #ACC0-Satisfying-Pairs, generalising the algorithm for
XOR-circuits (since XOR ⊆ AC0[2] ⊆ ACC0). This algorithm utilises a quasi-polynomial simulation
of SYM ◦ ACC0 circuits with SYM ◦ AND circuits.

Theorem 5.4 (From SYM◦ACC0 to SYM◦AND [BT94,AG91,Wil18c]). Let m, ℓ be any constants,
there exists an integer c′ such that every SYM ◦ AC0

ℓ [m] circuit of size s can be simulated by a
SYM ◦ AND circuit of 2(log s)c

′
size. Moreover, the AND gates of the final circuit have only (log s)c

′

fan-in, the final circuit can be constructed from the original one in 2O((log s)c
′
) time, and the final

symmetric function at the output can be computed in 2O((log s)c
′
) time.

Combining Theorem 5.4 with Theorem 5.1, we can derive the #ACC0-Satisfying-Pairs algo-
rithm in non-trivial time as follows.

Theorem 1.16. For every constants m, ℓ, c, there is a constant ε ∈ (0, 1) such that the following
holds. Let n := 2log

ε N and s := 2log
c n. There is a deterministic algorithm running in Õ((N/n)2)

time that given N strings x1, x2, . . . , xN ∈ {0, 1}n and N AC0
ℓ [m] circuits C1, C2, . . . , CN : {0, 1}n →

{0, 1} of size s, outputs the number of pairs (i, j) ∈ [N]× [N] such that Ci(xj) = 1.

Proof. Let ε be a constant to be determined. We divide C1, C2, . . . , CN into N/n groups where each
group has size n. Let Cij denote the j-th circuit in the i-th group. We also partition the inputs
x1, x2, . . . , xN into N/n groups of size n and define xij similarly. Let Xi := xi1 ◦ xi2 ◦ · · · ◦ xin.

53

For each group i, we can construct g := ⌈2 log n⌉ SYM ◦ AC0
ℓ [m] circuits Di1, Di2, . . . , Dig :

{0, 1}n2 → {0, 1}, each of size s′ := O(n2 · s), such that for any group j, we have:

n∑

i′=1

n∑

j′=1

Cii′(xjj′) =

g∑

k=0

2kDik(Xj).

That is, Dik(Xj) computes the k-th bit of the number of satisfying pairs between the i-th group of
circuits and the j-th group of inputs.

Let c′ be the constant in Theorem 5.4 depending on ℓ and m. We can transform each SYM ◦
AC0

ℓ [m] circuit Dij into a SYM ◦ AND circuit D′ij of size 2(log s
′)c
′

such that each AND gate has
fan-in at most d := (log s′)c

′ . We can write each D′ij(x) as fij(pij(x)), where pij(x) : {0, 1}n2 →
{0, 1, . . . , 2(log s′)c

′
} is a polynomial of degree at most d that only outputs integers upper bounded by

2(log s
′)c
′
on Boolean inputs, and fij is some function that can be evaluated in 2O((log s′)c

′
) time. We

can construct the polynomials pij and (the truth tables of) the functions fij in (N/n)g2O((log s′)c
′
)

time. Let ε := 1/(10cc′) (and recall n = 2log
ε N and s = 2log

c n), this time bound is at most (N/n)2.
Then, for each k = 1, 2, . . . , g, since (n2)20d ≤ N/n, we can compute the table of pik(Xj) for

every i, j ∈ [N/n] in Õ((N/n)2) time by invoking Theorem 5.1. In fact, by checking the truth-tables
of fij , we actually get the table for D′ik(Xj) = Dik(Xj). Finally it follows that:

N∑

i=1

N∑

j=1

Ci(xj) =

N/n∑

i=1

N/n∑

j=1

n∑

i′=1

n∑

j′=1

Cii′(xjj′) =

N/n∑

i=1

N/n∑

j=1

g∑

k=0

2kDik(Xj).

The total run-time is bounded by 2(N/n)2 + gÕ((N/n)2) = Õ((N/n)2).

5.2 An FPNP Algorithm for XOR-Remote-Point

As a warm-up, we show an FPNP algorithm for XOR-Remote-Point. This result is subsumed
by the algorithm for ACC-Remote-Point (Theorem 1.17) as well as previous results on rigid
matrices [AC19,BHPT20,CLW20,CL21,HV21], but we still mention it for several reasons:

1. This is an important special case for Remote-Point.

2. This result only requires the algorithm for #F2-OV, and is a nice illustration that many special
cases of Satisfying-Pairs problems are widely studied by algorithm designers.

Theorem 1.15 (XOR-Remote-Point ∈ FPNP). There is a constant cu ≥ 1 such that the following
holds. Let ε := ε(n) ≥ 2n−cu be the error parameter and ℓ := ℓ(n) ≥ 2log

cu+5 n be the stretch
function, then there is an FPNP algorithm that takes as input a circuit C : {0, 1}n → {0, 1}ℓ, where
each output bit of C is computed by an XOR gate, and outputs a string y that is (1/2− ε)-far from
Range(C).

Proof. Let cu be the constant in Theorem 3.5. In order to make XOR a typical circuit class (closed
under negation and projection), we here allow XOR using bias, denoted by X̃OR. That is, an X̃OR
gate g can be represented by parameters w ∈ {0, 1}n and b ∈ {0, 1}, such that for any x ∈ {0, 1}n,
we have g(x) := ⟨w, x⟩⊕ b. To obtain an FPNP algorithm of XOR-Remote-Point by Theorem 3.5,
we need to design an efficient algorithm for ANDcu ◦ X̃OR-Satisfying-Pairs.

Since an X̃OR gate can be regarded as an XOR gate with (or without) a NOT gate on its output
wire, it follows that ANDcu ◦ X̃OR ⊆ NC0 ◦XOR. Furthermore, by Theorem 2.17, It suffices to solve

54

#XORcu ◦ XOR-Satisfying-Pairs with roughly the same parameters. As XORcu ◦ XOR ⊆ XOR,
we only need to consider #XOR-Satisfying-Pairs.

Let d := max{cu, 2.02} be a constant, we apply Theorem 5.3 with N := N(n) = 2log
d n, nsat :=

2log
0.499 N ≥ 2log

1.001 n ≥ poly(n) as parameters. (That is, we pad nsat − n bits to the inputs of the
Satisfying-Pairs instance.) It gives an algorithm for #XOR-Satisfying-Pairs (and therefore
also for ANDcu ◦ XOR) with running time T = N2−Ω(1/ log (nsat/ logN)). We can check the technical
requirement for T :

T = N2−Ω(1/ log (nsat/ logN)) ≤ N22−Ω(logN/ lognsat) ≤ N22− log0.5001 N

≤ N22− log1.01 n ≤ N22−c
2
u logn log logN ≤ N2/P cu ,

where P := (logN)log(1/ε). Other technical requirements for Theorem 3.5 can be easily verified, so
we can invoke it and get an FPNP Remote Point algorithm for XOR gates with error ε′(n) > n−cu

and stretch ℓ′(n) = N cu log(1/ε). Finally, we can check ℓ(n) > ℓ′(n+ 1) and ε(n) > 2ε′(n+ 1), then
get a desired FPNP algorithm for original parameters by Lemma 2.15.

5.3 Remote Point for ACC0

Theorem 1.17 (ACC0-Remote-Point ∈ FPNP). There is a constant cu ≥ 1 such that for every
constant d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and

ℓ := ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that takes as input a

circuit C : {0, 1}n → {0, 1}ℓ, where each output bit of C is computed by an AC0
d[m] circuit of size s,

and outputs a string y that is (1/2− ε)-far from Range(C).

Proof. Let cu be the constant from Theorem 3.5, and cstr be a constant to be determined later. We
then set parameters for invoking Theorem 3.5.

We set nsat := max{2logcu+2 n, 2log
cu+1 s}. Then we can invoke Theorem 1.16 with input length

nsat and size parameter also nsat to get a #AC0
d+1[m]-Satisfying-Pairs algorithm for N circuits

and N inputs, where N := N(n) = 2log
1/εsat nsat for some constant εsat ∈ (0, 1). This algorithm runs

in time T = Õ((N/nsat)
2).

Set cstr := (cu + 2)/εsat + 3. Let ε′ := ε′(n) ≥ n−cu be the error parameter and ℓ′ := ℓ′(n) =
N cu log (1/ε′) be the stretch, then we can check these parameters satisfy the requirements of Theo-
rem 3.5 as follows.

2log
cu n ≤ N ≤ 2n

0.99

ℓ′(n) = N cu log (1/ε′) ≥ cus

T ≤ N2/2log
cu+2 n ≤ N2/nc2u logcu n ≤ N2/(logN)c

2
u logcu n ≤ N2/P cu

(That is, we use the aforementioned algorithm to solve Satisfying-Pairs with N circuits of size s
and N inputs of length n by padding nsat−n dummy bits to each input, and then apply Theorem 3.5).
By Theorem 3.5, we get an FPNP algorithm for ACC0-Remote-Point with error ε′(n) > n−cu , and
stretch ℓ′(n) = N cu log (1/ε). We can check that both ℓ(n) > ℓ′(n + 1) and ε(n) > 2ε′(n + 1) hold,
so we can invoke Lemma 2.15 and get a desired FPNP algorithm for remote point with the original
parameters.

We can easily recover the state-of-the-art almost-everywhere average-case circuit lower bounds
against ACC0 [CLW20] by giving the truth table generator as the input.

55

Corollary 5.5. For every constants d,m ≥ 1, there is an ε > 0 and a language L ∈ ENP such that
Ln cannot be (1/2 + 2−n

ε
)-approximated by AC0

d[m] circuits of size 2n
ε, for all sufficiently large n.

Proof Sketch. Let TTs : {0, 1}O(s log s) → {0, 1}2n be the truth table generator of AC0
d[m] circuits,

where s = 2n
ε for some constant ε to be determined later. Each output bit of TTs is computable

by an AC0
d′ [m] circuit of size s′ = poly(s) for some d′ = O(1).

For clarity we define ntt = O(s log s) to be the input length of TTs, stt(ntt) := s′ and dtt := d′

to be the size and depth of TTs, respectively. Let cu and cstr := cstr(dtt,m) be the constants in
Theorem 1.17. Then there is an FPNP algorithm Ahard that takes as input a circuit C : {0, 1}ntt →
{0, 1}ℓtt and outputs a string y that is (1/2 − εtt)-far from Range(C), where ℓtt ≥ 2log

cstr stt and
εtt := 2n−cutt . By choosing ε to be a sufficiently small constant, we can make

2n ≥ 2log
cstr stt and 2−n

ε
> εtt.

We then fix the input of the FPNP algorithm Ahard above to be TTs to obtain an FPNP algorithm
A that takes 12

n as input and produces a truth table of length 2n that cannot be (1/2 + 2−n
ε
)-

approximated by any size-s circuits. The required hard language is then defined as

L :=
{
x ∈ {0, 1}n : n ∈ N, tt← A(12

n
) ∈ {0, 1}2n , ttx = 1

}
.

5.4 Hard Partial Truth Tables for ACC0

Theorem 1.18 (ACC0-Partial-AvgHard ∈ FPNP). There is a constant cu ≥ 1 such that for
every constants d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and ℓ :=

ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that given inputs x1, . . . , xℓ ∈

{0, 1}n, it outputs a string y ∈ {0, 1}ℓ such that for any s(n)-size AC0
d[m] circuit C, y is (1/2−ε)-far

from C(x1) ◦ · · · ◦ C(xℓ).

Proof Sketch. The proof is similar to Theorem 1.17, so we only sketch the proof.
Let cu be the constant from Theorem 4.3, and then we set values19 of cstr, nsat, N, εsat, T, ε

′(n)
and ℓ′(n) in the same way as proof Theorem 1.17.

Since parameter constraints of Theorem 4.3 are similar to those of Theorem 3.5, These parameter
settings can be used to invoke Theorem 4.3 and get an FPNP algorithm for O(s(n))-size ACd+O(1)[m]-
Partial-AvgHard with stretch ℓ′(n) and error ε′(n). We can check that both ℓ(n) > ℓ′(n+ 1)/2
and ε(n) > 2ε′(n + 1) hold, so it is valid to invoke Lemma 2.16 and get a desired FPNP algorithm
for average-case hard partial truth tables with the original parameters.

Alternatively, we can reduce ACC0-Partial-AvgHard to ACC0-Remote-Point (see Sec-
tion 1.3) and simply apply Theorem 1.17, since the evaluation of ACC0 circuits can be implemented
in ACC0.

As a consequence, we show (following the observation in [AS10]) that there is no efficient mapping
reduction from ENP to any language decidable by small-size non-uniform ACC0 circuits.

Corollary 1.20. Let d,m ∈ N be constants, AC0
d[m] denote the class of languages computable by a

non-uniform family of polynomial-size AC0
d[m] circuits. Then, there is a language Lhard ∈ ENP that

does not have polynomial-time mapping reductions to any language in AC0
d[m].

19In order to invoke Lemma 2.16, we actually use s′(n) = O(s(n)) as size function and d′ := d + O(1) as depth.
These are rather minor changes, so we can still use the same parameter settings strategy.

56

Proof. Our ENP language Lhard receives two inputs: a Turing machine R and a string y. Here, the
lengths of ⟨R⟩ (the encoding of R) and y are ⌈n/2⌉ and n′ := ⌊n/2⌋ respectively, thus Lhard receives
n-bit strings as inputs. The machine R is interpreted as a reduction that runs in T (n) := nlogn

time (which we diagonalise against).
We run R on all inputs of the form (⟨R⟩, x′), where |x′| = n′. Let x1, x2, . . . , x2n′ be an enu-

meration of length-n′ strings, and zi := R(⟨R⟩, xi) be a string of length at most T (n). Note that
the strings zi may not be of the same length, but the length of each zi is at most T (n). By an
averaging argument, there is an ℓ ≤ T (n) such that there are at least 2n

′
/T (n) ≥ 2n

0.99 strings zi
with length exactly ℓ. Let N be the number of strings zi with length exactly ℓ and denote these
strings to be zi1 , zi2 , . . . , ziN . We can check the technical constraints and invoke Theorem 1.18 to
get an FPNP algorithm for solving the AC0

d[m]-Partial-Hard problem on inputs zi1 , zi2 , . . . , ziN .
We obtain a sequence of bits yi1 , yi2 , . . . , yiN ∈ {0, 1} such that for every size-ℓlog ℓ AC0

d[m] circuit C,
there is some j ∈ [N] such that C(zij) ̸= yij . This can be done in deterministic 2O(n) time with an
NP oracle. Finally, we define Lhard as follows: suppose x is the i-th string of length n′ (i.e., x = xi),
then x ∈ Lhard if and only if |zi| = ℓ and yi = 1.

Clearly, Lhard runs in deterministic 2O(n) time with an NP oracle. We still need to show that for
every language L ∈ AC0

d[m], there is no polynomial time reduction from Lhard to L. Suppose, for
the sake of contradiction, that there is a polynomial-time reduction R from Lhard to L. Let n be a
sufficiently large number such that n/2 > ⟨R⟩ and T (n) = nlogn is larger than the running time of
R. Consider running R on inputs of the form (⟨R⟩, x) where |x| = ⌊n/2⌋. Let xi, yi, zi, ℓ, and N
be defined as above, and C be an AC0

d[m] circuit that decides L on input length ℓ. Since the size of
C is at most poly(ℓ) ≤ ℓlog ℓ, there is some j ≤ N such that C(zij) ̸= yij . In other words,

∃i ∈ N,C(R(⟨R⟩, xi)) ̸= Lhard(⟨R⟩, xi).

It follows that R is not a correct reduction from Lhard to L.

6 Construction of Smooth and Rectangular PCPP

Recall that a PCPP verifier is smooth if every bit of the proof is equally likely to be queried,
i.e., the distribution of a random query position over a random seed is uniformly random. We do
not impose any smoothness requirement on the input oracle.

In this section, we construct a smooth and rectangular PCP of proximity. There is essentially
nothing new in our construction: With a careful inspection of their techniques, we can combine
[RSW22] (a rectangular PCP of proximity) and [BHPT20] (a smooth and rectangular PCP) to
obtain our PCPPs. This is not a coincidence as [BHPT20,RSW22] are both variants of [BGH+06].
Nevertheless, we present an (almost) self-contained proof of the construction for the convenience of
the reader, as there are several components and many parameters in [BHPT20,RSW22]. As this
section is quite technical, we give a brief overview of the construction.

Overview of Section 6

• Instead of constructing a smooth PCPP verifier directly, we will construct a rectangular PCPP
verifier with the rectangular neighbour listing (RNL) property, following [BHPT20]. In Section 6.1,
we will give the definition of RNL property and verify that the transformation from rectangular PCP
verifiers with RNL property to smooth and rectangular PCP verifiers in [BHPT20] also works for
PCPP verifiers.

• In Section 6.2, we show that the PCPP verifier in [BGH+06] is a robust and rectangular PCPP

57

verifier with RNL property. This combines the observations in [BHPT20] (for constructing robust and
rectangular PCP verifiers with RNL property) and [RSW22] (for constructing robust and rectangular
PCPP verifiers).

• In Section 6.3, we prove a composition theorem that generalizes the counterparts in [BHPT20,
RSW22]: we can compose a robust and rectangular PCPP verifier for L (called the outer PCPP
verifier) and a PCPP verifier for a variant of the circuit-evaluation problem (called the inner PCPP
verifier) to obtain a rectangular PCPP verifier for L whose query complexity is at most the query
complexity of the inner PCPP verifier. Moreover, the composed PCPP verifier has RNL property
if the outer PCPP verifier has RNL property. Due to technical limitations, this rectangular PCPP
verifier will also take some ROP parity-check bits (see Definition 2.9).

• By composing the robust PCPP verifier in Section 6.2 with a PCPP with query complexity O(1), we
can construct a rectangular PCPP verifier with query complexity O(1) and RNL property. Moreover,
we can transform it into a smooth and rectangular PCPP verifier with query complexity O(1).
However, the soundness error of this PCPP verifier could be a constant that is very close to 1. In
Section 6.4, we show that the soundness error can be reduced to an arbitrarily small constant with
an O(1) blow-up to the query complexity, using an expander-walk-based technique developed in
[RSW22, Section 7.1.3].

• We wrap all these components up and set the parameters in Section 6.5.

6.1 Rectangular Neighbour Listing and Smoothness

Definition 6.1. Let V be a rectangular PCPP verifier for some language L with randomness
complexity r and query complexity q. A configuration is defined as a pair (seed, k) ∈ {0, 1}r × [q].
It is said to be a proof (resp. input) configuration if the verifier with randomness seed will query
the proof (resp. input) oracle on the k-th query.

Two configurations (seed1, k1) and (seed2, k2) are said to be neighbours if the verifier will access
the same bit of the same oracle with randomness seed1 on the k1-th query, or with randomness seed2
on the k2-th query.

Definition 6.2 (Rectangular Neighbour Listing). Let L be a language and V be a rectangular
PCPP verifier for L with row randomness complexity rrow, column randomness complexity rcol,
and shared randomness complexity rshared. We say V has tRNL(n)-time rectangular neighbour listing
property if there are two tRNL(n)-time algorithms Arow and Acol such that the following conditions
hold:

1. The shared randomness seed.shared ∈ {0, 1}rshared consists of seed.shared.row ∈ {0, 1}rshared/2
and seed.shared.col ∈ {0, 1}rshared/2, i.e., seed.shared = (seed.shared.row, seed.shared.col).

