
Mutual Empowerment between Circuit Obfuscation

and Circuit Minimization

Russell Impagliazzo ∗ Valentine Kabanets † Ilya Volkovich ‡

May 30, 2023

Abstract

We study close connections between Indistinguishability Obfuscation (IO) and the Minimum
Circuit Size Problem (MCSP), and argue that algorithms for one of MCSP or IO would empower
the other one. Some of our main results are:

• If there exists a perfect (imperfect) IO that is computationally secure against nonuniform
polynomial-size circuits, then for all k ∈ N: NP ∩ ZPPMCSP ̸⊆ SIZE[nk] (MA ∩ ZPPMCSP ̸⊆
SIZE[nk]).

• In addition, if there exists a perfect IO that is computationally secure against nonuniform
polynomial-size circuits, then NEXP ∩ ZPEXPMCSP ̸⊆ P/poly.

• If MCSP ∈ BPP, then statistical security and computational security for IO are equivalent.

• If computationally-secure perfect IO exists, then MCSP ∈ BPP iff NP = ZPP.

• If computationally-secure perfect IO exists, then ZPEXP ̸= BPP.

To the best of our knowledge, this is the first consequence of strong circuit lower bounds
from the existence of an IO. The results are obtained via a construction of an optimal universal
distinguisher, computable in randomized polynomial time with access to the MCSP oracle, that
will distinguish any two circuit-samplable distributions with the advantage that is the statistical
distance between these two distributions minus some negligible error term. This is our main
technical contribution. As another immediate application, we get a simple proof of the result
by Allender and Das (Inf. Comput., 2017) that SZK ⊆ BPPMCSP.
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1 Introduction

Circuit Obfuscation. The main purpose of program obfuscation is to transform a given program
into an “unintelligible” one, while preserving the program’s original functionality. A natural way to
represent a program is via a Boolean circuit. Given that, the most common notion of obfuscation
is the notion of indistinguishability obfuscation, introduced in [Bar+12]. Roughly speaking, a
(potentially) randomized procedure IO is an indistinguishability obfuscator, if the obfuscations of
two circuits C1 and C2 of the same size and functionality are “indistiguishable”. In other words,
no algorithm can “distinguish” between the outputs of IO(C1) and IO(C2) with a “noticeable”
advantage.

The kind of security provided by the IO is defined by the class of the allowed distinguishing
algorithms. More formally, consider a particular class of algorithms A and ask whether IO is
“secure against” A. For example, if A is the class of all (possibly inefficient) algorithms, we say
that IO is statistically secure. On the other hand, if A is the class of efficient (i.e. randomized
polynomial-time) algorithms, we say that IO is computationally secure.

The correctness of an IO procedure is called perfect if the functionality of the input circuit
is preserved with probability one (over the internal randomness of the IO), or imperfect if the
functionality is preserved with high probability only.

Circuit obfuscation turned out to be a very useful tool in many cryptographic and complexity-
theoretic applications, see, e.g., [Gar+16; SW21; GP15; BZ17; KNY17]. The past decade saw
numerous candidate constructions, culminating with the work of [JLS21]. Yet, identifying the exact
necessary and sufficient conditions for the existence of indistinguishability obfuscators remains an
important open question. One reason for that is that unlike the vast majority of cryptographic
primitives, obfuscators could still exist even if P = NP! In fact, in this case we get an “ultimate”
obfuscator: for each circuit C, the IO will output some canonical equivalent Ĉ1.

The place of IO within the Five Worlds. Thus, in the language of Impagliazzo’s Five
Worlds [Imp95], an IO exists in Algorithmica. The work of [JLS21], on the other hand, makes a good
argument that an IO may exist in Cryptomania. What about the other three worlds: Heuristica,
Pessiland, and Minicrypt? It turns out that none of these remaining three worlds can accommodate
an IO. The results of [SW21] show that an IO plus a one-way function imply public key encryption
(and more), and hence IO cannot exist in Minicrypt. The results of [Kom+14] essentially show
that an (even imperfect) IO cannot exist in Pessiland: if there are no one-way functions but an
(imperfect) IO exists, then NP ⊆ io-BPP. This result also rules out Heuristica as a possible home
for an IO. We will prove a stronger connection: if an (imperfect) IO exists in Heuristica (where
DistNP ⊆ AvgP), then NP = P (see Theorem 8.1 below).

So IO can exist in either Algorithmica or Cryptomania. Many of the results that we shall present
in this paper can be viewed as instantiations of this fact, for various settings of parameters of IO:
If you assume IO exists, and assume something that threatens the existence of cryptography, then
you find yourself in Algorithmica.

Circuit Minimization. Minimum Circuit Size Problem (MCSP) [Tra84; KC00] asks for a given
truth table of an n-variate Boolean function f : {0, 1}n → {0, 1} and a parameter 0 ≤ s ≤ 2n,
if f is computable by a Boolean circuit of size at most s. It is easy to see that MCSP ∈ NP.

1For example, given a circuit C one can find the lexicographically-smallest, equivalent circuit Ĉ in PH.
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Yet, it is unknown if MCSP is NP-hard, or if MCSP is easy, say in BPP. What is known is that
MCSP is powerful enough to “kill” cryptography. That is, any one-way function candidate can
be efficiently inverted on average by a randomized polynomial-time algorithm with access to the
MCSP oracle [RR97; All+06]. Hence, an efficient algorithm for MCSP cannot exist in Minicrypt or
Cryptomania.2

Interplay between IO and MCSP. By the preceding discussion, if we assume that both an
IO exists and that MCSP is “easy”, then we should get that NP is also “easy” (as we must be in
some version of Algorithmica)3. In fact, we shall argue that MCSP and IO mutually empower each
other. We show results where assumed existence of an appropriate version of IO makes MCSP more
powerful that it is known to be. And, conversely, we show results where assumed “easiness” of
MCSP makes an IO stronger (i.e., more secure). We state some of our main results next.

1.1 Our Main Results

We show that the existence of an (even imperfect) IO secure against P/poly implies new circuit
lower bounds.

Theorem 1. Suppose there exists a perfect IO secure against P/poly. Then:

1. NEXP ∩ ZPEXPMCSP ̸⊆ P/poly.

2. For all k ∈ N: NP ∩ ZPPMCSP ̸⊆ SIZE[nk].

Theorem 2. Suppose there exists an imperfect IO secure against P/poly. Then for all k ∈ N:
MA ∩ ZPPMCSP ̸⊆ SIZE[nk].

The two preceding theorems should be contrasted with the unconditional circuit lower bounds
proved in [San09] and [IKV18]. There it is shown that ZPEXPMCSP ̸⊆ P/poly and that, for every
k > 0, ZPPMCSP/1 ̸⊆ SIZE[nk] and MA/1 ̸⊆ SIZE[nk]. Although removing the extra bit of advice
from the lower bounds may seem incremental, it actually has been a long standing open prob-
lem that resisted many attempts! Indeed, the same issue arises in other instances involving lower
bounds for randomized complexity classes; see, e.g., [Bar02; FS04; MP07; Vol14]. Additionally,
while widely believed to be true, showing that NEXP ̸⊆ P/poly seems to require techniques beyond
our current reach. For a further discussion, see the seminal paper of Williams [Wil14] where it was
shown that NEXP ̸⊆ ACC. In conclusion, the two new theorems above prove stronger circuit lower
bounds, but under an assumption that a certain IO exists. One interpretation of that is that a
construction of these kinds of IO will require novel techniques.

