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Abstract

Carmosino, Impagliazzo, Kabanets, and Kolokolova (CCC, 2016) showed that the existence
of natural properties in the sense of Razborov and Rudich (JCSS, 1997) implies PAC learning
algorithms in the sense of Valiant (Comm. ACM, 1984), for boolean functions in P/poly, under
the uniform distribution and with membership queries. It is still an open problem to get from
natural properties learning algorithms that do not rely on membership queries but rather use
randomly drawn labeled examples.

Natural properties may be understood as an average-case version of MCSP, the problem
of deciding the minimum size of a circuit computing a given truth-table. Problems related to
MCSP include those concerning time-bounded Kolmogorov complexity. MKTP, for example,
asks for the KT-complexity of a given string. KT-complexity is a relaxation of circuit size, as it
does away with the requirement that a short description of a string be interpreted as a boolean
circuit. In this work, under assumptions of MKTP and the related problem MKtP being easy
on average, we get learning algorithms for boolean functions in P/poly that

• work over any distribution D samplable by a family of polynomial-size circuits (given
explicitly in the case of MKTP),

• only use randomly drawn labeled examples from D, and

• are agnostic (do not require the target function to belong to the hypothesis class).

Our results build upon the recent work of Hirahara and Nanashima (FOCS, 2021) who showed
similar learning consequences but under a stronger assumption that NP is easy on average.
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1 Introduction

There is a deep connection between computational learning and pseudorandomness. Loosely speak-
ing, the goal of learning is to extract “structure” (a simple hypothesis) from a “random” environ-
ment, whereas the goal of pseudorandom constructions is to hide “structure” within a “random-
looking” environment. Before mentioning any examples illustrating this antagonism between learn-
ing and pseudorandomness, let us recall the definitions of some basic learning models.

In Valiant’s Probably Approximately Correct (PAC) learning model [Val84], a learner tries to
learn an unknown concept c (say, a Boolean function) from a known class C of concepts, with
respect to some (arbitrary) distribution D over inputs to c. The learner gets to see independently
sampled labeled examples of the form (x, c(x)), where x is sampled by D, and needs to output
(with high probability) a hypothesis h that has just tiny disagreement with c with respect to the
distribution D. The agnostic PAC learning model [KSS94] is a natural generalization of the PAC
model where an unknown concept f to be learned is not necessarily from the concept class C. The
learner gets to see independently sampled labeled examples of the form (x, f(x)), with x sampled
from some distribution D, and needs to output (with high probability) a hypothesis h so that the
disagreement between h and f with respect to D is very close to the disagreement between f and
the concept cf ∈ C that is closest to f with respect to D. Classical (agnostic) PAC learning model
is distribution-independent in the sense that a successful PAC learning algorithm for a concept class
C must work with respect to any distribution D of examples. One also considers a distribution-
specific setting where a learning algorithm must work with respect to a single fixed distribution D,
e.g., the uniform distribution or a polytime-samplable distribution.

Impagliazzo and Levin [IL90] and Blum et al. [Blu+93] (see also [NY19]) show that breaking
cryptographic Pseudorandom Generators (PRGs) implies average-case PAC learning with respect
to polytime-samplable distributions; here, rather than learning every concept from some concept
class C, one gets to learn a significant fraction of concepts from C under a polytime-samplable
distribution over C. In contrast, Nisan and Wigderson [NW94] show that breaking complexity-
theoretic PRGs (namely, the NW generators) implies worst-case learning (of every concept in a
given concept class C) under the uniform distribution, but here the learning algorithm needs to
make membership queries (MQs) to the concept c ∈ C it is trying to learn, i.e., the learner gets to
ask the value c(x) for any input x of its choosing.

Where does one get an algorithm to break a given PRG in order to get a learning algorithm?
For the case of the NW PRG, Carmosino et al. [Car+16] showed that a natural property (in the
sense of Razborov and Rudich [RR97]) for a (sufficiently expressive) circuit class C yields a learning
algorithm for C under the uniform distribution, with membership queries; this was generalized to
learning with respect to polytime-samplable distributions by Binnendyk et al. [Bin+22]. Using a
known natural property for the class AC0[p] of constant-depth circuits with AND, OR, NOT, and
mod-p counting gates (for any prime modulus p) from [RR97], [Car+16] obtained a quasipolynomial-
time learning algorithm for AC0[p] over the uniform distribution, using membership queries. Later,
[Car+17] generalized this framework to show that one also gets agnostic learning algorithms from
certain generalizations of natural properties. It remains an important open problem to get from
a natural property a learning algorithm that uses only random labeled examples. In particular,
it would be very interesting to get an efficient learning algorithm for AC0[p] without membership
queries, which would rule out weak Pseudorandom Function Generator constructions in AC0[p]; see
[BR17] for a recent survey on pseudorandom functions.

A natural property for general circuits is an efficient average-case heuristic for Minimum Circuit
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Size Problem (MCSP) over the uniform distribution, with one-sided error. Namely, it should always
accept the truth tables of Boolean functions of low circuit complexity (for a given threshold size
parameter s), and should reject at least a constant fraction of all possible truth tables. MCSP
is an example of a meta-complexity problem asking to estimate the circuit size of a given truth
table. There are closely related meta-complexity problems for variants of time-bounded Kolmogorov
complexity.

For example, MKTP (defined in [All+06]) asks if a given binary string x is efficiently locally
computable (outputting bit xi on any input i in at most t steps) by a universal Turing machine
with oracle access to some short binary string d, where one seeks to minimize the sum |d|+ t. As
MCSP, MKTP asks for a description of a string x that allows one to compute x locally, any bit xi
at a time. However, such a description of x needn’t be a Boolean circuit for the truth table x, the
time t of an algorithm computing each xi is explicitly taken as part of the complexity measure of
x, and this reconstruction algorithm is given random access to the description string d.

We show that this extra flexibility of MKTP compared to MCSP leads to improved learning
algorithms from an assumed “natural property” (or one-sided error average-case heuristic) for
MKTP, where we get agnostic PAC learning algorithms over explicitly given efficiently samplable
distributions. Recall that SIZE[s(n)] denotes the set of all n-variate Boolean functions computable
by circuits of size at most s(n). We have the following.

Theorem 1 (Learning from MKTP: Informal version). Suppose MKTP has an efficient one-sided
error average-case heuristic over the uniform distribution over inputs. Then for any circuit size
bound s(n) ≤ poly(n), the concept class C = SIZE[s(n)] is agnostic PAC-learnable in polytime with
respect to any explicitly given ensemble of polysize-samplable distributions D = {Dn}.

Here an ensemble D of distributions Dn is polysize-samplable if there is a family of polysize
circuits Sampn that are samplers for Dn, i.e., the distribution of outputs of Sampn on uniformly
random inputs is Dn. Explicitness of D means that a learning algorithm, when asked to learn some
n-variate Boolean function, is explicitly given a description of the sampling circuit Sampn for the
distribution Dn. Note that this explicitness condition for D = {Dn} is trivially satisfied by the
uniform distribution or any polytime-samplable distribution ensemble (in the latter case, one just
needs a constant-size description of a polytime Turing machine that samples according to Dn, for
any given n).

For the learning setting over distributions D = {Dn} where D is polysize-samplable, but the
sampling circuits Sampn are not explicitly given to the learning algorithm (and only their sizes
are given), we can get efficient agnostic PAC learning from a “natural property” for a different
Kolmogorov-complexity measure, Kt. Recall that, for any time parameter t ∈ N, Kt(x) is defined
as the length of a shortest string d ∈ {0, 1}∗ such that a universal Turing machine with input d
outputs the string x within t steps. Note that, in contrast to KT, here the time t to reconstruct
a given string x is a parameter rather than part of the complexity measure of x, and there is no
requirement to compute x locally. The minimization version of Kt, denoted MKtP, needs to decide,
for a given binary string x and a size parameter s, if Kt(x) ≤ s. We have the following.

Theorem 2 (Learning from MKtP: Informal version). Suppose MKtP has an efficient one-sided
error average-case heuristic over the uniform distribution over inputs. Then for any circuit size
bound s(n) ≤ poly(n), the concept class C = SIZE[s(n)] is agnostic PAC-learnable in polytime with
respect to any ensemble of polysize-samplable distributions D = {Dn}.
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The conclusion of Theorem 2 is stronger than that of Theorem 1, as it does away with the
requirement of explicitness of D. Though we cannot yet reach the same conclusion under average-
case easiness of MKTP, we make some partial progress; we show that under worst-case easiness of
MKTP, learning is possible without the sampling circuit explicitly given.

Theorem 3 (Learning from worst-case MKTP: Informal version). Suppose MKTP is decidable by
an efficient randomized algorithm. Then for any circuit size bound s(n) ≤ poly(n), the concept
class C = SIZE[s(n)] is agnostic PAC-learnable in polytime with respect to any ensemble of polysize-
samplable distributions D = {Dn}.

Below we explain our results and proof techniques in more detail.

1.1 Results

In this work, we present agnostic PAC-learners for polynomial-size circuits over efficienly samplable
distributions, under assumptions of problems of time-bounded Kolmogorov complexity being easy
on average. More specifically, we consider the problem of learning an unknown target function
f : {0, 1}n → {0, 1} with respect to a concept class C and a class D of ensembles of distributions.
Learnability here is agnostic in the sense that f does not necessarily belong to C, and our learner
is asked to learn f with error that is just a small additive ε over the disagreement between f and
the closest function in C to f , with high probability. In this case, we say the algorithm achieves
ε-agnostic learning; see Section 2.3 for more precise definitions.

We will typically take C to be SIZE[s(n)] for some function s : N → N: that is, the class of
functions computable by boolean circuits of size s(n). Our agnostic PAC-learners have access to an
example oracle EX(f,D), with each query returning an independent and identically distributed pair
(x, b), where x is sampled according to the distribution D and b = f(x). The sample complexity of
the learning algorithm is the number of queries made to EX(f,D). Note that our learners may not
ask membership queries of the target function f .