2. Let (seed, k) = (seed.row, seed.col, seed.shared, k) be a configuration, where seed.shared =
(seed.shared.row, seed.shared.col). The algorithms Arow and Acol can list all the neighbours
of (seed, k) in a “rectangular and synchronized” fashion:

• Given the row-part randomness (seed.row, seed.shared, k) as input, Arow will output an
ordered list NListrow(seed, k) := {(seedi.row, seedi.shared.row, ki.row)}i∈[ℓrow] and an index
selfrow(seed, k) ∈ [ℓrow]

• Given the column part randomness (seed.col, seed.shared, k) as input, Acol will output
an ordered list NListcol(seed, k) := {(seedi.col, seedi.shared.col, ki.col)}i∈[ℓcol] and an index
selfcol(seed, k) ∈ [ℓcol].

58

Verifier V old V new

Soundness error s s+ µ

Proximity parameter δ δ

Row randomness rrow rrow
Column randomness rcol rcol
Shared randomness rshared rshared
Proof matrix height Hproof q · 2rrow+rshared/2

Proof matrix width Wproof 2rcol+rshared/2

Query complexity q poly(q/µ)

Parity check complexity p p

Decision complexity d poly(d, q/µ, tRNL(n))

Table 3: The parameters of the “smoothened” PCPP V new.

• It holds that ℓrow = ℓcol and ki.row = ki.col for every i ∈ [ℓrow]. Let ℓ := ℓrow and
ki := ki.row for every i ∈ [ℓ]. Then the “zipped” list of NListrow and NListcol

NList(seed, k) :=
{
(seedi.row, seedi.col, seedi.shared.row, seedi.shared.col, ki)

}
i∈[ℓ]

is a list of all the neighbours of (seed, k). Moreover, selfrow(seed, k) = selfcol(seed, k) and
the selfrow(seed, k)-th entry of NList(seed, k) is the configuration (seed, k) itself.

• For every pair of neighbours (seed1, k1) and (seed2, k2), NList(seed1, k1) = NList(seed2, k2)
(i.e., these two ordered lists are the same).

By slightly generalizing the technique of [BHPT20], we can smoothen a rectangular PCPP with
the rectangular neighbour listing property.

Theorem 6.3. Suppose that L has a rectangular PCPP verifier V old with ROP and tRNL(n)-time
RNL property, where the parameters are specified in Table 3. Then for every µ ∈ (0, 1), L has a
smooth and rectangular PCPP verifier V new with ROP and the parameters specified in Table 3.

Proof. Let Πold : {0, 1}ℓ → {0, 1} be the proof oracle of V old. Assume that V old(seed, i) outputs
the index of the i-th query of V old given the randomness seed ∈ {0, 1}r. The “smoothened” verifier
V new expects the proof Πnew : {0, 1}2r × [q]→ {0, 1} to be

Πnew(seed, i) := Πold[V old(seed, i)].

Concretely, V new works as follows: It firstly checks that Πnew is (close to being) defined as above,
i.e., there is a proof matrix Πold such that ∆(Πnew(seed, i),Πold[V old(seed, i)]) is sufficiently small;
then it runs V old using Πnew as the proof oracle, i.e., the verifier randomly chooses a seed ∈ {0, 1}r,
queries Πnew(seed, 1),Πnew(seed, 2), . . . ,Πnew(seed, q), and decides whether to accept using the de-
cision predicate of V old. In fact, as in [BHPT20, Section 4.1], the first step can be combined into
the second step: we only need to check the consistency of Πnew on the fly during the simulation of
V old.

The verifier V new. For α ∈ (0, 1), we say a graph G = (V,E) is an α-sampler if for every S ⊆ V ,

Pr
v←V

[∣∣∣∣
|S|
|V | −

Γ(v) ∩ S

Γ(v)

∣∣∣∣ > α

]
< α,

59

where Γ(v) is the set of neighbours of v in G. By [Gol11], there is a poly(n)-time algorithm that
constructs a (4/α4)-regular graph on n vertices that is an α-sampler, given n and α ∈ (0, 1). The
new PCPP verifier works as follows:

• Let seed ∈ {0, 1}r be the random bits and i ∈ [q] be the index of a query. If V old(seed, i)
makes a query to the input oracle, it firstly makes the same query to the input oracle, and then
probes Πnew(seed, i) for ∆ times. The last ∆ queries to Πnew(seed, i) are for the smoothness
property.

• Now we assume that V old(seed, i) makes a query to the proof oracle. Let NList := NList(seed, k)
be the ordered list of neighbours of (seed, k) from the rectangular neighbour listing property,
m := |NList|, and self ∈ [m] be the index of (seed, i) in the list. Let α := µ/(10q), and GNList

α

be an explicit (∆− 1)-regular α-sampler with m nodes from [Gol11]. Let j2, j3, . . . , j∆ ∈ [m]
be the neighbours of self in GNList

α , and j1 := self. The verifier probes

Πnew(NList[j1]),Π
new(NList[j2]), . . . ,Π

new(NList[j∆]),

and rejects if the answers are not the same. Otherwise, the verifier treats the consistent answer
as the answer to the i-th query of V old and simulates V old.

Rectangularity. Recall that the proof oracle is Πnew : {0, 1}2r × [q] → {0, 1}, where r = rrow +
rcol + rshared is the randomness complexity. By the rectangular neighbour listing property of V old,
we know that the shared randomness can be partitioned into (seed.shared.row, seed.shared.col) ∈
{0, 1}rshared/2 × {0, 1}rshared/2. We define W new := 2rcol+rshared/2, Hnew := q · 2rrow+rshared/2, and the
Hnew ×W new proof matrix

Πnew[u, v] := Πnew(seed, i);

where u := (seed.row, seed.shared.row, i) ∈ {0, 1}rrow+rshared/2+log q,

v := (seed.col, seed.shared.col) ∈ {0, 1}rcol+rshared/2,
seed := (seed.row, seed.col, seed.shared := (seed.shared.row, seed.shared.col)).

Now it suffices to construct the type predicate V new
type and the row and column verifiers V new

row and
V new
col . Recall that the new verifier V new simulates V old as follows: If V old makes a query to the

proof oracle, it makes ∆ queries to the proof oracle using the RNL property; otherwise, it makes
the same query to the input oracle and ∆ queries to the same bit of the proof oracle.

• The type predicate V new
type (given the shared randomness) calls the type predicate V old

type of the old
PCPP verifier, obtains the list of types of the queries, replaces each “proof” by ∆ continuous
“proof” and replaces each “ input” by an “ input” and ∆ continuous “proof”.

• For a query of V old to the proof oracle, the row verifier V new
row (resp. the column verifier V new

col)
calls the row verifier V old

row (resp. the column verifier V old
col) of the old PCPP. By the rectangular

neighbour listing property, it can list the “row-part” (resp. the “column-part”) of the neighbour
list NList and know the index self in the list. It then constructs the sampler Gα, finds the ∆
selected neighbours of self (including itself), and outputs the “row-parts” (resp. the “column-
parts”) of them.

• For a query of V old to the input oracle, the row verifier V new
row (resp. the column verifier V new

col)
calls the row verifier V old

row (resp. the column verifier V old
col) of the old PCPP to obtain the query

to the input oracle rectangularly. It is easy to see that the remaining ∆ queries to the proof
oracle can be done rectangularly.

60

Smoothness. We need to show that for uniformly random seed ∈ {0, 1}r and i ∈ [q ·∆], each bit
of the proof oracle Πnew is equally likely to be probed given randomness seed on the i-th query. Let
i1 := ⌊(i− 1)/∆⌋+1 and i2 := (i− 1) mod ∆+1. Let Ĝ = (V̂ , Ê) be the “union” of all GNList

α , that
is:

• V̂ := {0, 1}2r × [q].

• Let (seed, i1), (seed
′, i′1) be two configurations given which V old will probe the proof oracle.

Then ((seed, i1), (seed
′, i′1)) ∈ Ê if and only if the configurations (seed, i1) and (seed′, i′1) are

neighbours, and there is an edge between them in GNList
α , where NList is the neighbourhood

containing these two configurations.

• For each (seed, i1) such that V old(seed, i1) probes the input oracle, we add ∆ self-loops on the
node (seed, i1) ∈ V̂ .

Assume that seed ∈ {0, 1}r and i ∈ [q ·∆] are uniformly chosen. The query pattern of V new to
the proof oracle is as follows: It firstly selects a node (seed, i1) ∈ V̂ uniformly, and then chooses a
uniform neighbour of it. It is easy to see that each bit of the proof oracle is probed with probability

∆

2r · q ·∆ =
1

2r · q .

Soundness. The soundness of V old follows from [BHPT20, Appendix A.1] (which is for PCP
instead of PCPP); for completeness, we present a self-contained proof here. Assume that x is δ-far
from being in L and Πnew : {0, 1}2r × [q] is a proof, we need to show that the verifier accepts with
probability at most s+ µ. Let Πold : {0, 1}ℓ → {0, 1} be defined as follows:

Πold[j] := Majority
(seed,i)∈{0,1}r×[q]

{
Πnew(seed, i) : V old(seed, i) = j

}
,

By the soundness of V old, we know that V old will accept (x,Πold) with probability at most s.
Let idxi(seed) ∈ [ℓ] be the i-th query of V old given randomness seed. An index j ∈ [ℓ] is said to

be β-consistent if for at least β fraction of (seed, i) such that idxi(seed) = j, Πnew(seed, i) = Πold[j].
We define the following events over the random variable seed:

• H is the event that for every i ∈ [q], idxi(seed) is (1− 2α)-consistent (recall that α := µ/(10q)
is the parameter of the sampler).

• M is the event that for every i ∈ [q], Πnew(seed, i) = Πold(idxi(seed)).
• A is the event that V new accepts (x,Πnew) on the randomness seed.
• Ci is the event that the ∆ queries made by V new corresponding to the i-th query of V old

returns the same answer (i.e. the “consistency check” passes on the simulation of the i-th
query of V old).

Claim 6.4. Pr[A ∧H] ≤ qα.

Claim 6.5. Pr[M ∧H] ≤ 2qα.

Claim 6.6. Pr[A ∧H] ≤ 2qα+ s.

From the claims above we can see that

Pr
seed←{0,1}r

[A] = Pr
seed←{0,1}r

[A ∧H] + Pr
seed←{0,1}r

[A ∧H]

≤ s+ qα+ 2qα

≤ s+ µ.

61

Proof of Claim 6.4. Let (seed, i) be a configuration, NList := NList(seed, i) be the list of all its
neighbours, GNList

α = (V,E) be the explicit sampler graph corresponding to the neighbourhood
NList (i.e. V contains the configurations in NList), and self be the node corresponding to (seed, i).
We say that a configuration (seed, i) is an error configuration if

∣∣∣∣
|S|
|V | −

|Γ(self) ∩ S|
|Γ(self)|

∣∣∣∣ > α,

where S := {(seed′, i′) ∈ V | Πnew(seed′, i′) ̸= Πnew(seed, i)}. Since GNList
α is an α-sampler, there

are at most α fraction of error configurations in each neighbourhood. Suppose H happens, then
there is some i such that idxi(seed) is not (1 − 2α)-consistent, which means that |S|/|V | ≥ 2α.
Suppose in addition that Ci happens (i.e., the “consistency check” on the i-th query passes), then
Γ(self) ∩ S = ∅, which means that (seed, i) is an error configuration.

Let E be the set of error configurations. We can then calculate that

Pr
seed←{0,1}r

[A ∧H] ≤ Pr
seed←{0,1}r

[
C1 ∧ · · · ∧ Cq ∧H

]

≤ Pr
seed←{0,1}r

[
∃i ∈ [q] (seed, i) ∈ E ∧H

]

≤q · Pr
seed←{0,1}r

i←[q]

[(seed, i) ∈ E ∧H]

≤q · α. ⋄

Proof of Claim 6.5. For every j ∈ [q], we denote Hj to be the event that idxj(seed) is (1 − 2α)-
consistent (and thus H =

∧
j∈[q]Hj). Let H⋆ be the event that idxi(seed) is (1−2α)-consistent over

the random variable (seed, i) ∈ {0, 1}r × [q]. We can see that:

Pr
seed←{0,1}r

[
M ∧H

]
≤ q · Pr

seed←{0,1}r,i∈[q]

Πnew(seed, i) ̸= Πold(idxi(seed)) ∧

∧

j∈[q]

Hj

≤ q · Pr
seed←{0,1}r,i∈[q]

[
Πnew(seed, i) ̸= Πold(idxi(seed)) ∧ Hi

]

= q · Pr
seed←{0,1}r,i∈[q]

[
Πnew(seed, i) ̸= Πold(idxi(seed)) ∧ H⋆

]
. (7)

Let N be the set of all neighbourhoods that contain a configuration (seed, i) ∈ H⋆ (i.e. idxi(seed) is
(1− 2α)-consistent). By the definition of H⋆ and the neighbours of configurations, we can see that
for each h ∈ N , all the configurations in h are also in H⋆. Thus the uniform distribution over H⋆

is identical to the following distribution: we first sample a neighbourhood h ∈ N (with probability
proportional to the size of h), then uniformly sample a configuration (seed, i) ∈ h. Thus we have:

(7) ≤ q · Pr
(seed,i)←{0,1}r×[q]

[
Πnew(seed, i) ̸= Πold(idxi(seed))

∣∣∣ H⋆
]

= q · E
h←N

[
Pr

(seed,i)←h

[
Πnew(seed, i) ̸= Πold(idxi(seed))

]]

≤ q · E
h∈N

[2α], (8)

≤ 2qα,

where N is some distribution over N , and Eq. (8) holds by the definition of (1−2α)-consistency. ⋄

62

Proof of Claim 6.6. We can see that:

Pr
seed←{0,1}r

[A ∧H] ≤ Pr
seed←{0,1}r

[M ∧H] + Pr
seed←{0,1}r

[A ∧H ∧M]

≤ 2qα+ Pr
seed←{0,1}r

[
V old accepts (x,Πold) ∧H ∧M

]

≤ 2qα+ Pr
seed∈{0,1}r

[
V old accepts (x,Πold)

]

≤ 2qα+ s.

Note that the first inequality follows from the definition of V new and Πold. ⋄

Other Properties. The query complexity, parity-check complexity, and decision complexity can
be easily checked by the definition.

6.2 A Rectangular PCPP with RNL Property

In this section, we construct a rectangular PCPP with rectangular neighbour listing property,
by combining [BHPT20] and [RSW22, Section 7.1].

Lemma 6.7 (Lemma 7.3 of [RSW22]). Let λ < 0.1, q,m be integers such that q ≥ log 4
λ , and

let F = GF(2q). There is a deterministic polynomial-time algorithm that on input (1m, 1q, 1⌈1/λ⌉),
outputs a λ-biased set Sλ ⊆ (F \ {0})× Fm−1 of size O((qm/λ)2).

Theorem 6.8. For all constants δ > 0, there is a constant ρ ∈ (0, 1) such that the following
holds. Let m = m(n), T (n), wproof(n), winput(n) be good functions such that 1 ≤ m ≤ (log T (n))0.1,
n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤ log n. Then there are good functions
hproof(n) and hinput(n) satisfying

hproof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) = ⌈log n⌉ − winput(n).

such that the following holds.
Suppose that hproof , wproof ≥ (4/m) log T (n), and that for some absolute constant C ≥ 1,20

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a rectangular neighbour listable, robust, and rectangular PCP of proximity
with an Hproof(n)×Wproof(n) proof matrix and an Hinput(n)×Winput(n) input matrix, whose other
parameters are specified in Table 4.

20Note that in this theorem, we allow m to be a super-constant. Plugging in the inequalities winput ≤ k and
k + hinput ≤ hm in [RSW22, Section 7.1.2, Eq. (7)], it turns out that both winput

wproof
and hinput

hproof
needs to be at most

1− Cm log log T
log T

instead of simply 1− C log log T
log T

.

63

Soundness error 1− ρ

Proximity parameter δ

Robustness parameter ρ

Row randomness hproof − (4/m) log T (n)

Column randomness wproof − (4/m) log T (n)

Shared randomness (7/m) log T (n) +O(log log T (n) +m logm)

Query complexity
T (n)1/m · polylog(T (n))Decision complexity

RNL time complexity poly(log T (n),mm)

Table 4: Parameters of the PCPP constructed in Theorem 6.8.

Basic Definitions. Let α, t, h, f be defined as in [RSW22, Section 7.1.1], where: α is a universal
constant, t := log T (n), h := ⌈(t+3)/m⌉, f := h+α log2 t. Let λ := min{1/(ct), 1/m2cm} for some
universal constant c.21 We work with the field F := GF(2f).

By field theory, we know that F is an f -dimensional vector space over F2. Let e1, e2, . . . , ef be a
basis, then each element in F can be uniquely represented by

∑f
i=1 eibi for (b1, b2, . . . , bf) ∈ {0, 1}f .

Let H := span{e1, e2, . . . , eh}. Let binHm : Hm → {0, 1}hm and binFm : Fm → {0, 1}fm be the two
bijections in [RSW22, Section 7.1.1], where

binFm :

(
f∑

i=1

eibi,

f∑

i=1

eibf+i, . . . ,

f∑

i=1

eib(m−1)f+i

)
7→ (b1, b2, . . . , bmf).

The bijection binHm will be used to define the queries to the input oracle (see [RSW22, Section
7.1.2]), which is not needed for our purpose of verifying the rectangular neighbour listing property.

We identify the binary strings as numbers where the leftmost bit is the least significant bit. Let
It : [n] → Hm be the map to project the input to Hm defined as It(i) := bin−1Hm

(2t+1 + i), and
I := {It(k) : k ≤ |Πinput|}.

The Proof. The PCPP proof is a Boolean string of length ℓ · |F|m for some ℓ = polylog(T). We
consider the PCPP proof as an oracle Πproof : Fm → {0, 1}ℓ, where the i-th bit of the proof is
the j′-th bit of Πproof [bin

−1
Fm(j)] for j := ⌊i/ℓ⌋ and j′ := i mod ℓ.22 Without loss of generality we

assume that ℓ is a power of 2. Note that to ensure rectangularity, the actual proof is treated as an
Hproof ×Wproof Boolean matrix, where Hproof = ℓ · |F|m/Wproof and thus

hproof = log ℓ+m log |F| − wproof

= O(log log T (n)) +mh+m · α log log T (n)− wproof

= log T (n) + Θ(m log log T (n))− wproof .

The layout of the proof matrix which will be discussed later.

Query Pattern. The line over Fm with intercept x⃗ ∈ Fm and direction y⃗ ∈ Fm is the set
{x⃗+ ty⃗ : t ∈ F}, denoted by x⃗+ Fy⃗. We now describe the query pattern of the PCPP verifier.

21In [RSW22, Section 7.1.2] they set λ = 1/(ct), since when m is a constant 1/(ct) ≤ 1/m2cm always holds in
sufficiently large n. We set λ as this to satisfy the technical requirement in the soundness proof, which will be
discussed later.

22The ℓ-bit output of Πproof is actually a word of a non-Boolean PCPP encoded by some linear-time computable
error-correcting code, see [BHPT20, Section 5.2]. We omit the details as it is not important to us.

64

Let Sλ ⊆ Fm be the explicit λ-biased set in Lemma 6.7 and seed be the randomness of the
verifier, defined as seed := (R2, R3, . . . , Rm, Ry) ∈ Fm−1× [|Sλ|]. Note that |Sλ| = O((fm/λ)2). We
define x⃗ := (0, R2, R3, . . . , Rm), y⃗e := (1, 0, . . . , 0), y⃗ := Sλ[Ry], L0 := x⃗ + Fy⃗e, and L1 := x⃗ + Fy⃗.
Denote

shift(x1, x2, . . . , xm) := (x2, x3, . . . , xm, x1),

and shift(L) := {shift(x⃗) : x ∈ L} for a line L. The PCPP verifier will query the following locations
(see [BHPT20, Section C]):

• For every x⃗ ∈ L0 ∪ shift(L0) ∪ L1, it makes a query to Πproof [x⃗].
• For every x⃗ ∈ L1 ∩ I, it makes a query to Πinput[I

−1
t (x⃗)].