Our next result is a uniform version of Theorem 1.

Theorem 3. Suppose there exists a computationally-secure perfect IO. Then ZPEXP ̸= BPP.

While we do not have hierarchy theorems for randomized complexity classes, one can show that
ZPEXP ̸= ZPP (see Appendix C). Yet, separating ZPEXP (or even NEXP and EXPNP) from BPP is

2In fact, even an efficient one-sided average-case algorithm for MCSP (i.e., an efficiently computable natural
property in the sense of [RR97], which is useful against exponential-size circuits) would “kill” one-way functions.

3This observation was made in [IKV18] and previously a similar observation was made in [Kom+14].
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a longstanding open problem (see e.g. [BT00; Wil13]). In that sense our result resolves the problem
under the assumption that a computationally-secure perfect IO exists.

The following theorems are examples of results where MCSP empowers IO, and where IO em-
powers MCSP. While, for simplicity, we state our results below for MCSP, it could be replaced with
any other natural propertyR in the sense of Razborov and Rudich [RR97] (i.e. having largeness and
“exponential” usefulness against P/poly, with constructivity being in the premise or replaced with
oracle access). Such properties include: approximations of MCSP, average-case approximations to
MCSP with one-sided error, “gap” (promise) versions of MCSP, MCSPB for B-oracle circuits, and
others.

Theorem 4. An IO (both imperfect and perfect) is statistically-secure if and only if it is secure
against FBPPMCSP. Hence, assuming MCSP ∈ BPP, statistically-secure IO exists if and only if
computationally-secure IO exists.

Theorem 5. Let Γ ∈ {ZPP,BPP}. Suppose there exists a computationally-secure imperfect IO.
Then MCSP ∈ Γ iff NP ⊆ Γ.

Note that Theorem 5 strengthens a similar result of [IKV18] to the imperfect setting.

Theorem 6. Suppose there exists a computationally-secure perfect IO. Then MCSP ∈ BPP iff
NP = ZPP.

Remark 1.1. Note that all the results still hold true if we only have an obfuscator IO for a class of
circuits C for which the equivalence problem (i.e., testing if two given circuits C0, C1 ∈ C agree on
all inputs) is coNP-hard such as: 3-CNFs (even read-thrice 3-CNFs), read-twice depth-3 formulas,
monotone depth-3 formulas4 and others. All these circuit classes are small subsets of NC1, which
is the starting points of most candidate IO constructions.

Remark 1.2. Recall that the results of [Kom+14] show that if there are no one-way functions yet
an imperfect IO exists, then NP ⊆ io-BPP. The authors subsequently pose an open problem to get a
similar result only relying on an obfuscator for 3-CNFs. While we do not solve their open problem,
we believe that Theorem 5, adjusted according to the previous remark, can be viewed as partial
progress towards the resolution of the problem especially in light of the recent characterizations of
one-way functions in terms of “MCSP”-like problems [LP20; All+21].

1.2 Our Techniques

Our main technical tool is a universal distinguisher that, given any two circuits C0 and C1 that
are samplers for some distributions D0 and D1, will distinguish between D0 and D1 essentially as
best as information-theoretically possible (with the distinguishing advantage equal to the statisti-
cal distance between D0 and D1 minus a negligible error term). We show (see Corollary 3.6) that
such a universal distinguisher is computable in FBPPMCSP5. The main idea is to use a distribu-
tional inverter and a connection between one-way functions and distributional one-way functions

4Monotone depth-3 formulas are the only class on the list for which the equivalence problem is coNP-hard [EG95],
but the satisfiability problem is trivial. See Section B in Appendix.

5FBPPMCSP denotes the class of randomized polynomial-time algorithms with MCSP oracle. As was mentioned
earlier, MCSP oracle can be replaced with an oracle to any (at least) inverse-exponentially large natural property R
that is exponentially useful against P/poly.
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from [IL89]. In particular, we argue (see Lemma 3.1) that a distributional inverter suffices to get
a distinguisher for any two circuit-samplable distributions D0 and D1. We then use the result
of [All+06] that allows to invert any candidate one-way (and, in fact, any polynomial-time com-
putable) function in randomized-polynomial time given an MCSP oracle (see Lemma 2.13 for more
details). Indeed, we generalize the inverter of [All+06] to get a distributional inverter for any can-
didate distributional one-way function (see Lemma 2.14). We believe that this extension could be
of independent interest.

We note, however, that it is fairly easy to construct a universal distinguisher in FBPPSAT by
approximating the “maximum likelihood” distinguisher using the well-known fact that approximate
counting can be done in FBPPNP [JVV86]. For completeness, we provide the full proof in Theo-
rem A.2 of the appendix. From this perspective, our construction constitutes another example of
a computational task that can still be performed with the MCSP oracle instead of the SAT oracle.
See [IKV18] for further discussion.

With this universal distinguisher in hand, we immediately get Theorem 4. We then obtain
the circuit lower bounds in Theorems 1 and 2 by a “win-win” argument on the circuit complexity
of MCSP. If MCSP ̸∈ P/poly, we are done. Otherwise (i.e., if MCSP ∈ P/poly) security against
P/poly implies security against FBPPMCSP and hence, by our universal distinguisher result above,
is equivalent to statistical security for our IO. Then we leverage this very secure IO to get into
Algorithmica where NP is “easy” by extending some ideas from [GR14; Vol23]. The latter leads
to certain “collapses” of high complexity classes (such as NEXPNP), which are known to contain
languages outside P/poly, to smaller complexity classes (such as NEXP). Hence we get circuit lower
bounds for these smaller complexity classes, as required. Theorem 6 is proved using similar ideas.

1.3 Relation to Previous Work

The results in [Gol90; All+06] imply the following: For any two samplable distribution ensembles
{An}, {Bn}, we have that {An}, {Bn} are statistically indistinguishable if and only if they are in-
distinguishable by FBPPMCSP algorithms. While this result says that statistical indistinguishability
and FBPPMCSP-computable indistinguishability are the same for efficiently uniformly computable
distribution ensembles, we need a stronger result applicable also to efficiently nonuniformly com-
putable distributions. That is, we need a universal distinguisher that will distinguish any two
distributions given by sampler circuits, with the distinguishing advantage close to the statistical
distance between these distributions.

In [NR06], Naor and Rothblum used similar techniques to prove a similar result, yet with
different quantifier order: for any uniformly computable distribution ensembles there exist a
FBPPMCSP-computable distinguisher with the distinguishing advantage close to the statistical dis-
tance between these distributions. Yet, by using the MCSP oracle as a universal inverter, one can
“extract” a universal distinguisher from their proofs. For completeness we include a self-contained
proof in the universal setting.