We will typically take D to be Samp[T (n)]/a(n) for some functions T, a : N → N, i.e., the class
of distributions samplable non-uniformly in time T (n) and with a(n) bits of advice. We consider
two different kinds of access to the target distribution D. The first is white-box access, where the
learner is explicitly given the a(n) bits of advice required to sample D (as well as the parameters
T (n) and a(n) that define the distribution class D). In this case, we will say that C is agnostic
PAC-learnable over w.b.-Samp[T (n)]/a(n). In the second kind of access to D, the learner is not
given the advice to sample D but is given the parameters T (n) and a(n). In this case, we will
simply say that C is agnostic PAC-learnable over Samp[T (n)]/a(n).1

We also consider two different notions of time-bounded Kolmogorov complexity. The minimum
KT-complexity problem, MKTP, is the problem of deciding, given a string x ∈ {0, 1}∗ and a pa-
rameter s ∈ N, whether the KT-complexity of x is at most s. Roughly speaking, KT-complexity
is the minimum |d| + t such that a universal TM with oracle access to d ∈ {0, 1}∗ can compute
any individual bit of x in time t ∈ N. MKtP is defined analogously, where Kt-complexity is the
minimum description length |d| such that a universal TM U on input d outputs (the whole string)

1For context, the first model is that employed in the recent work of [Bin+22], and the second model is that
employed in the recent work of [HN21]. In the original PAC-learning framework of [Val84], the target distribution is
allowed to be completely unknown and arbitrary.
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x in time t. See Section 2.2 for formal definitions of these measures of time-bounded Kolmogorov
complexity and the associated decision problems.2

As mentioned earlier, our notion of an average-case heuristic over the uniform distribution U
over inputs forMKTP orMKtPmimics the one-sided error definition of a natural property of [RR97],
where all yes-instances must be accepted, and a constant fraction of all instances must be rejected.
Given the extreme sparsity of yes-instances of these problems over the uniform distribution, we
easily get required one-sided error average-case heuristics for these problems from errorless average-
case heuristics; the class of errorless randomized heuristics is denoted by AvgBPP (see Section 2.1 for
the precise definition). For example, our assumption that there is an efficient errorless randomized
heuristic for MKTP under the uniform distribution over inputs will be denoted by (MKTP,U) ∈
AvgBPP.

Learning over explicitly given efficiently samplable distributions. Here we give a more
formal statement of our Theorem 1.

Theorem 4. Suppose (MKTP,U) ∈ AvgBPP. Then for any time-constructible function s : N → N,
polynomials T, a : N → N, and ε ∈ (n−d, 1) for a constant d > 0, the concept class SIZE[s(n)] is
ε-agnostic PAC-learnable on w.b.-Samp[T (n)]/a(n)

• in time poly(n, s(n), T (n), a(n), ε−1) and

• with sample complexity ((s(n) + n)3 · ε−26)1+o(1).

Proof. The theorem follows by combining Theorem 19 and Theorem 36 below.

Learning over unknown efficiently samplable distributions. Below we give a formal state-
ment of our Theorem 2. For MKtP, as above, we allow errorless randomized heuristics.

Theorem 5. Suppose (MKtP,U) ∈ AvgBPP. Then for any time-constructible functions s, T, a : N →
N and ε ∈ (0, 1), the concept class SIZE[s(n)] is ε-agnostic learnable on Samp[T (n)]/a(n)

• in time poly(n, s(n), T (n), a(n), ε−1) and

• with sample complexity ((s(n) + a(n) + log T (n))3 · ε−8)1+o(1).

Proof. The theorem follows by combining Theorem 19 and Theorem 38 below.

Finally, we give a formal statement of our Theorem 3.

Theorem 6. Suppose MKTP ∈ BPP. Then for any time-constructible functions s, T, a : N → N
and ε ∈ (0, 1), the concept class SIZE[s(n)] is ε-agnostic learnable on Samp[T (n)]/a(n) in time and
sample complexity poly(n, s(n), T (n), a(n), ε−1).

Proof. The theorem follows by combining Theorem 19 and Theorem 41 below.

2MKtP has elsewhere been denoted MINKT.
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1.2 Techniques

All of our proofs work by way of the known reduction, due to Kothari and Livni [KL18], from
agnostic PAC-learning to the task of correlative RRHS-refutation. Consider polynomials s(n),
T (n), and a(n). Given a concept class SIZE[s(n)], a distribution class Samp[T (n)]/a(n), and a
tuple of labeled strings (⟨x(1), b(1)⟩, ..., ⟨x(m), b(m)⟩), where each x(i) ∼ Dn for some distribution
D ∈ Samp[T (n)]/a(n), a correlative RRHS-refuter R is asked to distinguish the following two
cases:

• A “correlative case”, in which the labels b are correlated with the output of some s(n)-size
circuit f ; that is, for each 1 ≤ i ≤ m, independently,

Pr
x(i)∼D

[
b(i) = f(x(i))

]
≥ 1

2
+

ε

2
,

• and a “random case”, in which the labels b(i) are sampled independently and uniformly at
random.

Kothari and Livni show that if there is a probabilistic polynomial-time algorithm R satisfying the
above conditions, then there is an agnostic learner for f over D. The proof of this statement essen-
tially uses distribution-specific boosting algorithms for the agnostic setting, as given by Feldman
[Fel10] and Kalai and Kanade [KK09]. The fact that the distribution D remains the same during
polynomially many boosting stages is crucial as it keeps the circuit complexity of the sampler for
D polynomially bounded.

For our results, the key intuition is that the concatenated samples in the correlative case will have
lower time-bounded Kolmogorov complexity than those in the random case, since the complexity
of uniformly random labels (b(1), ..., b(m)) is close to its maximum value m + O(1) with very high
probability. Choosing m = poly(n) sufficiently larger than the circuit-complexity s(n) of the target
function f yields the desired gap between the two cases. In this way, a heuristic algorithm for
computing time-bounded K-complexity may be used as a correlative RRHS-refuter.

A first observation is that, regardless of the version of time-bounded K-complexity available as
a heuristic algorithm, it is easy to construct a correlative RRHS-refuter working over the uniform
distribution. For example, suppose (MKTP,U) ∈ AvgBPP. Let X := (x(1), ..., x(m)) ∈ {0, 1}nm and
b := (b(1), ..., b(m)) ∈ {0, 1}m. On one hand, in the correlative case, we will always have

KT(X, b) ≤ nm+ ℓs(n) + δ ·m,

where ℓs(n) ≤ O(s(n) log s(n)) is the length of an encoding of a circuit for f , and a further δ ·m
bits for a constant δ < 1 are used to encode the discrepancy between the labels b and the true
outputs of f (see Lemma 34). In particular, given X, it is easy to construct b from the outputs
of f (and knowing which of the labels b(i) are incorrect). On the other hand, in the random
case, (X, b) ∼ Unm+m. Since the KT-complexity of uniformly random strings is usually close to
maximum, we have that with high probability,

KT(X, b) ≥ nm+m− 10.

It is not hard to see that our randomized heuristic for deciding KT-complexity will serve as a
randomized distinguisher between these two cases.

5



For distributions other than uniform, the situation is less straightforward. In particular, our
heuristic algorithms are only defined to work well over U ; moreover, KT(X, b) is not necessarily
likely to be large. In recent work, Hirahara and Nanashima [HN21] circumvent these obstacles
under the assumption that DistNP ⊆ AvgP. In particular, they use this assumption to construct
a worst-case algorithm approximating Kt within logarithmic additive error. They also use it to
prove a worst-case weak Symmetry of Information theorem for Kt, which conditionally states that
for some polynomial p, for every X ∈ {0, 1}∗,

Kt(X, b) ≥ Kp(t)(X) + |b| −O(log t)

with high probability over a uniformly random string b. The above inequality is used in the random
case of RRHS-refutation. In the correlative case, as above, it holds that

Kt(X, b) ≤ Kt′(X) + ℓs(n) + δ ·m

for some time-bound t′ < t. The authors then use the worst-case algorithm for Kt to approximate
the value of Kt(X, b)−Kτ (X) for an appropriate choice of τ , thereby distinguishing the two cases.
To overcome the technical issue of the different time bounds p(t) and t′ in the expressions above,
they show that such differences are immaterial in the expectation over an efficiently samplable
distribution:3 for any D ∈ Samp[mT (n)]/a(n) and sufficiently large time bound t,

E
X∼D

[
Kt(X)− K(X)

]
≤ O(log(mT (n))) + a(n). (1)

In other words, both Kt(X) and Kt′(X) are likely close enough to K(X), and therefore close enough
to each other.

1.2.1 Learning from MKtP

To prove our result for MKtP, we show that similar arguments may be carried out under a signifi-
cantly weaker assumption. One issue is that [HN21] uses the assumption DistNP ⊆ AvgP to achieve
derandomization, as shown possible by [BFP05]. Roughly speaking, one “encodes” a string x into a
distribution DP(x) such that any efficient algorithm distinguishing DP(x) from uniform can be used
to show that Kt(x) is small, a process that crucially relies on the derandomization of the DP recon-
struction. Such derandomization is not known to hold under the assumption DistNP ⊆ AvgBPP,
let alone our weaker assumption of (MKtP,U) ∈ AvgBPP, where MKtP is not even known to be
NP-hard. In our setting, compression via the DP generator gives a randomized algorithm A that,
for any string X and sufficiently large t ∈ N, outputs a value s̃ ∈ N such that

pKpoly(t)(X)−O(log t) ≤ s̃ ≤ Kt(X),

where pKpoly(t) denotes a probabilistic measure of time-bounded Kolmogorov complexity. See Sec-
tion 2.2 for a definition. In general, pKt(X) could be much smaller that Kt(X), so the algorithm A
does not appear very useful a priori. However, as we outline below, it turns out to be sufficient for
the purposes of learning.

