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Abstract

We prove a higher codimensional radical Sylvester-Gallai type theorem for quadratic poly-
nomials, simultaneously generalizing [Han65, Shp20]. Hansen’s theorem is a high-dimensional
version of the classical Sylvester-Gallai theorem in which the incidence condition is given
by high-dimensional flats instead of lines. We generalize Hansen’s theorem to the setting
of quadratic forms in a polynomial ring, where the incidence condition is given by radical
membership in a high-codimensional ideal. Our main theorem is also a generalization of the
quadratic Sylvester–Gallai Theorem of [Shp20].

Our work is the first to prove a radical Sylvester–Gallai type theorem for arbitrary codi-
mension k > 2, whereas previous works [Shp20, PS20, PS21, OS22] considered the case of codi-
mension 2 ideals. Our techniques combine algebraic geometric and combinatorial arguments.
A key ingredient is a structural result for ideals generated by a constant number of quadratics,
showing that such ideals must be radical whenever the quadratic forms are far apart. Using
the wide algebras defined in [OS22], combined with results about integral ring extensions and
dimension theory, we develop new techniques for studying such ideals generated by quadratic
forms. One advantage of our approach is that it does not need the finer classification theorems
for codimension 2 complete intersection of quadratics proved in [Shp20, GOS22].

1 Introduction

Let v1, . . . , vm be a set of points in Rn with the property that the line joining any two points passes
through a third point. The Sylvester–Gallai theorem states that v1, . . . , vm must all be collinear.
This result was conjectured by Sylvester [Syl93], and proved independently by Melchior [Mel40]
and Gallai [Gal44].

The inflection points of a cubic curve are a set of nine points in C2 such that the line joining any
two of them passes through a third ([Dic14]). However, these points are not collinear. In fact, Kelly
[Kel86] suggested that this was the motivation behind Sylvester’s conjecture, to check if all inflec-
tion points can have real coordinates. In the same paper, Kelly observed that Hirzebruch’s work
on line arrangements [Hir83] directly implies that every configuration of points in Cn satisfying
the Sylvester–Gallai condition must be coplanar, and thereby answered a question of Serre [Ser66].
This shows that the Sylvester–Gallai theorem crucially depends on the underlying field. If the un-
derlying field is finite, then such configurations no longer have finite dimension. In light of these
results, we fix our underlying field to C in this work, though our results hold for algebraically
closed fields of characteristic zero.

A number of variations and generalisations of the Sylvester–Gallai theorem have been studied
in combinatorial geometry such as a robust version [BDYW11], colored version [EK66], higher
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dimensional flats [Han65, BDYW11] and many more. The main underlying theme in all such
results is that the local linear relations between the points in a Sylvester–Gallai configuration must
imply that such configurations can only happen in low dimension, which is a global condition on
the configuration. Once one translates such geometric relations into algebraic terms, one sees that
the study of Sylvester-Gallai configurations is a study about cancellations in algebraic geometry.
In summary, Sylvester-Gallai type questions ask the following: given a set of algebraic geometric
objects (e.g. vectors, linear forms or polynomials), whether “many” local cancellations or syzygies
(such as the SG incidence conditions) imply global constraints on the configuration (such as being
low-dimensional or dependence on a low number of variables).

Many results in algebraic and boolean complexity, as well as in cryptography, show that can-
cellations are very powerful in computation [RW92, Raz92, Tar88, GMOR15, Val79, HY09, MM82,
BS88]. Therefore, it is no surprise that proofs of Sylvester-Gallai theorems, which deal with limi-
tations on the power of cancellations, have required sophisticated tools.

The variations alluded to above have applications in several areas of theoretical computer sci-
ence, such as algebraic complexity (Polynomial Identity Testing and Reconstruction) and coding
theory (Locally Correctable Codes). We now discuss some of these variations and their connec-
tions to TCS, and direct readers to [BM90] for more on classical Sylvester–Gallai problems.

Robust Sylvester-Gallai theorems: In this variation, one is given a constant 0 < δ < 1, and
one requires the points v1, . . . , vm ∈ Cn to satisfy the following condition: for every vi, there are
δm many points vj such that the line joining vi, vj contains a third point in the set. The robust
Sylvester-Gallai theorem states that such configurations lie on a constant dimensional subspace.

These configurations were first studied in [ST83], where the above theorem was proved for all
values of δ that are close to 1. Subsequently, in [BDYW11], the authors proved the theorem for all
values of δ, and showed that such configurations have dimensionO(1/δ2). In [DSW14], this result
was further improved, and the authors showed that such configurations have dimension O (1/δ).

These configurations are useful in the study of locally correctable codes [BDYW11] and circuit
reconstruction [Sin16].

High dimensional Sylvester-Gallai theorems: Another variation of the Sylvester-Gallai theo-
rem involves considering higher dimensional linear spaces instead of lines. For example, suppose
now that for any vi, vj, vk that are not collinear, we require the 2-dimensional affine space spanned
by vi, vj, vk to contain a fourth point in the configuration. The higher dimensional Sylvester-Gallai
theorem states that such configurations also lie in a constant dimensional affine subspace.

These configurations were first studied in [Han65], who proved the above theorem for affine
spaces of all dimensions (the above is the case of dimension two). Further, in [BDWY13] the
authors proved a robust version of the high dimensional Sylvester–Gallai theorem of [Han65].

These configurations have application in polynomial identity testing of depth three circuits
([KS09, SS13]). The authors show that the linear forms in any depth three circuit computing the
zero polynomial satisfy a version of this Sylvester-Gallai theorem, and therefore have low rank.

Higher degree generalisations and PIT: Motivated by the application of Syvester-Gallai the-
orems for depth three PIT, Gupta ([Gup14]) introduced non-linear Sylvester-Gallai configurations
and proposed Conjecture 1.1 below, generalizing the classical SG theorems to polynomials of
higher degree, where the incidence condition is given by radical membership. [Gup14] shows
that a positive solution to Conjecture 1.1 yields deterministic poly-time PIT algorithms for depth
four circuits with bounded top and bottom fan-in (circuits of the form ΣkΠΣΠd).

Gupta divides nonzero ΣkΠΣΠd circuits into two classes, namely non-SG circuits and SG cir-
cuits. Informally, non-SG circuits are those where there is not much cancellation among the low
degree polynomials computed at the bottom addition gate. These circuits form the easy case for
their PIT algorithm, and the author gives an unconditional polynomial time algorithm to test if
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such circuits are nonzero. The analysis for non-SG circuits was recently simplified in [Guo21].
The hard case for PIT is when there are non-trivial cancellations among the low-degree poly-

nomials computed at the bottom addition gate. The author conjectures that such cancellations can
only occur if this set of polynomials have constant transcendence degree. If this conjecture is true,
then the Jacobian based method of [ASSS16] gives a poly-time deterministic PIT algorithm.

We now state the main conjecture of [Gup14]:

Conjecture 1.1 (Conjecture 1, [Gup14]). Let k,d, c ∈ N∗ be parameters, and let F1, . . . ,Fk be finite sets
of irreducible polynomials of degree at most d satisfying

• ∩iFi = ∅,

• for every Q1, . . . ,Qk−1, where each Qj is from a distinct set Fij , there are polynomials P1, . . . ,Pc in
the remaining set such that

∏
Pi ∈ rad (Q1, . . . ,Qk−1).

Then the transcendence degree of ∪iFi is a function of k,d, c, independent of the number of variables or the
size of the sets Fi.

In Conjecture 1.1, the division into k sets and the fact that the product of the forms in the
remaining set are in the radical are both artefacts of the fact that the goal of the work was to solve
ΣkΠΣΠd PIT. Since the conjecture above is a far-reaching non-linear generalization of Sylvester’s
conjecture, it is important to study simpler versions of this conjecture which are still wide open,
just as was done in the linear case. With this in mind, towards the above conjecture, Gupta lists
a series of conjectures regarding configurations that more closely resemble linear Sylvester-Gallai
configurations, the first of which is the following.

Conjecture 1.2 (Conjecture 2, [Gup14]). LetQ1, . . . ,Qm ∈ C [x1, . . . , xn] be irreducible, homogeneous,
and of degree at most d such that for every pairQi,Qj there is k 6= i, j such thatQk ∈ rad

(
Qi,Qj

)
. Then

the transcendence degree of Q1, . . . ,Qm is Od(1) (where the constant depends on the degree d).

Conjecture 1.2 is a beautiful mathematical generalization of the classical SG theorem as well as
a stepping stone towards a full resolution of the PIT problem. So far Conjecture 1.2 is known for
degrees 2 and 3 [Shp20, OS22] and it is open in general.

Since Conjecture 1.1 deals with radical ideals generated by k − 1 polynomials (and hence of
potentially higher codimension), it is important to generalize Conjecture 1.2 to a conjecture about
radical ideals generated by k elements. Just as in the linear case (see [Han65]), some care must
be taken when defining higher-codimensional Sylvester-Gallai configurations, and we address
this formally in Section 3. Now, we present an informal version of the higher-codimensional SG
conjecture, which will be the main focus of this work.1

Conjecture 1.3 (Higher-codimensional SG conjecture). Let F ⊂ C [x1, . . . , xn] be a finite set of ir-
reducible homogeneous forms of degree at most d. Suppose for every F1, . . . , Fk+1 ∈ F, either Fk+1 ∈
rad (F1, . . . , Fk) or there exists R ∈ F such that R ∈ rad (F1, . . . , Fk+1)\ (rad (F1, . . . , Fk)∪ (Fk+1)). Then
dim spanC {F} = Od,k(1) (where the constant depends on the degree d and the codimension parameter k).

Note that the Sylvester-Gallai conditions in the above conjectures look different from the pre-
vious ones: we talk about membership in radical ideals as opposed to containment in affine spans.
A discussion on why this is an appropriate generalisation of the linear Sylvester-Gallai condition
can be found in [Gup14].

Our main result, a proof of Conjecture 1.3 in the case where d = 2, is a step towards Conjec-
ture 1.1 for the parameters (k,d, c) = (k, 2, c) for any choice of k, c ∈ N.

1The conjecture stated here is implied by our formal conjecture in Section 3.
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1.1 Main Result & Technical Contributions

In this subsection we informally state our main result, the higher codimensional analogue of the
radical Sylvester–Gallai theorem. As is the case with the higher codimensional linear setting, the
formal statement (Theorem 3.12) requires some additional definitions and is given in Section 3.2

Theorem 1.4 (Main theorem, informal). Let F ⊂ C[x1, · · · , xn] be a finite set of irreducible forms of
degree at most 2. Suppose for every F1, . . . , Fk+1 ∈ F, either Fk+1 ∈ rad (F1, . . . , Fk) or there exists R ∈ F

such that R ∈ rad (F1, . . . , Fk+1) \ (rad (F1, . . . , Fk) ∪ (Fk+1)). Then dim spanC {F} = Ok(1).

Remark 1.5. Note that our theorem, with k = 1, recovers the main theorem in [Shp20].

Geometrically, the above statement says that the algebraic set defined by every set of k + 1
forms in the configuration lies in the variety defined by another form. Since such algebraic sets
have codimension at most k + 1, we call our configurations higher codimension Sylvester-Gallai
configurations.

In previous works [Shp20, PS20, PS21, PS22, GOS22, OS22], which deal with (variants of) the
case where k = 1, the approach used to prove a theorem of the above type required a structure
theorem that would categorize ideals of the form (F1, F2) where each Fi is either a quadratic or a
cubic form. These structure theorems used two main facts about ideals of the form (F1, F2):

1. they are complete intersections, and therefore Cohen-Macaulay (which implies unmixed).

2. they have small degree (four in the quadratic case and nine in the cubic case).

These two facts, along with properties of Hilbert-Samuel multiplicity, yield a list of special min-
imal primes and multiplicities such ideals can have, whenever they are not radical. Combined
with existing literature and some new results on prime (and primary) ideals of codimension 2, the
structure theorems are derived, and then used in the proof of their main theorem.

In our setting, neither of the above facts hold in general. The ideals we consider are generated
by k quadratics, and therefore can have degree up to 2k. Further, these ideals may no longer be
complete intersections, and therefore can have embedded primes and even minimal primes of any
codimension between 2 and k. This rules out the feasibility of using very fine-grained structure
theorems as was done in previous works.

In a recent breakthrough, [AH20] proved that if one has quadratics F1, . . . , Fk which are “far
enough apart,” then the ideal (F1, . . . , Fk) is a complete intersection and prime (and hence radical).
However, as discussed above, in our case this result alone is not enough for us to prove all we
need: in many cases of interest, the forms in our configuration will not be far enough apart and
the result from [AH20] will not apply.