In [GR14], Goldwasser and Rothblum showed that the existence of statistically-secure obfusca-
tors IO implies that NP ⊆ coAM, which in turn results in a collapse of the polynomial hierarchy by
[BHZ87]. In particular, their idea was to solve SAT in SZK6. This is done by leveraging the IO to
reduce SAT to Statistical Difference (SD) - the standard SZK-complete promise problem of [SV03].

6The class of decision problems for which a “yes” answer can be verified by a statistical zero-knowledge proof
protocol.
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The result then follows from [For89; AH91] where it was shown that SZK ⊆ AM∩ coAM. In [Vol23]
a simplified and quantified proof of the result was presented. We use some of these ideas as a part
our “win-win” argument (see Lemma 5.1 for more details).

Finally, it follows from the definition that the existence of non-uniform one-way functions (i.e.
secure against P/poly) already implies very strong circuit lower bounds. Namely, NP ̸⊆ P/poly.
However, this approach cannot be used to derive lower bounds from the existence of an IO since
the very same lower bound is already required in order to obtain a one-way function from an IO!
In other words, given an IO, one-way functions exist iff NP ̸⊆ P/poly. Our results allows to obtain
a weaker, but still strong circuit lower bound NEXP ̸⊆ P/poly from the existence of an IO, thus
avoiding this circular reference.

The rest of the paper. The necessary background is given in Section 2. Our main techni-
cal contribution (a universal distinguisher) is given in Section 3. In Section 4, we give a simple
proof that SZK ⊆ BPPMCSP [AD17]. We give some consequences for MCSP from IO assumptions
(including Theorems 5 and 6) in Section 5, and those for IO from MCSP assumptions (including
Theorem 4) in Section 6. We prove Theorems 1 and 2 in Section 7. In Section 8, we prove that even
an imperfect IO cannot exist in Heuristica. We conclude with some open questions in Section 9.
Some auxiliary results are stated in the appendix.

2 Preliminaries

2.1 Definitions

A function negl(n) is negligible if for any k ∈ N there exists nk ∈ N such that, for all n > nk,
negl(n) < 1/nk.

Definition 2.1 (Statistical Distance). Let X0 and X1 be two random variables taking values in
some finite universe U . The Statistical Distance between X0 and X1 is defined as

∆(X0, X1)
∆
= max

A : U→{0,1}
{Pru∼X0 [A(u) = 1]−Pru∼X1 [A(u) = 1]} ,

where A : U → {0, 1} is an arbitrary statistical test (distinguisher).7 Another equivalent definition
is that

∆(X0, X1) = (1/2) ·
∑
u∈U

|PrX0 [X0 = u]−PrX1 [X1 = u]| .

We say that X0 and X1 are δ-close, if ∆(X0, X1) ≤ δ.

Definition 2.2 (Indistinguishability Obfuscator [Bar+12; Kom+14; BBF16]). We say that a ran-
domized procedure IO(C; r) (with randomness r) is an Indistinguishability Obfuscator for a circuit
class C with the following:

1. (Perfect/Imperfect) Correctness: IO is ε-imperfect if for every circuit C ∈ C :

Prr[C ≡ IO(C; r)] ≥ 1− ε(|C|).

If ε = 0, then we say that IO is perfect.

7Note that the maximum is attained by the statistical test A such that A(u) = 1 ⇐⇒ Pr[X0 = u] ≥ Pr[X1 = u].
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2. Polynomial slowdown: There are a, k ∈ N such that, for every circuit C ∈ C and every r,

|IO(C; r)| ≤ a · |C|k .

3. Security:

(a) Statistical: IO is statistically (1− δ)-secure if for all pairs of circuits C1, C2 ∈ C such
that C1 ≡ C2 and |C1| = |C2| = s, we have

∆(IO(C1; r), IO(C2; r
′)) ≤ δ(s),

where IO(C; r) is a distribution over the outputs of IO(C; r) for random r. We say that
IO is statistically secure, if δ(s) is a negligible function.

(b) Computational: Let A be a class of (randomized) algorithms. We say that IO is (1−δ)-
secure against A, if for every algorithm A ∈ A, for all pairs of sufficiently large circuits
C1, C2 ∈ C such that C1 ≡ C2 and |C1| = |C2| = s, we have

|Prr,A[A(IO(C1; r)) = 1]−Prr,A[A(IO(C2; r)) = 1]| ≤ δ(s),

where the probabilities are over the internal randomness r of IO as well as over possible
internal randomness of A. If δ(s) is negligible, we say that IO is secure against A. We
say that IO is computationally secure if it is secure against the class FBPP.

Remark 2.3 (Efficiency of IO). By default, we assume IO(C; r) is computable by a randomized
polynomial-time algorithm with internal randomness r. We consider IO computable in other com-
plexity classes, e.g., FBPPMCSP. In such a case, we shall explicitly say that an IO is FBPPMCSP-
computable.

Remark 2.4. Some definitions in the literature also contain a security parameter. In the above
definition it is incorporated in the circuit size. Any reasonable encoding scheme for Boolean circuits
allows to represent a circuit of size s as a circuit of larger size.

We will need to following definition and result for our proofs.

Definition 2.5 (Statistical Difference [SV03]). Let α(n) : N → N and β(n) : N → N be computable

functions, such that α(n) > β(n). Then SD(α(n) , β(n)) is promise problem defined as SD(α(n) , β(n)) ∆
=

(SD
(α(n) , β(n))
YES , SD

(α(n) , β(n))
NO ), where

SD
(α(n) , β(n))
YES = {(C0, C1) | ∆(C0, C1) ≥ α(n)}, SD

(α(n) , β(n))
NO = {(C0, C1) | ∆(C0, C1) ≤ β(n)}.

Here, C0 and C1 are Boolean circuits C0, C1 : {0, 1}n → {0, 1}m of size poly(n) that are samplers
for some distributions D0 and D1, respectively.

For the standard parameters, we define SD
∆
= SD(2/3 , 1/3).

For an oracle O, we define the relativized version of the problem SDO (α(n) , β(n)) as above, when C0

and C1 are O-oracle circuits.

Lemma 2.6 ([SV03]). Suppose α(n)2 − β(n) ≥ 1/poly(n). Then for any oracle O, the problem
SDO (α(n) , β(n)) is SZKO-complete. In particular, SD is SZK-complete.
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2.2 Useful Lemmas

Let FBPPMCSP denote the class of randomized polynomial-time algorithms with MCSP oracle.

Lemma 2.7 (implicit in [IKV18]). If there exists an IO (1−δ)-secure against FBPPMCSP, for some
δ ≤ 1− 1/nℓ for a constant ℓ > 0, then NP ⊆ ZPPMCSP and hence ZPPNP = ZPPMCSP.

