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Abstract

Batch proofs are proof systems that convince a verifier that x1, . . . , xt P L, for some NP language L,
with communication that is much shorter than sending the t witnesses. In the case of statistical soundness
(where the cheating prover is unbounded but honest prover is efficient), interactive batch proofs are known
for UP, the class of unique witness NP languages. In the case of computational soundness (aka arguments,
where both honest and dishonest provers are efficient), non-interactive solutions are now known for all of
NP, assuming standard cryptographic assumptions. We study the necessary conditions for the existence
of batch proofs in these two settings. Our main results are as follows.

Statistical Soundness: the existence of a statistically-sound batch proof for L implies that L has
a statistically witness indistinguishable (SWI) proof, with inverse polynomial SWI error, and a non-
uniform honest prover. The implication is unconditional for public-coin protocols and relies on one-way
functions in the private-coin case.

This poses a barrier for achieving batch proofs beyond UP (where witness indistinguishability is trivial).
In particular, assuming that NP does not have SWI proofs, batch proofs for all of NP do not exist.
This motivates further study of the complexity class SWI, which, in contrast to the related class SZK,
has been largely left unexplored.

Computational Soundness: the existence of batch arguments (BARGs) for NP, together with one-way
functions, implies the existence of statistical zero-knowledge (SZK) arguments for NP with roughly the
same number of rounds, an inverse polynomial zero-knowledge error, and non-uniform honest prover.

Thus, constant-round interactive BARGs from one-way functions would yield constant-round SZK
arguments from one-way functions. This would be surprising as SZK arguments are currently only
known assuming constant-round statistically-hiding commitments (which in turn are unlikely to follow
from one-way functions).

Non-interactive: the existence of non-interactive BARGs for NP and one-way functions, implies non-
interactive statistical zero-knowledge arguments (NISZKA) for NP, with negligible soundness error,
inverse polynomial zero-knowledge error, and non-uniform honest prover. Assuming also lossy public-
key encryption, the statistical zero-knowledge error can be made negligible. We further show that
BARGs satisfying a notion of honest somewhere extractability imply lossy public key encryption.

All of our results stem from a common framework showing how to transform a batch protocol for a
language L into an SWI protocol for L.
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1 Introduction

Batch proofs are interactive proof-systems that enable a prover to convince a verifier that input statements
x1, . . . , xt all belong to a language L P NP, with communication that is much shorter than sending the t
witnesses. Batch proofs have been studied recently in two main threads: depending on whether the soundness
property is required to hold against arbitrary cheating prover strategies, or only against computationally
bounded ones.

The Statistical Setting. In the statistical setting, we require that even a computationally unbounded
prover cannot convince the verifier to accept a false statement (other than with some bounded probability).
On the other hand, we require that there is an efficient honest prover strategy (given the witnesses as an
auxiliary input) for convincing the verifier of true statements. Such proofs systems are known as doubly
efficient interactive proofs (see [Gol18] for a recent survey).

A recent sequence of works by Reingold et al. [RRR21, RRR18, RR20] construct doubly-efficient batch
proofs for any language in the class UP (consisting of NP languages in which YES instances have a unique
accepting witness). In particular, Rothblum and Rothblum [RR20] give such a protocol with communication
polypm, logptqq, where m is the length of a single witness and poly is a polynomial that depends only on
the UP language. Doubly-efficient batch proofs beyond UP remain unknown, leading to a natural question
[RRR21]:

Does every language L P NP have a statistically sound doubly-efficient batch proof? Do there
exist other subclasses of NP (beyond UP) that have such proofs?

If we waive the restriction that the honest prover is efficient, there is a simple answer to this question.
Specifically, there is a space polypn,mq ` logptq algorithm for deciding whether x1, . . . , xt P L, where n is
the instance length and m is the witness length. Thus, via the IP “ PSPACE theorem [LFKN92, Sha92],
there is an interactive proof for this problem with communication polypn,m, logptqq. However, this protocol
is entirely impractical as the honest prover runs in time 2Ωpnq.

The Computational Setting. A natural relaxation of the statistical soundness condition is to only
require computational soundness, which means that soundness is guaranteed only against efficient cheating
provers. Such proof systems are commonly called argument systems. The seminal work of Kilian [Kil92]
gives general-purpose succinct arguments for all of NP, assuming the existence of collision-resistant hash
functions (CRH). In more detail, Kilian’s protocol is a four-message argument-system with communication
polypλ, logpnqq, where λ is the security parameter, for any language L P NP. In particular, for any L P NP,
we can apply Killian’s result to the related NP language

Lbt “
␣

px1, . . . , xtq P pt0, 1unqt : x1, . . . , xt P L
(

and obtain a batch argument (BARG) for L with communication polypλ, logpnq, logptqq.
Kilian’s protocol relies on collision-resistant hash functions (or certain relaxations thereof [BKP18,

KNY18]). However, it is unclear whether such hash functions are also necessary. This gives rise to the
following basic question:

What are the minimal cryptographic assumptions needed for succinct arguments for NP? In
particular, can BARGs be constructed based solely on the existence of one-way functions?

We remark that it is not clear that the existence of one-way functions is even necessary for general
purpose succinct arguments for NP. The only result that we are aware of is by Wee [Wee05], who showed
that 2-message succinct arguments imply the existence of a hard on average search problem in NP.
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The Non-Interactive (Computational) Setting. As noted above, Kilian’s protocol requires 4 messages.
Reducing the number of messages in succinct arguments is a major open question in the field. Restricting
to the case of BARGs though, we have a much better understanding due to recent breakthrough works. In
particular, a sequence of works [BHK17, CJJ21, CJJ22, WW22, HJKS22, PP22, KLVW22] construct BARGs
consisting of a single message, given a common reference string (equivalently, 2-message publicly verifiable
arguments in the plain model), assuming specific cryptographic assumptions such as LWE or assumptions
related to discrete log.

Still, so far all constructions of non-interactive BARGs rely on specific cryptographic assumptions. This
raises the question of whether one can make do with a general assumption as in Kilian’s protocol. More
ambitiously:

Can non-interactive BARGs be constructed from collision-resistant hash functions?

1.1 Our Results

In this work we study, and give partial answers, to all of the above questions. Our key idea is a new
transformation that compiles a batch protocol1 Π, for verifying that x1, . . . , xt P L, into a protocol Π1, for a
single instance, which has a hiding property. Here and below, when we say that L has a batch protocol, we
mean that the communication for proving that x1, . . . , xt P L is t1´ϵ ¨ polypmq, for some ϵ ą 0, where m is
the length of a single witness and poly is some polynomial which may depend on L but does not depend on
t.

More specifically, we transform a batch protocol Π into a protocol Π1 for a single instance satisfying a
form of statistical witness indistinguishability (SWI). Recall that a protocol for an NP relation R is ϵ-SWI, if
for every input x and witnesses w1, w2 P tw : Rpx,wq “ 1u, the view of the verifier when the prover uses w1

is ϵ-close, in statistical distance, to its view in an interaction in which the prover uses w2. We say that the
protocol is honest verifier SWI if the SWI property only holds in an honest execution of the protocol (but
the default notion applies to malicious verifiers).

Our main step transforms a batch protocol Π into an honest-verifier SWI protocol Π1, where the SWI-
error ϵ can be any inverse polynomial. The transformation also preserves the soundness of the original
protocol. In other words, if Π is computationally (resp., statistically) sound then the resulting protocol Π1 is
computationally (resp., statistically) sound. If Π has r-rounds then Π1 has r`1 rounds. However, the efficient
honest prover strategy of Π1 is non-uniform, where the non-uniform advice depends on the specification of
the protocol Π.

We use this basic step in the different settings described above to reduce batch protocols into protocols
satisfying hiding properties, as described next.

The Statistical Setting. Our first application of the above framework is in the statistical setting. In
this setting we obtain SWI against malicious verifiers, in which the SWI error is inverse polynomial. In case
we start off with a public-coin BARG the result is unconditional. Otherwise we need to assume a one-way
function.2

Theorem 1 (Informally Stated, see Theorem 3.1 and Corollaries 3.13, 3.14). Suppose that L P NP has
a statistically sound r-round public-coin batch proof. Then, for any polynomial p, the language L has an
Oprq-round SWI proof with 1

p -SWI error and a non-uniform honest prover.

Furthermore, for general (i.e., private-coin) statistically sound batch proofs we achieve the weaker con-
clusion of honest-verifier SWI, or, assuming the existence of a one-way function, malicious verifier SWI.

It is worth pointing out that Theorem 1 is also applicable to languages in UP (for which batch proofs
are known), but there the conclusion is meaningless since UP has a trivial SWI proof - just send the witness!

1We use the terminology of “protocol” where we want to be intentionally vague as to whether soundness is computational
or statistical.

2Note that the Goldwasser and Sipser [GS89] transformation from private-coin to public-coin protocols is inapplicable, since
it results in an inefficient honest prover.
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In contrast though, for general NP languages, the existence of an SWI proof seems extremely surprising.
In particular, it is known that NP does not have proofs satisfying the stronger property of statistical zero-
knowledge (SZK) (assuming the polynomial hierarchy does not collapse [For89, AH91]).3 As it seems that
the notion of SWI is closely related to that of SZK (modulo the trivial cases arising from unique witnesses)
it seems reasonable to expect that NP does not have such proofs. Thus, we derive the following immediate
corollary:

Corollary 2 (Informally Stated). Assume that there exists some L P NP that does not have an SWI proof
as in Theorem 1. Then NP does not have statistically sound batch proofs.

We emphasize that we do not take for granted the fact that NP does not have SWI proofs, and we find this
to be an intriguing open question. Indeed, while we have a very deep understanding of the structure of SZK
(see [Vad99]), the structure of the class of languages having SWI proofs has, to the best of our knowledge,
not been explored. Theorem 1 provides concrete motivation for a similar study of the class SWI, which we
leave to future work.

The Computational Setting. We also apply our basic framework in the computational setting. Here
though, assuming that one-way functions exist, we are able to derive the stronger hiding property of statistical
zero-knowledge.

Theorem 3 (Informally Stated, See Theorem 3.1 and Corollary 3.14). Assume the existence of a one-way
function. Suppose that every L P NP has an r-round BARG. Then, for every polynomial p, every L P NP
has an Oprq-round statistical zero-knowledge argument-system (SZKA) with 1

p -zero-knowledge error and a
non-uniform honest prover.

Recall that constant-round SZKA for NP are only known to exist assuming constant-round statistically-
hiding commitments, and the latter seem stronger than one-way functions (and there is a blackbox separation
[HHRS15]). Thus, Theorem 3 shows that the existence of constant-round BARGs for NP suffices to “lift”
one-way functions to a primitive which is only known based on collision-resistant hash functions (or multi-
collision resistant hash functions [BKP18, BDRV18]).

We remark that a related positive result was obtained recently by Amit and Rothblum [AR23], who
constructed constant-round succinct arguments for deterministic languages (specifically for the class NC)
from one-way functions. Thus, a negative interpretation of Theorem 3 is that extending the [AR23] result
from succinct arguments for deterministic languages to BARGs for NP seems unlikely as it would have
unexpected implications. Alternatively, a positive perspective is that Theorem 3 presents a concrete direction
for constructing constant-round SZKA for NP from one-way functions.

The Non-Interactive (Computational) Setting. We apply the basic framework for the third time
in the context of non-interactive BARGs. Here we face a difficulty, in that our basic framework increases
the round complexity of the protocol by one round. We are able to overcome this challenge by relying on
BARGs satisfying a weak form of adaptive soundness called somewhere soundness, a relaxation of somewhere
extractability [CJJ22], which is achieved by recent BARG constructions. We obtain the following result:

Theorem 4 (Informally Stated, See Theorem 3.1 and Corollary 3.16). Assume the existence of one-way
functions and that NP has somewhere-sound non-interactive BARGs. Then, for any polynomial p, NP has
non-interactive statistical zero-knowledge arguments (NISZKA), with a negligible soundness error, 1

p -zero-
knowledge error, and a non-uniform honest prover.

Like non-interactive BARGs, NISZKA are currently only known to exist based on specific cryptographic
assumptions (or in the random oracle model). Theorem 4 shows that a construction from a “relatively weak”

3Recall that statistical zero-knowledge (SZK) requires that for every efficient verifier strategy there is an efficient simulator
that generates a view that is statistically close to that in the actual interaction (for instances in the language). SWI can be
thought of as a relaxation of SZK in which the simulator can be unbounded.
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assumption, such as collision-resistant hash functions, would yield a similar result for NISZKA - which would
constitute major progress in the field of zero-knowledge.

Theorem 4 yields an inverse polynomial statistical zero-knowledge error. We prove that assuming lossy
public key encryption, which exist from a variety of assumptions (c.f. [PW08]), we can reduce this error to
negligible. The resulting NISZK is non-adaptively sound.

Theorem 5 (Informally Stated, See Theorem 4.4). Assume the existence of lossy public-key encryption. Any
NISZKA for NP with an inverse polynomial zero-knowledge error and negligible adaptive soundness error can
be turned into one with a negligible zero knowledge error and negligible non-adaptive soundness error.

The proof of Theorem 5 is similar in spirit to the amplification of non-interactive computational zero-
knowledge by Goyal, Jain, and Sahai [GJS19]. Their transformation requires subexponential public-key en-
cryption, whereas we require (polynomial) lossy public-key encryption to maintain statistical zero-knowledge.

We also observe that lossy public-key encryption follows from BARGs satisfying a variant of somewhere
extractable BARGs, which guarantees that it is possible to extract the specific witness that was used in some
predefined index in an honest proof. This is in contrast to the standard notion of somewhere extractability
guaranteeing that some witness can be extracted (even from maliciously generated accepting proofs). As a
result of independent interest, we also show that the standard notion of somewhere extractable BARGs imply
private information retrieval and thus also statistically sender-private oblivious transfer and lossy public-key
encryption. However the lossy public-key encryption obtained has (negligible) decryption errors (which is
not sufficient for our amplification theorem). See further details in Appendix B.

Remark 1 (Hiding for Batch Protocols). All of the results listed above start with a batch protocol for a
language L and derive a protocol with hiding properties (i.e., either SWI or SZK) for a single instance of L.
We note that all of the results can be used to obtain similar hiding properties also for a batch protocol for L
via the following simple observation: rather than applying the basic result to L, we can apply it to Lbt1

for
any t1 ! t.

Remark 2 (On the Possibility of Weak Batching). All of our results assume a batch protocol for t instances,
with communication t1´ϵ.4 Thus, our results are inapplicable to very weakly compressing batch protocols that
have slightly non-trivial communication such as say, t ¨

?
m ` polypmq, where m is the witness length. Such

weak batch protocols can nevertheless be quite powerful (see [RRR21]) and we leave the study of this setting
as an interesting open problem.

1.2 Additional Related Works

The study of communication in statistically sound interactive proofs, focusing on the prover to verifier com-
munication, was initiated in [GH98, GVW02]. In particular, Goldreich et al. [GVW02] transform interactive
proofs with a single bit of communication to be SZK. We emphasize that the results in [GH98, GVW02] are
inapplicable in the setting of batch proofs. For example, the main result in [GH98] says that proofs with
short communication can be emulated in time that is exponential in the communication, but this merely
indicates that the communication in batch proofs for NP needs to be Ωpm ` log tq, where m is the witness
length.

