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Abstract

We study the advantages of quantum communication models over classical communication
models that are equipped with a limited number of qubits of entanglement. In this direction, we
give explicit partial functions on n bits for which reducing the entanglement increases the clas-
sical communication complexity exponentially. Our separations are as follows. For every k ≥ 1:

Q‖∗ versus R2∗: We show that quantum simultaneous protocols with Θ̃(k5 log3 n) qubits
of entanglement can exponentially outperform two-way randomized protocols with O(k) qubits
of entanglement. This resolves an open problem from [Gav08] and improves the state-of-the-art
separations between quantum simultaneous protocols with entanglement and two-way random-
ized protocols without entanglement [Gav19, GRT22].

R‖∗ versus Q‖∗: We show that classical simultaneous protocols with Θ̃(k log n) qubits of
entanglement can exponentially outperform quantum simultaneous protocols with O(k) qubits
of entanglement, resolving an open question from [GKRW06, Gav19]. The best result prior to
our work was a relational separation against protocols without entanglement [GKRW06].

R‖∗ versus R1∗: We show that classical simultaneous protocols with Θ̃(k log n) qubits of
entanglement can exponentially outperform randomized one-way protocols with O(k) qubits of
entanglement. Prior to our work, only a relational separation was known [Gav08].

1 Introduction

One of the central goals in complexity theory is to understand the power of different computational
resources. In the past four decades, communication complexity has provided a successful toolbox to
establish various results in different areas of research in theoretical computer science such as circuit
complexity [KW90, KRW95], streaming algorithms [KKS14], property testing [BBM12], extension
complexity [FMP+15], data structures [MNSW95], proof complexity [HN12]. In the standard two-
player model of communication complexity introduced by Yao [Yao79] there are two parties Alice
and Bob whose goal is to compute a partial function F : X ×Y → {−1, 1, ?}. Alice receives x ∈ X
(unknown to Bob) and Bob receives y ∈ Y (unknown to Alice) and their goal is to compute F (x, y)
for all (x, y) ∈ F−1(1)∪F−1(−1), while minimizing the amount of communication. In this setting,
there are three models of communication in increasing order of strength:

(i) Simultaneous message passing (SMP) model: Alice and Bob send a message to a referee
Charlie, whose goal is to output F (x, y).

(ii) One-way model: Alice sends a message to Bob, whose goal is to output F (x, y).

(iii) Two-way model: Alice and Bob can exchange several rounds of messages and their goal is to
output F (x, y).
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In all these models, the complexity of the protocol is the total number of bits used to describe
the message. It is not hard to see that the communication complexity in model (i) is at least the
complexity in model (ii) which in turn is at least the complexity in model (iii).

One variant of these models is when the players are allowed to use quantum resources, for
instance, the players could send quantum messages or share entanglement. Over the past two
decades, several works have established the advantage of quantum over classical communication
complexity in various settings. In a sequence of works [BCW98, BCWW01, Raz99, GKRW06,
GKK+07, KR11, Gav20], it has been shown that quantum communication can exponentially out-
perform classical communication. In particular, a few works [Gav09, Gav19, GRT22] have demon-
strated communication tasks that are easy to solve in the SMP model if the players share entan-
glement, however, every interactive randomized protocol without entanglement has exponentially
larger cost. This leads to a natural and fundamental question (which has been asked many times
before [JKN07, CH19, Shi05, Gav08]): How much entanglement do quantum protocols really need?
Given any small-cost quantum protocol, can we simulate it by a small-cost quantum protocol that
uses only a small amount of entanglement? Answering this question is one of the central questions
in quantum communication complexity; in fact giving any upper bound on the number of qubits
in a potentially helpful shared state has been open for decades.

A similar question of how much shared randomness is necessary in classical communication
complexity is well understood. In a famous result, Newman [New91] showed that to solve com-
munication tasks on n-bit inputs, with an additive overhead of O(log n) bits in communication
one can assume that the players only have private randomness. Jain et al. [JRS05] showed that
blackbox arguments similar to the one in [New91] cannot be used to reduce the entanglement in a
quantum protocol. Motivated by the question of how much entanglement protocols need, we study
a fine-grained variant of this question, which will be the topic of this work.

Can we reduce the entanglement in a quantum communication protocol from k qubits to
k/ log n qubits using a classical protocol of only polynomially larger cost?

In this direction, Shi [Shi05] showed that we can remove any amount of entanglement using a clas-
sical communication protocol of exponentially larger cost. Subsequently, [Gav08, JKN07] showed
that this exponential blowup is inevitable, in particular they constructed a relational problem for
which we cannot reduce the entanglement with just a polynomial overhead using one-way commu-
nication alone. Their works left open the question of reducing entanglement in a quantum protocol
computing a partial function, using two-way classical communication between the players.1

1.1 Main Result

In this work, we provide a strong negative answer to this question. We give partial functions for
which, reducing the entanglement by even a logarithmic factor, increases the communication cost
by an exponential factor. To discuss our results, we set up some notation first. Let R‖∗ (resp. Q‖∗)
denote the SMP communication model where Alice and Bob share entanglement and send classical
(resp. quantum) messages to the referee. Let R1∗,R2∗ be the one-way and two-way models of
classical communication where Alice and Bob share entanglement. The models R1 and R2 are
similarly defined with the difference being that Alice and Bob don’t share entanglement. The

1Relational separations are known as the “weakest” form of separations between communication models. A partial
function separation immediately implies a relational separation, however, the converse is false [GKdW06].
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model Q‖pub is also defined similarly to Q‖∗ but without entanglement, additionally, the players
are allowed public randomness. We first summarize our results informally below. All these results
hold for every k ≥ 1 which is any parameter that is allowed to depend on n.

Our first result shows that for simultaneous quantum protocols, more entanglement cannot be
simulated by two-way classical communication with less entanglement (and a polynomial overhead).

Result 1. There is a partial function on Õ(kn) bits that can be computed in Q‖∗ with Õ(k5 log3 n)
qubits of communication and entanglement, but if the players only share O(k) qubits of entangle-
ment, requires Ω(n1/4) bits of communication in the R2 ∗ model.

There are two ways to view this result: (i) It shows that in the rather weak quantum SMP
model, reducing the entanglement by a polylogarithmic factor increases the classical communi-
cation by an exponential factor, even if Alice and Bob are allowed to interact. This answers
an open question in [Gav08]. (ii) This result can also be viewed in the context of quantum
versus classical separations in communication complexity. As we mentioned earlier, numerous
works [BCW98, Raz99, GKK+07, KR11, Gav20] have shown that quantum provides exponential
savings for partial functions in various settings. The state-of-the-art separations between quantum
and classical communication complexity for partial functions are due to [Gav19, GRT22]; they show
separations between Q‖∗ and R2. One drawback of the aforementioned works, in the context of our
work, is that the lower bound can only be made to work for protocols where Alice and Bob share
� log n qubits of entanglement. We improve upon this by showing separations between Q‖∗ (with
more entanglement) and R2∗ (with less entanglement). Our result can thus be seen as the current
best-known separation between quantum and classical communication complexity for partial func-
tions. In particular, we give a lower bound technique against R2∗ protocols with O(logc n) qubits
of entanglement for every c ∈ N. To the best of our knowledge, there were no known lower bound
techniques that distinguished R2∗ (with more entanglement) and R2∗ (with less entanglement) once
the number of qubits of entanglement is � log n, even for relational problems.

Our second result shows that for SMP protocols where the players share entanglement but only
send classical messages, entanglement cannot be reduced even by quantum simultaneous protocols
or by one-way classical protocols (with a polynomial overhead).

Result 2. There is a partial function on Õ(kn) bits that can be computed in R‖∗ using Õ(k log n) bits
of communication and Õ(k log n) qubits of entanglement, but if the players share O(k) qubits
of entanglement, requires Ω(n1/3) qubits of communication in the Q‖∗ model and Ω(

√
n) bits in

the R1∗ model.

We remark that the trade-offs obtained in this result are more fine-grained in comparison to
Result 1, i.e., our separations hold even if we reduce the entanglement by a O(log n)-factor. Prior
to our work, the best known separation between R‖∗ (with more entanglement) and Q‖∗ (with
less entanglement) was a relational separation between R‖∗ and Q‖pub [GKRW06]. Their work left
open two questions: (i) Does there exist a partial function separating R‖∗ and Q‖pub? The weaker
question of showing a functional separation between Q‖∗ and Q‖pub was also open and recently
asked by [Gav19]. (ii) Is there a relational separation between Q‖∗ (with more entanglement)
and Q‖∗ (with less entanglement)? Our result answers both these questions. Firstly, we prove
separations for partial functions improving upon the relational separations; secondly, we also show
lower bounds for Q‖∗ with limited entanglement. With regards to separations between R‖∗ (with
more entanglement) and R1∗ (with less entanglement), prior to our work these were established
in [Gav08, JKN07], again for relational problems. Gavinsky [Gav08] left open the question of
showing a similar separation for partial functions and our work resolves this.
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In the next two sections, we discuss the problems witnessing these separations followed by the
proof sketches. Our first result is based on the Forrelation problem and the second result is based
on the Boolean Hidden Matching problem.

1.2 Result 1: Separations based on the Forrelation problem

1.2.1 Problem Definition: The Forrelation Problem

The Forrelation problem was first introduced by Aaronson in the context of query complex-
ity [Aar10] and subsequently has been studied again in the context of separating quantum and classi-
cal computation [RT22, AA15]. Variants of the Forrelation problem have been used to show various
quantum versus classical separations in communication complexity [GRT22, BS21, SSW21, GRZ21].
The state-of-the-art separations for quantum versus classical communication complexity of partial
functions are between Q‖∗ and R2; one such separation is due to [GRT22] and is based on the
Forrelation problem, which we define now.

Definition 1.1 (Forrelation Function). Let n ∈ N, n ≥ 2 be a power of two. Let Hn be the (unitary)
n× n Hadamard matrix. For z1, z2 ∈ {−1, 1}n/2, define the forrelation function as

forr(z1, z2) =
1

n
〈z2, Hn(z1)〉.

Let ε ∈ (0, 1] be a parameter. We typically set ε = Θ
(

1
logn

)
if it is not specified. We are

interested in the communication complexity version of the Forrelation problem defined below.

Definition 1.2 (The Forrelation Problem). In the Forrelation problem, Alice is given x ∈ {−1, 1}n,
Bob is given y ∈ {−1, 1}n. Their goal is to compute forr(x, y) given by

forr(x, y) =

{
−1 forr(x� y) ≥ ε/4
1 forr(x� y) ≤ ε/8.

Here, � denotes the pointwise product. Let k ∈ N be a parameter satisfying k = o(n1/50). We
are interested in the XOR of k copies of the Forrelation problem. This problem was first studied
in [GRZ21] in the context of XOR lemmas.

Definition 1.3 (⊕k-Forrelation Problem). This problem is the XOR of k independent instances of
the Forrelation problem where ε = 1

60k2 lnn
. To be precise, Alice and Bob receive x = (x(1), . . . , x(k))

and y = (y(1), . . . , y(n)) where x(i), y(i) ∈ {−1, 1}n for all i ∈ [k], and they need to compute

forr(⊕k)(x, y) =
k∏
i=1

forr
(
x(i), y(i)

)
.

1.2.2 Main Theorem

We now state our main theorem. For n ∈ N, let k ∈ N be a parameter satisfying k = o(n1/50).

Theorem 1.1. The ⊕k-Forrelation problem can be solved with Õ(k5 log3 n) qubits of communication
in the Q‖∗ model if Alice and Bob share Θ̃(k5 log3 n) EPR pairs. However, if they share O(k) qubits
of entanglement, then this problem requires Ω(n1/4) bits of communication even in the R2∗ model.
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We make a few remarks. First, the upper bound holds provided Alice and Bob share Θ̃(k5 log3 n)
EPR pairs, however, the lower bound holds for all possible entangled states on O(k) qubits, not
necessarily EPR pairs. See Section 2.2 for a formal description of the models and EPR pairs.
Second, although Theorem 1.1 is stated for bounded-error models, our lower bound also holds for
protocols with advantage 2−o(k). To prove our lower bound, our main technical contribution is to
show a Fourier growth bound for R2∗ protocols with limited entanglement.2 In the following lemma,
O`(t) is a shorthand notation for O(t · 2O(`)).

Lemma 1.1. Let C : {−1, 1}n×{−1, 1}n → [−1, 1] be an R2∗ protocol of cost c where Alice and Bob
share an entangled state on at most 2d qubits for some parameter d ∈ N. Let H be the XOR-fiber
of C as in Definition 2.2. Then, for all ` ∈ N, we have

L1,`(H) ,
∑
|S|=`

∣∣∣Ĥ(S)
∣∣∣ ≤ 25d ·O`(c`).

We also study lower bounds for the Forrelation problem in the quantum SMP model. Prior to
our work, there was no partial function separating Q‖∗ with more entanglement and Q‖∗ with less
entanglement. In particular, it was unknown whether the Forrelation problem can be solved in the
Q‖pub model with small cost and no entanglement. Our result shows that this is not the case, and
that the Forrelation problem separates Q‖∗ from Q‖pub, resolving an open problem from [Gav19].

Theorem 1.2. The Forrelation problem requires Ω(n1/4) qubits of communication in the Q‖pub model.

This is also proved using a Fourier growth bound.

Lemma 1.2. Let C : {−1, 1}n × {−1, 1}n → [−1, 1] be a Q‖pub protocol of cost c and let H be its
XOR-fiber as in Definition 2.2. Then, for all ` ∈ N, we have

L1,`(H) ≤ O`
(
c`
)
.

We remark that our techniques also implies that for the ⊕k-Forrelation problem, if Alice and
Bob only share O(k) EPR pairs, they require Ω(n1/4) qubits of communication in the Q‖∗ model.
We don’t show the details of this proof, instead, we prove a stronger result, namely Theorem 1.3.
We give an example of a partial function such that with Θ(k log n) EPR pairs, it is solvable in
the R‖∗ model with cost O(k log n), however, with only O(k) qubits of entanglement requires cost
Ω(n1/3) even in the Q‖∗ model.