Lemma 2.8 ([Vol23]). If there exists an IO statistically (1 − δ)-secure, for some δ < 1, then
NP ⊆ coNP and hence PH = NP ∩ coNP.

Lemma 2.9 ([Vol23]). Let IO be an ε-imperfect obfuscator and let C1, C2 be such that C1 ̸≡ C2.
Then ∆(IO(C1; r), IO(C2; r

′)) ≥ 1− 2ε, over the internal randomness r, r′ of the IO.

Lemma 2.10 ([Kan82]). For any k ∈ N : NPNP ̸⊆ SIZE[nk]. In addition, NEXPNP ̸⊆ P/poly.

Lemma 2.11 ([Bsh+96; KW98]). If SAT ∈ P/poly, then PH = ZPPSAT, and polynomial-size
circuits for SAT can be constructed in ZPPSAT.

Lemma 2.12 ([IKV18]). If MCSP ∈ P/poly, then BPPMCSP = ZPPMCSP.

We require the following result of [All+06] that allows to find preimages of functions computable
in polynomial time.

Lemma 2.13 ([All+06]). Let fy(x) = f(y, x) be a function computable uniformly in time polyno-
mial in |x|. There exists a polynomial-time probabilistic oracle Turing machine M such that for
any n,K ∈ N and any y:

Pr|x|=n,r

[
fy

(
MMCSP(1K , y, fy(x), r)

)
= fy(x)

]
≥ 1/K,

where x ∈ {0, 1}n is chosen uniformly at random and r denotes the internal randomness of M .

We generalize this result to get a distributional inverter for any candidate distributional one-way
function in the sense of [IL89]. Roughly speaking, such a distributional inverter finds uniformly
random preimages of a given polynomial-time computable function. More precisely, we have the
following.

Lemma 2.14. Let fy(x) = f(y, x) be a function computable uniformly in time polynomial in |x|.
There exists a polynomial-time probabilistic oracle Turing machine M such that, for any n,K ∈ N
and any y, the following two distributions

(x, fy(x)) and
(
MMCSP(1K , y, fy(x), r), fy(x)

)
,

for x ∈ {0, 1}n chosen uniformly at random, and r the internal uniform randomness of M , are at
most (1/K)-far in statistical distance.

Proof. We combine Lemma 2.13 with the reduction from [IL89] showing that an inverter for candi-
date one-way functions can be used to get a distributional inverter for every distributional one-way
function candidate fy(x) computable in polynomial time.
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3 From Computational to Statistical Security

Below we will argue the existence of a universal distinguisher. We will describe an algorithm
D(C0, C1; 1

1/γ) in FBPPMCSP that, given any pair of circuits C0 and C1 that are samplers for some
distributions D0 and D1, and a parameter 0 < γ < 1, will distinguish D0 and D1 with advantage
at least δ − γ, where δ is the statistical distance between D0 and D1.

We will first argue that such a distinguisher for a pair of distributions sampled by circuits C0

and C1 can be obtained given oracle access to a distributional inverter (in the sense of Impagliazzo
and Luby [IL89]) for a function defined in terms of C0 and C1 (see Lemma 3.1 below). Then we
appeal to Lemma 2.14 to get a universal distributional inverter.

Lemma 3.1. There is an oracle FBPP algorithm D̂ satisfying the following. Let C0 and C1 be
two circuits that are samplers for distributions D0 and D1 over some finite universe U , and let δ
be the statistical distance between D0 and D1. Let F (b, r) use r to sample from Db. Let A be a
distributional inverter for F so that the distributions

((b, r), F (b, r)) and (A(F (b, r)), F (b, r))

are at most α2-close in statistical distance, where 0 ≤ α ≤ δ/28. Then D̂A(C0, C1; 1
1/α) is a

distinguisher for D0 and D1 with advantage at least δ − 14α ≥ δ/2.

Proof. Let B(x) be the first bit of A(x), and let Q(x) be the probability that B(x) is 0, i.e.,

Q(x) = PrA[B(x) = 0],

where the probability is over the internal randomness of A. Let K be such that an empirical
estimate of K iid {0, 1}-valued random variables is within α of its expectation with probability
1− (α/2); by the Chernoff bounds, we have that K = O((log 1/α)/α2). Let Q̃(x; ρ) be the random
variable where we use randomness ρ to sample from A(x) independently K times and use these to
create an empirical estimate of Q(x); so ρ is K times the internal randomness of A. Let C(x; ρ) be
the probabilistic Boolean algorithm where we accept x if Q̃(x; ρ) ≥ 1/2. We will show that

Prx∼D0,ρ [C(x; ρ) = 1]−Prx∼D1,ρ [C(x; ρ) = 1] ≥ δ − 14α. (1)

Let p0(x) be the probability of x for D0, and p1(x) that for D1. Note that

q(x) = p0(x)/(p0(x) + p1(x))

is the conditional probability that b = 0 given that F (b, r) = x. Then

Prx∼D0,ρ [C(x; ρ) = 1]−Prx∼D1,ρ [C(x; ρ) = 1] = Expρ

 ∑
x : Q̃(x;ρ)≥1/2

(p0(x)− p1(x))

 , (2)

and
δ =

∑
x : q(x)≥1/2

(p0(x)− p1(x)). (3)

Note that if, for “typical” randomness ρ used by Q̃, we had for all x ∈ U that Q̃(x; ρ) ≥ 1/2 ⇔
q(x) ≥ 1/2, then the right-hand sides of (2) and (3) would be identical (for that randomness ρ of
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Q̃), and we would get our goal of (1) minus the error term for “atypical” randomness of Q̃. We
formalize this argument next.

For given internal randomness ρ of Q̃, let the error set E = E(ρ) be the set of those x ∈ U so
that exactly one of Q̃(x; ρ) and q(x) is at least 1/2, i.e.,

E(ρ) = {x ∈ U | Q̃(x; ρ) ≥ 1/2 ̸⇔ q(x) ≥ 1/2}.

Then

Prx∼D0,ρ [C(x; ρ) = 1]−Prx∼D1,ρ [C(x; ρ) = 1]

= Expρ

 ∑
x : Q̃(x;ρ)≥1/2

(p0(x)− p1(x))


= Expρ

 ∑
x ̸∈E(ρ) : Q̃(x;ρ)≥1/2

(p0(x)− p1(x)) +
∑

x∈E(ρ) : Q̃(x;ρ)≥1/2

(p0(x)− p1(x))


= Expρ

 ∑
x ̸∈E(ρ) : q(x)≥1/2

(p0(x)− p1(x)) +
∑

x∈E(ρ) : q(x)<1/2

(p0(x)− p1(x))


= Expρ

 ∑
x : q(x)≥1/2

(p0(x)− p1(x)) +
∑

x∈E(ρ) : q(x)<1/2

(p0(x)− p1(x))−
∑

x∈E(ρ) : q(x)≥1/2

(p0(x)− p1(x))


≥ δ −Expρ

 ∑
x∈E(ρ)

|p0(x)− p1(x)|

 ,

where we used (3) to get the last line.
We bound the sum under the expectation in the last line above by looking at three sets whose

union contains E = E(ρ):

E1(ρ) = {x | |Q̃(x; ρ)−Q(x)| ≥ α},
E2 = {x | |Q(x)− q(x)| ≥ 2α,

E3 = {x | |q(x)− 1/2| ≤ 3α}.