To handle the remaining cases, we build on the techniques of [OS22] and prove a more general
structural result on ideals generated by k quadratic forms. Our structural result (Lemma 6.6)
states that given certain conditions on the quadratic forms F1, . . . , Fk, even though they may not
be far enough apart, one can still prove that the ideal (F1, . . . , Fk) is radical and has well-behaved
minimal primes. The precise conditions of Lemma 6.6 are somewhat technical, and are developed
in Section 6.1 with the definition of integral sequences of forms. An easier version of our structural
lemma can be stated as follows:

Lemma 1.6 (Basic Lemma 6.6). Let F1, . . . , Fk ∈ C[x1, . . . , xn,y1, . . . ,yk] be irreducible quadratic forms
such that Fi ∈ C[x1, . . . , xn,yi] is monic in yi. Then, the ideal I := (F1, . . . , Fk) is radical and for any
minimal prime p ⊃ I, we have p ∩ C[x1, . . . , xn] = (0).

2Theorem 3.12 in fact implies the result that we are stating in this page.
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Lemma 6.6, and the more basic version above, can be seen as general structural results, which
say that either a given ideal is radical, or the generators are ”related” (i.e. the “extra variables”
y1, . . . ,yk must be related). This is a weaker structural result than the ones in the previous works,
but holds in a more general setting, and is likely to generalise to higher degree configurations.

The proof of Lemma 6.6 involves tools from dimension theory, as well as the discriminant
lemma, and the transfer principles from [OS22]. All of these concepts can be found in Section 4.

1.2 High level proof ideas

Our high level strategy is the that in order to bound dim spanC {F}, it is enough to prove that F is
contained in a small graded algebra. To deal with the issues raised in the previous subsection, our
strategy will be to prove that any such SG configuration F must be contained in a special ideal,
which satisfies two properties:

1. the ideal is generated by a vector space V := V1 + V2 with dimV = Ok(1), where V1 is a
vector space of linear forms and V2 is a vector space of quadratics

2. Any nonzero quadratic in V2 is of very high rank (relative to dimV).

With this result, we reduce the radical Sylvester-Gallai question to a linear, high-codimensional
Sylvester-Gallai question, and apply the theorems from [BDYW11, DSW14, DGOS18] to obtain
that F must be contained in a small algebra. This is done in Section 7.3.

To prove that such special ideals exist, we proceed in two steps, each guided by a different
conceptual principle. In the first step, we construct a small graded vector space W such that
all forms in F are “close to” the algebra C[W]. That is, there exists a constant B such that for
each form F ∈ F, there exist constantly many linear forms y1, . . . ,yr, where r 6 B, such that
F ∈ C[W,y1, . . . ,yr]. Note that both the linear forms yi and the constant r depend on the form F,
and the point here is to obtain a global upper bound on the values that r can take. We name such
algebra C[W] core algebra (see Section 7.1).

In the second step, given F and a core algebra, we want to construct the special ideal V satisfy-
ing properties 1 and 2 above such that F ⊂ (V). To do this, we use Lemma 6.6 to show that for any
sequence F1, . . . , Fk such that (F1, . . . , Fk) is not a radical ideal, it must be the case that the “extra
variables” of the forms F1, . . . , Fk must be (very) dependent. Thus we get a win-win type of result
here: either the ideal (F1, . . . , Fk) is radical (which gives us some linear dependencies amongst
the forms of F), or the linear forms coming from the extra variables must have very strong linear
dependencies (and hence we can control their total dimension).

We now give an overview of each step.
Step 1 - constructing core algebras (Section 7.1): given a quadratic formQ and a vector space

W, we say thatQ is B-close to C[W] if there is a vector space Y of linear forms with dim Y 6 B such
that Q ∈ C[W, Y].3 That is, Q is a polynomial in few (linear) variables whenever we are allowed
to have coefficients in C[W]. We say that F is B-close to C[W] if every form in F is B-close to C[W].
A core algebra is an algebra C[W] such that F is B-close to C[W] for some constant B.

The key inspiration for constructing such core algebras comes from the work [AH20], where
the authors prove that if the quadratic forms F1, . . . , Fk+1 are “sufficiently far apart,” then they
form a prime sequence (which is a much stronger condition than complete intersection). Thus,
either a given set of quadratic forms is a prime sequence, or one of the quadratics is ”close” (that
is, of low rank) to the vector space generated by the other quadratics.

3We extend this definition to linear forms by saying that any linear form is 1-close to any algebra.
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One consequence of being a prime sequence is that the ideal (F1, . . . , Fk+1) will be a prime ideal
(hence radical) and a complete intersection. If we have too many quadratic forms which are far
apart, then the radical SG condition will imply that dependencies among the quadratics are linear
dependencies, and therefore we can apply [BDYW11, DSW14] and construct our core algebra.

Here we get our first win-win: either many forms are far apart, in which case we will get linear
dependencies (and thereby a vector space of low dimension) or we can construct a small vector
spaceW such that F is close to C[W].

Since we want to control the quadratic forms of high rank (which we call strong forms), the
proof of the construction of W requires an auxiliary SG configuration, dealing only with depen-
dencies of high rank quadratics. We term these strong SG configurations (see Section 6.2 for details)
and our proof is via a careful induction on the codimension of such configurations. Due to the
fact that we are now dealing with both linear and quadratic forms, and our condition is a rad-
ical membership condition, the proof of this step is more involved and more delicate than the
inductive approach used in [BDYW11, Section 5].

The technical reason why this step is more delicate than the induction on codimension done
in [BDYW11, Section 5], is due to the fact that quotienting by a quadratic form will lead us to
working with rings which are not necessarily polynomial rings, as well as the fact that we still
have to handle non-linear radical dependencies and quadratic forms of low rank.

Step 2 - from core algebras to special ideals (Section 7.2): once we have constructed our core
algebra C[W], we now have a global constant bound B such that all forms in F are B-close to C[W].
In this setting, our structural lemma (Lemma 6.6) applies and we are able to prove that either
the quadratic forms are a linear Sylvester-Gallai configuration (which happens if many ideals
(F1, . . . , Fk+1) are radical), or the extra variables of the quadratic forms must be (very) dependent.
The proof of the aforementioned fact (in Section 7.2) is done by an iterative process to construct
our special ideal. We couple Lemma 6.6 with two potential functions to prove termination of
the iterative process providing the special ideal, in a similar way that [Shp20, GOS22] use their
potential functions.

Wide algebras: Both steps 1 and 2 use the notion of forms being close to an algebra. In Section 5,
we make this notion clear, and establish what properties are needed from such algebras to make
sure that we preserve the geometric properties of polynomial rings. Since we are dealing with
quadratic forms, we need a slightly simpler version of the wide algebras introduced in [OS22].

1.3 Related work

As stated above, the main motivation for studying higher degree versions of the Sylvester-Gallai
theorem comes from the relation established to depth four PIT in [Gup14]. The d = 2 case of
Conjecture 1.2 was proved in [Shp20], which also kick started this line of work. Subsequently,
in [PS20], the authors prove a product version of Conjecture 1.2 where the radical of the ideal
generated by every pair of quadratics contains the product of all other quadratics. In [PS21], the
authors strengthen this further, and prove Conjecture 1.1 in the case when k = 3,d = 2, c = 4.
This also implies polynomial time PIT for Σ3ΠΣΠ2 circuits. In [GOS22] and [PS22] the authors
independently proved a robust version of Conjecture 1.2 in the case when d = 2.

In [OS22], the authors prove Conjecture 1.2 in the case when d = 3. Our current work develops
techniques building upon the intermediate results proved in [OS22]. In particular, the wide vector
spaces we use are special cases of the wide vector spaces used in [OS22]. Further, our ”structure
theorems” are proved using the discriminant lemma from [OS22].
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Progress on depth four PIT: There has been some recent progress on the PIT problem for depth
four circuits with bounded top and bottom fan-in, the same model that is the focus on [Gup14].
In [DDS21], the authors give a quasipolynomial time PIT algorithm for such circuits. The authors
use the Jacobian method of [ASSS16] to find a variable reduction map that preserves the algebraic
independence of the inputs to the top addition gate. They are able to construct this map explicitly
by first massaging the input circuits to change them to easier models, and then showing that the
Jacobian can be computed by a read once oblivious arithmetic branching program (ROABP), for
which hitting sets are known. Their methods are analytic in nature, and rely on the logarithmic
derivative and its power series expansion.

In [LST22], the authors combine their lower bounds for bounded depth circuits with the meth-
ods of [CKS18] to obtain subexponential time PIT algorithms for the same circuit families. Note
that the methods of [CKS18] cannot give a polynomial time PIT algorithm no matter how strong
the lower bound assumptions are. Even getting a quasipolyomial time PIT from these methods
for depth four circuits requires much stronger lower bounds than are currently known. However,
these methods are more general, and work for all constant depth circuits.

The Sylvester–Gallai approach to PIT is the only one so far that can yield a deterministic poly–
time algorithm. In both the works above, the methods used are quite distinct from the methods
based on the Sylvester-Gallai theorem. In particular, they avoid dealing with cancellations, and
therefore are unable to exploit the global structure that many local cancellations give rise to.
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2 Preliminaries

In this section we establish notation and preliminary facts we will need for the rest of the paper.
Let S = C [x1, . . . , xN] denote the polynomial ring, graded by degree S =

⊕
i>0 Si. Given a vector

space V ⊂ S, we use Vi to denote the degree i piece, that is, Vi = V ∩Si. We say that a vector space
is graded if V = ⊕Vi.

We use form to refer to a homogeneous polynomial. Given two forms A,Bwe say that A,B are
non-associate if A 6∈ (B) and B 6∈ (A). If A,B are of the same degree, this is equivalent to them
being linearly independent.

2.1 Rank and linear spaces of quadratic forms

We now define a notion of the rank of quadratic forms, in accordance to [Shp20].

Definition 2.1 (Rank of a quadratic form). Let Q be a quadratic form. The rank of Q, denoted
rankQ, is the smallest s ∈ N such that we can writeQ =

∑s
i=1 aibi with ai,bi ∈ S1. If rankQ = s,

then a decomposition Q =
∑s
i=1 aibi with ai,bi ∈ S1 is called a minimal representation of Q.

Proposition 2.2. If φ : S1 → S1 is an invertible linear map and ψ : S → S is the map extending φ, then
for any Q ∈ S2 we have rankQ = rankψ(Q). If U ⊆ S1 is a vector space of dimension k, and Q is the
image of Q in S/ (U), then rankQ > rankQ− k.
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Proof. Suppose rankQ = r and Q =
∑r
i=1 aibi. We have ψ(Q) =

∑r
i=1ψ(ai)ψ(bi) therefore

rankψ(Q) 6 r. If rankψ(Q) = r ′ and ψ(Q) =
∑r ′
i=1 cidi then Q =

∑r ′
i=1ψ

−1(ci)ψ
−1(di), which

shows that rankQ = rankψ(Q).
Suppose u1, . . . ,uk is a basis for U, and suppose Q =

∑r ′
i=1 aibi. Then Q =

∑r
i=1 aibi +∑k

j=1 uivi for some vi ∈ S1. Therefore rankQ 6 rankQ+ k.

Remark 2.3. LetQ =
∑
i aiix

2
i+
∑
i<j 2aijxixj be a quadratic form in S. Recall that there is an one-

to-one correspondence between quadratic forms Q ∈ S2 and symmetric bilinear forms. Let M be
the symmetric matrix corresponding to the symmetric bilinear form of Q. Note that the (i, j)-the
entry ofM is given by aij. IfM is of rank r, then after a suitable linear change of variables, we can
write Q = x2

1 + · · · + x2
r. Since the rank of a quadratic form is invariant under a linear change of

variables(Proposition 2.2), we have rank(Q) = dr/2e, ifM is of rank r.

In the next sections, we will need to use the following notion of a vector space of a quadratic
form, which is a slight modification on the definition first given in [Shp20]. The only modification
that we make is that we preserve the quadratic form if its rank is high enough.

Definition 2.4 (Vector space of a quadratic form). Let Q be a quadratic form of rank s, so that
Q =

∑s
i=1 aibi. Define the vector space Lin (Q) := spanC {a1, . . . ,as,b1, . . . ,bs}. Define L (Q) as:

L (Q) =

{
spanC {Q} , if s > 5
Lin (Q) , otherwise.

We also extend the definition of Lin to linear forms in the natural way as follows.

Definition 2.5. For a linear form ` ∈ S1 define L (`) := spanC {`}.

Note that L (Q) is always a vector space of O (1) dimension (in fact, it is of dimension at
most 10), while Lin (Q) can have non constant dimension. While a minimal representation Q =∑s
i=1 aibi is not unique, the vector space Lin (Q) is unique and hence well-defined. The follow-

ing lemma, which appears in [PS20, Fact 2.15] characterizes Lin (Q) as the smallest vector space of
linear forms defining the algebras that contain Q.