It is easy to see that the type predicate Vtype is pretty simple: the first 3ℓ · |F| queries are to the
proof (i.e., the first 3|F| queries to Πproof for L0, shift(L0), and L1), and the remaining |F| queries are
to the input (i.e., the |F| queries to L1∩ I). To verify the rectangular neighbour listing property, we
only need to consider the 3|F| queries to the proof oracle. Denote these queries to be (⃗a1, . . . , a⃗|F|),
(⃗a|F|+1, . . . , a⃗2|F|), and (⃗a2|F|+1, . . . , a⃗3|F|), for L0, shift(L), and L1, respectively.

Rectangularity of the Proof. Let k := ⌈(wproof − log ℓ) · (h/f)⌉ and c2 := ⌈k/h⌉. We partition
the random bits seed = (R2, R3, . . . , Rm, Ry) ∈ Fm−1 × [|Sλ|] as follows:

seed.col := (R3, R4, . . . , Rc2−1),

seed.row := (Rc2+2, Rc2+3, . . . , Rm−1),

seed.shared := (R2, Rc2 , Rc2+1, Rm, Ry).

Lemma 6.9 ([RSW22], Lemma 7.5). Let seed = (R2, R3, . . . , Rm, Ry) as defined above, R1 =
Rm+1 = 0f , α⃗i = (ai,1, . . . , ai,m) ∈ Fm be the queries. For every j ∈ [m], (a1,j , a2,j , . . . , a3|F|,j) can
be efficiently computed given Rj , Rj+1, and Ry.

Proof. Let F = {h1, h2, . . . , h|F|} and j ∈ [m]. We can see that

(a1,j , a2,j , . . . , a3|F|,j) = (Rj + h1 · y1,j , Rj + h2 · y1,j , . . . , Rj + h|F| · y1,j ,
Rj+1 + h1 · y2,j , Rj+1 + h2 · y2,j , . . . , h|F| · y2,j ,
Rj + h1 · y3,j , Rj + h2 · y3,j , . . . , Rj + h|F| · y3,j).

where y⃗1 := (1, 0, . . . , 0) ∈ Fm, y⃗2 := (0, . . . , 0, 1) ∈ Fm, and y⃗3 = Sλ[Ry].

By Lemma 6.9, we can see that: Given seed.shared and seed.col, we can recover a1,j , . . . , a3|F|,j
for every j ∈ [1, c2]; given seed.shared and seed.row, we can recover a1,j , a2,j , . . . , a3|F|,j for every
j ∈ [c2,m]. Note that

|seed.col| = (c2 − 3)f ≥ wproof − 4t/m ≥ 0,

|seed.row| = (m− c2 − 2)f ≥ hproof − 4t/m ≥ 0.

We assume without loss of generality that t/m is an integer. Similar to [RSW22, Section 7.1.2],
we move some bits to the shared randomness so that |seed.col| = wproof − 4t/m and |seed.row| =
hproof − 4t/m, then

|seed.shared| = (m− 1)f + |Ry| − (wproof + hproof) + 8t/m.

≤ (m− 1)f +O(log(fm/λ))− (log ℓ+mf) + 8t/m

≤ 8t/m+O(log t+m logm)− f

≤ 7t/m+O(log t+m logm).

65

Let i ∈ [3ℓ · |F|] be an index, j := ⌊(i− 1)/ℓ⌋+ 1, and j′ := (i− 1) mod ℓ. The i-th query asks
for the j′-th bit of Πproof [⃗aj], or equivalently, the (binFm (⃗aj) · ℓ+ j′)-th bit of the proof. We will
construct Vrow and Vcol such that

Vrow(seed.row, seed.shared, i)→ irow[i],

Vcol(seed.col, seed.shared, i)→ icol[i],

irow[i] ·Wproof + icol[i] = binFm (⃗aj) · ℓ+ j′.

That is, if we place the proof into a matrix such that the (p, q)-th entry represents the p ·Wproof + q
bit of the proof, the first 3ℓ · |F| queries to the proof can be made rectangular.

• Vcol(seed.col, seed.shared, i) computes aj,1, aj,2, . . . , aj,c2 by Lemma 6.9; it outputs icol[i] as the
concatenation of j′ and aj,1, aj,2, . . . , aj,c2−1 and the lowest wproof − (c2 − 1)f − log ℓ bits of
aj,c2 .

• Vrow(seed.row, seed.shared, i) computes aj,c2 , aj,c2+1, . . . , aj,m by Lemma 6.9; it outputs irow[i]
as the concatenation of the highest c2f+log ℓ−wproof bits of aj,c2 and aj,c2+1, aj,c2+1, . . . , aj,m.

j′ aj,1 aj,2 . . . aj,c2 . . . aj,m−1 aj,m
︸ ︷︷ ︸

wproof bits

︸ ︷︷ ︸
hproof bits

wproof − (c2 − 1)f − log ℓ bits c2f + log ℓ− wproof bits

Figure 5: The binary representation of binFm (⃗aj) · ℓ + j′, where the leftmost bits are the least
significant ones.

Recall that we identify binary strings and numbers with the leftmost bit as the least significant
bit. It is then easy to see that irow[i] ·Wproof + icol[i] is the concatenation of irow[i] and icol[i], and
binFm (⃗aj) · ℓ + j′ is the concatenation of j′ and binFm (⃗aj). Both of them are the concatenation of
j′, aj,1, aj,2, . . . , aj,m, hence irow[i] ·Wproof + icol[i] = binFm (⃗aj) · ℓ + j′. Similarly, we arrange the
input matrix as in [RSW22] so that the queries to the input oracle are also rectangular.

neighbours of (seed, i). Let F = {h1, h2, . . . , h|F|}. Let seed = (R2, R3, . . . , Ry), i ∈ [3ℓ · |F|],
j := ⌊(i − 1)/ℓ⌋ + 1, and j′ := (i − 1) mod ℓ. Assume that this query probes the j′-th bit of
Πproof [⃗aj], where a⃗j = (aj,1, aj,2, . . . , aj,m). We define the canonical neighbour (seed1, i1) of (seed, i)
as follows:

seed1 := (R1
2 := aj,2, R

1
3 := aj,3, . . . , R

1
m := aj,m, R1

y := 0) (9)

i1 := (j1 − 1) · ℓ+ j′1 + 1 (10)

where j1 ∈ [1, |F|] such that hj1 = aj,1, and j′1 = j′. It is easy to see that the canonical neighbours
are the representative elements of the equivalence class induced by the neighbourhood relation.
Denote S as the set of canonical neighbours, then (seed, i) ∈ S if and only if i ∈ [1, |F|] and Ry = 0.

To list all the neighbours of (seed, i), it suffices to find its canonical neighbour (seed1, i1) and list
all the neighbours of (seed1, i1). Let seed2 = (R2

2, R
2
3, . . . , R

2
m, R2

y), i2 ∈ [3ℓ·|F|], j2 := ⌊(i2−1)/ℓ⌋+1,
j′2 := (i2 − 1) mod ℓ. Suppose that (seed2, i2) is a neighbour of (seed1, i1), then they represent the

66

queries to the same bit of the same entry of Πproof . This means that j′1 = j′2, and one of the following
conditions holds:

j2 ∈ [1, |F|] and (hj2 , R
2
2, R

2
3, . . . , R

2
m) = (hj1 , R

1
2, . . . , R

1
m−1, R

1
m) (11)

j2 ∈ [|F|+ 1, 2|F|] and (R2
2, R

2
3, . . . , R

2
m, hj2−|F|) = (hj1 , R

1
2, . . . , R

1
m−1, R

1
m); (12)

j2 ∈ [2|F|+ 1, 3|F|] and (h · y1, R2
2 + h · y2, . . . , R2

m + h · ym) = (hj1 , R
1
2, . . . , R

1
m)

where h := hj2−2|F|, (y1, y2, . . . , ym) := Sλ[R
2
y]. (13)

We will list the neighbours of (seed1, i1) in the following order: the |Sλ| configurations satisfying
(11) in the lexicographic order of R2

y (note that this includes (seed1, i1)), the |Sλ| configurations
satisfying (12) in the lexicographic order of R2

y, and then the |Sλ| configurations satisfying (13) in
the lexicographic order of R2

y.23

Rectangular neighbour Listing of S. Now we need to verify that the aforementioned listing
of the neighbours satisfies the rectangular neighbour listing property (see Definition 6.2). To start
with, we consider the case when (seed, i) = (seed1, i1), i.e., (seed, i) ∈ S. Recall that

seed1.col := (R1
3, R

1
4, . . . , R

1
c2−1),

seed1.row := (R1
c2+2, R

1
c2+3, . . . , R

1
m−1),

seed1.shared := (R1
2, R

1
c2 , R

1
c2+1, R

1
m, R1

y).

Let low(·) and high(·) denote the lower and higher halves of a Boolean string, respectively. We
partition seed.shared = (R1

2, R
1
c2 , R

1
c2+1, R

1
m, R1

y) into two parts (seed.shared.row, seed.shared.col),
where seed.shared.col := (R1

2, Rc2 , low(Ry)) and seed.shared.row := (Rc2+1, R
1
m, high(Ry)).

• The column algorithm Acol(seed1.col, seed1.shared, i1) outputs NListcol(seed1, i1) as follows:

1. It firstly outputs the column-part of the |Sλ| neighbours (seed2, i2) satisfying (11), includ-
ing (seed1, i1) itself. We can see that i2 = i1, seed2.col = seed1.col, and seed2.shared =
(R1

2, R
1
c2 , R

1
c2+1, R

1
m, R2

y), where R2
y enumerates over all |Sλ| possibilities in lexicographic

order.
2. It then aims to output the column-part of the |Sλ| neighbours (seed2, i2) satisfying (12).

We will enumerate all R2
y in lexicographic order and output:

seed2.col = (R2
3 = R1

2, . . . , R
2
c2−1 = R1

c2−2),

seed2.shared.col = (R2
2 = hj1 , R

2
c2 = R1

c2−1, low(R
2
y)).

Let j2 := ⌊(i2−1)/ℓ⌋+1 and j′2 := (i2−1) mod ℓ, we can see that j′2 = j′1 and hj2 = R1
m,

hence i2 can also be computed efficiently.
3. Finally, it aims to output the column-part of the neighbours (seed2, i2) satisfying (13). We

enumerate R2
y in lexicographic order. Let (y1, y2, . . . , ym) = Sλ[R

2
y]. Denote h := y−11 ·hj1 ,

and let j2 be the unique number in [2|F|+ 1, 3|F|] such that h = hj2−2|F|, we output:

i2 = (j2 − 1) · ℓ+ j′1 + 1

seed2.col = (R2
3 = R1

3 − h · y3, . . . , R2
c2−1 = R1

c2−1 − h · yc2−1)
seed2.shared.col = (R2

2 = R1
2 − h · y2, R2

c2 = R1
c2 − h · yc2 , low(R2

y)).
23Recall that for every (y1, y2, . . . , ym) = Sλ[R

2
y], y1 ̸= 0. Thus for every R2

y, there is exactly one j2 ∈ [2|F|+1, 3|F|]
that satisfies (13), namely the j2 such that hj2−2|F| = y−1

1 · hj1 .

67

• Similarly, the row algorithm Arow(seed1.row, seed1.shared, i1) can output NListrow(seed1, i1).
We omit the details since it can be adapted from Acol directly.

It is clear that the “zipped” list of NListrow and NListcol is the list of neighbours of (seed1, i1).
Since (seed1, i1) appears at the head of the list, Arow and Acol can simply output selfrow = selfcol = 1.

Rectangular neighbour Listing for S. For the general case when (seed, i) /∈ S, the algorithms
Arow and Acol need to find its canonical neighbour (seed1, i1) “rectangularly”: Let (seed1, i1) be the
canonical neighbour of (seed, i), then Arow (resp. Acol) can output the row-part (resp. the column-
part) of (seed1, i1) given (seed.row, seed.shared, i) (resp. (seed.col, seed.shared, i)). This can be done
by checking Equation (9), Equation (10), and Lemma 6.9.

Finally, we need to verify that both Arow and Acol know the index of (seed, i) itself in this list.
Let j := ⌊(i − 1)/ℓ⌋ + 1 and j′ := (i − 1) mod ℓ. The list of (seed1, i1) contains three parts: the
neighbours specified by (11), (12), and (13). By checking j, which is known by both Arow and Acol,
we can find the part that contains (seed, i). The index of (seed, i) within the part is then determined
by the lexicographic order of Ry in seed.shared.

Complexity of Arow and Acol. Recall that log |F| = f = (log T (n) + 3)/m + O(log log T (n)),
|Sλ| = O((mf/λ)2) = poly(mm, log T (n)). It is then easy to check that the running time of both
Arow and Acol is poly(mO(m), f, log T (n)) = poly(mm, log T (n)).

Robust Soundness. Finally, we prove a weak version of robust soundness here. This PCPP only
guarantees an expected version of robust soundness: the expected fraction of bits that we need to
flip in order to make the verifier accept is at least ρ, where the expectation is over the choice of
seed. (See [BGH+06, Lemma 8.11].) We use a Markov bound to turn this into a standard robust
soundness property, but only with soundness parameter very close to 1. Since the robust soundness
amplification (Section 6.4) preserves smoothness but does not seem to preserve RNL, we do not
apply it here.

Let δproof(seed) (resp. δinput(seed)) be the fraction of bits of Πproof (resp. Πinput) read by the
verifier that we need to flip to make the verifier accept given the randomness seed. Let δ̂(seed) be
the fraction of bits (of both Πproof and Πinput) read by the verifier that we need to flip to make
the verifier accept given the randomness seed. By [BGH+06, Lemma 8.11] (also see [RSW22, Proof
of Theorem 7.1]),24 there is a constant ρ0 ∈ (0, 1) such that for every constant δ ∈ (0, 1), if
Πinput is δ-far from being in L, then for any proof oracle Πproof , either Eseed[δproof(seed)] ≥ ρ0 or
Eseed[δinput(seed)] ≥ δ/3. Fix this constant ρ0.

Recall that the verifier V new makes |F| queries to Πinput and 3ℓ · |F| queries to Πproof . We repeat
each query to the input oracle for 9(ρ0/δ)ℓ times. Then if Πinput is δ-far from being in L, the fraction
of bits read by the verifier that we need to flip on expectation to make the verifier accept is

E
seed

[
δ̂(seed)

]
=

min{ρ0 · 3ℓ · |F|, (δ/3) · 9(ρ0/δ)ℓ · |F|}
3ℓ · |F|+ 9(ρ0/δ)ℓ · |F|

≥ 3ℓρ0
3ℓ+ 9(ρ0/δ)ℓ

≥ ρ0
1 + 3ρ0/δ

.

Let ρ := ρ0
1+3ρ0/δ

. By a Markov bound,

Pr
seed

[
δ̂(seed) ≤ ρ

]
≤ 1− ρ.

24Recall that we assume m ≤ (log T (n))0.1 and set λ = min{1/(ct), 1/m2cm}, so that mm ≤ T (n)1/m
2

and
λ ≤ min{1/(ct), 1/mcm}, which satisfies the technical requirement of [BGH+06, Lemma 8.11].

68

Verifier V out V in V comp

Soundness error 1− εout 1− εin 1− εout · εin
Proximity parameter δout δin δout

Robustness parameter ρout - -
Row randomness routrow - routrow

Column randomness routcol - routcol

Shared randomness routshared rin routshared + rin

Proof matrix height Hout
proof - Hout

proof + 2r
out+rin/W out

proof

Proof matrix width W out
proof - W out

proof

Query complexity qout qin qin

Parity check complexity - - qin

Decision complexity dout din din

Proof length ℓout ℓin Hout
proof ·W out

proof + 2r
out+rin

Table 5: The parameters of the PCPPs in the composition theorem. Note that the input length of
the inner PCPP is dout = dout(n), e.g., rin in the table actually refers to rin(dout(n)).

Thus, the PCPP verifier has robust soundness error 1−ρ with robustness parameter ρ and proximity
parameter δ.

6.3 RNL-Preserving Composition Theorem

Now we verify that the composition theorem in [RSW22, Section 7.2] preserves the rectangular
neighbour listing property, using essentially the same approach of [BHPT20, Section 7.2]. This will
be used to reduce the number of queries of our rectangular PCPP with RNL property.

Theorem 6.10. Let n ≤ T (n) ≤ 2poly(n). Suppose that NTIME[T (n)] has a robust and rectangular
PCPP verifier V out and Circuit-Eval⊥ has a (not necessarily rectangular) PCPP verifier V in with
parameters specified in Table 5. Moreover, assume that qin = O(1), ρout ≥ δin, ℓin = 2r

in ,25 W out
proof

is a power of 2, and routcol ≤ logW out
proof ≤ routcol + routshared. Then NTIME[T (n)] has a rectangular PCPP

verifier V comp with parameters specified in Table 5.
Furthermore, if V out has toutRNL(n)-time rectangular neighbour listing property, then V comp has

tRNL(n)-time rectangular neighbour listing property, where tRNL(n) := poly(toutRNL(n), ℓ
in, qin, din).

The composed PCPP verifier. Assume that we have a robust and rectangular PCPP verifier
V out for L ∈ NTIME[T (n)] and a PCPP verifier V in for Circuit-Eval⊥. We now describe the
composed PCPP verifier V comp for L (also see [BGH+06, Section 2.4], [BHPT20, Section 7.2],
[RSW22, Section 7.2]). In a nutshell, we will reduce the verification of the outer PCPP V out to
Circuit-Eval⊥, where the circuit represents the decision predicate of V out and the input consists
of the input of L and the proof for the outer PCPP. As in [BHPT20,RSW22], we need to carefully
arrange the proof matrix to maintain the rectangularity.

Assume that Πout
input, Π

out
proof , and seedout are the proof matrix, the input matrix, and the random

seed of V out, respectively. The input matrix of V comp is simply the input matrix of V out, denoted

25This is without loss of generality, because ℓin ≤ 2r
in

· qin, and in our case qin will be a constant. We could always
add O(log qin) = O(1) dummy bits to the inner verifier’s randomness and pad the inner verifier’s proof oracle to length
2r

in

.

69

by Πin. The proof of V comp is the concatenation of Πout
proof and Πin

proof(seed
out) for every seedout ∈

{0, 1}rout , where each Πin
proof(seed

out) is a PCPP proof for “V in accepts seedout.” The random seed is
seed := seedout ◦ seedin. The verifier V comp works as follows:

1. Obtain the decision circuit Decout and the list of query indices Iout ← V out(seedout) of V out.

2. Use the inner PCPP to verify the following Circuit-Eval⊥ instance (C,Πin
input(seed

out)):
the (explicit) circuit C : {0, 1,⊥}qout(n) × {0, 1}r̂out → {0, 1,⊥} and the (implicit) input
Πin

input(seed
out) ∈ {0, 1,⊥}qout(n) × {0, 1}r̂out are defined as follows:

C(u, v) :=Decout(u,Dec(v)),

Πin
input(seed

out) := ((Πinput ◦Πout
proof)|Iout ,Enc(seedout)),

where (Enc,Dec) is a linear-time encodable and decodable error-correcting code such that
Enc : {0, 1}rout → {0, 1}r̂out is linear over GF(2).26 Specifically:

(a) The decision circuit Deccomp of V comp is defined as the decision circuit Decin of V in.