Claim 3.2. For every ρ, E(ρ) ⊆ E1(ρ) ∪ E2 ∪ E3.

Proof of Claim 3.2. If Q̃(x; ρ) ≥ 1/2, and x ̸∈ (E1∪E2), then q(x) > 1/2−3α. So either q(x) ≥ 1/2,
or x ∈ E3. Similar reasoning applies if Q̃(x; ρ) < 1/2. So these three sets cover E.

We bound the sum for E1 just by using Chernoff bounds, the sum for E2 by the statistical
distinguishability of our distributional inverter A, and the sum for E3 using the fact that having
q close to 1/2 means p0(x) and p1(x) are relatively close. For E1(ρ) and E2, we will actually
upperbound the summation of p0(x) + p1(x), over x from the respective set.

Claim 3.3. Expρ

[∑
x∈E1(ρ)

(p0(x) + p1(x))
]
≤ α.

11



Proof of Claim 3.3. By linearity of expectation, it suffices to upperbound

Expρ

 ∑
x∈E1(ρ)

p0(x)

+Expρ

 ∑
x∈E1(ρ)

p1(x)

 .

The first expectation can be thought of as the probability that, if we sample x from D0, and then
perform the empirical estimate (using randomness ρ), that we are off by at least α. The second
expectation is the same but for D1. By the Chernoff bounds (our choice of K), each probability is
at most α/2.

Claim 3.4.
∑

x∈E2
(p0(x) + p1(x)) ≤ α.

Proof of Claim 3.4. We use the accuracy of the inverter A. The distinguishing probability between
(A(F (b, r)), F (b, r)) and ((b, r), F (b, r)) is at least that between any distributions computable from
these. So in particular, the statistical distance between (B(x), x) and (b, x), for x = F (b, r), is at
most α2. Using the fact that the statistical distance is the half of the ℓ1-norm of the difference
between the distributions, we get

α2 ≥ (1/2) ·
∑
x

(1/2) · (p0(x) + p1(x)) · (|q(x)−Q(x)|+ |1−Q(x)− (1− q(x))|)

= (1/2) ·
∑
x

(p0(x) + p1(x)) · |q(x)−Q(x)|,

Since for all x in E2, |q(x)−Q(x)| ≥ 2α, and restricting to x ∈ E2 only reduces the sum in the
last line, we have

α2 ≥ (1/2) ·
∑
x∈E2

(p0(x) + p1(x))(2α),

or
∑

x∈E2
(p0(x) + p1(x)) ≤ α, as required.

Claim 3.5.
∑

x∈E3
|p0(x)− p1(x)| ≤ 12α.

Proof of Claim 3.5. If x ∈ E3 then ∣∣∣∣ p0(x)

p0(x) + p1(x)
− 1

2

∣∣∣∣ ≤ 3α.

Multiplying through by 2(p0(x) + p1(x)),

|p0(x)− p1(x)| ≤ 6α(p0(x) + p1(x)).

Thus, ∑
x∈E3

|p0(x)− p1(x)| ≤
∑
x∈E3

6α(p0(x) + p1(x))

≤ 12α,

as required.
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Combining Claims 3.3–3.5, we get that the advantage of our probabilistic circuit C at distin-
guishing D0 and D1 is at least δ − 14α, as required. Given oracle access to A, our algorithm
D̂A(C0, C1; 1

1/α) will construct such a circuit C in time polynomial in 1/α.

Corollary 3.6. There is an FBPPMCSP algorithm D satisfying the following. Given any pair of
circuits C0 and C1 that are samplers for some distributions D0 and D1, and given a parameter K
in unary, the algorithm D(C0, C1; 1

K) will distinguish D0 and D1 with advantage at least δ− 1/K,
where δ is the statistical distance between D0 and D1.

Proof. Use Lemma 2.14 to get an FBPPMCSP-computable universal distributional inverter that
achieves statistical distance α2 for α = 1/(14K). Define the algorithm D as follows. For given
input circuits C0 and C1, run the oracle algorithm D̂A(C0, C1; 1

1/α) from Lemma 3.1, using our
universal inverter to get a distributional inverter A needed by D̂.

Next, we show that we can extend our universal distinguisher for distributions samplable by
O-oracle circuits for languages O satisfying certain technical conditions.

Corollary 3.7. Let O ∈ BPPMCSP∩ P/poly be any language. Then there is an FBPPMCSP algorithm
D that, given any pair of O-oracle circuits C0 and C1 that are samplers for some distributions D0

and D1, and given a parameter K in unary, the algorithm D(C0, C1; 1
K) will distinguish D0 and

D1 with advantage at least δ − 1/K, where δ is the statistical distance between D0 and D1.

Proof. Use Lemma 2.14 to get an FBPPMCSP-computable universal distributional inverter that
achieves statistical distance α2 for α = 1/(14K). As in the proof of Lemma 3.1, we use MCSP-
oracle circuit samplers for distributions D0 and D1 to get a circuit for distributional one-way
function candidate F . We then use our universal inverter to get a distributional inverter A needed
in Lemma 3.1 for any given input circuits C0 and C1. Observe that we can invert F since F is
computable by a small O-oracle circuit (given the O-oracle circuits for sampling D0 and D1), and
hence F is also computable by a circuit of polynomial size with no oracle gates (since by assumption
O ∈ P/poly). The correctness proof of the inverting algorithm relies on the fact that a small circuit
for F exists. Yet, the inverting algorithm for F does not need to know a small circuit for F ; it just
must be able to evaluate F efficiently, given a small description of F . Using the encoding of an
O-oracle circuit for F works since the inverting algorithm can evaluate the circuit with probability
close to 1, given access to the MCSP oracle (since O ∈ BPPMCSP).

Remark 3.8. We note that a universal distinguisher as in Corollary 3.6 is fairly easy to construct
in FBPPSAT (using the well-known fact that approximate counting can be done in FBPPNP [JVV86]);
see Theorem A.2 in Section A of the appendix. Thus, Corollary 3.6 is another example of a
computational task that can still be performed with the MCSP oracle instead of the SAT oracle.

4 Another Proof that SZK ⊆ BPPMCSP

Corollary 3.6 can be used to give another proof of the following result by Allender and Das [AD17].

Theorem 4.1 ([AD17]). SZK ⊆ BPPMCSP.

Proof. Recall the standard SZK-complete promise problem Statistical Difference (SD) (see Defi-
nition 2.5): Given a pair of circuits (C0, C1) that are samplers for the distributions D0 and D1
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such that either D0 and D1 have the statistical distance less than 1/3, or they have the statistical
distance greater than 2/3, decide which is the case.