Kaslasi et al. [KRR`20, KRV21] consider batch verification of protocols that are a priori statistical zero-
knowledge, while retaining the zero-knowledge property. The constructions of [KRR`20, KRV21] are not
doubly-efficient and so our results are inapplicable in their context.

Batch verification is also related to the problem of AND instance compression [HN10, FS08]. In AND
instance compression, the goal is, given formulas ϕ1, . . . , ϕk, to generate in polynomial time a new formula
ϕ that is satisfiable if and only if ϕ1, . . . , ϕk are all satisfiable, and so that the length of ϕ is less than k.
Batch verification considers the dual problem of compressing the witnesses. We note that strong infeasibility

4We remark that Kalai et al. [KLVW22] show how to amplify weak non-interactive BARGs into BARGs with very good
compression but they assume the existence of rate-1 OT, whereas we are seeking transformations that rely only on the existence
of the weak BARG.
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results for AND instance compression were shown by Drucker [Dru15]. Despite the differences, a main
technical lemma used by Drucker (and a subsequent simplification by Dell [Del16]) is a key inspiration for
our analysis.5 We note that this lemma has previously been used for identifying sufficient conditions for
obtaining cryptographic primitives from average-case hardness [BBD`20].

Lastly, we mention a recent result of Kitagawa et al. [KMY20], who show how to transform any SNARG
(a much stronger notion than non-interactive BARG, and not known based on standard assumptions) into
a NIZK, assuming one-way functions. The resulting NIZK argument is only computational zero-knowledge.
In contrast, Corollary 3.16 assumes the weaker notion of non-interactive BARG and constructs the stronger
notion of statistical zero-knowledge. Still, the results are incomparable as we rely on a non-uniform honest
prover, and have an inverse polynomial zero knowledge error (or alternatively rely also on lossy public-key
encryption).

1.3 Technical Overview

Let R be an NP relation, and let

Rbt “

!´

px1, . . . , xtq, pw1, . . . , wtq

¯

: |x1| “ ¨ ¨ ¨ “ |xt| and @i P rts, pxi, wiq P R
)

be the corresponding batch relation. We start by assuming a batch protocol for Rbt (without specifying yet
whether soundness is statistical or computational). For simplicity, let us assume that Rbt has an entirely
non-interactive protocol - that is, a single message sent from the prover to the verifier. We view the prover
message in this case as a “compression function” f that takes as input px1, . . . , xt, w1, . . . , wtq and outputs
a short proof string π that convinces the verifier. Note that f is an efficiently computable function, since we
assume the honest prover strategy is efficient (given also the witnesses).

Since f outputs a short string, of length less than t, its output cannot contain all of the witnesses. Thus,
intuitively at least, a large portion of the information about the witnesses must be lost. This leads us to the
following natural idea for a protocol, for a single6 instance of R, that has hiding properties.

P px,wq : (where x is an input and w is a corresponding witness)

1. Choose a random index i˚ P rts.

2. Select input/witness pairs pxi, wiq P R for all i P rtszti˚u, in some yet-to-be-specified way.

3. Generate π “ fpx1, . . . , xt, w1, . . . , wtq, where we fix xi˚ “ x and wi˚ “ w.

4. Send px1, . . . , xt, i
˚, πq to the verifier.

The verifier V accepts if (1) xi˚ “ x and (2) the batch verifier accepts the input px1, . . . , xtq with the proof
π. Completeness and soundness of this protocol follow immediately from the completeness and soundness of
the batch protocol (notice that for soundness, it suffices that x is a NO instance for R to make px1, . . . , xtq

a NO instance for Rbt.
The key question is how to choose the instance-witness pairs in Step 2 in such a way that π hides wi˚ .

This choice is crucial. To see this, consider a contrived compression function whose goal is to be maximally
non-hiding for some specific input x˚. For example, the compression function, in addition to outputting a
convincing proof, might check if one of the t inputs is equal to x˚. If so, it also outputs the corresponding
witness as part of the proof. Notice that this strategy is still highly compressing. While this is clearly a
contrived strategy, since we seek to give a general result, that compiles any batch proof, we have to consider
such strategies as well.

The above contrived strategy is a major concern for SWI as there exists a specific input, namely x˚, for
which the prover always reveals the witness. A natural approach to circumvent this attack is to consider a

5We note that a closely related lemma was established earlier in the context of constructing an oblivious transfer protocol
from any private information retrieval scheme [DMO00].

6By this we mean for an instance corresponding to LpRq, the language corresponding to the relation R.
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distributional notion of SWI. That is, consider some efficiently sampleable distribution D supported on triples
px,w0, w1q, where px,w0q, px,w1q P R. Suppose we only want SWI to hold for random instance/witness pairs
sampled from D. In such a case, P can choose each pxi, wiq from D independently. Now, for inputs px,w0, w1q

that are also generated from D, by symmetry, the function f will be unable to discover whether w0 or w1

was guessed (other than with inverse polynomial probability). Intuitively, and this can be formalized, this
leads to a distributional-SWI protocol (with an SWI error that decreases polynomially with t).

While the distributional approach described above works, it is weaker than what we aim to achieve in
two ways. First, it is restricted to NP languages that have a solved instance generator (recall that if the
language is also hard wrt to this distribution then the sampler is a one-way function). Second, the SWI
property is distributional - it only holds wrt instance-witness pairs sampled from D (rather than the usual
worst-case guarantee).

At this point we face a problem. If we aim to get a worst-case SWI guarantee, the contrived compression
function f that targets some specific x˚ seems like a non-starter. Indeed, using f as a blackbox, it is hopeless
to try to discover x˚. Still, if we happened to know that the compression function is precisely the contrived
one described above, we could fix the same x˚ as part of prover P and then use x˚ (with corresponding
random witnesses that are also hardwired) in all of the coordinates of f . Doing so would hide the specific
witness that P uses in the i-th coordinate. But what about a general compression function f? Can we
somehow fix specific instance/witness pairs that are specifically good for fooling f? Somewhat surprisingly
the answer turns out to be yes.

How to find instance-witness pairs. Our main technical result shows that for every compression func-
tion f there exists a polynomial-size multiset S Ď Rbt (i.e. a polynomial number of instance-witness
t-tuples), so that if the tuple ppx1, w1q, . . . , pxt, wtqq used in the above protocol is sampled uniformly from
S, then the resulting protocol is SWI (with error that depends on how compressing f is).

Central to our approach is a lemma of Dell [Del16] (building on work by Drucker [Dru15] and related to a
result of [DMO00]) about information lost by compressing functions. Consider a function g : t0, 1ut Ñ t0, 1uρt

for some ρ ă 1. Intuitively, as the function is compressing, it must be losing information about some of its
input bits. Dell formalized this by showing that the output distribution of g when its input bits are chosen
uniformly at random is not affected much by arbitrarily fixing the bit at a randomly chosen location. Let
B be the uniform distribution over t0, 1ut, and denote by B|jÐb the variable corresponding to sampling B
and setting the jth co-ordinate to b. Dell showed that in terms of statistical distance:

pj, gpB|jÐ0qq «?
ρ pj, gpB|jÐ1qq .

Suppose g is a function parameterized by triples pxi, w
0
i , w

1
i q, where pxi, w

0
i q, pxi, w

1
i q P R, and uses its

input bits bi to select witness wbi
i , and outputs f computed with these instance-witness pairs pxi, w

bi
i q. The

above lemma would then say that picking a random j P rts and fixing the witness used for xj to be either of
w0

j or w1
j would not make much of a difference to the output distribution of f . Denoting px1, . . . , xtq by x

and pw1, . . . , wtq by w, with j Ð rts and each wi sampled uniformly from
␣

w0
i , w

1
i

(

, this implies that:

´

j,x, fpx,w|jÐw0
j
q

¯

«

´

j,x, fpx,w|jÐw1
j
q

¯

This is already reminiscent of witness-indistinguishability, though the property here only holds for a
randomly chosen instance among a set of t instances. We can, in fact, use this to get the distributional
version of SWI discussed above. Consider any distribution D over px,w0, w1q such that px,w0q, px,w1q P R.
Now, with px,w0, w1q and all the pxi, w

0
i , w

1
i q sampled from D, we have:

pj,x|jÐx, fpx|jÐx,w|jÐw0qq « pj,x|jÐx, fpx|jÐx,w|jÐw1qq

Note that in the protocol above, when the prover inserts the given px,wq at location j and uses instances xi

and witnesses wi in the remaining locations, the view of the verifier is precisely pj,x|jÐx, fpx|jÐx,w|jÐwqq.
So the above implies that the expected SWI error for the protocol when everything is sampled as specified is
small.
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In other words, for every distribution D over px,w0, w1q, there is a distribution over
`

pxi, w
0
i , w

1
i q
˘

such
that with samples from these, the expected SWI error in our protocol is small. We can view this process as
a 2-player zero-sum game: the row player chooses px,w0, w1q and the column player chooses a distribution
D over all such tuples. The payoff is the expected SWI error in our protocol. The above argument shows
that for every strategy D for the column player there is a mixed strategy for the row player (specifically, the
strategy D), for which we can bound the expected payoff. The minimax theorem now implies that there is a
single distribution D1 over tuples

`

pxi, w
0
i , w

1
i q
˘

such that for every px,w0, w1q, if the prover uses a sample
from D1 to populate the other inputs to f , the SWI error is small. Using a sparse minimax theorem [LY94]
now implies the existence of a polynomial-sized multiset of

`

pxi, w
0
i , w

1
i q
˘

’s such that sampling from this
leads to almost the same SWI error. This implies the existence of the set we want, which we hard-code into
the prover’s algorithm as a non-uniform advice.7

Remark 3. The Op
?
ρq error in our analysis is tight for some functions (e.g., if g is the majority function).

However, “natural” compression functions might be not exhibit such a behavior and and could potentially
give rise to a negligible SWI error.

Handling Multi-round Protocols. To handle multi-round protocols we follow the same basic strategy,
running the underlying batch protocol using tailor-made instance/witness pairs. While we are unable to
show that this approach satisfies malicious-verifier SWI, we manage to show that it is honest-verifier SWI.
We do so by first extending the above analysis to 2-message protocols (i.e. a verifier message followed by a
prover message). To handle protocols with more messages, we observe that when analyzing honest-verifier
SWI, we can imagine that the verifier sends to the prover all of its randomness in advance and reduce back
to the 2-message case.

Augmenting the Basic Result. At this point we have a transformation from any batch protocol into
an honest-verifier SWI protocol with inverse polynomial SWI error. We can improve this state of affairs in
the different settings as follows:

1. In the case of statistical soundness, if the batch proof is public-coin, we can rely on an information-
theoretic coin-flipping protocol due to Goldreich et al. [GSV98] which leads to malicious verifier SWI.8

For the case of private-coin protocols, following an approach of [BMO90, OVY93, Oka96], we show that
assuming the existence of a one-way function, we can transform any honest-verifier SWI protocol to be
malicious verifier SWI. We emphasize that despite the usage of a one-way function, both soundness
and hiding properties are statistical.

2. In the case of computational soundness, assuming the existence of a one-way function, we can rely on
the celebrated “FLS trick” of Feige et al. [FLS90] to bootstrap the honest-verifier SWI argument to an
honest-verifier SZK argument.9 Then, using the [GMW86] compiler from honest-verifier to malicious
verifier we obtain a full-fledged malicious verifier zero-knowledge argument (using the [FS90] constant-
round private-coin argument-system as the underlying zero-knowledge proof).

3. In the non-interactive setting: recall that in this setting the prover sends a single message, that may
depend on a previously chosen common random string (CRS). One challenge that we have to deal with
is that in the basic protocol, the prover needs to send its choice of px1, . . . , xtq before starting the batch
protocol (i.e., before the CRS is chosen), whereas in the protocol we construct this happens after the

7It seems tempting to try to use a uniform minmax theorem, as in [VZ13], to obtain a uniform honest prover. A key
bottleneck however is that our payoff function does not seem to be efficiently computable. See also Remark 4.

8Note that we cannot use the honest-to-malicious transformation of Hubácek et al. [HRV18] (which works also in the private-
coin setting) because that result relies on the connection of SZK to instance dependent commitments. Thus, it is not clear how
to apply their result in the setting of SWI.

9In a nutshell, the verifier sends to the prover z “ Gpsq, where G is a PRG and s is a random seed, and the prover then
proves that either x P L or z is in the image of the PRG. Computational soundness can be argued by switching to a truly
random z, and SWI by having the simulator use s as the witness.
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CRS is chosen. As mentioned earlier, we handle this reversing by relying on somewhere soundness, a
weak form of adaptive soundness for BARGs.

Given the resulting non-interactive SWI argument, we can use the FLS trick in a similar way to obtain a
NISZKA protocol with inverse polynomial error. As our last step, we show a statistical zero-knowledge
amplification theorem similar to the one by [GJS19] for computational zero knowledge. Like their
transformation, we construct a combiner based on MPC-in-the-head (in our case, an information-
theoretic one, such as BGW). Lossy public-key encryption is used as a dual-mode commitment —
for computationally indistinguishable public keys we get either statistical hiding or statistical binding.
Finally, we show based on a coupling proof, similar to the one in [LM20] that the combiner is in fact
also an amplifier.

2 Definitions

We rely on the standard computational concepts and notation:

• A PPT is a probabilistic polynomial-time algorithm.

We follow the common practice of modelling any efficient adversary strategy as a family of polynomial-
size circuits. For an adversary A corresponding to a family of polynomial-size circuits tAλuλPN , we
often omit the subscript λ, when it is clear from the context. We also say that such an A runs in
non-uniform polynomial time.

• We say that a function f : N Ñ R is negligible if for all constants c ą 0, there exists N P N such that
for all n ą N , fpnq ă n´c. We sometimes denote negligible functions by negl. We say that a function
f : N Ñ R is overwhelming if 1 ´ f is negligible.

• We say that a function f : N Ñ R is noticeable if there exists a constant c ą 0 and N P N such that
for all n ą N , fpnq ě n´c.

• We denote statistical distance by SD. For two random variables X,Y and ε P r0, 1s, we write X «ε Y
to denote the fact that SDpX,Y q ď ε.

• We say that an ensemble of distributions D “ tDλu is efficiently sampleable if there is a polynomial
p and a family of circuits S “ tSλu where |Sλ| ď ppλq, and the distribution of the outputs of Sλ, on
input a uniformly random string, is Dλ.

• For two ensembles X “ tXλuλPN and Y “ tYλuλPN and function ε, we write X «ε Y if for all large
enough λ, Xλ «εpλq Yλ.

• For a (polynomially-balanced) relation R Ď t0, 1u˚ ˆ t0, 1u˚, we use LpRq to denote the language
defined by R, i.e., tx P t0, 1u˚ : Dw P t0, 1u˚ s.t. px,wq P Ru. We sometimes abuse notation and write
x P R to mean there exists some w such that px,wq P R; analogously, we write x R R to mean there is
no such w.

• For a distribution X over a set Ω and x P Ω, we use x Ð X to denote the result of sampling according
to X. For a random variable X over Ω and x P Ω, we use Xpxq to denote the probability that the
value of the random variable is x.