(b) The queries are sampled using V in(seedin) for the Circuit-Eval⊥ instance defined above
with the proof Πin

proof(seed
out), i.e., we sample the queries I in ← V in(seedin) and “redirect”

them to the input oracle and the proof of the composed PCPP to obtain Icomp.27

Rectangularity of V comp. We now verify the rectangularity of the composed PCPP verifier.
Recall that: the proof Πout

proof ∈ {0, 1}ℓ
out of V out is arranged as an Hout

proof ×W out
proof matrix, where the

i-th row and the j-th column Πout
proof [i, j] := Πout

proof [(i−1)·W out
proof+j]; the inner proofs Πin

proof(seed
out) ∈

{0, 1}ℓin for every seedout ∈ {0, 1}rout .
Let W in

proof := min{W out
proof/2

routcol , ℓin} and H in
proof := ℓin/W in

proof . Note that both W in
proof and H in

proof

are powers of 2, and W out
proof ≥ 2r

out
col . We arrange the proof matrix as follows: The first Hout

proof rows
contain the Hout

proof ×W out
proof proof matrix of the outer PCPP; the rest part of the matrix is divided

into blocks of size W in
proof ×H in

proof , each of which contains a proof of the inner PCPP Πin
proof(seed

out)

for some seedout ∈ {0, 1}ℓin , sorted in the lexicographic order of seedout. Clearly, the proof matrix
height of the composed PCPP verifier is

Hout
proof + ℓin · 2rout/W out

proof = Hout
proof + 2r

out+rin/W out
proof .

Recall that the seed of the composed PCPP verifier is seed := (seedout, seedin). Assume that the
partition of random bits of V out is seedout = (seedout.row, seedout.col, seedout.shared). We partition
the random bits as follows:

seed.shared := (seedout.shared, seedin).

seed.row := seedout.row.

seed.col := seedout.col.

26The reason to apply an error-correcting code on the randomness is that we want Decout to have robust sound-
ness. Let (Π′,Enc(seedout)) be the input of Decout, if given seedout, Π′ is far from being accepted by Decout, then
(Π′,Enc(seedout)) is also far from being accepted by Decout. This is not true if we do not encode seedout.

27In fact, there are three kinds of queries: the queries to (Πinput ◦ Πout
proof)|Iout , Enc(seedout), and Πin

proof(seed
out). The

queries of the first and the third kinds will be redirected as queries, and the second kind will be treated as a parity-
check bit, since Enc is a linear function over GF(2). Details are contained in the verification of the rectangularity,
also see [RSW22, Algorithm 2].

70

Πout
proof

Πin
proof(0) Πin

proof(1) Πin
proof(2) Πin

proof(3)

Πin
proof(4) Πin

proof(5) Πin
proof(6) Πin

proof(7)

Hout
proof

W out
proof

H in
proof

W in
proof

Figure 6: The layout of the proof matrix of the composed PCPP.

Now we describe the type predicate Vtype and rectangular verifiers V comp
row and V comp

col of the
composed PCPP.

The type predicate and the row/column verifier firstly obtain seedin in seed.shared and compute
the queries I in ← V in(seedin) of the inner PCPP for Circuit-Eval⊥. There can be three cases for
each query in I in:

1. It probes the i-th cell of Πin
input(seed

out) and i ≤ qout(n), i.e., it queries (Πinput ◦Πout
proof)|Iout .

• The type predicate can call the type predicate of V out to compute the type of the query,
since it has seedout.shared and the index of the query in hand.

• The row/column verifier of the composed PCPP runs the row/column verifier of the
outer PCPP to obtain the row/column index of the query in (Πinput,Π

out
proof). By the

definition of Πcomp
proof , the row/column index is also the row/column index of the query in

(Πinput,Π
comp
proof).

2. It probes the i-th cell of Πin
input(seed

out) and i > qout(n), i.e., it queries Enc(seedout). Instead
of making a query, we fix this input of Deccomp to be Enc(seedout)[i − qout(n)]. This bit will
be considered as a parity-check bit.

3. It probes the i-th cell of Πin
proof(seed

out). This is a query to the proof, so the type predicate
always outputs proof. Recall that Πin

proof(seed
out) is placed in some W in

proof ×H in
proof size block

in the proof matrix. Let Nproof := W out
proof/W

in
proof , i.e., there are Nproof blocks of inner PCPP

proofs in a row of the proof matrix. It is then easy to see that the column (resp. row) index of
the query depends on seedin and the lowest logNproof bits (resp. the highest rout − logNproof

bits) of seedout. Note that since

logNproof ≥ log
(
W out

proof/(W
out
proof/2

routcol)
)
≥ |seedout.col|,

logNproof ≤ logW out
proof ≤ |seedout.col|+ |seedout.shared|,

71

we can arrange
seedout := seedout.col ◦ seedout.shared ◦ seedout.row

such that the lowest logNproof bits (resp. the highest rout − logNproof bits) can be obtained
from seedout.col (resp. seedout.row) and seedout.shared. Concretely, the row/column verifier
will firstly identify the row/column index of the block that contains Πin

proof(seed
out) and then

obtain the row/column index of the query within the block by running the inner PCPP verifier
V in(seedin).

Rectangular neighbour Listing of V comp. Now we verify that the composed PCPP verifier
V comp has the rectangular neighbour listing property with tRNL(n) := poly(toutRNL(n), ℓ

in, qin, din). Let
(seed, k) be a configuration of V comp, where

seed = (seed.row := seedout.row, seed.col := seedout.col, seed.shared := (seedout.shared, seedin)).

and k ∈ [qcomp]. Assume that the verifier probes the proof matrix Πcomp
proof on the k-th query given

the randomness seed. By the discussion above, we know that the k-th query of the composed PCPP
verifier can be one of the following two cases: a query to Πout

proof |Iout for Iout ← V out(seedout), or a
query to Πin

proof(seed
out).

Assume that the rectangular neighbour listing algorithm for V out partitions seedout.shared into
(seedout.shared.row, seedout.shared.col). We now partition seed.shared as follows:

seed.shared.row := (seedout.shared.row, low(seedin)),

seed.shared.col := (seedout.shared.col, high(seedin)).

The row and column algorithms Arow and Acol for the rectangular neighbour listing of V comp work
as follows.

Case 1. Given the configuration (seed, k), the verifier V comp probes the i-th bit of Πout
proof |Iout , where

the index i depends on the seedin. In other words, the composed PCPP verifier probes the
answer of the i-th query made by the outer PCPP verifier when it is “simulating” the outer
verifier using the inner PCPP verifier. A neighbour (seed′ = (seed′out, seed′in), k′) of (seed, k)
must be a query of the same type, i.e., it is a query to the i′-th bit of Πout

proof |I′out where the
index i′ depends on seed′in. Furthermore, the i-th query index in Iout must be the same as the
i′-th query index in I ′out. In such case, the row/column algorithms for rectangular neighbour
listing will generate the following list:

1. The row algorithm Acomp
row (resp. the column algorithm Acomp

col) firstly runs the outer PCPP
verifier and generates the row part (resp. the column part) of Iout, and runs the inner
PCPP verifier using seedin to obtain the index i defined above.

2. Then it runs the row algorithm Aout
row (resp. the column algorithm Aout

col) for the outer
PCPP to generate the row part (resp. the column part) of the list of neighbours of
(seedout, i), denoted by Lrow (resp. Lcol).

3. For every (seedoutj .row, seedoutj .shared.row, ij) (resp. (seedoutj .col, seedj .shared
out.col, ij)) in

the list Lrow (resp. Lcol), we enumerate (seed′in, k′) ∈ {0, 1}rin × [qin] in lexicographic
order. If the k′-th query of V in given the seed′in as the seed is a query to the i′-th bit of
(Πinput ◦Πout

proof)|I′out (where i′ depends on seed′in), and i′ = ij , then append

(seedoutj .row, seedoutj .shared.row, low(seed′in), k′) (for Acomp
row)

(seedoutj .col, seedoutj .shared.col, high(seed′in), k′) (for Acomp
col)

72

to Lrow (resp. Lcol).

It is easy to check that the requirements of RNL property are satisfied.

Case 2. Given the configuration (seed, k), the verifier V comp probes the i-th cell of Πin
proof(seed

out).
Recall that for every seedout ∈ {0, 1}rout , Πin

proof(seed
out) is arranged in a block of size H in

proof ×
W in

proof in the proof matrix. The neighbours of (seed, k) need to query the same block, therefore
the neighbours must have the same random seed for the outer PCPP verifier. Hence the
row/column algorithms will work as follows:

1. The row algorithm Acomp
row (resp. the column algorithm Acomp

col) firstly finds the list Lin :=

{(seedinj , kj) ∈ {0, 1}r
in(dout(n)) × [qcomp]} sorted in lexicographic order such that the in-

ner PCPP will query the ij-th bit of the inner proof on the kj-th query given seedinj
as randomness. This can be done in poly(ℓin, qin, din)-time by enumerating all possible
(seedinj , kj) and running the inner PCPP verifier.

2. We define the final list of neighbours as

L :=
{(

seedj := (seedout, seedinj , kj)
)
: (seedinj , kj) ∈ Lin

}
.

It is easy to check that the list satisfies the promises of the rectangular neighbour listing
property.

Other properties. The soundness error and proximity parameter can be found in [BGH+06,
Section 2.4]. The query complexity, ROP parity-check complexity, and decision complexity can be
found in [RSW22, Section 7.2]. We can see that the proof matrix of the composed PCPP verifier has
width W comp

proof = W out
proof and height Hcomp

proof = W out
proof +2r

out(n)+rin(dout(n))/W out
proof (recall that ℓin = 2r

in).
By the definitions of the random seeds, we can see that: The row and column randomness complexity
of V comp is the same as the row and column randomness complexity of V out, respectively; the shared
randomness complexity of V comp is the sum of the shared randomness complexity of V out and the
randomness complexity of V in.
Remark 6.11. The composed PCPP verifier V comp will use the inner PCPP verifier V in to simulate
the outer PCPP verifier V out. This means that the total number of queries and parity-check func-
tions is at most the query complexity of the inner PCPP verifier. Moreover, the decision predicate
of V comp (after fixing the random seed) is the decision predicate of V in, where the input bits of the
decision circuit of V comp are the parity-check bits and the answers to the queries. For instance, if
the decision predicate of V in given seedin is an OR of the answers or their negations, then the deci-
sion predicate of V comp given seed = (seedin, seedout) is also the same OR of its input bits (i.e. the
answers to the queries and the parity-check bits).

6.4 Soundness Amplification Preserving Smoothness and Rectangularity

Now we use the technique from [RSW22, Section 7.1.3] to boost the soundness error of a rect-
angular PCPP. In addition to their original analysis, we need to verify that their expander-walk
construction preserves smoothness.

Lemma 6.12 ([VW18, RSW22]). For every λ ∈ (0, 1), there is some d = poly(λ−1) such that
the following holds. For every n, there is an expander graph Gn = (Vn, En) with second largest
eigenvalue at most λ, where Vn := {0, 1}n. Moreover, there are d explicit projections (i.e., NC0

1

circuits) C1, C2, . . . , Cd : {0, 1}n → {0, 1}n such that for every x ∈ Vn, the d neighbours of x are
C1(x), C2(x), . . . , Cd(x).

73

Verifier V old V new

Soundness error s µ

Proximity parameter δ δ

Row randomness rrow rrow
Column randomness rcol rcol
Shared randomness rshared rshared +O((1− s)−2 log(µ−1) log((1− s)−1))

Proof matrix height Hproof Hproof

Proof matrix width Wproof Wproof

Query complexity q O(q · (1− s)−2 · log(µ−1))
Parity check complexity p O(p · (1− s)−2 · log(µ−1))

Decision complexity d O(d · (1− s)−2 log(µ−1) + poly(rshared, rrow, rcol))

Table 6: The parameters of the soundness amplification (O(·) hides absolute constants).

Lemma 6.13 (Expander Walk, [AB09, Theorem 21.12]). Let G = (V,E) be a d-regular graph with
second largest eigenvalue λ. For every S ⊆ V such that |S| ≤ β · |V | for some β ∈ (0, 1), let
(X1, X2, . . . , Xℓ) be a random walk in G with random starting point, then

Pr [∀i ∈ [ℓ], Xi ∈ S] ≤
(
(1− λ)

√
β + λ

)ℓ−1
.

Lemma 6.14 (Expander Chernoff Bound, [Vad12, Theorem 4.22]). Let G = (V,E) be a d-regular
graph with second largest eigenvalue λ, B ⊆ V be a set of size |B| = β|V |. Let X1, X2, . . . , Xℓ be
random variables denoting a length-ℓ random walk from a random starting point. For every i ∈ [ℓ],
we define Bi = 1 if Xi ∈ B and Bi = 0 otherwise. Then:

Pr

[∣∣∣∣∣
1

ℓ

ℓ∑

i=1

Bi − β

∣∣∣∣∣ ≥ 2λ

]
< 2 exp

(
−Ω(λ2ℓ)

)
.

Theorem 6.15. Suppose that L has a rectangular PCPP verifier V old (resp. a rectangular PCPP
verifier V old with ROP), where the parameters are specified in Table 6. Then for every µ ∈ (0, 1),
L has a rectangular PCPP verifier V new (resp. a rectangular PCPP verifier with ROP), whose
parameters are specified in Table 6.

Moreover, if V old is smooth, then V new is also smooth; if V old has robust soundness (instead of
soundness) s with robustness parameter ρ, then V old has robustness soundness µ with robustness
parameter (1− s)ρ/3.

Proof. Let ε := 1 − s, λ := ε/3, and r := rrow + rcol + rshared. We construct the following d-
regular expander graphs with second largest eigenvalue λ by Lemma 6.12: Grow = (Vrow, Erow) with
Vrow := {0, 1}rrow , Gcol = (Vcol, Ecol) with Vcol := {0, 1}rcol , and Gshared = (Vshared, Eshared) with
Vshared := {0, 1}rshared . Let G = (V,E) be the tensor product of these expanders:

V := Vrow × Vcol × Vshared = {0, 1}rrow × {0, 1}rcol × {0, 1}rshared ;
E := {((u, v, w), (u′, v′, w′)) : (u, u′) ∈ Erow, (v, v

′) ∈ Ecol, (w,w
′) ∈ Eshared}.

Note that G is a d3-regular graph with second largest eigenvalue λ (see [AB09, Lemma 21.17]).

74

The Construction of V new. The new verifier has the same proof matrix, row randomness, and
column randomness as the old verifier V old. The shared random seed of the new verifier V new

consists of the shared random seed seed.shared of V old and seed.walk, which is used to sample a
random walk in G of length ℓ := O(λ−2 log(µ−1)). Concretely:

• The random seed seed.walk will be used to sample σ1, σ2, . . . , σ3(ℓ−1) ∈ [d]. We can see that

|seed.walk| = O(ℓ · log d) = O(λ−2 log(µ−1) log(λ−1)).

• Let u1 := seed.row, v1 := seed.col, and w1 := seed.shared. We use σ1, σ2, . . . , σℓ−1 to specify
a length-ℓ random walk (u1, u2, . . . , uℓ) in Grow. In particular, let C1, C2, . . . , Cd be the pro-
jections in Lemma 6.12 for Grow. For every j ∈ {1, 2, . . . , ℓ − 1}, we define uj+1 := Cσj (uj).
Similarly, we can use the remaining 2(ℓ − 1) bits to specify a random walk (v1, v2, . . . , vℓ) in
Gcol and a random walk (w1, w2, . . . , wℓ) in Gshared.

The verifier V old will run the verifier V new for ℓ times with the seeds:

(u1, v1, w1), (u2, v2, w2), . . . , (uℓ, vℓ, wℓ),

and will accept the proof if V old accepts given all these ℓ seeds. Since seed.walk is treated as the
shared randomness of V new and G is obtained from the tensor product of Grow, Gcol, and Gshared, it
is easy to see that V new is still a rectangular PCPP verifier. The query complexity (and parity-check
complexity when V old has ROP) increases by an ℓ = O(ε−2 log(µ−1)) multiplicative factor.

Smoothness. Let idx ∈ [Hproof · Wproof] be an index in the proof. Assume that V new(seed, i)
(resp. V old(seed, i)) denotes the index in the proof probed by V new (resp. V old) for the i-th query.
We can see that

γ := Pr
seed,seed.walk,i∈[qℓ]

[V new(seed ◦ seed.walk, i) = idx]

= E
j∈[ℓ]

[
Pr

seed,seed.walk,i∈[q]
[V new(seed ◦ seed.walk, (j − 1)ℓ+ i) = idx]

]
.

Fix a j ∈ [ℓ]. By the definition of V new, we know that V new(seed ◦ seed.walk, (j − 1)ℓ + i) will
work as follows: Let (u, v, w) := (seed.row, seed.col, seed.shared), and σ1, σ2, . . . , σ3ℓ be defined as
above; V new will choose the j-th node in the random walk on G seeded by seed.walk starting from
(u1 := u, v1 := v, w1 := w) as the seed for V old, and probe the proof according to the i-th query of
V old. Since the expander graph is regular, each seed ∈ {0, 1}r is equally likely to be selected from
a random walk with a random starting point. Hence

Pr
seed,seed.walk,i∈[q]

[V new(seed ◦ seed.walk, (j − 1)ℓ+ i) = idx]

= Pr
seed,i∈[q]

[
V old(seed, i) = idx

]

=
1

Hproof ·Wproof
.

This means that γ = 1/(Hproof ·Wproof), i.e., every bit in the proof is equally likely to be probed.

75

Soundness. Assume that x ∈ {0, 1}n is δ-far from being in L and Π be an arbitrary proof. We
say a node (u, v, w) in the expander graph G = (V,E) to be bad if V old accepts (x,Π) with the
random seed seed.row := u, seed.col := v, and seed.shared := w. Let B be the set of all bad nodes,
then |B| ≤ s · |V |. Note that the new verifier accepts (x,Π) if and only if a length-ℓ random walk
on G from a random starting point only accesses bad nodes. By Lemma 6.13, we can see that

Pr [V new accepts (x,Π)] ≤
(
(1− λ)

√
s+ λ

)ℓ−1 ≤
(
1− ε

5

)ℓ−1
≤ exp

(
−ε(ℓ− 1)

5

)
≤ µ,

when ℓ ≥ 10 · ε−1 ln(µ−1).

Robust Soundness. Assume that the original PCPP verifier V old has robust soundness s with ro-
bustness parameter ρ (instead of only soundness s), we need to show that V new has robustness sound-
ness µ. Let x ∈ {0, 1}n be δ-far from L and Π be an arbitrary proof. We say a node (u, v, w) in the
expander graph G = (V,E) is bad if given the randomness seed = (seed.row, seed.col, seed.shared) :=
(u, v, w), the fraction of bits read by the old PCPP verifier that we need to change to make V old

accepts (x,Π), denoted by δ̂(seed), is at most ρ.
Let B be the set of bad nodes and X1, X2, . . . , Xℓ be the random variables denoting a random

walk from a random starting point (equivalently, denoting the randomness V new used to simulate
V old). By the robustness soundness of V old, we know that |B| ≤ s · |V |. Let Bi = 1 when Xi ∈ B
and 0 otherwise. By Lemma 6.14, we can see that

Pr

[
1

ℓ

ℓ∑

i=1

Bi ≥ s+ 2λ

]
≤ 2 exp(−Ω(λ2ℓ)) ≤ µ

when ℓ = O(λ−2 log(µ−1)). As a result, with probability as least 1− µ, the fraction of bits read by
V new that we need to change to make V new accepts (x,Π) is at least

(1− (s+ 2λ))ρ ≥ ερ/3.