By Corollary 3.6, we get an FBPPMCSP universal distinguisher D. Consider the distinguisher
B = D(C0, C1; 1

10). Let δ be the statistical distance between D0 and D1. Note that in case δ < 1/3,
the algorithm B (and, in fact, any algorithm) has distinguishing advantage less than 1/3, whereas
for δ > 2/3, B has advantage at least (2/3) − (1/10) = 17/30 > 1/3. Using random sampling
and the Chernoff bounds, we can estimate in FBPPMCSP the advantage of our algorithm B at
distinguishing between D0 and D1, with high probability and sufficient accuracy. The theorem
follows.

Remark 4.2. Note that the BPPMCSP algorithm for SZK in the proof of Theorem 4.1 works for
any version of the Statistical Difference problem with a non-negligible gap between the yes- and
no-instances, not just for the 1/3 vs. 2/3 gap.

Next, we extend the result above to the relativized version of the problem SDO (see Definition
2.5) for any O ∈ BPPMCSP ∩ P/poly.

Theorem 4.3. Let O ∈ BPPMCSP ∩ P/poly be any language. Then for any α(n) and β(n) such
that α(n) ≥ β(n) + n−ℓ, for some ℓ > 0, we have that:

SDO (α(n) , β(n)) ∈ BPPMCSP. (4)

In particular, if MCSP ∈ P/poly, then

SZKMCSP ⊆ BPPMCSP. (5)

Proof. To prove (4), we proceed exactly as in the proof of Theorem 4.1 above, except using Corol-
lary 3.7 instead of Corollary 3.6, and using the observation in Remark 4.2. To prove (5), we use
(4) for O = MCSP and the fact that SDMCSP (2/3 , 1/3) is SZKMCSP-complete (by Lemma 2.6).

5 Implications for Circuit Minimization from Obfuscation

The following lemma provides some consequences of the existence of an imperfect, computationally-
secure IO, with an appropriate range of parameters. Among other things, the proof uses some ideas
from [GR14] and [IKV18].

Lemma 5.1. Let Γ ∈ {FBPP,P/poly}. Suppose there exist an ε-imperfect IO(C; r) that is (1− δ)-
secure against Γ, where (1− 2ε)2 − δ ≥ 2/nℓ for some constant ℓ > 0. If MCSP ∈ Γ, then:

1. NP ⊆ SZK,

2. PH = MA = ZPPMCSP, and

3. There is a ZPPMCSP algorithm A and a constant k > 0, such that A(1n) outputs an O(nk)-size
circuit for SAT (and for MCSP) on n-bit inputs.

Proof.
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1. First, observe that since MCSP ∈ Γ, FBPPMCSP ⊆ Γ. Consequently, an IO that is secure
against Γ is also secure against FBPPMCSP. It follows from Corollary 3.6 that this IO is
statistically (1− δ′)-secure, for δ′ = δ + 1/nℓ (since we can make the distributional inverter’s
error α to be smaller than any inverse polynomial of our choice). We now use this IO to
reduce SAT to the Statistical Difference problem (see Definition 2.5): Given a SAT instance
ϕ, construct some unsatisfiable instance ⊥ of the same size as ϕ and on the same set of input
variables. Consider the distributions

IO(ϕ; r) and IO(⊥; r′) (6)

over all random strings r, r′.

We have two cases:

• If ϕ is unsatisfiable, then ϕ ≡ ⊥, and by the statistical (1− δ′)-security property of our
IO, we get that these two distributions in (6) have statistical distance at most δ′.

• If ϕ is satisfiable, then by Lemma 2.9, the statistical distance between the distributions
in (6) is at least 1− 2ε.

Since (1−2ε)2 ≥ δ+2n−ℓ = δ′+n−ℓ, by Lemma 2.6, the resulting instance of the SD problem
is SZK-complete, and so NP ⊆ SZK.8

2. By [For89; AH91], we have SZK ⊆ AM ∩ coAM. By [BHZ87], since NP ⊆ SZK ⊆ coAM, it
follows that

PH = AM. (7)

Next, by Theorem 4.1, SZK ⊆ BPPMCSP. By Lemma 2.12, BPPMCSP = ZPPMCSP. Hence, we
get that

NP ⊆ SZK ⊆ ZPPMCSP. (8)

As MCSP ∈ P/poly, we also get from (8) that

NP ⊆ P/poly. (9)

By [Arv+95], (9) implies that AM = MA. So by (7), we conclude that

PH = MA.

Finally, (9) also implies PH = ZPPNP by Lemma 2.11. Hence, by (8), we get that

PH = ZPPNP ⊆ ZPPZPPMCSP

= ZPPMCSP.

3. By Lemma 2.11, if SAT ∈ P/poly, then polynomial-size circuits for SAT can be found by a
ZPPNP algorithm. By (9), we get that polynomial-size circuits for SAT can be found by a

ZPPZPPMCSP
algorithm, which can be simulated by a ZPPMCSP algorithm. As MCSP ∈ NP and

SAT is NP-complete, a polynomial-size circuits for SAT can be used to construct a polynomial-
size circuits for MCSP as well.

8Note that this reduction to SZK actually allows one to solve not just SAT but an equivalence problem for any
class of circuits that an IO can obfuscate. Thus, to conclude that NP ⊆ SZK, it suffices to pick any coNP-hard circuit
equivalence problem for the class of circuits where SAT may be easy. For example, one can take the problem of
testing equivalence of depth-3 monotone formulas, known to be coNP-complete [EG95] (see Section B in Appendix).
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Items (2) and (3) in the lemma should be contrasted with the result of [Bsh+96; KW98] that
SAT ∈ P/poly implies both that polynomial-size circuits for SAT can be constructed by a ZPPSAT

algorithm, and that PH = ZPPSAT. Under an additional assumption that a P/poly-secure imperfect
IO exists, we get similar implications for MCSP instead of SAT.

The following corollary strengthens a result of [IKV18] to the imperfect setting.

Corollary 5.2 (Theorem 5 re-stated). Let Γ ∈ {ZPP,BPP}. Suppose there is an ε-imperfect IO
that is (1 − δ)-secure against FBPP, where (1 − 2ε)2 ≥ δ + 2/nℓ for some constant ℓ > 0. Then
MCSP ∈ Γ iff NP ⊆ Γ.

For the case of perfect IO, we get the following.

Theorem 5.3 (Theorem 6 re-stated). Suppose there is a perfect IO that is (1 − δ)-secure against
FBPP, where δ ≤ 1− 2/nℓ for some constant ℓ > 0. If MCSP ∈ BPP, then NP = ZPP.

Proof. SinceMCSP ∈ BPP, computational (1−δ)-security implies (1−δ)-security against FBPPMCSP.
It follows by Corollary 3.6 that this IO is statistically (1− δ′)-secure, for δ′ = δ + 1/nℓ ≤ 1− 1/nℓ.

By Lemma 2.8, PH = NP = coNP. By Lemma 2.7, PH = NP = ZPPMCSP ⊆ BPP. But
NP ⊆ BPP implies that NP = RP. Since coNP = NP, we get NP = ZPP.