1.3 Result 2: Separations based on Boolean Hidden Matching

1.3.1 Problem Definition: The Boolean Hidden Matching Problem

We first define the Boolean Hidden Hatching problem. The (relational) Hidden Matching problem
was first defined by Bar Yossef et al. [BJK08]. The Boolean Hidden Matching problem was defined
by Gavinsky et al. [GKK+07] in the context of one-way communication complexity and was used
to separate the R‖∗ and R1 models. Subsequently this problem and its variants have found sev-
eral applications, especially in proving streaming lower bounds starting with the seminal work of
Kapralov et al. [KKS14]. The Boolean Hidden Matching problem, denoted BHMm,n, is defined as
follows. Let n,m ∈ N be parameters and m = αn for a small enough constant α� 1.

2For the introduction, we will loosely say “Fourier growth of communication protocols”, when strictly speaking,
we are referring to Fourier growth of XOR-fibers and other functions associated with communication protocols.
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Definition 1.4 (Boolean Hidden Matching). Alice gets x ∈ {−1, 1}n, Bob gets a matching on [n]
with m edges and a string y ∈ {−1, 1}m. Their goal is to compute BHMm,n(x, y,M) given by

BHMm,n(x, y,M) =

{
−1 if Mx = y

1 if Mx = y.

Here, we use Mx ∈ {−1, 1}m to denote the vector whose k-th coordinate is xik ·xjk for k ∈ [m],
where the edges of M are (i1, j1), . . . , (im, jm) ∈ [n]2. We also use y to denote −y. Below we will
be concerned with computing the XOR of k independent copies of BHMm,n.

Definition 1.5 (⊕k-Boolean Hidden Matching Problem). This problem is the XOR of k inde-
pendent instances of the Boolean Hidden Matching problem. To be precise, Alice receives x =
(x(1), . . . , x(k)) and Bob receives y = (y(1), . . . , y(k)) and M1, . . . ,Mk where x(i) ∈ {−1, 1}n, y(i) ∈
{−1, 1}m and Mi is a matching on [n] with m edges for all i ∈ [k]. They need to compute

BHM(⊕k)
m,n (x, y) =

k∏
i=1

BHMm,n

(
x(i), y(i),Mi

)
.

1.3.2 Main Theorem

We now state our main theorem. Here, α� 1 is some absolute constant and k ∈ N is a parameter,
possibly depending on n ∈ N.

Theorem 1.3. The ⊕k-Boolean Hidden Matching problem can be solved with Õ(k log n) bits of
communication in the R‖∗ model if Alice and Bob share Θ̃(k log n) EPR pairs. However, if Alice
and Bob only share O(k) qubits of entanglement, then this problem requires

• Ω(k
√
n) bits of communication in the R1∗ model,

• Ω(kn1/3) qubits of communication in the Q‖∗ model.

Similar to the discussion below Theorem 1.1, our upper bound holds provided Alice and Bob
share Θ̃(k log n) EPR pairs, however, the lower bound holds for all possible entangled states on
O(k) qubits, and our lower bound also holds for protocols even with advantage 2−o(k). The main
technical contribution of this part is to argue that R1 and Q‖pub protocols satisfy an XOR lemma
with respect to computing the Boolean Hidden Matching problem.

XOR Lemmas. XOR lemmas study the relation between the computational resources of F
and the k-fold XOR of F on k independent inputs. In particular, XOR lemmas for communication
complexity are of the following format: If cost-t protocols have advantage at most 2/3 in computing
F , then cost-o(tk) protocols have advantage at most 2−Θ(k) in computing the k-fold XOR of F . XOR
lemmas provide a framework to construct hard objects in a black-box way and have applications to
several areas in theoretical computer science such as one-way functions, pseudorandom generators
and streaming algorithms. We prove an XOR lemma for R1 and Q‖pub protocols with respect to
computing the Boolean Hidden Matching problem.

Lemma 1.3. Let C be any Q‖pub protocol of cost c. Then its advantage in computing the ⊕k-

Boolean Hidden Matching problem is at most Ok

(
(c/k)3

n

)k/2
+Ok(n

−k/2).

6



Lemma 1.4. Let C be any R1 protocol of cost c. Then its advantage in computing the ⊕k-Boolean

Hidden Matching problem is at most Ok

(
(c/k)2

n

)k/2
+Ok(n

−k/2).

Until very recently [Yu22], we didn’t have an XOR lemma for R1 and as far as we are aware
we do not have any XOR lemmas for the quantum communication model. However we do have
direct product and direct sum theorems for classical and quantum communication models (which are
strictly weaker than XOR lemmas) and in fact this was used in the prior work of [GKRW06, JKN07].
Our main technical contribution here is an XOR lemma for R1 and Q‖pub protocols for the Boolean
Hidden Matching problem. Only during completion of this project, we were made aware of a
recent work by Yu [Yu22] proving an XOR lemma for all constant round classical protocols (hence
implying Lemma 1.4). Given the technicality of his proof, in our paper we present a simple proof
for an XOR lemma for the R1 model for the Boolean Hidden Matching problem.

1.4 Proof Sketch

One of the difficulties of proving lower bounds against classical models equipped with entanglement
is that these models are quite powerful; using the quantum teleportation protocol, any quantum
protocol with q qubits of communication can be classically simulated using q EPR pairs. Thus, all
known partial functions that separate quantum and classical communication complexity are easy
to classically simulate in the presence of O(logc n) EPR pairs for some small constant c > 0.

One approach to show a fine-grained separation between protocols with more entanglement
and protocols with less entanglement is the following. Consider any communication task F that
exhibits an exponential separation between quantum and classical communication complexity. We
have many examples of such tasks that are easy with O(log n) EPR pairs but exponentially harder in
the absence of entanglement. Consider the problem of solving k independent and parallel instances
of F . Here, the players receive k pairs of inputs (xi, yi) and need to compute F (xi, yi) for every
i ∈ [k]. We denote this problem by F (k). The hope is that entanglement obeys a direct sum theorem
of sorts, that is, if the players need at least Ω(log n) qubits of entanglement to solve the original
task, then to solve k independent and parallel instances, they need at least Ω(k log n) qubits of
entanglement. In particular, we might hope that protocols that compute F (k) using only O(k)
qubits of entanglement require exponentially larger cost. There is a way to make this idea work
and this was done in [Gav08]. We describe this idea. Assume by contradiction that we have a
small-cost protocol computing F (k) using only O(k) qubits of entanglement.

Step 1: Remove entanglement. The first step is to remove all entanglement from this
protocol. To do this, we replace the entangled state on O(k) qubits by the maximally mixed state
on O(k) qubits. Since the maximally mixed state is unentangled, the resulting protocol effectively
uses no entanglement. Furthermore, the mixed state can be viewed as a probability distribution
over states, where the original entangled state occurs with probability 2−Θ(k). It follows that this
protocol succeeds with probability at least 2−Θ(k).

Step 2: Direct Product Theorems. The second step is to prove a direct product theorem
in the absence of entanglement. Direct product theorems in communication complexity are of the
following form: If for cost-t protocols, the probability of solving one instance of F is at most 2/3,
then for cost-o(tk) protocols, the probability of solving k parallel and independent instances of F
is at most 2−Θ(k). Establishing such theorems is highly non-trivial and for one-way protocols, this
was done by [Gav08, JKN07].

Following this framework, the work of [Gav08] gives examples of relational problems that are
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easy to solve with Θ(k log n) EPR pairs but difficult with only O(k) EPR pairs. One drawback
of this approach is that the task F (k) has many output bits, regardless of whether F is a partial
function or a relational problem. To get separations for functions with single-bit outputs, we need
to modify this approach. We ask the players to solve the XOR of k independent instances of F .
Here, the players receive k pairs of inputs (xi, yi) and they need to compute

∏
i∈[k] F (xi, yi). We

denote this problem by F (⊕k). We will show that there is no small-cost protocol solving F (⊕k) using
only O(k) qubits of entanglement. To do this, we assume by contradiction that there exists such a
protocol.

Step 1: Remove entanglement. We produce a small-cost protocol for F (⊕k) that uses no
entanglement and has success probability at least 1/2+2−Θ(k), i.e., the advantage is at least 2−Θ(k).

Step 2: XOR Lemmas. We establish an XOR lemma for protocols without entanglement.
We show that if for cost-t protocols, the probability of solving one instance is at most 2/3, then
for cost-o(tk) protocols, the probability of solving the XOR of k independent instances is at most
1/2 + 2−Θ(k), i.e., the advantage is at most 2−Θ(k).

Together, this would establish the desired result. We now discuss some of the difficulties in
executing these steps and present our solutions. We first present the details of step 2 and then step
1.

Details of Step 2. One difficulty with step 2 is that XOR lemmas are stronger than direct
product theorems and are thus harder to establish. In this work, we present XOR lemmas that are
tailored for particular functions. The functions we will be interested in are the Forrelation problem
and the Boolean Hidden Matching problem. For the former problem, XOR lemmas for R2 protocols
were established in [GRZ21]. For the Boolean Hidden Matching problem, we show an XOR lemma
for the R1 and Q‖pub models (Lemma 1.4 and Lemma 1.3). We now describe this part in more
detail.

Let F be the Boolean Hidden Matching problem. One central ingredient in our XOR lemmas
for F is the construction of hard distributions. The result of [GKK+07] shows hard distributions
Y and N on the yes and no instances of F respectively, such that no small-cost protocol can

distinguish these distributions with 1/3 advantage. We produce hard distributions µ
(k)
−1 and µ

(k)
1 for

the F (⊕k) problem such that no small-cost protocol can distinguish them with advantage 2−Θ(k).
To get bounds of the form 2−Θ(k), it turns out that our distributions need to agree on moments of
size at most Θ(k). Motivated by this, we define the following distributions.

µ
(k)
1 :=

1

2k−1

∑
K⊆[k]
|K| is even

YKNK and µ
(k)
−1 :=

1

2k−1

∑
K⊆[k]
|K| is odd

YKNK ,

Here, YKNK is a product of k independent distributions, where the i-th distribution is Y if i ∈ K
and is N . We show that the distributions µ

(k)
1 and µ

(k)
−1 are indeed distributions on the no and

yes instances respectively of the F (⊕k) problem, furthermore, they agree on all moments of size at
most k. To complete the argument, we need to show that small-cost protocols cannot distinguish
these distributions with more than 2−Θ(k) advantage. This is fairly technical and involves the use
of Fourier analysis. For R1 protocols, the k = 1 version of this was proved in [GKK+07]. Their
work in particular makes use of the level-k inequality. We build on their work for R1 protocols and
prove the desired XOR lemma for larger k (Lemma 1.4). For Q‖pub protocols, we are not aware of
any works that study the communication complexity of F or that analyze the Fourier spectrum of
such protocols, which is a contribution in this paper. In particular we prove Fourier growth bounds
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for Q‖pub protocols (Lemma 1.2) as well as an XOR lemma for the Boolean Hidden Matching
problem (Lemma 1.3). For these, we make use of a matrix version of the level-k inequality [BRW08].

Details of Step 1. One difficulty with step 1 is that the trick of replacing an entangled state
by the maximally mixed state no longer works. It is possible for a protocol to be correct when
using a particular entangled state, but wrong for every orthogonal state. In this case, executing the
protocol on the maximally mixed state would bias the output towards the wrong answer. Thus,
carrying out step 1 is non-trivial and in particular, difficult to do for R2∗ protocols. We take an
alternate approach for R2∗ protocols to sidestep this difficulty, which we will describe later. We
are able to carry out step 1 for R1∗ and Q‖∗ protocols (Lemma 5.2 and Lemma 5.1). Given a cost
c protocol for a function in the R1∗ model or Q‖∗ model using at most 2d qubits of entanglement,
we produce a cost c + O(d) protocol in the R1 or Q‖ model3 respectively; these protocols use no
entanglement and have advantage 2−Θ(d). We now give an illustrative example of this simulation.

Consider a simple Q‖∗ protocol where the entangled state consists of d EPR pairs and Alice
and Bob apply a unitary operator to their part of the entangled state and send all their qubits to
Charlie. If Alice’s and Bob’s unitary operators map |i〉 to |ui(x)〉 and |vi(y)〉 respectively, then the
state received by the referee is the pure state

∑
i∈{−1,1}d |ui(x)〉 |vi(y)〉 (ignoring the normalization).

We now construct a Q‖ protocol that produces the same state with probability 2−Θ(d), furthermore,
Charlie is able to detect when this state was successfully produced. We have Alice and Bob send
the pure states

∑
i |i〉 |ui(x)〉 and

∑
j |j〉 |vj(y)〉 respectively to Charlie. Charlie first projects onto

states such that i = j and obtains the pure state
∑

i∈{−1,1}d |i, i〉 |ui(x)〉 |vi(y)〉 with probability

2−d. He then applies Hadamard on the first 2d qubits and measures. He obtains the outcome
|02d〉 with probability 2−2d in which the resulting state is the pure state

∑
i |ui(x)〉 |vi(y)〉 as in the

original Q‖∗ protocol. We use similar ideas to remove entanglement from arbitrary Q‖∗ protocols.
To remove entanglement from an R1∗ protocol, we need to take a different approach which involves
Alice sending Bob a random coordinate of a certain density matrix. We omit the details.

Alternate Approach to Step 1 for R2∗ Protocols. We now present an alternative to
step 1 for R2∗ protocols. The idea is to prove Fourier growth bounds for R2∗ protocols. The results
of [GRZ21] imply that for protocols whose level-2k Fourier growth is at most α, their advantage in
solving the ⊕k-Forrelation problem is at most α · n−k/2 + o(n−k/2). We directly establish a Fourier
growth bound on R2∗ protocols. In particular, we show that for R2∗ protocols of communication
cost c that use d qubits of entanglement, their level-` Fourier growth is at most poly(2d) · O`(c`)
(Lemma 1.1). Choosing ` = 2k, d = Θ(k) and c = Θ(n1/4) for appropriate constants, we have that
the advantage is at most poly(2d) · O`(c`) · n−k/2 � 1. This would complete the proof. We now
describe how we prove the Fourier growth bound on R2∗ protocols (Lemma 1.1).

(1) We first show that if the players share a 2d-qubit entangled state, then we can decompose
the state into a small linear combination of poly(2d) many two-qubit quantum states that are either
unentangled, or locally equivalent to |Φ+〉〈Φ+|, the EPR state. (By locally equivalent we mean that
the players can transform one state into the other using local unitaries and no communication.)
This is formalized in Claim 3.2. This gives us the pre-factor of poly(2d) in Lemma 1.1.