3Note that for x(i) ∼ D, for D ∈ Samp[T (n)]/a(n), we have X = (x(1), ..., x(m)) ∼ D′, for D′ ∈ Samp[mT (n)]/a(n).
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Another challenge in our setting is to argue for Eq. (1) above, which says that Kt(X) is close
to K(X) in the expectation. In [HN21], the proof of that statement relies on a conditional source-
coding theorem for Kt: if DistNP ⊆ AvgP, then for any distribution D ∈ Samp[mT (n)]/a(n) and
X ∈ supp(D),

Kpoly(mT (n))(X) ≲ log(1/D(X)), (2)

where D(X) denotes the probability of X under D, and “≲” hides the term O(log(mT (n)))+a(n).
Specifically, to prove Eq. (1) from this statement, one observes that

E
X∼D

[
Kt(X)

]
≲ E

X∼D
[log(1/D(X))]

= H(D)

≤ E
X∼D

[K(X)],

where H(D) denotes the Shannon entropy of the distribution D.
In our setting, without derandomization, Eq. (2) is not known to hold. Unconditionally, it is

only known that with high probability over r ∼ Upoly(mT (n)),

Kpoly(mT (n))(X, r) ≲ log(1/D(X)) + |r|. (3)

That is, source coding for Kt only holds in the presence of additional uniform randomness. A
statement of this kind was originally proved in [AF09]. In analogy with Eq (1), we may use Eq. (3)
to prove that

E
[
Kt(X, r)− K(X, r)

]
≤ O(log(mT (n))) + a(n), (4)

for X ∼ D and r ∼ Upoly(mT (n)).
We cope with the necessity of this additional randomness r by incorporating it into our correl-

ative RRHS-refuter R. That is, we use the randomness of R to uniformly sample a string r, and
rather than approximating Kτ (X) and Kt(X, b), we approximate Kτ (X, r) and Kt(X, b, r). We show
the analysis of the RRHS-refutation to be unharmed by this modification.

Importantly, Eq. (4) allows us to make use of our inferior approximation algorithm A described
at the beginning of this section. For any stringsX and r, pKt(X, r) is known to be lower-bounded by
the time-unrestricted K(X, r). Eq. (4) then implies that the expected value of Kt(X, r)− pKt(X, r)
will be low, for X sampled from an efficiently samplable distribution and r sampled uniformly
at random. Intuitively, there is a “smoothing out” of the differences between different measures
of Kolmogorov complexity in the expectation, so the correlative RRHS-refuter we construct may
sometimes safely ignore such differences.

Finally, there is the issue of the Symmetry of Information theorem for Kt, which is not known
to hold in the absence of derandomization. To get around this, we observe that such a statement
is actually not necessary for our purposes. Rather, since Kt(X, b, r) will be close to K(X, b, r) with
high probability over X ∼ Dm

n , b ∼ Um, and r ∼ Upoly(mT (n)), we may simply apply the well-known,
unconditional Symmetry of Information theorem for time-unbounded Kolmogorov complexity. This
observation has the advantage of simplifying our proofs as well as painting a clearer picture of the
true prerequisites of learning.
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1.2.2 Learning from MKTP

Many of the tools available in the Kt setting, such as compression via generator reconstruction
yielding a worst-to-average reduction, become unavailable in the setting of KT. For this reason, we
can no longer apply the framework of [HN21], and we obtain a model of learning that requires a
stronger form of access to the target distribution in question. In this setting, we take advantage of
the fact, as described above, that it is easy to learn via KT over the uniform distribution. Our goal
is then to reduce the task of learning over arbitrary distributions in PSamp/poly to that of learning
over the uniform distribution. Inspired by a recent work of Binnendyk et al. [Bin+22], we employ
the distributional inverters of [IL89]. A distributional inverter for a function g : {0, 1}∗ → {0, 1}∗
is an algorithm that, given some y = g(x), outputs a nearly uniformly random member of the set
{z | g(z) = y}. It is already known that (MKTP,U) ∈ AvgBPP implies the existence of such objects
for every efficiently computable g (see Section 2.4).

To construct a correlative RRHS-refuter for an arbitrary distributionD ∈ PSamp/poly, we apply
distributional inversion in the following way. Let I be a distributional inverter for the sampler for
D, which is a polynomial-size circuit C. Recall that in the problem of correlative RRHS-refutation,
we are provided labeled examples {(x(i), b(i))}, where either the b(i)s are uniformly random, or they
are correlated with the outputs f(x(i)) of the target function f . Given such pairs {(x(i), b(i))}, we
apply I to the first part to simulate pairs of the form {(r(i), b(i))}, where the r(i)s are now from a
distribution close to uniform, and the b(i)s are either uniformly random, or they are correlated with
the outputs f(C(r(i))) of the target function f composed with the sampler C. Using a correlative
RRHS-refuter for f ◦ C over the uniform distribution, we can distinguish these two cases, thereby
distinguishing the two cases of the original problem over D. Because I must have oracle access to
the non-uniform circuit C it is inverting, the learner will ultimately require an explicit description
of C, so that the learner can output a circuit for f with no extra oracle gates.

1.3 Related Work

[HN21] proved a version of Theorem 2 under the assumption that DistNP ⊆ AvgP. In [Gol+22],
the authors adapted the learning result of [HN21] to the case of the randomized average-case
easiness assumption that DistNP ⊆ AvgBPP, by showing that the probabilistic Kolmogorov com-
plexity measure pKt may be used instead of Kt, and proving (under the same average-case easiness
assumption) various results for pKt (e.g., the existence of a randomized approximation algorithm
for pKt, and the Symmetry of Information). Using [Gol+22], it is fairly straightforward to get
a learning algorithm from the assumption that MpKtP (the minimization problem for pKt) is in
AvgBPP, relying on the properties of pKt proved in [Gol+22]. However, in the present paper, we
use a weaker assumption that MKtP is in AvgBPP (under the uniform distribution), and avoid using
any nontrivial properties of pKt. Intuitively, the reason we are able to do so is the “smoothing out”
phenomenon mentioned above: the time-bounded Kolmogorov complexity measures Kt and pKt

are close to the time-unbounded measure K, in expectation over appropriate efficiently samplable
distributions.

Recall that Partial-MCSP is the problem of deciding, given a collection of pairs {(xi, bi)}, whether
there is a small circuit C such that every C(xi) = bi. Ilango, Loff, and Oliveira prove that under an
average-case easiness assumption about Partial-MCSP, PAC-learning without membership queries
is possible over the uniform distribution [ILO20]. This relies on a reduction of Vadhan [Vad17] from
PAC-learning (in a distribution-independent sense) to the problem of “RRHS-refutation”: namely,
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the simpler version of correlative RRHS-refutation in which the labels bi are precisely the outputs
of the target concept f applied to the samples xi. We expect that by using the tools of this work,
including correlative RRHS-refutation and distributional inversion, the statement of [ILO20] could
be extended to the agnostic setting and arbitrary efficiently samplable distributions, in the sense
of our Theorem 1.

2 Preliminaries

2.1 Average-case Complexity

A distributional problem is a pair (L,D), where L ⊆ {0, 1}∗ is a language and D is a family of
distributions D = {Dn}n∈N. We denote by U the family of parameterized uniform distributions
{U⟨n,t1,...,tk⟩}n,t1,...,tk∈N, where k is a constant, each U⟨n,t1,...,tk⟩ := (Un, 1

t1 , ..., 1tk), and Un is the
uniform distribution over n-bit strings.4

Definition 7 (AvgBPP [BT06]). A distributional problem (L,D) belongs to AvgBPP if there is an
algorithm A and polynomial p such that, on any n ∈ N, x ∈ supp(Dn), and δ > 0, A(x;n, δ) runs
in time at most p(n/δ), and

1. PrA [A(x;n, δ) /∈ {L(x),⊥}] ≤ 1
10 ;

2. Prx∼Dn [ PrA[A(x;n, δ) = ⊥] ≥ 1/10 ] ≤ δ(n).

Such an algorithm A is called a randomized errorless heuristic scheme for (L,D).

2.2 Time-bounded Kolmogorov Complexity

Definition 8 (KT [All+06]). Fix a universal oracle TM U . For strings x, y ∈ {0, 1}∗, the KT-
complexity of x given y is defined as

KT(x | y) := min
d∈{0,1}∗, t∈N

{
|d|+ t | ∀ 1 ≤ i ≤ N + 1, Ud,y(i) = xi in at most t steps

}
,

where xN+1 := ⊥, and the notation Ud,y means that U has random (oracle) access to strings d and
y.

Definition 9 (Kt). Fix a universal deterministic TM U . For strings x, y ∈ {0, 1}∗ and a time
bound t ∈ N, the t-time-bounded Kolmogorov complexity of x given y is defined as

Kt(x | y) := min
k∈N

{
k

∣∣∣ ∃w ∈ {0, 1}k, U(w, y) outputs x within t steps
}
.

Definition 10 (pKt
δ). Fix a universal deterministic TM U . For strings x, y ∈ {0, 1}∗, a time bound

t ∈ N, and δ ∈ [0, 1], the δ-probabilistic t-time-bounded Kolmogorov complexity of x given y is
defined as

pKt
δ(x | y) := min

k∈N

{
k

∣∣∣∣ Pr
r∼{0,1}t

[
∃w ∈ {0, 1}k, U(w, y, r) outputs x within t steps

]
≥ δ

}
.

4Formally, ⟨t1, ..., tk⟩ denotes Enc(t1, ..., tk), where Enc : N∗ → N is an efficiently computable and decodable
encoding function. Such an encoding function is known to exist by standard techniques; see, for example, [BT06].
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Definition 11 (MKTP and MKtP). We define languages

• MKTP := {(x, 1s) | x ∈ {0, 1}∗, s ∈ N, and KT(x) ≤ s};

• MKtP :=
{
(x, 1s, 1t) | x ∈ {0, 1}∗, s, t ∈ N, and Kt(x) ≤ s

}
;

Proposition 12. For any string x ∈ {0, 1}∗ and time bound t ∈ N,

pKt(x) ≤ Kt(x).

Proposition 13 ([Gol+22]). There is a constant c such that, for any string x ∈ {0, 1}∗ and time
bound t ∈ N,

K(x | t) ≤ pKt(x) + c log |x|.

Proposition 14. There is a constant c′ such that, for any string x ∈ {0, 1}∗ and time bound t ∈ N,

Kt(x) ≤ |x|+ c′.

