Distributional PAC-Learning from Nisan’s Natural Proofs

Ari Karchmer†

November 30, 2023

Abstract

Do natural proofs imply efficient learning algorithms? Carmosino et al. (2016) demonstrated that natural proofs of circuit lower bounds for Λ imply efficient algorithms for learning Λ-circuits, but only over the uniform distribution, with membership queries, and provided $\text{AC}^0[p] \subseteq \Lambda$. We consider whether this implication can be generalized to $\Lambda \not\supseteq \text{AC}^0[p]$, and to learning algorithms which use only random examples and learn over arbitrary example distributions (Valiant’s PAC-learning model).

We first observe that, if, for any circuit class Λ, there is an implication from natural proofs for Λ to PAC-learning for Λ, then standard assumptions from lattice-based cryptography do not hold. In particular, we observe that depth-2 majority circuits are a (conditional) counter example to the implication, since Nisan (1993) gave a natural proof, but Klivans and Sherstov (2009) showed hardness of PAC-learning under lattice-based assumptions. We thus ask: what learning algorithms can we reasonably expect to follow from Nisan’s natural proofs?

Our main result is that all natural proofs arising from a type of communication complexity argument, including Nisan’s, imply PAC-learning algorithms in a new distributional variant (i.e., an "average-case" relaxation) of Valiant’s PAC model. Our distributional PAC model is stronger than the average-case prediction model of Blum et al. (1993) and the heuristic PAC model of Nanashima (2021), and has several important properties which make it of independent interest, such as being boosting-friendly. The main applications of our result are new distributional PAC-learning algorithms for depth-2 majority circuits, polytopes and DNFs over natural target distributions, as well as the nonexistence of encoded-input weak PRFs that can be evaluated by depth-2 majority circuits.
1 Introduction

Razborov and Rudich [RR97] introduced the concept of natural proofs of circuit lower bounds. Informally, a natural proof of a lower bound for a circuit class \(\Lambda \) encodes an efficient algorithm that can be used to distinguish between the truth tables of simple Boolean functions (those with “small” \(\Lambda \)-circuit complexity), and random Boolean functions. Razborov and Rudich essentially showed that natural proofs for a circuit class \(\Lambda \) rule out the existence of a cryptographic pseudorandom function (PRF) computable by \(\Lambda \).

Carmosino et al. [CIKK16] strengthened the result of [RR97] by demonstrating that, provided \(\text{AC}^0[p] \subseteq \Lambda \), natural proofs of circuit lower bounds for \(\Lambda \)-circuits of size up to \(u(n) \) imply algorithms for learning \(\text{poly}(n) \) size \(\Lambda \)-circuits with membership queries over the uniform distribution, in time exponential in \(u^{-1}(\text{poly}(n)) \).

As a corollary, [CIKK16] obtained a state-of-the-art quasipolynomial time learning algorithm for \(\text{AC}^0[p] \)-circuits (with membership queries, over the uniform distribution), using the natural proofs for subexponential size \(\text{AC}^0[p] \)-circuits, for any prime \(p \), of Razborov and Smolensky [Raz87, Smo87].

Since the result of [CIKK16], whether or not there exists a fully general implication from natural proofs to learning algorithms in Valiant’s original PAC model [Val84], even for \(\Lambda \not\subseteq \text{AC}^0[p] \), has remained open (see e.g. [GK23]). In Valiant’s original model, learning algorithms are forced to utilize random examples, and learn over unknown example distributions.

Question 1. Let \(\Lambda \) be any circuit class. Do natural circuit lower bounds for size \(u(n) \) \(\Lambda \)-circuits imply \(\exp(u^{-1}(\text{poly}(n))) \) time learning algorithms for \(\text{poly}(n) \) size \(\Lambda \)-circuits in Valiant’s PAC model?

Aside theoretical interest in complexity and learning theory, Question 1 is motivated by the prospect of implicitly extending the nonexistence of PRFs in low circuit classes (derived from [Raz87, Smo87, RR97, CIKK16]) to the nonexistence of weak PRFs. A weak PRF is a PRF that is only required to be secure if the adversary can inspect uniformly random points, as opposed to to chosen points (see Section 2.2 for a formal definition). Weak PRFs suffice for a variety of important cryptographic applications such as symmetric-key encryption (see e.g. [BCG+21] for more commentary). Therefore, understanding the minimum complexity needed to evaluate weak PRFs is of significant practical importance.

1.1 Our Contributions

We begin by observing that if the answer to Question 1 is essentially “yes, for every \(\Lambda \),” then this implies algorithmic breakthroughs for several important and well-studied computational problems. These breakthroughs include a classical polynomial time solution to the unique Shortest Vector Problem (uSVP), and quantum polynomial time algorithms for the Shortest Vector Problem (SVP) and Shortest Independent Vector Problem (SIVP) on lattices.\(^1\) More specifically, we observe that majority-of-threshold circuits (\(\text{MAJ} \circ \text{THR} \)) cannot realize the implication from natural proofs to polynomial time PAC-learning in Valiant’s model, assuming polynomial time hardness of each of those problems.

Theorem 1.1. Suppose that a natural proof against \(\text{MAJ} \circ \text{THR} \)-circuits of size \(u(n) \) implies that the class of \(\text{MAJ} \circ \text{THR} \)-circuits of size \(\text{poly}(n) \) is PAC-learnable in Valiant’s model, in time \(\exp(u^{-1}(\text{poly}(n))) \). Then, there is a polynomial time classical solution to \(\tilde{O}(n^{1.5}) \)-uSVP, and polynomial time quantum solutions to \(\tilde{O}(n^{1.5}) \)-SVP and \(\tilde{O}(n^{1.5}) \)-SIVP.

To argue Theorem 1.1, we combine two observations. First, natural circuit lower bounds for \(\exp(\Omega(n)) \) size \(\text{MAJ} \circ \text{THR} \)-circuits were proved by Nisan [Nis93]. Second, Klivans and Sherstov [KS09] showed hardness of polynomial time PAC-learning in Valiant’s model for \(\text{MAJ} \circ \text{THR} \), assuming classical hardness of uSVP and quantum hardness SVP and SIVP. Taken together, we have both natural proofs against exponential-size \(\text{MAJ} \circ \text{THR} \), and hardness of Valiant’s PAC-learning for each. Therefore, we have a circuit class that resists an implication between natural proofs and Valiant’s PAC-learning. A formal argument is presented in Section 4; to the best of our knowledge, the natural property underlying Nisan’s circuit lower bound for \(\text{MAJ} \circ \text{THR} \)

\(^1\)We will not try to discuss the huge literature on lattice problems (and lattice based cryptography). See Section 2 for a short description of uSVP, SVP, and SIVP, and refer to [Reg09a, Reg09b] for more information on complexity of lattice problems.
has never been explicitly formalized (until Section 4), though it was acknowledged briefly by Raz [Raz00] and considered implicitly by Viola [Vio15].

Theorem 1.1 indicates a barrier to a general implication from a natural proof for any Λ to a PAC-learning algorithm for Λ in Valiant’s model. Essentially, the natural proof of [Nis93] for $\text{MAJ} \circ \text{THR}$ confounds the hardness result of [KS09]. In light of this, we shift our focus to the following more specific question.

Question 2. What learning algorithms are implied by Nisan’s natural circuit lower bounds?

Answering Question 2 is important if we want to gain understanding of a potential general implication between natural proofs for any class Λ, and some kind of learning algorithms for Λ.

Towards an answer to Question 2, we will focus specifically on the possibility of learning algorithms that utilize only random examples, learn over unknown example distributions, and run in polynomial time. We briefly summarize our contributions towards an answer to Question 2, before digging into the specifics.

- In Section 1.1.1, we present a new learning model called *distributional* PAC-learning, which relaxes Valiant’s model, in order to try to sidestep Theorem 1.1. The new learning model is like Valiant’s except it essentially removes the requirement of guarantees for the worst-case concept in the class. In Section 3, we illustrate that distributional PAC-learning is independently motivated for both technically and practically oriented reasons.

- In Section 4, we prove Theorem 1.1. To do so, we give the first (to the best of our knowledge) explicit formalization of Nisan’s natural property for exponential size $\text{MAJ} \circ \text{THR}$-circuits.

- In Section 5, we prove our main theorem, which discovers a relationship between the computational complexity of distributional PAC-learning and the *communication complexity* of a simple communication game that is associated with a given concept class. This theorem serves as a “technical centerpiece” for extracting distributional PAC-learning algorithms from Nisan’s natural proofs for $\text{MAJ} \circ \text{THR}$, and in fact an entire family of natural proofs, of which Nisan’s for $\text{MAJ} \circ \text{THR}$ are a special case.

- In Section 6 and 7, we use the main theorem and Nisan’s natural proof for $\text{MAJ} \circ \text{THR}$ to obtain new distributional PAC-learning algorithms for $\text{MAJ} \circ \text{THR}$-circuits, polytopes, and DNFs. Additionally, we show how to derive attacks on any weak PRF evaluated by $\text{MAJ} \circ \text{THR}$-circuits, even when the weak PRF is allowed an encoding procedure for the inputs.

We note that, because the result of [CIKK16] only applies to circuit classes that contain $\text{AC}^0[p]$, prior to this work there were no known learning algorithms following directly from Nisan’s natural proofs, in any nontrivial learning model.

Subsequent work. In subsequent work, [Kar23] demonstrated how to construct algorithms from Nisan’s natural proofs in several other learning models. For example, [Kar23] obtained “nontrivial time” agnostic membership query learning algorithms over the uniform distribution and “nontrivial time” distribution-independent membership query algorithms, for classes of sublinear size circuits made up of polynomial threshold function (PTF) gates and SYM^+ gates.

1.1.1 Distributional PAC-Learning

With the goal of obtaining learning algorithms from Nisan’s natural proofs in mind, this paper introduces the distributional PAC-learning model (distPAC-learning). However, the distPAC-learning model is also independently motivated as a relaxation of Valiant’s PAC-learning, which we discuss after defining the model next.

The starting point for the distPAC-learning model is the heuristic PAC-learning (heurPAC-learning) model of Nanashima [Nan21]. Following Nanashima, we define a Boolean concept class by a corresponding evaluation rule $\phi = \{\phi_n : \{0, 1\}^n \times \{0, 1\} \rightarrow \{-1, 1\}\}_{n \in \mathbb{N}}$. The first input to the evaluation rule is a binary representation π_f of a concept f, and the second is an input to the concept x. The evaluation rule is defined so that for every $n \in \mathbb{N}$, $\phi_n(\pi_f, x) = f(x)$. An evaluation rule ϕ induces a Boolean concept class $\mathcal{C} = \{\mathcal{C}_n\}_{n \in \mathbb{N}}$ defined by

$$\mathcal{C}_n = \{f(x) := \phi_n(\pi_f, x) : \pi_f \in \{0, 1\}^n\}.$$
We design new learning algorithms in the distributional PAC model. These learning algorithms arise from Nisan’s Natural Proofs.

1.1.2 DistPAC-Learning Algorithms from Nisan’s Natural Proofs

Nisan’s technique. Nisan [Nis93] used the following communication complexity argument for proving circuit lower bounds against circuits with threshold functions as gates. First, identify a function \(f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} \), which requires high 2-party communication complexity in some model (e.g. randomized,

\footnote{A weak learning algorithm is only required to output a hypothesis that has a predictive advantage only slightly better than a coin toss.}

We refer to \(\mathcal{C} \) as the \(\phi \)-induced concept class.

For a function \(s : \mathbb{N} \rightarrow \mathbb{N} \), we say that the \(\phi \)-induced concept class \(\mathcal{C} \) is \(s(n) \)-represented if, for every \(n \in \mathbb{N} \), under the evaluation rule \(\phi_n \), every \(f \in \mathcal{C}_n \) has a binary representation of length at most \(s(n) \). Considering evaluation rules helps for formalizing learning using a distribution over a concept class. We let \(\mu \) denote a target distribution over concepts \(f \in \mathcal{C}_n \), or, equivalently, over binary representations \(\pi_f \in \{0, 1\}^{s(n)} \).

What access to the concept algorithms in the distPAC-learning model are allowed? We continue following the heurPAC-learning model (Valiant’s, too), and allow access to only random examples sampled from an unknown example distribution \(\rho \) over \(\{0, 1\}^n \). We denote by \(\text{Ex}(f, \rho) \) the example oracle that returns labelled examples \((x, f(x)) \) for \(x \sim \rho \).

A distPAC-learning algorithm takes three confidence parameters as input. The accuracy parameter \(\varepsilon \), the failure parameter \(\delta \), and the heuristic parameter \(\eta \). Essentially, the distPAC-learning model requires that, for a fixed evaluation rule \(\phi \), there exists some large probability mass of the \(\phi \)-induced concept class \(\mathcal{C} \), as determined by \(\mu \) and \(\eta \), that is learnable in Valiant’s model.

\[\text{DistPAC-learning vs. heurPAC-learning.} \quad \text{The essential difference between distPAC-learning and heurPAC-learning is the requirement that there exists a single large probability mass of concepts that is learnable with respect to any example distribution (see the location of the universal quantification over \(\rho \) in (1)). In heurPAC-learning, the order of quantifiers is different: it is only required that for each example distribution \(\rho \), a large but possibly different probability mass of the concept class is learnable. This independently motivates our model for technical and practical reasons: for example, distPAC-learning allows “black-box” use of boosting algorithms. In other words, the equivalence of weak2 and strong learning is preserved in our model [Sch90, DW+00] (see Section 3 for a formal statement on this). This is not necessarily true in heurPAC-learning.} \]

In a nutshell, distPAC-learning is stronger than both heurPAC-learning and the Blum et al. average-case prediction model. Therefore distPAC-learning also inherits the well-founded motivation behind the theory of heuristic PAC-learning (see [Nan21]). See Section 1.3.1 for a continued discussion. Towards further motivating the distPAC-learning model, in Section 3 we give formal statements on useful properties of the distPAC-learning model, including the equivalence between weak and strong learning, an equivalence between hardness of distribution-specific variant of distPAC-learning and the existence of one-way functions, and finally on using the classic technique of Kearns and Valiant [KV94] for proving hardness of distPAC-learning with respect to specific target distributions.