This satisfies the requirement of robust soundness µ with robustness parameter ερ/3.

6.5 Final Construction

Theorem 6.16 ([Mie09,RSW22]). Let L be a pair language in NTIME[T (n)] for some non-decreasing
function T : Z+ → Z+. For all constants s, δ > 0, L has a PCPP verifier with randomness complex-
ity log T (n) + O(log log T (n)), soundness error s, proximity parameter δ, query complexity O(1),
and decision complexity polylog(T (n)).

Theorem 2.14 (Smooth and Rectangular PCPP). For all constants δ ∈ (0, 1) and s ∈ (0, 1), there
is a constant q ≥ 1 such that the following holds. Let m = m(n), T (n), wproof(n), winput(n) be
good functions such that 1 ≤ m(n) ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and
winput(n) ≤ log n. Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) := ⌈log n⌉ − winput(n).

such that the following holds.

76

Soundness error s

Proximity parameter δ

Row randomness rrow := hproof − (5/m) log T (n)

Column randomness rcol := wproof − (5/m) log T (n)

Shared randomness rshared := (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity q

Parity check complexity q

Decision complexity poly(T (n)1/m)

Table 7: Parameters of the PCPP constructed in Theorem 2.14.

Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm2 log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a smooth and rectangular PCP of proximity with an Hinput(n) ×Winput(n)
input matrix and an Hproof(n) × Wproof(n) proof matrix, whose other parameters are specified in
Table 2.

Proof. The high-level roadmap of the proof is as follows.

1. By Theorem 6.8, we can obtain a robust and rectangular PCPP verifier V out with RNL
property for tRNL = poly(log T (n),mm) and query complexity T (n)1/m · polylog(T (n)).

2. Let V in be a PCPP verifier for Circuit-Eval⊥ with constant query complexity. We compose
V out and V in by Theorem 6.10 to obtain a rectangular PCPP verifier V comp with RNL property.

3. We smoothen V comp by Theorem 6.3 to obtain a smooth and rectangular PCPP V smth with
constant query complexity, whose soundness error is some constant ssmth ∈ (0, 1).

4. By Theorem 6.15, we reduce the soundness error to s while still maintaining the query com-
plexity to be a (larger) constant.

Robust and Rectangular PCPP. Let δ ∈ (0, 1) and s ∈ (0, 1) be some constants; q be a
large constant to be determined that only depends on δ and s; C be a large constant; m = m(n),
T (n), winput(n), hinput(n), wproof(n), and hproof(n) be defined as above. Let wout

proof(n) := wproof(n)−
O(log log T (n)+m logm) where the concrete value will be determined later. We will set hproof(n) =
houtproof(n) +O(log log T (n) +m logm) for some good function houtproof(n) (which is actually the proof
height parameter of the outer PCPP). We check the technical conditions of Theorem 6.8 holds; in
particular we need to ensure that

Claim 6.17. For some constant C ′ that could be made large enough (depending on C),

winput

wout
proof

,
hinput
houtproof

≤ 1− C ′m log log T (n)

log T (n)
.

77

Proof. Since wproof ≥ (5/m) log T (n), and wproof − wout
proof ≤ α1(log log T (n) + m logm) for some

constant α1, it follows that

winput

wout
proof

≤ winput

wproof

(
1 +

α1(log log T (n) +m logm)

wproof − α1(log log T (n) +m logm)

)

≤ 1− Cm2 log log T (n)

log T (n)
+

Θ(m) · (log log T (n) +m logm)

log T (n)

≤ 1− C ′m log log T (n)

log T (n)
.

The same argument works for hinput

hout
proof

. ⋄

By Theorem 6.8, we can construct a robust and rectangular PCPP verifier V out for L with RNL
property and other parameters as follows:

• Proximity parameter δout := δ.
• Robust soundness error sout := 1− ρout with robustness parameter ρout, where ρout ∈ (0, 1) is

some constant depending on δ.
• Proof matrix size Hout

proof(n) ×W out
proof(n), where Hout

proof = 2h
out
proof , W out

proof = 2w
out
proof . The proof

height parameter houtproof , which is given by Theorem 6.8, satisfies

houtproof = log T (n) + Θ(m log log T (n))− wout
proof(n).

• Row randomness complexity routrow = houtproof − (4/m) log T (n).
• Column randomness complexity routcol = wout

proof − (4/m) log T (n).
• Shared randomness complexity routshared = (7/m) log T (n) +O(log log T (n) +m logm).
• Query complexity qout(n) = T (n)1/m · polylog(T (n)).
• Decision complexity dout(n) = T (n)1/m · polylog(T (n)).
• RNL time complexity toutRNL(n) = poly(log T (n),mm).

Reducing the Query Complexity. By Theorem 6.16, we can construct a PCPP verifier V in for
Circuit-Eval⊥ with input length dout(n) and other parameters specified as follows.

• Randomness complexity rin(n) = log dout(n)+O(log log dout(n)) = 1
m log T (n)+O(log log T (n)).

• Soundness error sin := ρout/2.
• Proximity parameter δin := ρout/2.
• Query complexity qin = O(1) is a constant depends on sin and δin, which further means that

it only depends on δ.
• Decision complexity din(dout(n)) = polylog(T (n)).

Without loss of generality, we assume that the proof length ℓin(n) = 2r
in(n).

We now construct V comp by composing V out and V in by Theorem 6.10. We firstly check the
requirements of the composition theorem.

• qin = O(1), ρout ≥ δin = ρout/2, ℓin = 2r
in .

• logW out
proof = routcol + (4/m) log T (n) ≥ routcol .

• logW out
proof = routcol + (4/m) log T (n) ≤ routcol + routshared.

78

Hence we can obtain a rectangular PCPP V comp with ROP that has RNL property. The parameters
of the composed PCPP are as follows.

• Soundness error scomp := 1− (1− sout) · (1− sin) < 1 that only depends on δ.
• Proximity parameter δcomp := δout = δ.
• Row randomness complexity rcomp

row = routrow = houtproof − (4/m) log T (n).
• Column randomness complexity rcomp

col = routcol = wout
proof − (4/m) log T (n).

• Shared randomness complexity rcomp
shared = routshared + rin = (7/m) log T (n) + O(log log T (n) +

m logm) + (1/m) log T (n) +O(log log T (n)) = (8/m) log T (n) +O(log log T (n) +m logm).
• Proof matrix height Hcomp

proof = Hout
proof + 2r

out+rin/W out
proof .

• Proof matrix width W comp
proof = W out

proof .

• Query complexity qcomp = qin = O(1) that only depends on δ.
• ROP parity check complexity pcomp = qin = O(1).
• Decision complexity dcomp(n) = din(dout(n)) = polylog(T (n)).
• RNL time complexity tcomp

RNL (n) = poly(toutRNL(n), ℓ
in, qin, din) = poly

(
T (n)1/m

)
, where poly(·)

hides some absolute constant on the exponent. Note that toutRNL(n) = poly(log T (n),mm) ≤
poly(T (n)1/m), since m ≤ (log T (n))0.1.

Smoothening via RNL. Now we apply Theorem 6.3 to obtain a smooth and rectangular PCPP
V smth with µ := (1− scomp)/2 and other parameters as follows.

• Soundness error ssmth := scomp + µ < 1 that only depends on δ.
• Proximity parameter δsmth := δcomp = δ.
• Row randomness complexity rsmth

row := rcomp
row = houtproof − (4/m) log T (n).

• Column randomness complexity rsmth
col := rcomp

col = wout
proof − (4/m) log T (n).

• Shared randomness complexity rsmth
shared = rcomp

shared = (8/m) log T (n) +O(log log T (n) +m logm).

• Proof matrix width W smth
proof = 2r

comp
col +rcomp

shared/2 = 2w
out
proof · poly(log T (n),mm). Note that here we

set wout
proof carefully so that rcomp

col + rcomp
shared/2 = wout

proof + O(log log T (n) + m logm) = wproof .
This means that the proof matrix width is exactly 2wproof .

• Proof matrix height Hsmth
proof = qcomp · 2rcomp

row +rcomp
shared/2 = 2h

out
proof ·poly(log T (n),mm). Since qcomp =

O(1), we can add O(1) dummy queries to the composed PCPP V comp so that qcomp becomes
a power of two. We then set

hproof = logHsmth
proof

=houtproof +O(log log T +m logm)

= log T (n) + Θ(m log log T (n)) +O(log log T +m logm)

− (wproof(n)−O(log log T +m logm))

= log T (n) + Θ(m log log T (n))− wproof(n).

• Query complexity qsmth = poly(qcomp/µ) = O(1) that only depends on δ.
• ROP parity check complexity psmth = pcomp = O(1).
• Decision complexity dsmth(n) = poly(dcomp(n), qcomp/µ, tcomp

RNL (n)) = poly
(
T (n)1/m

)
, where

poly(·) hides some absolute constant on the exponent.

79

Amplifying the Soundness Error. Finally, we boost the soundness error of V smth to be s by
Theorem 6.15, to obtain a smooth and rectangular PCPP with parameters specified as follows.

• Soundness error s.
• Proximity parameter δ.
• Row randomness complexity houtproof − (4/m) log T (n) ≥ hproof − (5/m) log T (n).
• Column randomness complexity wout

proof − (4/m) log T (n) ≥ wproof − (5/m) log T (n).
• Shared randomness complexity (8/m) log T (n) +O(log log T (n) +m logm).
• Proof matrix height 2hproof and proof matrix width 2wproof .
• Query complexity q = poly(qsmth) = O(1) that depends on δ and s.
• ROP parity check complexity poly(psmth) = O(1) that depends on δ and s.
• Decision complexity poly(dsmth(n)) = poly(T (n)1/m).

We can move some bits from the row and column randomness to the shared randomness, so that
the row and column randomness complexity become exactly hproof − (5/m) log T (n) and wproof −
(5/m) log T (n), respectively, and the shared randomness complexity becomes (10/m) log T (n) +
O(log log T (n) +m logm). This completes the construction.

7 Construction of Rectangular PCPPs with Low Query Complexity

Recall that in our framework of solving range avoidance and hard partial truth table, the query
complexity of the PCPPs will affect the circuit class for which we need to construct satisfying-
pair algorithms. In this section, we construct a rectangular (but not necessarily smooth) PCPP
with query complexity 3. We further construct a 2-query PCPP with a constant gap between the
completeness and soundness parameters (instead of having perfect completeness).

7.1 A 3-Query PCPP for Circuit-Eval⊥

Theorem 7.1 ([CW19b], Lemma 24). For every constant δ > 0, there is a constant s ∈ (0, 1) and
a PCP of proximity for Circuit-Eval with proximity δ, soundness error s, randomness complexity
O(log n), query complexity q = 3, and decision complexity polylog(n). Moreover, the decision
predicate is an OR of the 3 answers to the queries or their negations.

We need the following standard composition theorem for PCP of Proximity from [BGH+06] to
construct 3-query PCPPs for any pair language in NTIME[T (n)].

Theorem 7.2 ([BGH+06]). Let rout, rin, dout, din, qin : N→ N and εout, εin, ρout, δin, δout : N→ [0, 1].
Suppose that:

• Language L has a robust PCPP verifier V out with randomness complexity rout(n), decision
complexity dout(n), robust soundness error 1 − εout(n), robustness parameter ρout(n), and
proximity parameter δout(n).

• Circuit-Eval has a PCPP verifier V in with randomness complexity rin(n), query complexity
qin(n), decision complexity din(n), soundness error 1− εin(n), and proximity parameter δin(n).

• δin(dout(n)) ≤ ρout(n) for every n.

Then L has a PCPP Verifier V comp with randomness complexity rout(n) + rin(dout(n)), query com-
plexity qin(dout(n)), decision complexity din(dout(n)), soundness error 1 − εout(n) · εin(dout(n)), and
proximity parameter δout(n).

80

Theorem 7.3. Let L be a pair language in NTIME[T (n)] for some non-decreasing function T :
Z+ → Z+. For every constant δ, there is a constant s ∈ (0, 1) and a PCP of proximity for L with
randomness complexity log T (n)+O(log log T (n)), decision complexity poly(log log T (n)), soundness
error s, proximity parameter δ, and query complexity q = 3.

Proof. Let L be a pair language in NTIME[T (n)] and δ > 0. We will compose the following two
PCPP verifiers with Theorem 7.2:

• By Theorem 7.1, for every δin > 0, there is a constant sin ∈ (0, 1) and a PCPP verifier V in
δin

for Circuit-Eval with randomness complexity rin = O(log n), soundness error sin, proximity
parameter δin, query complexity qin = 3, and decision complexity din = polylog(n).

• By Theorem 6.16, for all constants δout, sout > 0, there is a constant qout and a PCPP V out

with randomness complexity rout = log T (n)+O(log log T (n)), soundness error sout, proximity
parameter δout, query complexity qout, and decision complexity dout = polylog(T (n)). Since
qout = O(1), V out is trivially a robust PCPP with robustness parameter ρout = 1/qout.

Fix δout = δ, sout = 0.5, δin = 1/(2qout), and s = 1 − 0.5 · (1 − sin). It is clear that δin(dout(n)) ≤
ρout(n). By Theorem 7.2, we can obtain a PCPP verifier V comp for L with the following parameters:

• Randomness complexity rout + rin(dout(n)) = log T (n) +O(log log T (n)).
• Decision complexity din(dout(n)) = poly(log log T (n)).
• Soundness error 1− (1− sout(n)) · (1− sin(dout(n))) = s.
• Proximity parameter δout(n) = δ.
• Query complexity qin(dout(n)) = 3.

This satisfies our requirements.

7.2 A 3-Query Rectangular PCPP

Now we construct a 3-query rectangular PCPP by composing the PCPP constructions in The-
orem 6.8 and Theorem 7.3 using the composition theorem (see Theorem 6.10).

Theorem 7.4 (3-Query Rectangular PCPP). For every constant δ ∈ (0, 1), there is a constant
s ∈ (0, 1) such that the following holds. Let m = m(n), T (n), wproof(n), winput(n) be good functions
such that 1 ≤ m ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤ log n.
Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) = ⌈log n⌉ − winput(n).

such that the following holds.
Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n)×Wproof(n) proof matrix
and an Hinput(n)×Winput(n) input matrix, whose other parameters are specified in Table 8.

Moreover, the total number of queries and parity-check bits is at most 3; and for every seed.shared,
the decision predicate VDec← Vdec(seed.shared) of the rectangular PCPP verifier is an OR of its 3
input bits or their negations, where each input is either a query answer or a parity-check bit.

81

Soundness error s

Proximity parameter δ

Row randomness hproof − (5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
3Parity check complexity

Decision complexity poly(log log T (n))

Table 8: Parameters of the PCPP constructed in Theorem 7.4.

Proof. Let L ∈ NTIME[T (n)] and m ≥ 1, δ > 0 be constants; T (n), wproof(n), hproof(n), winput(n),
hinput(n), and C be defined as above. In one sentence, we compose the robust and rectangular
PCPP verifier (Theorem 6.8) with the 3-query PCPP verifier (Theorem 7.3) using the composition
theorem (Theorem 6.10).

Outer PCPP. Let wout
proof(n) := wproof(n). By Theorem 6.8, we can construct a robust and

rectangular PCPP verifier V out for L with parameters as follows:

• Robust soundness error sout ∈ (0, 1) with robustness parameter ρout := 1− sout.
• Proximity parameter δout := δ.
• Proof matrix size Hout

proof(n) ×W out
proof(n), where Hout

proof = 2h
out
proof , W out

proof = 2wproof , and houtproof =
log T (n) + Θ(m log log T (n))− wproof(n).

• Row randomness complexity routrow = houtproof − (4/m) log T (n).
• Column randomness complexity routcol = wproof − (4/m) log T (n).
• Shared randomness complexity routshared = (7/m) log T (n) +O(log log T (n) +m logm).
• Query complexity qout(n) = T (n)1/m · polylog(T (n)).
• Decision complexity dout(n) = T (n)1/m · polylog(T (n)).

Inner PCPP. Let δin := ρout/2. By Theorem 7.3, there is a constant sin ∈ (0, 1) and a
PCPP verifier V in for Circuit-Eval⊥ with randomness complexity log T (n) + O(log log T (n)),
soundness error sin, proximity parameter δin, query complexity q = 3, and decision complexity
din = poly(log log T (n)). Without loss of generality, we assume that the proof length is ℓin = 2r

in .

Composition. We now compose V out with the inner PCPP V in by Theorem 6.10. We first check
that the technical conditions are satisfied.

• qin = 3 = O(1), ρout ≥ δin, ℓin = 2r
in .

• Since routcol = wout
proof−(4/m) log T (n) and routshared ≥ (7/m) log T (n), we know that routcol ≤ wout

proof ≤
routcol + routshared.

By Theorem 6.10, we can obtain a rectangular PCPP V comp with ROP, whose parameters are as
follows:

• Soundness error scomp = 1− (1− sin) · (1− sout) < 1.
• Proximity parameter δcomp = δout = δ.
• Query complexity and ROP parity checking complexity qcomp = q = 3.
• Proof matrix width Wproof = W out

proof = 2wproof .

82

• Proof matrix height Hproof = Hout
proof + 2r

out(n)+rin(dout(n))/W out
proof . Note that

Hout
proof = T (n) logΘ(m) T (n)/W out

proof(n),

rout = (1− 1/m) log T (n) + Θ(m log log T (n)),

rin(dout) = (1/m) log T (n) +O(log log(T (n))),

hence Hproof = T (n) · logΘ(m)(T (n))/Wproof . Without loss of generality, we assume that Hproof

is a power of two. We then define

hproof := logHproof = log T (n) + Θ(m log log T (n))− wproof .

• Decision complexity din(dout(n)) = poly(log log T (n)).

Now we determine the randomness complexity of the composed PCPP verifier. Note that

rshared = routshared + rin

= (7/m) log T (n) +O(log log T (n) +m logm) + (1/m) log T (n) +O(log log T (n))

= (8/m) log T (n) +O(log log T (n) +m logm),

rrow = routrow = hproof − (4/m) log T (n)−Θ(m log log T (n)) ≥ hproof − (5/m) log T (n),

rcol = routcol = wproof − (4/m) log T (n).

Since we can always move some portion of seed.row or seed.col into seed.shared, we can simply assume
that rrow = hproof − (5/m) log T (n), rcol = wproof − (5/m) log T (n), and rshared = (10/m) log T (n) +
O(log log T (n) +m logm).

Moreover, by Remark 6.11 and the fact that the decision predicate of V in is an OR of the
answers or their negations (see Theorem 7.3), we know that the total number of queries and parity-
check bits of V comp is at most 3, and that for every seed.shared, the decision predicate VDec ←
V comp
dec (seed.shared) of V comp is an OR of its input bits (i.e., query answers and parity-check bits) or

their negations.

7.3 A 2-Query Rectangular PCPP with Imperfect Completeness

Following the construction in [CW19b, Appendix A], we can also construct a 2-query rectangular
PCPP with a constant gap between the completeness and soundness parameters, using the following
classical gadget due to [GJS76].

Lemma 7.5. Let x1, x2, x3 ∈ {0, 1} be Boolean variables. If x1∨x2∨x3, then there is an y ∈ {0, 1}
such that at least 7 of the following 10 constraints are satisfied:

x1, x2, x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3, y, x1 ∨ y, x2 ∨ y, x3 ∨ y. (14)

Otherwise, at most 6 of the constraints in Eq. (14) are satisfied for any y ∈ {0, 1}. Moreover, every
x1, x2, x3, y ∈ {0, 1} satisfies at most 7 of the above 10 constraints.