2.1 Proof Systems: Soundness, Privacy, Batching

In what follows, we denote by xP Ô Vy a protocol between two parties P and V. For input w for P, and
common input x, we denote by xPpwq Ô Vypxq the view of V in the protocol, including all received messages
and random coins (if V is randomized). We abuse notation and write xPpwq Ô Vypxq “ 1 to denote the fact
that V accepts.
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We next define the relevant notions of completeness, soundness, privacy, and batching. In the following
definitions xP Ô Vy is a protocol for an NP relation R.

Definition 2.1 (Completeness). The protocol xP Ô Vy is complete with (completeness) error ε “ εpλq if
for every px,wq P R X pt0, 1uλ ˆ t0, 1u˚q

Pr rxPpwq Ô Vypxq “ 1s ě 1 ´ εpλq .

Definition 2.2 (Statistical Soundness). The protocol xP Ô Vy is statistically sound with (soundness) error
ε “ εpλq if for every (unbounded) prover P˚ and every large enough λ P N, x P t0, 1uλzLpRq,

Pr rxP˚ Ô Vypxq “ 1s ď εpλq .

A statistically sound protocol is also called a proof.

Definition 2.3 (Computational Soundness). The protocol xP Ô Vy is computationally sound if for every
polynomial-size circuit family of provers P˚ “ tP˚

λu
λPN, there exists a negligible function µ, such that for all

λ P N, x P t0, 1uλzLpRq,
Pr rxP˚

λ Ô Vypxq “ 1s ď µpλq .

A computationally sound protocol is also called an argument.

Definition 2.4 (Statistical Witness Indistinguishability). The protocol xP Ô Vy is statistically witness-
indistinguishable with error ε if for every polynomial-size circuit family V˚ “ tV˚

λu
λPN,

txPpw0q Ô V˚
λypxqupx,w0,w1qPR

|x|“λ

«ε txPpw1q Ô V˚
λypxqupx,w0,w1qPR

|x|“λ

,

where px,w0, w1q P R is an abuse of notation to be interpreted as px,w0q, px,w1q P R. If the above in-
distinguishability is only guaranteed for the honest verifier V, then xP Ô Vy is honest-verifier statistically
witness-indistinguishable.

Definition 2.5 (Statistical Zero Knowledge). The protocol xP Ô Vy is statistically zero-knowledge with
error ε if there exists an expected PPT simulator S such that for every polynomial-size circuit family V˚ “

tV˚
λu

λPN,

txPpwq Ô V˚
λypxqupx,wqPR

|x|“λ

«ε tSpx,V˚
λqupx,wqPR

|x|“λ

.

The protocol is honest-verifier statistical zero-knowledge if the above is only guaranteed for the honest verifier
V.

Definition 2.6 (Computational Zero Knowledge). The protocol xP Ô Vy is computationally zero-knowledge
if there exists an expected PPT simulator S such that for every polynomial-size circuit family V˚ “ tV˚

λu
λPN,

txPpwq Ô V˚
λypxqupx,wqPR

|x|“λ

«c tSpx,V˚
λqupx,wqPR

|x|“λ

.

The protocol is honest-verifier computational zero-knowledge if the above is only guaranteed for the honest
verifier V.

Definition 2.7 (Interactive Batch Protocol). A batch protocol for R is a protocol for
Ť

tPN Rbt, where:

Rbt :“
!

px1, . . . , xtq, pw1, . . . , wtq : |x1| “ ¨ ¨ ¨ “ |xt|, px1, w1q, . . . , pxt, wtq P R
)

. (1)

• The protocol’s completeness and soundness errors (δpλ, tq and ϵpλ, tq) are defined to be its largest
completeness and soundness errors, respectively, on any t instances (and any of their witnesses) of size
λ

• The protocol has compression rate ρ “ ρpλ, tq, for instance length λ and number of instances t, if
maximum total length of prover messages (over all such sets of instances) is ρt
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Non-Interactive Protocols. We now define some stronger notions of soundness that we need when
working with non-interactive batch protocols. A non-interactive protocol xP Ñ Vy (in the CRS model) is
described by a set of three algorithms pGen,P,Vq as follows:

• Genp1λq: Given the instance size λ, outputs a CRS crs

• Ppcrs, x, wq: Given CRS crs, instance x, and witness w, outputs a proof π

• Vpcrs, x, πq: Given CRS crs, instance x, and proof π, either accepts or rejects

Definition 2.8 (Completeness for Non-Interactive Protocols). xP Ñ Vy has completeness error δ if for
every large enough λ P N and px,wq P R X pt0, 1uλ ˆ t0, 1u˚q,

Pr
crsÐGenp1λq

πÐPpcrs,x,wq

rVpcrs, x, πq “ 1s ě 1 ´ δpλq.

For soundness, we will need the following notions.

Definition 2.9 (Non-Adaptive Computational Soundness). A non-interactive protocol pGen,P,Vq for a
relation R is non-adaptively computationally sound if, for every x P t0, 1uλzR, for every polynomial-size
circuit family of provers P˚ “ tP˚

λu
λPN, there is a negligible function µ, such that for all λ P N:

Pr
crsÐGenp1λq

πÐP˚
λ pcrsq

rVpcrs, x, πq acceptss ď µpλq.

Definition 2.10 (Adaptive Computational Soundness). A non-interactive protocol pGen,P,Vq for a relation
R is adaptively computationally sound if, for every polynomial-size circuit family of provers P˚ “ tP˚

λu
λPN,

there is a negligible function µ, such that for all λ P N:

Pr
crsÐGenp1λq

px,πqÐP˚
λ pcrsq

“

x P pt0, 1uλzRq ^ Vpcrs, x, πq accepts
‰

ď µpλq.

Definition 2.11 (SWI for Non-Interactive Protocols). xP Ñ Vy is statistically witness-indistinguishable
with error ε if, for all large enough λ and every px,w0q, px,w1q P R X pt0, 1uλ ˆ t0, 1u˚q, we have:

pcrs, π0q «ε pcrs, π1q

where crs Ð Genp1λq, π0 Ð Ppcrs, x, w0q, and π1 Ð Ppcrs, x, w1q.

Definition 2.12 (SZK for Non-Interactive Protocols). xP Ñ Vy is statistically zero-knowledge with error
ε if there exists an expected PPT simulator S such that:

tpcrs, πqupx,wqPR
|x|“λ

«ε tSpxqupx,wqPR
|x|“λ

.

where crs Ð Genp1λq, π Ð Ppcrs, x, wq.

Definition 2.13 (CZK for Non-Interactive Protocols). xP Ñ Vy is computationally zero-knowledge if there
exists an expected PPT simulator S such that:

tpcrs, πqupx,wqPR
|x|“λ

«c tSpxqupx,wqPR
|x|“λ

.

where crs Ð Genp1λq, π Ð Ppcrs, x, wq.
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Definition 2.14 (Non-Interactive Batch Protocol). We describe a non-interactive batch protocol by a set
of PPT algorithms as follows:

• Genp1λ, 1tq: Given the instance size λ and the number of instances t, outputs a CRS crs

• TGenp1λ, 1t, i˚q: Given in addition an index i˚ P rts, outputs a CRS crs˚ together with a trapdoor td

• Ppcrs, px1, . . . , xtq, pw1, . . . , wtqq: Given CRS crs, instances xi, and witnesses wi, outputs a proof π

• Vpcrs, px1, . . . , xtq, πq: Given CRS crs, instances xi, and proof π, either accepts or rejects

Here, the prover’s communication is just the proof π, and the compression rate is defined with respect to this.

The following definitions of soundness properties are adapted from [CJJ22], though they have been
simplified and slightly weakened as this is sufficient for our purposes.

Definition 2.15 (CRS Indistinguishability). A batch protocol pGen,TGen,P,Vq is CRS-indistinguishable
if for every polynomial t and every ipλq P rtpλqs, the distributions of Genp1λ, 1tpλqq and crs˚ sampled from
TGenp1λ, 1tpλq, ipλqq are computationally indistinguishable.

Definition 2.16 (Somewhere Soundness). A batch protocol pGen,TGen,P,Vq for a relation R is somewhere
computationally sound if it satisfies CRS indistinguishability, and for every polynomial t and polynomial-
size circuit family of provers P˚ “ tP˚

λu
λPN, there is a negligible function µ such that for all λ P N, letting

t “ tpλq, and for every i˚ P rts:

Pr
crs,π

x1,...,xt

rxi˚ R R ^ Vpcrs, px1, . . . , xtq, πq acceptss ď µpλq,

where pcrs, tdq Ð TGenp1λ, 1t, i˚q, and ppx1, . . . , xtq, πq Ð P˚
λpcrs, i˚q.

3 Statistical Witness Indistinguishability from Batching

In this section, we prove that a sufficiently shrinking batch protocol for a relation can be used to construct
an honest-verifier statistically witness-indistinguishable protocol for it with the same soundness properties.
This is captured by the following theorem. In Section 3.2, we prove a related theorem that preserves
non-interactivity and stronger notions of computational soundness, which is required for our results for non-
interactive BARGs. Recall that for a relation R and polynomial t, Rbt denotes the product relation (as in
Definition 2.7).

Theorem 3.1. Consider an NP relation R. Suppose it has a batch protocol Π “ xP Ô Vy that, when run
on some polynomial t “ tpλq instances of size λ, has compression rate ρ “ ρpλq ă 1. Then, R has a protocol
ΠWI “ xPWI Ô VWIy with the following properties (on instances of size λ):

• ΠWI is HVSWI with error O
`?

ρ
˘

.

• ΠWI has the same completeness error as Π run on t instances.

• If Π is statistically sound, then so is ΠWI, with the same soundness error as Π run on t instances.

• If Π is computationally sound, then so is ΠWI.

• If P is computed by a family of polynomial-sized circuits, then so is PWI; and VWI runs in uniform
polynomial-time given blackbox access to V.

• The communication and round complexity in ΠWI are the same as those of Π, plus an additional message
sent by PWI at the start that is pλ ¨ t ` log tq bits long.
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Fix some relation R for which there is a batch protocol xP Ô Vy with compression rate ρ as hypothesized.
We will show how to construct from this a protocol xPWI Ô VWIy for R that inherits its soundness properties
and is, in addition, HVSWI. This protocol follows the template in Fig. 1, which is parameterized by an
ensemble of distributions D and a function t, which we will instantiate later.

Given a batch protocol xP Ô Vy, a function t : N Ñ N, and an ensemble of distributions D “ tDλu,
where the support of Dλ is contained in pt0, 1uλ ˆ t0, 1u˚qtpλq, the protocol xPWI Ô VWIy

pD,tq works as
follows given an instance x P t0, 1uλ and a witness w P t0, 1u˚:

1. PWI generates a sample tpxi, wiquiPrtpλqs from Dλ, and samples j Ð rtpλqs

2. PWI sends all the xi’s and j to VWI

3. PWI and VWI run the protocol xP Ô Vy on the input px1, . . . , xj´1, x, xj`1, . . . , xtpλqq, with PWI

using pw1, . . . , wj´1, w, wj`1, . . . , wtpλqq as the witnesses

4. VWI accepts iff the verifier V in the above execution accepts

Figure 1: Template for constructing HVSWI protocols from batch protocols

We next state lemmas capturing the properties of this protocol, and use them to prove Theorem 3.1. The
proof of Lemma 3.2 is included below, and Lemma 3.3 is proven in Section 3.1.

Lemma 3.2 (Completeness and Soundness). Suppose xP Ô Vy is a batch protocol for a relation R. Let t be
any polynomial and D “ tDλu be such that the support of Dλ is contained within pRXpt0, 1uλ ˆt0, 1u˚qqtpλq.
Then, the protocol xPWI Ô VWIy in Fig. 1, when instantiated with xP Ô Vy, D and t, is a protocol for R that
satisfies the following:

1. If xP Ô Vy has completeness error δpλq when run with tpλq instances of size λ, then xPWI Ô VWIy
pD,tq

has completeness error δpλq.

2. If xP Ô Vy has statistical soundness error ϵpλq when run with tpλq instances of size λ, then xPWI Ô

VWIy
pD,tq has statistical soundness error ϵpλq.

3. If xP Ô Vy is computationally sound, then xPWI Ô VWIy
pD,tq is also computationally sound.

Proof. Fix any x such that |x| “ λ, and denote tpλq by t. As all the pxi, wiq’s sampled from Dλ are contained
in R, the input px1, . . . , xj´1, x, xj`1, . . . , xtq is contained in Rbt if and only if there is some w such that
px,wq P R. The completeness and statistical soundness errors of xP Ô Vy thus carry over immediately to
xPWI Ô VWIy as stated in the theorem.

For computational soundness, suppose there is a malicious prover P˚
WI that can make VWI accept with

probability µ given an x R R. Then, without loss of generality, there exists a j P rts and px1, . . . , xtq such
that P˚

WI can make VWI accept with probability µ with the first message being px1, . . . , xj´1, x, xj`1, . . . , xtq

and j. As VWI is just emulating the verifier V, this means there is a P˚ that emulates P˚
WI and makes V

accept on this input with probability µ. Further, if P˚
WI is polynomial-time, so is P˚, as t is a polynomial. If

µpλq is non-negligible, this breaks computational soundness of xP Ô Vy, proving the theorem.

Lemma 3.3 (Witness Indistinguishability). Consider a batch protocol xP Ô Vy for a relation R that has
polynomial-sized witnesses. For a polynomial t, when the protocol is run with tpλq instances of size λ,
suppose the total communication from the prover is at most ρpλqtpλq bits for some function ρ. Then, there
is an efficiently sampleable ensemble of distributions D “ tDλu, where Dλ is supported in pR X pt0, 1uλ ˆ

t0, 1u˚qqtpλq, such that the protocol xPWI Ô VWIy in Fig. 1, when instantiated with xP Ô Vy, D, and t, is

HVSWI with error O
´

a

ρpλq

¯

.
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Using Lemmas 3.2 and 3.3 (the latter is proved in Section 3.1), we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider a relation R with polynomial-sized witnesses and a batch protocol xP Ô Vy

that, for some polynomial t, when run on tpλq instances of size λ, has completeness error δpλq, statistical
soundness error ϵpλq, and at most ρpλqtpλq bits of communication from the prover for some function ρ. Let
D be the ensemble guaranteed by Lemma 3.3, and consider the protocol xPWI Ô VWIy as described in Fig. 1
instantiated with this D and t. This protocol has the following properties:

• Lemma 3.3 implies that this protocol is HVSWI with WI error O
´

a

ρpλq

¯

.

• Lemma 3.2 implies that its completeness and statistical soundness errors are δpλq and ϵpλq, respectively.

• Lemma 3.2 implies that if xP Ô Vy is computationally sound, then so is xPWI Ô VWIy.

• All VWI does is run V on an input provided by PWI and accept iff it accepts. PWI also simply runs P
on an input and witnesses, and in addition computes samples from Dλ and rtpλqs, which can be done
in non-uniform polynomial time since D is efficiently sampleable.

• In addition to the messages of xP Ô Vy, the only additional communication in xPWI Ô VWIy is the
initial prover message consisting of tpλq instances and an element of rtpλqs.

The above arguments prove the respective properties of the protocol promised by the theorem.