(2) We analyze protocols where Alice and Bob share the EPR state and bound the Fourier
growth of such protocols. Observe that if they share an unentangled state, the protocol is essentially
an R2 protocol and the work of [GRT22] showed Fourier growth for such protocols. We strengthen
this result by proving similar Fourier growth for R2∗ protocols where Alice and Bob share the EPR
state. To do this, we study the structure of such protocols. We first show that the expected output

3We use Q‖ to denote the private-coin version of the Q‖pub model.
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of any R2∗ protocol of cost c where Alice and Bob share the EPR state can be written as

C(x, y) =
∑

z∈{−1,1}c
αz · Tr((Ez(x)⊗ Fz(y)) · ρ).

where Ez(x) and Fz(y) are positive semidefinite matrices,
∑

z∈{−1,1}c Ez(x) ⊗ Fz(y) = I, αz ∈
{−1, 1}, and ρ = |Φ+〉〈Φ+| ⊗ |02m〉〈02m|AB for some m ∈ N that is possibly large (Claim 3.7). We
give some intuition on this expression. The qubits |0m〉〈0m|A and |0m〉〈0m|B in ρ correspond to
Alice and Bob’s private memory respectively and ρ captures the initial state of all the qubits in the
system. The matrices Ez(x)⊗Fz(y) arise out of Alice’s and Bob’s sequence of quantum operations
(i.e., POVMs) in the R2∗ protocol and the quantity Tr(Ez(x)⊗ Fz(y) · ρ) captures the probability
of the transcript being z ∈ {−1, 1}c. The number αz ∈ {−1, 1} is 1 if and only if the transcript z
results in the players outputting 1.

We now write out the Fourier expansion of the XOR fiber H(z) = Ex∼{−1,1}n [C(x, x + z)].
Using the convolution property of Fourier coefficients, we can express the Fourier coefficients of
H(z) in terms of the Fourier coefficients of Ez(x), Fz(y). In particular, we get

∑
|S|=`

|Ĥ(S)| =
∑
|S|=`

∣∣∣∣∣∣
∑

z∈{−1,1}c
αz · Tr

((
Êz(S)⊗ F̂z(S)

)
· ρ
)∣∣∣∣∣∣ .

We now use the fact that ρ has exactly four non-zero entries. This zeroes out all but four coordinates
of Êz(S)⊗ F̂z(S) in the above expression. At this point, we use the level-k inequality by Lee [Lee19]
to bound each of the coordinates separately in terms of the entries of Ez(x) and Fz(y). Using the
fact that {Ez(x) ⊗ Fz(y)}z forms a POVM, we can bound the coordinates of these matrices and
combine them with the bounds we obtain from the level-k inequality in a nice way. Putting
everything together involves some calculation and is done in Section 3.2.

Acknowledgements. We thank Vojtech Havlicek, Ran Raz and Penghui Yao for many discus-
sions during this project. We also thank Ran Raz for feedback on the presentation.

2 Preliminaries

Sets. For n ∈ N, let [n] = {1, . . . , n}. We use 1 to denote the indicator function, i.e., for a predicate
E, 1[E] is 1 if E is satisfied and 0 otherwise. For a subset S ⊆ [n], we use S := [n] \ S to denote
the complement of S. We denote the n × n identity matrix by In, and we omit the subscript if it
is implicit.

Big O Notation. For simplicity in notation, for every f, g : R≥0 → R≥0 and ` ∈ N, we say that
g = O`(f) if for some constant c > 0, we have g = O

(
f · 2c·`

)
. We say that f = Õ(g) (respectively

f = Ω̃(g)) if for some constant c > 0, we have f = O(g · logc(g)) (respectively f = Ω(g · log−c(g))).
We say that f = Θ̃(g) if f = Õ(g) and f = Ω̃(g).

Probability Distributions. Let Σ be an alphabet and D be a probability distribution over
Σ. We use x ∼ D to denote x sampled according to D. We use supp(D) to denote the support of
the distribution D. We use x ∼ Σ to denote a uniformly random sample from Σ. For a function
G : Σ → Rn, we use Ex∼D[G(x)] to denote the expected value of G when the inputs are drawn
according to D. Let k ∈ N, S ⊆ [k] and D,D′ be two distributions over Σ. We use DSD′S to denote

the distribution over Σk which is a product of k independent distributions over Σ, where the ith
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distribution is D if i ∈ S and D′ if i /∈ S for all i ∈ [k]. For distributions, D,D′, define the total
variation distance as ‖D − D′‖1 :=

∑
i |D(i)−D′(i)|.

Norms. Let k ∈ N. For a vector v ∈ Rn, we use ‖v‖k :=
(∑

i∈[n] |vi|
k
)1/k

to denote the

`k-norm of v. For any matrix M ∈ Rn×n, we use |M | to denote
√
MM † and we denote by ‖M‖1

the trace norm of M , that is ‖M‖1 := Tr(
√
MM †) = Tr(|M |). We use ‖M‖op := max‖v‖2=1(vTMv)

to denote the operator norm of M .

2.1 Quantum information

Quantum States. Let d ∈ N and let H be a Hilbert space of dimension 2d. This is a vector space
defined by the R-span of the orthonormal basis {|x〉 : x ∈ {0, 1}d}. We also identify this basis with
{|i〉 : i ∈ [2d]} using the lexicographic ordering as the correspondence. We use |0d〉 to denote the

vector |0, . . . , 0〉 with d zeroes. Let P(H) be the set of positive semidefinite matrices in R2d×2d . Let
S(H) be the set of density operators on H, that is, matrices in P(H) with trace 1. We typically
use ρ and σ to refer to elements of S(H). The state of a quantum system on d qubits is described
by a density operator ρ ∈ S(H). For states that are shared between Alice and Bob, we use the
subscript A and B on qubits to denote whether Alice or Bob own those qubits.

Quantum State Evolution. Let H,H′ be Hilbert spaces. The evolution of a quantum state
is described by a map E : S(H) → S(H′) which is CPTP (i.e., completely positive and trace
preserving). We use the notation E(ρ) to denote the image of ρ under E. In particular, we will be
interested in measurement operators. Any quantum measurement with k outcomes is specified by
k matrices M1, . . . ,Mk ∈ P(H) such that

∑
i∈[k]M

†
iMi = I. The probability of getting outcome

i ∈ [k] is precisely Tr(MiρM
†
i ) and the post measurement state upon obtaining the outcome i is

MiρM
†
i

Tr(MiρM
†
i )

. We have a correspondence between {0, 1} and {1,−1} defined by 0→ 1, 1→ −1, hence,

we will sometimes refer to measurement outcomes “1” and “0” as “-1” and “1” respectively.

Distance between States. Let ρ, σ ∈ S(H) be density operators. We define the trace

distance between ρ and σ to be ‖ρ−σ‖12 . We will use the following standard facts about the trace
distance. Firstly, the trace distance satisfies triangle inequality. Secondly, the trace distance
between ρ and σ is equal to the maximum probability with which these states can be distinguished
using any single projective measurement. Thirdly, the following inequality holds as a consequence
of the Von-Neumann Inequality.

Fact 2.1. For any matrices M,ρ ∈ Rn×n, we have Tr(Mρ) ≤ ‖M‖op · ‖ρ‖1.

2.2 Communication Complexity

The goal in communication complexity is for Alice and Bob to compute a function F : X × Y →
{−1, 1, ?}. We interpret −1 as a yes and 1 as a no. We say F is a total function if F (x, y) ∈ {−1, 1}
for all x ∈ X and y ∈ Y, otherwise F is a partial function. In this paper we will be mostly
concerned with partial functions and denote dom(F ) = F−1({−1, 1}). Here Alice receives an input
x ∈ X (unknown to Bob) and Bob receives an input y ∈ Y (unknown to Alice) promised that
(x, y) ∈ dom(F ) and their goal is to compute F (x, y) with high probability, i.e., probability at least
2/3. More formally, for any protocol P, we let cost(P, x, y) be the communication cost of P when
Alice and Bob are given x, y as inputs. We say that P computes F , if, for every (x, y) ∈ dom(F ), the
output of the protocol is F (x, y) with probability at least 2/3 (where the probability is taken over
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the randomness/measurements of the protocol). The communication complexity of F is defined as

min
P computes F

max
(x,y)∈dom(F )

cost(P, x, y).

The messages sent are referred to as the transcript of the protocol. We discuss a few models of
communication of interest to us.

Simultaneous Message Passing Model. This is a general model of communication called
the simultaneous message passing (SMP) model. In this model, Alice and Bob each send a single
(possibly quantum or randomized) message to a referee Charlie. The goal is for Charlie to output
F (x, y) with high probability, i.e., at least 2/3 probability. We measure the cost of a communication
protocol by the total number of bits (or qubits) received by Charlie. There are many types of
simultaneous protocols.

Quantum versus Classical protocols. We use R‖ to denote the SMP model where the players
can only send classical messages to Charlie. We use Q‖ to denote the SMP model where the players
can send a quantum message to Charlie.

Public-coin versus Private-coin Protocols. If we allow the players to use public coins, we use
the superscript “pub”. For instance, Q‖pub denotes the public-coin quantum SMP model and Q‖
denotes the private-coin quantum SMP model. Unless otherwise specified, all protocols are private
coin protocols.

One-Way Model. In this model, Alice sends a single message to Bob, who should output
F (x, y) with probability at least 2/3. The cost of the protocol is the size of message Alice sends.
By a classical result of Newman [New91], we can assume that all one-way protocols are private-
coin protocols with an O(log n) additive overhead in the communication complexity. We use R1 to
denote the one-way model of communication where Alice sends a classical message to Bob.

Two-Way Model. Here Alice and Bob are allowed to exchange messages, and Alice should
finally output F (x, y) with probability at least 2/3. The cost of the protocol is the total size of the
transcript. As before, by a result of Newman [New91], we can assume that all two-way protocols are
private-coin protocols with an O(log n) additive overhead in the communication complexity. We use
R2 to denote the model of two-way communication where Alice and Bob exchange classical messages.

We now discuss protocols where Alice and Bob can share an entangled state that is independent
of their inputs. One important type of entangled state is the EPR pair: This is the state |Φ+〉〈Φ+|
where |Φ+〉 = 1√

2
(|0〉A |0〉B + |1〉A |1〉B). Here, the subscript on the qubit denotes which player

owns the qubit. The upper bound in all our theorems will be established using quantum protocols
where the players share a certain number of EPR pairs. We typically specify the dimension of the
state shared by Alice and Bob.

Protocols with entanglement. We use R‖∗ to denote the simultaneous model of commu-
nication where Alice and Bob share an entangled state and send classical messages to the referee.
The model Q‖∗ is similarly defined, but Alice and Bob can send quantum messages to the referee.
We use R1∗ to denote the one-way model where Alice and Bob share entanglement and Alice sends
a classical message to Bob. We use R2∗ to denote the two-way model where Alice and Bob share
entanglement and the messages are classical. In this model, by teleportation , the players can
exchange a limited number of qubits. Conversely, if the players can exchange a limited number of
qubits, then Alice can create EPR pairs by herself and send the corresponding qubits to Bob.

For ease of readability, we summarize all the communication models in the tables below.
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Private Coins Public Coins Entanglement

Classical Messages R‖ R‖pub R‖∗
Quantum Messages Q‖ Q‖pub Q‖∗

Table 1: Table of Simultaneous Communication Models

One-way Two-way
Private Coins Private Coins

(≡ Public Coins) (≡ Public Coins)

Classical Messages R1 R2

Classical Messages R1∗ R2∗

& Entanglement

Table 2: Table of One-Way & Two-Way Communication Models

2.3 XOR-Fibers of Communication Protocols

Definition 2.2. Given a communication protocol C : {−1, 1}n×{−1, 1}n → [−1, 1], the XOR-fiber
of C is a function H : {−1, 1}n → [−1, 1] defined at z ∈ {−1, 1}n by H(z) = Ex∼{−1,1}n [C(x, x�z)],
where � denotes point-wise product.

The communication complexity of XOR functions are well-studied and have connections to
the log-rank conjecture, parity decision trees, lifting theorems and separations between quantum
and classical communication complexity [MO10, HHL18, TWXZ13, SZ08, Zha14]. XOR-fibers
of communication protocols naturally arise in the study of communication complexity of XOR
functions. Although we are not aware of any published works defining the term “XOR-fiber”, this
concept has been studied in many works, most notably [GRT22] and [Raz95].

2.4 Fourier analysis

Fourier Analysis on the Boolean Hypercube. We discuss some of the basics of Fourier
analysis. Let f : {−1, 1}n → R be a function. The Fourier decomposition of f is

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where χS(x) =
∏
i∈S xi. The Fourier coefficients of f are defined as f̂(S) = Ex∼{−1,1}n [f(x)·χS(x)].

For ` ∈ N, the level-` Fourier mass of f is denoted by L1,`(f) and is defined as follows.

L1,`(f) =
∑
|S|=`

∣∣∣f̂(S)
∣∣∣

By Fourier growth bounds, we typically mean upper bounds on L1,`(f). We will need the following
technical lemma, often called the level-k inequality.

Lemma 2.3 ([Lee19, Lemma 10]). Let f : {−1, 1}n → [−1, 1] be a function with Ex[|f(x)|] = α.
Then for every ` ∈ N, ∑

|S|=`

f̂(S)2 ≤ 4α2 · (2e · ln(e/α1/`))`.
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Although [Lee19, Lemma 10] is only stated for functions with range [0, 1], the same proof also
applies for functions with range [−1, 1]. We remark that the bound often invoked [O’D14, GKK+07]
is with the upper bound of O(α2 · ln`(1/α)) (i.e., without the 1/` exponent on α) which only holds
for ` ≤ 2 ln(1/α). However this improved upper bound, proven recently in [Lee19], holds for all
` ∈ N. This makes our proofs much simpler and saves some logarithmic factors.

Fourier analysis for Matrix-Valued Functions. The Fourier coefficients of a matrix-valued
function f : {−1, 1}n → Rm×m are defined by

f̂(S) := E
x∼{−1,1}n

[f(x) · χS(x)]

for all S ⊆ [n]. We also use a matrix version of the level-k inequality.