Theorem 7.6 (2-Query Rectangular PCPP). For every constant δ ∈ (0, 1), there are constants 0 <
s < c < 1 such that the following holds. Let m = m(n), T (n), wproof(n), winput(n) be good functions
such that 1 ≤ m ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤ log n.
Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and
hinput(n) = ⌈log n⌉ − winput(n),

83

such that the following holds.
Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) := 2hinput(n).
Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n)×Wproof(n) proof matrix
and an Hinput(n)×Winput(n) input matrix, whose other parameters are specified in Table 9.

Furthermore, given the randomness seed ∈ {0, 1}r, the total number of queries and parity-check
bits is at most 2, and the decision predicate VDec ← Vdec(seed.shared) of the rectangular PCPP
verifier is an OR of the 2 input bits (including queries and parity-check bits) or their negations for
every seed.shared.

Completeness error 1− c

Soundness error s

Proximity parameter δ

Row randomness hproof − (5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
2Parity check complexity

Decision complexity poly(log log T (n))

Table 9: Parameters of the PCPP constructed in Theorem 7.6.

Proof. Let δ be an arbitrary constant. By Theorem 7.4, that there is a rectangular PCPP verifier
V 3q with perfect completeness and parameters:

• Soundness error s3q ∈ (0, 1).
• Proximity parameter δ.
• Query complexity and parity-check complexity 3.
• Proof matrix size H3q

proof ×W 3q
proof , with w3q

proof = wproof = logWproof and h3qproof = logH3q
proof =

log T (n) + Θ(m log log T (n))− wproof(n).28

• Shared randomness complexity rshared = (10/m) log T (n) +O(log log T (n) +m logm).
• Row randomness complexity rrow = h3qproof − (5/m) log T (n).

• Column randomness complexity rcol = w3q
proof − (5/m) log T (n).

• Decision complexity poly(log log T (n)).

Let r = rrow + rcol + rshared be the length of total randomness. Moreover, we know that the total
number of queries and parity-check bits is at most 3, and that the decision circuit of V is an OR of
its input bits (i.e. the answers to the queries and parity-check bits) or their negations after fixing
the random seed. We will now combine V 3q and the gadget in Lemma 7.5 to construct a 2-query
PCPP.

28Note that the final matrix height is hproof ≤ h3q
proof + O(log log T (n)), hence the technical requirement

hinput(n)/h
3q
proof ≤ 1 − C′ log log T (n)/ log T (n) for large C′ holds, given the assumption that hinput(n)/hproof ≤

1− C log log T (n)/ log T (n) for large C, hproof ≥ (5/m) log T (n), and m ≤ (log T (n))0.1, as shown in Claim 6.17.

84

Suppose, for the simplicity of presentation, that the PCPP verifier V always probes 2 bits of the
input and proof oracles, and has 1 parity-check bit. (The other cases can be considered similarly
and we omit the details.) Then the decision predicate VDec ← Vdec(seed.shared) for every fixed
seed.shared ∈ {0, 1}rshared is a function

VDec(ans1, ans2, pc1(seed)) := (ans1 ⊕ b1) ∨ (ans2 ⊕ b2) ∨ (pc1(seed)⊕ b3).

where b1, b2, b3 ∈ {0, 1}. The new PCPP verifier V is defined as follows.

• The proof of the new PCPP verifier V is the concatenation of the proof for V 3q and an
y : {0, 1}r → {0, 1} of length 2r used as the additional variable y in Lemma 7.5.

• The randomness of V is the concatenation of the randomness seed for V 3q and an j ∈ [10].

Queries and parity-check bits. Assume that (seed, j) ∈ {0, 1}r×[10] is given as the randomness.
The verifier V first generates the indices i1, i2 of the queries to the input and proof oracles (denoted
by a single oracle Π for simplicity) and the parity-check function pc1. Instead of making all these
queries and doing the parity-check, we identify ans1 ⊕ b1, ans2 ⊕ b2, pc1(seed) ⊕ b3, y(seed) with
x1, x2, x3, y in the gadget given by Lemma 7.5, respectively, and queries the j-th gadget. (For
instance, if j = 5, the corresponding constraint is x1 ∨ x3, so that we will query the i1-th of Π and
do the parity-check pc1; if j = 8, the constraint is x1∨y, so that we will query the i1-th bit of Π and
the y(seed).) The decision predicate will accept if and only if either the j-th constraint is satisfied
when identifying ans1 ⊕ b1, ans2 ⊕ b2, pc1(seed)⊕ b3, y(seed) with x1, x2, x3, y, respectively.

Completeness. For every input x ∈ L, by the completeness of V 3q, there is a proof oracle Π3q
proof

such that V 3q accepts given the oracle x ◦ Π3q
proof with probability 1, which means that for every

seed ∈ {0, 1}r, the answers ans1, ans2 to the queries and the parity-check bits pc1(seed) satisfies

VDec(ans1, ans2, pc1(seed)) = (ans1 ⊕ b1) ∨ (ans2 ⊕ b2) ∨ (pc1(seed)⊕ b3) = 1.

By Lemma 7.5, there is an yseed such that at least 7 of the 10 constraints in the gadgets are
satisfied. This means that given the proof oracle Π ◦ y for y(seed) := yseed, the verifier will accept
with probability at least c := 7/10.

Soundness. Assume that x ∈ {0, 1}n that is δ-far from being in L, and Πproof = Π3q
proof ◦ y is any

proof, where Π3q
proof is a proof for V 3q and y : {0, 1}r → {0, 1}. By the soundness of V 3q, we know

that for each least 1− s1 fraction of seed ∈ {0, 1}n,

VDec(ans1, ans2, pc1(seed)) = (ans1 ⊕ b1) ∨ (ans2 ⊕ b2) ∨ (pc1(seed)⊕ b3) = 0.

By Lemma 7.5, we can see that for these seed, the accept probability of V is at most 6/10, whereas
in other cases the accept probabilistic of V is at most 7/10. Thus the accept probability of V is at
most s := (7/10) · s1 + (6/10) · (1− s1) < c.

Rectangularity. Since we only need to introduce O(1) bits of randomness representing j ∼ [10],
we can put it into the shared randomness. We only need to show that the new proof Π3q

proof ◦ y can
be arranged as a matrix so that the queries can be done rectangularly. Let Wproof := W 3q

proof and

85

Hproof := H3q
proof + 2r/W 3q

proof . Without loss of generality, we assume that Hproof is a power of two,
therefore we define

hproof := logHproof = log
(
H3q

proof + 2r/W 3q
proof

)

≤ h3qproof +O(log log T (n))

= log T (n) + Θ(m log log T (n))− wproof .

The final proof matrix will be of size Hproof ×Wproof , arranged as follows: The first H3q
proof rows will

contain the proof Π3q
proof of V 3q; The remaining 2r/Wproof contains the proof y : {0, 1}r → {0, 1},

represented as the string y(0) ◦ y(1) ◦ · · · ◦ y(2r− 1) of length 2r. Recall that there will be two kinds
of queries to the proof oracle.

1. If the query is to the proof oracle Π3q
proof of V 3q or to the input oracle, we can use the row and

column verifier of V 3q to generate the queries rectangularly.
2. Otherwise, the query is to the proof y(seed) for the randomness seed ∈ {0, 1}r of V 3q. Then

the column (resp. row) index of this query only depends on the lowest wproof bits (resp. the
highest r − wproof bits) of the random seed of V . Recall that the random seed of V is the
concatenation of seed and a j ∈ [10]. If we arrange the randomness as

seed.col ◦ seed.shared ◦ j ◦ seed.row,

then the lowest wproof bits (resp. the highest r−wproof bits) of the random seed only depends
on the (seed.col, seed.shared) (resp. (seed.shared, j, seed.row)), since

rcol = wproof − (5/m) log T (n) ≤ wproof

rcol + rshared = wproof + (5/m) log T (n) +O(log log n+m logm) ≥ wproof .

As a result, the queries can be done rectangularly.

Acknowledgements

We got the initial idea of this work when Jiatu was a research intern at Igor Carboni Oliveira’s
group and Hanlin was visiting Igor. Hanlin wants to thank his supervisor Rahul Santhanam for in-
troducing the problems Partial-Hard [AS10] and XOR-Remote-Point [APY09] to him and
for helpful discussions. We thank Lijie Chen and an anonymous STOC reviewer for pointing
out that the technique in [Wil18c] can be slightly adapted to obtain a non-trivial algorithm for
#ACC-Satisfying-Pairs. We also thank Zhikun Wang and Tianqi Yang for discussion on this
work.

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264. (cit. on p. 1, 74)

[AC19] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In FOCS,
pages 1034–1055. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00067. (cit. on p. 1,
7, 9, 53, 54)

86

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1109/FOCS.2019.00067

[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations of threshold
functions and algorithmic applications. In FOCS, pages 467–476. IEEE Computer Society, 2016.
doi:10.1109/FOCS.2016.57. (cit. on p. 11)

[ACW20] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Faster deterministic and Las Vegas
algorithms for offline approximate nearest neighbors in high dimensions. In SODA, pages 637–
649. SIAM, 2020. doi:10.1137/1.9781611975994.39. (cit. on p. 11)

[AG91] Eric Allender and Vivek Gore. On strong separations from AC0 (extended abstract). In Funda-
mentals of Computation Theory, 8th International Symposium, FCT ’91, volume 529 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1991. doi:10.1007/3-540-54458-5_44.
(cit. on p. 7, 53)

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In STOC, pages 375–388. ACM, 2016. doi:10.1145/2897518.2897653. (cit. on
p. 5)

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983. doi:

10.1016/0168-0072(83)90038-6. (cit. on p. 4)

[APY09] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms
for the nearest codeword problem. In APPROX-RANDOM, volume 5687 of Lecture Notes in
Computer Science, pages 339–351. Springer, 2009. doi:10.1007/978-3-642-03685-9_26.
(cit. on p. 3, 86)

[AS10] Vikraman Arvind and Srikanth Srinivasan. Circuit lower bounds, help functions, and the re-
mote point problem. In ICS, pages 383–396. Tsinghua University Press, 2010. URL: http:
//conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/30.html. (cit. on p. 3, 4,
8, 56, 86)

[AW15] Josh Alman and R. Ryan Williams. Probabilistic polynomials and Hamming nearest neighbors.
In FOCS, pages 136–150. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.18. (cit. on
p. 11)

[AW17] Josh Alman and R. Ryan Williams. Probabilistic rank and matrix rigidity. In STOC, pages
641–652. ACM, 2017. doi:10.1145/3055399.3055484. (cit. on p. 11)

[AWY15] Amir Abboud, R. Ryan Williams, and Huacheng Yu. More applications of the polyno-
mial method to algorithm design. In SODA, pages 218–230. SIAM, 2015. doi:10.1137/1.
9781611973730.17. (cit. on p. 11)

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput., 36(4):889–974,
2006. doi:10.1137/S0097539705446810. (cit. on p. 9, 15, 16, 57, 68, 69, 73, 80)

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from rect-
angular PCPs or: Hard claims have complex proofs. In FOCS, pages 858–869. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00084. (cit. on p. 1, 9, 17, 54, 57, 58, 59, 61, 63, 64, 65, 69)

[BT94] Richard Beigel and Jun Tarui. On ACC. Comput. Complex., 4:350–366, 1994. doi:10.1007/
BF01263423. (cit. on p. 7, 53)

[Che19] Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits.
In FOCS, pages 1281–1304. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00079.
(cit. on p. 2, 3)

[Che22] Lijie Chen. Better Hardness via Algorithms, and New Forms of Hardness versus Randomness.
PhD thesis, Massachusetts Institute of Technology, 2022. (cit. on p. 5)

[CJW20] Lijie Chen, Ce Jin, and R. Ryan Williams. Sharp threshold results for computational complexity.
In STOC, pages 1335–1348. ACM, 2020. doi:10.1145/3357713.3384283. (cit. on p. 12)

87

https://doi.org/10.1109/FOCS.2016.57
https://doi.org/10.1137/1.9781611975994.39
https://doi.org/10.1007/3-540-54458-5_44
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1007/978-3-642-03685-9_26
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/30.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/30.html
https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/BF01263423
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.1145/3357713.3384283

[CL21] Lijie Chen and Xin Lyu. Inverse-exponential correlation bounds and extremely rigid matrices
from a new derandomized XOR lemma. In STOC, pages 761–771. ACM, 2021. doi:10.1145/
3406325.3451132. (cit. on p. 3, 6, 54)

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In FOCS, pages 1–12. IEEE, 2020. doi:10.1109/FOCS46700.
2020.00009. (cit. on p. ii, 2, 3, 6, 8, 10, 13, 14, 15, 35, 54, 55, 100)

[Cop82] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11(3):467–
471, 1982. doi:10.1137/0211037. (cit. on p. 11, 52)

[COS18] Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam. An average-case lower bound
against ACC0. In LATIN, volume 10807 of Lecture Notes in Computer Science, pages 317–330.
Springer, 2018. doi:10.1007/978-3-319-77404-6_24. (cit. on p. 3)

[CR22] Lijie Chen and Hanlin Ren. Strong average-case circuit lower bounds from nontrivial derandom-
ization. SIAM J. Comput., 51(3):STOC20–115–STOC20–173, 2022. doi:10.1137/20M1364886.
(cit. on p. 3, 35)

[CW19a] Lijie Chen and Ruosong Wang. Classical algorithms from quantum and Arthur-Merlin com-
munication protocols. In ITCS, volume 124 of LIPIcs, pages 23:1–23:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.23. (cit. on p. 5, 11)

[CW19b] Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via PCPs of proximity. In CCC, volume 137 of LIPIcs, pages 19:1–19:43. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.19. (cit. on
p. 2, 7, 9, 22, 32, 35, 80, 83, 98)

[CW21] Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.
doi:10.1145/3402926. (cit. on p. 7, 11, 53)

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient func-
tions. Annals of Mathematics, 189(3):653–705, 2019. doi:10.4007/annals.2019.189.3.1.
(cit. on p. 1)

[Erd59] Paul Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11:34–38, 1959.
doi:10.4153/CJM-1959-003-9. (cit. on p. 1)

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In FOCS, pages
89–98. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.19. (cit. on p. 1)

[FS16] Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds for uniform classes. In
CCC, volume 50 of LIPIcs, pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CCC.2016.19. (cit. on p. 13, 14)

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Syst. Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431. (cit. on p. 4)

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In STOC, pages 440–449. ACM, 2007. doi:10.
1145/1250790.1250855. (cit. on p. 9)

[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range
avoidance for constant-depth circuits: Hardness and algorithms. CoRR, 2023. doi:10.48550/
arXiv.2303.05044. (cit. on p. 2)

[GJS76] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete graph
problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)90059-1.
(cit. on p. 83)

88

https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1137/0211037
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1137/20M1364886
https://doi.org/10.4230/LIPIcs.ITCS.2019.23
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.1145/3402926
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.4153/CJM-1959-003-9
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.4230/LIPIcs.CCC.2016.19
https://doi.org/10.1007/BF01744431
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.48550/arXiv.2303.05044
https://doi.org/10.48550/arXiv.2303.05044
https://doi.org/10.1016/0304-3975(76)90059-1

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth circuits
and connections to pseudorandomness. In APPROX/RANDOM, volume 245 of LIPIcs, pages
20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.20. (cit. on p. 2, 10, 11)

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. In Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Com-
putation, volume 6650 of Lecture Notes in Computer Science, pages 273–301. Springer, 2011.
doi:10.1007/978-3-642-22670-0_23. (cit. on p. 15)

[Gol11] Oded Goldreich. A Sample of Samplers: A Computational Perspective on Sampling, pages 302–
332. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-22670-0_
24. (cit. on p. 60)

[GR08] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In APPROX-
RANDOM, volume 5171 of Lecture Notes in Computer Science, pages 455–468. Springer, 2008.
doi:10.1007/978-3-540-85363-3_36. (cit. on p. 10)

[Hås89] Johan Håstad. Almost optimal lower bounds for small depth circuits. Adv. Comput. Res.,
5:143–170, 1989. (cit. on p. 4)

[HV21] Xuangui Huang and Emanuele Viola. Average-case rigidity lower bounds. In CSR, volume
12730 of Lecture Notes in Computer Science, pages 186–205. Springer, 2021. doi:10.1007/
978-3-030-79416-3_11. (cit. on p. 54)

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total
functions in the polynomial hierarchy. In ITCS, volume 185 of LIPIcs, pages 44:1–44:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.44. (cit. on
p. 1, 3)

[Kor21] Oliver Korten. The hardest explicit construction. In FOCS, pages 433–444. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00051. (cit. on p. 1, 10)

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Comb., 7(4):357–363, 1987.
doi:10.1007/BF02579323. (cit. on p. 15)

[Li23] Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. CoRR,
abs/2303.06802, 2023. arXiv:2303.06802, doi:10.48550/arXiv.2303.06802. (cit. on p. 1)

[LY22] Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for explicit functions. In STOC,
pages 1180–1193. ACM, 2022. doi:10.1145/3519935.3519976. (cit. on p. 1)

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann. Math.
Artif. Intell., 56(3-4):313–338, 2009. doi:10.1007/s10472-009-9169-y. (cit. on p. 76)

[Mul11] Ketan Mulmuley. On P vs. NP and geometric complexity theory: Dedicated to Sri Ramakrishna.
J. ACM, 58(2):5:1–5:26, 2011. doi:10.1145/1944345.1944346. (cit. on p. 12)

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. doi:10.1137/
18M1195887. (cit. on p. 2)

[Par21] Orr Paradise. Smooth and strong PCPs. Comput. Complex., 30(1):1, 2021. doi:10.1007/
s00037-020-00199-3. (cit. on p. 10, 18)

[Pǎt08] Mihai Pǎtraşcu. Succincter. In FOCS, pages 305–313. IEEE Computer Society, 2008. doi:
10.1109/FOCS.2008.83. (cit. on p. 11)

[Pip79] Nicholas Pippenger. On simultaneous resource bounds (preliminary version). In FOCS, pages
307–311. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.29. (cit. on p. 4)

[Ram20] C. Ramya. Recent progress on matrix rigidity - A survey. CoRR, abs/2009.09460, 2020. doi:
10.48550/arXiv.2009.09460. (cit. on p. 1)

89

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.1007/978-3-642-22670-0_23
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1007/BF02579323
http://arxiv.org/abs/2303.06802
https://doi.org/10.48550/arXiv.2303.06802
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1007/s10472-009-9169-y
https://doi.org/10.1145/1944345.1944346
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1109/SFCS.1979.29
https://doi.org/10.48550/arXiv.2009.09460
https://doi.org/10.48550/arXiv.2009.09460

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987. doi:10.1007/BF01137685. (cit. on p. 11)

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits.
In FOCS, pages 640–650. IEEE, 2022. doi:10.1109/FOCS54457.2022.00067. (cit. on p. 2, 3,
4, 5, 9, 10, 11, 14, 16, 17, 57, 58, 63, 64, 65, 66, 68, 69, 70, 73, 76, 98)

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System technical
journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x. (cit. on p. 1)

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In STOC, pages 77–82. ACM, 1987. doi:10.1145/28395.28404. (cit. on p. 11)

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In FOCS, pages 130–138.
IEEE Computer Society, 1993. doi:10.1109/SFCS.1993.366874. (cit. on p. 11)

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans.
Inf. Theory, 42(6):1723–1731, 1996. doi:10.1109/18.556668. (cit. on p. 13)

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012. doi:10.1561/0400000010. (cit. on p. 74)

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, vol-
ume 53 of Lecture Notes in Computer Science, pages 162–176. Springer, 1977. doi:10.1007/
3-540-08353-7_135. (cit. on p. 1, 9)

[VW18] Emanuele Viola and Avi Wigderson. Local expanders. Comput. Complex., 27(2):225–244, 2018.
doi:10.1007/s00037-017-0155-1. (cit. on p. 73)

[Wil13] R. Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X. (cit. on p. 2)

[Wil14a] R. Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903. (cit. on p. 2, 52)

[Wil14b] R. Ryan Williams. The polynomial method in circuit complexity applied to algorithm design
(invited talk). In FSTTCS, volume 29 of LIPIcs, pages 47–60. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.47. (cit. on p. 11)

[Wil18a] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524. (cit. on p. 11, 52)

[Wil18b] R. Ryan Williams. Limits on representing Boolean functions by linear combinations of
simple functions: Thresholds, ReLUs, and low-degree polynomials. In CCC, volume 102
of LIPIcs, pages 6:1–6:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.CCC.2018.6. (cit. on p. 32, 35)

[Wil18c] R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory Comput., 14(1):1–25, 2018. doi:10.4086/toc.2018.v014a017. (cit. on p. 7, 12, 53,
86)

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary ver-
sion). In FOCS, pages 1–10. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.49.
(cit. on p. 4)

A Missing Proofs in Section 3 and 4

In this section, we complete the missing proofs in the framework of solving range avoidance,
remote point, and hard partial truth table via non-trivial satisfying pairs algorithms.