3.1 Witness Indistinguishability

In this section, we prove Lemma 3.3 about the witness indistinguishability of the protocol from Fig. 1. We
will first come up with an ensemble of distributions D that, when used to instantiate this protocol, will
make the protocol witness-indistinguishable. Fix any batch protocol xP Ô Vy for a relation R, an instance
length λ, witness length m, and the number of batch instances t. Suppose that when xP Ô Vy is run on t
instances of length λ, each with witness of length m, the total prover communication is at most ρt, where
the compression rate ρ is less than 1.

Compressing Functions. We will use the fact that compressing functions necessarily lose information
to make such a prover lose information about the witness we want to hide. This property of compression is
captured by the following lemma by Dell, building on the work of Drucker [Dru15]. Similar consequences of
compression have been used in the context of cryptography in the past, for instance to construct Oblivious
Transfer from Private Information Retrieval protocols [DMO00, Lemma 1].

Lemma 3.4 ([Del16, Lemma 9]). Let t P N, ρ P r0, 1q, and B be the uniform distribution over t0, 1ut. For
any randomized mapping f : t0, 1ut Ñ t0, 1uρt, with j Ð rts, we have:

E
jÐrts

rSD pf pB|jÐ0q , f pB|jÐ1qqs ď
a

2 ln 2 ¨ ρ,

where B|jÐb is the result of drawing a sample pb1, . . . , btq Ð B and then replacing bj with b.

We now define a function that captures the knowledge gained by the honest verifier by interacting with
the honest prover in the protocol xP Ô Vy. Its input consists of t instances x1, . . . , xt P t0, 1uλ, potential
witnesses w1, . . . , wt P t0, 1um, and potential random string r of V. We use x to denote px1, . . . , xtq for
brevity.

fppx1, . . . , xtq, pw1, . . . , wtq, rq:

1. Run xP Ô Vy with input px1, . . . , xtq, using r as randomness for V, and with
pw1, . . . , wtq as the witnesses provided to P

2. Output the sequence of prover messages in the above execution
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In addition, for any pair of tuples of t potential witnesses y1, . . . , yt P t0, 1um and z1, . . . , zt P t0, 1um, we
define the following function on bits bi.

gx,y,z,rpb1, . . . , btq:

1. For each i P rts, set wi “ yi if bi “ 0, and wi “ zi if bi “ 1

2. Output fpx,w, rq

The proposition below follows immediately from Lemma 3.4 and the compression of the protocol.

Proposition 3.5. For any tuple of xi P t0, 1uλ, yi, zi P t0, 1um, and any r of the appropriate length, letting
B be the uniform distribution over t0, 1ut,

E
jÐrts

rSD pgx,y,z,r pB|jÐ0q , gx,y,z,r pB|jÐ1qqs ď
a

2 ln 2 ¨ ρ.

Interpreting the function g in terms of the function f then gives the following.

Proposition 3.6. Consider any t-tuple of xi P t0, 1uλ, yi, zi P t0, 1um, and any r of the appropriate length.
For i P rts, let Wi be set to yi or zi uniformly at random. Then,

E
jÐrts

“

SD
`

f
`

x,W |jÐyj
, r
˘

, f
`

x,W |jÐzj , r
˘˘‰

ď
a

2 ln 2 ¨ ρ.

Two-Player Zero-Sum Games. Consider a two-player zero-sum game G “ pR,C, pq, where R is the set
of pure strategies for the “row” player, C the same for the “column” player, and p : RˆC Ñ R is the payoff
function. Let ρ and κ denote mixed strategies for the two players, which are distributions over R and C,
respectively. The value of this game is defined as:

valpGq “ min
ρ

max
κ

E
rÐρ
cÐκ

rppr, cqs “ max
κ

min
ρ

E
rÐρ
cÐκ

rppr, cqs .

where the equality follows from von Neumann’s minimax theorem [vN28]. Lipton and Young prove the
following sparse minimax theorem that will be useful for us to infer sampleable mixed strategies.

Lemma 3.7 ([LY94]). Consider any two-player zero-sum game G “ pR,C, pq such that ppr, cq P r0, 1s for
any pr, cq. For any ϵ ą 0, there is multiset S Ď R of size Θplog |C|{ϵ2q such that for every c P C:

E
rÐS

rppr, cqs ď valpGq ` ϵ.

That is, there is a sparse mixed strategy that is almost as good as the optimal strategy over R. We will
now define a game that captures the witness indistinguishability of the protocol described in Fig. 1, and use
the above lemma to find a distribution Dλ with which to instantiate the protocol. Note that this is the first
point in the proof where we involve the relation R that the protocols are for.
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The game GW “ pR,C, pq is defined with the following sets of pure strategies:

• R “ tpx,y, zqu, where each vector is of length t, xi P t0, 1uλ, yi, zi P t0, 1um, and
pxi, yiq, pxi, ziq P R

• C “ tpx, y, zqu, where x P t0, 1uλ, y, z P t0, 1um, and px, yq, px, zq P R

Given r “ px,y, zq P R, for each i P rts, define a random variable Wi that is set to yi or zi
uniformly at random. The payoff function p : R ˆ C Ñ r0, 1s is then defined as follows, with
r distributed uniformly over the appropriate domain:

p ppx,y, zq, px, y, zqq “ E
jÐrts,r

rSD pf px|jÐx,W |jÐy, rq , f px|jÐx,W |jÐz, rqqs

Proposition 3.8. The value of the game GW defined above is at most
?
2 ln 2 ¨ ρ.

Proof. It is sufficient to show that for any distribution pX,Y, Zq over C, there is a distribution pX,Y ,Zq

over R such that the expected payoff under these strategies is at most the required bound. Given such a
distribution pX,Y, Zq, consider pX,Y ,Zq defined by pxi, yi, ziq Ð pX,Y, Zq for i P rts. The expected payoff
is then as follows, with each Wi set to yi or zi at random:

E
px1,y1,z1qÐpX,Y,Zq

...
pxt,yt,ztqÐpX,Y,Zq

E
px,y,zqÐpX,Y,Zq

E
jÐrts,r

rSD pf px|jÐx,W |jÐy, rq , f px|jÐx,W |jÐz, rqqs .

Noting that r and j are sampled independently of all the other quantities10, by linearity of expectation, the
above is the same as:

E
jÐrts,r

»

—

—

–

E
px1,y1,z1qÐpX,Y,Zq

...
pxt,yt,ztqÐpX,Y,Zq

E
px,y,zqÐpX,Y,Zq

rSD pf px|jÐx,W |jÐy, rq , f px|jÐx,W |jÐz, rqqs

fi

ffi

ffi

fl

.

As px, y, zq and pxj , yj , zjq are identically distributed and are independent of all other variables, this is the
same as:

E
jÐrts,r

»

—

—

–

E
px1,y1,z1qÐpX,Y,Zq

...
pxt,yt,ztqÐpX,Y,Zq

“

SD
`

f
`

x,W |jÐyj , r
˘

, f
`

x,W |jÐzj , r
˘˘‰

fi

ffi

ffi

fl

.

By Proposition 3.6 and linearity of expectation, the above is at most
?
2 ln 2 ¨ ρ, which proves the proposition.

By Lemma 3.7 and Proposition 3.8, we have the following proposition.

Proposition 3.9. For every ϵ ą 0, there is a multiset S “ tpx,y, zqu of size Θppλ ` mq{ϵ2q such that:

• for every i P rts, both pxi, yiq and pxi, ziq are in R

• for every x P t0, 1uλ and y, z P t0, 1um such that px, yq, px, zq P R,

E
px,y,zqÐS
wiÐtyi,ziu

jÐrts,r

rSD pf px|jÐx,w|jÐy, rq , f px|jÐx,w|jÐz, rqqs ď
a

2 ln 2 ¨ ρ ` ϵ.

10This requirement of independence, specifically between r and x, is why this proof only provides honest-verifier SWI and
does not work for a malicious verifier. The WIof our protocol could potentially be broken by a malicious verifier that chooses r
based on x.
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Proof of Lemma 3.3. We can now describe the distribution Dλ that we will instantiate the protocol in
Fig. 1 with. Recall that ρpλq is the compression rate of the batch protocol we started with when run on tpλq

instances of size λ.

Let S be the multiset guaranteed by Proposition 3.9 for ϵ “
a

ρpλq. The distribu-
tion Dλ is sampled as follows:

1. Sample px,y, zq Ð S.

2. For each i P rtpλqs, set wi to yi or zi uniformly at random.

3. Output tpxi, wiquiPrtpλqs.

As S is of size Θppλ ` mpλqq{ϵ2q “ Θppλ ` mpλqq{ρpλqq, which is polynomial in λ, the distribution Dλ

can be sampled non-uniformly in polypλq time. In any element px,y, zq of S, we are guaranteed that each
pxi, yiq and pxi, ziq is in R. So the support of Dλ is contained in pR X pt0, 1uλ ˆ t0, 1u˚qqtpλq, as required.

To argue HVSWI of the protocol xPWI Ô VWIy when instantiated with this distribution, we need to show
that for every possible pair px, yq, px, zq P R X pt0, 1uλ ˆ t0, 1u˚q, the views of the verifier VWI on input x
when PWI uses y or z as the witness are statistically close. Fix any such pair.

Note that for any px,wq sampled from Dλ, the view of VWI on input x, when P uses witness w, is
completely determined by the following quantities: x, j, r, and fpx|jÐx,w|jÐw, rq – all this is missing is
the sequence of verifier messages in the protocol, which can be reconstructed efficiently given the verifier
randomness r and the prover messages fp¨ ¨ ¨ q. Thus, by the data processing inequality, the statistical
distance between the views of VWI in the cases where PWI uses witness y or z is at most the following, where
px,wq Ð Dλ, j Ð rtpλqs, and r is over the appropriate domain:

SD ppx, j, r, fpx|jÐx,w|jÐy, rqq , px, j, r, fpx|jÐx,w|jÐz, rqqq .

Taking into account the definition of Dλ, this is equal to:

E
px,y,zqÐS
wiÐtyi,ziu

jÐrts,r

rSD pfpx|jÐx,w|jÐy, rq, fpx|jÐx,w|jÐz, rqqs ,

which, by Proposition 3.9, is at most
a

2 ln 2 ¨ ρpλq ` ϵ “ Op
a

ρpλqq. This proves the Lemma 3.3.

Remark 4. The prover PWI in protocol xPWI Ô VWIy we construct is non-uniform even if the prover P
from the original batch protocol is uniform. This is because the minimax theorem we use (Lemma 3.7), while
constructive, is not uniform. An interesting question here is whether a uniform version of the minimax
theorem can be used instead to preserve uniformity of the prover. As far as we can tell, existing uniform
minimax theorems ([VZ13], for instance) do not seem useful for this purpose. They require the payoff of the
game to be efficiently computable given the strategies, which does not seem to be the case here as it involves
computing the statistical distance between two rather arbitrary distributions.

Remark 5. The bound of Op
?
ρq in the statements above (and particularly in Lemma 3.4) is optimal upto

constant factors. In the case of Lemma 3.4, a function g that splits its input into blocks of size Θp1{ρq and
outputs the majority of the bits in each block witnesses this optimality. This can then be extended to proof
systems, where the bits may represent predicates that distinguish between two witnesses.

3.2 Non-Interactive Protocols

In this section, we prove a version of Theorem 3.1 for non-interactive protocols. It preserves non-interactivity
and considers adaptive notions of soundness.
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Theorem 3.10. Suppose an NP relation R has a non-interactive batch protocol Π “ pGen,TGen,P,Vq that,
when run on some polynomial t “ tpλq instances of size λ, has compression rate ρ “ ρpλq ă 1. Then, R has
a non-interactive protocol ΠWI “ pGenWI,PWI,VWIq with the following properties (on instances of size λ):

• ΠWI is SWI with error O
`?

ρ
˘

.

• If Π is CRS-indistinguishable, then ΠWI has completeness error negligibly close to that of Π run on t
instances.

• If Π is somewhere computationally sound, then ΠWI is adaptively computationally sound.

• If P is computed by a family of polynomial-sized circuits, then so is PWI; and VWI and GenWI run in
uniform polynomial-time given blackbox access to V and TGen, respectively.

• The length of the proof in ΠWI is that in Π plus an additional λ ¨ t bits. The length of the CRS is the
same.

Fix some relation R for which there is a non-interactive batch protocol pGen,TGen,P,Vq with com-
pression rate ρ as hypothesized. We will show how to construct from this a non-interactive SWI protocol
pGenWI,PWI,VWIq for R in a manner similar to that earlier in this section for general interactive protocols.
This protocol follows the template in Fig. 1, which is parametrised by an ensemble of distributions D and a
function t, which we will instantiate later.

Given a non-interactive batch protocol pGen,TGen,P,Vq, a function t : N Ñ N, and an ensemble of
distributionsD “ tDλu, where the support ofDλ is contained in pt0, 1uλˆt0, 1u˚qtpλq, the non-interactive
protocol pGenWI,PWI,VWIq are as follows.

GenWIp1
λq:

• Sample j Ð rtpλqs, and crs Ð TGenp1λ, 1tpλq, jq.

• Output pj, crsq.

PWIppj, crsq, x, wq:

• Sample tpxi, wiquiPrtpλqs from Dλ.

• Compute π Ð Ppcrs, px1, . . . , xj´1, x, xj`1, . . . , xtpλqq, pw1, . . . , wj´1, w, wj`1, . . . , wtpλqqq.

• Output px, πq.

VWIppj, crsq, x, px, πqq:

• Accepts iff Vpcrs, px1, . . . , xj´1, x, xj`1, . . . , xtpλqq, πq accepts.

Figure 2: Template for constructing non-interactive SWI protocols from non-interactive batch protocols

We next state lemmas capturing the properties of this protocol, and use them to prove Theorem 3.10.

Lemma 3.11 (Completeness and Soundness). Suppose Π “ pGen,P,Vq is a non-interactive batch protocol
for a relation R. Let t be any polynomial and D “ tDλu be such that the support of Dλ is contained within
pR X pt0, 1uλ ˆ t0, 1u˚qqtpλq. Then, the protocol ΠWI “ pGenWI,PWI,VWIq in Fig. 2, when instantiated with
Π, D and t, is a non-interactive protocol for R that satisfies the following:
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1. If Π has completeness error δpλq when run with tpλq instances of size λ and is CRS-indistinguishable,
then ΠWI has completeness error at most δpλq ` neglpλq.

2. If Π is somewhere computationally sound, then ΠWI is adaptively computationally sound.

Proof. Let t “ tpλq. If in GenWIp1
λq, the crs had been sampled from Genp1λ, 1tq instead of TGenp1λ, 1t, jq,

then the completeness of ΠWI follows that of Π, with the same error δpλq (by the same arguments as in
Lemma 3.2). By the CRS-indistinguishability of Π, and as both PWI and VWI are polynomial-time algorithms,
making this change in GenWI can only change the completeness error by a negligible amount.

For soundness, suppose there is a malicious prover P˚
WI and a non-negligible function µ such that, with

crs Ð GenWIp1
λq and px, πq Ð P˚

WIpcrsq we have:

Pr
“

x P t0, 1uλzLpRq ^ VWIpcrs, x, πq accepts
‰

ě µpλq.