1.1.2 DistPAC-Learning Algorithms from Nisan’s Natural Proofs

We design new learning algorithms in the distributional PAC model. These learning algorithms arise from natural proofs that follow a certain communication complexity argument due to Nisan [Nis93].
We give an overview of the proof of this theorem in Section 1.2. We remark that slight improvement of distirbutional PAC model. We refer to Section 1.3.3 for a continued discussion. We now introduce our main theorem, which is used as a “technical centerpiece” for obtaining distPAC-learning algorithms from natural circuit lower bounds proved with Nisan’s technique. Concretely, we use it to obtain distPAC-learning algorithms for MAJ ◦ THR-circuits, which are presented after.

Roughly speaking, the main theorem presents a relationship between the computational complexity of distPAC-learning, and the communication complexity of a simple communication game associated with a given evaluation rule. For any evaluation rule ϕ and ϕ-induced $s(n)$-represented concept class C, we define the associated communication game G over the product distribution (μ, ρ), played as follows. A binary representation π_f of a function $f \in C_n$ is sampled according to μ, and an input x is sampled from ρ. Player one is given the binary representation π_f of f, and player two is given the input x. The two parties communicate until they are ready to output a value b, and win the game if $b = \phi_n(\pi_f, x) = f(x)$. We say that ϕ is evaluated by a 2-party distributional communication protocol with cost $c(n)$ and bias $\gamma(n)$ over (μ, ρ), if for every $n \in \mathbb{N}$, the two parties can communicate at most $c(n)$ bits before winning G with probability at least $1/2 + \gamma(n)$ over the random inputs drawn from (μ, ρ).

Now we are ready to state the main theorem.

Theorem 1.2. Let ϕ be an evaluation rule. Suppose that, for any product distribution (μ, ρ), ϕ is evaluated by a 2-party distributional communication protocol with cost $c := c(n)$ and bias $\gamma := \gamma(n)$ over (μ, ρ). Then, for the ϕ-induced $s(n)$-represented concept class C, and a time $t(n)$-samplable distribution μ, the pair (C, μ) is distributionally PAC-learnable. The learning algorithm runs in time polynomial in $n, s(n), t(n), \varepsilon, \delta, \eta, \gamma^{-1}$ and 2^c.

We give an overview of the proof of this theorem in Section 1.2. We remark that slight improvement of the exponential dependency of c requires a significant breakthrough in computational learning theory. For example, improving the efficiency to $O(2^{\sqrt{c}})$ gives a polynomial time distinguishing algorithm for the long-time weak PRF candidate of [BFKL95]. We refer to Section 7.3 for details.

Interpretation of Theorem 1.2. Nisan’s lower bound technique clearly encodes a randomized communication complexity upper bound, which, by an averaging argument, can be converted to a distributional protocol over any distribution (without increased cost or decreased bias). Therefore, we interpret Theorem 1.2 as follows.

Fix a function $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$, which requires $\Omega(n)$ bits in the 2-party randomized communication model (many such f exist). Now, we interpret Theorem 1.2 as proof that a circuit lower bound for f against $u(n)$ size Λ-circuits—proved by Nisan’s method—implies that the pair (C, μ) is distributionally PAC-learnable, in time $\exp(u^{-1}(\text{poly}(n)))$, whenever $\phi \in \Lambda$, C is a ϕ-induced and $\text{poly}(n)$-represented concept class, and as long as μ is polynomial time sampleable.

This is the valid interpretation because, since f requires $\Omega(n)$ bits in the 2-party randomized communication model, any lower bound by Nisan’s method against $u(n)$ size Λ-circuits requires the existence of a 2-party randomized protocol to compute every $u(n)$ size Λ-circuit with $u^{-1}(\text{poly}(n))$ bits. Hence, invoking Theorem 1.2 with these parameters plugged in, we get a distPAC-learner for (C, μ) that runs in time $\exp(u^{-1}(\text{poly}(n)))$. Essentially, we have shown that Question 1 can be answered positively, if we insist on the natural proof being proved using Nisan’s technique, and we weaken Valiant’s PAC model to the distributional PAC model. We refer to Section 1.3.3 for a continued discussion.
DistPAC-learning from Nisan’s natural proofs for MAJ ◦ THR. More concretely, we can use Theorem 1.2 to obtain Theorem 1.3, which directly follows from a combination of Nisan’s lower bounds and Theorem 1.2. This is because, as indicated in Nisan’s lower bounds, every function in MAJ ◦ THR has a randomized communication protocol of cost $O(\log n)$ and large bias.

Theorem 1.3. Let $\phi \in \text{MAJ} \circ \text{THR}$ be any evaluation rule, and let μ be any polynomial time samplable target distribution. For the ϕ-induced $s(n)$-represented concept class \mathcal{C}, the pair (\mathcal{C}, μ) is efficiently distPAC-learnable.

Theorem 1.3 considers the concept class by the complexity of its evaluation rule. This is weaker than the learning-theoretic standard of considering the complexity of concepts directly. Any $s(n)$-represented concept class \mathcal{C} with the rule $\phi \in \mathcal{C}$ must satisfy $\mathcal{C} \subseteq \mathcal{C}$ (assuming C-circuits can be $\text{poly}(s(n))$-size). For C containing a universal function (e.g., P/poly, or NC^3), $C = \mathcal{C}$, but not necessarily for lower circuit classes such as MAJ ◦ THR.

By non-black-box inspection of the result of [KS09], which we already mentioned proves hardness of learning MAJ ◦ THR in Valiant’s PAC model, we find that it actually provides a polynomial time samplable distribution over MAJ ◦ THR-circuits that is hard to learn, even weakly (rather than just worst-case hardness). In other words, it shows a target distribution μ^* such that hardness of $\tilde{O}(n^{1.5})$-SVP and its variants implies (MAJ ◦ THR, μ^*) is not efficiently distPAC-learnable! In Section 3.4, we actually show that the entire family of proof techniques for showing hardness of Valiant’s PAC-learning (used here by [KS09], and due originally to [KV94]), can be used to prove hardness of distPAC-learning with respect to specific polynomial time samplable target distributions.

Therefore, in Theorem 1.3, considering the complexity of the evaluation rule $\phi \in \text{MAJ} \circ \text{THR}$ and distPAC-learning of the ϕ-induced concept class \mathcal{C} is likely a needed relaxation, since the target distribution in the theorem can be any polynomial time samplable distribution. Hence, in order to get a distPAC-learning algorithm for MAJ ◦ THR-circuits, we need to restrict the target distribution somehow.

Natural Target Distributions. In light of this, we show that MAJ ◦ THR-circuits are distPAC-learnable, with respect to the following more natural families of target distributions. By more natural, we mean that the target distribution is not designed by a cryptographer (as opposed to μ^*). Indeed, this highlights another feature of the distPAC-learning model: efficient learnability of (\mathcal{C}, μ) for “organic” target distributions μ can coexist with hardness for “inorganic” target distributions like μ^*.

Let $L = (T_1, \cdots, T_m)$ be a list of $m := \text{poly}(n)$ linear threshold functions, and let μ be a $\text{poly}(n)$ time samplable distribution over $\{0, 1\}^m$. We define the distribution μ_L over MAJ ◦ THR-circuits is sampled as follows. First, sample $\theta \sim \mu$. Then, output the MAJ ◦ THR-circuit that is the majority vote over each $T_i \in L$ such that $\theta_i = 1$.

Theorem 1.4. Let $L = (T_1, \cdots, T_m)$ be any list of $m := \text{poly}(n)$ linear threshold functions, and let μ be any $\text{poly}(n)$ time samplable distribution over $\{0, 1\}^m$. The pair $(\text{MAJ} \circ \text{THR}, \mu_L)$ is efficiently distPAC-learnable.

Previously, no polynomial time distPAC-learning algorithms were known, for any reasonable type of target distributions over MAJ ◦ THR-circuits. An interesting feature of our distPAC-learning algorithm is that it does not need to know μ or L to work (see end of Section 6.1.1 for details).

We additionally consider slightly modified target distributions, that correspond to interesting and natural distributions over subclasses of MAJ ◦ THR-circuits: polytopes (that is, and-of-thresholds circuits (AND ◦ THR)) and DNFs. Note that, in distributional PAC-learning, subclasses are not necessarily distPAC-learnable if their superclass is, since it is possible that the subclass is hard-core, and consisting of functions that are hard for the superclass distPAC-learning algorithm.

For the polytope distribution, let $L = (T_1, \cdots, T_m)$ be a list of $m := \text{poly}(n)$ linear threshold functions, and let μ be a $\text{poly}(n)$ time samplable distribution over $\{0, 1\}^m$. The distribution μ_L over polytopes is sampled as follows. First, sample $\theta \sim \mu$. Then, output the polytope that is the conjunction of all $T_i \in L$ such that $\theta_i = 1$.

Theorem 1.5. Let $L = (T_1, \cdots, T_m)$ be any list of $m := \text{poly}(n)$ linear threshold functions, and let μ be any $\text{poly}(n)$ time samplable distribution over $\{0, 1\}^m$. The pair $(\text{AND} \circ \text{THR}, \mu_L^\circ)$ is efficiently distPAC-learnable.
For the DNF distribution, let \(L = (T_1, \cdots, T_m) \) be a list of \(m := \text{poly}(n) \) disjunctions on \(n \)-bit inputs, and let \(\mu \) be a \(\text{poly}(n) \) time samplable distribution over \(\{0, 1\}^m \). The distribution \(\mu_{L}^{\land} \) over DNFs is sampled as follows. First, sample \(\theta \sim \mu \). Then, output the DNF that is a conjunction of all disjunctions \(T_i \in L \) such that \(\theta_i = 1 \).

Theorem 1.6. Let \(L = (T_1, \cdots, T_m) \) be any list of \(m := \text{poly}(n) \) disjunctions on \(n \)-bit inputs, and let \(\mu \) be any \(\text{poly}(n) \) time samplable distribution over \(\{0, 1\}^m \). The pair \((\text{DNF}, \mu_{L}^{\land})\) is efficiently distPAC-learnable.

Even though distPAC-learning is stronger than heurPAC-learning, Theorem 1.4, 1.5 and 1.6 are formally incomparable to the heurPAC-learning algorithm for \(O(\log n) \)-juntas due to [Nan21]. This is for the following reasons. On one hand, Theorem 1.4, 1.5 and 1.6 are stronger because \(\text{MAJ} \circ \text{THR} \)-circuits, polytopes, and DNFs are strictly more powerful than \(O(\log n) \)-juntas, and we handle learning over arbitrary example distributions, while [Nan21] only handles the uniform example distribution. However, the confounding variable is that the heurPAC algorithm works with respect to the uniform distribution over \(O(\log n) \)-juntas, while for any \(L, \mu \), the target distributions that we learn are not uniform over their support. We thus cannot show that our algorithm is stronger than Nanashima’s in a formal sense. An interesting direction for future work is to obtain distPAC-learning algorithms for other natural distributions over \(\text{MAJ} \circ \text{THR} \)-circuits, polytopes, and DNFs.

1.1.3 Impossibility of Encoded-Input Weak PRFs

Although we do not obtain any PAC-learning algorithm in Valiant’s model from Nisan’s natural proofs, we show that distributional PAC-learning is still enough to rule out weak PRFs (which was one of the initial motivations of studying Question 1). In fact, we show that this is true even when the weak PRF is allowed an arbitrary input encoding.

Theorem 1.7. There exists no encoded-input weak PRF that is evaluated by a \(\text{MAJ} \circ \text{THR} \)-circuit.

Our notion of encoded-input weak PRF is the natural weak analogue of the encoded-input PRF introduced by [BIP$^+$18]. Loosely speaking, an encoded-input weak PRF is a PRF that is only required to be secure when the adversary sees random points, where the inputs are taken uniformly at random from a predefined multi-subset of the input space. We refer to Section 7 for details.

1.2 Proof Overview of Theorem 1.2

We now overview the ideas behind the proof of Theorem 1.2. The most important tool we use is the 2-party norm of a function, \(R_2(f) \), which is defined to be the expected product of a function computed on a list of correlated inputs.

Definition 1.2 (2-party norm). For \(f : (\{0, 1\}^n)^2 \to \{-1, 1\} \), the 2-party norm of \(f \) is defined as

\[
R_2(f) := \mathbb{E}_{x_1^1, x_2^1 \sim U_n} \left[\prod_{x_1, x_2 \in \{0, 1\}} f(x_1^1, x_2^1) \right]
\]

(2)

Throughout the paper, we use \(U_n \) to denote the uniform distribution over \(\{0, 1\}^n \). The 2-party norm is a special case of the \(k \)-party norm (sometimes called the cube-measure or box-norm), which was introduced by [BNS92] for obtaining lower bounds in \(k \)-party Number-on-Forehead communication complexity.

The crucial property about \(R_2(f) \) is that, up to parameters, it upper bounds the correlation of \(f \) with functions computable by deterministic 2-party communication protocols. We denote by \(\Pi[2, c] \) the set of all \(f : (\{0, 1\}^n)^2 \to \{-1, 1\} \) that have deterministic 2-party communication protocols with cost at most \(c \). For a definition of the deterministic 2-party communication model, see Section 2.1.