Lemma 15 (Symmetry of Information for Time-unbounded K-complexity [ZL70]). For every pair
of strings x ∈ {0, 1}∗ and y ∈ {0, 1}∗,

K(xy) ≥ K(x) + K(y | x)−O(log |xy|).

2.3 Agnostic PAC-Learning and Correlative RRHS-Refutation

In the PAC-learning framework, one is asked to learn an unknown concept : namely, a Boolean
function f : {0, 1}n → {0, 1} for some n ∈ N. A concept class C refers to a set of such concepts,
and Cn denotes C ∩ {f : {0, 1}n → {0, 1}}. One may ask whether C is PAC-learnable over a class
D of ensembles D = {Dn}n≥1 of distributions Dn. Dn denotes {Dn | D ∈ D}. For a hypothesis
h : {0, 1}n → {0, 1}, define

errDn(h, f) = Pr
x∼Dn

[h(x) ̸= f(x)].

We also define the minimum relative distance between f and C with respect to Dn as the disagree-
ment between f and the best-fitting hypothesis c ∈ C, i.e.,

optCn,Dn,f = min
c∈Cn

errDn(c, f).

Learners are provided an example oracle EX(f,Dn) such that each query returns an independently
sampled pair (x, b), where x ∼ Dn and b = f(x). We will use the term sample complexity to mean
the number of queries made to EX(f,Dn).

Definition 16 (PAC learning [Val84]). Let C be a concept class, and let D be a class of distribu-
tions. We say that C is PAC-learnable on D if there is an algorithm A with the following property.
For every n ≥ 1, ε > 0, δ > 0, distribution D ∈ Dn, and concept f : {0, 1}n → {0, 1} belonging to
Cn,

Pr
A,EX(f,D)

[
AEX(f,D)(n, ε, δ) outputs a hypothesis h such that errD(h, f) ≤ ε

]
≥ 1− δ,

where the probability is over the internal randomness of A and random examples provided by
EX(f,D).
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The following definition of agnostic PAC learning is a generalization of the PAC learning defi-
nition above to the case where a function f to be learned is not necessarily from the concept class
C. In this case, the hypothesis h output by the learning algorithm should have an error close to
the minimum relative distance between f and the concept class C.

Definition 17 (Agnostic PAC learning [KSS94]). Let C be a concept class, and let D be a class
of distributions. We say that C is ε-agnostic PAC-learnable on D if there is an algorithm A
with the following property. For every n ≥ 1, ε > 0, δ > 0, distribution D ∈ Dn, and concept
f : {0, 1}n → {0, 1},

Pr
A,EX(f,D)

[
AEX(f,D)(n, ε, δ) outputs a hypothesis h such that errD(h, f) ≤ optCn,D,f + ε

]
≥ 1− δ.

Definition 18 (Correlative RRHS-Refutation). Let C be a concept class, and let D = {Dn}n≥1 be
an ensemble of distributions. A randomized algorithm R is a ε-correlative random-right-hand-side-
refuter (ε-correlative RRHS-refuter) for C on D with sample complexity m provided it satisfies the
following. Given input parameters n ∈ N and ε ∈ (0, 1), as well as a set

S =
(〈

x(1), b(1)
〉
, . . . ,

〈
x(m), b(m)

〉)
of samples, where x(i) ∈ {0, 1}n and b(i) ∈ {0, 1} for i ∈ [m];

• Soundness: Suppose the samples S are i.i.d. from a distribution D′ on {0, 1}n ×{0, 1} such
that the marginal on {0, 1}n equals Dn, and for some f ∈ Cn,

Pr
⟨x(i), b(i)⟩∼D′

[
b(i) = f(x(i))

]
≥ 1

2
+

ε

2
.

Then,
Pr
S,R

[R(n, ε, S) = correlative ] ≥ 2/3.

• Completeness: Suppose the samples S are i.i.d. with x(1), . . . , x(m) ∼ Dn and b(1), . . . , b(m) ∼
U . Then,

Pr
S,R

[R(n, ε, S) = random ] ≥ 2/3.

Kothari and Livni [KL18] prove an equivalence between distribution-specific agnostic PAC
learning and RRHS-refutation. We will be using the following direction from RRHS-refutation
to agnostic learning.

Theorem 19 (Agnostic Learning from RRHS-Refutation [KL18]). Let C be a concept class, and let
D = {Dn}n≥1 be an ensemble of distributions. If there exists an ε-correlative RRHS-refuter for C on
D with sample complexity m(n, ε) and running time T (n, ε), then C is (2ε)-agnostic PAC-learnable
over D with

• sample complexity O
(
m(n, ε/2)3 · ε−2

)
, and

• running time O
(
T (n, ε/2) ·m(n, ε/2)2 · ε−2

)
.
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The proof of the above theorem relies on distribution-specific boosting algorithms for the ag-
nostic setting, such as those of Feldman [Fel10] and Kalai and Kanade [KK09]. These algorithms
transform a weak agnostic learner over some distribution into a strong agnostic learner over that
same distribution; they work by adaptively modifying the labels of example points rather than
the distributions on those points as is typically the case in boosting. Interestingly, in the agnostic
setting, it is possible to accomplish this without a superpolynomial increase in the running time of
the learner.

2.4 Inversion

In this section, we cover definitions of inversion of functions, which are the negations of correspond-
ing definitions of the existence of one-way functions. Throughout, we take the word “function” to
include auxiliary input functions in the sense of Ostrovsky and Wigderson, in which both function
and potential inverter have access to the same non-uniform input (denoted y below) [OW93].

Definition 20 (Invertible functions). Consider a function g(y, x) computable uniformly in polyno-
mial time. The function g is said to be weakly invertible if there is a probabilistic polynomial-time
Turing machine I and a constant b such that for every n ∈ N and for every y ∈ {0, 1}∗,

Pr
x∼Un

[g(y, I(y, g(y, x))) = g(y, x)] ≥ 1

nb
.

The function g is said to be strongly invertible if for every constant d there is a probabilistic
polynomial-time Turing machine I such that for every n ∈ N and for every y ∈ {0, 1}∗,

Pr
x∼Un

[g(y, I(y, g(y, x))) = g(y, x)] ≥ 1− 1

nd
.

Definition 21 (Statistical Indistinguishability). Two probability distributions D and D′ are sta-
tistically indistinguishable within δ if for all T ⊆ {0, 1}n,∣∣∣∣ Pr

x∼Dn

[x ∈ T ]− Pr
x∼D′

n

[x ∈ T ]

∣∣∣∣ ≤ δ.

We denote this as D ≡δ D
′.

Definition 22 (Distributionally invertible functions). Consider a function g(y, x) computable uni-
formly in polynomial time. The function g is said to be distributionally invertible if for every
constant b > 0 there is a probabilistic polynomial-time oracle Turing Machine I such that for every
n ∈ N and y ∈ {0, 1}∗,

(x, g(y, x)) ≡n−b (I(y, g(y, x)), g(y, x)),

where x ∼ Un. We refer to the machine I as an n−b-distributional inverter.

Lemma 23 ([Yao82]). If every function computable in polynomial time is weakly invertible, then
every such function is strongly invertible.

Lemma 24 ([IL89]). If every function computable in polynomial time is strongly invertible, then
every such function is distributionally invertible.

Lemma 25 ([All+06]). If (MKTP,U) ∈ AvgBPP, then every function computable in polynomial
time is weakly invertible.

Corollary 26. If (MKTP,U) ∈ AvgBPP, then every function computable in polynomial time is
distributionally invertible.

12



2.5 Direct Product Generator and pKt-Compression

Definition 27 (Direct Product Generator). For n, k ∈ N, the k-wise direct product generator
DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is the function defined by

DPk(x; z
1, ..., zk) = (z1, ..., zk; ⟨x, z1⟩, ..., ⟨x, zk⟩),

where ⟨−,−⟩ denotes the inner product ⟨x, y⟩ =
(∑|x|

i=1 xiyi

)
mod 2.

Lemma 28 (Probabilistic pKt Reconstruction [Gol+22]). There is a polynomial p′ with the follow-
ing property. For ε > 0, x ∈ {0, 1}n, s ∈ N, and k ∈ N satisfying k ≤ 2n, let D be a randomized
algorithm that takes an advice string β, runs in time tD, and ε-distinguishes DPk(x;Unk) from
Unk+k. Then

pKp′(tD·n/ε)(x | β) ≤ k + log p′(tD · n/ε).

2.6 Source Coding Theorem

The following lemma is very similar to one of [AF09], but with a greater probability of success
on the right-hand side, which is necessary for the application in Lemma 37. For completeness, we
present a slight modification of a proof due to [All+18], which uses hashing.

Lemma 29. The following holds unconditionally. There exist polynomials p and q such that for
any T, a : N → N, n ∈ N, D ∈ Samp[T (n)]/a(n), and x ∈ Supp(Dn),

Pr
r∼U3T (n)

[
Kp(T (n))(x, r) ≤ log(1/Dn(x)) + |r|+ a(n) + log p(T (n))

]
≥ 1− 1

4T (n)
,

where Dn(x) denotes the probability of x under Dn.

Proof. Let A be a non-uniform algorithm sampling D ∈ Samp[T (n)]/a(n). That is, there is some
α ∈ {0, 1}a(n) such that for any x ∈ supp(Dn),

Pr
w∼UT (n)

[A(w;α, 1n)] = Dn(x).

Let s be the smallest integer such that Dn(x) ≥ 2−s. Define ℓ := T (n) and k := ℓ− s− log(8T (n)).
Consider a universal hash function family H = {h : {0, 1}ℓ → {0, 1}k}. For each h ∈ H and
w ∈ {0, 1}T (n), h(w) = U ·w + v for some binary Toeplitz matrix U of dimension k × ℓ and binary
vector v of dimension k. Define a set

Sx := {w ∈ {0, 1}T (n) | A(w;α, 1n) = x}.