Lemma 2.4 ([BRW08, Theorem 7]). Let H be a Hilbert space of dimension 2c and let f :
{−1, 1}n → S(H) be a density-matrix valued function. Then, for any ` ∈ N such that ` ≤ 2 ln(2)c,∑

|S|=`

Tr2
(
|ρ̂S |

)
≤ ((2e ln 2) · c/`)` .

Let H′ be a Hilbert space that contains H of dimension c′ ≥ c . We can view f as a function
f : {−1, 1}n → S(H′) by simply appending zeroes to the output matrix. Given any ` ∈ N that is
possibly larger than c, set c′ := c+ d `

2 ln 2e so that ` ≤ 2 ln(2) · c′. Using this setting of parameters
and Lemma 2.4, we have the following corollary.

Corollary 2.5. Let H be a Hilbert space of dimension 2c and let f : {−1, 1}n → S(H) be a
density-matrix valued function. Then, for any ` ∈ N,∑

|S|=`

Tr2
(
|ρ̂S |

)
≤ O`

(
(c/`)`

)
+O`(1).

3 Proof of Theorem 1.1

In this section, we prove Lemma 1.1, which we restate for convenience.

Lemma 1.1. Let C : {−1, 1}n×{−1, 1}n → [−1, 1] be an R2∗ protocol of cost c where Alice and Bob
share an entangled state on at most 2d qubits for some parameter d ∈ N. Let H be the XOR-fiber
of C as in Definition 2.2. Then, for all ` ∈ N, we have

L1,`(H) ,
∑
|S|=`

∣∣∣Ĥ(S)
∣∣∣ ≤ 25d ·O`(c`).

The proof of Theorem 1.1 follows from Lemma 1.1 and the techniques of [GRZ21]. The quantum
upper bound is presented in [GRZ21, Theorem 3.8]. For the lower bound, let C be the set of R2∗

protocols of cost at most c using at most d qubits of entanglement. LetH be the set of XOR fibers of
protocols in C. Applying [GRZ21, Theorem 3.1] to H, it follows that the maximum advantage that
protocols in C have in solving the ⊕k-Forrelation problem is at most O

(
L1,2k(H) · n−k/2

)
+o(n−k/2).

By Lemma 1.1, this is at most O
(
25d · c2k · n−k/2

)
. Since d ≤ k, setting c = τ · n1/4 for a small

constant τ > 0 implies that this is at most 1/3. The details of this calculation are deferred
to Appendix A.
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The rest of this section will be devoted to the proof of Lemma 1.1. As described in the proof
overview, this will consist of two parts. First, in Section 3.1, we show how to decompose entangled
states as a linear combination “simple” states and next, in Section 3.2, we prove a Fourier growth
bound on protocols that use “simple” states. We put these together in Section 3.3 to complete the
proof of Lemma 1.1.

3.1 Decomposing an Arbitrary State as a Linear Combination of Simple States

Definition 3.1. Let ρ, σ be (possibly entangled) states in S(HA ⊗ HB). We say that ρ is locally
equivalent to σ if there exist unitaries UA on HA and VB on HB such that (UA⊗VB)ρ(UA⊗VB)† = σ.
If σ = |+〉〈+| where |+〉 = 1√

2
(|0〉A |0〉B + |1〉A |1〉B) corresponds to the EPR state, we say that ρ is

locally equivalent to the EPR state and if σ = |0〉〈0|A⊗|0〉〈0|B, we say that ρ is locally equivalent to
the zero state.

We refer to the zero state and EPR state as simple. The main result of this section is as follows.

Claim 3.2. Let d ∈ N. Let HA,HB be 2d-dimensional Hilbert spaces. Given a (possibly entangled)
state ρ in S(HA ⊗HB), we can express it as

ρ =
24d∑
i=1

αiρi

where each |αi| ≤ 2d and ρi ∈ S(HA⊗HB) is locally equivalent to the zero state or the EPR state.

This decomposition is useful as it simplifies the study of communication protocols with arbitrary
entangled states. In particular, we have the following.

Definition 3.3. We say that two communication protocols are equivalent if on the same inputs,
they produce the same distribution on transcripts.

Fact 3.4. Let ρ and σ be two locally equivalent states. Any communication protocol where Alice
and Bob use ρ as the entangled state can be transformed into an equivalent communication protocol
where Alice and Bob use σ as the entangled state.

Proof. Let UA and VB be unitary operators on HA and HB respectively so that (UA ⊗ VB)ρ(UA ⊗
VB)† = σ. We modify the protocol by first having Alice and Bob apply UA and VB respectively to
their parts of the entangled state, then apply U−1

A and V −1
B and then continue as per the original

protocol. Observe that this transformation does not change the distribution on the transcripts.
The first step of the new protocol transforms ρ into σ. Thus, we may think of the new protocol as
an equivalent communication protocol where the initial entangled state is σ.

We now turn to proving Claim 3.7. We will use the following fact.

Fact 3.5. Let |φ〉 ∈ HA and |ψ〉 ∈ HB be unit vectors. Then, the state ρ := |φ〉〈φ|A ⊗ |ψ〉〈ψ|B is
locally equivalent to the zero state.

Proof. Consider unitaries UA and VB such that UA |φ〉 = |0〉 and VB |ψ〉 = |0〉. Observe that
(UA ⊗ VB)ρ(UA ⊗ VB)† = |0〉〈0|A ⊗ |0〉〈0|B and hence ρ is locally equivalent to the zero state.
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We now complete the proof of Claim 3.2.

Proof of Claim 3.2. Let i, j ∈ [22d] be such that i 6= j. Define ρ(i,j) ∈ S(HA⊗HB) and αi,j ∈ R by

ρ(i,j) := 1
2 (|i〉+ |j〉) (〈i|+ 〈j|) and αi,j = ρi,j ,

where ρi,j is the (i, j)th entry of ρ. Define ρ(i,i) ∈ S(HA ⊗HB) and αi,i ∈ R by

ρ(i,i) := |i〉 〈i| and αi,i = ρi,i −
∑

j∈[22d],j 6=i

ρi,j .

Observe that
∑

i,j∈[22d] αi,jρ
(i,j) = ρ. Furthermore, for i 6= j ∈ [22d], we have |αi,j | = |ρi,j | ≤ 1

and |αi,i| ≤
∑

j∈[22d] |ρi,j | ≤
√

22d ·
√∑

j∈[22d] ρ
2
i,j ≤ 2d due to Cauchy-Schwarz and the fact that

ρ is a quantum state. It suffices to argue that ρ(i,j) is locally equivalent to the zero state or the
EPR state. Firstly, every i ∈ [22d] can be uniquely identified with (a, b) where a, b ∈ [2d]. Similarly,
each j ∈ [22d] can be uniquely identified with (p, q) where p, q ∈ [2d]. Consider the following cases.

Case 1: Suppose a = p and b = q (or equivalently i = j), then ρ(i,j) = |a〉〈a|A ⊗ |b〉〈b|B. By
Fact 3.5, ρ(i,j) is locally equivalent to the zero state.

Case 2: Suppose a = p and b 6= q, then

ρ(i,j) , 1
2 (|a〉A |b〉B + |p〉A |q〉B) (〈a|A 〈b|B + 〈p|A 〈q|B)

= |a〉〈a|A ⊗
(
|b〉B+|q〉B√

2

)(
〈b|B+〈q|B√

2

)
.

Since |b〉 and |q〉 are orthogonal, |b〉+|q〉√
2

is a unit vector and by Fact 3.5, ρ(i,j) is locally equivalent to

the zero state.

Case 3: Suppose a 6= p and b 6= q. Let UA be any unitary operator that maps |a〉 to |0〉 and
|p〉 to |1〉. This is well defined since a 6= p. Similarly define VB to be any unitary operator that
maps |b〉 to |0〉 and |q〉 to |1〉. This is well defined since b 6= q. Observe that

(UA ⊗ VB)ρ(i,j)(UA ⊗ VB)† = 1
2(|0〉A |0〉B + |1〉A |1〉B)(〈0|A 〈0|B + 〈1|A 〈1|B).

Thus, ρ(i,j) is locally equivalent to the EPR state. This completes the proof of Claim 3.2.

3.2 Fourier Growth Bounds on R2∗ protocols with the EPR State

We now prove a Fourier growth bound on R2∗ protocols where Alice and Bob share a single EPR
pair. Note that such protocols can easily simulate protocols that share the zero state, since Alice
and Bob can simply produce |0〉〈0|A and |0〉〈0|B without communication and ignore the EPR pair.
The main technical contribution of this subsection is the following lemma.

Lemma 3.6. Let C : {−1, 1}n × {−1, 1}n → [−1, 1] be a R2∗ protocol of cost c where the players
share the EPR state. Let H be its XOR-fiber as in Definition 2.2. Then, for all ` ∈ N, we have

L1,`(H) ≤ O`(1) +O`

(
(c/`)`

)
.

The following claim helps understand the acceptance probability of R2∗ protocols.
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Claim 3.7. Let C : {−1, 1}n × {−1, 1}n → [−1, 1] be any R2∗ protocol of cost c where Alice and
Bob share a state ρ ∈ S(HA ⊗HB) where HA and HB are Hilbert spaces of dimension 2d. Then,
there exists m ∈ N and Hilbert spaces H′A,H′B of dimension m such that the expected output of the
protocol on inputs x, y ∈ {−1, 1}n can be expressed as

C(x, y) =
∑

z∈{−1,1}c
Tr
(
(Ez(x)⊗ Fz(y)) · ρ′

)
· (−1)1[z∈A],

where for all x, y ∈ {−1, 1}n and z ∈ {−1, 1}c,

1. Ez(x) is a 2d+m × 2d+m positive semidefinite matrix acting on HA ⊗H′A,

2. Fz(y) is a 2d+m × 2d+m positive semidefinite matrices acting on HB ⊗H′B,

3.
∑

z′∈{−1,1}c Ez′(x)⊗ Fz′(y) = I,

4. ρ′ = ρ⊗ |0m〉 〈0m|A ⊗ |0m〉 〈0m|B, and

5. A ⊆ {−1, 1}c is some subset.

We defer the proof of this claim to Appendix B. We now prove Lemma 3.6 using Claim 3.7.

Proof of Lemma 3.6 using Claim 3.7. We use |Φ+〉〈Φ+| to denote the single EPR state. We use
Claim 3.7 which describes the structure of arbitrary R2∗ protocols of cost c. By Claim 3.7, the
expected output of the protocol C on inputs x, y ∈ {−1, 1}n can be expressed as

C(x, y) =
∑

z∈{−1,1}c
Tr((Ez(x)⊗ Fz(y) · ρ) · (−1)1[z∈A]

where A ⊆ {−1, 1}c, and Ez(x) and Fz(y) are positive semidefinite operators such that∑
z′∈{−1,1}c

Ez′(x)⊗ Fz′(y) = I, and ρ = |Φ+〉〈Φ+| ⊗ |0m〉〈0m|A ⊗ |0m〉〈0m|B (1)

for some parameter m ∈ N. Recall that by the definition of XOR-fiber, for all w ∈ {−1, 1}n, we
have H(w) = Ex∼{−1,1}n [C(x, x� w)]. Hence,

Ĥ(S)

= E
w∼{−1,1}n

[H(w)χS(w)]

= E
w,x∼{−1,1}n

 ∑
z∈{−1,1}c

Tr ((Ez(x)⊗ Fz(x� w)) · ρ) · χS(w) · (−1)1[z∈A]


= E

w,x

 ∑
z∈{−1,1}c

∑
T,Q

Tr
((
Êz(T )⊗ F̂z(Q)

)
· ρ
)
· χS+Q(w) · χT+Q(x) · (−1)1[z∈A]


=

∑
z∈{−1,1}c

Tr
((
Êz(S)⊗ F̂z(S)

)
· ρ
)
· (−1)1[z∈A].
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Our goal is to upper bound

L1,`(H) ,
∑
|S|=`

∣∣∣Ĥ(S)
∣∣∣ =

∑
|S|=`

∣∣∣∣∣∣
∑

z∈{−1,1}c
Tr
((
Êz(S)⊗ F̂z(S)

)
· ρ
)
· (−1)1[z∈A]

∣∣∣∣∣∣
≤

∑
z∈{−1,1}c

∑
|S|=`

∣∣∣Tr
((
Êz(S)⊗ F̂z(S)

)
· ρ
)∣∣∣ . (2)

By Eq. (1), the density matrix of the state ρ has exactly four non-zero coordinates. This zeroes all

but four coordinates of Êz(S)⊗ F̂z(S) in the R.H.S. of Eq. (2). More precisely, we have

Tr
((
Êz(S)⊗ F̂z(S)

)
· ρ
)

=
1

2
·

∑
i,j∈{1,2m+1}

Êz(S)[i, j] · F̂z(S)[i, j].

Substituting this in Eq. (2),we have

L1,`(H) ≤
∑

z∈{−1,1}c

∑
|S|=`

∣∣∣∣∣∣
∑

i,j∈{1,2m+1}

Êz(S)[i, j] · F̂z(S)[i, j]

∣∣∣∣∣∣
≤

∑
z∈{−1,1}c

∑
i,j∈{1,2m+1}

∑
|S|=`

∣∣∣Êz(S)[i, j] · F̂z(S)[i, j]
∣∣∣

≤
∑

z∈{−1,1}c

∑
i,j∈{1,2m+1}

√∑
|S|=`

Êz(S)[i, j]2 ·
√∑
|S|=`

F̂z(S)[i, j]2.

For i 6= j ∈ {1, 2m + 1}, let ez[i, j] := Ex
[
|Ez(x)[i, j]|

]
and fz[i, j] := Ey

[
|Fz(y)[i, j]|

]
(where

the expectation is over the uniform distribution on {−1, 1}n). Similarly, let ez[i, i] = Ex
[
Ez(x)[i, i]

]
and fz[i, i] = Ey

[
Fz(y)[i, i]

]
. Since Ex and Fy are positive semidefinite, their diagonal entries are

non-negative. Using the level-k inequality (Lemma 2.3) we get that for all i, j ∈ {1, 2m + 1},∑
|S|=`

Êz(S)[i, j]2 ≤ 4(Ex [|Ez(x)[i, j]|])2 ·
(

2e ln
(
e/(Ex [|Ez(x)[i, j]|])1/`

))`
= 4(ez[i, j])

2 ·
(

2e ln
(
e/(ez[i, j])

1/`
))`

.