Implicit in all three of [CT93, Raz00, VW07] (who showed a related theorem in the more general \(k \)-party case), is the following bound:
Theorem 1.8 (The correlation bound — [CT93, Raz00, VW07]). For every function \(f : \{0, 1\}^n \rightarrow \{-1, 1\} \),
\[
\text{Cor}(f, \Pi[2, c]) = \max_{\pi \in \Pi[2, c]} \mathbb{E}_x [f(x) \cdot \pi(x)] \leq 2^c \cdot R_2(f)^{1/4}
\]
for \(x \) uniformly distributed over \(\{0, 1\}^n \).

Equation (3) implies that \((2^{-c} \cdot \text{Cor}(f, \Pi[2, c]))^4 \leq R_2(f) \).

The construction of the learning algorithm of Theorem 1.2 uses the lower bound on \(R_2(f) \) to distinguish structure from randomness. In other words, hypothetically consider functions \(f : \{0, 1\}^n \rightarrow \{-1, 1\} \) such that the quantity \((2^{-c} \cdot \text{Cor}(f, \Pi[2, c]))^4 \) is relatively large (greater than \(1/\text{poly}(n) \), say). Such functions can be distinguished from uniformly random functions, by taking a random sample from the distribution over the value inside the expectation in (2). This follows from the fact that \(R_2(\psi) \) for a uniformly random function \(\psi : \{0, 1\}^n \rightarrow \{-1, 1\} \) is bounded from above by a negligible function of \(n \).

Using this idea, we have the following proof outline. First, we can try to prove a “distinguisher-to-predictor” lemma, in the style of [Yao82], in order to obtain a weak randomized predictor for \(f \) (a weak predictor requires accuracy of a prediction for an unseen example to be only slightly more accurate than a coin toss). Second, we could apply standard averaging arguments to construct a weak PAC-learning algorithm. Finally, we could apply celebrated boosting results from learning theory [Sch90, DW+00] to produce a full-blown PAC-learning algorithm.

However, this proof outline remains incomplete. First, the 2-party norm of the function is the expectation of a product of correlated inputs, so we have not given any way of using independent random examples. Second, we have said nothing of how to handle arbitrary example distributions (the inputs to \(f \) on the right hand side of (3) should be uniformly random). We handle both of these problems simultaneously, roughly by thinking of \(f \) as the evaluation rule, and not the concept itself.

First, let us describe how \(f \) should be viewed in more detail. There are two inputs to \(f, x_1 \) and \(x_2 \). Without loss of generality, identify \(x_1 \) as a random string for sampling the target distribution \(\mu \), and identify \(x_2 \) as a random string for sampling the example distribution \(\rho \), with \(|x_1| = |x_2| = m \). We abuse the notation and let \(z = \rho(x_2) \) to denote a point \(z \) sampled according to \(\rho \) with the random bits \(x_2 \). Similarly, we let \(g \) be the function represented by \(\pi_g = \mu(x_1) \). Next, fix the evaluation rule \(\phi \), which is the map that takes as input the concept representation \(\pi_g \), plus the input \(z \), and outputs \(\phi(\pi_g, z) = g(z) = y \). As a function of \(x_1, x_2 \), we can thus write the process of generating a labelled example as \(\langle \rho(x_2), \phi(\mu(x_1), \rho(x_2)) \rangle = \langle z, g(z) \rangle = \langle z, y \rangle \).

We let \(f(x_1, x_2) = \phi(\mu(x_1), \rho(x_2)) \). This allows us to write:

\[
R_2(f) = \mathbb{E}_{x_0^0, x_0^1, x_1^0, x_1^1} \left[v(x_0^0, x_0^1, x_1^0, x_1^1) \right] \quad \text{for} \quad v(x_0^0, x_0^1, x_1^0, x_1^1) := \prod_{z_1, z_2 \in \{0, 1\}} \phi(\mu(x_1^1), \rho(x_2^z))
\]

Now, we describe how we construct a weak randomized predictor which only uses random examples from an arbitrary \(\rho \). At the core, we will use the example oracle to sample a single instance of \(v(x_0^0, x_0^1, x_1^0, x_1^1) \), over uniformly random \(x_0^0, x_0^1, x_1^0, x_1^1 \in \{0, 1\}^m \). To see the significance of this, observe that by definition \(v(x_0^0, x_0^1, x_1^0, x_1^1) \) has expected value \(R_2(f) \). Hence, the process of sampling this value distinguishes examples labelled by uniformly random functions from examples labelled by concepts sampled according to \(\mu \) — as long as \(\mu \) samples representations of concept that are evaluated by \(\phi \). This claim is justified because whenever it is possible to win the communication game \(\mathcal{G} \) associated with \(\phi \) with high bias and low communication, Theorem 1.8 implies that \(R_2(f) \) is large. In other words, \(R_2(f) \) is guaranteed to be large whenever it is possible to efficiently (probabilistically) communicate the evaluation rule \(\phi \) (because this implies winning \(\mathcal{G} \) with good bias).

At this point, we use a simple hybrid argument to construct a randomized prediction algorithm for examples sampled according to \(\rho \). It remains to verify that the randomized prediction algorithm can actually sample \(v(x_0^0, x_0^1, x_1^0, x_1^1) \), using only access to \(\mathbb{E}_x(\eta, \rho) \), where \(\eta \) is the concept sampled according to the target distribution \(\mu \). To see this, observe that the distribution over \(v(x_0^0, x_0^1, x_1^0, x_1^1) \) is identical to the distribution over \(g(z_1, g(z_2)h(z_1)h(z_2)) \), for \((z_1, g(z_1)), (z_2, g(z_2)) \sim \mathbb{E}_x(\eta, \rho) \), and \(h \sim \mu \). The value \(h(z_1)h(z_2) \) can be computed because \(h(z_1) \) and \(h(z_2) \) can be queried, since \(h \) is sampled locally by the algorithm. Therefore, we only need \(\mathbb{E}_x(\eta, \rho) \). We also need to verify that \(\eta \) need not be efficiently samplable. To argue this, we observe that communicating parties participating in \(\mathcal{G} \) have unbounded computational power. This means that, even
if \(\rho \) is an arbitrary distribution, there is no effect on the communication cost of \(\mathcal{G} \). Indeed, the process of sampling \(\rho \) can be viewed as a local pre-processing step in the protocol for party two. Therefore, \(R_2(f) \) does not decrease when \(\rho \) is arbitrary.

1.3 Discussion

1.3.1 Distributional PAC-Learning vs. Related Models

As mentioned previously, distPAC-learning strengthens heurPAC-learning. This is due to the stronger quantification over example distributions. The main benefit of this is that it facilitates boosting of weak learning algorithms, which needs worst-case guarantees over the example distribution (see Section 3.1 for a formal statement). We encourage the reader to visit Section 1.2 of [Nan21], as their points regarding the motivations of heurPAC-learning as a relaxation of Valiant’s PAC model, largely apply to distPAC-learning as well. Additionally, see Section 1.2 of [Nan21] for commentary of the differences with previous “implicit” definitions of average-case learning, such as in [JS05, JLSW11, Sel09] also apply to distPAC-learning.

In comparison to the seminal work of [BFKL93], distPAC-learning also differs on the order of quantifiers. In the definition of the average-case prediction considered by [BFKL93], both the target distribution \(\mu \) and the example distribution \(\rho \) are fixed. This means that there can be a different prediction algorithm, for each pair of \(\mu \) and \(\rho \). This model is weaker than both the heurPAC-learning and distPAC-learning models.

1.3.2 Other Related Work

Many other relationships between learning theory and communication complexity have been studied. Some notable examples include [KNR99, LS09, FX14, KLMY19] (also see the references therein). All of these works study relationships between communication complexity and notions of learning complexity, such as sample complexity [KNR99, KLMY19], differentially private sample complexity [FX14], margin complexity [LS09], VC dimension [KNR99, FX14] and Littlestone dimension [FX14]. These works are all incomparable to ours, as they do not directly study relationships between communication complexity and the computational complexity of learning.

Learning intersections of halfspaces (i.e., ands of linear threshold functions) was considered by [KOS04]. Using Fourier-analytic techniques, [KOS04] showed a polynomial time learning algorithm for any function of a constant number of halfspaces with respect to the uniform distribution over examples. Additionally, [KOS04] gave a quasi-polynomial time algorithm for learning any Boolean function of a polylogarithmic number of bounded-weights linear threshold functions, under any distribution over examples. Our learning results (Theorem 1.3, and Theorem 1.4) are at the moment similar but incomparable; we get polynomial time distributional PAC-learning of concepts evaluated by majorities of linear threshold functions over any example distribution.

1.3.3 Additional Remarks and Future Work

In this work, we began by observing that if Question 1 resolves to “yes, for every \(\Lambda \)” then cryptographic assumptions such as quantum polynomial time hardness of \(\tilde{O}(n^{1.5}) \)-SVP (and its variants) do not hold. To continue our study, we shifted the focus to understanding what kind of learning algorithms are implied, specifically by Nisan’s communication complexity based natural proof technique (Question 2).

To this end, we introduced the distPAC-learning model as a relaxation of Valiant’s PAC model, and then proved Theorem 1.2. We interpret Theorem 1.2 as proof that Question 1 can be answered positively, if we insist that the natural circuit lower bound is proved using Nisan’s technique specifically, and the learning model is the distributional PAC model rather than Valiant’s worst-case PAC model.

Towards this result, we exploited the specific aspects of Nisan’s lower bound method. In other words, we did not simply use the fact that they were natural, but specifically how they are natural. Therefore, it remains open whether or not other natural proofs imply efficient distPAC-learning algorithms for other concept classes, such as \(\text{AC}^0[p] \). In fact, the natural proofs for \(\text{AC}^0[p] \) of [Raz87, Smo87] are not affected by Theorem 1.1, so it is possible they could even imply algorithms in Valiant’s model. At present, the difficulty in proving a similar barrier to Theorem 1.1 for \(\text{AC}^0[p] \) is that, while we are able to prove hardness of PAC-learning in Valiant’s model, we do not have any exponentially strong natural proofs.
We believe that the primary direction for future research use the Razborov-Smolensky lower bounds in a non-black box way, in order to obtain distPAC-learning or even PAC-learning for $\text{AC}^0[p]$. We note that works such as $\text{BCG}^+\text{[21]}$ have introduced conjectured weak PRF candidates that can be evaluated by $\text{AC}^0[2]$, with considerable evidence to support subexponential security of the candidates. A weak PRF evaluated by $\text{AC}^0[2]$ with subexponential security would preclude any (even quasipolynomial time) distPAC-learning algorithm for concept classes induced by a $\text{AC}^0[2]$ evaluation rule. That being said, we hope that our results shed light on what aspects of natural proofs are useful for learning algorithms that cannot query the concept.

2 Preliminaries and Definitions

2.1 2-Party Communication Complexity and Norms

In the following, we discuss Boolean functions that output -1 or 1.

The 2-party communication model is the following. There are 2 parties, each having unbounded computational power, who try to collectively compute a function. The input to the function is separated into 2 segments, and the i^{th} party sees the i^{th} segment. The parties can send each other direct messages.

Each party may transmit messages according to a fixed protocol. The protocol determines, for every sequence of bits transmitted up to that point (the transcript), whether the protocol is finished (as a function of the transcript), or if, and which, party writes next (as a function of the transcript) and what that party transmits (as a function of the transcript and the input of that party). Finally, the last bit transmitted is the output of the protocol, which is a value in $\{-1, 1\}$. The complexity measure of the protocol is the total number of bits transmitted by the parties.

Definition 2.1 ($\Pi[2, c]$ class). $\Pi[2, c]$ is defined to be the class of functions $f : \{(0, 1)^n\}^2 \to \{-1, 1\}$ that can be computed by a 2-party deterministic communication protocol with complexity c.

Another communication model is randomized communications.

Definition 2.2 (Randomized $\Pi[2, c]$). The randomized 2-party communication model allows the protocol to depend on random bits. Therefore, we allow the protocol to err in its output. The probability of error of a randomized protocol is ε if for every input to the function f, the protocol errs in outputs with probability at most ε. We denote by $r\Pi[2, c, \gamma]$ the class of 2-party randomized protocols that transmit at most c bits and err with probability at most $1/2 - \gamma$.

For the sake of simplicity, this paper uses only the public coin version of randomized communication complexity. Namely the parties all share a string of random bits.

A model more relaxed than randomized communication is distributional communication.

Definition 2.3 (Distributional $\Pi[2, c]$). The distributional 2-party communication model allows the protocol to err on certain inputs. Fix a distribution ρ over $\{(0, 1)^n\}^2$. A function $f : \{(0, 1)^n\}^2 \to \{-1, 1\}$ is in $d\Pi[2, c, \rho, \gamma]$ if there exists a communication protocol $p \in \Pi[2, c]$ such that

$$\mathbb{E}_{(x_1, x_2) \sim \rho} [p(x_1, x_2) \cdot f(x_1, x_2)] \geq 2\gamma$$

Distributional communication complexity can be thought of as correlation.

Definition 2.4 (Boolean function correlation). Define $\text{Cor}(f, \Lambda) := \max_{h \in \Lambda} \mathbb{E}[f(x) \cdot h(x)]$, where x is sampled uniformly at random from the domain.

When we want to measure correlation between two function classes, we have it defined as follows:

Definition 2.5 (Boolean function correlation). Define $\text{Cor}(\Xi, \Lambda) := \min_{f \in \Xi} \max_{h \in \Lambda} \mathbb{E}[f(x) \cdot h(x)]$, where x is sampled uniformly at random from the domain.

When ρ is the uniform distribution, $f \in d\Pi[2, c, \rho, \gamma]$ is equivalent to $\text{Cor}(f, \Pi[2, c]) \geq 2\gamma$.