For h ∼ H, define a random variable X := |Sx ∩ h−1(0k)|. Note that |Sx| = Dn(x) · 2T (n) ≥ 2ℓ−s.
Then |Sx|/2k ≥ 8T (n), and by universality,

Var[X] ≤ E[X] =
|Sx|
2k

.

By Chebyshev’s Inequality,

Pr[X = 0] ≤ Pr [|X − E[X]| ≥ E[X]]

≤ Var[X]/E[X]2

≤ 1/8T (n).
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Now define a random variable Y = |h−1(0k)|, where h ∼ H. Note that E[Y ] = 2ℓ/2k =
2s+log(8T (n)). Then by Markov’s Inequality,

Pr[Y ≥ 2s+2 log(8T (n))] = Pr[Y ≥ 8T (n) · E[Y ]]

≤ 1/8T (n).

By a union bound,
Pr[X = 0 or Y ≥ 2s+2 log(8T (n))] ≤ 1/4T (n).

Assume X > 0 and Y < 2s+2 log(8T (n)). It is possible to represent x with descriptions of the hash
function h, the index of a string w ∈ Sx in the set h−1(0k), and the advice string α used in the
sampler A. In particular, x may be recovered by performing Gaussian elimination to compute the
set h−1(0k) from the description (U, v) of h, locating w in this set, and then returning the output
of A(w;α, 1n). This requires |(U, v)| < 3T (n) bits to describe h, at most log Y ≤ s+2 log(8T (n)) ≤
log(1/Dn(x)) + 1 + 2 log(8T (n)) bits to describe the position of w in h−1(0k), and |α| = a(n) bits
to run the sampler A. Define the “random” string r ∈ {0, 1}3T (n) as the description (U, v) of h.
Overall, we have that with probability at least 1− 1/4T (n) over r sampled uniformly,

Kp(T (n))(x, r) ≤ log(1/Dn(x)) + |r|+ a(n) + log p(T (n))

for some polynomial p.

3 Approximating Kt

Lemma 30 (implicit in [Hir18]). If (MKtP,U) ∈ AvgBPP, then there is a polynomial p such that
the following promise problem is in promiseBPP:

ΠYES :=
{(

x, 1s, 1t
)
| x ∈ {0, 1}∗, s, t ∈ N, t ≥ |x|, and Kt(x) ≤ s

}
,

ΠNO :=
{(

x, 1s, 1t
)
| x ∈ {0, 1}∗, s, t ∈ N, t ≥ |x|, and pKp(t)(x) > s+ log p(t)

}
.

Proof. Let the input (x, 1s, 1t) be given, where x ∈ {0, 1}n and s ≤ n+O(1). Define

k := s+ 2 log q(t), and

s′ := s+ nk + log q(t),

where q is a polynomial chosen later.
Let B0 be a randomized errorless heuristic scheme for (MKtP,U), with failure probability 1/n.

Let B be the modification of B0 that outputs “1” whenever B0 would output “⊥”. Note that on
yes-instances of MKtP, B errs with probability at most 1/10 over its own internal randomness.

Define another algorithm B′ as follows:

On input (x, 1s, 1t), sample z ∼ Unk and then output B(DPk(x; z), 1
s′ , 1q(t)).

In the remainder of the proof, we argue that B′ solves (ΠYES,ΠNO) correctly with high probability
in the worst case.
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First, suppose (x, 1s, 1t) ∈ ΠYES. Observe that for our choice of k, given any x ∈ {0, 1}n
and z ∈ {0, 1}nk+k, it is possible to compute DPk(x; z) in polynomial time. Thus, we let q be a
polynomial such that for any z ∈ {0, 1}nk and sufficiently large t ∈ N,

Kq(t)(DPk(x; z)) ≤ Kt(x) + |z|+ log q(t)

≤ s+ |z|+ log q(t)

= s′.

Then by definition of B, for (x, 1s, 1t) ∈ ΠYES,

Pr[B′(x, 1s, 1t) = 1] ≥ 9/10,

where the above probability is over the inner randomness of B and z ∼ Unk.
Now suppose (x, 1s, 1t) ∈ ΠNO. For a contradiction, suppose

Pr[B′(x, 1s, 1t) = 1] = Pr
B,z

[B(DPk(x; z), 1
s′ , 1q(t)) = 1] > 1/4. (5)

By a counting argument, for randomly selected w ∼ Unk+k,

Pr
w

[
Kq(t)(w) ≤ s′

]
≤ 2s

′

2nk+k
=

1

q(t)
.

Then by definition of B,

Pr
B,w

[
B(w, 1s

′
, 1q(t)) = 1

]
=

1

10
+

1

n
+

1

q(t)

< 1/8. (6)

Comparing Equations (5) and (6), we see that B(−, 1s
′
, 1q(t)) (1/8)-distinguishes DPk(x;Unk) from

Unk+k. Then by Lemma 28, for some polynomial p′,

pKp′(t)(x) ≤ k +O(log t)

= s+O(log t).

In other words, for an appropriate choice of the polynomial p in the statement of the lemma,
(x, 1s, 1t) is not in ΠNO. This gives a contradiction. We conclude that for (x, 1s, 1t) ∈ ΠNO,

Pr
[
B′(x, 1s, 1t) = 1

]
≤ 1/4.

Lemma 31 ([Hir18]). If (MKtP,U) ∈ AvgBPP, then there exists a polynomial p and a randomized
algorithm A that on input (x, 1t), where x ∈ {0, 1}n and t ∈ N, runs in time poly(n, t) and with
probability at least 1− 2−n outputs an integer s̃ such that

pKtc(x)− log p(t) ≤ s̃ ≤ Kt(x).

Proof. Consider the polynomial-time randomized algorithm B′ that solves the promise problem
from Lemma 30. By standard success amplification, we may assume that the error of B′ is at most
2−2n on inputs satisfying the promise. Algorithm A runs B′ on (x, 1s, 1t) for s = 1, 2, . . . , n+log n,
and outputs the first s̃ such that B′(x, 1s̃, 1t) = 1. If B′ never accepts, A simply outputs n+ log n.

On one hand, if s = Kt(x), then (x, 1s, 1t) ∈ ΠYES, so Pr[B′(x, 1s, 1t) = 1] ≥ 1 − 2−2n. On the
other, if s < pKp(t)(x)− log p(t), then (x, 1s, 1t) ∈ ΠNO, so Pr[B′(x, 1s, 1t) = 1] ≤ 2−2n.

By a union bound, with probability at least 1− 2−n, s̃ has the desired property.
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4 Agnostic Learning from Heuristics for K-complexity

In what follows, for a distribution D and m ∈ N, Dm will denote the distribution (x(1), ..., x(m))
where x(i) ∼ D for i ∈ [m]. Moreover, ℓs(n) ≤ O(s(n) log s(n)) will denote the number of bits
needed to encode a function f ∈ SIZE[s(n)].

Lemma 32 ([HN21]). There exists a polynomial t′ such that for any m ≥ n ∈ N, string b ∈ {0, 1}m,
function f : {0, 1}n → {0, 1}, X = (x(1), ..., x(m)) ∈ ({0, 1}n)m, and δ ∈ (0, 1) satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}

∣∣∣ ≥ (1/2 + δ) ·m,

we have that for any r ∈ {0, 1}∗,

Kt′(m) (b | X, r) ≤ ℓs(n) +
(
1− 2δ2

)
·m.

Proof. Given X, we can compute f(x(1)), . . . , f(x(m)) in time poly(m · ℓs(n)) using the encoding of
f , which requires ℓs(n) bits. Note that b and f(x(1)), . . . , f(x(m)) disagree on at most (1/2− δ) ·m
coordinates. So to recover b, it suffices to encode the string e ∈ {0, 1}m such that ei = 1 iff
f(x(i)) ̸= bi. We will show that Kpoly(m)(e) ≤ (1 − 2δ2) · m, which will conclude the proof of the
lemma.

Note that e has hamming weight at most m′ = (1/2 − δ) · m. Every m′-size subset of an m-
size set can be represented using log2

(
m
m′

)
bits, via the combinatorial number system, with both

encoding and decoding algorithms running in time polynomial in m (see, e.g., [Gol+19] for details).
Using standard inequalities for binomial coefficients and the binary entropy function H2, we get

log2

(
m

m′

)
≤ log2 2

H2(m′/m)·m

= H2 (1/2− δ) ·m
≤

(
1− 2δ2

)
·m,

as required.

We will also need a lemma similar to the above for the case of KT: that is, bounding the KT-
complexity of the labels b in the case that they correlate with a function f . Lemma 32 is insufficient
as-is, since the time bound t′(m) would render KT(b) trivial. To overcome this issue, we use an
encoding scheme from Golovnev et al. for strings of bounded hamming weight.

Lemma 33 ([Gol+19]). For some m,m′ ∈ N and e ∈ {0, 1}m, suppose e has hamming weight at
most m′. Then there is a string e′ of length at most log

(
m
m′

)
+m3/4 such that for all 1 ≤ i ≤ m, ei

can be computed with random access to e′ in time m2/3.

Lemma 34. For any m,n ∈ N, string b ∈ {0, 1}m, function f : {0, 1}n → {0, 1}, X = (x(1), ..., x(m)) ∈
({0, 1}n)m, r ∈ {0, 1}∗, and δ ∈ (0, 1) satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}

∣∣∣ ≥ (1/2 + δ) ·m,

we have that

KT (X, b, r) ≤ KT(X, f(x(1)), ..., f(x(m)), r) +
(
1− 2δ2

)
·m+ 2m3/4.
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Proof. It is clear that any bit ofX or r can be computed in time and description size upper-bounded
by KT(X, f(x(1)), ..., f(x(m)), r). To compute a bit bi of b, for i ∈ [m], we observe the following.
As in Lemma 32, let e ∈ {0, 1}m be such that ei = 1 iff f(x(i)) ̸= bi. Then bi is f(x

(i))⊕ ei. Note
that the the hamming weight of e is at most m′ := (1/2− δ) ·m. Applying Lemma 33, ei may be
computed in time at most m2/3 from a description e′ of length at most

log

(
m

m′

)
+m3/4.