We can now upper bound L1,`(H) as follows:

L1,`(H)

≤ 4
∑

z∈{−1,1}c
i,j∈{1,2m+1}

ez[i, j] · fz[i, j] ·
(

2e ln

(
e

ez[i, j]1/`

))`/2
·
(

2e ln

(
e

fz[i, j]1/`

))`/2

≤ 4
∑

z∈{−1,1}c
i,j∈{1,2m+1}

ez[i, j] · fz[i, j] ·
(

2e ln

(
e2

ez[i, j]1/` · fz[i, j]1/`

))`
.

We now use the concavity of the function h(γ) = γ · ln(e2/γ1/`)` for γ ∈ [0, 1].4 Jensen’s inequality
implies that for any pz ∈ [0, 1], we have that Ez[h(pz)] ≤ h(Ez[pz]). Setting pz = ez[i, j] · fz[i, j], we

4The concavity of this function is proved in [Lee19, Claim 16]. In more detail, observe that h(γ) = γ ·
ln

(
(e/γ1/(2`))2

)`
= γ · ln

(
e/γ1/(2`)

)`
· 2` which by their notation, equals 2` · φ2`(γ). It is shown that for all

positive `, the function φ2`(γ) is concave and increasing for γ ∈ [0, 1].
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conclude that L1,`(H) is at most

2c+2
∑

i,j∈{1,2m+1}

(
E

z∈{−1,1}c
[ez[i, j]fz[i, j]]

)(
2e ln

(
e2(

Ez∈{−1,1}c
[
ez[i, j]fz[i, j]

])1/`
))`

= 4
∑

i,j∈{1,2m+1}

 ∑
z∈{−1,1}c

ez[i, j]fz[i, j]


2e ln

 e2 · 2c/`(∑
z∈{−1,1}c ez[i, j]fz[i, j]

)1/`



`

.

To simplify notation, for i, j ∈ {1, 2m + 1}, we define βi,j ∈ R by βi,j :=
∑

z∈{−1,1}c ez[i, j] · fz[i, j].
With this notation, we have

L1,`(H) ≤ 4
∑

i,j∈{1,2m+1}

βi,j ·

(
2e ln

(
e2 · 2c/`

β
1/`
i,j

))`

≤ 4
∑

i,j∈{1,2m+1}

βi,j ·

(
2e ln

(
e2

β
1/`
i,j

)
+

2ec

`

)`

≤ 4
∑

i,j∈{1,2m+1}

βi,j · 2` ·

(
2e ln

(
e2

β
1/`
i,j

))`
+ 4

∑
i,j∈{1,2m+1}

βi,j · 2` ·
(

2ec

`

)`
.

For all x, y ∈ {−1, 1}n, the matrix Ez(x)⊗Fz(y) is positive semidefinite. Furthermore, for any
positive semidefinite matrix M , we have |Mi,j | ≤ 1

2 (Mi,i +Mj,j) for all i 6= j. This implies that for
all x, y ∈ {−1, 1}n and i 6= j ∈ {1, 2m + 1},

|Ez(x)[i, j]| · |Fz(y)[i, j]| ≤ 1
2 (Ez(x)[i, i] · Fz(y)[i, i] + Ez(x)[j, j] · Fz(y)[j, j])

Taking an expectation over x, y ∼ {−1, 1}n implies that for i 6= j ∈ {1, 2m + 1},

ez[i, j] · fz[i, j] ≤ 1
2 (ez[i, i] · fz[i, i] + ez[j, j] · fz[j, j]) .

By Eq. (1), since
∑

z∈{−1,1}c Ez(x)⊗Fz(y) = I for x, y ∈ {−1, 1}n, we have for all i 6= j ∈ {1, 2m+1}

βi,j ,
∑

z∈{−1,1}c
ez[i, j] · fz[i, j] ≤

∑
z∈{−1,1}c

1
2 (ez[i, i] · fz[i, i] + ez[j, j] · fz[j, j]) = 1,

where in the final equality we used that ez[i, i] = Ex
[
Ez(x)[i, i]

]
. Thus, we have

L1,`(H) ≤ O`(1) ·
∑

i,j∈{1,2m+1}

βi,j ·

(
2e ln

(
e2

β
1/`
i,j

))`
+O`

(
(c/`)`

)
.

It follows from [Lee19, Claim 16] that the function h(γ) = γ ln(e2/γ1/`)` is increasing for γ ∈ [0, 1]
and the value at γ = 1 is 2`. Thus, we have

βi,j · ln

(
e2

β
1/`
i,j

)`
≤ 2`.

Therefore,
L1,`(H) ≤ O`(1) +O`

(
(c/`)`

)
,

proving Lemma 3.6.
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3.3 Putting Things Together

We now prove Lemma 1.1 using Claim 3.2 and Lemma 3.6. Consider any interactive randomized
communication protocol Cρ of cost c that uses ρ as the entangled state, where ρ is an arbitrary
state on 2d qubits for a parameter d ∈ N. Consider the decomposition

ρ =

24d∑
i=1

αiρi

as given by Claim 3.2. Let Cρ(x, y) denote the expected output of the protocol on inputs x, y as
before. Observe that Cρ(x, y) is linear in ρ due to Claim 3.7. Thus, the expected output of the
protocol can be expressed as

Cρ(x, y) =

24d∑
i=1

αiCρi(x, y).

By Fact 3.4, we have Cρi(x, y) = C
(i)
σi (x, y) where σi is either the zero state or the EPR state and

C(i) is some R2∗ protocol that is equivalent to C and uses σi as the shared state. Therefore, we
have for all z ∈ {−1, 1}n,

H(z) =

24d∑
i=1

αiH
(i)
σi (z)

where H
(i)
σi is the XOR-fiber of C

(i)
σi . In particular,

L1,`(H) ≤
24d∑
i=1

|αi|
∑
|S|=`

∣∣∣∣Ĥ(i)
σi (S)

∣∣∣∣ ≤ 25d · max
i∈[24d]

(
L1,`

(
H(i)
σi

))
.

Here, we use the fact that |αi| ≤ 2d. Since each σi is either the zero state or the EPR state
and C(i) has cost at most c, we can apply Lemma 3.6 to conclude that

L1,`

(
H(i)
σi

)
≤ O`(1) +O`

(
(c/`)`

)
≤ O(c`).

This proves Lemma 1.1.

4 Proof of theorem 1.2

The main technical contribution in this section is a Fourier growth bound on Q‖pub protocols. We
restate Lemma 1.2 for convenience.

Lemma 1.2. Let C : {−1, 1}n × {−1, 1}n → [−1, 1] be a Q‖pub protocol of cost c and let H be its
XOR-fiber as in Definition 2.2. Then, for all ` ∈ N, we have

L1,`(H) ≤ O`
(
c`
)
.

Proof of Theorem 1.2 using Lemma 1.2. Let c = τ ·n1/4 for a small enough constant τ > 0. Let H
be the family of XOR-fibers of Q‖pub protocols of cost at most c. This is a restriction-closed family
of Boolean functions. The results of [GRT22] imply that the maximum advantage that functions in
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H have in computing the Forrelation problem is at most O
(
L1,2(H)√

n

)
+O

(
1√
n

)
. Using Lemma 1.2,

this quantity is at most c2√
n
≤ τ2 � 1. This, along with the techniques of [GRT22] implies that

Q‖pub protocols solving the Forrelation problem require communication cost Ω(n1/4).

We now prove Lemma 1.2.

Proof of Lemma 1.2. Firstly, it suffices to prove the lemma for Q‖ protocols, by the fact that Q‖pub

protocols are defined by expectations over Q‖ protocols and by triangle inequality. Let C be any
Q‖ protocol of cost c where Alice and Bob don’t share entanglement. Without loss of generality, the
protocol has the following form. Let H be a Hilbert space of dimension 2c. Alice sends Charlie ρ(x)
and Bob sends Charlie σ(y) where ρ(x), σ(y) ∈ S(H). Then Charlie applies a two-outcome POVM
{M1,M−1} and announces the outcome as the answer. It is not too hard to see that the expected

output of the protocol is precisely C(x, y) = Tr(E · (ρ(x) ⊗ σ(y)) where E = M †1M1 −M †−1M−1.
Observe that for all S ⊆ [n],

Ĥ(S) , E
x,y∼{−1,1}n

[Tr(E · (ρ(x)⊗ σ(y))) · χS(x� y)] = Tr(E · (ρ̂S ⊗ σ̂S)).

Therefore, we have∑
|S|=`

∣∣∣Ĥ(S)
∣∣∣ =

∑
|S|=`

|Tr (E · (ρ̂S ⊗ σ̂S))|

≤ 2
∑
|S|=`

Tr (|ρ̂S |) · Tr (|σ̂S |) ≤
√∑
|S|=`

Tr (|ρ̂S |)2 ·
√∑
|S|=`

Tr (|σ̂S |)2.
(3)

Here, we used Fact 2.1 on M †1M1 and M †−1M−1. We now apply Corollary 2.5 to the density-matrix
valued functions ρ(x), σ(y) to conclude that

max
{ ∑
|S|=`

Tr2 (|ρ̂S |) ,
∑
|S|=`

Tr2 (|σ̂S |)
}
≤ O`

(
(c/`)`

)
+O`(1).

Substituting this in Eq. (3), we have

L1,`(H) ≤ O`
(

(c/`)`
)

+O`(1) ≤ O`(c`).

This proves the desired upper bound.

Remark 4.1. Lemma 1.2, along with [GRZ21] implies that the advantage that Q‖pub protocols
of cost o(n1/4) have in computing the ⊕k-Forrelation problem is at most exp(−Ω(k)). Using this,
along with Lemma 5.1, one can show that Q‖∗ protocols of cost o(n1/4) where Alice and Bob only
share O(k) qubits of entanglement cannot solve the ⊕k-Forrelation problem. On the other hand,
[GRZ21] shows that if Alice and Bob share Õ(k5 log3 n) EPR pairs, then the ⊕k-Forrelation problem
can be solved by Q‖∗ protocols of cost Õ(k5 log3 n). This gives a separation between Q‖∗ with more
entanglement and Q‖∗ with less entanglement.
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5 Proof of Theorem 1.3

For convenience we restate Theorem 1.3 below.

Theorem 1.3. The ⊕k-Boolean Hidden Matching problem can be solved with Õ(k log n) bits of
communication in the R‖∗ model if Alice and Bob share Θ̃(k log n) EPR pairs. However, if Alice
and Bob only share O(k) qubits of entanglement, then this problem requires

• Ω(k
√
n) bits of communication in the R1∗ model,

• Ω(kn1/3) qubits of communication in the Q‖∗ model.

Proof. The proof of this theorem proceeds in two steps. First, we assume by contradiction that
there exists an R1∗ or Q‖∗ protocol of cost c that uses 2d qubits of entanglement and solves the
⊕k-Boolean Hidden Matching problem with advantage at least 1

3 . Using this, we produce an R1 or
Q‖ protocol respectively that solves the ⊕k-Boolean Hidden Matching problem with cost at most
c+O(d); this protocol uses no entanglement but only succeeds with advantage at least 2−Θ(d), that
is, the success probability is at least 1

2 + 2−Θ(d). This will be proved in Lemma 5.1 and Lemma 5.2.
We then argue that R1 and Q‖ protocols satisfy an XOR lemma with respect to the Boolean Hidden
Matching problem. That is, the advantage that cost c protocols have in solving the ⊕k-Boolean

Hidden Matching problem is at most Ok

(
(c/k)3

n

)k/2
for the Q‖ model and at most Ok

(
(c/k)2

n

)k
for the R1 model. This will be proved in Lemma 1.3 and Lemma 1.4 respectively. Combining the
aforementioned lemma, for the Q‖∗ case and R1∗ case, we have

1

3
· 2−4d ≤ Ok

(
((c+ 2d)/k)3

n

)k/2
and

1

6
· 2−4d ≤ Ok

(
((c+ 10d)/k)2

n

)k/2
(4)

respectively. Let τ, τ ′ > 0 be sufficiently small constants and d = τ ′ · k. For the Q‖∗ model, we can
set c = τ · kn1/3 and for the R1∗ model set c = τ · kn1/2 so that Eq. (4) is violated. This proves our
communication lower bound. The quantum upper bound is presented in Appendix C.

5.1 Removing Entanglement from Protocols

Our main contributions in this section are the following lemmas. Below, we assume d is large enough.

Lemma 5.1. Given any communication protocol for computing F with cost c and advantage 1
3 in

the Q‖∗ model where Alice and Bob share at most 2d qubits of entanglement, there is a protocol of
cost c+ 2d in the Q‖ model that computes F with advantage 1

3 · 2
−4d.

Lemma 5.2. Given any communication protocol for computing F with cost c and advantage 1
3 in

the R1∗ model where Alice and Bob share at most 2d qubits of entanglement, there is a protocol of
cost c+ 10d in the R1 model that computes F with advantage 1

6 · 2
−4d.

Proof of Lemma 5.1. Let C be a communication protocol of cost c in the Q‖∗ model that uses 2d
qubits of entanglement. Without loss of generality, the protocol has the following form. LetH′A,H′B
be Hilbert spaces of dimension 2c each. Alice applies a quantum channel Ux : S(HA)→ S(H′A) to
her part of the shared state and Bob applies a quantum channel Vy : S(HB)→ S(H′B) to his part of
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the shared state. The players then send the resulting states to the referee. The referee evaluates a
two-outcome POVM on the received state and returns the outcome as the answer. In particular, if

ρ :=
∑

a,b,p,q∈[2d]

ρa,b,p,q|a〉〈p|A ⊗ |b〉〈q|B

is the state shared by Alice and Bob, then the state received by the referee is∑
a,b,p,q∈[2d]

ρa,b,p,qUx(|a〉 〈p|)⊗ Vy(|b〉 〈q|). (5)

We now produce a Q‖ protocol where Charlie receives the state in Eq. (5) with probability 2−4d,
furthermore, he knows when this state is received. When Charlie receives this state, he continues
as per the original protocol and when he does not receive this state, he returns a uniformly random
bit. This would produce a Q‖ protocol that computes F with advantage 1

3 · 2
−4d. The protocol is

as follows. Consider a Q‖ protocol where Alice and Bob create the states∑
a,b,p,q∈[2d]

ρa,b,p,q|a〉〈p|A ⊗ |b〉〈q|A and 2−2d
∑

b′,q′∈[2d]

|b′〉〈q′|B ⊗ |b′〉〈q′|B respectively.