By the definition of the protocol, the above is the same as the following: with j Ð rts, crs Ð TGenp1λ, 1t, jq,
px,x, πq Ð P˚

WIpj, crsq,

Pr
“

x P t0, 1uλzLpRq ^ Vpcrs,x|jÐx, πq accepts
‰

ě µpλq,

which immediately contradicts the somewhere computational soundness of pGen,TGen,P,Vq if µ is non-
negligible. This proves the lemma.

Lemma 3.12 (Witness Indistinguishability). Consider a non-interactive batch protocol Π “ pGen,TGen,P,Vq

for a relation R that has polynomial-sized witnesses. For a polynomial t, when the protocol is run with
tpλq instances of size λ, suppose the length of the proof is at most ρpλqtpλq bits for some function ρ.
Then, there is an efficiently sampleable ensemble of distributions D “ tDλu, where Dλ is supported in
pRX pt0, 1uλ ˆ t0, 1u˚qqtpλq, such that the protocol pGenWI,PWI,VWIq in Fig. 2, when instantiated with Π, D,

and t, is SWI with error O
´

a

ρpλq

¯

.

Proof Sketch. The proof of this lemma is identical to that of Lemma 3.3, with the only difference being that
instead of the verifier’s random string r, here we use the CRS sampled by GenWI.

Proof of Theorem 3.10. Consider a relation R with polynomial-sized witnesses and a non-interactive batch
protocol Π “ pGen,TGen,P,Vq that, for some polynomial t, when run on tpλq instances of size λ, has
completeness error δpλq, statistical soundness error ϵpλq, and proofs of length at most ρpλqtpλq bits for
some function ρ. Let D be the ensemble guaranteed by Lemma 3.12, and consider the protocol ΠWI “

pGenWI,PWI,VWIq as described in Fig. 2 instantiated with this D and t. This protocol has the following
properties:

• Lemma 3.12 implies that this protocol is SWI with WI error O
´

a

ρpλq

¯

.

• Lemma 3.11 implies that its completeness error is δpλq ` neglpλq.

• By Lemma 3.11, if Π is somewhere computationally sound, then ΠWI is adaptively computationally
sound.

• All VWI does is run V on an input provided by PWI and accept iff it accepts. GenWI similarly only
samples from rtpλqs and runs TGen once. PWI also simply runs P on an input and witnesses, and in
addition computes samples from Dλ and rtpλqs, which can be done in non-uniform polynomial time
since D is efficiently sampleable.

• In addition to the proof from Π, the proof in ΠWI consists only of the tpλq instances of length λ sampled
by PWI.

The above arguments prove the respective properties of the protocol promised by the theorem.
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3.3 Corollaries

In this section we state some of the known results on transforming HVSWI protocols into SWI and SZK
protocols against malicious verifiers. Starting from a public-coin HVSWI proof, Corollary 3.13 gives an SWI
proof against malicious verifiers without any additional assumptions. Even if the original HVSWI proof is
not public coin, we can use it to obtain an SWI proof under computational assumptions. This transformation
is given by Corollary 3.14. Moving on to the setting of computational soundness, assuming OWFs exist,
Corollary 3.14 shows that any HVSWI argument can be transformed into an SWI argument. Under the same
assumption, Corollary 3.15 gives a transformation from an SWI argument to an SZK argument. Finally,
Corollary 3.16 gives a similar transformation from an SWI argument to an SZK argument for non-interactive
protocols.

Corollary 3.13. If there exists a public-coin HVSWI proof Π for an NP relation R then there exists a
public-coin SWI proof ΠM for R with the following properties:

• ΠM has negligible completeness and soundness error.

• ΠM has WI error polypλq ¨ ε ` 2´Θpλq where λ is the instance length and ε is WI error of Π.

• If Π has d rounds then ΠM has 2d rounds.

• If the honest prover in Π is non-uniform then so is the honest prover in ΠM .

Proof Sketch. The proof is based on [Vad99, Theorem 6.3.5] which gives a transformation from any public-
coin HVSZK proof to a public-coin SZK proof with the following properties:

• ΠM has negligible completeness error 2´λ and soundness error 1{λ.

• ΠM has ZK error polypλq ¨ ε ` 2´Θpλq where λ is the instance length and ε is ZK error of Π.

• If Π has d rounds then ΠM has 2d rounds.

• If the honest prover in Π is non-uniform then so is the honest prover in ΠM .

We observe that the same transformation also transforms any HVSWI proof to an SWI proof with the same
properties. To see that, recall that a protocol xP Ô Vy is SWI with error ε if and only if there exists an
(unbounded) simulator S such that for every polynomial-size circuit family V˚ “ tV˚

λu
λPN,

txPpwq Ô V˚
λypxqupx,wqPR

|x|“λ

«ε tSpx,V˚
λqupx,wqPR

|x|“λ

.

Similarly, the protocol is HVSWI if and only if the above is guaranteed for the honest verifier V. The proof
of [Vad99, Theorem 6.3.5] uses the polynomial time simulator of the original SZK proof to construct a
polynomial-time simulator for the new proof system. By inspecting the transformation and its analysis, we
conclude that if the original protocol has an unbounded simulator instead of a polynomial-time one, the
simulator constructed for the new proof system is also unbounded with the same error as in the efficient
case.

The SWI proof resulting from the [Vad99] transformation has a non-negligible soundness error. To get
an SWI proof with the claimed properties we can repeat the resulting SWI proof in parallel polypλq times.
This reduces the soundness error to negligible and only increases the WI error by a factor of polypλq.

Corollary 3.14. Let Π be an HVSWI protocol for an NP relation R with d rounds.

• Assume there exists a statistically hiding commitment with d˚ rounds. If Π is statistically sound then
there exists an SWI proof for R with Opd ¨ d˚q rounds and soundness error that is negligibly close to
that of Π.
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• Assuming OWFs exist, if Π is computationally sound then there exists an SWI argument for R with
Opdq rounds.

The WI error of the new protocol is negligibly close to that of Π. If the honest prover in Π is non-uniform
then so is the honest prover in the new protocol.

Statistically-hiding commitment be constructed in two rounds from CRHFs [DPP97, FS90, HM96], in a
constant number of rounds from multi-collision resistant hash functions [BDRV18, KNY18] or distributional
CRHFs [BHKY19], and in Opλq rounds from OWFs [HNO`09].

Proof Sketch. The proof is based on the compiler of [GMW86]. We start with the case of computational
soundness and then explain how to modify the protocol to obtain statistical soundness. The verifier starts
by committing to a random string rV using a statistically-binding commitment and the prover responds with
a random string rP . Then the prover and verifier execute the HVSWI protocol where the verifier uses the
randomness rV ‘ rP . After each message, the verifier proves using a computational ZK argument that the
message was generated correctly. The SWI argument xPM Ô VM y is described in Fig. 3. The construction
uses a two-message statistically binding commitment and a constant-round computational ZK argument,
both of which can be constructed from OWFs [Nao91, FS90]. Next, we sketch the proof of soundness and
SZK.

Computational soundness. Assume towards contradiction that there exists a polynomial-size cheating
prover P˚ that can prove a false statement with non-negligible probability ϵ. We use P˚ to break the
computational soundness of the HVSWI argument xPWI Ô VWIy. First we consider a hybrid experiment where
we emulate an execution P˚ with the verifier VM , but each execution of the ZK argument xPCZK Ô VCZKy is
simulated. By the zero-knowledge property of the ZK argument, P˚ will continue to produce accepting proofs
with probability that is negligibly close to ϵ. In the next hybrid, we modify the value in the initial commitment
sent by VM from rV to 0ℓ. By the computational hiding property of the commitment, P˚ will continue to
produce accepting proofs with probability that is negligibly close to ϵ. Now we can break the soundness of
the HVSWI argument xPWI Ô VWIy by emulating this final hybrid experiment and forwarding the messages
of the external verifier VWI to P˚ instead of computing them using the randomness r “ rV ‘ rP . Since the
string r is uniformly distributed, we convince the external verifier of a false statement with probability that
is negligibly close to ϵ.

SWI. Fix any polynomial-size cheating verifier V˚ and statement-witness pairs px,w0q, px,w1q P R. Let ϵ
denote the distance between the views View0 “ xPM pw0q Ô V˚ypxq and View1 “ xPM pw1q Ô V˚ypxq. Since
the commitment COM is statistically binding, we can fix the first commitment message k sampled by PM

such that COMk is perfectly binding and the distance between View0 and View1 remains negligibly close to
ϵ. Let r̃V be the string that V˚ commits to in its first message.

For b P t0, 1u we consider the view of the honest verifier VWI in the interaction of xPWIpwbq Ô VWIypxq

which consist of the verifier’s randomness r and the prover’s messages pβ1, . . . , βdq. We argue that given this
view we can efficiently sample from a distribution that is negligibly close to Viewb (with the first commitment
message fixed to k). Therefore, it follows that ϵ must be negligibly close to the SWI error of the HVSWI
argument.

Given the view r, pβ1, . . . , βdq we sample from a distribution close to Viewb as follows. We emulate the
execution of V˚, setting the first prover message to k and the second prover message to rP “ r̃V ‘ r. Since r
is uniform, rP is distributed exactly as in Viewb. In every one of the remaining d rounds, starting from i “ 1
to d we interact with V˚ emulating the verifier of the ZK argument xPCZK Ô VCZKy. If the ZK argument is
accepted then we set the next prover message to βi, otherwise the prover aborts.

Let E be the event that the verifier V˚ proves a true statement in each of the accepting executions of the
ZK argument xPCZK Ô VCZKy. Conditioned on E, the view sampled above is distributed exactly the same
as Viewb. By the computational soundness property of the ZK argument, E occurs with all but negligible
probability. Therefore, the sampled view is negligibly close to Viewb.
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An SWI proof. If the original SWI protocol xPWI Ô VWIy has statistical soundness we can modify the
protocol xPM Ô VM y described in Fig. 3 and obtain an SWI proof. We make the following modifications:

• We replace the two-message statistically-binding commitment with a statistically-hiding commitment.

• After the verifier sends the commitment c and before the prover sends rP , have the verifier prove that it
knows an opening of c using a SZK argument of knowledge where SZK holds even against an unbounded
malicious verifier.11 (We describe how this SZK argument of knowledge is constructed below.)

• Replace each invocation of the computational ZK argument with a SZK argument of knowledge against
an unbounded malicious verifier.

Since the verifier’s commitment and ZK arguments are all statistical, we can show statistical soundness
following the same argument as in the computational case. To prove SWI, modify the above proof as follows.
Since the commitment c is statistically-hiding, the string r̃V that V˚ commits to is not well defined. Instead,
we invoke the knowledge extractor of the SZK argument of knowledge and extract an opening to a string
r̃V . To prove SWI we need to show that, with all but negligible probability, all the messages β1, . . . , βd are
computed according to the strategy of the honest verifier in the HVSWI argument VWI using the randomness
r̃V ‘ rP . If this is not the case for some βi, we can use the knowledge extractor of the SZK argument
of knowledge and obtain an opening of the commitment c to a value other than rV with non-negligible
probability, contradicting the computational binding property of the commitment.

Using a statistically-hiding commitment with d˚ rounds, a SZK argument of knowledge against an un-
bounded malicious verifier with Opd˚q rounds can be constructed following the outline of [FLS90, GK96]:
Start from an SWI argument of knowledge against an unbounded verifier in Opd˚q rounds. Such a protocol
can be obtained by taking the parallel repetition of the ZK protocol of [Blu81, GMW86] and instantiating
the commitment scheme with the statistically hiding commitment. Next, the SWI argument of knowledge is
transformed into an SZK argument of knowledge using the compiler of [FLS90]. In more details, the verifier
starts by committing to trapdoor statement using a statistically hiding commitment and proving that the
committed statement is true using a computational ZK proof of knowledge. Then the prover uses the SWI
argument of knowledge to prove that either the original statement or the committed trapdoor statement is
true. The required computational ZK proof of knowledge can be constructed by combining the computa-
tional ZK proof of [GK96] (instantiated with the statistically-hiding commitment) with a computational WI
proof of knowledge (given by parallel repetition of the ZK protocol of [Blu81, GMW86], instantiated with a
statistically binding commitment) via the [FLS90] compiler.

11This is in contrast to the weaker notion of SZK in Definition 2.5 that only considers polynomial-size malicious verifiers.
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Let COM be a two-message statistically binding commitment. Let xPCZK Ô VCZKy be a constant-
round computational ZK argument. Let xPWI Ô VWIy be a d-round HVSWI argument where verifier’s
randomness is of length ℓ. Assume WLOG that d is even.
The SWI argument xPM Ô VM y is as follows. The prover and verifier are given an instance x P t0, 1uλ.
The prover is also given a witness w P t0, 1u˚.

1. PM samples a first message k for COM and sends it to VM

2. VM samples rV Ð t0, 1uℓ and a commitment c Ð COMkprV q, and sends c to PM

3. PM samples rP Ð t0, 1uℓ sends it to VM

4. For i “ 1, . . . , d:

(a) VM computes the next message of VWI using randomness r “ rV ‘ rP :

αi Ð VWIpx, α1, β1, . . . , αi´1, βi´1; rq ,

and sends αi to PM

(b) VM and PM execute the protocol xPCZK Ô VCZKy where VM proves to PM that there exist
strings r̃V and σ such that:

c “ COMkpr̃V ;σq ^ αi “ VWIpx, α1, β1, . . . , αi´1, βi´1; r̃V ‘ rP q

(c) If VCZK rejects then PM aborts. Otherwise, PM computes the next message of PWI:

βi Ð PWIpx,w, α1, β1, . . . , αiq ,

and sends βi to VM

Figure 3: Malicious-verifier SWI argument from an HVSWI argument and OWFs

Corollary 3.15. Assuming one-way functions exist, if there exists an SWI argument Π for an NP-complete
relation R with d rounds, then there exists an SZK argument ΠZK for R with Opdq rounds and ZK error
that is negligibly close to the WI error of Π. If the honest prover in Π is non-uniform then so is the honest
prover in ΠZK.

Proof Sketch. The proof is based on the compiler of [FLS90]. The verifier starts by sending a random image
y of a length-doubling PRG and proving that it knows a corresponding preimage using a computational
ZK argument of knowledge. Then, the prover and verifier execute the SWI protocol proving that either
the original statement is correct or that y is in the image of the PRG. The SZK argument xPZK Ô VZKy

is described in Fig. 4. The construction uses a PRG and a constant-round computational ZK argument of
knowledge, both of which can be constructed from OWFs [HILL99, FS90]. Next, we sketch the proof of
soundness and SZK.

Soundness. Assume towards contradiction that there exists a polynomial-size cheating prover P˚ that can
prove a false statement with non-negligible probability ϵ. We use P˚ to break the computational soundness
of the SWI argument xPWI Ô VWIy. First we consider a hybrid experiment where we emulate an execution
P˚ with the verifier VZK, but the execution of the computational ZK argument xPCZK Ô VCZKy is simulated.
By the zero-knowledge property of the ZK argument, P˚ will continue to produce accepting proofs with
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probability that is negligibly close to ϵ. In the next hybrid, we sample a uniform y Ð t0, 1u2λ instead of
sampling y as a random image of the PRG. By the pseudorandomness of the generator, P˚ will continue
to produce accepting proofs with probability that is negligibly close to ϵ. Now, the statement for the
SWI argument xPWI Ô VWIy is false with probability 1 ´ 2´λ. Therefore, we can break the soundness of
xPWI Ô VWIy with probability that is negligibly close to ϵ.