90

https://doi.org/10.1007/BF01137685
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/18.556668
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1007/s00037-017-0155-1
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.47
https://doi.org/10.1137/15M1024524
https://doi.org/10.4230/LIPIcs.CCC.2018.6
https://doi.org/10.4230/LIPIcs.CCC.2018.6
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1109/SFCS.1985.49

A.1 Satisfying Pairs for Prodd ◦ Sum ◦ C Circuits

Theorem 3.7. Let C be a typical circuit class, M ′ ≥ 1 and η ∈ (0, 1) be parameters. Suppose
there is a deterministic algorithm running in time T alg = T alg(N,M) that, given as input a list of
N̂ ≤ N ANDd ◦ C circuits {Ci} and a list of M̂ ≤M inputs {xj}, estimates the following quantity
with additive error η:

Pr
i←[N̂],j←[M̂]

[Ci(xj)].

Then, there is a deterministic algorithm running in time Ad(2dl +M ′/M) · (ℓProd/N) · O(T alg)
that, given as input a Prodd ◦ Sum ◦C circuit CProd with parameters specified in Remark 3.6, and a
list of M ′ inputs {(xj , αj)}, estimates the following quantity with additive error η · Ud:

E
i←[ℓProd],j←[M ′]

[
CProd
i (xj , αj)

]
.

Proof. For any fixed i and j, we know that

CProd
i (xj , αj) =

d∏

t=1

Sumqt(i)(xj , αj)

=

d∏

t=1

∑

k∈[A]

coeffk(αj) · Cidxk(αj ,qt(i))(xj)

=
∑

k1∈[A]

∑

k2∈[A]

· · ·
∑

kd∈[A]

d∏

t=1

(
coeffkt(αj) · Cidxkt (αj ,qt(i))(xj)

)
. (15)

As we can enumerate k1, k2, . . . , kd ∈ [A] in Ad time, it suffices to estimate

E
i←[ℓProd],j←[M ′]

[
d∏

t=1

(
coeffkt(αj) · Cidxkt (αj ,qt(i))(xj)

)]
. (16)

Fix k1, k2, . . . , kd ∈ [A]. Since CProd is of locality l, we can see that Eq. (16) only depends on dl
bits of αj . We partition j ∈ [M ′] into 2dl groups as follows: For each α ∈ {0, 1}dl, let Jα be the set
of j ∈ [M ′] such that the dl bits of αj (that Eq. (16) for this j depends on) equals to α. We will
estimate Eq. (16) by enumerating α ∈ {0, 1}dl, estimating it for j ← Jα (instead of j ← [M ′]), and
then taking the average over all possible α.

Now we fix any α ∈ {0, 1}dl. We can rephrase the following two items as they no longer depend
on αj :

coeffkt(αj) =: coeff ′t;

Cidxkt (αj ,qt(i))(xj) =: Cidx′t(i)
(xj).

It then suffices to estimate

E
i←[ℓProd],j←Jα

[
d∏

t=1

coeff ′t · Cidx′t(i)
(xj)

]
=

(
d∏

t=1

coeff ′t

)
· E
i←[ℓProd],j←Jα

[
d∧

t=1

Cidx′t(i)
(xj)

]
. (17)

Each expression of the form Ei,j

[∧d
t=1Cidx′t(i)

(xj)
]

can be reduced to the Satisfying-Pairs

problem for ANDd ◦ C circuits. More precisely, we split Jα into blocks of size M , split [ℓProd] into

91

blocks of size N , and use the assumed algorithm (which works for N ANDd ◦ C circuits and M

inputs) to estimate Eq. (17) within additive error
(
η ·∏d

t=1

∣∣coeff ′t
∣∣
)

in T alg · ⌈|Jα|/M⌉ · ⌈ℓProd/N⌉
time.29 We substitute this estimation in Eq. (16) and then in Eq. (15) to obtain our final algorithm.

It remains to upper bound the running time and the additive error of our algorithm.

Running time. Consider the subroutine for estimating Eq. (16). This subroutine itself is reduced
to subroutines for each Jα, which takes T alg · ⌈|Jα|/M⌉ · ⌈ℓProd/N⌉ time. The time complexity of
this subroutine is

O(T alg) · ⌈ℓProd/N⌉ ·
∑

α

⌈|Jα|/M⌉ ≤ O(T alg) · (2dl +M ′/M) · (ℓProd/N).

We invoked this subroutine Ad times by enumerating k1, k2, . . . , kd ∈ [A] to estimate Eq. (15), so
the total time complexity of our algorithm is Ad(2dl +M ′/M)(ℓProd/N)O(T alg).

Additive error. Our estimation of Eq. (17) is within additive error
(
η ·∏d

t=1

∣∣coeff ′t
∣∣
)
. Thus our

estimation of Eq. (16) is within additive error of

η ·
∑

α∈{0,1}dl

|Jα|
M ′
·

d∏

i=1

|coeff ′t| = η · E
j

[
d∏

i=1

|coeffkt(αj)|
]
.

It follows that our estimation of Eq. (15) is within additive error of

η ·
∑

k1∈[A]

∑

k2∈[A]

· · ·
∑

kd∈[A]

E
j

[
d∏

i=1

|coeffkt(αj)|
]

= η · E
j

∑

k∈[A]

|coeffk(αj)|

d

≤ η · Ud.

Lemma 4.5. Let C be a typical circuit class, M ′ ≥ 1 and η ∈ (0, 1) be parameters. Suppose there is
a deterministic algorithm running in time T alg = T alg(N,M) that, given as input a list of M̂ ≤M
ANDd ◦ C circuits {Ci} and a list of N̂ ≤ N inputs {xj} of length n · polylog(ℓ), estimates the
following quantity with additive error η:

Pr
i←[M̂],j←[N̂]

[Ci(xj)].

Then, for any constant ℓC > 0, there is a deterministic algorithm running in time Ad · (ℓdC +
ℓProd/N) · (2dl +M ′/M) ·O(T alg) that, given as input a Prodd ◦ Sum circuit CProd with parameters
specified in Remark 4.4, a list of ℓx strings {xj}, a list of M ′ inputs {αj}, and a list of M ′ C circuits
{Cj} from {0, 1}|x| to {0, 1}ℓC , estimates the following quantity with additive error η · Ud:

E
i←[ℓProd],j←[M ′]

[
CProd
i (Cj(x), αj)

]
.

Recall here that Cj(x) = Cj(x1) ◦ Cj(x2) ◦ · · · ◦ Cj(xℓx).
29Note that at most one of the block may contain less than M inputs. However, the assumed algorithm works for

input number ≤ M as well, and this will not have any blow-up on the error factor.

92

Proof Sketch of Lemma 4.5. We identify idxk(α, i) ∈ [ℓy] with (idxxk(α, i), idx
C
k (α, i)) ∈ [ℓx] × [ℓC]

(note that ℓy = ℓxℓC). Then,

CProd
i (Cj(x), αj) =

d∏

t=1

Sumqt(i)(Cj(x), αj)

=
d∏

t=1

∑

k∈[A]

coeffk(αj) · (Cj)idxC
k (αj ,qt(i))

(xidxxk(αj ,qt(i)))

=
∑

k1∈[A]

∑

k2∈[A]

· · ·
∑

kd∈[A]

d∏

t=1

(
coeffkt(αj) · (Cj)idxC

kt
(αj ,qt(i))

(xidxxkt (αj ,qt(i)))
)
. (18)

As we can enumerate k1, k2, . . . , kd ∈ [A] in Ad time, it suffices to estimate

E
i←[ℓProd],j←[M ′]

[
d∏

t=1

(
coeffkt(αj) · (Cj)idxC

kt
(αj ,qt(i))

(xidxxkt (αj ,qt(i)))
)]

. (19)

Fix k1, k2, . . . , kd ∈ [A]. Since CProd is of locality l, we can see that Eq. (19) only depends on dl
bits of αj . We partition j ∈ [M ′] into 2dl groups as follows: For each α ∈ {0, 1}dl, let Jα be the set
of j ∈ [M ′] such that the dl bits of αj (that Eq. (19) for this j depends on) equals to α. We will
estimate Eq. (19) by enumerating α ∈ {0, 1}dl, estimating it for j ← Jα (instead of j ← [M ′]), and
then taking the average over all possible α.

Now we fix any α ∈ {0, 1}dl. We can rephrase the following items as they no longer depend on
αj :

coeffkt(αj) =: coeff ′t;

idxxkt(αj , qt(i)) =: idxx
′

t (i);

idxC
kt(αj , qt(i)) =: idxC ′

t (i).

It then suffices to estimate

E
i←[ℓProd],j←Jα

[
d∏

t=1

coeff ′t · (Cj)idxC ′
t (i)

(
x
idxx
′

t (i)

)]

=

(
d∏

t=1

coeff ′t

)
· E
i←[ℓProd],j←Jα

[
d∧

t=1

(Cj)idxC ′
t (i)

(
x
idxx
′

t (i)

)]
. (20)

Now for β ∈ [ℓC]
d, let Iβ := {i ∈ [ℓProd] : ∀t ∈ [d], idxC ′

t (i) = βt}. We enumerate over β, and
now it suffices to estimate

E
i←Iβ ,j←Jα

[
d∧

t=1

(Cj)βt

(
x
idxx
′

t (i)

)]
. (21)

Each expression of the form Ei,j

[∧d
t=1(Cj)βt

(
x
idxx
′

t (i)

)]
can be reduced to the Satisfying-Pairs

problem for ANDd◦C circuits. More precisely, we split Iβ into blocks of size N and Jα into blocks of
size M , and use the assumed algorithm to estimate Eq. (21). By similar argument as in Theorem 3.7,
the additive error of our algorithm is bounded by η · Ud.

93

Complexity. The subroutine for estimating Eq. (21) takes O(T alg) · ⌈|Jα|/M⌉ ·⌈|Iβ/N |⌉ time.
Therefore, the subroutine for estimating Eq. (20) takes

∑

β∈[ℓC]d

O(T alg) · ⌈|Jα|/M⌉ · ⌈|Iβ|/N⌉ = O(T alg) · ⌈|Jα|/M⌉ · (ℓdC + ℓProd/N)

time. It then follows that the subroutine for estimating Eq. (19) takes
∑

α∈{0,1}dl
O(T alg) · ⌈|Jα|/M⌉ · (ℓdC + ℓProd/N) = O(T alg) · (2dl +M ′/M) · (ℓdC + ℓProd/N)

time, and finally, estimating Eq. (18) takes

O(T alg) · (2dl +M ′/M) · (ℓdC + ℓProd/N) ·Ad

time, which is the total time complexity of our algorithm. ⋄

A.2 Verifying PCPP with Satisfying Pairs

Lemma 3.8. Let C be a typical circuit class and d ≥ 2 be an even number. Suppose there is an
algorithm that takes as input a list of N = 2rcol AND2d ◦C circuits {Ci} and a list of N inputs {xj},
runs in deterministic T alg time, and estimates the following quantity with additive error η:

Pr
i,j←[2rcol]

[Ci(xj)].

Then there is an algorithm that takes the circuit C, (w1, w2, . . . , wĤproof
), and (α1, α2, . . . , αĤproof

)

as input, runs in deterministic O((3A)2dT alg) ·
(
22dl+rshared + T logO(m) T/22rcol

)
time, and satisfies

the following:

(Completeness) If for every i ∈ [Ĥproof], it holds that (1) for every j ∈ [Wproof], πReal
i,j ∈ [0, 1]; (2)

∥πReal
i − πBool

i ∥1 ≤ δ, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared ∈ {0, 1}rshared and ι ∈ [q], ∥fReal
seed.shared,ι∥dd ≤ 1 + 2η · Ud;

2. Ei←[Ĥproof],j←[Wproof]

[
|πReal

i,j − πBool
i,j |d

]
≤ 4d · δ + 2d+1η(2U + 1)2d.

Proof. Fix seed.shared and ι, we first estimate

∥fReal
seed.shared,ι∥dd := E

seed.row,seed.col

[
|πReal

irow[ι],icol[ι]|d
]
.

Recall that
πReal
i,j =

∑

k∈[A]

coeffk(αi) · Cidxk(αi,j)(wi).

Therefore, we can build a Prodd ◦ Sum ◦ C circuit Cnorm := Cnorm(seed.shared, ι) as follows.

Circuit Cnorm

(Inputs) The input consists of (w,α) with the intended meaning that w = wirow[ι] and α = αirow[ι].

(Bottom circuits) The bottom circuit is exactly C (taking input w). Thus, there are ℓ output gates
of C circuits with the i-th one being precisely the i-th output gate of C.

94

(Intermediate linear sum gates) There are 2rcol intermediate linear sum gates. For each seed.col,

Sumseed.col(w,α) =
∑

k∈[A]

coeffk(α) · Cidxk(α,icol[ι])(w).

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output gate
is simply

(Cnorm)seed.col(w,α) = (Sumseed.col(w,α))
d
.

Recall that this circuit Cnorm has parameters as follows:

• the number of gates in each layer: ℓC = ℓ, ℓSum = 2rcol , ℓProd = 2rcol ;
• the fan-in of the top Prod gates d;
• the fan-in A, coefficient sum U , and locality l of the linear sum layer.

We invoke Theorem 3.7 on the circuit Cnorm and M ′ := 2rrow inputs {(wirow[ι], αirow[ι])}seed.row. We
obtain an estimation ESTnorm = ESTnorm(seed.shared, ι) where

∣∣∣ESTnorm − ∥fReal
seed.shared,ι∥dd

∣∣∣ ≤ η · Ud.

If ESTnorm > 1+η ·Ud, then we reject the input. Otherwise, we proceed to verify that πReal and
πBool are close. Consider the polynomial P (z) := zd(1 − z)d, which intuitively measures how close
z is to Boolean. We will estimate

E
i←[Ĥproof],j←[Wproof]

[
P (πReal

i,j)
]
. (22)

Similarly, we estimate Eq. (22) by building a Prod2d ◦ Sum ◦ C circuit Cdiff .

Circuit Cdiff

(Inputs and bottom circuits) The inputs and bottom circuits of Cdiff are exactly the same as Cnorm.

(Intermediate linear sum gates) There are 2Wproof intermediate linear sum gates. Let j ∈ [Wproof],
then the 2j-th linear sum gate computes (πReal)j , and the (2j + 1)-th one computes 1− (πReal)j .
That is,

Sum2j(w,α) =
∑

k∈[A]

coeffk(α) · Cidxk(α,j)(w); Sum2j+1(w,α) = 1− Sum2j(w,α).

Implementation of the linear sum layer: Since we did not allow coeffk(α) to depend on i (the
output index in [2Wproof]), we need to be careful when implementing the linear sum layer. The
fan-in of this layer will be 2A+ 1 (instead of A). We identify [2A+ 1] with the disjoint union of
[A]× {0, 1} and {⋆} (where ⋆ denotes the constant term 1 in Sum2j+1(w,α)). Let idx′ and coeff ′

be the idx and coeff functions of the intermediate linear sum gates of Cdiff :

(Function idx′k(α, i)) We write i = 2j + b where j ∈ [Wproof] and b ∈ {0, 1}. If k = (k′, b′) ∈
[A]× {0, 1}, then idx′k(α, i) returns idxk′(α, j) if b = b′ and returns ZERO if b ̸= b′. If k = ⋆
then idx′k(α, i) returns ZERO if b = 0 and returns ONE if b = 1.

(Function coeff ′k(α)) If k = (k′, b′) ∈ [A] × {0, 1}, then coeff ′k(α) = (−1)b′ · coeffk′(α). If k = ⋆
then coeff ′k(α) = 1.

The locality of (idx′, coeff ′) is still l. The coefficient sum becomes 2U + 1.

95

(Output product gates) There are Wproof product gates. For each j ∈ [Wproof], the j-th output gate
is

Cdiff(w,α) = (Sum2j(w,α) · Sum2j+1(w,α))
d
.

The parameters of the circuit Cdiff are as follows:

• the number of gates in each layer: ℓC = ℓ, ℓSum = 2Wproof , ℓProd = Wproof ;
• the fan-in of the top Prod gates 2d;
• the fan-in 2A+ 1, coefficient sum 2U + 1, and locality l of the linear sum layer.

We invoke Theorem 3.7 on the circuit Cdiff and the set of M ′ := Ĥproof inputs {(wi, αi)}i∈[Ĥproof]
,

and obtain an estimation ESTdiff where

|ESTdiff − (22)| ≤ η · (2U + 1)2d.

We then accept if and only if ESTdiff ≤ 2d · δ + η(2U + 1)2d.

Complexity. Our algorithm calls the algorithm in Theorem 3.7 as a subroutine on the circuits
Cnorm and Cdiff . It is easy to see that Ad(2dl + 2rrow/2rcol) · O(T alg) time is spent on each Cnorm.
Similarly, it takes (2A + 1)2d(22dl + Ĥproof/2

rcol) · (Wproof/2
rcol) · O(T alg) time to process Cdiff . It

follows that our algorithm runs in deterministic time

O(2rshared) ·Ad(2dl + 2rrow/2rcol) ·O(T alg) + (2A+ 1)2d(22dl + Ĥproof/2
rcol) · (Wproof/2

rcol) ·O(T alg)

=O((3A)2dT alg) ·
(
2dl+rshared + 2r−2rcol + 22dl ·Wproof/2

rcol + Ĥproof ·Wproof/2
2rcol
)

=O((3A)2dT alg) ·
(
22dl+rshared + T logO(m) T/22rcol

)
.

(Recall that since log(Wproof/2
rcol) = (5/m) log T , rshared ≥ (10/m) log T , we have Wproof/2

rcol ≤
2rshared . Also, from r := log T +O(log log T +m logm) and m = Θ(log n/δ) we know that 2r−2rcol ≤
T logO(m) T/22rcol .)

Now it suffices to prove the completeness and soundness requirements. Before that, we need
the following fact regarding the polynomial P . Let z ∈ R, dbin(z) be the distance between z to the
closest Boolean value; namely dbin(z) := min{|z|, |1− z|}.
Fact A.1. For every z ∈ R, dbin(z)d · 2−d ≤ P (z) ≤ dbin(z)

d · (1 + dbin(z))
d. ⋄

Completeness. Suppose that for every i ∈ [Ĥproof] and j ∈ [Wproof], πReal
i,j ∈ [0, 1]. Then for every

ι ∈ [q] and seed.shared ∈ {0, 1}rshared , ∥fReal
seed.shared,ι∥dd ≤ 1, and thus ESTnorm ≤ 1 + η · Ud.