9
A simple fact is that for any distribution \(\rho, f \in r\Pi[2, c, \gamma] \) implies that \(f \in d\Pi[2, c, \rho, \gamma] \). Therefore, \(f \in r\Pi[2, c, \gamma] \) implies that \(\text{Cor}(f, \Pi[2, c]) \geq 2\gamma \).

Definition 2.6 (2-party norm). For \(f : (\{0, 1\}^n)^2 \rightarrow \{-1, 1\} \), the 2-party norm of \(f \) is defined as

\[
R_2(f) := \mathbb{E}_{x_1, x_2 \sim \{0, 1\}^n} \left(\prod_{x_1, x_2 \sim \{0, 1\}} f(x_1^1, x_2^2) \right)
\]

(4)

The 2-party norm is a special case of the \(k \)-party norm (sometimes called the cube-measure), which was introduced by [BNS92] for obtaining lower bounds in \(k \)-party Number-on-Forhead communication complexity.

The crucial property about \(R_2(f) \) is that, up to parameters, it upper bounds the correlation of \(f \) with functions computable by 2-party communication protocols. Implicit in all three of [CT93, Raz00, VW07] (who showed a related theorem in the more general \(k \)-party case), is the following bound:

Theorem 2.1 (The correlation bound — [CT93, Raz00, VW07]). For every function \(f : (\{0, 1\}^n)^2 \rightarrow \{-1, 1\} \),

\[
\text{Cor}(f, \Pi[2, c]) \leq 2^c \cdot R_2(f)^{1/4}
\]

(5)

An immediate corollary of this bound is:

Theorem 2.2. For every function \(f : (\{0, 1\}^n)^2 \rightarrow \{-1, 1\} \), such that \(f \in r\Pi[2, c, \gamma] \),

\[
\gamma \leq 2^c \cdot R_2(f)^{1/4}
\]

(6)

2.2 (Weak) Pseudorandom Functions

For clarity, we define weak and strong pseudorandom functions. See Section 7 for the definition of encoded-input weak PRFs.

Definition 2.7 (Weak and Strong PRFs). Let \(\lambda \) be a security parameter, and \(n = n(\lambda), \kappa = \kappa(\lambda) \) for polynomially bounded functions \(n, \kappa \). Consider a pair of algorithms \(f : \{0, 1\}^\kappa \times \{0, 1\}^n \rightarrow \{0, 1\}^1 \), \(\text{gen} : \{1\}^\lambda \rightarrow \{0, 1\}^\kappa \).

- \(\text{gen} \) is a polynomial time sampling algorithm that given input parameter \(\lambda \) in unary and access to random coins \(z \in \{0, 1\}^{\text{poly}(\lambda)} \) outputs a key \(k \in \{0, 1\}^\kappa \).
- \(f \) is a polynomial time algorithm that given a key \(k \) and the input \(x \in \{0, 1\}^n \), outputs a value \(f(k, x) \in \{0, 1\}^1 \).

For \(t = t(\lambda), \varepsilon = \varepsilon(\lambda) \), we say that \((f, \text{gen}) \) is a \((t, \varepsilon)\)-weak PRF if, for every size \(t \) oracle circuit \(C \),

\[
\Pr_{k \sim \text{gen}(\lambda)} \left[C_{Ex,f(k,\cdot),U_n} = 1 \right] - \Pr_r \left[C_{Ex,r,U_n} = 1 \right] \leq \varepsilon(\lambda)
\]

where \(r : \{0, 1\}^n \rightarrow \{0, 1\} \) is a uniformly random function.

Additionally, we say that \((f, \text{gen}) \) is a \((t, \varepsilon)\)-PRF if, for every size \(t \) oracle circuit \(C \),

\[
\Pr_{k \sim \text{gen}(\lambda)} \left[C_{f(k,\cdot)} = 1 \right] - \Pr_r \left[C_r = 1 \right] \leq \varepsilon(\lambda)
\]

where \(r : \{0, 1\}^n \rightarrow \{0, 1\} \) is a uniformly random function.

When \(t, \varepsilon = 2^{\log^c(n)} \) for some constant \(c > 1 \), we say that \((f, \text{gen}) \) has quasipolynomial security. When \(t, \varepsilon = 2^{\lambda^\delta} \) for some constant \(\delta \in (0, 1) \), we say that \((f, \text{gen}) \) has subexponential security.
2.3 Circuit Classes and Other Computational Classes

We will consider various circuit classes with different bases (all being defined previously in the literature). AC^0 is the class of constant depth, polynomial size, unbounded fan-in AND/OR/NOT circuits. $\text{AC}^0[p]$ is the class of constant depth, polynomial size, unbounded fan-in AND/OR/NOT/MOD$_p$ circuits, where $p \in \mathbb{N}$ is a prime number. TC^0 is the class of constant-depth, polynomial size, unbounded fan-in circuits of THR gates, where a THR gate is a linear threshold function $f(x_1, \cdots, x_m) := \sum_{i=1}^m w_i x_i \geq \theta$, which outputs 1 if and only if the sum of the inputs weighted by real coefficients w_1, \cdots, w_m exceeds a threshold θ. When the weights are fixed to be 1 and $\theta = m/2$, we call it a MAJ gate. An XOR gate takes the sum modulo 2 of its inputs.

Many circuit classes considered are of the form $\mathcal{C} \circ \mathcal{C}'$ for circuit classes $\mathcal{C}, \mathcal{C}'$. The composed class $\mathcal{C} \circ \mathcal{C}'$ denotes the class of \mathcal{C}'-circuits with inputs as the outputs of functions from \mathcal{C}. For example, the class $\text{THR} \circ \text{THR}$ (a.k.a. depth-2 TC^0). Alternatively, MAJ \circ THR is the class of circuits consisting of a MAJ gate composed with a bottom layer of THR gates.

2.4 Lattice Problems

An n-dimensional lattice L is the set of all integer linear combinations of a given real basis $v_1 \cdots v_n \in \mathbb{R}$. Mathematically,

$$L = \left\{ \sum_{i \in [n]} c_i v_i : c_1, \cdots, c_n \in \mathbb{Z} \right\}$$

In the unique shortest vector problem, $f(n)$-uSVP, one must find the shortest non-zero vector in the lattice (if there are many, then any is valid), with the promise that the shortest one is shorter, by at least an $f(n)$ factor, than any other non-parallel vector in the lattice. In the Shortest Vector Problem (SVP), $f(n)$-SVP, one must approximate the length of the shortest non-zero vector in the lattice within a factor of $f(n)$. Lastly, in the Shortest Independent Vector Problem ($f(n)$-SIVP), the object is to find a collection of n linearly independent lattice vectors of length at most $f(n) \cdot a$, where a is the minimum length of the longest vector present in some subset of n vectors in the lattice that is linearly independent.

In general, the hardness of uSVP, SVP, and SIVP increases as the parameter $f(n) \leq \text{poly}(n)$ decreases. This work uses, as a black box, hardness results for PAC-learning MAJ \circ THR-circuits due to Klivans and Sherstov [KOS04]. Klivans and Sherstov in turn rely in a black box way on public key cryptosystems of Regev [Reg04] to prove their hardness results. The cryptosystems of Regev rely on polynomial time hardness of uSVP, and quantum polynomial time hardness of SVP and SIVP.

3 The Distributional PAC-Learning Model

In this section, we give some useful properties of distPAC-learning, which motivate the definition independently. First, we cover the equivalence between weak and strong versions of distPAC-learning. Then, we show that distPAC-learning implies heurPAC-learning. Finally, we consider the realationship of distPAC-learning with cryptography, by demonstrating that hardness of distPAC-learning for polynomial size circuits in a distribution-specific setting is equivalent to the existence of (infinitely-often) one-way functions. Finally, we show that the famous technique of [KV94] for proving hardness of Valiant’s PAC-learning using public key encryption schemes generates “hard target distributions” for distPAC-learning.

3.1 Equivalence Between Weak and Strong DistPAC-Learning

Celebrated results of computational learning theory, indicate that efficient weak and strong PAC-learning are equivalent [Sch90] (in the “filtering” setting, this is shown by e.g. [DW00]).

Recall that $\mathcal{C} = \{ \mathcal{C}_n \}_{n \in \mathbb{N}}$ is a Boolean concept class that is $s(n)$-represented and induced by the evaluation rule $\phi = \{ \phi_n \}_{n \in \mathbb{N}}$. We define a weak version of distPAC-learning. The only difference with Definition 1.1 is that the accuracy of the hypothesis only needs to achieve error below $1/2 - \varepsilon$ with high probability.
Definition 3.1 (Weak distPAC-learning). Let ϕ be an evaluation rule, and let the ϕ-induced concept class C be $s(n)$-represented. The pair (C, μ) is weakly distributionally PAC-learnable if there exists an algorithm A such that, for any $n \in \mathbb{N}$, $\delta, \eta > 0$,

$$\Pr_{f \sim \mu} \left[\Pr_{x \sim \rho} \left[h(x) \neq f(x) : h \leftarrow A^{Ex(f, \rho)}(n, \delta, \eta) \right] \leq 1/2 - 1/poly(n) \right] \geq 1 - \delta \geq 1 - \eta$$ (7)

When A runs in time $poly(n, s(n), \delta^{-1}, \eta^{-1})$, we say that (C, μ) is efficiently distPAC-learnable.

We now demonstrate that the boosting results from Valiant’s PAC model carry over to the distPAC-learning model.

Theorem 3.1 (distPAC Boosting). Let ϕ be an evaluation rule, and let C be the ϕ-induced $s(n)$-represented concept class. For any target distribution μ, (C, μ) is efficiently weakly distributionally PAC-learnable if and only if (C, μ) is efficiently distributionally distPAC-learnable.

Proof. We invoke the equivalence of weak and strong PAC-learning [Sch90, DW+00] to conclude the desired expression. Note that, importantly, our weak distributional PAC learner works for all ρ after taking the probability over $f \sim \mu$ and the randomness of the learning algorithm A. If the quantifiers were in another order, then we could not guarantee boosting since there would be no guarantee that the same set of functions of C, understood as a subset of $\{0, 1\}^{s(n)}$, could be learned. ■

3.2 DistPAC-Learning vs HeurPAC-Learning

Theorem 3.2. Let ϕ be an evaluation rule, and let C be the ϕ-induced $s(n)$-represented concept class. Let U be the uniform distribution over $\{0, 1\}^{s(n)}$. If (C, U) is distPAC-learnable in time t, then C is heurPAC-learnable in time t.

Proof. By definition, we can take the distPAC learner A for (C, U) and apply it as a heurPAC learner for C. To see this, observe that A satisfies the heurPAC learning guarantee because it already obtains PAC-learning (i.e., learning with respect to any example distribution) for a $1 - \eta$ fraction of C. For heurPAC-learning, we in fact only need that for each example distribution, a $1 - \eta$ fraction of C is learnable. ■

3.3 Distribution-Specific Learning

To obtain cryptographic primitives from the hardness of learning, the literature often considers hardness of distribution-specific learning (as in [BFKL93, Nan21]). In distribution-specific distPAC-learning, we intentionally fix the example distribution ρ. This limits the robustness of distPAC-learning, and entirely collapses it into Nanashima’s notion of distribution-specific heurPAC-learning.

Definition 3.2 (Distribution-specific distPAC-learning). Let ϕ be an evaluation rule, and let the ϕ-induced concept class C be $s(n)$-represented. The pair (C, μ) is distributionally PAC-learnable over the example distribution ρ if there exists an algorithm A such that, for any $n \in \mathbb{N}$, $\epsilon, \delta, \eta > 0$,

$$\Pr_{f \sim \mu} \left[\Pr_{x \sim \rho} \left[h(x) \neq f(x) : h \leftarrow A^{Ex(f, \rho)}(n, \epsilon, \delta, \eta) \right] \leq \epsilon \right] \geq 1 - \delta \geq 1 - \eta$$ (8)

When A runs in time $poly(n, s(n), \epsilon^{-1}, \delta^{-1}, \eta^{-1})$, we say that (C, μ) is efficiently distPAC-learnable over ρ.

3.3.1 Cryptography from Hardness of Distribution-Specific DistPAC-Learning

The collapse of distPAC-learning and heurPAC-learning in the distribution-specific setting is a feature of distPAC-learning: using results of [Nan21] on one-way functions from hardness of distribution-specific heurPAC-learning, we obtain the same in distribution-specific distPAC-learning.

Theorem 3.3 (OWFs from hardness of ρ-specific distPAC-learning). Suppose that $P/poly$ is not efficiently distPAC-learnable with respect to the uniform distribution over concept representations, on a polynomial time samplable example distribution ρ. Then, there exists an (infinitely-often) one-way function.
Proof. Let U be the uniform distribution over $\{0, 1\}^{\text{poly}(n)}$. Observe that $(P/\text{poly}, U)$ is efficiently distPAC-learnable on ρ if and only if P/poly is efficiently heurPAC-learnable on ρ. Now, the claim follows immediately from Corollary 9 of [Nan21].

3.4 Hardness of DistPAC-Learning from Cryptography

In the other direction, we can use the classic results [GGM86, HILL99] to easily see that the existence of a one-way function implies that there exists a polynomial time samplable μ such that $(P/\text{poly}, \mu)$ is not efficiently distPAC-learnable on any polynomial time samplable ρ.

Additionally, we now demonstrate that the technique for proving hardness of PAC-learning in Valiant’s model (by Kearns and Valiant [KV94]), also works for distPAC-learning. The technique gives concrete “hard target distributions” for distPAC-learners. Note, it does not imply that distPAC-learning is hard for every target distribution.