Lemma 2.6. If Q =
∑r
i=1 xiyi with xi,yi ∈ S1 then Lin (Q) ⊆ spanC

{
xi,yj|i, j ∈ [r]

}
.

Remark 2.7. The space Lin (Q) can also be defined as the space of first order partial derivatives ofQ
(see Lemma 2.10). However, we decided to not state this definition in this manner as this definition
does not generalize well to forms of higher degree, as it is done in the works [AH20, OS22].

We now state some useful results related to the rank and linear spaces of quadratics, some of
which appear in [PS20, GOS22].

Lemma 2.8. SupposeQ ∈ S2 is such that rankQ = r. Then dim Lin (Q) = 2r or dim Lin (Q) = 2r− 1.
In the second case, we can write Q = a2

r +
∑r−1
i=1 aibi.

Proof. Suppose v1, . . . , vd is a basis for Lin (Q) for some d 6 2r. We then have Q ∈ C [v1, . . . , vd].
By Remark 2.3, we can writeQ =

∑d ′
i=1 u

2
i for some d ′ 6 d, where each ui ∈ spanC {v1, . . . , vd}. By

Lemma 2.6 we have Lin (Q) ⊆ spanC {u1, . . . ,ud ′} whence d ′ = d. If d is even then we get d/2 > r.
Since we also have d 6 2rwe get d = 2r. If d is odd, we must have (d−1)/2+1 > r. Since we also
have d 6 2r we get d = 2r − 1. In this case, u2

d +
∑d/2−1
j=1 (u2j−1 + u2j)(u2j−1 − u2j) is a minimal

representation of Q, proving the last statement.
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Remark 2.9. By the above lemma, given any Q ∈ S2 such that rankQ = r we can write Q =∑r
i=1 aibi such that a1, . . . ,ar,b1, . . . ,br−1 are linearly independent, and either br = ar or br is

independent of a1, . . . ,ar,b1, . . . ,br−1.

Lemma 2.10. Let Q ∈ S = C [x1, . . . , xN] be a quadratic form. Then Lin (Q) = spanC

{
∂Q
∂x1

, · · · , ∂Q∂xN

}
is the space of all first order partial derivatives of Q.

Proof. Suppose rankQ = r and
∑r
i=1 aibi be a decomposition of Q as in Remark 2.9. Then note

that ∂Q∂ai = bi and ∂Q
∂bi

= ai for all i 6 r − 1. If br = ar, then ∂Q
∂ar

= 2ar, and otherwise we have
∂Q
∂ar

= br and ∂Q
∂br

= ar. Therefore Lin (Q) ⊂ spanC

{
∂Q
∂x1

, · · · , ∂Q∂xN

}
. Since Q =

∑r
i=1 aibi, we

have ∂Q∂xj ∈ Lin (Q) for all j ∈ [N].

The following lemma from [PS20] shows that adding a product of new variables increases the
rank of a quadratic. In Lemma 2.12, we extend this to sums of quadratics in distinct variables.

Lemma 2.11 ([PS20, Claim 2.7]). Suppose Q ∈ C [x1, . . . , xm] is a polynomial of rank r. If y, z are new
variables then rank(Q+ yz) = r+ 1. In particular, Lin (Q+ yz) = Lin (Q) + spanC {y, z}.

Lemma 2.12. Suppose P ∈ C [x1, . . . , xm] andQ ∈ C [y1, . . . ,yn] are two quadratics in distinct variables.
Then Lin (P +Q) = Lin (P) + Lin (Q).

Proof. Note that we have ∂(P+Q)
∂xi

= ∂P
∂xi

and ∂(P+Q)
∂yj

= ∂Q
∂yj

for all i ∈ [m] and j ∈ [n]. Therefore,
by Lemma 2.10, we have that Lin (P +Q) = Lin (P) + Lin (Q).

Lemma 2.13. LetW ⊆ S1 be a vector space. Suppose Q ∈ S2 is such that rankQ = r in S and rankQ =
r ′ < r where Q is the image of Q in S/ (W). Then W ∩ Lin (Q) 6= {0}. In particular if Q ∈ (W) then
W ∩ Lin (Q) 6= 0.

Proof. Suppose Q =
∑r
i=1 aibi is the minimal representation guaranteed by Remark 2.9. Assume

towards a contradiction that Lin (Q)∩W = {0}. Since a1, . . . ,ar,b1, . . . ,br−1 are independent in S,
and either br = ar or br is independent of a1, . . . ,ar,b1, . . . ,br−1, by assumption the same holds
in S/ (W). We can now repeatedly apply Lemma 2.11 to deduce that rank(arbr +

∑r−1
i=1 aibi) = r,

contradicting assumption.

2.2 General Projections

We now recall the definition and properties of projection maps from [Shp20, PS20, OS22].

Definition 2.14 (Projection maps). Let S = C[x1, · · · , xn] be a polynomial ring. Let W ⊂ S1
be a subspace of linear forms and y1, · · · ,yt be a basis of W. Let y1, · · · ,yn be a basis of S1
that extends the basis y1, · · · ,yt of W. Let z be a formal variable not in {y1, · · · ,yn}. For α =
(α1, · · · ,αt) ∈ Ct, we define the projection map ϕα,W as the C-algebra homomorphism ϕα,W :
S→ C[z,yt+1, · · · ,yn] = S[z]/(W) defined by

yi 7→

{
αiz, if 0 6 i 6 t

yi, otherwise

For simplicity we will often drop the subscripts W or α, and write ϕα or ϕ for a projection
map when there is no ambiguity about the vector spaceW or the vector α.
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General projections. Fix a vector space W ⊂ S1 as in Definition 2.14. We will say that a property
holds for a general projection ϕα, if there exists a non-empty open subset U ⊂ Ct such that the
property holds for all ϕα with α ∈ U. Here U ⊂ Ct is open with respect to the Zariski topol-
ogy, hence U is the complement of the zero set of finitely many polynomial functions on Ct. The
general choice of the element α defining a general projection ϕα allows us to say that such projec-
tion maps will avoid any finite set of polynomial constraints. As shown in [Shp20, PS20], general
projection maps preserve several important properties of polynomials.

Proposition 2.15. [OS22, Proposition 2.6] Let F ∈ S be a polynomial and W ⊂ S1 be a vector space of
linear forms.

(a) If F 6∈ C[W], then ϕ(F) 6∈ C[z] for a general projection ϕ : S→ S[z]/(W).

(b) If F 6= 0, then ϕ(F) 6= 0 for a general projection.

(c) Suppose F is a form which does not have any multiple factors and F ∈ (W). If ϕ(F) = zkG where
G 6∈ (z), then G does not have any mulitple factors.

The next proposition is from [PS20, Claim 2.23].

Proposition 2.16. Let F,G ∈ S be two polynomials which have no common factor andW ⊂ S1 a subspace
of linear forms. For a general projection ϕ : S → S[z]/(W), we have gcd(ϕ(F),ϕ(G)) ∈ C[z]. In
particular, if F,G are homogeneous then gcd(ϕ(F),ϕ(G)) = zk for some k ∈ N.

The following result shows that general projections preserve linear independence for polyno-
mials outside the algebra generated byW .

Corollary 2.17. [OS22, Corollary 2.8] Let F,G ∈ S be linearly independent irreducible forms andW ⊂ S1
be a vector space of linear forms. If F,G 6∈ C[W] then ϕ(F),ϕ(G) are linearly independent, for a general
projection ϕ : S→ S[z]/(W) .

The next proposition follows from [PS20, Claim 2.26].

Proposition 2.18. Let W ⊂ S1 be a vector space of linear forms. Let F ⊂ S2 be a finite set of quadratic
forms. Suppose there is an integer D > 0 such that dim spanC

{⋃
F∈F L (ϕ(F))

}
6 D for a general

projection ϕ : S→ S[z]/(W). Then dim spanC
{⋃

F∈F L (F)
}
6 (D+ 1) · dimW.

The proposition above can be sharpened if we have extra information about the linear forms
in F. We state this sharpening in the next proposition

Proposition 2.19. Let W ⊂ S1 be a vector space of linear forms and F ⊂ S2 be a finite set of quadratic
forms such that F ∩ (W) and s(F) < s for each F ∈ F. Suppose there is an integer D > 0 such
that dim spanC

{⋃
F∈F L (ϕ(F))

}
6 D for a general projection ϕ : S → S[z]/(W). Then we have

dim spanC
{⋃

F∈F L (F)
}
6 (D+ 1) · s.

3 Sylvester–Gallai configurations

We now formally define the Sylvester-Gallai configurations that we deal with in this work. Before
we do this, we state the current known bounds on dimensions of linear Sylvester–Gallai configu-
rations, these will be useful in our proofs.
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3.1 Linear Sylvester–Gallai configurations

For this subsection, we let L be a finite set of pairwise non-associate linear forms and δ ∈ (0, 1]
be a constant. We begin by defining ordinary and elementary spaces, as was done in [Han65,
BDYW11].

Definition 3.1 (Ordinary spaces). Let `1, . . . , `k ∈ L, and let V = spanC {`1, . . . , `k}. The space V
is called ordinary with respect to L if there are ` ′1, . . . , ` ′k−1 ∈ S1, and ` ∈ L such that V ∩ L ⊆
spanC {` ′1, . . . , ` ′k−1} ∪ {`}.

Definition 3.2 (Elementary spaces). Let `1, . . . , `k ∈ L, and let V = spanC {`1, . . . , `k}. The space V
is called elementary with respect to L if V ∩ L = {`1, . . . , `k}.

Definition 3.3. The set L is a δ−SG∗k configuration if for every linearly independent `1, . . . , `k ∈ L,
there are δ · |L| forms ` in L such that either

1. ` ∈ spanC {`1, . . . , `k},

2. or the linear space spanC {`1, . . . , `k, `} contains a form in L \ (spanC {`1, . . . , `k} ∪ {`}).

Definition 3.4. The set L is a δ−SGk configuration if for every linearly independent `1, . . . , `k ∈ L

there are δ · |L| forms ` ∈ L such that either

1. ` ∈ spanC {`1, . . . , `k},

2. or the linear space spanC {`1, . . . , `k, `} is not elementary.

Given the above definitions, the following theorem was proved in [DSW14, Theorem 1.14],
improving on [BDYW11].

Theorem 3.5. If L is a δ− SG∗k configuration then dim spanC {L} = O (k/δ). If L is a δ− SGk configu-
ration then dim spanC {L} = O

(
Ck/δ

)
where C is a universal constant independent of k.

In the case when k = 1, Definition 3.3 and Definition 3.4 coincide, and match the usual notion
of robust linear Sylvester–Gallai configurations. In this case, the constant C is explicit.

Theorem 3.6 ([DGOS18, Theorem 1.6]). If L is a δ− SG1 configuration then dim spanC {L} 6 4/δ.

Remark 3.7. Note that in [BDYW11, DSW14], the SG configurations are described in terms of points
in Cn, instead of linear forms in S. Both settings are equivalent via duality between points in Cn
and linear forms in S1.

3.2 Radical Sylvester-Gallai configurations

We now define the higher dimension analogues of the above configurations. Let F be a finite set
of irreducible forms of degree at most d that are pairwise non-associate.

Definition 3.8 (Relevant sets). Let P = {P1, . . . ,Pt} be a set of forms in S6d. We say that P is
relevant if for every 1 6 i 6 t, Pi 6∈ rad (P \ Pi).

A relevant set of forms of size k is called a k-relevant set.

Geometrically, a set P is relevant if no subset of P define the same variety as P. We can now
extend Definition 3.3 and Definition 3.4 to configurations with forms of higher degree.
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Definition 3.9 (k-ordinary set). Let P ⊂ F be a k-relevant set. We say that P is k-ordinary with
respect to F if there are forms F1, . . . , Fk ∈ F such that

rad (P) ∩ F ⊂ rad (F1, . . . , Fk−1) ∪ {Fk} .

Definition 3.10 (k-elementary set). Let P ⊂ F be a k-relevant set. We say that P is k-elementary
with respect to F if rad (P) ∩ F = P.

Definition 3.11 (Radical Sylvester Gallai condition for tuples). Let F := {F1, . . . , Fm} ⊂ S6d be a
finite set of irreducible forms and k ∈ N. We say that F is a δ − SG∗k(d) configuration if for every
i 6= j we have Fi 6∈ (Fj) and for every k-relevant subset P ⊂ F, there are δ(m − k) many forms
F ∈ F \ P such that either

• F ∈ rad (P) or

• rad (F,P) ∩ F contains a form R not in rad (P) ∪ {F}.

Note that the robust SG problem from [PS22, GOS22] is the δ − SG∗1(2). The higher codimen-
sional radical SG problem for quadratics that we address here can be stated as follows: what is the
maximum vector space dimension of any 1 − SG∗k (2) configuration? Our main theorem, which
we now formally state, gives an answer to this question.