6 Implications for Obfuscation from Circuit Minimization

Theorem 6.1. Suppose MCSP ∈ P/poly. There is an FZPPMCSP-computable perfect IO that is
statistically secure if and only if there is an FBPPMCSP-computable ε-imperfect IO that is (1 − δ)
secure against P/poly, for any 0 ≤ ε, δ ≤ 1 such that 1− 2ε ≥ δ + 2/nℓ.

Proof. The interesting direction is from the right to the left. Since MCSP ∈ P/poly, (1−δ)-security
against P/poly implies, by Corollary 3.6, statistical (1− δ′)-security, for δ′ = δ + n−ℓ.

Claim 6.2. If MCSP ∈ P/poly and there is an FBPPMCSP-computable ε-imperfect IO that is statis-
tically (1− δ′)-secure for 1− 2ε ≥ δ′ + n−ℓ, then SAT ∈ ZPPMCSP.

Proof of Claim 6.2. Given an instance ϕ of SAT, let ⊥ be an unsatisfiable formula of the same size
as ϕ (over the same variables). Consider the two distributions IO(ϕ; r) and IO(⊥; r′) over random
r, r′. If ϕ ≡ ⊥, the two distributions are at most statistical distance δ′ apart; if ϕ is in SAT, then
the two distributions have the statistical distance at least 1− 2ε.

Each distribution is samplable using a polynomial-sizeMCSP-oracle circuit, which we can obtain
from our IO algorithm. Thus, we get an FPMCSP-reduction from coSAT to SDMCSP (1−2ε , δ′). Since
δ′+n−ℓ ≤ 1−2ε, we conclude by Theorem 4.3 that SAT ∈ BPPMCSP. By Lemma 2.12, BPPMCSP =
ZPPMCSP, concluding the proof.

Since SAT ∈ ZPPMCSP ⊆ P/poly, we get by Lemma 2.11 that PH = ZPPMCSP. Given a circuit
C, we can find the lexicographically smallest equivalent circuit D (of size at most that of C) in
FPPH ⊆ FZPPMCSP. This gives us a perfect IO(C; r) that is statistically secure.9

9Technically, this IO(C; r) outputs either a smallest equivalent circuit D, or, with a tiny probability, the “don’t
know” answer. We can modify it to output the input circuit C in the latter case, getting perfect correctness, and
only slightly decreasing statistical security.
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Along the same lines:

Corollary 6.3. Suppose MCSP ∈ BPP. There is an ε-imperfect IO with statistical security if
and only if there is an ε-imperfect IO with computational (1− δ)-security where 1− 2ε ≥ δ + 2/nℓ.
(Assuming MCSP ∈ ZPP, you get a similar equivalence but for a perfect IO with statistical security.)

Proof sketch. The interesting direction is from the right to the left. We first argue as in the proof
of Theorem 6.1 to conclude that SAT ∈ ZPPMCSP. Since MCSP ∈ BPP, we get that NP ⊆ BPP,
and hence, PH = BPP. So, given an input circuit C, we can find the lexicographically smallest
equivalent circuit D (of size at most that of C), using an FPPH = FBPP algorithm. This algorithm
is a (negligibly) imperfect IO with statistical security. (In case of MCSP ∈ ZPP, we argue in a
similar way, getting that PH = ZPP, and so a canonical circuit D for a given input circuit C can
be found in FZPP.)

7 Circuit Lower Bounds from Obfuscation

Here we prove Theorems 1 and 2, re-stated below.

Theorem 7.1 (Theorem 1 re-stated). Suppose there exist a perfect IO (1−δ)-secure against P/poly,
where δ ≤ 1− 2/nℓ for some ℓ > 0. Then:

1. NEXP ∩ ZPEXPMCSP ̸⊆ P/poly.

2. For all k ∈ N, NP ∩ ZPPMCSP ̸⊆ SIZE[nk].

Proof. The proof of all items goes by a “win-win” argument. Suppose MCSP ̸∈ P/poly. Then both
claims follow immediately since MCSP ∈ NP.

Now suppose MCSP ∈ P/poly. Then randomized polynomial-time algorithms with MCSP oracle
can be simulated by polynomial-size circuits. Consequently, IO is (1 − δ)-secure against these
algorithms. By Corollary 3.6, this IO is statistically (1− δ′)-secure, for δ′ = δ+ n−ℓ ≤ 1− n−ℓ. By
Lemmas 2.7 and 2.8, we get that

NPNP ⊆ PH = NP ∩ coNP ⊆ ZPPMCSP ⊆ NPNP.

So, NPNP = NP∩ coNP = ZPPMCSP. By padding, NEXPNP = NEXP∩ coNEXP = ZPEXPMCSP, and
so both claims follow from Lemma 2.10.

Theorem 7.2 (Theorem 2 re-stated). Suppose there exist an ε-imperfect IO (1− δ)-secure against
P/poly, where (1− 2ε)2 ≥ δ+2/nℓ for some ℓ > 0. Then for all k ∈ N, MA∩ZPPMCSP ̸⊆ SIZE[nk].

Proof. Again we use a “win-win” argument. If MCSP ̸∈ P/poly, then the theorem follows. Other-
wise, we get by Lemma 5.1 (Item 2) that PH = MA = ZPPMCSP, which is not in SIZE[nk] for any
fixed k > 0 by Lemma 2.10.

Theorem 7.3 (Theorem 3 re-stated). Suppose there is a perfect IO that is (1 − δ)-secure against
FBPP, where δ ≤ 1− 2/nℓ for some constant ℓ > 0. Then ZPEXP ̸= BPP.

Proof of Theorem 3. Suppose for a contradiction that ZPEXP = BPP. Then, in particular, MCSP ∈
BPP. By Theorem 6, NP = ZPP and hence

ZPEXP = BPP ⊆ ZPPNP = ZPPZPP = ZPP

which leads to a contradiction (see Appendix C).
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8 Excluding an Imperfect IO from Heuristica

Below we assume that the reader is familiar with the basic definitions of average-case complexity
(in particular, the definitions of DistNP and AvgP); see, e.g., [BT06].

Theorem 8.1. Suppose DistNP ⊆ AvgP. If an ε-imperfect computationally (1− δ)-secure IO exists
for 1− 2ε ≥ δ + 2n−ℓ for some ℓ > 0, then NP = P.

Proof. If DistNP ⊆ AvgP, we get a language L ∈ P of polynomial density such that for every
x ∈ L, the circuit complexity of x (when viewed as a truth table of a boolean function) is at least
|x|0.9. All results in this paper that use MCSP as an oracle continue to hold with any such L as
an oracle instead. In particular, as in the proof of Theorem 6.1 (see Claim 6.2), we conclude that
NP ⊆ BPPL = BPP. Finally, by [BFP05], if DistNP ⊆ AvgP then BPP = P, and so NP = P.