SZK. We describe a simulator S. The simulator is given an instance x P LpRq and the description of a
cheating verifier V˚. S emulates an interaction with V˚. If the verifier VCZK rejects in the execution of the
computational ZK argument of knowledge xPCZK Ô VCZKy then S outputs the transcript of the interaction
with V˚ up to that point. Otherwise, S invokes the knowledge extractor of xPCZK Ô VCZKy on the description
of the residual verifier V˚ after sending its first message, right before the execution of xPCZK Ô VCZKy. If the
extractor fails to output a string r such that y “ PRGprq then S aborts. Otherwise, S continues to emulate
an interaction with V˚ by executing the honest prover of the SWI argument xPWI Ô VWIy using the witness
w̃ “ K and r̃ “ r. Finally, S outputs the transcript of the entire interaction with V˚. Fix any px,wq P R
and a polynomial-size cheating verifier V˚. Since the extractor runs in time that is inverse polynomial to
the probability that the proof given by V˚ is accepted, it follows that S runs in expected polynomial time.
By the knowledge soundness property of the computational ZK argument of knowledge the extractor fails
to find a witness and the simulation aborts only with negligible probability. Conditioned on the fact that
S does not abort, the only difference between the simulated view generated by Spx,V˚q and the real view
xPZKpwq Ô V˚ypxq is the witness used by the honest prover in the execution of xPWI Ô VWIy. Therefore,
the ZK error of the SWI argument xPZK Ô VZKy is negligibly close to the WI error of the SWI argument
xPWI Ô VWIy.

Let PRG : t0, 1uλ Ñ t0, 1u2λ be a length-doubling PRG. Let xPCZK Ô VCZKy be a constant-round
computational ZK argument of knowledge. Let xPWI Ô VWIy be an SWI argument.
The SZK argument xPZK Ô VZKy is as follows. The prover and verifier are given an instance x P t0, 1uλ.
The prover is also given a witness w P t0, 1u˚.

1. VZK samples a string r Ð t0, 1uλ and sends y “ PRGprq to PZK

2. VZK proves to P using xPCZK Ô VCZKy that there exists a string r̃ such that y “ PRGpr̃q

3. If VCZK rejects then PZK aborts. Otherwise, PZK proves to VZK using xPWI Ô VWIy that there exist
strings w̃ and r̃ such that:

px, w̃q P R _ y “ PRGpr̃q ,

using the witness w̃ “ w and r̃ “ K

Figure 4: SZK argument from an SWI argument and OWFs

Corollary 3.16. Assuming one-way functions exist, if there exists a non-interactive SWI argument Π for
an NP-complete relation R in the CRS model, then there exists a non-interactive SZK argument ΠZK for
R in the CRS model with ZK error that is the same as the WI error of Π. If the honest prover in Π is
non-uniform then so is the honest prover in ΠZK.

Proof Sketch. The proof is similar to that of Corollary 3.15 except that the verifier’s first message containing
a random image y of a length-doubling PRG is generated as part of the CRS and the verifier does not prove
knowledge of the preimage of y. Soundness follows by the same argument as in Corollary 3.15. In the proof of
SZK, the simulator samples the CRS including y itself and, therefore, it has the corresponding preimage.
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4 NISZK Privacy Amplification

The WI and ZK errors for the protocols obtained in the previous section were only inverse-polynomially
small. In this section, we show how to reduce this error to negligibly small for non-interactive protocols,
assuming lossy public-key encryption (LPKE). To be specific, given a NISZKA with a sufficiently-small
inverse-polynomial error, we use LPKE to obtain a NISWIA with negligible WI error (Theorem 4.4). By
Corollary 3.16, this (together with the fact that LPKE implies OWF) implies NISZKA with negligible ZK
error. (We note that our amplification approach would in fact also work in the interactive setting, but would
result in protocols with at least four rounds, where SWI arguments are already known from two-message
statistically hiding commitments, and in particular from LPKE.)

We further show in Appendix B that LPKE can be generically constructed (Theorem B.3) from non-
interactive BARGs that are honestly somewhere extractable.

4.1 Definitions

Lossy public-key encryption (LPKE). We recall the definition of LPKE.

Definition 4.1 (LPKE). A lossy public-key encryption scheme Λ with message-space M and ciphertext-space
C is a tuple of polynomial-time algorithms pKGen, LGen,E,Dq with following syntax:

• ppk , skq Ð KGenp1λq. The randomised (normal) key-generation algorithm, on input a security param-
eter λ P N, outputs a public-private key-pair ppk , skq. We refer to a public key generated by KGen as a
real key.

• pk˚
Ð LGenp1λq. The randomised lossy key-generation algorithm, on input a security parameter λ P N,

outputs a public key pk˚, which we refer to as a lossy key.

• c Ð Eppk ,mq. The randomised encryption algorithm takes as input a public key pk and a message
m P M, and outputs a ciphertext c P C.

• m :“ Dpsk , cq. The deterministic decryption algorithm takes a secret key sk and a ciphertext c P C as
input and outputs a message m P M.

We require the following properties from Λ:

1. Real public keys are almost-all-keys perfectly correct . With overwhelming probability over the choice
of real keys, perfect correctness of decryption must hold. That is, with overwhelming probability over
ppk , skq Ð KGenp1λq, for every m P M

Pr
cÐEppk ,mq

rDpsk , cq ‰ ms “ 0.

2. Lossy keys are statistically hiding. For a random lossy key, the distribution of ciphertexts of any two
messages must be statistically close. To be specific, we say that the lossy keys are δ-statistically-hiding
if for ppk , skq Ð LGenp1λq and m0,m1 P M:

SDpEppk ,m0q,Eppk ,m1qq ď δpλq.

3. Real and lossy keys are computationally indistinguishable. For every polynomial-size circuit family of
distinguishers A “ tAλuλPN, there is a negligible function µ, such that for all λ P N:

ˇ

ˇ

ˇ

ˇ

Pr
ppk ,skqÐKGenp1λq

r1 Ð Aλppkqs ´ Pr
pk˚ÐLGenp1λq

“

1 Ð Aλppk˚
‰

ˇ

ˇ

ˇ

ˇ

ď µpλq.

Remark 6 (Amplifying hiding). Using standard amplification (XOR Lemma), δ can be made as small as
2´polypλq for any poly at the cost of polynomially increasing the size of commitments (c.f. [LM20]).

Remark 7 (Perfectly-binding commitment from LPKE). With overwhelming probability over the choice
of a random real key pk, the encryption algorithm Eppk , ¨q acts as a perfectly-binding (non-interactive)
commitment, with the random coins used for encryption serving as opening (see [LS19]).
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Multi-party computation (MPC). We adopt conventions and definitions for secure multiparty compu-
tation from [IKOS07].

Definition 4.2 (Multi-Party Computation (MPC) [IKOS07]). For n P N, an MPC protocol is a protocol
involving n parties P1, . . . , Pn that takes place in ρ “ ρpnq rounds of communication. The public input
is denoted by x, while the private input and random coins of Pi are denoted by wi P t0, 1upolyp|x|q and
ri P t0, 1upolyp|x|q, respectively. The protocol is specified by its next-message function

tmi,j,kujPrns :“ Mpi, x, wi, ri, ptmj,i,1ujPrns, . . . , tmj,i,k´1ujPrnsqq,

where, for i ‰ j P rns and k P rρs, mi,j,k denotes the returns the message sent by Pi to Pj in round k. The
view of party Pi, denoted by vi “ vipx,w1, . . . , wn; r1, . . . rnq, consists of the private input and randomness,
and the messages it receives over all rounds: i.e.,

vi :“ pwi, ri, tmj,i,kujPrns,kPrρsq. (2)

Two views vi and vj are said to be consistent if the outgoing messages implicit in vi are identical to the
incoming messages in vj and vice versa.

Definition 4.3 (t-Perfectly-Secure MPC in the Semi-Honest Model [IKOS07]). For t ď n P N, an MPC
protocol M realises an n-party functionality f “ fpx,w1, . . . , wnq with t-perfect-security in the semi-honest
model if the following properties hold:

1. M realises f with perfect correctness. That is, for any input px,w1, . . . , wnq, the probability (over the
choice of r1, . . . , rn) that the output of some player is different from the value of f is 0.

2. M realises f with perfect t-privacy. That is, there is a PPT simulator SM such that for any inputs
x,w1, . . . , wn and any set of corrupted players C Ď rns with |C| ă t, the distribution of joint views of
players in C, denoted VC “ VCpx,w1, . . . , wnq, is identical to SMpC, x, twiuiPC , fCpx,w1, . . . , wnqq. Here
fCpx,w1, . . . , wnq :“ tfipx,w1, . . . , wnquiPC and fi denotes the i-th output of f .

Remark 8. An n{2-perfectly-secure semi-honest MPC protocol was constructed in [BGW88] (also see
[AL17]), which is what we rely on in Theorem 4.4.

4.2 Amplification Theorem

Our amplification protocol relies on two primitives: LPKE (Definition 4.1) and semi-honest and statistically
private multi-party computation (MPC) (Definitions 4.2 and 4.3). It is described formally in Fig. 5 and the
amplification theorem is stated in Theorem 4.4. The approach is similar in spirit to that in [GJS19] in the
sense that the prover executes an MPC protocol “in its head” [IKOS07], commits to the view of each party
in the execution and then proves consistency of each pair of views using the underlying proof system.

There are some key differences though:

1. We use LPKE instead of a commitment scheme. LPKE has two (indistinguishable) modes of operation:
its real keys act as perfectly-binding commitments with overwhelming probability (see Remark 7),
whereas its lossy keys act as statistically-hiding commitments. Since we use lossy keys in the protocol
(see Fig. 5, Line 1), we are able to show amplification of privacy using statistical tools. In particular,
we build on the approach from [LM20] based on statistical coupling [Ald83]. On the other hand, when
arguing soundness we first switch the protocol to a real key and exploit the fact that it acts as a
perfectly-binding commitment. Thus, we are able to avoid the argument based on (computational)
hardcore lemmas [Imp95, Hol05], which [GJS19] rely on.

2. We commit to the views as a whole (as in [IKOS07]) instead of the fine-grained way of committing in
[GJS19]. In more details, [GJS19] commit to the private inputs of parties, their private coins and each
message in the transcript using separate commitments; we only commit to the view of each party as a
whole.
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3. Since we start from a NISZKA with a negligible soundness error, MPC correctness in our protocol
is guaranteed and therefore semi-honest privacy suffices. This is in contrast to [GJS19] who rely on
malicious security to deal also with a soundness error of the underlying proof system.

Theorem 4.4 (Amplification Theorem). Consider the protocol ΠWI “ xPWI Ñ VWIy described in Fig. 5
obtained by instantiating:

1. M using an n{2-perfectly-secure semi-honest MPC protocol.

2. ΠZK using an adaptively-sound NISZKA with ZK error ε “ 1{100n.

3. Λ using an LPKE with statistical hiding error δ.

Then ΠWI is NISWIA with non-adaptive soundness (in the CRS model) with following properties:

• If ΠZK has negligible (resp., 0) completeness error then so does ΠWI.

• The soundness error is negligible in the (computational) security parameter λ of the LPKE.

• The WI error is 2´n`1 ` 2n`2δn. In particular, taking δ ď 2´2nn, the WI error is at most Op2´nq.

• If PZK is non-uniform then so is PWI.

Proof. The fact that ΠWI is non-uniform if ΠWI follows by construction. We prove the rest of the properties
in Propositions 4.5 to 4.7.

Proposition 4.5 (Completeness). If ΠZK has completeness error εc, then ΠWI has completeness error at

most p1 ´ p1 ´ εcqpn
2qq ď εc

`

n
2

˘

.

Proof Sketch. Completeness of ΠWI reduces to completeness of ΠZK thanks to perfect correctness of M as
we argue next. If px,wq P R, then by correctness of M all pairs of views pvi, vjq are consistent and locally
accepting. This implies that ppci, ciq, pvi, qi, vj , qjqq P R1

i,j for every execution pi, jq.12 Since VWI accepts if
VZK accepts all the underlying proofs, and since the CRSs of ΠZK are sampled independently, the lemma
follows.

Proposition 4.6 (Soundness Preserved). ΠWI is non-adaptively sound (with a negligible soundness error).

Proof Sketch. The proof proceeds in two stages.

• First, let us consider a modified setup algorithm Gen1
WI where a real key pk sampled using KGen is used

instead of a lossy key pk˚ as in GenWI. Now, consider any polynomial-sized circuit family of malicious
provers P˚. Since the real and lossy keys of Λ are computationally indistinguishable, the above switch
is indistinguishable to P˚.13 That is, there exists a negligible function µ such that for every x R LpRq:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pr
ppk˚,crsqÐGenWI

π˚
ÐP˚

n pppk˚,crsq,xq

“

VWIpppk˚, crsq, x,π˚q “ 1
‰

´ Pr
ppk ,crsqÐGen1

WI

π˚
ÐP˚

n pppk ,crsq,xq

rVWIpppk , crsq, x,π˚q “ 1s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď µpnq.

12Note that we don’t rely on correctness of decryption of Λ here and only use the fact that the encryption algorithm is a map
once the random coins are fixed.

13Note that this switch does not work when one tries to argue adaptive soundness. The cheating prover has the freedom
to choose the instance and it could potentially pick px,wq P R, use w to generate a honest proof π for x and pass it off as a
break of soundness. Even though soundness is not really broken here, this switch is hard to test (unless LpRq, the language
corresponding to R, is trivial). However, this is not an issue for arguing non-adaptive soundness, since x R LpRq is fixed in
advance.
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Given a base non-interactive protocol ΠZK “ xPZK Ñ VZKy, an LPKE Λ “ pKGen, LGen,E,Dq and an
MPC protocol M, the non-interactive protocol ΠWI “ xPWI Ñ VWIy for R X t0, 1un ˆ t0, 1u˚, where R
is any NP relation, is described below.

crsWI Ð GenWIp1
nq

1. Run Λ’s lossy key-generation algorithm to generate a lossy key pk˚
Ð LGenp1λq

2. For pi, jq P
`

rns

2

˘

, run the setup algorithm of ΠZK to generate CRS: crsi,j Ð GenZKp1nq

3. Output crsWI :“ ppk˚, crs1,2, . . . , crsn´1,nq as the CRS

π Ð PWIpcrsWI, x, wq

1. Execute M “in the head”, using pk˚ to commit to the views:

(a) Generate shares w1, . . . , wn of the witness w: sample w1, . . . , wn´1 Ð t0, 1u|w| and then sets

wn :“ w ‘ w1 ‘ . . . ‘ wn´1.

(b) Samples random coins r1, . . . , rn for the n parties P1, . . . , Pn.

(c) Set x as the public input, wi and ri, respectively, as Pi’s private input and random coins, and
run M for the functionality

fpx,w1, . . . , wnq :“ Rpx,‘n
i“1wiq.

Let vi denote Pi’s view in the above execution (see Eq. (2)).

(d) Commit to the views: for i P rns, sample random coins qi Ð t0, 1upolyp|x|q and compute
ci :“ Eppk˚, vi; qiq.