Theorem 3.12 (Radical SG Theorem for tuples of quadratics). Let F be a 1 − SG∗k(2) configuration.
There is a universal constant c > 0 such that dim(spanC {F}) 6 3c·4

k
.

4 Commutative algebraic preliminaries

4.1 Basic Definitions

In this section we recall the necessary definitions and results needed from commutative algebra
and algebraic geometry [AM69, Eis95].

Definition 4.1 (Regular sequence). Let R be a commutative ring with unity. A sequence of ele-
ments f1, f2, · · · fn ∈ R is called a regular sequence if

(1) (f1, f2, · · · , fn) 6= R, and

(2) for all i ∈ [n], we have that fi is a non-zero divisor on R/(f1, · · · , fi−1)R.

Ideals generated by regular sequences are well-behaved. For example, if f1, · · · , fm is a regular
sequence in S = C[x1, · · · , xn], we know that the ideal I = (f1, · · · , fm) is Cohen-Macaulay [Eis95,
Proposition 18.13]. Cohen-Macaulayness imposes a simple and well-behaved structure on the
primary decomposition of I. In particular, every associated prime of I is a minimal prime and
the height/codimension of every minimal prime of I is the same, i.e. Cohen-Macaulay ideals are
unmixed and equidimensional [Eis95, Corollaries 18.11, 18.14].

We note that if f1, · · · , fm is a regular sequence of forms in S, then f1, · · · , fm are algebraically
independent. Therefore the subalgebra generated by f1, · · · , fm is isomorphic to a polynomial
ring. In particular, the ring homomorphism C[y1, · · · ,ym] → S defined by yi 7→ fi is an isomor-
phism onto its image.

Even though the C-algebra C[f1, . . . , fm] ⊂ S is isomorphic to a polynomial ring, its elements
may not behave well when seen as elements of S. We next present a sufficient condition which will
ensure to us that the subalgebra is well behaved with respect to S, in a way which we formalize
later in Section 5.
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Definition 4.2 (Rη-property). Let η be a non-negative integer. We say that a Noetherian ring R
satisfies the Rη property if the local ring Rp is a regular local ring for all prime ideals p ⊂ R such
that height(p) 6 η.

We recall the definition of an Rη-sequence below [AH20]. A subalgebra generated by an Rη-
sequence has several inetresting properties such as intersection flatness, which were essential in
[AH20, OS22].

Definition 4.3. Let η ∈ N and R a Noetherian ring. A sequence of elements f1, . . . , fn ∈ R is called
a prime sequence (respectively an Rη-sequence) if

1. f1, · · · , fn is a regular sequence, and

2. R/(f1, · · · , fi) is an integral domain (respectively, satisfies the Rη property) for all i ∈ [n].

Remark 4.4. Note that a prime sequence in a ring R is also an R-regular sequence. Further, if R is a
polynomial ring and η > 1, then any Rη-sequence is also a prime sequence.

4.2 Discriminant lemma

The following result provides an elimination theoretic criterion for a complete intersection ideal
to be radical. It is a direct application of [OS22, Lemma 3.22].

Lemma 4.5. Let A = K[x1, . . . , xr,y1, . . . ,ys], B := K[y1, . . . ,ys]. Let F1, · · · , Fk,P be a regular
sequence of irreducible forms in A where F1, · · · , Fk ∈ B. Suppose P ∈ A \ (y1, . . . ,ys). If I =
(F1, · · · , Fk) ⊂ B is radical and discx1 (P) 6∈ q · S where q is any minimal prime of I in B, then the
ideal (F1, · · · , Fk,P) is radical in A

Proof. Let p be a minimal prime of the ideal (F1, · · · , Fk,P) in A. Since F1, · · · , Fk,P is a regular
sequence we have codim (p) = r+ s− k− 1. Let q = p∩B. Note that q is a prime ideal containing
F1, · · · , Fk in B. Therefore codim (q) > s − k. If codim (q) > s − k, then codim (q ·A) > r + s − k.
Since q ·A ⊂ p, we must have q ·A = p, which is a contradiction as P ∈ p, whereas P 6∈ (y1, · · · ,ys).
Therefore we must have that codim (q) = s−k. Then q is a minimal prime of (F1, · · · , Fk) in B and
by [OS22, Lemma 3.22] we conclude that the ideal (F1, · · · , Fk,P) is radical in A.

5 Wide vector spaces and relative linear spaces

5.1 Wide vector spaces and algebras

We now define the main object that we will use in order to prove that Sylvester-Gallai config-
urations are low dimensional: wide Ananyan-Hochster vector spaces. Such spaces were used
in [OS22] to give a positive solution to the radical SG problem for cubic forms. Our definition
is slightly simpler than the one from [OS22, Definition 4.8], as we don’t need the multiplicative
factor used there.

Definition 5.1 (Wide vector spaces). A vector space V = V1+V2 where Vi ⊂ Si is said to be r-wide
if, for any nonzero Q ∈ V2 we have rankQ > dimV + r. In this case, we also say that C[V] is an
r-wide algebra.

We note that an r-wide vector space is a special case of the (w, t)-wide AH vector spaces from
[OS22]. An r-wide vector space is precisely a (r, 1)-wide AH vector space according to [OS22].
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Proposition 5.2 ([OS22], Proposition 4.11). Suppose U = U1 + U2 is a vector space in S and suppose
r ∈ N. There exists an r-wide vector space V = V1 + V2 with C [U] ⊆ C [V] such that dimV2 6 dimU2
and dimV1 6 3dimU2+1 · (r+ dimU).

We now list some basic properties regarding these spaces. The first three of these are algebraic
properties that show how these spaces are useful, and the next three show how we can build and
modify these spaces, and how they behave with respect to projection.

Theorem 5.3 ([AH20], Theorem 1.10). Let V ⊂ S2 be a vector space of dimension d such that rankQ >
d− 1 + dη/2e. Then every sequence of linearly independent elements of V is an Rη sequence.

Corollary 5.4. Suppose V = V1 + V2 is a r-wide vector space with r > 1. If `1, . . . , `a is a linearly
independent sequence in V1 and Q1, . . . ,Qb is a linearly independent subset of V2, then the sequence
`1, . . . , `a,Q1, . . . ,Qb is a prime sequence. In particular, the ideal (Q1, . . . ,Qb) is a prime ideal in the
quotient ring S/ (`1, . . . , `a).

Proof. That `1, . . . , `a form a prime sequence follows from the fact that they are independent linear
forms. Let U := spanC

{
Q1, . . . ,Qb

}
be the vector space spanned by Q1, . . . ,Qb in S/ (`1, . . . , `a).

Every nonzero form in U has rank at least dimV1 + dimV2 + r − a, which is greater than dimU.
Therefore, by Theorem 5.3, the forms `1, . . . , `a,Q1, . . . ,Qb form a R1 sequence. By [AH20, Discus-
sion 1.3], such a sequence is also a prime sequence. The last statement follows by the definition of
prime sequences (Definition 4.3).

Claim 5.5. Suppose V := V1 + V2 is r-wide with Vi ⊂ Si. If Q ∈ C [V] is a quadratic form of rank less
than r, then Q ∈ C [V1]. If P ∈ (V) is a quadratic form of rank less than r, then P ∈ (V1).

Proof. SupposeQ = Q2+Q1 withQi ∈ C [Vi]. We haveQ2 = Q−Q1 whence rankQ2 6 r+dimV1.
ThereforeQ2 = 0. Similarly, suppose P = P1 +P2 with P2 ∈ V2 and P1 ∈ (V1). We have P2 = P−P1
whence rankP2 6 r+ dimV1. Therefore P2 = 0.

Remark 5.6. Suppose V = V1 + V2 is a r-wide vector space, and suppose U ⊂ S1 is a vector space
of dimension k. We have dimV + U 6 dimV + k. Further, we have (V + U)2 = V2. For every
Q ∈ (V +U)2 we therefore have rankQ > (r − k) + dim(V +U). Therefore V +U is a r − k-wide
vector space.

Remark 5.7. Suppose V = V1 + V2 is a r-wide vector space and ϕ := ϕα,V1 is a projection mapping
as defined in Definition 2.14. If Q ∈ V2 is such that rankϕ(Q) = a in S [z] / (V1) then a − 1 6
rankQ 6 a in S/ (V1). Since V is r-wide, this proves that a > r+dimV2. Since dimφ(V1) = 1, and
since dimφ(V2) 6 dimV2, we get a > r− 1 + (dimφ(V1) + dimφ(V2). This shows that φ(V) is at
least r− 1 wide.

The following lemmas show that radical membership among linear forms and certain elements
in the ideal (V) imply relationships between the “low rank” and “high rank” parts individually.

Lemma 5.8. Let F1, . . . , Fk ∈ S62 be irreducible forms. Let V = V1 + V2 be r-wide with r > k + 2 and
let z ∈ V1. Suppose each Fi is either of the form Fi = xi with xi ∈ S1 or of the form Fi = Qi + zxi with
Qi ∈ V2 and xi ∈ S1. If

Fk ∈ rad (F1, . . . , Fk−1)

then zxk ∈ (x1, . . . , xk−1) and Qk ∈ spanC {Q1, . . . ,Qk−1} where Qi = 0 if Fi ∈ S1.
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Proof. Let U := (x1, . . . , xk). In the ring S/U, the vector space V is (r − k)-wide by Remark 5.6. By
Corollary 5.4, (Q1, . . . ,Qk−1) is a prime ideal in S/U. Therefore we haveQk =

∑k−1
i=1 αiQ in S/ (U)

for αi ∈ C. This impliesQk =
∑k−1
i=1 αiQi+E in S, where E ∈ (U). Since rankE 6 dimU 6 k, and

since V is r-wide, we must have E = 0, proving the first required statement.
Let I := (Q1, . . . ,Qk−1, x1, . . . , xk−1). Since (U) is prime, and (Q1, . . . ,Qk−1) is prime in S/ (U),

the ideal I is prime. Since Qk ∈ spanC {Q1, . . . ,Qk−1} and since Fi ∈ I for i 6 k − 1, we have
zxk ∈ I. SinceW is r-wide, this implies zxk ∈ (x1, . . . , xk−1), completing the proof.

Lemma 5.9. Let F1, . . . , Fk ∈ S62 be irreducible forms. Let V = V1 + V2 be r-wide with r > k + 2 and
let z ∈ V1. Suppose each Fi is either of the form Fi = xi with xi ∈ S1 or of the form Fi = Qi + zxi with
Qi ∈ V2 and xi ∈ S1. Suppose further that z, x1, . . . , xk−1 are linearly independent. If

Fk ∈ rad (F1, . . . , Fk−1) ,

and if xk ∈ (x1) in S/ (z), then F1 = Fk.

Proof. First assume thatQ1 6= 0. By relabelling F2, . . . , Fk we can assume that spanC {Q1, . . . ,Qk−1} =

spanC {Q1, . . . ,Qt} for some t 6 k − 1. For each i ∈ [t+ 1,k− 1], suppose Qi =
∑t
j=1 βijQj. For

each such i, let yi := xi −
∑t
j=1 βijxj. Note that x1, . . . , xt,yt+1, . . . ,yk−1 are linearly indepen-

dent in S/ (z). We have (F1, . . . , Fk−1) = (F1, . . . , Ft, zyt+1, . . . , zyk−1). Let J = (yt+1, . . . ,yk−1). By
Remark 5.6 the vector space V is r − k-wide in S/J, therefore rank(Q1, . . . ,Qt) > t + r − k, and
consequently rank(F1, . . . , Ft) > t+ r− k− 1. By Theorem 5.3, the ideal (F1, . . . , Ft) is prime in S/J,
therefore (F1, . . . , Ft) + J is a prime ideal containing rad (F1, . . . , Fk−1).

Let xk = x1 + αz. Suppose Fk ∈ S2. By Lemma 5.8 we have Qk ∈ spanC {Q1, . . . ,Qt}, say
Qk =

∑t
j=1 γiQi. We have Fk −

∑t
j=1 γiQi = z(αz + x1 −

∑t
j=1 γjxj) ∈ (F1, . . . , Ft) + J. Since the

latter ideal is a graded prime ideal, we have either z ∈ J or (αz+x1 −
∑t
j=1 γjxj) ∈ J. By the linear

independence assumption on the xi, this is only possible if (αz+x1−
∑t
j=1 γjxj) = 0. This implies

α = 0 and γ1 = 1 and γj = 0 for j > 2. This implies F1 = Fk as required.
Suppose now that Fk ∈ S1. We then have Fk ∈ (F1, . . . , Ft) + J, and therefore x1 +αz ∈ J, which

contradicts the linear independence assumption.
We are left with the case when Q1 = 0. After rearranging the forms, let Q2, . . . ,Qt be such

that spanC {Q1, . . . ,Qk−1} = spanC {Q2, . . . ,Qt}, and let yi be defined as in the previous case. Note
that y1 = x1. Let J := (y1,yt+1, . . . ,yk+1). The ideal (F2, . . . , Ft) + J is a prime ideal containing
rad (F1, . . . , Fk−1). As before suppose xk = x1 + αz.