Alice applies U(x) to the first half of the qubits of her state and sends the entire state to Charlie.
Bob applies V (y) to the second half of the qubits of his state and sends the entire state to Charlie.
The state received by Charlie is

2−2d
∑

a,b,b′∈[2d]

p,q,q′∈[2d]

ρa,b,p,qUx (|a〉 〈p|)⊗ |b〉 〈q| ⊗ |b′〉 〈q′| ⊗ Vy
(
|b′〉 〈q′|

)
.

Charlie projects onto states such that b = b′ and q = q′. More precisely, Charlie considers the
measurement operator on the qubits from d+ 1 to 3d defined by projection onto {|b〉 〈q| ⊗ |b〉 〈q| :
b, q ∈ [2d]}. This measurement operator applied to the above state produces the state∑

a,b,p,q,∈[2d]

ρa,b,p,qUx (|a〉 〈p|)⊗ |b〉 〈q| ⊗ |b〉 〈q| ⊗ Vy (|b〉 〈q|) .

with probability 1/22d, furthermore, Charlie can tell when this state is produced using the mea-
surement outcome. Charlie then applies the Hadamard operator to the qubits d + 1, . . . , 3d and
measures those qubits in the standard basis. With probability 1/22d, Charlie obtains the state∑

a,b,p,q,∈[2d]

ρa,b,p,qUx (|a〉 〈p|)⊗ |0d〉 〈0d| ⊗ |0d〉 〈0d| ⊗ Vy (|b〉 〈q|) .

As before, Charlie can tell when he obtained this state. Ignoring the zero qubits from d+ 1 to 3d,
this state is precisely the state Charlie had received in the original Q‖∗ protocol as in Eq. (5). This
completes the proof of Lemma 5.1.

Proof of Lemma 5.2. Let HA,HB be Hilbert spaces of dimension 2d. Let H = HA ⊗ HB and let
ρ ∈ S(H) be the state shared by Alice and Bob. We can assume without loss of generality that
an R1∗ protocol using ρ as the entanglement has the following form. Suppose Alice and Bob got
x, y respectively. Alice first measures her half of the shared state using a 2c-outcome measurement
operator {Mz(x) : z ∈ {−1, 1}c}. She obtains an outcome z ∈ {−1, 1}c and sends z to Bob. Based
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on this message z and his input y, Bob applies the two-outcome POVM {N1(y, z), N−1(y, z)} on his
part of the shared state and outputs the measurement outcome as the answer. Let σ(x, z) be the
post-measurement state of ρ after Alice applies her measurement Mz(x) and obtains the outcome z.
The expected output of Bob is precisely

Tr ((I⊗ F (y, z)) · σ(x, z))

where F (y, z) = N †1(y, z)N1(y, z) −N †−1(y, z)N−1(y, z) and I ⊗ F (y, z) is an operator that acts as
identity on the first d qubits and acts as F (y, z) on the last d qubits.

Consider an R1 protocol where Alice obtains the measurement outcome z ∈ {−1, 1}c and the
post-measurement state σ(x, z) ∈ S(H). She knows the precise classical description of the state
σ(x, z). She will send the classical message z as before. She samples uniformly random i, j ∈ [22d]
and sends (i, j, σ̃(x, z)[i, j]), where, σ̃(x, z)[i, j] is the (i, j)th coordinate of σ(x, z) specified up to
Θ(d) bits of precision. We will show that using this message, Bob can estimate Tr((I ⊗ F (y, z)) ·
σ(x, z)) with advantage 2−4d. Let F ′(y, z) = I ⊗ F (y, z). First, consider an ideal situation where
Alice sends exactly σ(x, z)[i, j]. Observe that

∀i, j ∈ [22d],
∣∣F ′(y, z)[i, j] · σ(x, z)[i, j]

∣∣ ≤ 1,

E
i,j∼[22d]

[
F ′(y, z)[i, j] · σ(x, z)[i, j]

]
= 1

24d
Tr(F ′(y, z) · σ(x, z)). (6)

Consider the protocol where Bob computes F ′(y, z)[i, j] · σ(x, z)[i, j] for uniformly randomly i, j ∼
[22d]. He then returns a random {−1, 1}-bit whose expectation is F ′(y, z)[i, j] · σ(x, z)[i, j]. This
is well-defined due to the first line in Eq. (6). The assumption is that Tr(F ′(y, z) · σ(x, z)) is at
least 1/3 for no instances and at most −1/3 for yes instances. This, along with the second line of
Eq. (6) implies that Bob’s expected output is at least 1

3 ·2
−4d for no instances and at most −1

3 ·2
−4d

for yes instances. Thus, Bob solves the problem with advantage 1
3 · 2

−4d. Suppose Alice specifies
σ̃(x, z)[i, j] ∈ [−1, 1] up to 5d bits of precision, then we have∣∣∣∣ E

i,j∼2[2d]

[
F ′(y, z)[i, j] · σ̃(x, z)[i, j]

]
− 2−4d · Tr

(
F ′(y, z) · σ(x, z)

)∣∣∣∣
≤ 2−4d ·

∣∣Tr
(
F ′(y, z) · (σ(x, z)− σ̃(x, z))

)∣∣
≤ 2−4d · 2−5d · 24d ≤ 2−5d � 1

6
· 2−4d.

Following the same calculations as before, it follows that Bob solves the problem with advantage
at least 1

6 · 2
−4d.

5.2 XOR Lemma for Q‖pub for the Boolean Hidden Matching Problem

Our main technical result in this section is an XOR lemma for Q‖pub protocols with regards to the
Boolean Hidden Matching problem.

Lemma 1.3. Let C be any Q‖pub protocol of cost c. Then its advantage in computing the ⊕k-

Boolean Hidden Matching problem is at most Ok

(
(c/k)3

n

)k/2
+Ok(n

−k/2).

To prove this lemma, we will make use of some properties which are very similar to those
proved in [GKK+07]. The proofs of the facts are deferred to the appendix. Let M be the uniform
distribution on matchings on [n] of size m = αn and U be the uniform distribution on {−1, 1}n.
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Definition 5.3 (M matches S). Let S ⊆ [nk] and M ∈ supp(M⊗k). We say that M matches S
if M is an induced perfect matching on S. If M matches S, we use M(S) ⊆ [mk] to denote the
subset of edges of this induced perfect matching.

Observe that the map T = M(S) defines a bijection between sets S that are matched by M
and subsets T ⊆ [mk]. Furthermore, |T | = |S|/2 and for any i ∈ [k], |Ti| is odd if and only if |Si|/2
is odd. We now define some sets that will be important in the proof.

Definition 5.4. Let Sn,k := {S ⊆ [nk] : ∀i ∈ [k], |Si|/2 is an odd integer} and Tn,k := {T ⊆ [mk] :
∀i ∈ [k], |Ti| is an odd integer}. Define S`n,k := {S ∈ Sn,k : |S| = 2`} and T `n,k := {T ∈ Tn,k : |T | =
`} for all ` ∈ [mk].

The aforementioned map T = M(S) provides a bijection between sets S ∈ S`n,k that are

matched by M and sets T ∈ T `n,k. The following facts can be proved using techniques in [GKK+07].

Fact 5.5. Let S ⊆ [nk] and M ∈ supp(M⊗k). Then, for any w ∈ {−1, 1}mk, the quantity

E
x∼U⊗k

[1[Mx = w] · χS(x)]

is non-zero if and only if M matches S. Furthermore, if it is non-zero, it equals 2−mk · χM(S)(w).

Fact 5.6. Let S ⊆ [nk] with |S| = 2`. Then,

Pr
M∼M⊗k

[M matches S] ≤ O`
(

``

(nk)`

)
.

We now prove our main lemma of this subsection.

Proof of Lemma 1.3. We assume that (c/k)3/2 ≤ τ · n1/2 for some small constant τ > 0, otherwise
the statement of the lemma is vacuously true. We will construct distributions on the yes and no
instances of the ⊕k-Boolean Hidden Matching problem such that no small cost Q‖ protocol can
distinguish them with considerable advantage. Consider the following two distributions.

• N is a distribution on no-instances of BHMm,n: A random sample of N is of the form
(x,M, y) where x ∼ U , M ∼M and y := Mx.

• Y is a distribution on yes-instances of BHMm,n defined similarly to N except that y := Mx.

Define two distribution µ
(k)
1 , µ

(k)
−1 on inputs to the ⊕k-Boolean Hidden Matching problem as follows.

µ
(k)
1 :=

1

2k−1

∑
K⊆[k]
|K| is even

YKNK and µ
(k)
−1 :=

1

2k−1

∑
K⊆[k]
|K| is odd

YKNK . (7)

Recall that YKNK is a product of k independent distributions, where the i-th distribution is Y
if i ∈ K and is N if i /∈ K. Clearly µ

(k)
−1 and µ

(k)
1 are distributions on the yes and no instances

respectively of the ⊕k-Boolean Hidden Matching problem.

Consider any Q‖ protocol with c qubits of communication and let H be a Hilbert space of
dimension 2c. Such a protocol can be described by density matrices ρ(x) ∈ S(H) and σM (y) ∈ S(H)
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for every x ∈ {−1, 1}nk, y ∈ {−1, 1}mk and M ∈ supp(M⊗k). The state received by Charlie on
these inputs is precisely ρ(x) ⊗ σM (y). We will show that the trace distance between the states

E(x,M,y)∼µ(k)1

[ρ(x)⊗ σM (y)] and E(x,M,y)∼µ(k)−1

[ρ(x)⊗ σM (y)] is at most Ok

(
(c/k)3k/2

nk/2

)
. Since the

trace distance measures the maximal distinguishing probability between the two states, this, along
with Yao’s principle would complete the proof. Towards this, define

∆ := E
(x,M,y)∼µ(k)1

[ρ(x)⊗ σM (y)]− E
(x,M,y)∼µ(k)−1

[ρ(x)⊗ σM (y)] .

Using the definition of µ
(k)
1 and µ

(k)
−1 in Eq. (7), we have

∆ ,
∑
K⊆[k]

(−1)|K|

2k−1
· E
x∼U⊗k
M∼M⊗k

[
ρ(x)⊗ σM

(
(Mx)K(Mx)K

)]
.

We introduce a variable w ∈ {−1, 1}mk to represent Mx so that

∆ =
∑

w∈{−1,1}mk
K⊆[k]

(−1)|K|

2k−1
· E
x∼U⊗k
M∼M⊗k

[
ρ(x)⊗ σM

(
wKwK

)
· 1[Mx = w]

]
.

We expand ρ(x) in the Fourier Basis to obtain

∆ =
∑

w∈{−1,1}mk
K⊆[k]
S⊆[nk]

(−1)|K|

2k−1
· E
x∼U⊗k
M∼M⊗k

[
ρ̂(S)⊗ σM

(
wKwK

)
· [1[Mx = w] · χS(x)]

]
.

Consider the term E
x∼U⊗k

[1[Mx = w] · χS(x)]. By Fact 5.5, this term is non-zero if and only

if M matches S, in which case the term evaluates to 2−mk · χM(S)(w). Substituting this in the
equation above, we have that ∆ equals∑

w∈{−1,1}mk
K⊆[k]
S⊆[nk]

(−1)|K|

2k−1
E

M∼M⊗k

[
ρ̂(S)⊗ σM

(
wKwK

)
· 2−mk · χM(S)(w) · 1[M matches S]

]
. (8)

We now expand σM
(
wKwK

)
in the Fourier basis with respect to w. Consider∑

K⊆[k]

(−1)|K| · σM
(
wKwK

)
=
∑
K⊆[k]

(−1)|K| ·
∑

T⊆[mk]

σ̂M (T ) · χT (wK , wK)

=
∑
K⊆[k]
T⊆[mk]

(−1)|K| · σ̂M (T ) · χT (w) · (−1)
∑
i∈K |Ti|

=
∑

T⊆[mk]

σ̂M (T ) · χT (w) ·
∑
K⊆[k]

[
(−1)|K|+

∑
i∈K |Ti|

]
.

For i ∈ [k], let ti = −1 if |Ti| is odd and ti = 1 if |Ti| is even. Observe that

E
K⊆[k]

[
(−1)|K|+

∑
i∈K |Ti|

]
= E

K⊆[k]

[
χK(−t1, . . . ,−tk)

]
=

{
1 if ∀i ∈ [k], ti = −1,

0 otherwise.
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Hence, the quantity
∑

K⊆[k]

[
(−1)|K|+

∑
i∈K |Ti|

]
is non-zero if and only if |Ti| is odd for all i ∈ [k].

Furthermore, if it is non-zero, then it equals 2k. Recall that we defined Tnk := {T ⊆ [mk] : ∀i ∈
[k], |Ti| is odd} in Definition 5.4. Using this, we have∑

K⊆[k]

(−1)|K| · σM
(
wKwK

)
= 2k ·

∑
T∈Tn,k

σ̂M (T ) · χT (w). (9)

Substituting this in Eq. (8), we have that ∆ equals

2
∑

w∈{−1,1}mk
S⊆[nk]

E
M∼M⊗k

ρ̂(S)⊗
∑

T∈Tn,k

σ̂M (T ) · 2−mk · χM(S)(w) · χT (w) · 1[M matches S]



= 2
∑
S⊆[nk]

E
M∼M⊗k

ρ̂(S)⊗
∑

T∈Tn,k

σ̂M (T ) · E
w∼{−1,1}mk

[χM(S)+T (w)] · 1[M matches S]

 .
Observe that if M matches S, then Ew∼{−1,1}mk

[
χM(S)+T (w)

]
equals 1 if T = M(S) and 0 other-

wise. Recall that the sets S ⊆ [nk] such that M matches S and M(S) ∈ Tn,k are precisely those
sets in Sn,k that are matched by M . Hence,

∆ =
∑

S∈Sn,k

ρ̂(S)⊗ EM [σ̂M (M(S)) · 1[M matches S]] .