Arguing as in Lemma 32, we upper-bound the above by (1− 2δ2) ·m+m3/4.
To compute a bit bi, we first use time and description size KT(X, f(x(1)), ..., f(x(m)), r) to obtain

the corresponding f(x(i)). Then, given f(x(i)), bi may be computed in time at most m2/3 + O(1)
from a description of e′ of size at most

(
1− 2δ2

)
·m+m3/4. This concludes the proof.

4.1 Learning over the Uniform Distribution from MKTP

Here, we construct a correlative RRHS-refuter, working over distributions that are statistically
close to uniform, under the assumption that MKTP is easy on average. In the next section, we will
reduce the case of arbitrary efficiently samplable distributions to this case.

Theorem 35. If (MKTP,U) ∈ AvgBPP, then for any time-constructible function s : N → N, con-
stants c, ζ > 0, and any family of distributions D such that Dn ≡n−c Un, there is an ε-correlative
RRHS-refuter for SIZE[s(n)] under Dn taking parameters n ∈ N and ε ∈ (0, 1) with sample com-
plexity

m(n, ε) :=

(
s(n) + n

ε8

)1+ζ

and running time poly
(
n, ε−1, s(n)

)
.

Proof. Let A0 be a randomized errorless heuristic scheme for (MKTP,U) with failure probability
1/n. Let A be the algorithm that simulates A0 and outputs “correlative” whenever it would output
“1” or “⊥”, and “random” whenever it would output “0”. Note that on yes-instances of MKTP, A
errs with probability at most 1/10 over its own internal randomness.

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉
, . . . ,

〈
x(m), b(m)

〉)
of samples, let X := (x(1), . . . , x(m)) and b := (b(1), . . . , b(m)). R is defined as follows.

1. Compute θ := mn+ (1− ε2/16) ·m.

2. Evaluate A((X, b), 1θ). Output “correlative” if A accepts, and output “random” otherwise.

Correlative Case (Soundness). Suppose the labeled examples in S are sampled i.i.d from some
distribution D′ on {0, 1}n × {0, 1}, whose marginal on {0, 1}n is given by Dn, and there exists
f ∈ SIZE[s(n)] such that

Pr
⟨x(i), b(i)⟩∼D′

[
b(i) = f(x(i))

]
≥ 1

2
+

ε

2
.
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In this case, by a Chernoff bound, the probability over S∼(D′)m that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ < (1/2 + ε/4) ·m

is at most exp(−2m(ε/4)2) ≤ o(1). So with probability 1 − o(1), the conditions of Lemma 34 are
met. Now observe that

KT(X, f(x(1)), ..., f(x(m))) ≤ mn+ 2ℓs(n) + 2n,

using an mn-bit description of X to obtain any bit of X in constant time, along with an ℓs(n)-bit
description of a circuit computing f to obtain any bit f(x(i)) from X in time at most ℓs(n) + 2n.
This, along with Lemma 34 (with r the empty string), implies that

KT(X, b) ≤ mn+
(
1− ε2/8

)
·m+ 2ℓs(n) + 2n+ 2m3/4. (7)

Finally, by our choice of m = ω
(
(s(n) + n) · ε−8

)
,

m >
32

(
ℓs(n) + n+m3/4

)
ε2

;

re-written and combined with Eq. (7),

KT(X, b) ≤ mn+
(
1− ε2/8

)
·m+ 2ℓs(n) + 2n+ 2m3/4

< mn+
(
1− ε2/16

)
·m

= θ.

By definition of A, R will output “correlative” with probability at least 9/10− o(1) > 2/3.

Random Case (Completeness). Suppose (X, b) is sampled from the distribution (Dm
n ,Um).

Note that for X ∼ Um
n and b ∼ Um, it holds that

Pr
X,b

[KT(X, b) > mn+m− 10] ≥ 9/10.

Then by the definition of statistical distance, with probability at least 9/10 − o(1) over X ∼ Dm
n

and b ∼ Um,

KT(X, b) > mn+m− 10

> θ.

In other words, ((X, b), 1θ) /∈ MKTP.
Now, since the failure probability of our heuristic A is at most 1/10 + 1/n over the uniform

distribution, the definition of statistical distance implies that its failure probability is at most
1/10 + o(1) over the distribution (Dm

n ,Um).
Overall, by a union bound, R outputs “random” with probability at least 4/5− o(1) > 2/3.
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4.2 Learning over PSAMP/poly from MKTP

In this section, we generalize the previous theorem to give correlative RRHS-refuters working over
arbitrary efficiently samplable distributions. In particular, we reduce to the case of a nearly-uniform
distribution by inverting the circuit that samples our given target distribution. This requires
distributional inversion as defined by Impagliazzo and Luby [IL89], which is possible under the
assumption of MKTP being easy on average.5

Theorem 36. Suppose (MKTP,U) ∈ AvgBPP. Consider any time-constructible function s : N →
N, polynomials T, a : N → N, constant ζ > 0, and ε ∈ (n−d, 1) for a constant d > 0. Let
D = {Dn}n∈N be a family of distributions such that each Dn is samplable in time T (n) with a(n)
bits of non-uniform advice αn. There is an algorithm which, given αn and parameters n ∈ N
and ε, is an ε-correlative RRHS-refuter for SIZE[s(n)] under Dn. This RRHS-refuter has sample
complexity

m(n, ε) :=

(
s(n) + n

ε8

)1+ζ

and running time poly
(
n, T (n), a(n), s(n), ε−1

)
.

Proof. By Corollary 26, every function g(y, x) computable in polynomial time is distributionally
invertible. In particular, let I be a ε/4-distributional inverter for the function g that evaluates
the Boolean circuit y on the input string x. Let {Cn}n∈N be the family of circuits that sample
D. In particular, each Cn applies the T (n)-time sampler for Dn along with the advice αn. By the
definition of distributional inversion (Definition 22), we have that for all sufficiently large n ∈ N,

(I(Cn, Cn(w)), Cn(w)) ≡ε/4 (w,Cn(w)), (8)

where w ∼ Uℓ, ℓ ≤ a(n), and I runs in time poly(T (n), a(n)).
Given labeled samples of the form (x, b), where x ∼ Dn = Cn(Uℓ), one may apply I to the first

part to simulate labeled samples of the form (r′, b), where r′ ∈ {0, 1}ℓ. Specifically, r′ ∼ D′
ℓ, where

D′
ℓ is the distribution I(Cn, Cn(Uℓ)) sampled by the circuit C ′

ℓ(−) := I(Cn, Cn(−)). By Eq. (8),
D′

ℓ ≡ε/4 Uℓ.
We will reduce to the case of a nearly-uniform distribution: namely, the case of Theorem 35.

Consider a target function f computable in SIZE[s(n)]. By Theorem 35, since D′ is statistically
close to uniform, there is a correlative RRHS-refuter R′ for f ◦Cn over D′ with parameter ε′ := ε/2

that has sample complexity m =
(
(s(n) + n)/ε8

)1+ζ
and running time poly(n, s(n), ε−1). To get a

correlative RRHS-refuter R for f over D, we simply return the output of this R′ on the simulated
examples (r′, b). Note that R takes time poly(n, T (n), a(n), s(n), ε−1) overall.

We now argue that in the “random” case of the original problem, R will output “random” with
high probability, and likewise for the “correlative” case. In the random case, the labels b are simply
sampled from the uniform distribution U , so R will output “random” with probability at least 2/3,
by the correctness of R′. In the correlative case, b is such that

Pr
x∼Dn

[b = f(x)] ≥ 1

2
+

ε

2
. (9)

5Similar ideas are employed in the work of Binnendyk et al. [Bin+22], which shows that PAC-learning with mem-
bership queries over arbitrary efficiently samplable distributions is possible under the existence of natural properties.
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We would now like to show that the above probability is not too much smaller when x is sampled
from Cn(D

′
ℓ) rather than Dn = Cn(Uℓ). Define a set

T := {(r, x) | x = Cn(r)}

and note that samples from the distribution (r, Cn(r)), for r ∼ Uℓ, belong to T with probabil-
ity 1. By the property of distributional inversion, ie. Eq. (8), samples from the distribution
(I(Cn, Cn(r)), Cn(r)) = (C ′

ℓ(r), Cn(r)), for r ∼ Uℓ, belong to the set T with probability at least
1 − ε/4. Whenever this holds, by definition of T , we have that Cn(C

′
ℓ(r)) = Cn(r). Particularly,

f(Cn(r
′)) = f(x), for r′ = C ′

ℓ(r) and x = Cn(r). Then by a union bound with Eq. (9), in the
correlative case of the original problem,

Pr
r′∼D′

ℓ

[
b = f(Cn(r

′))
]
≥ 1

2
+

ε

2
− ε

4
=

1

2
+

ε′

2
.

Thus, R will output “correlative” with probability at least 2/3, by the correctness of R′. This
completes the proof of the theorem.

4.3 Learning from MKtP

The following lemma is similar to one from [HN21], but accounts for a uniformly random string
r ∼ U3mT (n), which is essential given Lemma 29. This lemma states that in the expectation, over
an efficiently samplable distribution (along with the uniformly random string r), the Kt-complexity
of a string is close to its time-unbounded K-complexity. Note that the lemma from [HN21] holds
under the assumption that DistNP ⊆ AvgP whereas this one holds unconditionally.

Lemma 37. There exists a polynomial p1 : N×N → N such that for any T, a : N → N and n,m ∈ N,
the following holds unconditionally. Let Dn ∈ Samp[T (n)]/a(n). For every t ≥ p1(T (n),m),
X ∼ Dm

n , and r ∼ U3mT (n),

E
X,r

[Kt(X, r)− K(X, r)] ≤ a(n) +O (logm+ log T (n)) .