Suppose Fk ∈ S2 so Qk =
∑t
j=2 γiQi. We have Fk −

∑t
j=2 γiFi = z(x1 + αz −

∑t
j=2 γixi ∈

(F2, . . . , Ft) + J. Therefore, either z ∈ J, or x1 + αz −
∑t
j=2 γixi ∈ J. By the linear independence

assumption, this implies αi = 0 for i = 2, . . . , t contradicting the fact that Fk ∈ S2.
Suppose Fk ∈ S1. In this case we have F1 − Fk = αz ∈ (F2, . . . , Ft) + J, which implies αz ∈ J. By

the independence assuption, we must have α = 0, whence F1 = Fk as required.

5.2 Relative linear spaces

Now that we have proved some properties of wide vector spaces, we introduce the notion of
relative linear spaces and establish some properties which will be useful to us in the next section.
This notion of relative linear spaces was used in [GOS22] in their proof of the robust SG theorem
for quadratics.
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Definition 5.10 (Forms close to a vector space). Given a vector space V = V1 + V2 where Vi ⊆ Si,
we say that a quadratic form P is s-close to V if there is a formQ ∈ C[V] such that rank(P−Q) 6 s.
If a form P is not r-close to V , for any r 6 s, we say that P is s-far from V .

Given a linear form `, we say ` is 1-close to V if ` 6∈ V1.

Remark 5.11. Given a set of forms F, we will say that F is s-close to V if all forms in F are at most
s-close to V .

Proposition 5.12 (Quadratics close to wide vector spaces). Let V = V1 +V2 be an r-wide vector space
and s < r/2. If P is s-close to V , then for anyQ,Q ′ ∈ C[V] such that rank(P −Q) = rank(P −Q ′) = s,
we have that

Lin (P −Q) + V1 = Lin
(
P −Q ′

)
+ V1.

In other words, (Lin (P −Q) + V1)/V1 = (Lin (P −Q ′) + V1)/V1 for any two decompositions.

Proof. Let R = P − Q and R ′ = P − Q ′. Thus, we have that R − R ′ = Q ′ − Q ∈ C[V] and we
have rank(Q ′ − Q) = rank(R − R ′) 6 rank(R) + rank(R ′) 6 2s < r. Hence, by Remark 5.5, we
have that Q ′ − Q ∈ C[V1]. Now, from R = R ′ + (Q ′ − Q) and Q ′ − Q ∈ C[V1], we have that
Lin (R) ⊆ Lin (R ′) + V1, and similarly, we have that Lin (R ′) ⊆ Lin (R) + V1.

Definition 5.13 (Relative space of linear forms). Let r,B be integers such that r > 2B+ 1. If V is an
r-wide vector space and P is s-close to V for s < r/2 we can define

LV (P) :=


L (P) + V1, if P ∈ S1

Lin (P −Q) + V1, if P ∈ S2, s 6 B
spanC {P} , otherwise

where Q ∈ C[V] is a form such that rank(P −Q) = s. We also define the quotient space

LV (P) :=

{
LV (P) /V1, if s 6 B
0, otherwise

Further, we define PHV to be the unique polynomial in V2 such that P − PHV is s-close to V1. Finally
we define PLV = P − PHV . Note that LV (P) = LV

(
PLV
)
. The superscript H indicates that PHV is the

high-rank part of P with respect to V and the superscript L indicates that PLV is the low-rank part
of P with respect to V .

Note that while the definition of LV (P) depends on the parameter B, we suppress this from
the notation for brevity. It will be clear from context the value of the parameter B whenever we
use LV (P).

Here are some useful results about relative linear spaces, and how they change when V is
modified. Lemma 5.16 characterises exactly when dimLV (F) is unchanged when LV (G) is added
to V1. As the lemma shows, this happens when F and G do not share any common variables other
than those that occur in V .

Proposition 5.14. Suppose V is a r-wide space and P is s-close to V for 2s < r. If P ∈ (V) then PHV ∈ V2
and PLV ∈ (V1).

Proof. Since P is s-close to V we can write P = PHV + PLV . Since PHV ∈ V2, we have PLV ∈ (V) by
assumption. We can write PLV = P2 + P1 with P1 ∈ (V1) and P2 ∈ V2. In S/ (V1) we have P2 = 0.
Since V is r-wide, this implies P2 = 0 in S. Therefore PLV ∈ (V1).
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Proposition 5.15. Suppose V = V1 + V2 is a r-wide vector space with r > 2B + 1, and suppose P ∈ S2
is B-close to V . Then Y := LV (P) + V2 is a r − 2B wide vector space. If further r > 4B + 1 then for any
other polynomial Q that is also B close to V we have QHV = QHY .

Proof. The first statement follows since Y is obtained by adding at most 2B linear forms to a basis
of V . We now have Q = QHV +QLV = QHY +QLY whence QHV −QHY = QLY −QLV . Here, we use the
fact that B < 4r + 1 to ensure that QHY ,QLY are well defined. Since both QLY ,QLV have rank at most
B in S/ (Y) we obtain that QHV = QHY .

Lemma 5.16. Suppose V = V1 + V2 is a r-wide vector space with r > 4B + 1, and suppose F,G ∈ S2 are
both B close to V . Let Y := LV (G) + V2. Then the following hold.

1. LY (F) = LV (G) + LV (F).
2. dimLV (F) = dimLY (F) if and only if LV (F) ∩ LV (G) = {0}.
3. If F 6∈ (V) and dimLV (F) = dimLY (F) then F 6∈ (Y).

Proof. By Proposition 5.15 we have H := FHV = FHY . Let P,R be such that F − H − P = R with
P ∈ C [V1] and LV (F) = Lin (R) + V1. Let P ′,R ′ be such that F −H − P ′ = R ′ with P ′ ∈ C [Y1] and
LY (F) = Lin (R ′) + Y1. We have the equation R ′ + P ′ = R + P, which implies that Lin (R ′) + Y1 =
Lin (R) + Y1. Since V1 ⊂ Y1, we have

Lin
(
R ′
)
+ Y1 = Lin (R) + V1 + Y1. (1)

Substituting LV (F) ,LY (F) in Eq. (1) and using the fact that Y1 = LV (G) we get LY (F) = LV (G)+
LV (F).

Eq. (1) also implies

LY (F) =
Lin (R ′) + Y1

Y1
=

LV (F) + Y1

Y1
=

LV (F)

LV (F) ∩ Y1

therefore

dimLV (F) = dimLY (F) ⇐⇒ dimV1 = dim (LV (F) ∩ Y1)

⇐⇒ V1 = LV (F) ∩ Y1 (since V1 ⊆ LV (F) ∩ Y1)

⇐⇒ {0} = LV (F) ∩ LV (G) ,

proving the second item.
Assume now that F ∈ (Y). By Proposition 5.14 we have F − H ∈ (Y1). Further, by assumption

we have F − H 6∈ (V1). In S/ (V1) we have 0 6= F−H = R ∈ (Y1) which in turn implies that
Lin

(
R
)
∩ Y1 6= {0} by Lemma 2.13. We have R =

∑
aibi for linear forms a1, . . . ,at,b1, . . . ,bt

where ai,bj span LV (F). Therefore Lin
(
R
)
=
∑
aibi, whence Lin

(
R
)
⊆ LV (F). This shows

that LV (F) ∩ LV (G) 6= 0, which by item 2 implies dimLV (F) 6= dimLY (F), contradicting the
assumption.

Note that the condition LV (F)∩LV (G) = {0} is symmetric in F and G. Therefore, we have that
dimLV (F) = dimLLV(G)+V2

(F) if and only if dimLV (G) = dimLLV(F)+V2
(G). Further, in this

case we have F 6∈ (LV (G) ,V2) and also G 6∈ (LV (F) ,V2) if F,G 6∈ (V). In the next subsection, we
introduces the notion of integral sequences that generalises the above.
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6 Integral sequences and strong sequences

In this section we define two special types of sequences of forms, namely integral sequences and
strong sequences. We will use the strong sequences to construct our core algebra, that is, to prove
that there is a small algebra such that all quadratics are close to it. We will then use integral
sequence to handle the case where all the quadratics are close to a core algebra. We will prove that
the ideals generated by integral and strong sequences are always radical and prime, respectively.

6.1 Integral sequences

Item 2 of Lemma 5.16 gives us a condition for when the relative linear spaces of two linear forms
are disjointed. Intuitively, this is equivalent to the forms depending on disjoint sets of variables,
other than those occurring in V . This is made formal in Corollary 6.4. The notion of integral
sequences extends this to more that two forms. As in Lemma 5.16, we will require the forms to be
close to a wide vector space for the notion to be well defined.

Definition 6.1 (Integral Sequences). Let r,B, t be integers with r > 4tB+1. Suppose V = V1+V2 is
a r-wide vector space. Let F1, . . . , Ft ∈ F be a sequence of forms that are B-close to V . Let U0 := V
and let Ui := LUi−1 (Fi) + V2. The sequence F1, . . . , Ft is called an integral sequence over V if for
each iwe have

• dimLV (Fi) = dimLUi−1 (Fi), and

• Fi 6∈ (V)

When V is clear from context we just call F1, . . . , Ft an integral sequence.

In the rest of this section, we will assume that r > 4tB+ 1.

Proposition 6.2. Suppose V is a r-wide vector space. Suppose F1, . . . , Ft are a sequence of forms, and
suppose Ui := LUi−1 (Fi) + V2 with U0 := V . Then

1. Ut =
∑t
j=1 LV

(
Fj
)
+ V2.

2. dimLV (Fi) = dimLUi−1 (Fi) for every 2 6 i 6 t if and only if for every 2 6 i 6 t we have

LV (Fi) ∩

i−1∑
j=1

LV
(
Fj
) = {0} .

3. If additionally Fi 6∈ (V) for every 1 6 i 6 t, then Fi 6∈ (Ui−1) for 2 6 i 6 t.

Proof. We prove the statements by induction on t. We will prove the additional statement that
LUt−1 (Ft) =

∑t
i=1 LV (Ft). Each of the three items are true by definition when t = 1. Suppose the

statements are true for t− 1.
Now the space Ut−2 is 4B + 1 wide by Remark 5.6. Applying Lemma 5.16 to Ut−2, Ft, and

Ft−1 we can deduce that LUt−1 (Ft) = LUt−2 (Ft) + LUt−2 (Ft−1). The space Ut−3 is also 4B +
1 wide, therefore applying Lemma 5.16 to Ut−3, Ft, and Ft−2 we can deduce that LUt−2 (Ft) =
LUt−3 (Ft) + LUt−3 (Ft−2). Repeating this and substituting, we deduce that LUt−1 (Ft) = LV (Ft) +∑t
i=2 LUt−i (Ft−i+1). By the induction hypothesis, we get that LUt−i (Ft−i+1) =

∑t−i
j=1 LV

(
Fj
)
.

Therefore we get LUt−1 (Ft) =
∑t
i=1 LV (Fi). The first item now follows by adding V2 to both

sides.
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Suppose now that dimLV (Fi) = dimLUi−1 (Fi) for every 2 6 i 6 t−1. Suppose dimLV (Ft) =
dimLUt−1 (Ft). This implies dimLUt−1 (Ft) = dimLUt−2 (Ft), since V ⊂ Ut−2 ⊂ Ut−1. By item
2 of Lemma 5.16 applied to Ut−2, Ft−1, Ft we can deduce that LUt−2 (Ft) ∩ LUt−2 (Ft−1) = {0}.

Using the fact that LUt−1 (Ft) =
∑t
i=1 LV (Fi), this is equivalent to LV (Fi)∩

(∑i−1
j=1 LV

(
Fj
))

= {0}.

Conversely, starting with this assumption we can deduce that dimLUt−1 (Ft) = dimLUt−2 (Ft).
Note that F1, . . . , Ft−2, Ft also satisfy the conditions of item 2. Therefore, by induction we can
deduce that dimLUt−2 (Ft) = dimLV (Ft). This completes the proof of item 2.

Applying the induction hypothesis to F1, . . . , Ft−2, Ft, we can deduce that Ft 6∈ (Ut−2). We can
now apply Lemma 5.16 to Ut−2, Ft and Ft−1 to deduce that Ft 6∈ (Ut−1), proving item 3.

Corollary 6.3. If F1, . . . , Ft is a integral sequence, then so is any permutation of F1, . . . , Ft.