We sketch the proof technique of Kearns and Valiant, but direct the reader to [KV94] for the technicalities and also [KS09] for a more in-depth overview. The proof technique is built around the idea that learning the decryption function of a public key cryptosystem should be hard. Indeed, this is true by the following reasoning. For any given public key cryptosystem, an attacker can simulate an example oracle for the decryption function, by sampling a public and private key pair, and then generating encryptions of ones and zeros (with equal probability), using the randomized encryption function. Then, if there is a PAC-learning algorithm (in Valiant’s model) for the decryption function, the attacker can apply it to the dataset collected as described, and then predict the messages of new ciphertexts, which breaks security.

We show that it suffices to have a distPAC-learning algorithm, rather than a PAC-learning algorithm in Valiant’s model, to break security of a public key cryptosystem in this way.

Theorem 3.4. Suppose there exists a secure public key encryption scheme $(\text{gen}, \text{enc}, \text{dec})$ that generates n-bit encryptions of single bit messages, where decryption error is $\varepsilon := \varepsilon(n) \leq 1/n^{o(1)}$. Let μ be the distribution over decryption functions $\text{dec}(\text{sk}, \cdot)$ with $\text{sk}, \text{pk} \sim \text{gen}$ and hard-wired. If for every sk, $\text{dec}(\text{sk}, \cdot) \in \Lambda$, then (Λ, μ) is not efficiently distPAC-learnable.

Proof. Suppose towards a contradiction that (Λ, μ) is efficiently distPAC-learnable using an algorithm A. We will show that there is a probabilistic polynomial time algorithm D that breaks the security of (gen, enc, dec), by proving the following distinguishing equation:

$$\text{adv}(D) := |\Pr[D(\text{pk}, \text{enc}(\text{pk}, 1)) = 1] - \Pr[D(\text{pk}, \text{enc}(\text{pk}, 0)) = 1]| \geq 1/\text{poly}(n) \quad (9)$$

Here, the probabilities are taken over the internal randomness of D and the encryption function, as well as $\text{sk}, \text{pk} \sim \text{gen}$. $D(\text{pk}, z)$ works as follows.

1. Prepare a simulated oracle $\text{Ex}(\text{dec}(\text{sk}, \cdot), \rho)$, where each example is created by first choosing $y \in \{0, 1\}$ uniformly randomly, and then encrypting $x = \text{enc}(\text{pk}, y)$, and taking (x, y) as the example. ρ denotes the marginal distribution over examples x.
2. Execute $h \leftarrow A^{\text{Ex}(\text{dec}(\cdot), \cdot)}(\text{pk}, 1/10, 1/10, 1/10)$.
3. Output $h(z)$.

We prove (9) holds. Since A is an efficient distPAC-learner, it only requires at most $\text{poly}(n)$ examples. Therefore, since decryption error is $\varepsilon := 1/n^{o(1)}$, a union bound indicates that with probability $1 - 1/n^{o(1)}$, no decryptions occur. Assume this is the case. By the assumption that A is an efficient distPAC-learning algorithm for (Λ, μ), we have that, over the randomness of $h \leftarrow A^{\text{Ex}(\text{dec}(\cdot), \cdot)}(\text{pk}, 1/10, 1/10, 1/10)$, and the randomness of $\text{dec}(\cdot, \cdot) \sim \mu$ and $x \sim \rho$,

$$\Pr[h(x) = \text{dec}(\text{sk}, x)] \geq \frac{1}{2} + \frac{1}{\text{poly}(n)} \quad (10)$$

13
Therefore,

\[
\text{adv}(D) = \left| \Pr_{D,\text{gen,enc}} [h(\text{enc}(pk, 1)) = 1] - \Pr_{D,\text{gen,enc}} [h(\text{enc}(pk, 0)) = 1] \right| = 2 \Pr_{D,\text{gen,enc}, y \sim \{0, 1\}} [h(\text{enc}(pk, y)) = y] - 1
\]

\[
= 2 \left(\Pr_{D,\text{gen,enc}, y \sim \{0, 1\}} [h(\text{enc}(pk, y)) = \text{dec}(\text{sk}, (\text{enc}(pk, y))))] - \Pr_{D,\text{gen,enc}, y \sim \{0, 1\}} [\text{dec}(\text{sk}, (\text{enc}(pk, y))) \neq y] \right) - 1
\]

\[
= 2 \left(\Pr_{\tilde{x} \sim \tilde{\rho}} [h(\tilde{x}) = \text{dec}(\text{sk}, \tilde{x})] - \varepsilon \right) - 1
\]

\[
\geq \frac{1}{\text{poly}(n)}
\]

Since we assumed that no decryption error occurred, we need to consider the case that it does. We already know that probability of any decryption error is $1/n^{O(1)}$. Hence, by another union bound, we get that $\text{adv}(D) \geq 1/\text{poly}(n) - 1/n^{\omega(1)} \geq 1/\text{poly}(n)$.

\section{No General Implication from Natural Proofs to PAC-Learning}

In this section, we show that for circuit classes that can compute $\text{MAJ} \circ \text{THR}$-circuits, there can be no general implication from natural proofs to PAC-learning algorithms in Valiant’s model, unless $\tilde{O}(n^{1.5})$-$u\text{SVP}$ has a polynomial time solution, and $O(n^{1.5})$-SVP and $O(\omega(n))$-SIVP have polynomial time quantum solutions. We sketch an analogous fact for natural proofs for DNFs, and a natural assumption on the polynomial time hardness of refuting random k-SAT instances. Additionally, we will explain that there exists a special target distribution such that there cannot even be an implication from natural proofs to distPAC-learning algorithms for that distribution, under the same lattice assumptions.

\subsection{Nisan’s Natural Proof}

We will formally define the natural property that arises from Nisan’s natural proofs. We begin by defining what is a natural property. Let F_n be the set of all Boolean functions on n inputs. Typically, the Boolean functions in the context of circuit complexity are $f : \{0, 1\}^n \to \{0, 1\}$. We will continue to use $f : \{0, 1\}^n \to \{-1, 1\}$ to maintain continuity with the previous sections.

\begin{definition}[Natural Property \cite{RR97}] A Natural Property is a sequence of subsets $Q = \{Q_n\}_{n \in \mathbb{N}}$ of $F = \{F_n\}_{n \in \mathbb{N}}$, if it satisfies the following conditions.

1. **Constructivity.** The predicate “is f contained in Q_n” can be computed in polynomial time.

2. **Largeness.** $|Q_n| \geq \delta_n \cdot |F_n|$.

3. **Usefulness.** For any sequence of functions $f_n \in F_n$ (for $n \in \mathbb{N}$), if $f_n \in \Lambda$ then $f_n \notin Q_n$ almost everywhere.

When Q_n satisfies these conditions we say that it is a natural property for Λ with density δ_n. In general, we fix $\delta_n = 1/2$.\footnote{See Lemma 2.7 of \cite{CIK16} for an explanation for why this is reasonable.}

Now we will define the property that arises from Nisan’s lower bounds for $\text{MAJ} \circ \text{THR}$-circuits \cite{Nis93}, and then demonstrate that it is natural. To the best of our knowledge, the natural property has never been explicitly formalized prior to this paper, but the fact that it is natural is essentially credited to the sequence of works \cite{Nis93, CT93, Raz00, VW07}. \cite{Nis93} provided the lower bound, and \cite{CT93, Raz00, VW07} all implicitly proved it was natural. The property is defined by the following algorithm that classifies whether or not a truth table is in the property.
Definition 4.2 (Nisan’s Natural Property).

1. **Input.** \(T_{f_n} \in \{0, 1\}^{2^n} \) a truth table of a function \(f_n \in F_n \).
2. Choose any partition of the \(n \) inputs of \(f_n \) into two sets \(A, B \) with \(|A| = \lfloor n/2 \rfloor \) and \(|B| = \lceil n/2 \rceil \). Let \(x_1 \| x_2 \) denote the partitioned input according to \(A, B \).
3. Given \(T_{f_n} \), compute
 \[
 \alpha = 2^n \cdot R_2(f_n) = \sum_{x_1^0, x_1^1 \in \{0, 1\}^{\lfloor n/2 \rfloor}} \prod_{b_1, b_2 \in \{0, 1\}} f_n(x_1^{b_1}, x_1^{b_2})
 \]
4. **Output.** If \(|\alpha| \leq 2^{2n/3} \), print 1, otherwise print 0.

Let \(\text{MAJ} \circ \text{THR} \) denote the class of majority-of-thresholds circuits where the top majority gate has fan-in \(s \).

Theorem 4.1 ([Nis93, CT93, Raz00, VW07]). There is a constant \(c \) such that there is a natural property for \(\text{MAJ}_{2^{n/c}} \circ \text{THR} \) with density 1/2.

To prove this theorem, one uses the result of Nisan [Nis93]. The notation \(r\Pi \) denotes the set of functions \(f : \{0, 1\}^n \rightarrow \{-1, 1\} \) that have 2-party randomized communication complexity, with cost at most \(c \) and bias at least \(\gamma \), for every partition of the inputs to the function. See Section 2 for formal definitions of communication complexity classes and protocols in this work.

Theorem 4.2 ([Nis93]). \(\text{MAJ}_s \circ \text{THR} \subseteq r\Pi[2, O(\log(s)), O(1/s)] \)

Sketch. The statement follows from combining a few arguments in [Nis93]. First, Nisan proves that a single THR gate is contained in \(r\Pi[2, O(\log(s)), 1/2 - O(1/s)] \) (Theorem 1a.). Second, Nisan shows that the majority vote of any \(s \) functions contained in \(r\Pi[2, O(\log(s)), 1/2 - O(1/s)] \) is contained in \(r\Pi[2, O(\log(s)), O(1/s)] \) (Lemma 5). Therefore we get that \(\text{MAJ}_s \circ \text{THR} \in r\Pi[2, O(\log(s)), O(1/s)] \).

Now we prove Theorem 4.1.

Proof of Theorem 4.1. We prove each of the three necessary properties individually. First, observe that Definition 4.2 defines a polynomial time algorithm, in the size of the truth table (this proves the Constructivity property).

For the Largeness property, we will analyze the probability that the algorithm outputs 1 given a random truth table as input.

Consider \(\alpha/2^{-n} = R_2(f_n) \). We have that

\[
\alpha/2^{-n} = \mathbb{E}_{x_1^0, x_1^1, x_2^0, x_2^1} \left[\prod_{b_1, b_2 \in \{0, 1\}} f_n(x_1^{b_1}, x_1^{b_2}) \right]
\]

This expected value over the uniformly random choice of \(x_1^0, x_1^1, x_2^0, x_2^1 \) is 0 except for when either \(x_1^0 = x_2^0 \) or \(x_1^1 = x_2^1 \). By a union bound, we have then that \(\alpha/2^{-n} \leq 2^{1-(n+1)/2} \). Therefore, \(\alpha \leq 2^{n/2+1} \), and the probability over a random truth table \(T_{f_n} \) that \(\alpha \leq 2^{2n/3} \) is at least 1/2. This proves density is at least 1/2.

Finally, we prove Usefulness. By Theorem 2.1 and Theorem 4.2, we know that when \(T_{f_n} \) is the truth table of \(f_n \in \text{MAJ}_s \circ \text{THR} \), then for \(s \leq 2^{n/c} \) and some sufficiently large constant \(c \), we have that \(\alpha \geq 2^n/\text{poly}(2^{n/c}) \geq 2^{2n/3} + 1 \). Thus, whenever \(f_n \in \text{MAJ}_{2^{n/c}} \circ \text{THR} \), the algorithm defining the natural property outputs 0, as desired.
4.2 Proof of Theorem 1.1

In the last section, we demonstrated that $\text{MAJ}_s \circ \text{THR}$ has a dense natural property for s up to $2^{n/c}$ for some constant c. Now we will use this fact, together with hardness of learning $\text{MAJ} \circ \text{THR}$ in Valiant’s PAC model [KS09] to prove Theorem 1.1.

Theorem 4.3 (Theorem 1.3 in [KS09]). Assume that $\text{MAJ} \circ \text{THR}$ is PAC-learnable in time $\text{poly}(n)$. Then there is a polynomial time solution to $\tilde{O}(n^{1.5})$-uSVP, and polynomial time quantum solutions to $\tilde{O}(n^{1.5})$-SVP and $\tilde{O}(n^{1.5})$-SIVP.

Theorem 4.4 (Theorem 1.1 restated). Let $u : \mathbb{N} \rightarrow \mathbb{N}$. Suppose that a natural proof against $\text{MAJ}_{u(n)} \circ \text{THR}$-circuits (and density $1/2$) implies that $\text{poly}(n)$ size $\text{MAJ} \circ \text{THR}$-circuits are PAC-learnable in Valiant’s model, in time $\exp(u^{-1}(\text{poly}(n)))$. Then, then there is a polynomial time solution to $\tilde{O}(n^{1.5})$-uSVP, and polynomial time quantum solutions to $\tilde{O}(n^{1.5})$-SVP and $\tilde{O}(n^{1.5})$-SIVP.

Proof. By Theorem 4.1, there is a constant c such that there is a natural property for $\text{MAJ}_{2^{n/c}} \circ \text{THR}$ with density $1/2$. Thus, by the condition of the current theorem, we conclude that the class of $\text{MAJ} \circ \text{THR}$-circuits is PAC-learnable in Valiant’s model. By Theorem 4.3, we then obtain a polynomial time solution to $\tilde{O}(n^{1.5})$-uSVP, and polynomial time quantum solutions to $\tilde{O}(n^{1.5})$-SVP and $\tilde{O}(n^{1.5})$-SIVP.

4.2.1 Hardness of DistPAC-Learning for Majority of Threshold Circuits for all Target Distributions

Corollary 4.1. There exists a polynomial time samplable distribution μ over polynomial size $\text{MAJ} \circ \text{THR}$-circuits, such that if $(\text{MAJ} \circ \text{THR}, \mu)$ is efficiently distPAC-learnable, then there is a polynomial time solution to $\tilde{O}(n^{1.5})$-uSVP, and polynomial time quantum solutions to $\tilde{O}(n^{1.5})$-SVP and $\tilde{O}(n^{1.5})$-SIVP.