Proof. Let p1 be the polynomial p in Lemma 29. Note that for Dn ∈ Samp[T (n)]/a(n), we have
Dm

n ∈ Samp[m · T (n)]/a(n). For every t ≥ p1 (T (n),m), for X ∼ Dm
n and r ∼ U3mT (n),

E
X,r

[
Kt(X, r)

]
≤ E

X,r

[
Kp1(T (n),m)(X, r)

]
≤ 1

4mT (n)
· (mn+ 3mT (n) +O(logmn)) (Proposition 14)

+ E
X
[log(1/Dm

n (X))] + |r|+ a(n) +O(log(m) + log T (n)) (Lemma 29)

≤ H(Dm
n ) + |r|+ a(n) +O(log(m) + log T (n))

≤ E
X,r

[K(X) + K(r | X)] + a(n) +O(log(m) + log T (n))

≤ E
X,r

[K(X, r)] + a(n) +O(log(m) + log T (n)) , (Time-unbounded S.o.I.)

where the second last inequality uses the fact that for any distribution D, the Shannon entropy
H(D) is at most E [K(x)] for x ∼ D (see [LV19, Theorem 8.1.1]), as well as a counting argument
showing that EX,r[K(r | X)] ≥ |r| − 3.
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Rearranging the above, we get

E
X,r

[Kt(X, r)− K(X, r)] ≤ a(n) +O (logm+ log T (n))

as desired.

Theorem 38. If (MKtP,U) ∈ AvgBPP, then for any time-constructible functions s, T, a : N → N,
any ε ∈ (0, 1), and any constant ζ > 0, there is an ε-correlative RRHS-refuter for SIZE[s(n)] under
Samp[T (n)]/a(n) taking parameters n ∈ N and ε ∈ (0, 1) with sample complexity

m :=

(
s(n) + a(n) + log T (n)

ε2

)1+ζ

and running time poly
(
n, ε−1, T (n), a(n), s(n)

)
.

Proof. The proof closely follows that of [HN21, Theorem 8].

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉
, . . . ,

〈
x(m), b(m)

〉)
of samples, let X := (x(1), . . . , x(m)) and b := (b(1), . . . , b(m)). R is defined as follows.

1. Compute t := p1(T (n),m), where p1 is the polynomial from Lemma 37. Also compute
t′ := t′(p(t)), where t′ is the polynomial from Lemma 32 and p is the polynomial from
Lemma 31.

2. Sample r ∼ U3mT (n).

3. Compute

β := A
(
(X, r), 1t

)
and

β′ := A
(
(X, b, r), 1t

′
)
,

where A is the randomized algorithm from Lemma 31.

4. Output “correlative” if β′ − β ≤ θ, where θ =
(
1− ε2

16

)
m, and output “random” otherwise.

We now argue for the correctness of R. Consider any distribution Dn ∈ Samp[T (n)]/a(n).

Correlative Case (Soundness). Suppose the samples S are i.i.d. from a distribution D′ on
{0, 1}n × {0, 1} such that the marginal on {0, 1}n equals Dn, and there exists f ∈ SIZE[s(n)] such
that

Pr
⟨x(i), b(i)⟩∼D′

[
b(i) = f(x(i))

]
≥ 1

2
+

ε

2
.

Chernoff bounds imply that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ ≥ (1/2 + ε/4) ·m
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holds with probability at least 1− exp(−2m(ε/4)2) over the choice of samples S∼(D′)m, in which
case the conditions of Lemma 32 are met.

Now, suppose that in Step 3 of R, β and β′ output by the algorithm A are good approximations
in terms of Lemma 31, which happens with probability at least 1− o(1). Moreover, by Lemma 37,

E
X,r

[
Kt(X, r)− pKp(t)(X, r)

]
≤ E

X,r

[
Kt(X, r)− K(X, r)

]
(Prop. 13)

≤ a(n) +O(log(mT (n))).

Applying Markov’s inequality, with probability at least 3/4, there is a constant c such that

Kt(X, r)− pKp(t)(X, r) ≤ c · (a(n) + log(mT (n))). (10)

Thus, by a union bound, with probability at least 3/4− o(1) > 2/3 over the samples S∼(D′)m

and the internal randomness of R,

β′ − β ≤ Kt′ (X, b, r)− pKp(t)(X, r) + log p(t) (β′ and β are good approximations)

≤
(
Kt(X, r)− pKp(t)(X, r)

)
+ log p(t) + ℓs(n) +

(
1− ε2/8

)
·m (Lemma 32)

≤ m ·
(
1− ε2/8

)
+ c · (a(n) + log(mT (n))) + ℓs(n) (Eq. (10))

< θ.

For the last inequality, observe that by our choice of m = ω((s(n) + log T (n) + a(n)) · ε−2),

m > 16 ·
(
c · (a(n) + logm+ log T (n)) + ℓs(n)

ε2

)
;

re-written,

m ·
(
1− ε2/8

)
+ c · (a(n) + log(mT (n))) + ℓs(n) < m ·

(
1− ε2/16

)
= θ.

Thus, R will output “correlative”.

Random Case (Completeness). Suppose the labels bi are sampled from U . For X ∼ Dm
n ,

r ∼ U3mT (n), and b ∼ Um, we get by Lemma 37 and Markov’s inequality, that, with probability at
least 3/4 over X, r,

Kt(X, r)−K(X, r) ≤ 4(a(n) +O(logmT (n))). (11)

Since β′ and β are good estimates with high probability, we get that, with probability at least
3/4− o(1) over X, r, b and the internal randomness of A,

β′ − β ≥ pKp(t′)(X, b, r)− Kt(X, r)−O(log(mT (n))) (β′, β good w.h.p.)

≥ K(X, b, r)− Kt(X, r)−O(log(mT (n))) (Prop. 13)

≥ K(X, r) + K(b | X, r)− Kt(X, r)−O(log(mT (n))) (Lemma 15)

= m−
(
Kt(X, r)− K(X, r)

)
−O(log(mT (n))) (b ∼ Um)

≥ m− 4 (a(n) +O(log(mT (n)))) (Eq. (11))

> θ,

and hence R outputs “random”.
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4.4 Learning from Worst-case Easiness of MKTP

In this section, we show that if MKTP is easy for efficient randomized algorithms in the worst case,
then it is possible to PAC learn without white-box access to the target distribution.

The following lemma is analogous to the source-coding lemma for Kt, Lemma 29, but with some
modifications to allow for KT-compression in the case that we have many independent samples from
the distribution Dn.

Lemma 39. For some constant d ∈ N, the following holds unconditionally. For any T, a : N → N,
m,n ∈ N, distribution D ∈ Samp[T (n)]/a(n), and string X = (x(1), ..., x(m)) ∈ Supp(Dm

n ),

KT(X, r) ≤ log(1/Dm
n (X)) + |r|+ a(n) + d ·m3/4 · T (n)3

holds with probability at least 1− 1
6mT (n) over r ∼ U4mT (n).

Moreover, for any s : N → N and function f ∈ SIZE[s(n)],

KT(X, f(x(1)), ..., f(x(m)), r) ≤ log(1/Dm
n (X)) + 2ℓs(n) + |r|+ a(n) + d ·m3/4 · T (n)3

holds with probability at least 1− 1
6mT (n) over r ∼ U4mT (n).

Proof. The proof is quite similar to that of Lemma 29, with some modifications (namely, the
partitioning of [m]) to get the bound for KT-complexity. Let A be a non-uniform algorithm sampling
D ∈ Samp[T (n)]/a(n). That is, there is some α ∈ {0, 1}a(n) such that for any x ∈ supp(Dn),

Pr
w∼UT (n)

[A(w;α, 1n)] = Dn(x).

Consider any X = (x(1), ..., x(m)) ∈ Supp(Dm
n ). For N and L chosen later, we will partition

[m] into N blocks b1, ..., bN , each of size at most L. For every block bj , let sj be the largest
integer such that DL

n (x
(j1), ..., x(jL)) ≤ 2−sj , where bj = {j1, ..., jL}, and let s =

∑
j∈[N ] sj . For

each bj , consider a universal hash function family Hj = {h : {0, 1}L·T (n) → {0, 1}kj}, where
kj = L ·T (n)−sj− log(12m2T (n))−1. As in Lemma 29, we represent hash functions with Toeplitz
matrices.

For each block bj , define a set

Sj := {(w1, ..., wL) ∈ ({0, 1}T (n))L | ∀l ∈ [L], A(wl;α, 1
n) = x(jl)},

where jl denotes the lth element of bj . For each j ∈ [N ], define a random variable Xj := |Sj ∩
h−1(0kj )|, where h ∼ Hj . Arguing as in Lemma 29,

Pr[Xj = 0] ≤ 1

12m2T (n)
.

Now, for each j ∈ [N ], define a random variable Yj = |h−1(0kj )|, where h ∼ Hj . Arguing as in
Lemma 29,

Pr[Yj ≥ 2sj+2 log(12m2T (n))+1] ≤ 1

12m2T (n)
.

By a union bound, with probability at least 1− 1/6mT (n), we have that for every j ∈ [N ], Xj ̸= 0

and Yj < 2sj+2 log(12m2T (n))+1.
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Assume the above holds. It is possible to obtain any bit of a substring x(i) of X, for i in
some block bj , from the description of the hash function h sampled from Hj , the index of a string
(w1, ..., wL) ∈ Sj in the set h−1(0kj ), and the advice string α used in the sampler A. In particular,
x(i) may be recovered by performing Gaussian elimination to compute the set h−1(0kj ) from the
description of h, locating wl in this set such that i is the lth element of bj , and then returning the
desired bit of A(wl;α, 1

n) = x(i). Given h, this requires at most log Yj ≤ sj + 2 log(12m2T (n)) + 1
bits to describe the position of (w1, ..., wL) in h−1(0kj ) and |α| = a(n) bits to run the sampler
A. Define the “random” string rj ∈ {0, 1}3L·T (n) as the description of h ∼ Hj . So, a description
working for any block (and therefore any bit of X) is of length∑

j∈[N ]

[
sj + 2 log(12m2T (n)) + 1

]
+ a(n) ≤ s+N · (2 log(12m2T (n)) + 1) + a(n)

given randomness r = (r1, ..., rN ) of length 3L ·N ·T (n). The amount of time required is dominated
by the Gaussian elimination step, at most O((L · T (n))3).

To obtain some bit f(x(i)), one may apply the above procedure to obtain x(i) and then apply
an ℓs(n)-bit description of a circuit computing f , taking additional time at most ℓs(n).