Proof. The second condition for integral sequences holds irrespective of the order of the forms. By
Proposition 6.2, the first condition for integral sequences is equivalent to

LV (Fi) ∩

i−1∑
j=1

LV
(
Fj
) = {0}

for every 2 6 i 6 t. This in turn is equivalent to dim
∑t
j=1 LV

(
Fj
)
=
∑t
j=1 dimLV

(
Fj
)
, which is

independent of the order of the forms.

Corollary 6.4. Let F1, . . . , Ft be an integral sequence with respect to V and A := C
[
V2,
∑t
i=1 LV (Fi)

]
.

There exist vector spaces of linear forms Y1, . . . ,Yt ⊂ A such that Yi ∩ (V + Y1 + · · ·+ Yi−1) = (0) for all
i and Fi ∈ C [V , Yi]. Furthermore, Fi 6∈ (V , Y1, · · · , Yi−1, Yi+1, · · · , Yt).

Proof. By Proposition 6.2 we can take Yj := LV
(
Fj
)

. By Corollary 6.3, we may switch Fi and Ft.
Then by Proposition 6.2 part (3), we see that Fi 6∈ (V , Y1, · · · , Yi−1, Yi+1, · · · , Yt).

Lemma 6.5. Suppose V is a r-wide vector space and F1, . . . , Ft is an integral sequence with respect to V .
Suppose F0 ∈ C [V] \ {0}. Then F0, F1, . . . , Ft is a regular sequence in S.

Proof. Note that by Corollary 6.4 we may assume that there exist vector spaces of linear forms
Y1, . . . ,Yt of A such that Yi∩ (V +Y1 + · · ·+Yi−1) = (0) and Fi ∈ C [V , Yi]. LetU = V +Y1 + · · ·+Yt
and A = C[U]. Since V is r-wide and r > 4Bt + 1, we know that U is 2Bt + 1-wide, and hence has
a basis consisting of a prime sequence. Thus A→ S is a free extension (see [AH20, Section 2]) and
hence any regular sequence in A is also a regular sequence in S (see [Sta15, Tag 00LM]). Therefore
it is enough to prove that F0, F1, · · · , Ft is a regular sequence in A = C[U].

Note that the element F0 is a regular sequence in A = C[V + Y1 + · · · + Yt]. We will prove by
induction that if F0, · · · , Fi is a regular sequence in A, then so is F0, · · · , Fi+1. Suppose F0, · · · , Fi
is a regular sequence in A (and hence in Ai = C[V + Y1 + · · · + Yi]). If Fi+1 is a zero divisor
in A/(F0, · · · , Fi), then Fi+1 is in a minimal prime p of (F0, · · · , Fi) in A. Since Ai → A is a free
extension and Ai is generated by a prime sequence in S, we must have that p = q · A for some
minimal prime (F0, · · · , Fi) ⊂ q in Ai. Note that by Proposition 6.2 we know that Fi+1 6∈ (V + Y1 +
· · ·+ Yi). This is a contradiction since Fi+1 ∈ q ·A and q ⊂ (V + Y1 + · · ·+ Yi).

Lemma 6.6. Suppose V is a r-wide vector space and F1, . . . , Ft is an integral sequence with respect to V .
Then (F1, . . . , Ft) is radical and for any minimal prime p ⊃ (F1, . . . , Ft) we have that p ∩ C[V] = (0).
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Proof. Note that by Corollary 6.4 we may assume that there exist vector spaces of linear forms
Y1, . . . ,Yt of A such that Yi∩ (V+Y1 + · · ·+Yi−1) = (0) and Fi ∈ C [V , Yi]. By Lemma 6.5, we know
that F1, · · · , Ft is a regular sequence. Hence ht(p) = t for any minimal prime p ⊃ (F1, . . . , Ft).
Let F0 be a non-zero element in C[V]. Then F0, · · · , Ft is again a regular sequence and hence
ht(F0, · · · , Ft) = t + 1. This implies F0 6∈ p, as ht(p) = t implies that p contains no regular se-
quence of length t+ 1. Therefore we must have that p ∩ C[V] = (0).

Now we will show that (F1, · · · , Ft) is a radical ideal in S. Let A = C[V + Y1 + · · · + Yt]. Since
A→ S is a free extension and the generators of A form a prime sequence in S, it is enough to prove
that (F1, · · · , Ft) is radical in A.

For each i, we assume that Fi is monic in yi ∈ Yi after a possible change of coordinates in Yi.
There exists such a variable since Fi 6∈ (V). Let Ui := Yi/spanC {yi} and Z = V + U1 + · · · + Ut.
Then A = C[Z,y1, · · · ,yt]. We will show by induction that (F1, · · · , Ft) is radical.

Note that (F1) is prime. Assume the statement holds for i − 1. We have discyi (Fi) ∈ C [V ,Ui].
Note that p∩C [V ,Ui] = (0) for every minimal prime p of (F1, . . . , Fi−1), as Fi−1 6∈ (V , Y1, · · · , Yi−2, Yi)
by Corollary 6.4. Therefore Lemma 4.5 implies (F1, . . . , Fi) is radical.

Corollary 6.7. Suppose F1, . . . , Ft is an integral sequence with respect to V . Then F1, . . . , Ft form a t-
relevant set.

Proof. The sequence F1, . . . , Ft−1 is an integral sequence, and therefore by Lemma 6.5 it is a regular
sequence. Since any regular sequence is a relevant set, we are done.

6.2 Strong sequences

Integral sequences are only defined when the forms are close to a wide vector space. One special
case is when every form is of low rank, and therefore every form is close to the vector space {0}.
To deal with forms that are not close to a vector space (which is the general case), we introduce
the notion of strong sequences.

We first extend the notion of the rank of a quadratic form to vector spaces of quadratic forms.

Definition 6.8. Let V2 ⊂ S2 be a vector space. Define minrank (V) as minQ∈V2,Q 6=0 rankQ. If
Q1, . . . ,Qt are quadratic forms then define minrank (Q1, . . . ,Qt) = minrank

(
spanC {Q1, . . . ,Qt}

)
.

Definition 6.9. Let k, t ∈ N be such that t 6 k + 1. Given forms Q1, . . . ,Qt ∈ S2 we say that
Q1, . . . ,Qt is a k-strong sequence ifQ1, . . . ,Qt are linearly independent and minrank (Q1, . . . ,Qt) >
k+ 5.

Remark 6.10. By Theorem 5.3, if Q1, . . . ,Qt is k-strong then Q1, . . . ,Qt is a R3 sequence. By the
discussion in [AH20, Discussion 1.3], the ideal (Q1, . . . ,Qt) is prime and the ring S/ (Q1, . . . ,Qt)
is a UFD.

Lemma 6.11. Suppose F2 ⊂ S2, and suppose Q1, . . . ,Qt is a maximal k-strong sequence in F2 with
t 6 k. For any r > 2(k + 5) there exists a r-wide vector space W with dimW1 6 7 · r · 3t, dimW2 6 t

such that every Q ∈ F2 is k+ 4-close toW.

Proof. LetU := spanC {Q1, . . . ,Qt}. By Proposition 5.2, there exists r-wide vector spaceW such that
U ⊂ C[W], dimW1 6 3t+1 · (r+ t) and dimW2 6 t. Let Q ∈ F2 be a form. Consider the sequence
Q1, . . . ,Qt,Q, which has length at most k + 1. By assumption, Q1, . . . ,Qt,Q is not a k-strong
sequence. Therefore, we have either minrank (Q1, . . . ,Qt,Q) 6 k+ 4 or Q ∈ spanC {Q1, . . . ,Qt}.

Suppose P = βQ +
∑
αiQi is such that rankP = minrank (Q1, . . . ,Qt,Q) 6 k + 4. Since

Q1, . . . ,Qt is k-strong we have β 6= 0. Therefore after scalar multiple we have Q =
∑
αiQi + P,
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and Q is k + 4-close to W. If Q ∈ spanC {Q1, . . . ,Qt} then Q ∈W and therefore Q is k + 4-close to
W.

We now define the notion of strong Sylvester-Gallai configurations. We show that a constant
fraction of the forms in any such configuration is close to a vector space of constant dimension. 4

Definition 6.12. Let F2 ⊂ S2 be a finite set of forms. Let 0 < ε 6 1 and k, t ∈ N with t 6 k. We
say that F2 is a strong (ε,k) − SG∗t(2) configuration if for every k-strong sequenceQ1, . . . ,Qt with
Qi ∈ F2, there are ε(|F2|− 1) forms Qt+1 ∈ F2 such that either:

1. Q1, . . . ,Qt,Qt+1 is not a k-strong sequence, or

2. there is a form R ∈ F2 such that R ∈ (Q1, . . . ,Qt+1) \ (Q1, . . . ,Qt) ∪ (Qt+1).

Lemma 6.13. Let F2 ⊂ S2 finite, with m := |F2|. Let 0 < ε 6 1 and k, t ∈ N with 2 6 t 6 k. If F2 is a
strong (ε,k) − SG∗t(2) configuration then either

1. F2 is a strong (ε/4,k) − SG∗t−1(2) configuration, or

2. there exist a vector space W with dimW1 6 7 · r · 3t+1+16/ε, dimW2 6 t+ 1 + 16/ε such that at
least εm/4 forms in F2 are k+ 4 close toW.

Proof. Let ε ′ := ε/4. Suppose F2 is not a strong (ε ′,k) − SG∗t−1(2) configuration. If there exist no
k-strong sequences of length t− 1, then there exists some maximal k-strong sequence of length at
most t − 2, and the required space W exists by Lemma 6.11. We can therefore assume that there
exists a k-strong sequence Q1, . . . ,Qt−1, and a set B ⊂ F2 of size at least (1 − ε ′)m such that for
every Q ∈ B we have that Q1, . . . ,Qt−1,Q is a k-strong sequence, and

F2 ∩ (Q1, . . . ,Qt−1,Q) \ (Q1, . . . ,Qt−1) = {Q}. (2)

Let V := spanC {Q1, . . . ,Qt−1}. Forms P1,P2 ∈ B are pairwise independent over S2/V , since if
(P1) = (P2) in S2/V , then P2 ∈ (Q1, . . . ,Qt−1,P1) \ (Q1, . . . ,Qt−1) ∪ (P1), contradicting P1 ∈ B.

Let P ∈ B. The sequenceQ1, . . . ,Qt−1,P is k-strong by definition of B. Since F2 is a strong (ε,k)−
SG∗t(2) configuration, there are P1, . . . ,Ps ∈ F2 with s > εm such that either Q1, . . . ,Qt−1,P,Pi is
not k-strong, or there is Ri ∈ F2 such that Ri ∈ (Q1, . . . ,Qt−1,P,Pi) \ (Q1, . . . ,Qt−1,P) ∪ (Pi).

Let G := {Pi |Q1, . . . ,Qt−1,P,Pi is not a k-strong sequence}. Let W be the r-wide vector space
obtained by applying Proposition 5.2 to V + spanC {P}, we have dimW1 6 7 · r · 3t, dimW2 6 t.
Every form in G is k+ 4-close toW. Hence, if |G| > ε ′m then we are done.

We are left with the case that |G| 6 ε ′m. After relabelling, let P1, . . . ,Ps ′ be the forms that are
in B \ G. Since |B| > (1 − ε ′)m and |G| 6 ε ′mwe have s ′ > (ε− 2ε ′)m.

Now for each i 6 s ′, there is a form Ri ∈ F2∩ (Q1, . . . ,Qt−1,P,Pi) \ (Q1, . . . ,Qt−1,P)∪ (Pi) say
Ri =

∑
αjQj + βP + Pi. Since Pi ∈ B we have β 6= 0. Suppose P1, . . . ,Ps ′′ are such that

B ∩ ((Q1, . . . ,Qt−1,P,Pi) \ (Q1, . . . ,Qt−1,P)) = {Pi} . (3)

If Ri = αRj with α 6= 0 for i, j 6 s ′′, then we have αPj =
∑
α ′iQi + Pi + β

′P, contradicting Eq. (3)
for Pi. Therefore we have s ′′ 6 |F2 \ B| 6 ε ′m. Hence, there are at least ε ′m forms Pi such that∣∣spanC {P,Pi} ∩B

∣∣ > 3 in S2/V . Since this holds for every P ∈ B, the set B is a (ε ′, 2)-linear-SG

4As we mentioned in Section 1, we need this notion of strong SG configurations since in our setting we cannot
quotient by quadratic forms, as the quotient ring will not be a polynomial ring and the previous results on SG configu-
rations may not apply. In particular, this is where our approach is more complex than [BDYW11], as in their case their
quotients were all isomorphic to polynomial rings.
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configuration in S2/V . By Theorem 3.6 we have that dim spanC {B} 6 4/ε ′ in S2/V and that
dim spanC {B} + V 6 t + 1 + 4/ε ′. Applying Proposition 5.2 to spanC {B} + V gives us a r-wide
vector spaceW with dimW1 6 7 · r · 3t+1+4/ε ′ , dimW2 6 t+ 1 + 4/ε ′ and B ⊂W.