We now upper bound ‖∆‖1 by triangle inequality as follows.

‖∆‖1 ≤
∑

S∈Sn,k

‖ρ̂(S)‖1 ⊗ EM [‖σ̂M (M(S))‖1 · 1[M matches S]] .

We partition Sn,k and Tn,k into t`S`nk and t`T `n,k based on the size of the sets as in Definition 5.4.
Observe that every set in Sn,k has size at least 2k and every set in Tn,k has size at least k. Thus,

‖∆‖1 ≤
mk∑
`=k

∑
S∈S`k,n

‖ρ̂(S)‖1 ⊗ EM
[
‖σ̂M (M(S))‖1 · 1[M matches S]

]
. (10)

We now apply Cauchy-Schwarz to conclude that

E
M∼M⊗k

[
‖σ̂M (M(S))‖1 · 1[M matches S]

]
≤
√

E
M∼M⊗k

[
‖σ̂M (M(S))‖21 · 1[M matches S]

]
·
√

Pr
M∼M⊗k

[M matches S].

Fact 5.6 implies that for any S ∈ T `n,k, we have Pr
M∼M⊗k

[M matches S] ≤ O`

(
``

(nk)`

)
. Substituting

this in Eq. (10) implies that

‖∆‖1 ≤
mk∑
`=k

∑
S∈S`nk

‖ρ̂(S)‖1 ·
√
EM

[
‖σ̂M (M(S))‖21 · 1[M matches S]

]
·O`

(
``/2

(nk)`/2

)
.
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Again, by Cauchy-Schwarz, we have

‖∆‖1 ≤
mk∑
`=k

√√√√ ∑
S∈S`n,k

‖ρ̂(S)‖21 ·
√√√√ ∑

S∈S`n,k

EM
[
‖σ̂M (M(S))‖21 · 1[M matches S

]
·O`

(
``/2

(nk)`/2

)
.

By the aforementioned correspondence between sets S ∈ S`n,k such that M matches S and sets

T ∈ T `n,k, we have

‖∆‖1 ≤
mk∑
`=k

√√√√ ∑
S∈S`n,k

‖ρ̂(S)‖21 ·
√√√√ ∑

T∈T `n,k

EM
[
‖σ̂M (T )‖21

]
·O`

(
``/2

(nk)`/2

)
. (11)

We now apply the Matrix level-k inequality in Corollary 2.5 to the functions ρ : {−1, 1}n → S(H)
and σM : {−1, 1}m → S(H) where H is a Hilbert space of dimension 2c. Corollary 2.5 implies that∑

|S|=2`

‖ρ̂(S)‖21 ≤ O`
(

(c/`)2`
)

+O`(1) and
∑
|T |=`

‖σ̂M (T )‖21 ≤ O`
(

(c/`)`
)

+O`(1).

Substituting this in Eq. (11), we get

‖∆‖1 ≤
mk∑
`=k

√ ∑
S:|S|=2`

‖ρ̂(S)‖21 ·
√ ∑
T :|T |=`

EM
[
‖σ̂M (T )‖21

]
·O`

(
``/2

(nk)`/2

)

≤
mk∑
`=k

max

(
O`

(
c3`/2

`3`/2

)
, O`(1)

)
·O`

(
``/2

(nk)`/2

)

≤
mk∑
`=k

O`

(
c3`/2

``(nk)`/2

)
+

mk∑
`=k

O`

(
``/2

(nk)`/2

)
.

Since ` ≤ mk = α · nk for a sufficiently small constant α > 0, the function ``/2/(nk)`/2 is ex-
ponentially decaying for ` ∈ [k,mk] and hence the second term is at most Ok

(
n−k/2

)
. Our as-

sumption that (c/k)3/2 ≤ τ · n1/2 for a sufficiently small constant τ > 0 implies that the function
c3`/2/(``(nk)`/2) is exponentially decaying for ` ∈ [k,mk] and hence, the first term above is at most

Ok

(
(c/k)3k/2

nk/2

)
. Together, we have

‖∆‖1 ≤ Ok

(
(c/k)3k/2

nk/2

)
+Ok(n

−k/2).

This completes the proof of Lemma 1.3.

5.3 XOR Lemma for R1 for the Boolean Hidden Matching Problem

In this subsection, we prove Lemma 1.4 which we restate here for convenience.

Lemma 1.4. Let C be any R1 protocol of cost c. Then its advantage in computing the ⊕k-Boolean

Hidden Matching problem is at most Ok

(
(c/k)2

n

)k/2
+Ok(n

−k/2).
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Proof of Lemma 1.4. The proof of this lemma will be similar to the proof of Lemma 1.3 and
hence we will follow similar notation. Let z ∈ {−1, 1}c be any c-bit message sent by Alice and
let Az ⊆ {−1, 1}nk be the set of Alice’s inputs for which Alice would have sent z to Bob. Let
g(x) = 1[x ∈ Az]. Fix any M ∈ supp(M⊗k). Similar to Lemma 1.3, let NM (y) be the distribution
on y ∈ {−1, 1}mk induced by sampling x ∼ Az and letting y = Mx. Let YM (y) be similarly

defined with y := Mx. So we have that NM (y) = |{x∈Az |Mx=y}|
|Az | and YM (y) =

|{x∈Az |Mx=y}|
|Az | for

all y ∈ {−1, 1}mk. Define

µ
(k)
1 :=

1

2k−1

∑
K⊆[k]
|K| is even

YMK NM
K

and µ
(k)
−1 :=

1

2k−1

∑
K⊆[k]
|K| is odd

YKNM
K
. (12)

Below we show that for a typical M ∼M⊗k, these two distributions are close in total variational dis-
tance. By arguments similar to [GKK+07], this would complete the proof. To this end, let

∆Az := E
M∼M⊗k

[∥∥∥µ(k)
1 − µ

(k)
−1

∥∥∥
1

]
.

By Eq. (12), we have µ
(k)
1 − µ

(k)
−1 = 21−k ·

∑
K⊆[k](−1)|K|YMK NM

K
. Hence

∆2
Az ≤ 2mk · EM

[∥∥∥µ(k)
1 − µ

(k)
−1

∥∥∥2

2

]
= 2mk · EM

2−2k+2 ·

∥∥∥∥∥∥
∑
K⊆[k]

YMK NM
K

(−1)|K|

∥∥∥∥∥∥
2

2

 ,
where the first inequality is by the Cauchy-Schwarz inequality. By Parseval’s theorem, we have

∆2
Az ≤ 22mk−2k+2 · EM

 ∑
T⊆[mk]
T 6=∅

 ∑
K⊆[k]

ŶMK NM
K

(T )(−1)|K|

2
 . (13)

Observe that

ŶMK NM
K

(T ) =
1

2mk

∑
y∈{−1,1}mk

(
YMK NM

K

)
(y) · χT (y)

=
1

2mk · |Az|

( ∣∣{x ∈ Az|χT ((Mx)K(Mx)K
)

= 1
}∣∣

−
∣∣{x ∈ Az ∣∣χT ((Mx)K(Mx)K

)
= −1

}∣∣ )
=

1

2mk · |Az|

( ∣∣∣{x ∈ Az ∣∣∣χT (Mx) = (−1)
∑
i∈K |Ti|

}∣∣∣
−
∣∣∣{x ∈ Az ∣∣∣χT (Mx) 6= (−1)

∑
i∈K |Ti|

}∣∣∣ )
=

1

2mk

∑
y∈{−1,1}mk

N⊗k(y) · χT (y) · (−1)
∑
i∈K |Ti|

= N̂⊗k(T ) · (−1)
∑
i∈K |Ti|.

By an argument analogous to [GKK+07, Eq. (3)], we have N̂⊗k(T ) = 2nk

|Az |·2mk · ĝ(M †T ). Hence∑
K⊆[k]

ŶMK NM
K

(T ) · (−1)|K| =
2nk

2mk · |Az|
· ĝ(M †T ) ·

∑
K⊆[k]

(−1)|K|+
∑
i∈K |Ti|. (14)
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As we saw in Eq. (9), the term
∑

K⊆[k](−1)|K|+
∑
i∈K |Ti| is 2k if |Ti| is odd for all i ∈ [k] and zero

otherwise. Hence, the R.H.S. of Eq. (14) is non-zero only if T ∈ Tn,k (defined in Definition 5.4),

and in this case equals 2nk

2mk·|Az | · ĝ(M †T ) ·2k. Substituting this in Eq. (13), we have that ∆2
Az

equals

22mk−2k+2 · EM

 ∑
T∈Tn,k

22nk+2k

22mk · |Az|2
ĝ(M †T )2

 = 4 · EM

 ∑
T∈Tn,k

22n

|Az|2
ĝ(M †T )2

 .
Recall the correspondence between Tn,k and Sn,k as in Definition 5.4. For every S ∈ Sn,k, there is
at most one T ∈ Tn,k such that M †T = S, furthermore, such a T exists if and only if M matches S.
Hence we have that

∆2
Az ≤ 4 · EM

 ∑
S∈Sn,k

22n

|Az|2
ĝ(S)2 · 1[M matches S]


= 4 ·

mk∑
`=k

∑
S∈S`n,k

22n

|Az|2
ĝ(S)2 · Pr

M
[M matches S] ≤

mk∑
`=k

 ∑
|S|=2`

22n

|Az|2
ĝ(S)2

 ·O`( ``

(nk)`

)
,

where we used Fact 5.6. Let µ(Az) = |Az |
2n . Applying Lemma 2.3, we have

∆2
Az ≤

mk∑
`=k

(
2e · ln

(
e

µ(Az)1/(2`)

))2`
·O`

(
``

(nk)`

)
.

We now take square root on both sides (and use concavity of the square root function) to get

∆Az ≤
mk∑
`=k

(
2e · ln

(
e

µ(Az)1/(2`)

))`
·O`

(
``/2

(nk)`/2

)
.

We now multiply both sides by µ(Az) and add over all 2c possibilities for the transcript z ∈ {−1, 1}c.

∆ :=
∑

z∈{−1,1}c
∆Az ≤

∑
z∈{−1,1}c

µ(Az) ·
mk∑
`=k

(
2e · ln

(
e

µ(Az)1/(2`)

))`
·O`

(
``/2

(nk)`/2

)
.

We now use the concavity of the function h′(γ) = γ · ln(e/γ1/2`)` for γ ∈ [0, 1] and all ` ∈ N,
(similarly to the proof in Section 3.2) to conclude that

∆ ≤
mk∑
`=k

 ∑
z∈{−1,1}c

µ(Az)

 ·
2e · ln

 e · 2c/(2`)(∑
z∈{−1,1}c µ(Az)

)1/(2`)



`

·O`

(
``/2

(nk)`/2

)
.

We use the fact that
∑

z∈{−1,1}c µ(Az) = 1 to conclude that

∆ ≤
mk∑
`=k

(
2e · ln

(
e · 2c/(2`)

))`
·O`

(
``/2

(nk)`/2

)
≤

mk∑
`=k

O`

(
``/2

(nk)`/2

)
+

mk∑
`=k

O`

(
c`

(`nk)`/2

)
.

As before, the first term is at most O(n−k/2). The assumption that c ·k ≤ τ ·n1/2 for a small enough

constant τ > 0 implies that the function c`

(`nk)`/2
is exponentially decaying for ` ∈ [k,mk]. Hence,

the second term is at most O`

(
(c/k)k

nk/2

)
. This, along with the techniques of [GKK+07] completes

the proof of Lemma 1.4.

30



References

[AA15] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates
quantum from classical computing. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 307–316, 2015.

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the forty-second
ACM symposium on Theory of computing, pages 141–150, 2010.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via
communication complexity. computational complexity, 21(2):311–358, 2012.

[BCW98] Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical commu-
nication and computation. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 63–68, 1998.

[BCWW01] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fin-
gerprinting. Physical Review Letters, 87(16):167902, 2001.

[BJK08] Ziv Bar-Yossef, Thathachar S Jayram, and Iordanis Kerenidis. Exponential separa-
tion of quantum and classical one-way communication complexity. SIAM Journal on
Computing, 38(1):366–384, 2008.

[BRSW11] Harry Buhrman, Oded Regev, Giannicola Scarpa, and Ronald de Wolf. Near-optimal
and explicit bell inequality violations. In 2011 IEEE 26th Annual Conference on
Computational Complexity, pages 157–166, 2011.

[BRW08] Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A hypercontractive inequality
for matrix-valued functions with applications to quantum computing and ldcs. In 2008
49th Annual IEEE Symposium on Foundations of Computer Science, pages 477–486.
IEEE, 2008.

[BS21] Nikhil Bansal and Makrand Sinha. k-forrelation optimally separates quantum and clas-
sical query complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 1303–1316, 2021.

[CH19] Matthew Coudron and Aram W. Harrow. Universality of EPR pairs in entanglement-
assisted communication complexity, and the communication cost of state conversion.
In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New
Brunswick, NJ, USA, volume 137 of LIPIcs, pages 20:1–20:25, 2019.

[FMP+15] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de
Wolf. Exponential lower bounds for polytopes in combinatorial optimization. Journal
of the ACM (JACM), 62(2):1–23, 2015.

[Gav08] Dmitry Gavinsky. On the role of shared entanglement. Quantum Inf. Comput., 8(1):82–
95, 2008.

[Gav09] Dmytro Gavinsky. Classical interaction cannot replace quantum nonlocality, 2009.

[Gav19] Dmitry Gavinsky. Quantum versus classical simultaneity in communication complex-
ity. IEEE Transactions on Information Theory, 65(10):6466–6483, 2019.

31



[Gav20] Dmitry Gavinsky. Bare quantum simultaneity versus classical interactivity in commu-
nication complexity. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 401–411, 2020.

[GKdW06] Dmytro Gavinsky, Julia Kempe, and Ronald de Wolf. Strengths and weaknesses of
quantum fingerprinting. 2006.

[GKK+07] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separations for one-way quantum communication complexity, with appli-
cations to cryptography. In Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pages 516–525, 2007.

[GKRW06] Dmitry Gavinsky, Julia Kempe, Oded Regev, and Ronald de Wolf. Bounded-error
quantum state identification and exponential separations in communication complex-
ity. In Proceedings of the thirty-eighth annual ACM symposium on Theory of Comput-
ing, pages 594–603, 2006.