Suppose in addition that for every i ∈ [Ĥproof], ∥πReal
i − πBool

i ∥1 ≤ δ. Then:

(22) ≤ E
i,j

[
dbin(π

Real
i,j)d · (1 + dbin(π

Real
i,j))d

]

≤ 2d · E
i,j

[
dbin(π

Real
i,j)d

]

≤ 2d · δ.

Therefore, ESTdiff ≤ 2d · δ + η(2U + 1)2d and our algorithm accepts.

96

Soundness. Suppose our algorithm accepts.

1. For every seed.shared and ι, we have ESTnorm ≤ 1+η ·Ud and thus ∥fReal
seed.shared,ι∥dd ≤ 1+2η ·Ud.

2. We have (22) ≤ 2d · δ + 2η(2U + 1)2d and

E
i←[Ĥproof],j←[Wproof]

[
|πReal

i,j − πBool
i,j |d

]
= E

i,j

[
dbin(π

Real
i,j)d

]

≤ 2d · (22) (Fact A.1)

≤ 4d · δ + 2d+1η(2U + 1)2d.

Lemma 4.6. Let C be a typical circuit class and d ≥ 2 be an even number. Suppose there is an
algorithm that takes as inputs a list of 2rcol AND2d ◦ C circuits {Ci} and a list of 2rcol inputs {xj}
of length n · polylog(ℓ), runs in deterministic T alg time, and estimates the following quantity with
additive error η:

Pr
i,j←[2rcol]

[Ci(xj)].

Then there is an algorithm that takes the strings w1, w2, . . . , wℓ, circuits (C1, C2, . . . , CĤproof
), and

(α1, α2, . . . , αĤproof
) as inputs, runs in deterministic O((3A)2dT alg) ·(22dl+rshared +T logO(m) T/22rcol))

time, and satisfies the following:

(Completeness) If for every i ∈ [Ĥproof], it holds that (1) for every j ∈ [Wproof], πReal
i,j ∈ [0, 1]; (2)

∥πReal
i − πBool

i ∥1 ≤ δ, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared ∈ {0, 1}rshared and ι ∈ [q], ∥fReal
seed.shared,ι∥dd ≤ 1 + 2η · Ud;

2. Ei←[Ĥproof],j←[Wproof]

[
|πReal

i,j − πBool
i,j |d

]
≤ 4d · δ + 2d+1η(2U + 1)2d.

Proof Sketch. We first estimate ∥fReal
seed.shared,ι∥dd for fixed seed.shared and ι. Recall that

πReal
i,j =

∑

k∈[A]

coeffk(αi) · Ci(widxk(αi,j)).

We build a Prodd ◦ Sum circuit Cnorm := Cnorm(seed.shared, ι) as follows.

Circuit Cnorm

(Inputs) The input consists of (y, α) with the intended meaning that y = (y1, y2, . . . , yℓ) where yi =
Cirow[ι](wi), and α = αirow[ι].

(Linear sum gates) There are 2rcol linear sum gates. For each seed.col,

Sumseed.col(y, α) =
∑

k∈[A]

coeffk(α) · yidxk(α,icol[ι]).

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output gate
is simply

(Cnorm)seed.col(y, α) = (Sumseed.col(y, α))
d
.

Recall that this circuit Cnorm has parameters as follows:

97

• the number of gates in each layer: ℓSum = 2rcol , ℓProd = 2rcol ;
• the fan-in of the top Prod gates d;
• the fan-in A, coefficient sum U , and locality l of the linear sum layer.

We invoke Lemma 4.5 on the circuit Cnorm, strings w1, w2, . . . , wℓ, a list of 2rrow inputs {αirow[ι]}seed.row,
and a list of 2rrow size-s C circuits {Cirow[ι]}seed.row. Here ℓC = 1. We thus obtain an estimation
ESTnorm = ESTnorm(seed.shared, ι) where

∣∣∣ESTnorm − ∥fReal
seed.shared,ι∥dd

∣∣∣ ≤ η · Ud.

If ESTnorm > 1 + η · Ud, then we reject the input. Otherwise, we proceed to verify that πReal

and πBool are close. Consider the polynomial P (z) := zd(1− z)d. we will estimate

E
i←[Ĥproof],j←[Wproof]

[
P (πReal

i,j)
]
. (23)

Similarly, we estimate Eq. (23) by building a Prod2d ◦ Sum circuit Cdiff .

Circuit Cdiff

(Inputs) The inputs are exactly the same as Cnorm.

(Linear sum gates) There are 2Wproof linear sum gates. Let j ∈ [Wproof], then the 2j-th linear sum
gate computes (πReal)j , and the (2j + 1)-th one computes 1− (πReal)j . That is,

Sum2j(y, α) =
∑

k∈[A]

coeffk(α) · yidxk(α,j); Sum2j+1(y, α) = 1− Sum2j(y, α).

The implementation of the linear sum layer is the same as in Lemma 3.8, and we omit it here.

(Output product gates) There are Wproof product gates. For each j ∈ [Wproof], the j-th output gate
is

Cdiff(y, α) = (Sum2j(y, α) · Sum2j+1(y, α))
d
.

The parameters of the circuit Cdiff are as follows:

• the number of gates in each layer: ℓSum = 2Wproof , ℓProd = Wproof ;
• the fan-in of the top Prod gates 2d;
• the fan-in 2A+ 1, coefficient sum 2U + 1, and locality l of the linear sum layer.

We invoke Lemma 4.5 on the circuit Cdiff , strings w1, w2, . . . , wℓ, a list of Ĥproof inputs {αi},
and a list of Ĥproof size-s C circuits {Ci}. Here ℓC = 1. We obtain an estimation ESTdiff where

|ESTdiff − (23)| ≤ η · (2U + 1)2d.

We accept if and only if ESTdiff ≤ 2d · δ + η(2U + 1)2d.
The correctness and complexity are analysed the same as in Lemma 3.8, so we omit it here. ⋄

A.3 Proof of Claim 3.9

We need the following technical lemma (see [CW19b, Lemma 28] and [RSW22, Lemma 4.9]):

Lemma A.2. Let d ≥ 2 be an integer, f1, f2, . . . , fd, g1, g2, . . . , gd : [N] → R be functions. For all
i ∈ [d], suppose that ∥fi∥d ≤ 1, and define ε :=

∑d
i=1 ∥fi − gi∥d. Then

∣∣∣∣∣ E
x←[N]

[
d∏

i=1

fi(x)−
d∏

i=1

gi(x)

]∣∣∣∣∣ ≤ (1 + ε)d−1 · ε.

98

The above lemma is a consequence of the following generalisation of Hölder’s inequality:

Fact A.3. Let f1, f2, . . . , fd : [N] → R be functions, f : [N] → R be their product, i.e., f(x) =∏d
i=1 fi(x). Then ∥f∥1 ≤

∏d
i=1 ∥fi∥d.

Proof of Lemma A.2. Let εi := ∥fi − gi∥d, then ε =
∑d

i=1 εi. Define

Hybi := E
x←[N]

i∏

j=1

fj(x) ·
d∏

j=i+1

gj(x)

.

Then, for every 1 ≤ i ≤ d,

|Hybi − Hybi−1| ≤ E
x←[N]

∣∣∣∣∣∣

i−1∏

j=1

fj(x) ·
d∏

j=i+1

gj(x) · (fi(x)− gi(x))

∣∣∣∣∣∣

≤
i−1∏

j=1

∥fj∥d ·
d∏

j=i+1

∥gj∥d · ∥fi − gi∥d (Fact A.3)

≤
d∏

j=2

(1 + εj) · εi

≤ (1 + ε)d−1 · εi.
It follows that

∣∣∣∣∣ E
x←[N]

[
d∏

i=1

fi(x)−
d∏

i=1

gi(x)

]∣∣∣∣∣ = |Hybd − Hyb0| ≤
d∑

i=1

|Hybi − Hybi−1| ≤ (1 + ε)d−1 · ε.

Recall that for S, S′ ⊆ [q], we define

pacc(seed.shared, S, S
′) := E

seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowBool

ι)icol[ι] ·
∏

ι∈S′
pcι

]
,

pRealacc (seed.shared, S, S′) := E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowReal

ι)icol[ι] ·
∏

ι∈S′
pcι

]
,

δseed.shared :=
∑

ι:itype[ι]=proof

∥fBool
seed.shared,ι − fReal

seed.shared,ι∥2q.

Claim 3.9. For every S, S′ ⊆ [q],

|pacc(seed.shared, S, S′)− pRealacc (seed.shared, S, S′)| ≤ (1 + δseed.shared)
2q−1 · δseed.shared.

Proof. Define the following 2(|S|+ |S′|) functions fBool
i , gBoolj , fReal

i , gRealj , where i ∈ S and j ∈ S′.
Each function takes (seed.row, seed.col) as inputs, and:

fBool
i := (rowBool

i)icol[i]; fReal
i := (rowReal

i)icol[i]; and gBoolj = gRealj := pcj .

(Note: for convenience, we omit the input (seed.row, seed.col).) It follows that ∥fBool
i ∥2q, ∥gBoolj ∥2q ≤

1; for every j ∈ S′, ∥gBooli − gReali ∥2q = 0; and for every i ∈ S,

∥fBool
i − fReal

i ∥2q =
{
0 if itype[i] = input;

∥fBool
seed.shared,i − fReal

seed.shared,i∥2q if itype[i] = proof.

99

Therefore, by Lemma A.2,

|pacc(seed.shared, S, S′)− pRealacc (seed.shared, S, S′)|

=

∣∣∣∣∣∣∣
E

seed.row←{0,1}rrow
seed.col←{0,1}rcol

∏

i∈S
fBool
i ·

∏

j∈S′
gBoolj −

∏

i∈S
fReal
i ·

∏

j∈S′
gRealj

∣∣∣∣∣∣∣
≤(1 + δseed.shared)

2q−1 · δseed.shared.

A.4 Proof of Lemma 3.10

Lemma 3.10. Let f : [N]× [q]→ R≥0 be a function and d ≥ 1 be a constant. Suppose that

1. for every s ∈ [N] and i ∈ [q], f(s, i) ≤ α (where α ≥ 1);
2. Es,i[f(s, i)

d] ≤ δ.

Let f(s) :=
∑

i∈[q] f(s, i). Then

E
s
[(1 + f(s))d−1 · f(s)] ≤ qδ1/d(2qα)d−1.

Proof. By Jensen’s inequality,

E
s
[f(s)] = q E

s,i
[f(s, i)] ≤ qδ1/d.

It follows that for every k ≥ 1,

E
s
[f(s)k] ≤ E

s
[f(s)] ·max

s
{f(s)}k−1 ≤ qδ1/d · (qα)k−1.

Finally, we have

E
s
[(1 + f(s))d−1 · f(s)] =

d−1∑

i=0

(
d− 1

i

)
· E
s
[f(s)i+1] ≤ qδ1/d(2qα)d−1.

A.5 An XOR Lemma in [CLW20]

Theorem 2.5. Let N ∈ N, 0 < ε, δ < 1/10, k := O(log(1/ε)/δ), Ñ := Nk, and a := O(log2N/(εδ)2).
There is an algorithm Amp : {0, 1}N → {0, 1}Ñ computable in deterministic poly(Ñ) time, and a
linear sum circuit C : {0, 1}Ñ × {0, 1}a → RN such that the following hold.

(List-decoding) For every string f̃ ∈ {0, 1}Ñ that is (1/2 − ε)-close to Amp(f) for some hidden
string f , there is an advice α ∈ {0, 1}a, such that (1) for every i ∈ [N], C(f̃ , α)i ∈ [0, 1]; and
(2) ∥C(f̃ , α)− f∥1 ≤ δ.

(Complexity) The fan-in, coefficient sum, and locality of C are at most O(logN/(εδ)2), O(1/ε),
and log Ñ respectively.

The lemma is implied by the XOR lemma in [CLW20]. For simplicity, we identify a string f of
length N and a Boolean function f : [N]→ {0, 1}, where f(x) outputs the x-th bit of f . For a string
f ∈ {0, 1}N , denote f⊕k to be the following string of length Nk. For each (x1, x2, . . . , xk) ∈ [N]k,
we have

f⊕k(x1, x2, . . . , xk) :=
k⊕

i=1

f(xi).

And we simply let Amp(f) := f⊕k.

100

The decoder. For a length-k vector v⃗⊥ ∈ ([N] ∪ {⊥})k and i ∈ [N], let v⃗i denote the vector
where each ⊥ in v⃗⊥ is replaced by i. (In the decoder, we will only need the case where each v⃗⊥

contains exactly one ⊥, so v⃗i simply replaces that single ⊥ by i.)
Let f̃ : [N]k → {0, 1} be a codeword (treated as a Boolean function). For A′ := O(logN/(εδ)2)

and r := (2+δ)ε
1−δ , our decoder will take a list of vectors v⃗⊥1 , v⃗

⊥
2 , . . . , v⃗

⊥
A′ ∈ ([N] ∪ {⊥})k and a list of

signs σ1, σ2, . . . , σA′ ∈ {0, 1} as advice. Intuitively, v⃗⊥i denotes a segment of f̃ that has noticeable
correlation with f , and σi denotes whether the correlation is positive or negative; our linear sum
decoder uses the average of f̃(v⃗ij)⊕ σj as a prediction of fi.

More formally, given an input i ∈ [N], the decoder outputs 30

dec(f̃)i :=
1

r
E

j←[A′]

[
(f̃(v⃗ij)⊕ σj)− 1/2

]
+ 1/2. (24)

Correctness. We establish the correctness of this decoder by the following lemma.

Lemma A.4. Let k ≥ 1, δ ∈ (0, 1/10), ε := (1 − δ)k−1(1/2 − δ), and A′ := O(logN/(εδ)2). For
every string f̃ ∈ {0, 1}Nk that is (1/2− ε)-close to f⊕k for some hidden string f ∈ {0, 1}N , there is
a list of A′ vectors v⃗⊥1 , v⃗

⊥
2 , . . . , v⃗

⊥
A′ ⊆ ([N] ∪ {⊥})k, and a list of signs σ1, σ2, . . . , σA′ ∈ {0, 1}, such

that (1) for every i ∈ [N], dec(f̃)i ∈ [0, 1]; and (2) ∥dec(f̃)− f∥1 ≤ δ.

Proof. We use induction on k. Suppose k = 1, then one can verify by direct calculation that the
lemma holds by setting v⃗⊥1 = (⊥) and σ1 = 0. Now suppose k > 1 and the lemma holds for k − 1.

Fix i ∈ [N] and let v⃗⊥ ∈ ([N]∪ {⊥})k denote some vector whose first coordinate is ⊥ and other
coordinates are from [N]. Think of every coordinate of v⃗⊥, except the first, is drawn independently
and uniformly from [N]. Define

pi := Pr
v⃗⊥←{⊥}×[N]k−1

[
f̃(v⃗i) = f⊕k(v⃗i)

]
.

Case I: Suppose there is some i0 ∈ [N] such that |pi0 − 1/2| > ε/(1− δ). Let b ∈ {0, 1} be a bit,
consider the sub-string f̃ ′ ∈ {0, 1}Nk−1 such that f̃ ′(v⃗⊥) = f̃(v⃗i0)⊕ b. Then, for some b ∈ {0, 1}, f̃ ′
is (1/2− ε/(1− δ))-close to f⊕(k−1).

By the induction hypothesis, there is a list of A′ vectors u⃗⊥1 , . . . , u⃗
⊥
A′ ⊆ ([N − 1] ∪ {⊥}k) and

a list of signs σ′1, . . . , σ
′
A′ ∈ {0, 1} such that the vector dec′ satisfies the conclusion of the lemma,

where
dec′i :=

1

r
E

j←[A′]

[
(f̃ ′(u⃗ij)⊕ σ′j)− 1/2

]
+ 1/2.

For each j, let v⃗⊥j be the concatenation of i0 and u⃗⊥j , and let σj = σ′j ⊕ b. We have that dec(f̃)i is
exactly dec′i and we are done.

30Eq. (24) is perhaps easier to understand when we change the basis from {0, 1} to {1,−1}; we choose the basis
{0, 1} only to be consistent with other parts of this paper. When we change the basis to {1,−1}, XOR becomes
multiplication and the assertion “a = b” becomes simply a · b. Thus Eq. (24) becomes

dec(f̃)i =
1

r
E

j←[A′]

[
f̃(v⃗ij) · σj

]
,

which is simply the average of all A′ predictions, amplified by a factor of 1/r.

101

Case II: Suppose for every i ∈ [N], we have |pi − 1/2| ≤ ε/(1 − δ). Note that, since f̃ is
(1/2− ε)-close to f⊕k, we have

E
i←[N]

[pi] ≥ 1/2 + ε.

We sample each v⃗⊥j ← {⊥} × [N]k−1 independently at random. Let

p̃i := Pr
j←[A′]

[
f̃(v⃗ij) = f⊕k(v⃗ij)

]
.

Let η := εδ
2(1−δ) . By a Chernoff bound, w.p. 1−Ne−2η

2t > 0, for every i ∈ [N], we have |pi− p̃i| ≤ η.

Let σj := f⊕(k−1)((v⃗⊥j)2∼k) =
⊕k

l=2 f((v⃗
⊥
j)l), then we have

p̃i = Pr
j←[t]

[
fi = f̃(v⃗ij)⊕ σj

]
.

Note that

dec(f̃)i =
1

r
(p̃i · (fi − 1/2) + (1− p̃i) · (1/2− fi)) + 1/2

=
(fi − 1/2)(2p̃i − 1)

r
+ 1/2.

Claim A.5. For every i ∈ [N], dec(f̃)i ∈ [0, 1].

Proof.

|dec(f̃)i − 1/2| = 1

r
|(fi − 1/2)(2p̃i − 1)|

=
1

r
|p̃i − 1/2|

≤ 1− δ

(2 + δ)ε

(
ε

1− δ
+ η

)

=1/2. ⋄

Claim A.6. ∥dec(f̃)− f∥1 = Ei←[N][|dec(f̃)i − fi|] ≤ δ.

Proof.

E
i←[N]

[|dec(f̃)i − fi|]

= E
i←[N]

[∣∣∣∣
(fi − 1/2)(2p̃i − 1)

r
+ 1/2− fi

∣∣∣∣
]

= E
i←[N]

[∣∣∣∣
p̃i − 1/2

r
− 1/2

∣∣∣∣
]

=1/2−
Ei←[N][p̃i]− 1/2

r
(25)

≤ 1/2− ε− η

r
≤ δ,

where Eq. (25) is because we have shown in the proof of Claim A.5 that 1
r |p̃i− 1/2| ≤ 1/2 for every

i. ⋄

Combining Claim A.5 and A.6, the lemma is proved.

102

Complexity. It remains to determine the complexity of the decoder defined in Eq. (24). The
advice string α contains the vectors v⃗⊥1 , v⃗⊥2 , . . . , v⃗⊥A′ and the signs σ1, σ2, . . . , σA′ . It is clear that the
fan-in is at most A′ + 1 = O(logN/(εδ)2). The coefficient sum is O(1/r) = O(ε−1). Since the k-th
term is

coeffk(α) = (−1)σj/(A′r), and idxk(α, i) = v⃗ik,

it follows that each term only depends on log Ñ bits of α.

103
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