2. Prove pairwise consistency in parallel: for each pi, jq P
`

rns

2

˘

, generate proof

πi,j Ð PZKpcrsi,j , pci, cjq, pvi, qi, vj , qjqq

for the NP relation R1
i,j :“ R1

M,x,pk˚,i,j
, where ppci, ciq, pvi, qi, vj , qjqq P R1

i,j if

(a) ci (respectively, cj) is the encryption of vi (respectively, vj) under pk
˚ using random coins qi

(respectively qj); and

(b) vi and vj are consistent (with respect to public input x and protocol M) and locally accepting
(i.e., the local outputs are 1).

3. Output π :“ ppc1, . . . , cnq, pπ1,2, . . . , πn´1,nqq

0{1 :“ VWIpcrsWI, x,πq

1. Accept if and only if the underlying NISZKA verifier accepts all proofs. That is, for all pi, jq P
`

rns

2

˘

:

VZKpcrsi,j , pci, cjq, πi,jq “ 1.

Figure 5: Non-interactive protocol ΠWI.
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• At this point, by correctness of decryption of Λ’s real keys, the ciphertexts act as perfectly-binding
commitments with overwhelming probability (see Remark 7), and we show how this allows exploiting
any P˚ that breaks soundness with respect to Gen1

WI to break ΠZK’s soundness. Suppose P
˚ successfully

breaks soundness with respect to Gen1
WI for some instance x R LpRq with non-negligible probability.

We claim that there must exist at least one pair of views pv˚
i , v

˚
j q that are inconsistent with respect

to the public input, which is the instance x: otherwise, if all pairs of views are consistent with respect
to x, then by perfect correctness of M it can be argued that x P LpRq (see [IKOS07, Lemma 2.3]
about local vs. global consistency). However, this means that pc˚

i , c
˚
j q R LpR1

i,jq with overwhelming
probability. Since VWI accepts if and only if VZK accepts all the underlying proofs, π˚

i,j breaks ΠZK’s

soundness.14

Before proving WI in Proposition 4.7, we establish some useful notation.

Notation 1 (Non-Standard String Notation).

• For a string or vector s of length n and a set S Ď rns, we use sS to denote tsiuiPS .

• We let N denote
`

n
2

˘

, and interpret a string s P t0, 1uN as tsi,ju
pi,jqPprns

2 q
.

• By t0, 1uNěT , we denote subset of strings in t0, 1uN with Hamming weight at least T : i.e. t0, 1uNěT :“
ts P t0, 1uN : }s}0 ě T u.

Notation 2 (Hybrid Distributions).

• Recall from Section 2 that xPWIpwq Ñ VWIypxq denotes the random variable corresponding to VWI’s
views when the protocol in Fig. 5 is executed on px,wq P R, i.e., ppk˚, crs, c,πq, where ppk˚, crsq Ð

GenWIp1
nq and pc,πq Ð PWIpppk˚, crsq, x, wq.

• Similarly, xPZKppvi, qi, vj , qjqq Ñ VZKypci, cjq denotes the random variable corresponding to VZK’s views
when the protocol ΠZK is executed on ppci, cjq, pvi, qi, vj , qjqq P R1

i,j, i.e., pcrsi,j , πi,jq, where crsi,j Ð

GenZKp1nq and πi,j Ð PZKpcrsi,j , pci, cjq, pvi, qi, vj , qjqq.

• For s P t0, 1uN , we use xPWIpwq Ñ VWIyspxq to denote the hybrid distribution described in Fig. 6,
where the views of VZK in executions pi, jq such that si,j “ 1 are simulated using SZK (thus xPWIpwq Ñ

VWIy0N pxq corresponds to the real view). For a distribution S over t0, 1uN , xPWIpwq Ñ VWIySpxq is
defined as in Fig. 6, with s first sampled according to S.

Proposition 4.7 (Privacy Amplified). ΠWI is HVSWI with an error 2´n`1 ` 2n`2δn.

Proof. The proof proceeds in two steps. We first prove in Claim 4.8 that ΠWI is a combiner; that is, if a large
enough fraction of the NISZK proofs are perfect ZK, then the resulting protocol is WI (with a negligible WI
error). Then, taking a common approach in the literature, we prove in Claim 4.9 that any such combiner
is also a good amplifier; that is, provided that every NSIZK has a small enough ZK error ε, the resulting
protocol is WI (with a negligible WI error related to that of the corresponding combiner). Specifically, the
proof of the latter claim follows the ideas developed in [LM20].

Claim 4.8 (ΠWI is a Threshold Combiner). For T :“ N ´ n{4 ` 1 and any s P t0, 1uNěT , px,wq, px,w1q P R,

SDpxPWIpwq Ñ VWIyspxqq, xPWIpw
1q Ñ VWIyspxqq ď 2δn.

14This is why we require ΠZK to be adaptively sound to start off with: the instance pc˚
i , c

˚
j q and the associated proof π˚

i,j

that breaks ΠZK’s soundness are determined by the output of the cheating prover P˚.
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Let n :“ |x| and N :“
`

rns

2

˘

. For s P t0, 1uN , the distribution H1 “ H1,s is defined below. For a
distribution S over t0, 1uN , the hybrid distribution xPWIpwq Ñ VWIySpxq is defined as H1,s with s first
sampled according to S.

ppk˚, crs, c,πq Ð H1,spx,wq

1. Sample lossy key pk˚
Ð LGenp1nq

2. Generate the commitment c as specified in Fig. 5, Line 1. That is:

(a) Run MPC as in Fig. 5, Lines 1a to 1c to generate views pv1, . . . , vnq.

(b) Compute the n-tuple of commitments c, where ci :“ Eppk˚, vi; qiq, as in Fig. 5, Line 1d.

3. Generate VZK’s views in Fig. 5, Line 2 depending on s. That is, sample pcrs,πq, where for

pi, jq P
`

rns

2

˘

pcrsi,j , πi,jq Ð

#

xPZKppvi, qi, vj , qjqq Ñ VZKypci, cjq if si,j “ 0

SZKpci, cjq otherwise.

4. Output ppk˚, crs, c,πq.

Figure 6: Hybrid distribution H1 “ H1,s.

Claim 4.9 (Amplification from Threshold Combiners). For T :“ N ´ n{4 ` 1 and any s P t0, 1uNěT ,
px,wq, px,w1q P R,

SDpxPWIpwq Ñ VWIypxq, xPWIpw
1q Ñ VWIypxqq ď

2´n`1 ` 2n`1 ¨ max
sPt0,1uN

ěT

SDpxPWIpwq Ñ VWIyspxq, xPWIpw
1q Ñ VWIyspxqq .

Proof of Claim 4.8. We proceed via a hybrid argument, and letH1 “ H1,s denote the distribution xPWIpwq Ñ

VWIyspxq from Fig. 6. Since }s}0 ě T “ N ´ n{4 ` 1 and as each proof depends on at most two parties,
there exists a set H Ă rns determined by s of size at least n{2 such that si,j “ 1 holds for every i P H and
j P rnsztiu. We think of these as the honest parties of the MPC protocol.

• In hybrid H2 “ H2,s, we switch the messages underlying the ciphertexts cH from honestly-generated
views vH to a dummy message independent of the witness w: see Fig. 7. To see why SDpH1, H2q ď δn
(for any s), fix any i P H. Since the view xPZKppvi, qi, vj , qjqq Ñ VZKypci, cjq in every execution pi, jq,
j P rnsztiu, is simulated, it follows that the random coins qi of the ciphertext ci (which serve as
part of witness for ΠZK) are no longer required for generating proofs. Therefore, it is possible to use
δ-statistical-hiding of Λ switch all ciphertexts in H (of which there are at most n of).15

• In the next hybrid H3 “ H3,s, we simulate the joint views vH of the remaining parties using the MPC
simulator SMPC: see Fig. 8. The ciphertexts and proofs that depend on vH are generated accordingly.
Note that H3 is distributed identical to H2 thanks to n{2-privacy of M.

We get that SDpH1, H3q ď δn. By a symmetric argument to above it is possible to show that SDpH3, xPWIpw
1q Ñ

VWIyspxqq ď δn. The claim now follows by another application of the triangle inequality.

15Note that even though the random coins used to sample the keys are revealed, we have hiding as long as the keys are
sampled correctly.
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Let n :“ |x| and N :“
`

rns

2

˘

. For s P t0, 1uN , the distribution H2 “ H2,s is defined below.

ppk˚, crs, c,πq Ð H2,spx,wq

1. Sample lossy key pk˚
Ð LGenp1nq

2. Generate the commitment c with dummy messages for the parties in H. That is:

(a) Run MPC as in Fig. 5, Lines 1a to 1c to generate views pv1, . . . , vnq.

(b) Compute the n-tuple of commitments c depending on h, where h P t0, 1un denotes the indicator
string for H determined by s:

ci Ð

#

Eppk˚, vi; qiq for qi Ð t0, 1upolyp|x|q if hi “ 0

Eppk˚, 0|vi|q otherwise

3. Generate VZK’s views in Fig. 5, Line 2 depending on s. That is, sample pcrs,πq, where for

pi, jq P
`

rns

2

˘

pcrsi,j , πi,jq Ð

#

xPZKppvi, qi, vj , qjqq Ñ VZKypci, cjq if si,j “ 0

SZKpci, cjq otherwise

4. Output ppk˚, crs, c,πq

Figure 7: Hybrid distribution H2 “ H2,s.

Let n :“ |x| and N :“
`

rns

2

˘

. For s P t0, 1uN , the distribution H2 “ H2,s is defined below.

ppk˚, crs, c,πq Ð H3,spx,wq

1. Sample lossy key pk˚
Ð LGenp1nq

2. Generate the commitment c with dummy messages for the parties in H and simulated views for
parties in H. That is:

(a) Simulate the MPC (joint) views vH :“ SMPCpH, x, twiuiPH, p1, . . . , 1qq

(b) Compute the n-tuple of commitments c depending on h, where h P t0, 1un denotes the indicator
string for H determined by s:

ci Ð

#

Eppk˚, vi; qiq for qi Ð t0, 1upolyp|x|q if hi “ 0

Eppk˚, 0|vi|q otherwise

3. Generate VZK’s views in Fig. 5, Line 2 depending on s. That is, sample pcrs,πq, where for

pi, jq P
`

rns

2

˘

pcrsi,j , πi,jq Ð

#

xPZKppvi, qi, vj , qjqq Ñ VZKypci, cjq if si,j “ 0

SZKpci, cjq otherwise

4. Output ppk˚, crs, c,πq

Figure 8: Hybrid distribution H3 “ H3,s.
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Proof of Claim 4.9. For s P t0, 1uN and distribution S over t0, 1uN , recall the distributionsH1,s “ xPWIpwq Ñ

VWIyspxq and H1,S “ xPWIpwq Ñ VWIySpxq defined in Fig. 6. Similarly, let H 1
1,s and H 1

1,S denote xPWIpw
1q Ñ

VWIyspxq and xPWIpw
1q Ñ VWIySpxq, respectively. Recall that our goal is to show that

SDpH1,0N , H 1
1,0N q ď 2´n`1 ` 2n`1 ¨ max

sPt0,1uN
ěT

SDpH1,s, H
1
1,sq .

First, for any distributions Z over t0, 1uNěT Y t0Nu, we have

SDpH1,Z , H
1
1,Zq “

1

2

ÿ

h

ˇ

ˇH1,Zphq ´ H 1
1,Zphq

ˇ

ˇ

“
1

2

ÿ

h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPt0,1uN
ěT Yt0Nu

ZpzqpH1,zphq ´ H 1
1,zphqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

2

ÿ

h

¨

˝Zp0N q

ˇ

ˇ

ˇ
H1,0N phq ´ H 1

1,0N phq

ˇ

ˇ

ˇ
´

ÿ

zPt0,1uN
ěT

Zpzq
ˇ

ˇH1,zphq ´ H 1
1,zphq

ˇ

ˇ

˛

‚

“ Zp0N q ¨ SDpH1,0N , H 1
1,0N q ´

ÿ

zPt0,1uN
ěT

Zpzq ¨ SDpH1,z, H
1
1,zq

ě Zp0N q ¨ SDpH1,0N , H 1
1,0N q ´ p1 ´ Zp0N qq ¨ max

zPt0,1uN
ěT

SDpH1,z, H
1
1,zq.

Thus, for any distribution Z over t0, 1uNěT Y t0Nu with Zp0N q ą 0, and distribution S over t0, 1uNěT ,

SDpH1,0N , H 1
1,0N q ď Zp0N q´1 ¨ SDpH1,Z , H

1
1,Zq ` max

zPt0,1uN
ěT

SDpH1,z, H
1
1,zq

ď Zp0N q´1 ¨ pSDpH1,Z , H1,Sq ` SDpH1,S , H
1
1,Sq ` SDpH 1

1,S , H
1
1,Zqq ` max

zPt0,1uN
ěT

SDpH1,z, H
1
1,zq

ď Zp0N q´1 ¨ pSDpH1,Z , H1,Sq ` SDpH 1
1,Z , H

1
1,Sq ` 2Zp0N q´1 ¨ max

zPt0,1uN
ěT

SDpH1,z, H
1
1,zq .

To complete the proof, we prove the following Lemma.

Lemma 4.10. There exist two distributions Z and S, where Z is over t0, 1uNěT Y t0Nu, with Zp0N q ą 2´n,
and S is over t0, 1uNěT , such that

Zp0N q´1 ¨ max
␣

SDpH1,Z , H1,Sq,SDpH 1
1,Z , H

1
1,Sq

(

ď

ˆ

4eN

n
ε

˙n{4

. (3)

Indeed, for our setting of parameters, i.e., N “
`

n
2

˘

and ε “ 1{100n, the value of Eq. (3) is at most 1{2n.

The proof of the Lemma is based on a coupling argument and roughly follows [LM20]. The proof can be
found in Appendix A.

This completes the proof of Proposition 4.7.
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A Proof of Lemma 4.10

Before stating and (re)proving Lemma 4.10, which completes the proof of Claim 4.9 and therefore The-
orem 4.4, we define statistical coupling (Definition A.1) and recall a lemma about statistical coupling
(Lemma A.2) that will be key to the proof. We also introduce some notation (Notation 3) that will help
reduce clutter.

Definition A.1 (Statistical Coupling). Let X and Y be two probability distributions defined on a finite set
Ω. A joint probability distribution XY on Ω2 is a statistical coupling of X and Y if its marginal distributions
are X and Y , respectively, i.e., for every x P Ω:

Xpxq “
ÿ

yPΩ

XY px, yq,

and for every y P Ω:
Y pyq “

ÿ

xPΩ

XY px, yq.

Lemma A.2 (Coupling Lemma [Ald83]). Let X and Y be probability distributions over the same set Ω.
Then

1. For every coupling XY of X and Y ,

SDpX,Y q ď Pr
px,yqÐXY

rx ‰ ys

2. There exists an “optimal” coupling XY ˚ such that

SDpX,Y q “ Pr
px,yqÐXY ˚

rx ‰ ys

Notation 3 ([LM20]). For two vectors of objects (e.g., distributions) a “ pa1, . . . , anq and b “ pb1, . . . , bnq,
and a string s P t0, 1un, we use xa{bys “ xa1{b1, a2{b2, . . . , an{bnys to denote the vector c “ pc1, . . . , cnq

where

ci :“

#

ai if si “ 0

bi if s1 “ 1.