9 Open Questions

In this paper we showed that an (even imperfect) IO secure against non-uniform polynomial-size
circuits implies non-trivial circuit lower bounds. Can one prove circuit lower bounds from the
assumption that a (uniform) computationally-secure IO exists?

Can we leverage the connection between one-way functions and a close relative of MCSP (time-
bounded Kolmogorov complexity) [LP20; All+21] to get better understanding of IO?
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A A Universal Distinguisher in FBPPNP

Lemma A.1 ([JVV86]). There exists a randomized algorithm that given oracle access to NP can
approximate any function f(x) in #P to within the multiplicative factor (1± ε), with probability at
least 1− γ, in time polynomial in |x|, 1/ε, and log(1/γ).

Theorem A.2. There is an FBPPNP algorithm D, that given circuits C0 and C1 that are samplers
for distributions D0 and D1, and K ∈ N in unary, will distinguish D0 and D1 with the distinguishing
advantage at least δ − 1/K, where δ is the statistical distance between D0 and D1.

Proof. Given C0 and C1, let p0(x) be the probability of x according to D0, and p1(x) that according
to D1. For 0 < γ = ε ≤ 1/2 to be determined, consider the following probabilistic circuit A(x; r):
Compute the estimates p̃0(x) = (1±ε)p0(x) and p̃1(x) = (1±ε)p1(x) with probability at least 1−γ
(using the algorithm from Lemma A.1), and accept iff p̃0(x) > p̃1(x).

We say that randomness r is good for x if both estimates p̃0(x) and p̃1(x) are correct within the
multiplicative factor (1± ε). Note that by Lemma A.1, for every x, r is good for x with probability
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at least 1− 2γ. We have

Prx∼D0,r[A(x; r) = 1]−Prx∼D1,r[A(x; r) = 1]

≥ Prx∼D0,r[A(x; r) = 1 | r is good for x]−Prx∼D1,r[A(x; r) = 1 | r is good for x]− 2γ

=
∑

x : p0(x)>p1(x)

(p0(x)− p1(x))− 2γ

−
∑

x : p0(x)>p1(x) ∧ p̃0(x)<p̃1(x)

(p0(x)− p1(x))

+
∑

x : p0(x)≤p1(x) ∧ p̃0(x)>p̃1(x)

(p0(x)− p1(x)).

Note that ∑
x : p0(x)>p1(x) ∧ p̃0(x)<p̃1(x)

(p0(x)− p1(x))

≤
∑

x : (p0(x)>p1(x)) ∧ ((1−ε)p0(x)<(1+ε)p1(x))

(p0(x)− p1(x))

≤
∑
x

((1 + ε)/(1− ε)− 1) · p1(x)

= (2ε)/(1− ε).

Similarly, ∑
x : p0(x)≤p1(x) ∧ p̃0(x)>p̃1(x)

(p1(x)− p0(x)) ≤ (2ε)/(1− ε).

Putting everything together, we get

Prx∼D0,r[A(x; r) = 1]−Prx∼D1,r[A(x; r) = 1] ≥ δ − (2γ + (4ε)/(1− ε)),

which is at least δ − 10ε. Setting ε = 1/(10K) concludes the proof.

B Testing Equivalence of Monotone Formulas

Theorem B.1 ([EG95]). Deciding if two given monotone formulas are equivalent is coNP-complete.

Proof. Membership in coNP is clear. For coNP-hardness, we reduce from the complement of 3SAT.
Let φ(x1, . . . , xn) be a given 3-CNF. For each 1 ≤ i ≤ n, replace all occurrences of ¬xi in φ by a
new variable yi. Let φ

mon(x1, . . . , xn, y1, . . . , yn) denote the resulting monotone 3-CNF.

Claim B.2. φ is unsatisfiable iff

φmon ∨
n∨

i=1

(xi ∧ yi) ≡
n∨

i=1

(xi ∧ yi). (10)

Proof of Claim B.2. Suppose φ is satisfied by an assignment a ∈ {0, 1}n to its variables x1, . . . , xn.
Set yi = ¬xi for all 1 ≤ i ≤ n. Then φmon evaluates to 1 on this assignment, making the left-hand
side of (10) true. But the right-hand side of (10) is obviously false under this assignment.
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For the other direction, suppose an assignment (a, b) ∈ {0, 1}2n to x1, . . . , xn, y1, . . . , yn violates
the equivalence of the expressions in (10). By monotonicity, this can only happen if the right-hand
side of (10) is 0 under this assignment, but φmon evaluates to 1. The former means that, for each
1 ≤ i ≤ n, either xi = 0 or yi = 0, or both xi = yi = 0. If both xi = yi = 0, then modify the
current assignment (a, b) by setting xi = 1. By monotonicity, the value of φmon is still 1 after this
update in the assignment. Perform such an update to the assignment for all 1 ≤ j ≤ n where
xj = yj = 0, getting a new assignment (a′, b) ∈ {0, 1}2n which still satisfies φmon. Since under this
new assignment (a′, b), we get that yi = ¬xi for all 1 ≤ i ≤ n, we conclude that φ is satisfied by
the assignment a′ ∈ {0, 1}n.

The theorem follows.

Thus, to decide a coNP-complete problem, it suffices to be able to test equivalence of monotone
depth-3 (OR-AND-OR) formulas: a fixed monotone 2-DNF

∨n
i=1(xi ∧ yi) and the disjunction of

this 2-DNF with an arbitrary monotone 3-CNF.

Remark B.3. This hardness result essentially tight as far as the formula depth is concerned.
Deciding the equivalence of two monotone depth-2 formulas is either in P, or in quasipolynomial
time. In particular, if both formulas are DNFs (or both are CNFs), then testing for equivalence
is in P.10 If one is a DNF and the other one is a CNF, then testing for equivalence can be done
in quasipolynomial time no(logn) [FK96]; if one formula is a k-CNF for a constant k ∈ N and the
other one is a DNF, then equivalence testing is in P [EG95] (even in LOGSPACE [GHM08]).

Remark B.4. For monotone DNFs, we have a trivial deterministic polynomial-time IO which
outputs the unique minimal DNF (consisting of prime implicants). The challenge is to get an IO
for monotone depth-3 formulas that are ORs of CNFs.

C Separating ZPEXP from ZPP

Claim C.1. ZPEXP ̸= ZPP.

Proof. Suppose for a contradiction that ZPEXP = ZPP. Then

NPNP ⊆ EXP ⊆ ZPEXP ⊆ ZPP.

By translation, NEXPNP ⊆ ZPEXP and hence by Lemma 2.10, ZPEXP ̸⊆ P/poly. Yet, by Adleman’s
Theorem ([Adl78]) ZPP ⊆ BPP ⊆ P/poly.

Remark C.2. Similarly, one can show that BPEXP ̸= BPP. However, separating ZPEXP or even
NEXP or EXPNP from BPP remains a longstanding open question. See e.g. [BT00; Wil13].

10Every monotone DNF has a unique minimal DNF consisting of all its prime implicants, and such a minimal form
can be found in polynomial time for any given monotone DNF.
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