Proof. Implicitly from Theorem 4.3, we know that the decryption function of Regev’s public key cryptosystem can be implemented by a $\text{MAJ} \circ \text{THR}$-circuit, with negligible decryption error. Therefore, by Theorem 3.4, the statement follows.

4.2.2 A Similar Barrier via Hardness of Learning DNFs

A similar statement to Theorem 4.4 can be observed for DNFs using a different hardness of PAC-learning result of [DSS16]. Specifically, [DSS16] prove that PAC-learning DNFs in Valiant’s model implies the ability to refute random k-SAT instances. Feige [Fei02] first introduce hardness assumptions regarding refuting k-SAT instances.

An algorithm refutes random k-SAT instances with $c(n) \geq \Omega(n)$ clauses if on $1 - o(1)$ fraction of the k-SAT formulas with $c(n)$ constraints, it outputs “unsatisfiable”, while whenever it encounters a satisfiable k-SAT formula with $c(n)$ constraints, it outputs “satisfiable.” A random K-SAT instance $I = \{C_1, \ldots, C_{c(n)}\}$ is sampled in the way that each clause/constraint C_i is chosen uniformly at random from the set of k-SAT clauses/constraints with n variables.

Thus, it follows directly from the assumption regarding hardness of refuting random k-SAT formulas from [DSS16] that there is no implication from a Natural Proof for exponential size DNFs, to PAC-learning for DNFs. This is because Nisan’s natural proof clearly works for exponential size DNFs, since the set is clearly contained by the set of exponential size majority-of-threshold circuits.

5 Main Theorem

In this section, we will prove Theorem 1.2, which obtains distPAC-learning algorithms for concept classes that have low-cost associated communication games. To do so, we will first define the communication game, and then obtain a weak distPAC-learning algorithm (see Definition 3.1). Finally, we will conclude Theorem 1.2 using the equivalence between weak and strong distPAC-learning (see Theorem 3.1).
In the following sections, we will use Theorem 1.2 to derive distPAC-learning algorithms for natural distributions over MAJ ∘ THR-circuits, polytopes, and DNFs, and impossibility results for weak PRFs that can be evaluated with MAJ ∘ THR-circuits with an arbitrary input encoding.

5.1 Communication Games

Recall that \(C = \{C_n\}_{n \in \mathbb{N}} \) is the \(s(n) \)-represented Boolean concept class that is induced by the evaluation function \(\phi = \{\phi_n\}_{n \in \mathbb{N}} \). We define the communication game associated with \(C \):

Definition 5.1 (2-party distributional communication game). With respect to a evaluation rule \(\phi \) and product distribution \((\mu, \rho)\), the 2-party communication game \(G[\phi, n, (\mu, \rho)] \) is the following:

- Setup: \(\pi_f \sim \mu, x \sim \rho \).
- Player 1 gets as input \(\pi_f \in \{0, 1\} \times \mathbb{N} \) for concept \(f \in C_n \).
- Player 2 gets as input a string \(x \in \{0, 1\}^n \).
- The object of the game is for the parties to output the value \(\phi_n(\pi_f, x) = f(x) \), using as few bits of communication as possible.

We say that \(G[\phi, n, (\mu, \rho)] \) is \((c, \gamma)\)-evaluated if the parties can communicate at most \(c \) bits, and win the game with probability \(\frac{1}{2} + \gamma \) (over the random sample of inputs according to \((\mu, \rho)\)).

Other definitions. We direct the reader to Section 2 for the necessary definitions of communication complexity.

5.2 Weak Learning

Towards Theorem 1.2, we will start by first obtaining a weak learning algorithm, which only requires prediction accuracy marginally better than a coin toss.

Notation. In the following, we discuss boolean functions \(f : \{0, 1\}^n \rightarrow \{-1, 1\} \), and denote by \(U_n \) the uniform distribution over \(\{0, 1\}^n \). For shorthand, we will write \(c := c(n), \gamma := \gamma(n) \), to denote number of bits of communication and protocol bias, which are dependent on \(n \), the input length of a concept.

Also, in the rest of the paper we will streamline notation by eliding the subscripts on distributions coming from ensembles indexed by \(n \in \mathbb{N} \).

Theorem 5.1. Let \(\phi \) be an evaluation rule. Suppose that, for every \(n \in \mathbb{N} \), and product distribution \((\mu, \rho)\), \(G[\phi, n, (\mu, \rho)] \) is \((c, \gamma)\)-evaluated. Then there exists an algorithm \(A \) such that, for any \(n \in \mathbb{N}, \delta, \eta > 0 \),

\[
\Pr_{f \sim \mu} \left[\Pr_{\pi_f \sim \mu} \left[\forall \rho : \Pr_{x \sim \rho} \left[h(x) \neq f(x) : h \leftarrow A^{Ext(f, \rho)}(n, \delta, \eta) \right] \leq \frac{1}{2} - \text{poly}(\gamma \cdot 2^{-c}) \right] \geq 1 - \delta \right] \geq 1 - \eta
\]

For \(\mu \) samplable in time \(t(n) \), \(A \) runs in time \(\text{poly}(n, t(n), s(n), \gamma^{-1}, \delta^{-1}, 2^c) \).

Proof. To construct \(A \), we will follow three steps:

1. Construct a weak randomized predictor \(L \).
2. Argue that many good non-uniform but deterministic predictors exist, by fixing coins and samples for \(L \).
3. Construct a deterministic predictor by sampling and then testing enough non-uniform predictors.

Steps 2 and 3 follow from standard techniques (i.e., "constructive averaging").
Claim 5.1 (Weak randomized predictor). Let \(\phi \) be an evaluation rule. Under the conditions of Theorem 5.1, there exists a randomized algorithm \(L \), running in time \(\text{poly}(n, l(n), s(n), \gamma^{-1}, \delta^{-1}, \eta^{-1}, 2^c) \), such that for any \(n \in \mathbb{N}, \delta, \eta > 0 \), the following equation is satisfied:

\[
\Pr_{f \sim \mu} \left[\Pr_{z \sim \rho} \left[\forall \rho : \Pr_{z \sim \rho} \left[L_{E}(f, \rho)(z, n, \delta, \eta) \neq f(z) \right] \leq \frac{1}{2} - \text{poly}(\gamma \cdot 2^{-c}) \right] \geq 1 - \delta \right] \geq 1 - \eta
\]

(11)

Proof of Claim 5.1. We will abuse notation and write \(\pi_g \sim \mu \) to denote the binary representation of a concept \(g \), distributed appropriately according to the target distribution \(\mu \) over the \(\phi \)-induced \(s(n) \)-represented concept class \(\mathcal{C} \). See the randomized predictor \(L \) in Figure 1.

Consider the distribution \(\mathcal{M} \) over \(2 \times 2 \) matrices

\[
C = \begin{bmatrix}
\phi(\pi_f, z) & \phi(\pi_f, w) \\
\phi(\pi_g, z) & \phi(\pi_g, w)
\end{bmatrix}
\]

where \(\pi_f, \pi_g \sim \mu \) and \(z, w \sim \rho \). We now claim that, under the conditions of Theorem 5.1, this distribution is efficiently distinguishable from the distribution \(\mathcal{R} \) over random \(2 \times 2 \) matrices,

\[
R = \begin{bmatrix}
r_{00} & r_{01} \\
r_{10} & r_{11}
\end{bmatrix}
\]

To see this, observe that the distribution over \(C \) is identical to the following distribution over \(2 \times 2 \) matrices (abusing notation, \(z = \rho(y) \) denotes a point \(z \) sampled according to \(\rho \) with the random bits \(y \))

\[
D = \begin{bmatrix}
\phi(\mu(x), \rho(y)) & \phi(\mu(x), \rho(y')) \\
\phi(\mu(x'), \rho(y)) & \phi(\mu(x'), \rho(y'))
\end{bmatrix}
\]

Here, \(x, x', y, y' \) are uniformly random strings. We can assume that without loss of generality that \(x, x', y, y' \) are all the same length, by defaulting to the maximum necessary length for sampling \(\mu, \rho \) (and padding the shorter strings with useless random bits). Therefore, identifying \(\xi(x, y) := \phi(\mu(x), \rho(y)) \), we can now see that

\[
R_2(\xi) = \mathbb{E}_{\pi_f, \pi_g \sim \mu} \left[\prod_{i,j \in \{0,1\}} C_{ij} \right]
\]

It now readily follows that when \(\mathbb{E}[\phi, n, (\mu, \rho)] \) is \((c, \gamma)\)-evaluated (which is true by assumption), then

\[
R_2(\xi) = \mathbb{E}_{\pi_f, \pi_g \sim \mu} \left[\prod_{i,j \in \{0,1\}} C_{ij} \right] \geq (\gamma \cdot 2^{-c})^4 \tag{12}
\]

On the other hand,

\[
\mathbb{E}_R \left[\prod_{i,j \in \{0,1\}} R_{ij} \right] = 0
\]

Now that we have established this, we may proceed by a hybrid argument. Define the neighboring hybrid distributions \(H_1, H_2, H_3, H_4, H_5 \) over \(2 \times 2 \) matrices, as in Figure 2.

It then follows that for random hybrid neighbors \(H_i, H_{i+1} \) (\(i \in [4] \)),

\[
\mathbb{E}_{i \sim [4]} \left[\mathbb{E}_{H' \sim H_{i+1}} \left[\prod_{k,j \in \{0,1\}} H'_{kj} = 1 \right] - \mathbb{E}_{H \sim H_i} \left[\prod_{k,j \in \{0,1\}} H_{kj} = 1 \right] \right] \geq (\gamma \cdot 2^{-c})^4 / 4 \tag{13}
\]

To ease notation, let \(D(H) = \prod_{k,j \in \{0,1\}} H_{kj} \), and let \(V_i \) denote the event that \(D(H_i) = 1 \). Intuitively, the function \(D \) stands for “distinguisher,” and can be thought of as such.

We continue by observing that, by definition, the value stored as \(v \) in \(L \) (Algorithm 1) is \(D(H_i) \) for a random \(i \in [4] \). Hence, the output of \(L \), which is written as \(D(H_i) \cdot b \), is interpreted as a prediction, where \(b = r_{b_1b_2} \) is the “guess bit.” Note that, the string \(b_1b_2 \) is the binary representation of \(i \).
Algorithm 1 $L^{\text{Ex}(f, \rho)}$

1: **Input**: $z \in \{0, 1\}^n$, $n \in \mathbb{N}$, $\delta, \eta > 0$
2: Pick uniformly random values $b_1, b_2 \in \{0, 1\}$.
3: Pick uniformly random values $r_{00}, r_{01}, r_{10}, r_{11} \in \{-1, 1\}$
4: Sample $\pi_g \sim \mu$.
5: Sample $(w, y) \sim \text{Ex}(f, \rho)$.
6: **if** $b_1 = b_2 = 0$ **then**
 7: $v \leftarrow \prod_{i,j \in \{0,1\}} r_{ij}$
 8: **if** $b_1 = 0, b_2 = 1$ **then**
 9: $v \leftarrow y \cdot r_{00} \cdot \prod_{i,j \in \{0,1\}} r_{ij}$
 10: **if** $b_1 = 1, b_2 = 0$ **then**
 11: $v \leftarrow \phi(\pi_g, w) \cdot \phi(\pi_g, z) \cdot \prod_{j \in \{0,1\}} r_{1j}$
 12: **if** $b_1 = 1, b_2 = 1$ **then**
 13: $v \leftarrow y \cdot \phi(\pi_g, w) \cdot \phi(\pi_g, z) \cdot r_{11}$
 14: $b \leftarrow r_{b_1 b_2}$
15: **Output** $b \cdot v$

Figure 1: Randomized predictor L.