Overall, with probability at least 1− 1/6mT (n) over r, we have that

KT(X, r) ≤ s+ |r|+ a(n) +N ·O(log(mT (n))) +O((L · T (n))3)

and

KT(X, f(x(1)), ..., f(x(m)), r) ≤ s+ |r|+ 2ℓs(n) + a(n) +N ·O(log(mT (n))) +O((L · T (n))3).

The lemma follows by setting L = m1/4 and N = ⌈m3/4⌉.

The following lemma is analogous to Lemma 37, showing that KT and K complexities are
somewhat close in the expectation over efficiently sampled strings.

Lemma 40. For any T, a : N → N, n,m ∈ N, Dn ∈ Samp[T (n)]/a(n), X ∼ Dm
n , b ∼ Um, and

r ∼ U4mT (n),

E
X,b,r

[KT(X, b, r)− K(X, b, r)] ≤ a(n) + 2d ·m3/4 · T (n)3,

where d is the constant from Lemma 39.
Moreover, for any function f ∈ SIZE[s(n)],

E
X,r

[KT(X, f(x(1)), ..., f(x(1)), r)−K(X, f(x(1)), ..., f(x(1)), r)]

≤ a(n) + 2ℓs(n) + 2d ·m3/4 · T (n)3.
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Proof. The proof closely follows that of Lemma 37.

E
X,b,r

[KT(X, b, r)] ≤ E
X,r

[KT(X, r)] + |b|+ logm

≤ 1

6mT (n)
· (mn+ 4mT (n) +m+O(logmn))

+ E
X
[log(1/Dm

n (X))] + |r|+ a(n) + d ·m3/4 · T (n)3 + |b|+ logm (Lemma 39)

≤ H(Dm
n ) + |r|+ a(n) + d ·m3/4 · T (n)3 + |b|+O(logm)

≤ E
X,b,r

[K(X) + K(b | X) + K(r | b,X)] + a(n) + d ·m3/4 · T (n)3 +O(logm)

≤ E
X,b,r

[K(X, b, r)] + a(n) + 2d ·m3/4 · T (n)3. (Time-unbounded S.o.I.)

Rearranging the above, we get

E
X,b,r

[KT(X, b, r)− K(X, b, r)] ≤ a(n) + 2d ·m3/4 · T (n)3

as desired.
The proof of the “moreover” part of the lemma is very similar. It follows by applying the

“moreover” part of Lemma 39 in the second line, and in the last line using the simple fact that
K(X, r) ≤ K(X, f(x(1)), ..., f(x(1)), r).

Theorem 41. If MKTP ∈ BPP, then for any time-constructible functions s, T, a : N → N, and
any ε ∈ (0, 1), there is an ε-correlative RRHS-refuter for SIZE[s(n)] under Samp[T (n)]/a(n) taking
parameters n ∈ N and ε ∈ (0, 1) with sample complexity

m :=

(
s(n) + a(n) + T (n)12

ε8

)12

and running time poly
(
n, ε−1, T (n), a(n), s(n)

)
.

Proof. Let A0 be the assumed randomized algorithm for MKTP, and let A be the randomized
poly-time “search” algorithm that on input y runs A0(y, 1

s) for s = 1, ..., |y| + log |y| and outputs
the smallest s on which A accepts. It is not hard to see, using standard techniques, that A can be
made to correctly compute KT(y) with probability 1− 2−|y|.

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉
, . . . ,

〈
x(m), b(m)

〉)
of samples, let

k :=

(
s(n) + a(n) + T (n)12

ε8

)2

.

Partition the m = k6 samples S into k5 sets, each containing k samples. Denote these sets Si, for
i ∈ [k]. Then partition each Si into two equally sized sets,

S0
i =

(〈
x
(1)
i , b

(1)
i

〉
, . . . ,

〈
x
(k/2)
i , b

(k/2)
i

〉)
and S1

i =
(〈

x
(k/2+1)
i , b

(k/2+1)
i

〉
, . . . ,

〈
x
(k)
i , b

(k)
i

〉)
.
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Let Zi := (x
(1)
i , ..., x

(k/2)
i ), Xi := (x

(k/2+1)
i , . . . , x

(k)
i ) and bi := (b

(k/2+1)
i , . . . , b

(k)
i ).

R is defined as follows. We repeat the following k5 times: once on each set of samples Si. For
simplicity, we omit the subscripts i: denote (⟨x(1), b(1)⟩, . . . , ⟨x(k), b(k)⟩) := Si, Z := Zi, X := Xi,
and b := bi.

1. Sample r ∼ U2kT (n).

2. Sample u ∼ Uk/2, and using the first half of the samples Z, compute

γi := A(Z, u, r).

3. Using the second half of the samples X along with their given labels b, compute

βi := A (X, b, r) .

4. Let wi = γi − βi.

5. At the end, after k5 repetitions of the above, take the sum

w =
∑
i∈[k5]

wi.

Let d be the constant from Lemma 39. Output “correlative” if w ≥ k5 · θ, where θ =
2 ·

(
a(n) + 4d · k3/4 · T (n)3

)
, and output “random” otherwise.

We begin by showing that the expected value of γi is roughly H(D
k/2
n ) + k/2 + |r|. On one

hand, we have

E
Z,u,r,A

[γi] ≤ E
Z,u,r

[KT(Z, u, r)] +O(1) (definition of A)

≤ E[K(Z, u, r)] + a(n) + 2d · k3/4 · T (n)3 +O(1) (Lemma 40)

≤
(
H(Dk/2

n ) + k/2 + |r|
)
+ a(n) + 3d · k3/4 · T (n)3, (12)

where the last line follows by a counting argument and the fact that E[K(Z)] ≤ H(D
k/2
n ).

On the other hand,

E
Z,u,r,A

[γi] ≥ E
Z,u,r

[KT(Z, u, r)]−O(1) (definition of A)

≥ E[K(Z, u, r)]−O(1)

≥ E[K(Z) + K(u | Z) + K(r | Z, u)]−O(log(kn)) (symmetry of information)

≥
(
H(Dk/2

n ) + k/2 + |r|
)
−O(log(kn)), (13)

where in the last line we use that E[K(Z)] ≥ H(D
k/2
n )−O(log(kn)) [LV19, Theorem 8.1.1].
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Correlative Case (Soundness). Suppose the samples S are i.i.d. from a distribution D′ on
{0, 1}n × {0, 1} such that the marginal on {0, 1}n equals Dn, and there exists f ∈ SIZE[s(n)] such
that

Pr
⟨x(j), b(j)⟩∼D′

[
b(j) = f(x(j))

]
≥ 1

2
+

ε

2
.

Chernoff bounds imply that∣∣∣{j ∈ {k/2 + 1, ..., k} | bi = f(x(j))}
∣∣∣ ≥ (1/2 + ε/4) · k/2

holds with probability at least 1 − exp(−k(ε/4)2/8) over the choice of samples S1
i , in which case

the conditions of Lemma 34 are met. Then,

E
X,b,r,A

[βi] ≤ E
X,b,r

[KT(X, b, r)] +O(1)

≤ E[KT(X, f(x(k/2+1)), ..., f(x(k)), r)] + (1− ε2/8) · k/2 + 2k3/4 (Lemma 34)

≤ E[K(X, f(x(k/2+1)), ..., f(x(k)), r)] + (1− ε2/8) · k/2 + a(n) + 2ℓs(n) + 3d · k3/4 · T (n)3

≤ H(Dk/2
n ) + (1− ε2/8) · k/2 + |r|+ a(n) + 3ℓs(n) + 3d · k3/4 · T (n)3,

where the second-last line uses Lemma 40, and the last line uses the observation that

K(f(x(k/2+1)), ..., f(x(k)) | X) ≤ ℓs(n).

Combining the above with Eq. (13), we have

E[γi − βi] ≥
ε2

16
· k −

(
a(n) + 3ℓs(n) +O(k3/4T (n)3)

)
≥ 2θ,

by our choices of k and θ.
After k5 trials of the above, we have E[w] ≥ 2k5θ. By Hoeffding’s inequality, with probability

at least 1− 2−k, it holds that |2k5θ − w| ≤ k5θ, and so

w ≥ k5θ,

in which case R will output “correlative”.

Random Case (Completeness). Suppose the labels bj are sampled from U . Arguing as in
Eq. (13),

E
X,b,r,A

[βi] ≥
(
H(Dk/2

n ) + k/2 + |r|
)
−O(log(kn)).

Combining the above with Eq. (12),

E[γi − βi] ≤ a(n) + 4d · k3/4 · T (n)3

= θ/2.

After k5 trials of the above, we have E[w] ≤ k5θ/2. By Hoeffding’s inequality, with probability at
least 1− 2−k, it holds that |k5θ/2− w| < k5θ/2, and so

w < k5θ,

in which case R will output “random”.
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5 Open questions

We showed that “natural propeties” for more expressive Kolmogorov-complexity relatives of MCSP
such asMKTP andMKtP allow one to cross the divide between learning algorithms with membership
queries and those without. An obvious disadvantage of relying on more expressive Kolmogorov
measures rather than MCSP is that it is difficult to get meaningful circuit class restrictions when
talking about MKTP or MKtP, and utilize the known circuit lower bound proofs for these restricted
circuit classes in order to derive a learning algorithm. Can one use our understanding of AC0[2]
circuit lower bounds (e.g., the known natural property for AC0[2]) to get an RRHS-refuter for
AC0[2] on uniform distribution? This question is also very interesting from the point of view of
cryptography in the context of efficient constructions of weak PRFs; see, e.g., [Bon+18] for more
discussion on this direction.

Another question is whether it is possible to bridge the gap between the assumptions used in our
two main theorems. More precisely, is it possible to get an agnostic PAC learning algorithm over
any not necessarily explicitly given polysize samplable distribution ensemble D from a one-sided
average-case heuristic for MKTP rather than MKtP?

Acknowledgements. We thank Shuichi Hirahara, Russell Impagliazzo, Zhenjian Lu, and Igor
Oliveira for helpful discussions.
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