The following lemma is a restatement of Lemma 4.10 and is based on Lemma 7, Theorem 3 and Corollary 1
from [LM20]. The notation and presentation has been altered for the sake of compatibility with this paper.

Lemma A.3 ([LM20]). There exists two distributions Z and S, where Z is over t0, 1uNěT Y t0Nu, with
Zp0N q ą 2´n, and S is over t0, 1uNěT , such that

Zp0N q´1 ¨ max
␣

SDpH1,Z , H1,Sq,SDpH 1
1,Z , H

1
1,Sq

(

ď

ˆ

4eN

n
ε

˙n{4

, (4)

where N , n, T , ε, H1,Z , H1,S, H
1
1,Z and H 1

1,S are as defined in Section 4.

Proof. We proceed in two steps. First, we define what it means for a pair of distributions Z and S, as in
the statement of the lemma, to be “good”. Then, we show that if Z and S are good then the lemma follows
(this roughly corresponds to [LM20, Lemma 7]).
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Step I. For two strings s, e P t0, 1uN , let blindps, eq be the function that returns the substring of s at
indices i such that ei “ 1.

Definition A.4 (Good pair of distributions). Let E “ pEi,jq
pi,jqPprns

2 q
denote a tuple of N independent

Bernoulli distributions with bias at most ε, i.e., for every pi, jq P
`

rns

2

˘

, it holds that Prei,jÐEi,j
rei,j “ 1s ď ε.

A pair of distributions Z and S is good if

• Z is supported on t0, 1uNěT Y t0Nu,

• Zp0N q ą 2´n,

• S is supported on t0, 1uNěT ,

• EeÐE rSDpblindpZ, eq,blindpS, eqqs ď Zp0N q
`

4eN
n ε

˘n{4
.

In [LM20], a pair of such good distributions is constructed explicitly. For the sake of completeness, we
include a description of the [LM20] distributions in Appendix A.1.

Step II. We now prove the lemma given that the pair of distributions Z and S described in Stage I is
good. To be specific, we show

SDpH1,Z , H1,Sq ď E
eÐE

rSDpblindpZ, eq,blindpS, eqqs . (5)

The proof of the corresponding claim for H 1 is similar and is hence omitted.
Recall the distributions H1,Z and H1,S from Fig. 6. Next, consider H1,Z and H1,S with the execution of

M and Λ fixed, i.e., the lossy key pk˚, views v and ciphertext-random coin pair pc, qq in distribution H1,Z

and H1,S are fixed. To prove the lemma, it suffices to show Eq. (5) holds for every ppk˚,v, c, qq. Hence,
from here on, let’s consider H1,Z and H1,S with ppk˚,v, c, qq fixed.

For pi, jq P
`

rns

2

˘

, let’s denote by Ri,j and Ii,j the random variables corresponding to the real and simulated
execution of ΠZK, respectively (see Fig. 6, Line 3). Following [LM20], we denote H1,Z by H1pxR, IyZq (see
Notation 3). Since ΠZK is ZK with error at most ε “ 1{100n, we have SDpRi,j , Ii,jq ď ε. As a result, by
Lemma A.2, there exists an optimal coupling RI˚

ij of Ri,j and Ii,j such that

Pr
ppcrsR,i,j ,πR,i,jq,pcrsI,i,j ,πI,i,jqqÐRI˚

i,j

rpcrsR,i,j , πR,i,jq ‰ pcrsI,i,j , πI,i,jqs ď ε. (6)

Let’s use R˚
i,j and I˚

i,j to denote the first and second argument of RI˚
i,j , respectively. Then, we have

SDpH1,Z , H1,Sq “ SDpH1pxR, IyZq, H1pxR, IySqq

“ SDpH1pxR˚, I˚
yZq, H1pxR˚, I˚

ySqq

ď SDpxR˚, I˚
yZ , xR˚, I˚

ySq. (7)

Here, the second equality follows by the definition of coupling (which requires the marginals to match) and
the inequality is a consequence of data processing inequality. To upper bound Eq. (7), we set up a coupling
experiment G, described in Fig. 9, involving RI˚. To see why G is a valid coupling, we claim that the
marginal distributions of z and s sampled as part of G are Z and S respectively, z is independent of R, and
s is independent of I. As a result, the marginal distributions of ζ and σ are the same as H1,Z and H1,S

respectively. To see why the (marginal) distribution of z sampled as part of G is Z (the argument for s
and S is analogous) and independent of R, note that for any e sampled in the first step, z1 is distributed as
blindpZ, eq, and z is sampled from Z conditioned on z1.
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pζ,σq Ð GRI˚

1. Sample ppcrsR,πRq, pcrsI ,πIqq Ð RI˚

2. Compute e “ tei,ju
pi,jqPprns

2 q
, where ei,j is indicator for the event R

˚
i,j “ I˚

i,j : i.e., ei,j “ 1 ô R˚
i,j “

I˚
i,j , where recall that R˚

i,j “ pcrsR,i,j , πR,i,jq and I˚
i,j “ pcrsI,i,j , πI,i,jq.

3. Consider the random variables blindpZ, eq and blindpS, eq induced by Z and S, and let
blindpZ, eqblindpZ, eq˚ denote the optimal coupling between the two.

4. Sample pz1, s1q Ð blindpZ, eqblindpS, eq˚.

5. Sample z Ð Z conditioned on blindpz, eq “ z1 and s Ð S conditioned on blindps, eq “ s1

6. Set ζ :“ pxcrsR{crsIyz, xπR{πIyzq and σ :“ pxcrsR{crsIys, xπR{πIysq

7. Output pζ,σq

Figure 9: Coupling experiment G.

Therefore, by Lemma A.2 (“for every” claim), we have from Eq. (7) that

SDpxR˚, I˚
yZ , xR˚, I˚

ySq ď Pr
G

pζ ‰ σq

“
ÿ

e1Pprns
2 q

Pr
G

pζ ‰ σ, e “ e1q

“
ÿ

e1Pprns
2 q

Pr
G

pblindpz, eq ‰ blindps, eq, e “ e1q

“
ÿ

e1Pprns
2 q

Pr
G|e“e1

rblindpz, e1q ‰ blindps, e1qs ¨ Pr
G

pe “ e1q

“
ÿ

e1Pprns
2 q

SDpblindpZ, e1q,blindpS, e1qq ¨ Pr
G

pe “ e1q (8)

where ζ, σ, e and pz, sq above are sampled as part ofG, and Eq. (8) follows by optimality of blindpZ, eqblindpS, eq˚.
Since each ei,j in G is distributed as required (because ΠZK is zero-knowledge with error ε and the executions
are independent), we get from Eqs. (7) and (8) that

Zp0N q´1 ¨ SDpH1,Z , H1,Sq ď Zp0N q´1 ¨ E
e1ÐE

“

SDpblindpZ, e1q,blindpS, eqq
‰

ď

ˆ

4eN

n
ε

˙n{4

,

where the final inequality follows from the fact that Z and S is a pair of good distributions.
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A.1 Good Distributions

We recall the good pair of distributions Z and S defined in [LM20], described using multisets, Z and S,
respectively:16

S :“
ď

jPtT,T`2,¨¨¨ ,Nu

"ˆ

b,

ˆ

j ´ 1

T ´ 1

˙˙

: b P t0, 1uN , }b}0 “ j

*

, and

Z :“ tp0N , 1qu Y
ď

jPtT`1,T`3,¨¨¨ ,Nu

"ˆ

b,

ˆ

j ´ 1

T ´ 1

˙˙

: b P t0, 1uN , }b}0 “ j

*

.

The proof that Z and S constitute a pair of good distributions can be found in [LM20, Theorem 3 and
Corollary 1].

B LPKE via Non-Interactive BARGs

In this section, we recall the definition of somewhere extractable BARGs from the literature, and also define a
variant thereof, which we call honestly somewhere extractable. We prove that somewhere-extractable BARGs
imply (single databased) private information retrieval (PIR), which in turn is known to imply statistically
sender-private oblivious transfer and lossy public-key (LPKE) encryption [DMO00, PVW08].

The resulting LPKE suffers from a negligible decryption error, which makes it insufficient for the NISZKA
amplification theorem in Section 4. We observe that if the BARGs satisfy honest-somewhere extraction
then the resulting LPKE has a stronger correctness guarantee, which is also sufficient for our amplification
theorem.

B.1 PIR from Somewhere Extractability

Definition B.1 (Somewhere Extractability). A batch protocol pGen,TGen,P,Vq for a relation R is some-
where extractable if it satisfies CRS indistinguishability, and if there is a PPT extractor E such that, for
every polynomial t and polynomial-size circuit family of provers P˚ “ tP˚

λu
λPN, there is a negligible function

µ such that for every λ P N, t “ tpλq, and i˚ P rts:

Pr
crs˚,td,E

rVpcrs˚, px1, . . . , xtq, πq accepts ^ pxi˚ , wq R Rs ď µpλq,

where pcrs˚, tdq Ð TGenp1λ, 1t, i˚q, ppx1, . . . , xtq, πq Ð P˚
λpcrs˚, i˚q, and w Ð Eptd, i˚, crs˚, px1, . . . , xtq, πq.

Definition B.2 (PIR [CKGS98]). A one-round, single-database PIR is a tuple of polynomial-time algorithms
pQ,D,Rq with the following syntax:

• pk,Qq Ð Qp1λ, ℓ, iq. The randomized user query algorithm takes as input a security parameter λ P N,
a parameter ℓ P N that represents the length of the database, and a target index i P rℓs. It outputs a
key k and a query Q.

• a :“ DpD,Qq. The deterministic database answer algorithm takes as input a database D :“ pD1, . . . , Dℓq P

t0, 1uℓ and a query Q and outputs an answer a.

• d :“ Rpk, aq. The deterministic user reconstruct algorithm takes as input the key k and answer a and
outputs a data bit d.

We require the following properties:

16A multiset M over a domain Ω is represented as tpx,mxq : x P Ωu where mx P N is the multiplicity of the element x. The
cardinality of M is then defined as |M| :“

ř

xPΩ mx. The probability distribution M induced by M is defined naturally: the
probability of an element x P Ω is mx{|M|.
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PIR scheme pQ,D,Rq, built using a somewhere-extractable BARG pGen,TGen,P,Vq and hard sampler
for the relation Rf from Eq. (9).

pk,Qq Ð Qp1λ, ℓ, iq

1. Use the hard sampler for Rf to generate ℓ instance-witness pairs

q :“ pppy1,0, y1,1q, x1,0, x1,1q, . . . , ppyℓ,0, yℓ,1q, xℓ,0, xℓ,1qq.

2. Use TGen to sample a CRS with trapdoor set up at index i: pcrs˚, tdq Ð TGenp1λ, 1ℓ, iq

3. Output ptd, pcrs˚, qqq

a :“ DpD,Qq

1. Run the batch prover on witnesses determined by D:

π Ð Ppcrs˚, ppy1,0, y1,1q, . . . , pyℓ,0, yℓ,1qq, px1,D1
, . . . , xℓ,Dℓ

qq.

2. Output π

d :“ Rpk, aq

1. Use BARG extractor to extract witness at i: w Ð Eptd, i, crs˚, ppy1,0, y1,1q, . . . , pyℓ,0, yℓ,1qq, πq

2. Halt without output if the BARG verifier rejects, i.e., Vpcrs˚, ppy1,0, y1,1q, . . . , pyℓ,0, yℓ,1q, πqq “ 0

3. Otherwise,

d :“

#

0 if fpwq “ yi,0

1 otherwise.

4. Output d

Figure 10: PIR scheme pQ,D,Rq.

1. Correctness of reconstruction. There exists a negligible function µ such that for every λ P N, ℓ P polypλq,
database D P t0, 1uℓ and query i P rℓs:

Pr
pk,QqÐQp1λ,ℓ,iq

rRpk,DpD,Qqq “ Dis ě 1 ´ µpλq.

2. Succinctness. We say that the PIR is succinct if |a| ď ℓϵ for some ϵ ă 1. We say that the PIR is fully
succinct if there exists poly such that |a| ď polypλq.

3. Computational user privacy. No efficient adversary can distinguish between user queries on two target
indices. That is, for every polynomial-size circuit family of distinguishers A “ tAλuλPN, there is a
negligible function µ, such that for all λ P N, ℓ P polypλq and i, j P rℓs

ˇ

ˇ

ˇ

ˇ

Pr
pk,QqÐQp1λ,ℓ,iq

r1 Ð AλpQqs ´ Pr
pk,QqÐQp1λ,ℓ,jq

r1 Ð AλpQqs

ˇ

ˇ

ˇ

ˇ

ď µpλq.

The PIR scheme constructed from somewhere-extractable BARG is described in Fig. 10. It relies on the
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fact that somewhere-extractable BARG implies one-way functions (OWFs) , and given a OWF f , we can
define an NP relation

Rf :“ tppy0, y1q, xq : fpxq “ y0 _ fpxq “ y1u (9)

that allows sampling an instance along with two witnesses. To be precise, the hard sampler for Rf invokes
the OWF on two random preimages x0 and x1, and then outputs the instance py0 :“ fpx0q, y1 :“ fpx1qq.

Theorem B.3 (Somewhere-Extractable Non-Interactive BARG Implies PIR). If there exists a somewhere-
extractable non-interactive BARG pGen,TGen,P,Vq, then the scheme in Fig. 10 is a one-round, single
database PIR. If the size of BARGs is independent of the number of instances, then the PIR is fully succinct.

Proof Sketch. User privacy follows from CRS indistinguishability (Definitions 2.15 and B.1). Correctness,
follows from somewhere extractability and one-wayness. By somewhere extractability, it is guaranteed that
with overwhelming probability the extractor returns some witness of pyi,0, yi,1q, i.e., some pre-image of yi,0 or
yi,1 under f . One-wayness of f ensures that it returns a witness corresponding to yi,Di

and not yi,Di
. Indeed,

since Q generates the BARG proof based only on the witness/pre-image xi,Di , it is oblivious of the other
witnesses xi,Di

. As a result, the extractor outputting xi,Di
is tantamount to breaking f ’s one-wayness.

B.2 Honest Somewhere Extractability

Definition B.4 (Honest Somewhere Extractability). A batch protocol pGen,TGen,P,Vq for a relation R is
honestly somewhere extractable if it satisfies CRS indistinguishability, and if there is a PPT extractor E
such that, for every λ P N, t “ tpλq, px1, w1q, . . . , pxt, wtq P R and i˚ P rts:

Pr
crs˚,td,E

rwi˚ ‰ ws “ 0,

where pcrs˚, tdq Ð TGenp1λ, 1t, i˚q, π Ð Ppcrs˚, px1, w1q, . . . , pxt, wtqq, and w Ð Eptd, i˚, crs˚, px1, . . . , xtq, πq.

Remark 9. We can in fact further weaken the above requirement, asking for perfect correctness for almost
any CRS. Namely, that with overwhelming probability over the choice of CRS, extraction is perfect.

Going back to the construction if Fig. 10, in case the BARG satisfies honest somewhere extractability
(Definition B.4), then the construction satisfies perfect correctness of reconstruction. Indeed, the BARG
proof generated by Q is honest, the extractor is guaranteed to return the actual witness used at position i,
which is xi,Di

.

44

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