$H_1 = \mathcal{R}$

$H_2 = \begin{cases} C_{k\ell} & \text{when } k = 0, \ell = 0 \\ R_{k\ell} & \text{otherwise} \end{cases}$

$H_3 = \begin{cases} C_{k\ell} & \text{when } k = 0, \ell \leq 1 \\ R_{k\ell} & \text{otherwise} \end{cases}$

$H_4 = \begin{cases} C_{k\ell} & \text{when } k = 0 \text{ or } \ell \leq 0 \\ R_{k\ell} & \text{otherwise} \end{cases}$

$H_5 = \mathcal{M}$

Figure 2: Hybrid sequence.
Claim 5.2 agrees with f algorithm as a deterministic mapping of random bits and examples from Ex computing other randomized aspects of the algorithm is treated as input. This allows us to consider the learning algorithm by averaging. Let η is fixed to be γ, δ and μ and the randomness of L:

$$\Pr \left[L_{\text{Ex}}^{f, \rho}(z, n, \delta, \eta) = f(z) \right] = \Pr \left[L_{\text{Ex}}^{f, \rho}(z, n, \delta, \eta) = f(z) \mid b = f(z) \right] \cdot \Pr [b = f(z)]$$

$$+ \Pr \left[L_{\text{Ex}}^{f, \rho}(z, n, \delta, \eta) = f(z) \mid b \neq f(z) \right] \cdot \Pr [b \neq f(z)]$$

$$= \frac{1}{2} \left(\Pr [b \cdot D(H_i) = f(z) \mid b = f(z)] + \Pr [b \cdot D(H_i) = f(z) \mid b \neq f(z)] \right)$$

Indeed, when V_i is unsatisfied, this means that the output of L is b. The case analysis follows:

$$\Pr [L_{\text{Ex}}^{f, \rho}(z, n, \delta, \eta) = f(z)] = \frac{1}{2} \left(\Pr [V_i \mid b = f(z)] + \Pr [\neg V_i \mid b \neq f(z)] \right)$$

$$= \frac{1}{2} + \frac{1}{2} \left(\Pr [V_i \mid b = f(z)] - \Pr [V_i \mid b \neq f(z)] \right)$$

By conditioning, we know that:

$$\Pr [V_i] = \frac{1}{2} \Pr [V_i \mid b = f(z)] + \frac{1}{2} \Pr [V_i \mid b \neq f(z)]$$

rearranging the terms, we get:

$$\frac{1}{2} \Pr [V_i \mid b \neq f(z)] = \Pr [V_i] - \frac{1}{2} \Pr [V_i \mid b = f(z)]$$

We thus conclude:

$$\Pr [L_{\text{Ex}}^{f, \rho}(z, n, \delta, \eta) = f(z)] = \frac{1}{2} + \Pr [V_i \mid b = f(z)] - \Pr [V_i]$$

The term (α) corresponds to the case that L computes the 2-party norm on a sample from H_{i+1} (i.e., the product of the entries of a matrix sampled from H_{i+1}), while term (β) is the case that L computes the 2-party norm on a sample from H_i (the product of the entries of a matrix sampled from H_i). Thus, by equation (13),

$$\Pr [L_{\text{Ex}}^{f, \rho}(z, n, \delta, \eta) = f(z)] = \frac{1}{2} \left(1 - \Pr [D(H_{i+1}) = 1] - (1 - \Pr [D(H_i) = 1]) \right)$$

$$\geq \frac{1}{2} + (\gamma \cdot 2^{-c})^4 / 8$$

Having established Claim 5.1, we now convert the randomized algorithm $L_{\text{Ex}}^{f, \rho}$ into a non-uniform learning algorithm by averaging. Let $L_{\text{in}}^{f, \rho}(z; r)$ denote the Algorithm 1 where the random hybrid choice is fixed to be i, and the input parameters $\text{inp} = (n, \delta, \eta)$ are hard-wired in, and the random bits r for computing other randomized aspects of the algorithm is treated as input. This allows us to consider the algorithm as a deterministic mapping of random bits and examples from $\text{Ex}(f, \rho)$ to a circuit that weakly agrees with f. By a standard averaging argument, we obtain:

Claim 5.2 (Averaging, see lemma A.11 of [AB09]).

$$\Pr_{r} \left[\Pr_{z \sim \rho} \left[L_{\text{in}, i}^{f, \rho}(z; r) = f(z) \mid r \right] > \frac{1}{2} + \frac{(\gamma \cdot 2^{-c})^4}{32} \right] > (\gamma \cdot 2^{-c})^4 / 4$$
Algorithm 2 \(A_{\text{Ex}(f, \rho)} \)

1: **Input:** \(n \in \mathbb{N}, \delta \in (0, 1] \)
2: Sample \(m \) (sufficiently many) candidate circuits, using oracle access to \(\text{Ex}(f, \rho) \) as needed.
3: Sample \(t \) (sufficiently many) additional random examples from \(\text{Ex}(f, \rho) \).
4: **for** each sampled circuit \(C_i \), **do**
 5: Compute using random examples: \(\alpha_i \leftarrow \text{Cor}(f, C_i) \)
6: **output** the circuit with largest \(\alpha \) value.

Figure 3: Algorithm for sampling and testing candidate predictors.

Taking hybrid index \(i \) and \(r \) uniformly at random, we obtain “good” choices with good probability. Therefore such a circuit is efficiently found by randomized trial-and-error; we sample many candidate predictors in parallel and then compare each to the concept by checking random examples. By a standard application of Chernoff bounds, sufficiently many examples will be enough to check that a circuit with good enough accuracy is indeed good enough, with high probability.

Claim 5.3 (Without proof). With probability \(1 - \delta \), \(A \) (Algorithm 2 in Figure 3) outputs a “good” circuit that correctly classifies \(\frac{1}{2} + \text{poly}(\gamma \cdot 2^{-c}) \) fraction of points, where \(t, m \) are quantities that are polynomially bounded as a function of \(\text{poly}(\gamma \cdot 2^{-c}) \) and \(\log(\delta^{-1}) \).

From the above claims it now follows, from a Markov argument, that:

\[
\Pr_{\pi \sim \mu} \left[\Pr_{z \sim \rho} [h(z) \neq f(z) : h \leftarrow A_{\text{Ex}(f, \rho)}(n, \delta)] \geq 1 - \delta/\eta \right] \geq 1 - \eta
\]

This concludes the proof of Theorem 5.1.

Remark. Using the 2-party norm as we do is a universal distinguisher. That is, it distinguishes any evaluation rule that is \((c, \gamma)\)-evaluated from a random function (using the lower bound of \((\gamma \cdot 2^{-c})^4\)). Therefore it holds that for arbitrary choice of distribution \(\rho \), we obtain the desired guarantee. Indeed, the choice of \(\rho \) can be adversarial with respect to \(f \sim \mu \), and it never needs to be known by \(A \).

5.3 Main Theorem

Theorem 5.1 is enough to prove Theorem 1.2. Recall that \(\mathcal{C} = \{C_n\}_{n \in \mathbb{N}} \) is a boolean concept class that is \(s(n) \)-representable by the evaluation function \(\phi = \{\phi_n\}_{n \in \mathbb{N}} \).

Theorem 5.2 (Theorem 1.2, restated). Let \(\phi \) be an evaluation rule, and suppose that for every \(n \in \mathbb{N} \), and product distribution \((\mu, \rho), \mathbb{G}[\phi, n, (\mu, \rho)] \) is \((c, \gamma)\)-evaluated. Then, \((\mathcal{C}, \mu)\) is distPAC-learnable. For a time \(t(n) \)-samplable \(\mu \) and \(s(n) \)-represented \(\mathcal{C} \), the learning algorithm runs in time polynomial in \(n, t(n), s(n), \gamma^{-1}, \varepsilon^{-1}, \delta^{-1}, \eta^{-1}, \) and \(2^c \).

Proof. Immediate from Theorem 3.1 and Theorem 5.1.

Remark. The exponential dependency of \(c \) is possibly necessary (i.e., necessary assuming exponentially secure one-way functions exist), since the theorem does not restrict \(\mathcal{C} \) (e.g., it can be \(P/poly \)), and no matter what \(c \leq n \). Also, see Section 7.3 for further discussion.

6 Distributional PAC-Learning from Nisan’s Natural Proofs

In this section, we will apply Theorem 5.2 to obtain polynomial time distPAC-learning algorithms. Theorem 6.1 restates Theorem 1.3.
Theorem 6.1 (distPAC-learning — Theorem 1.3 restated). Let \(\phi \in \text{MAJ} \circ \text{THR} \) be any evaluation rule, and let \(\mu \) be any polynomial time sampleable target distribution. Then, for the \(\phi \)-induced \(s(n) \)-represented concept class \(\mathcal{C} \), the pair \((\mathcal{C}, \mu)\) is efficiently distPAC-learnable.

Proof of Theorem 6.1. By Theorem 4.2, \(\text{MAJ} \circ \text{THR} \) has a randomized communication protocol with cost \(O(\log n) \) and bias at least \(1/\text{poly}(n) \). This implies that for any product distribution \((\mu, \rho)\) it is the case that \(\mathcal{G}[\phi, n, (\mu, \rho)] \) is \((O(\log n), 1/\text{poly}(n)) \)-evaluated, since \(\phi \in \text{MAJ} \circ \text{THR} \). This is enough to conclude the theorem by Theorem 5.2. \(\blacksquare \)

6.1 DistPAC-Learning on Natural Target Distributions

6.1.1 Majority-of-Thresholds

In this section, we will use Theorem 6.1 to show efficient distPAC-learning algorithms for \(\text{MAJ} \circ \text{THR} \)-circuits over natural target distributions. Recall that, as mentioned in the introduction, we must restrict the target distribution over polynomial size \(\text{MAJ} \circ \text{THR} \)-circuits if we hope to obtain efficient distPAC-learning without also obtaining polynomial time solutions to \(\tilde{O}(n^{1.5}) \)-uSVP, and polynomial time quantum solutions to \(\tilde{O}(n^{1.5}) \)-SVP and \(\tilde{O}(n^{1.5}) \)-SIVP (see Corollary 4.1 for the formal statement).

The target distribution. Let \(L = (T_1, \cdots, T_m) \) be a list of \(m := \text{poly}(n) \) linear threshold functions. Also, let \(\mu \) be any \(\text{poly}(n) \) time sampleable distribution over \(\{0, 1\}^m \). We define the distribution \(\mu_L \) over \(\text{MAJ} \circ \text{THR} \)-circuits as follows.

- Sample \(\theta \sim \mu \).
- Output the \(\text{MAJ} \circ \text{THR} \)-circuit that is the majority vote over each \(T_i \in L \) such that \(\theta_i = 0 \).

We will show that, for any \(\mu, L \) as described above, \((\text{MAJ} \circ \text{THR}, \mu_L)\) is efficiently distPAC-learnable.

Theorem 6.2. Let \(L = (T_1, \cdots, T_m) \) be any list of \(m := \text{poly}(n) \) linear threshold functions over \(n \)-bit inputs, and let \(\mu \) be any \(\text{poly}(n) \) time sampleable distribution over \(\{0, 1\}^m \). The pair \((\text{MAJ} \circ \text{THR}, \mu_L)\) is efficiently distPAC-learnable.

Proof. To prove the theorem, we will show that the target distribution \(\mu_L \) can be translated into a distribution \(\mu_L^* \) over binary representations, so that given a representation \(\pi_f \sim \mu_L^* \), there is an evaluation rule \(\phi \in \text{MAJ} \circ \text{THR} \) such that, for every \(x \in \{0, 1\}^m \), it holds that \(\phi(\pi_f, x) = f(x) \). In other words, the distribution over functions \(\phi(\pi_f, \cdot) \) for \(\pi_f \sim \mu_L^* \) is identical (when considering functional equivalence) to \(\mu_L \). This suffices to prove the theorem by invoking Theorem 5.2.

We construct \(\phi \) in the following way. For \(T_i \in L = (T_1, \cdots, T_m) \), let \(\theta_i \in \mathbb{Z} \) be the threshold parameter and let \(w_{i,j} \in \mathbb{Z} \) be the \(j \)-th weight in \(T_i \) (i.e., \(T_i = \{ w_{i,1}x_1 + \cdots + w_{i,n}x_n \geq \theta_i \} \)). Now, for every \(T_i \in L \), add an input variable \(z_i \) that is weighted by \(w_{z_i} = -(w_{i,1} + \cdots + w_{i,n} + \theta_i + 1) \). Call the new threshold function \(T'_i = \{ w_{z_i}x_1 + \cdots + w_{i,n}x_n + w_{z_i}z_i \geq \theta_i \} \).

Also, define auxiliary variables \(y_1 \cdots y_m \). We define \(\phi : \{0, 1\}^{2m} \times \{0, 1\}^n \to \{-1, 1\} \)
\[
\phi(z_1 \cdots z_m, y_1 \cdots y_m, x) := \text{MAJ}(T'_1(x, z_1), \cdots, T'_m(x, z_m), y_1, \cdots, y_m)
\]

We now define the distribution \(\mu_L^* \) over \(\{0, 1\}^{2m} \). To sample \(\mu_L^* \), first sample \(z \sim \mu \). Then, letting \(|z| \) denote the number of ones in \(z \), sample \(y = y_1 \cdots y_m \) by choosing uniformly at random amongst the \(m \)-bit strings such that \(|y| = (|z| + m)/2 \). Finally, output \((z, y) \in \{0, 1\}^{2m} \).

It only remains to show that the distribution over functions \(\phi(\pi_f, \cdot) \) for \(\pi_f := (z, y) \sim \mu_L^* \) is identical (when considering functional equivalence) to \(\mu_L \). To see this, observe that whenever \(z_i = 1 \), \(T'_i(x, z_i) = 0 \). This follows from the fact that \(-w_{z_i} > w_{i,1} + \cdots + w_{i,n} + \theta_i \). On the other hand, clearly when \(z_i = 0 \), \(T'_i(x, z_i) = T_i(x) \).

The goal is to output \(\text{MAJ}_L(T_i(x)) \) for all \(T_i \) such that \(z_i = 0 \). Therefore, we need to balance the presence of the extra zero votes in \(\text{MAJ}(T'_1(x, z_1), \cdots, T'_m(x, z_m)) \), which occur whenever \(z_i = 1 \), by adding \(|z| \) one votes. Since we took \(|y| = (|z| + m)/2\), then \(|y| - (m - |y|) = |z|\), so adding \(y_1, \cdots, y_m \) to the majority vote gives a surplus of \(|z|\) one votes.
We define a distribution over functions \(\phi(z_1 \cdots z_m, y_1 \cdots y_m) \) for \((z, y) \sim \mu^*_L\) is, when considering functional equivalence, identical to \(\mu_L\). Since \(\mu^*_L\) is obviously polynomial time samplable, and \(\phi \in \text{MAJ} \circ \text{THR}\), the theorem statement follows by Theorem 5.2.

Non-black-box access to \(\mu_L\). The distPAC-learning algorithm does not need descriptions of \(\mu\) or \(L\) as input. Instead, it suffices to have black-box access to a sampling machine that outputs appropriately distributed polynomial size circuits that are functionally equivalent to the appropriate \(\text{MAJ} \circ \text{THR}\)-circuit, under some fixed encoding scheme. To see this, observe that the randomized predictor \(L\) (Figure 1) uses the evaluation rule \(\phi\) and a concept representation \(\pi_g\) to basically obtain some labels of \(g\). But it is not important what the representation is, or how \(\phi\) is implemented. For the accuracy of the learning algorithm, it only matters that, it is possible to implement \(\phi\) by a \(\text{MAJ} \circ \text{THR}\) circuit (under some concept representation). Hence, the learner can work with some far messier representation of concepts, such as by arbitrary polynomial size circuits.