Lemma 6.14. Let F2 ⊂ S2 finite, with m := |F2|. Suppose F2 is a strong (ε,k) − SG∗1(2) configuration.
Then there is a r-wide vector space W with dimW1 6 7 · r · 32+16/ε, dimW2 6 2 + 16/ε such that at
least εm/4 forms in F2 are k+ 5 close toW.

Proof. Let ε ′ := ε/4. Let B be the set of forms in F2 of rank at least k + 5. If |B| 6 (1 − ε ′)m, then
there are at least ε ′m forms that are k + 5 close to the zero vector space and we are done with
W = 0. We are left with the case when |B| > (1 − ε ′)m.

Let P ∈ B. Let G := {Pi |P,Pi is not a k-strong sequence}. Let W be the r-wide vector space
obtained by applying Proposition 5.2 to spanC {P}, we have dimW1 6 21 · r, dimW2 6 1. Every
form in G is k + 4 close to W. If therefore |G| > ε ′m then we are done. We are left with the case
that |G| 6 ε ′m.

Suppose P1, . . . ,Pr ′ are the forms in B \ G such that P,Pi is a k-strong sequence and there exist
Ri ∈ (P,Pi) \ (P)∪ (Pi). We have r ′ > 2ε ′m. Suppose P1, . . . ,Pr ′′ are such that (P,Pi)∩B = {P,Pi}.
If Ri = βRj for i, j 6 r ′′ then Pj ∈ spanC {P,Pi}, contradicting choice of Pi. Therefore there are at
least ε ′m many forms Pi such that |(P,Pi) ∩B| > 3. Since this holds for every P, we have that B
is a (ε ′, 2)-linear-SG, and by Theorem 3.6 we have that dim spanC {B} 6 4/ε ′. If W is the r-wide
space obtained by applying Proposition 5.2 to B then dimW1 6 7 · r ·34/ε ′ , dimW2 6 2+4/ε ′ and
B ⊂W, completing the proof.

Corollary 6.15. Suppose F = F1 t F2 be a 1 − SG∗k(2) configuration with |F2| = m2. Then there exist a
r-wide vector spaceW with dimW1 6 7 · r · 3k+1+16·4k−1

, dimW2 6 k+ 1 + 16 · 4k−1 such that at least
m2/4k forms in F2 are k+ 5 close toW.

Proof. We first show that F2 is a strong (1,k) − SG∗k(2) configuration. Suppose Q1, . . . ,Qk is a
k-strong sequence. Every subset of Q1, . . . ,Qk is also a k-strong sequence, and hence gener-
ates a prime ideal by Remark 6.10. By definition Q1, . . . ,Qk are linearly independent, therefore
Q1, . . . ,Qk form a k-relavent set. For every Qk+1 ∈ F2, if Q1, . . . ,Qk+1 is a k-strong sequence,
then (Q1, . . . ,Qk+1) is prime and Qk+1 6∈ rad (Q1, . . . ,Qk). Therefore there exists R ∈ F such that
R ∈ (Q1, . . . ,Qk+1) \ (Q1, . . . ,Qk) ∪ (Qk+1). Since Qi ∈ F2 it must be that R ∈ F2. This shows that
F2 is a strong (1,k) − SG∗k(2) configuration.

Now let t > 1 be the smallest number such that F2 is a strong
(
4k−t,k

)
− SG∗t(2) configura-

tion. By the previous paragraph, we have t 6 k. If t = 1, the required vector space exists by
Lemma 6.14. If t > 1, we apply Lemma 6.13. Since F2 is not a strong

(
4k−t−1,k

)
− SG∗t−1(2)

configuration, case 1 of Lemma 6.13 does not hold, Therefore there exists a vector space W with
dimW1 6 7 · r · 3t+1+16·4k−t , dimW2 6 t + 1 + 16 · 4k−t such that at least 4k−t−1 ·m2 forms in F2
are k+ 4 close toW.

7 Proof of Sylvester-Gallai Theorem

In this section, we prove our main theorem: 1 − SG∗k(2) configurations have constant vector space
dimension. Throughout this section we denote our 1−SG∗k(2) configuration by F = F1tF2 where
Fd is the set of forms of degree d in our configuration. Additionally, we definem := |F|,m1 := |F1|

andm2 := |F2|.
Our proof has three main steps. In Section 7.1 we show that given F, we can find a constant

dimensional wide vector space W such that F is close to W. We call any such C-algebra C[W] a
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core algebra of our configuration F. This step uses the notion of strong sequences. In Section 7.2
we show that given such a vector space W, we can extend it to obtain a constant dimensional
wide vector space W ⊂ V such that F2 ⊂ (V). This step uses the notion of integral sequences. In
Section 7.3 we show that our main theorem follows given such a vector space V . This step uses
general projections and the bound for linear SG configurations from [BDYW11, DSW14].

Define functions λ2(r,k) := k + 1 + 16 · 4k−1, λ1(r,k) := 7 · r · 3λ2(r,k) and B(k) := 3k + 15. For
the rest of this section, we set the parameter B in the definition of LV (P) to B(k). Note that while
this parameter depends on k, it is independent of |F|.

7.1 Constructing core algebras

We begin by showing that, to put all forms close to a wide algebra, it is enough to construct a
small wide algebra which contains a constant fraction of the quadratics. More precisely, the next
lemma allows us to increase the fraction of forms close to a given vector space without increasing
the size of the vector space too much, so long as we start with a wide vector space which contains
a constant fraction of the quadratics.5

Before we state and prove the lemma, the following notation will be very useful in this subsec-
tion: if γ ∈ N, G is a set of forms andW is a graded vector space, we let

G(γ,W) := {P ∈ G | P is γ-close toW}.

Lemma 7.1 (Increasing algebra intersection). Let 0 < δ 6 1, r,γ,k ∈ N be such that r > 2γ > k + 5
and W be a r-wide vector space. If |F(γ,W)| > δm then there is a r-wide vector space Y with dim Y1 6
3k · (dimW + r), dimY2 6 dimW2 + k such that either |F(γ, Y)| > 3δm/2, or F = F(3γ, Y).

Proof. Note that F1 ⊆ F(γ,W). Let H := F2 \ F(3γ,W). In other words, H is the set of forms that
are 3γ-far fromW. LetH1, . . . ,Ht ∈ H be the longest sequence of linearly independent forms such
that

1. minrank (H1, . . . ,Ht) > k+ 5, and
2. No nonzero form in spanC {H1, . . . ,Ht} is 2γ-close toW.

Suppose t < k. Let Y be the r-wide vector space obtained by applying Proposition 5.2 to
W+spanC {H1, . . . ,Ht}. SinceH1, . . . ,Ht is the longest linearly independent sequence that satisfies
the above conditions, for every other H ∈ H, it must be that

• either H ∈ spanC {H1, . . . ,Ht}, or

• minrank (H,H1, . . . ,Ht) 6 k+ 4, or

• there exists R ∈ spanC {H,H1, . . . ,Ht} \ spanC {H1, . . . ,Ht} such that R is 2γ-close toW.

In each of these three cases, it follows that H ∈ F(3γ, Y). Therefore in this case, Y is the required
vector space.

We are now in the case where t > k. Consider the k elements H1, . . . ,Hk. Note that H1, . . . ,Hk
are linearly independent, and also satisfy minrank (H1, . . . ,Hk) > k + 5. Therefore, H1, . . . ,Hk
is a k-strong sequence. By Remark 6.10, the ideal (H1, . . . ,Hk) is prime and k-relevant, and
S/ (H1, . . . ,Hk) is a UFD. Let Y be the r-wide vector space obtained by applying Proposition 5.2 to
W + spanC {H1, . . . ,Hk}, so dim Y1 6 3k · (dimW + r), dimY2 6 dimW2 + k.

5This is similar in spirit to [BDYW11, Proposition 7.11] and [GOS22, Lemma 5.15].
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Now for eachGi ∈ F(γ,W) we haveGi 6∈ (H1, . . . ,Hk). In the graded UFD S/ (H1, . . . ,Hk), the
image of Gi must be irreducible: if not then Gi = ab +

∑
αjHj in S, with a,b ∈ S1, contradicting

the fact that spanC {H1, . . . ,Hk} does not contain forms 2γ-close toW. The ideal (H1, . . . ,Hk,Gi) is
therefore prime, and we have Ri ∈ (H1, . . . ,Hk,Gi) \ (H1, . . . ,Hk) since F is a 1 − SG∗k(2) configu-
ration. We have Ri ∈ F(γ, Y).

If Ri ∈ F1 then we must have Ri ∈ (Gi), contradicting the pairwise independence of ele-
ments of F2, therefore Ri ∈ F2. After scaling we have either Ri − Gi ∈ spanC {H1, . . . ,Hk} (if
Gi ∈ F2) or Ri − aGi ∈ spanC {H1, . . . ,Hk} (if Gi ∈ F1). Therefore Ri 6∈ F(γ,W) since otherwise
spanC {H1, . . . ,Hk} contains a form 2γ-close to W. If Gj is another form such that Ri = Rj, then
Ri − Gj or Ri − bGj is in spanC {H1, . . . ,Ht}, and it must be that Gi,Gj ∈ F1 and aGi = bGj so
Gj ∈ (a) ,Gi ∈ (b). This shows that |{Ri}i| > δm/2. Since F(γ,W) ∪ {Ri}i ⊆ F(γ, Y), we are
done.

We are now ready to prove the main lemma of this subsection.

Lemma 7.2 (Constructing core algebras). Suppose F is a 1 − SG∗k(2) configuration. For any r there
exists a r-wide vector space W with dimW1 6 2 · 3k2 · λ1(r,k) and dimW2 6 4k2 + λ2(r,k) such that
F = F(B(k),W).

Proof of Lemma 7.2. We build a sequence of vector spaces W(i) such that either F = F(B(k),W(i))
or
∣∣F(k+ 5,W(i))

∣∣ > (3/2)i ·m/4k.
Set W(0) to be the r-wide vector space obtained by Corollary 6.15. By Corollary 6.15, at least

m2/4k forms in F2 are k+ 5 close toW(0). Further, every form in F1 is 1-close toW(0). Sincem1 +
m2/4k > m/4k, we have

∣∣F(k+ 5,W(0)
∣∣ > m/4k. Therefore, W(0) satisfies the above property.

We have dimW
(0)
i 6 λi(r,k).

Given W(i), if F = F(B(k),W(i)) then terminate. If not, then apply Lemma 7.1 to W(i) with
γ = k+ 5 and δ = (3/2)i · 1/4k to obtainW(i+1). By Lemma 7.1, either F = F(B(k),W(i+1) = F or∣∣F(k+ 5,W(i+1))

∣∣ > (3/2)i+1 ·m/4k. ThereforeW(i+1) also has the required property.
The above process must terminate when (3/2)i·1/4k > 1, which holds when i > 4k. Further, by

induction we have dimW
(4k)
1 6 3k

2
λ1(r,k)+3k

2 ·2k ·r 6 2·3k2 ·λ1(r,k) and dimW2 6 4k2+λ2(r,k).
ThereforeW(4k) is the required space.

7.2 Finding small ideal containing the quadratic forms

In this section we show that all quadratics in any 1 − SG∗k(2) must be contained in an ideal gen-
erated by a small number of forms. The main idea is that given any wide vector space, there
exist short maximal integral sequences with respect to the vector space. Recall that the we set the
parameter B in the definition of relative linear spaces to B(k) := 3k+ 15.

Lemma 7.3. Suppose r > 4(k + 2)B(k) + 1. Suppose F is a 1 − SG∗k(2) configuration, and suppose W
is a r-wide vector space such that every F ∈ F is B(k)-close to W. Then there exists a maximal integral
sequence with respect to inclusion of length at most k with respect toW.

Proof. For each F ∈ F let FLW be the image of FLW in S/ (W1). Define potential functionΦ on integral
sequences as

Φ(G1, . . . ,Gc) :=
c∑
i=1

dim Lin
(
(Gi)

L
W

)
.

If F ⊂ (W) then there are no integral sequences with respect to W, and the statement holds vacu-
ously, therefore we can assume that F\(W) 6= ∅. Combined with the fact thatW is r-wide, and that

24



every form in F is B(k)-close to W, there exists nonempty integral sequences with respect to W.
Among all integral sequences of length at most k+ 1, pick F1, . . . , Fc such that the above potential
function is maximised. If c 6 k, then F1, . . . , Fc is maximal: if not, and if F1, . . . , Fc+1 is an integral
sequence that extends F1, . . . , Fc thenΦ(F1, . . . , Fc+1) > Φ(F1, . . . , Fc), contradicting maximality.