[GRT22] Uma Girish, Ran Raz, and Avishay Tal. Quantum versus randomized communication
complexity, with efficient players. computational complexity, 31(2):17, 2022.

[GRZ21] Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM, volume 207 of LIPIcs, pages 52:1–52:14, 2021.

[HHL18] Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR
functions. SIAM J. Comput., 47(1):208–217, 2018.

[HN12] Trinh Huynh and Jakob Nordstrom. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time-space trade-offs in proof complexity. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
233–248, 2012.

[JKN07] Rahul Jain, Hartmut Klauck, and Ashwin Nayak. Direct product theorems for com-
munication complexity via subdistribution bounds. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pages 599–608, 2007.

[JRS05] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Prior entanglement, message
compression and privacy in quantum communication. In 20th Annual IEEE Conference
on Computational Complexity (CCC’05), pages 285–296, 2005.

[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for
approximating max-cut. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1263–1282, 2014.

[KR11] Bo’az Klartag and Oded Regev. Quantum one-way communication can be exponen-
tially stronger than classical communication. In Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing, page 31–40, 2011.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower
bounds via the direct sum in communication complexity. Computational Complexity,
5(3):191–204, 1995.

32



[KW90] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990.

[Lee19] Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In 34th
Computational Complexity Conference, CCC, volume 137 of LIPIcs, pages 7:1–7:25,
2019.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-
tures and asymmetric communication complexity. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, pages 103–111, 1995.

[MO10] Ashley Montanaro and Tobias Osborne. On the communication complexity of xor
functions, 2010.

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Infor-
mation processing letters, 39(2):67–71, 1991.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[Raz95] Ran Raz. Fourier analysis for probabilistic communication complexity. Comput. Com-
plex., 5(3/4):205–221, 1995.

[Raz99] Ran Raz. Exponential separation of quantum and classical communication complexity.
In Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 358–367, 1999.

[RT22] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. ACM Journal of the
ACM (JACM), 69(4):1–21, 2022.

[Shi05] Yaoyun Shi. Tensor norms and the classical communication complexity of nonlocal
quantum measurement. In Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pages 460–467, 2005.

[SSW21] Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An optimal separation of
randomized and quantum query complexity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1289–1302, 2021.

[SZ08] Yaoyun Shi and Zhiqiang Zhang. Communication complexities of xor functions. arXiv
preprint arXiv:0808.1762, 2008.

[TWXZ13] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity,
spectral norm, and the log-rank conjecture. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 658–667, 2013.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In Proceedings of the eleventh annual ACM symposium on Theory
of computing, pages 209–213, 1979.

[Yu22] Huacheng Yu. Strong XOR lemma for communication with bounded rounds : (ex-
tended abstract). In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pages 1186–1192, 2022.

33



[Zha14] Shengyu Zhang. Efficient quantum protocols for xor functions. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1878–1885.
SIAM, 2014.

A Proofs in Section 3

Proof of Theorem 1.1 using Lemma 1.1. The quantum upper bound is presented in [GRZ21, The-
orem 3.8]. We describe it below for completeness. Let t = Θ(k5 log3 n log k). For every x(i), y(i) ∈
{−1, 1}n given as input to Alice and Bob, Alice sends |x(i)〉 = 1√

n

∑
j∈[n] x

(i)
j |j〉, and Bob sends

|y(i)〉 = 1√
n

∑
j∈[n] y

(i)
j |j〉 to the referee. The referee performs a swap test between |x(i)〉 and

Hn |y(i)〉 and the bias of the swap test is precisely forr(x(i), y(i)), which we are promised is either
at least ε/2 or at most ε/4 for every i ∈ [k] where ε = Θ

(
1

k2 lnn

)
. The referee takes the threshold of

t = Θ
(
k · log k · k4 ln2 n

)
many swap tests and a simple calculation similar to [GRZ21] shows that

the referee can decide forr(⊕k) with probability at least 2/3.

The classical lower bound uses Lemma 1.1 and [GRZ21]. In more detail, [GRZ21] define

two distributions µ̃
(k)
1 and µ̃

(k)
−1 and prove that these distribution put considerable mass (at least

1 − 1/poly(n)) on the yes and no instances of the ⊕k-Forrelation problem respectively [GRZ21,
Lemma 2.11]. They also show [GRZ21, Theorem 3.1] that for any restriction-closed family H of
Boolean functions on 2kn variables with outputs in [−1, 1], the maximum advantage that functions

in H have in distinguishing µ̃
(k)
1 and µ̃

(k)
−1 is at most O

(
L1,2k(H) · n−k/2

)
+ o

(
n−k/2

)
.

Let c = τ · n1/4 for a small enough constant τ > 0. Let H be the set of all XOR-fibers of R2∗

protocols of cost at most c that use ρ as the entangled state. It is not too hard to show that this
family is closed under restrictions. Using the aforementioned results, as well as Lemma 1.1, we
conclude that for all H ∈ H,∣∣∣∣∣ E

z∼µ̃(k)1

[H(z)]− E
z∼µ̃(k)−1

[H(z)]

∣∣∣∣∣ ≤ Ok (25d · c2k · n−k/2
)

+ o(n−k/2) ≤ Ok(25k · τ2k).

In the last step, we used the fact that d ≤ k and c = τ ·n1/4. Setting τ � 1 to be a sufficiently
small constant, the R.H.S. of the above equation is at most 1/5. This completes the proof.

B Proofs in Section 3

We prove Claim 3.7 in this section. We begin by describing the structure of R2∗ protocols that
share a state ρ ∈ S(HA⊗HB) with communication cost c. Without loss of generality, the protocol
can be described as follows. Alice and Bob could each have private memory consisting of m qubits.
Say H′A and H′B are Hilbert spaces of dimension 2m. Note that the dimension m could potentially
be very large. Consider a k-round protocol. Suppose Alice and Bob got x, y respectively. Below
we let |Φ0〉 = |Φ〉 ⊗ |0m〉 〈0m|A ⊗ |0m〉 〈0m|B, z0 = ∅ and t = 0. Here, the subscript A,B on a qubit
denotes which player has that qubit.

Consider the (t+ 1)th round of the protocol. Suppose Alice and Bob had exchanged messages
z1, . . . , z2t ∈ {−1, 1} in the first t rounds. Without loss of generality, we can assume that each
player sends at most one bit in each round. This assumption can increase the communication
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cost by a factor of at most two. Alice first applies a two-outcome POVM {M t+1
z2t+1

(x, z1, . . . , z2t) :
z2t+1 ∈ {−1, 1}} on the registers that she owns (i.e., her part of the shared state as well her
memory). Alice sends the POVM outcome z2t+1 ∈ {−1, 1} to Bob. Based on this message z2t+1,
his input y and the transcript z1, . . . , z2t ∈ {−1, 1}, Bob applies applies a two-outcome POVM
{N t+1

z2t+2
(y, z1, . . . , z2t+1) : z2t+2 ∈ {−1, 1}} on the qubits that he owns (his part of the shared state

and his memory). He sends the POVM outcome z2t+2 ∈ {−1, 1} to Alice. Let the resulting state of
all the qubits after the (t+ 1)th round be |Φt+1〉. They repeat this for k rounds after which Alice
evaluates some predicate A on z and returns the answer as the output. We say that a protocol
has cost c, if the size of the transcript is at most c bits. We can assume that there are d c2e rounds
and that the players in fact communicate for exactly d c2e rounds, where c is the communication
complexity of the protocol on the worst case inputs.

Proof of Claim 3.7. Let A ⊆ {−1, 1}n denote the set of z ∈ {−1, 1}n that satisfy the final predicate
and let k = d c2e. Let z ∈ {−1, 1}c. Since x, y ∈ {−1, 1}n are fixed throughout this proof, for
simplicity of notation, for any j ∈ [k], let

M j
z := M j

z2j−1
(x, z1, . . . , z2j−2) and N j

z := N j
z2j (x, z1, . . . , z2j−1),

M≤jz :=
1∏

j′=j

M j′
z and N≤jz :=

1∏
j′=j

N j′
z .

Let Mz = M≤kz and Nz = N≤kz . Note that the M j
z are functions of x, z and N j

z are functions of y, z.
Finally, let Ez(x) := Mz

†Mz and Fz(y) := Nz
†Nz. It is clear that properties 1 and 2 are satisfied

by Ez and Fz. It is straightforward to see from the definition of R2∗ protocols that the expected
output of the protocol is precisely

C(x, y)

= (−1) ·
∑
z∈A

Tr
(

(Mz ⊗Nz) ρ
′
(
M †z ⊗N †z

))
+ 1 ·

∑
z /∈A

Tr
(

(Mz ⊗Nz) ρ
′
(
M †z ⊗N †z

))
=

∑
z∈{−1,1}c

Tr
(
(Ez(x)⊗ Fz(y)) ρ′

)
· (−1)1[z∈A].

It only remains to prove property 3. Consider:

(∗) :=
∑

z∈{−1,1}c
Ez(x)⊗ Fz(y)

,
∑

z∈{−1,1}2k

[(
M≤kz

)†
·
(
M≤kz

)]
⊗
[(
N≤kz

)†
·N≤kz

]

=
∑

z∈{−1,1}2k−1

[(
M≤kz

)†
·
(
M≤kz

)]
⊗

(N≤k−1
z

)†
·

 ∑
z2k∈{−1,1}

(
Nk
z

)†
·Nk

z

 · (N≤k−1
z

)
The last equality used the fact that the operators N≤k−1

z and M≤kz do not depend on z2k. For all
z ∈ {−1, 1}2k−1,

{
Nk
z : z2k ∈ {−1, 1}

}
is a two-outcome POVM, thus,∑

z2k∈{−1,1}

(
Nk
z

)†
·Nk

z = I.
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Let N =
(
N≤k−1
z

)† ·N≤k−1
z . Substituting this above, we have

(∗) =
∑

z∈{−1,1}2k−1

[(
M≤kz

)†
·M≤kz

]
⊗N

=
∑

z∈{−1,1}2k−2

(M≤k−1
z

)†
·

 ∑
z2k−1∈{−1,1}

(
Mk
z

)†
·Mk

z

 · (M≤k−1
z

)⊗N.
The last equality used the fact that the operators M≤k−1

z and N =
(
N≤k−1
z

)† ·N≤k−1
z don’t depend

on z2k−1. For all z ∈ {−1, 1}2k−2,
{
M j
z : z2k−1 ∈ {−1, 1}

}
is a two-outcome POVM, thus,

∑
z2k−1∈{−1,1}

(
Mk
z

)†
·Mk

z = I.

Substituting this above, we have

(∗) =
∑

z1,...,z2k−2∈{−1,1}

[(
M≤k−1
z

)†
·
(
M≤k−1
z

)]
⊗
[(
N≤k−1
z

)†
·
(
N≤k−1
z

)]
= . . . = I by induction on k.

This proves property 3 and completes the proof of Claim 3.7.

C Quantum upper bound in Theorem 1.3.

We discuss the quantum upper bound for a single instance of the Boolean Hidden Matching prob-
lem (this is similar to the protocol in [BRSW11]). Here Alice and Bob share the quantum state

1√
n

∑n
i=1 |i〉A |i〉B. Alice applies the transformation |i〉A → (−1)xi |i〉A and transforms the state to

1√
n

∑
i∈[n](−1)xi |i〉A |i〉B . Bob now measures his register in the matching basis, in particular, he

completes his α-partial matching arbitrarily to a complete matching. Let the resulting complete
matching be {(ei, ej)} wherein α-fraction of the edges belong to E . Now Bob measures in the basis
{|ei〉〈ei|+ |ej〉〈ej |}. Now, Bob obtains a uniformly random edge in the matching (known to him).
Furthermore, with probability 1/α, the obtained edge was in E . Say he obtained (ei, ej) ∈ E . The
state then collapses to

1√
2

(
(−1)xi |i〉 |i〉+ (−1)xj |j〉 |j〉

)
. (15)

Note that Bob knows the edge (i, j). Now, both Alice and Bob apply the (logn)-qubit Hadamard
gate on their respective registers, the resulting state is given by

1√
2n

∑
a,b∈{0,1}logn

(
(−1)xi+(a+b)·i + (−1)xj+(a+b)·j

)
|a, b〉 .

Now observe that if Alice and Bob measure their respective registers, Alice obtains a uniformly
random, Bob obtains b satisfying (i⊕ j) · (a⊕ b) = xi + xj . Alice sends a and Bob sends (i, j), yij
as well as b to the referee. The referee now can now compute (i ⊕ j) · (a ⊕ b) and learn xi ⊕ xj .
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The referee returns no if yij = xi ⊕ xj , and returns yes if yij = xi ⊕ xj . This solves the Boolean
Hidden Matching Problem. Observe that this protocol succeeds with probability α (which is the
probability that Bob’s measurement gives an edge in his matching input).

In order to compute BHM
(⊕k)
m,n Alice and Bob perform the following: for every i ∈ [k], they

carry out the protocol O((log k)/α) many times and send all their outcomes to the referee. With
probability at least 9/10, the measurement collapses to an edge in the matching, which Bob knows
and can communicate to the referee. For this edge, the referee checks the predicate if yij = xi⊕ xj
is satisfied or not and hence knows the value of BHMm,n(xi, yi). Hence after O((log k)/α) bits of

communication, the referee knows BHMm,n(xi, yi) for all i ∈ [k] and hence BHM
(⊕k)
m,n .

C.1 Proofs in Section 5.2

Proof of Fact 5.6. Let |Si| = 2`i for i ∈ [k] such that
∑

i∈[k] `i = `. It is argued in [GKK+07] that
the probability that a random matching on [n] of size m = αn matches any given set of size 2`i is

precisely
(αn`i )

( n
2`i

)
. Furthermore they showed that

(αn`i )

( n
2`i

)
is a decreasing function of `i, and is at most

O`i
(
(`i/n)`i

)
. Thus, the probability that M matches S is

g(`1, . . . , `k) =
∏
i∈[k]

(
αn
`i

)(
n

2`i

) ≤ (max
i∈[k]

(
αn
`i

)(
n

2`i

))k ≤ ( (αn`/k)(
n

2`/k

))k = O`

(
``

(nk)`

)
.
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