The fact that the learner does not need to know \(\mu\) or \(L\) is a good property that enhances the convenience of the learning algorithm. Arguably, knowledge of \(\mu\) and \(L\) would be a prohibitive assumption in practice; rather, black-box sample access to a more complex and messy form of \(\mu_L\) (provided that the learner can still interpret the encoding well enough to evaluate it) is a significantly weaker assumption, corresponding to a scenario where the learner has some non-explicit knowledge about the possible concepts it may encounter.

6.1.2 Polytopes and DNFs

In this section we will explain how we can slightly modify the proof for Theorem 6.2 to also obtain distPAC-learning for natural distributions over polytopes and DNFs. Recall that, in distributional PAC-learning, subclasses are not necessarily distPAC-learnable if their superclass is, since it is possible that the subclass consists of functions that are hard for the superclass distPAC-learning algorithm.

A polytope is an intersection of linear threshold functions. In other words, it is any function that belongs to the class \(\text{AND} \circ \text{THR}\). Therefore, it is easy to see that any polytope is computable by a \(\text{MAJ} \circ \text{THR}\)-circuit. We consider a slight modification of the distribution over \(\text{MAJ} \circ \text{THR}\)-circuits:

Polytope target distribution. Let \(L = (T_1, \cdots T_m)\) be a list of \(m := \text{poly}(n)\) linear threshold functions. Also, let \(\mu\) be any \(\text{poly}(n)\) time samplable distribution over \(\{0, 1\}^m\). We define the distribution \(\mu^*_L\) over polytopes as follows.

- Sample \(\theta \sim \mu\).
- Output the polytope that is the \(\text{AND}\) over each \(T_i \in L\) such that \(\theta_i = 0\).

Theorem 6.3. Let \(L = (T_1, \cdots T_m)\) be any list of \(m := \text{poly}(n)\) linear threshold functions over \(n\)-bit inputs, and let \(\mu\) be any \(\text{poly}(n)\) time samplable distribution over \(\{0, 1\}^m\). The pair \((\text{AND} \circ \text{THR}, \mu^*_L)\) is efficiently distPAC-learnable.

Proof. To complete the proof, we only need to modify how the evaluation rule \(\phi : \{0, 1\}^{3m} \times \{0, 1\}^n \rightarrow \{-1, 1\}\) is defined in the proof of Theorem 6.2:

\[
\phi(v_1, \cdots v_m, z_1 \cdots z_m, y_1 \cdots y_m, x) := \text{MAJ}(T_1'(x, z_1), \cdots, T_m'(x, z_m), y_1, \cdots, y_m, v_1, \cdots v_m)
\]

We define a distribution \(\mu^*_L\) over binary representations, which samples \((z, y) \sim \mu^*_L\), and then \(v\) is sampled uniformly at random from the set of \(m\)-bit strings with \(|v| = |z|/2\). This means that \((m - |v|) - |v| = m - |z|\), that is, there is a surplus of \(m - z\) zero votes within \(v\). We do this in order to convert the top majority-gate into an and-gate, which is accomplished by adding the surplus of \(m - |z|\) zero votes, because this forces every \(T_i\) for \(z_i = 0\) (of which there are \(m - |z|\) of them) to evaluate to 1, in order for \(\phi\) to evaluate to 1, as desired.

Therefore, we can see that the distribution over functions \(\phi(v, z, y, \cdot)\) for \((v, z, y) \sim \mu^*_L\) is, when considering functional equivalence, identical to \(\mu^*_L\). Since \(\mu^*_L\) is obviously polynomial time sampleable, and \(\phi \in \text{MAJ} \circ \text{THR}\), the theorem statement follows by Theorem 5.2.
A DNF can be viewed as a polytope where each of the linear threshold functions simulate OR gates. One can simulate OR gates by restricting the weights to be either 0 or 1, and setting the threshold \(\theta := 1 \). We therefore consider a modification of the distribution over polytopes:

DNF target distribution. Let \(L = (T_1, \cdots, T_m) \) be a list of \(m := \text{poly}(n) \) linear threshold functions, where each weight is either 0 or 1 and the threshold is fixed to \(\theta := 1 \). In other words, each \(T_i \) implements an OR of some selection of variables. Also, let \(\mu \) be any \(\text{poly}(n) \) time samplable distribution over \(\{0, 1\}^m \). We define the distribution \(\mu_L^{\land \lor} \) over DNFs as follows.

- Sample \(\theta \sim \mu \).
- Output the DNF that is the AND over each \(T_i \in L \) such that \(\theta_i = 0 \).

Theorem 6.4. Let \(L = (T_1, \cdots, T_m) \) be a list of \(m := \text{poly}(n) \) linear threshold functions over \(n \)-bit inputs, where each weight is either 0 or 1 and the threshold is fixed to \(\theta := 1 \). Also, let \(\mu \) be any \(\text{poly}(n) \) time samplable distribution over \(\{0, 1\}^m \). The pair \((\text{DNF}, \mu_L^{\land \lor}) \) is efficiently distPAC-learnable.

Proof. Using the same argument as in the proof of Theorem 6.3, we can define

\[
\phi(v_1, \cdots, v_m, z_1, \cdots, z_m, y_1, \cdots, y_m, x) := \text{MAJ}(T_1^0(x, z_1), \cdots, T_m^0(x, z_m), y_1, \cdots, y_m, v_1, \cdots, v_m)
\]

Then, because the threshold functions on the bottom layer are defined to simulate OR gates, the theorem now follows by the same arguments following the definition of the evaluation rule in Theorem 6.3.

\[\square\]

7 Impossibility of Encoded-Input Weak PRFs

In this section, we will apply Theorem 5.2 to prove that weak PRFs augmented with a keyless encoding procedure cannot exist, when evaluating the encoded input on any key is forced to be done by a MAJ \(\circ \) THR-circuit.

7.1 Encoded-Input Weak PRFs

We define encoded-input weak PRFs. Our definition is the natural relaxation of the definition of encoded-input strong PRFs of Boneh et al. [BIP+18].

Definition 7.1 (Encoded-input weak PRFs). Let \(\lambda \) be a security parameter, and \(n := n(\lambda), \kappa := \kappa(\lambda), m := m(n) \) for polynomially bounded functions \(n, \kappa, m \). Consider a trio of algorithms \(f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}, \text{gen} : \{1\}^{\lambda} \rightarrow \{0, 1\}^\kappa, \text{enc} : \{0, 1\}^m \rightarrow \{0, 1\}^n \).

- \(\text{gen} \) is a polynomial time sampling algorithm that given input parameter \(\lambda \) in unary and access to random coins \(z \in \{0, 1\}^{\text{poly}(\kappa)} \) outputs a key \(k \in \{0, 1\}^\kappa \).

- \(\text{enc} \) is a polynomial time algorithm that given a representation of an input \(r \in \{0, 1\}^m \), outputs an encoding \(x \in \{0, 1\}^n \).

- \(f \) is a polynomial time algorithm that given a key \(k \) and the encoded input \(x \in \{0, 1\}^n \), outputs a value \(f(k, x) = v \in \{0, 1\} \).

For \(t = t(\lambda), \varepsilon = \varepsilon(\lambda) \), we say that \((\text{f}, \text{gen}, \text{enc}) \) is a \((t, \varepsilon) \)-i.e.weak PRF if, for every size \(t \) oracle circuit \(C \),

\[\Pr_{k \sim \text{gen}(\lambda)} \left[C^{\text{Ex}(f)} = 1 \right] - \Pr_{\psi} \left[C^{\text{Ex}(\psi)} = 1 \right] \leq \varepsilon(\lambda)\]

where \(\psi : \{0, 1\}^n \rightarrow \{0, 1\} \) is a uniformly random function, and \(\text{Ex}(h) \) is an oracle that returns random points \(\langle \text{enc}(r), h(\text{enc}(r)) \rangle \) for some function \(h : \{0, 1\}^n \rightarrow \{0, 1\} \) and \(r \sim U_m \).
To measure the complexity of an e.i.weak PRF, we say that \((f, \text{gen}, \text{enc})\) is \textit{evaluated} by a uniform circuit class \(\Lambda\), if \(f \in \Lambda\) (i.e., we ignore complexity of the encoding procedure). This differs from the notion of fixed-key complexity considered elsewhere in the literature for weak PRFs (where we want that, for every \(k, f(k, \cdot) \in \Lambda\)). However, we remark that in some cases, arguably it is more important to know what is the circuit complexity of a single circuit that is capable of evaluating many inputs on many unknown keys.

7.2 Impossibility of Encoded-Input Weak PRFs Evaluated By Majority-of-Threshold

In the remainder of this section, we will show that there cannot be any e.i.weak PRFs evaluated by \(\text{MAJ} \circ \text{THR}\)-circuits of polynomial size. The proof is a straightforward application of Theorem 5.2.

Theorem 7.1 (Theorem 1.7 restated). \textit{There exists no encoded-input weak PRF that is evaluated by a MAJ \circ THR-circuit.}

Proof. Let \(\phi\) be an evaluation rule, and suppose that for every \(n \in \mathbb{N}\), and product distribution \((\mu, \rho)\), \(\Theta[\phi, n, (\mu, \rho)]\) is \((c, \gamma)\)-evaluated. By Theorem 5.2, \((\mathcal{C}, \mu)\) is distPAC-learnable. For a poly\((n)\)-samplable \(\mu\) and poly\((n)\)-represented \(\mathcal{C}\), the learning algorithm runs in time polynomial in \(n, \gamma^{-1}, c^{-1}, \delta^{-1}, \eta^{-1}\), and \(2^c\).

Now, consider any trio of algorithms, \((f, \text{gen}, \text{enc})\), with \(f \in \Lambda\). In order to apply Theorem 5.2, we view \(f \in \Lambda\) as an evaluation rule, \(\text{gen}\) as a poly\((n)\)-samplable target distribution \(\mu_{\text{gen}}\), and \(\text{enc}\) as a sampling algorithm for an example distribution \(\rho_{\text{enc}}\). It follows then that if for the product distribution \((\mu_{\text{gen}}, \rho_{\text{enc}})\), \(\Theta[f, n, (\mu_{\text{gen}}, \rho_{\text{enc}})]\) is \((c, \gamma)\)-evaluated, then \((f, \text{gen}, \text{enc})\) cannot be a e.i.weak PRF with better than poly\((2^c)\) security.

Finally, it follows that for any \(f \in \text{MAJ} \circ \text{THR}\), the trio \((f, \text{gen}, \text{enc})\) cannot be an e.i.weak PRF, because we know that \(\Theta[f, n, (\mu_{\text{gen}}, \rho_{\text{enc}})]\) is \((O(\log n) 1/\text{poly}(n))\)-evaluated (see Theorem 4.2). \(\blacksquare\)

7.3 Improving Main Theorem Requires Learning Theory Breakthroughs

Through the lens of weak PRF distinguishers, we now explain how a slight improvement of the runtime dependency of \(2^{O(c)}\) stated in Theorem 5.2 to \(2^{O(c^{1/2})}\) is a difficult task.

A famous example of a "low-complexity" weak PRF is the XOR-MAJ weak PRF candidate of [BFKL93]. The authors of [BFKL93] claimed 30 years ago that "any method that could even weakly predict [in polynomial time] such functions over a uniform distribution would require profoundly new ideas." At the moment, there is arguably still no reason to believe that such methods will soon be developed.

We define the weak PRF candidate of [BFKL93]; our argument follows immediately. The XOR-MAJ weak PRF candidate is the pair of algorithms \((\text{xm}, \text{xmgen})\) constructed as follows.

- \(\text{xmgen}(1^n)\) outputs the key \(k = (A, B) \subseteq [n]\), consisting of uniformly random disjoint sets \(A, B \in [n]\) of size \(\log n\) each. \(k = (A, B)\) can be considered a bitstring of length \(2 \log^2(n)\).
- \(\text{xm}(k, x)\) takes as input the key and a string \(x \in \{0, 1\}^n\). \(\text{xm}(k, x)\) is defined by
 \[
 \text{xm}(k, x) = \text{XOR}(\text{XOR}(x|_A), \text{MAJ}(x|_B))
 \]
 Here, \(x|_S\) is the projection of a string \(x \in \{0, 1\}^n\) to the coordinates indicated by a set \(S \subseteq [n]\).

From the definition, it is clear that \(\text{xm}\) can be seen as an evaluation function that induces a \(2 \log^2(n)\)-represented concept class. The target distribution would be uniform over the representations contained in \(\{0, 1\}^{2 \log^2(n)}\). Therefore, Theorem 5.2, if improved to run in time polynomial in \(2^{\epsilon^{1/2}}\), would imply a polynomial time distinguisher for the XOR-MAJ weak PRF candidate. This is justified by the fact that the communication complexity of the associated communication game \(\Theta[\text{xm}, n, (U_{2 \log^2(n)}, U_n)]\) is at most \(2 \log^2(n)\) (the first player merely sends its entire input to the second player, who then evaluates the \(\text{xm}\) ans outputs the result), and \(2^{O(2 \log^2(n)^{1/2})} = \text{poly}(n)\).
Acknowledgements

I thank Mark Bun, Ran Canetti, Russell Impagliazzo, and Emanuele Viola for thoughtful conversations about this research. I also thank Mauricio Karchmer for advice on presentational aspects of this paper. Finally, I give special thanks to Marco Carmosino for helpful comments on a draft of this paper, as well as many discussions pertaining to this research. Part of this research was completed while I was visiting the Simons Institute for the theory of computing.

References