We are left with the case where c = k+ 1. We will find an integral sequence of length at most k
with the same potential function value, and therefore the new integral sequence will be maximal.
The sequence F1, . . . , Fk is an integral sequence, therefore by Lemma 6.6 we have that (F1, . . . , Fk)
is a radical ideal. Further, by Corollary 6.7 we have that F1, . . . , Fk is a k-relevant set. Similarly,
F1, . . . , Fk+1 is a k+ 1-relevant set, therefore Fk+1 6∈ (F1, . . . , Fk).

Since F is a 1 − SG∗2(2), we have R ∈ (F1, . . . , Fk+1) \ (F1, . . . , Fk), that is, R =
∑k+1
j=1 αjFj with

αk+1 6= 0. Without loss of generality, suppose αj = 0 for j = 1, . . . ,b and αj 6= 0 for j = b +
1, . . . ,k+ 1. Since the polynomials in F are pairwise linearly independent we have b < k.

Now R = RHW + RLW =
∑
j>b αiFi =

∑
j>b αi((Fi)

H
W + (Fi)

L
W). Since the space W is r-wide,

we have RHW =
∑
j>b αi(Fi)

H
W and RLW =

∑
j>b αi(Fi)

L
W . By Corollary 6.4, after a change of

basis we can assume that there are disjoint sets of variables Y, Y1, . . . ,Yk such that W1 is spanned
by Y and (Fi)

L
W ∈ C [Y, Yi]. We have Lin

(
RLW
)
⊆ C [Y, Yb+1, . . . ,Yk+1], whence F1, . . . , Fb,R is an

integral sequence by Proposition 6.2. Further RLW =
∑
j>b αj(Fj)

L
W , and since (Fi)

L
W ∈ C [Yi], by

Lemma 2.12 we can deduce that dim Lin
(
RLW

)
=
∑
j>b dim Lin

(
(Fj)

L
W

)
. Therefore F1, . . . , Fb,R

is an integral sequence of length at most k with Φ(F1, . . . , Fb,R) = Φ(F1, . . . , Fk+1). This proves
that F1, . . . , Fb,R is a maximal integral sequence.

Lemma 7.4. Suppose F is a 1 − SG∗k(2) configuration. Suppose r > 8(k + 2)B(k)2 + 1. There exists a(
r− 4kB(k)2

)
-wide vector space W with dimW1 6 3 · 3k2 · λ1(r,k) and dimW2 6 4k2 + λ2(r,k) such

that F2 ⊂ (W).

Proof. For any r-wide vector space U such that every polynomial F ∈ F is B(k) close to U, define
potential function Ψ as

Ψ(U) = max
F∈F2\(U)

dimLU (F) .

If Ψ(U) = 0 for some such U, then F2 ⊂ (U).
We now construct W iteratively. Let W(0) be the r-wide vector space whose existence is guar-

anteed by Lemma 7.2. Since every F ∈ F is B(k)-close to W(0) we have Ψ(W(0)) 6 2B(k). The
vector spaceW(0) is r-wide, and r > 4(k+ 2)B(k) + 1, therefore by Lemma 7.3 we can find a max-
imal integral sequence F1, . . . , Fc with respect to W(0) with c 6 k. Set W(1) =

∑c
i=1 LW(0) (Fi) +

W
(0)
2 . That F1, . . . , Fc is maximal implies the following: for every G ∈ F2 \

(
W(0)

)
we have

dimLW(0) (G) > dimLW(1) (G). Therefore Ψ(W(1)) < Ψ(W(0)). By Lemma 5.16, the vector space
W(1) is r − 2kB(k)-wide since W(1)

1 is obtained by adding at most 2kB(k) linear forms to W(0)
1 . In

general, given W(i) we use Lemma 7.3 to find a maximal integral sequence Fi1, . . . , Fic, and set
W(i+1) :=

∑c
j=1 LW(i)

(
Fij
)
+W

(i)
2 . Maximality of the sequence implies Ψ(W(i+1)) < Ψ(W(i)). By

the bound on r, at every step W(i) is at least 4(k + 2)B(k) + 1-wide. After at most 2B(k) steps we
find a t such that Ψ(W(t)) = 0.

By Lemma 7.2 we have dimW
(0)
1 6 2 · 3k2

λ1(r,k). Since W(i+1) is obtained by adding 2B(k)k
linear forms toW(i) we get dimW

(t)
1 6 2 · 3k2

λ1(r,k) + 4B(k)2k 6 3 · 3k2
λ1(r,k). Further we have

dimW
(i)
2 = dimW

(i−1)
2 for all i, therefore dimW

(t)
2 = dimW

(t)
0 6 4k2 + λ2(r,k). This completes

the proof.
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7.3 Basic configuration

In this section we prove Theorem 3.12 for the special case where all the quadratics are in the ideal
generated by an r-wide algebra.

Lemma 7.5. Suppose F is a 1− SG∗k(2) configuration. Suppose there is an r-wide linear subspaceW with
r > k+ 5 such that F2 ⊂ (W). Then there is linear subspace W ′1 with dim(W ′1) =

(
C ′k

)
· dimW1, such

that F ⊆W2 + C[W ′1].

Proof. Let ϕ := ϕα,W1 be a projection mapping as defined in Definition 2.14. By Remark 5.7, the
space ϕ(W) is a r − 1-wide vector space. Let ∆ := dimW1. As F2 ⊆ (W), every F ∈ F2 satisfies
ϕ(F) = αϕ(FHW) + z · ` for some linear form ` ∈ S [z]1.

Let L be the union of all the linear forms that occur in the above way, and all the linear forms in
F. Formally, L :=

{
` | ϕ(F) = αϕ(FHW) + z · `, F ∈ F2

}
∪ϕ(F1). Let L/ (z) denote the image of L in

the vector space (S [z] / (z))1, that is, the linear forms modulo z. We show that L/(z) is a 1−SGk(1)
configuration.

Let `1, . . . , `k ∈ L/(z) be independent. Let `k+1 ∈ L/(z). We need to show that one of the
following cases holds:

1. ¯̀
k+1 ∈ spanC

{
`1, . . . , `k

}
.

2. there is ḡ ∈ spanC
{
`1, . . . , `k+1

}
\ {`1, . . . , `k} with ḡ ∈ L/ (z).

Consider the corresponding F1, . . . , Fk+1 ∈ F such that ϕ(Fi) = αiπ(FiHW) + z · `i, with `i/(z) =
¯̀
i, or, if Fi ∈ F1 then Fi = `i.

The first step is to show that F1, . . . , Fk form a k-relevant set. Without loss of generality, assume
that F1 ∈ rad (F2, . . . , Fk). We have ϕ(F1) ∈ rad (ϕ(F2), . . . ,ϕ(Fk)), and by Lemma 5.8 we have
z`1 ∈ (`2, . . . , `k). Since the ideal `2, . . . , `k is prime, and since `2, . . . , `k are independent, we get
`1 ∈ spanC {`2, . . . , `k} contradicting choice of `1, . . . , `k. Therefore F1, . . . , Fk is k-relevant.

By the same argument, if Fk+1 ∈ rad (F1, . . . , Fk) then `k+1 ∈ spanC
{
`1, . . . , `k

}
. We are left

with the case when Fk+1 6∈ rad (F1, . . . , Fk). Since F is a 1 − SG∗2(2) configuration, there exists
R ∈ rad (F1, . . . , Fk+1) \ rad (F1, . . . , Fk). Let g be such that ϕ(R) = αiϕ(R

H
W) + z · g if R ∈ F2,

and R = g otherwise. We have ϕ(R) ∈ rad (ϕ(F1), . . . ,ϕ(Fk+1)). By Lemma 5.8, we have zg ∈
spanC

{
`1, . . . , `k+1

}
which implies g ∈ spanC

{
`1, . . . , `k+1

}
. Finally, by Lemma 5.9, we have that

g 6∈
(
`i
)

for any i. This completes the proof that L/ (z) is a 1 − SGk(1) configuration.
By Theorem 3.5 we have

dim(LW (ϕ(F)) = dim(L/(z)) + 1 6 C ′k,

for some universal constant C ′. Applying Proposition 2.18 it follows that dim(LW (F)) 6 C ′k · ∆.
In particular, it follows that there is a linear space of linear forms W ′1, with dim(W ′1) 6 C ′k · ∆,
satisfying F ⊆W2 + C[W ′1], completing the proof.

7.4 Proof of main theorem

We now prove the main theorem, which we restate for convenience.

Theorem 3.12 (Radical SG Theorem for tuples of quadratics). Let F be a 1 − SG∗k(2) configuration.
There is a universal constant c > 0 such that dim(spanC {F}) 6 3c·4

k
.
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Proof. Let r := 8(k+ 2)B(k)2 + k+ 6. By Lemma 7.4, there exists a k+ 5-wide vector spaceW with
dimW1 6 3 · 3k2 · λ1(r,k) and dimW2 6 4k2 + λ2(r,k) such that F2 ⊆ (W). Applying Lemma 7.5
with this W, we obtain a vector space W ′1 ⊆ S1 with dimW ′1 6 3 · 3k

2 · λ1(r,k) · C ′k such that
F ⊆ W2 + C

[
W ′1
]
. If Y ⊆ S2 is the space spanned by pairwise products of forms in W ′1, then

F ⊆ W2 + Y and dim Y 6 9 · 9k
2 · λ2

1(r,k) · C ′2k. Substituting for λ1, λ2 gives us the required
result.

Remark 7.6. Suppose the set F does not have any k-relevant sequences. In this case, F is vacuously
an 1 − SG∗k(2) configuration. There are no k-strong sequences in F of length k, since any such
sequence is a k-relevant set. Therefore every form in such a configuration is k+5-close to a r-wide
vector spaceW of dimension 7 · r ·3k by Lemma 6.11. Further, such a configuration has no integral
sequences of length k + 1. Therefore, by the arguments in Lemma 7.3 and Lemma 7.4, by adding
4kB(k)2 linear forms to W, we get a wide vector space Y such that F ⊆ Y. If we project to Y1 and
pick out the linear forms corresponding to each element of F as in Lemma 7.5, then there are no
set of k+1 linearly independent forms by Lemma 5.8. Therefore, we can deduce by the properties
of the projection map that dim spanC {F} = 2O(k) in this case.

8 Conclusion

In this work, we prove a higher codimension analogue of the quadratic Sylvester–Gallai theorem,
generalising the results of [Shp20, Han65]. Our ability to handle ideals of higher codimension
shows our approach is a promising one towards a full derandomisation of PIT for ΣkΠΣΠ2 circuits.

To prove our main theorem, we build upon the results of [AH20, OS22] and use the wide
algebras developed in these works to control the cancellations in SG configurations. One key
difference between this work and previous works [Shp20, PS20, PS21, PS22, GOS22, OS22] is that
we prove our Sylvester-Gallai theorem without a fine classification of the ideals we deal with.

Our work leaves several open questions which are of interest to combinatorialists, algebraic
geometers, and complexity theorists. On the combinatorial and geometric side, understanding the
different generalizations of Sylvester’s problems to higher codimension (such as the elementary
SG configurations defined in [Han65] and also studied in [BDYW11]) is a problem of independent
interest, as well as the generalization to higher codimension of the “product” version of Sylvester’s
question, defined in [Gup14, PS20]. And of course, fully derandomizing PIT for ΣkΠΣΠ2 is still a
major open question.
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A Alternative proof of Lemma 6.6

We give here an alternative proof suggested by an anonymous reviewer (with proper formaliza-
tions).

Alternative Proof of Lemma 6.6. Let I := (F1, . . . , Ft). Since the inclusion A := C[V , Y1, . . . ,Yt] → S

is a free extension, it is enough to prove that I is radical in A. Moreover, since A is isomor-
phic to a polynomial ring, by Corollary 6.4 we can assume that our polynomial ring is A :=
C[Z,y1,y2, . . . ,yt] where Fi ∈ C[Z,yi]. By Lemma 6.5, we know that F ∈ C[Z] \ {0} is regular
with F1, . . . , Ft, and hence it is not in any minimal prime of I. Thus, F is not a zero divisor over
A/I.

Since B := C(Z)[y1, . . . ,yt] is the localization of A over C[Z] \ {0}, by the above, we have that I
is radical in A iff I · B is radical in B. Let R := C(Z)[y1, . . . ,yt]. It is easy to see that I · B is radical
in B if I · R is radical over R. To see that I · R is a radical ideal, note that Fi ∈ C[Z,yi] irreducible
implies that discyi (Fi) ∈ C[Z] \ {0} and hence Fi = (yi − αi)(yi − βi) over R, with αi 6= βi. Thus,
I · R is the intersection of maximal ideals and therefore radical.

31
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


