
Random (log𝑛)-CNF are Hard for Cutting Planes (Again)

Dmitry Sokolov

École Polytechnique Fédérale de Lausanne

June 8, 2023

Abstract

The random Δ-CNF model is one of the most important distribution over Δ-SAT instances. It is closely
connected to various areas of computer science, statistical physics, and is a benchmark for satisfiability
algorithms. Fleming, Pankratov, Pitassi, and Robere [Fle+22] and independentlyHrubeš and Pudlák [HP17]
showed that when Δ = Θ(log𝑛), any Cutting Planes proof for random Δ-CNF on 𝑛 variables requires
size 2𝑛/polylog𝑛 in the regime where the number of clauses guarantees that the formula is unsatisfiable with
high probability. In this paper we show tight lower bound 2Ω(𝑛) on size CP-proofs for random (log𝑛)-CNF
formulas. Moreover, our proof is much simpler and self-contained in contrast with previous results based
on Jukna’s lower bound for monotone circuits.

1 Introduction

Proof complexity studies whether there are efficient certificates (or proofs) for the unsatisfiability of boolean
formulas. The non-existence of such proofs in any proof system would separate classes NP and coNP. Ac-
cording to Cook’s program, the idea is to prove lower bounds for stronger and stronger proof systems, so
eventually, we would be able to do it in a general case.

At the current moment we do not have explicit candidates of hard families of unsatisfiable formulas for all
proof systems. And the important problem here is that explicit unsatisfiable formulas are usually accompanied
by mathematical reasoning of unsatisfiability, and these reasonings one may translate into formal proofs in
some strong enough proof system. However, the situation is different in the case of distribution over formulas
that are unsatisfiable with high probability. Candidates of this form are actively studied [CS88; Gri01; Bea+02;
AR03; Ale+04; FKO06; Ale11; MT14; Raz15; HP17; Ats+18; Sok20; SS22; Fle+22]. And one of the most popular
candidates distribution that generates hard formulas for all proof systems are random Δ-CNF formulas.

Definition 1.1

Let 𝔉(𝑚, 𝑛, Δ) denote the distribution of random Δ-CNF on 𝑛 variables obtained by sampling 𝑚
clauses (out of the (𝑛

Δ)2Δ possible clauses) uniformly at random with repetitions.

The famous result of Chvátal–Szemerédi says if we pick a formula from with distribution with proper
parameters the resulting formula will be unsatisfiable with high probability.

Theorem 1.2 [Chvátal–Szemerédi, [CS88]]

For any Δ ≥ 3 whp 𝜑 ∼ 𝔉(𝑚, 𝑛, Δ) is unsatisfiable if 𝑚 ≥ ln 2 ⋅ 2Δ𝑛.

Formal conjectures were formulated by Feige [Fei02]: no polynomial time algorithm may prove whp the
unsatisfiability of a random𝒪 (1)-CNF formula with arbitrary large constant clause density. Assuming Feige’s
conjecture it is known that some problems are hard to approximate: vertex covering, DNF PAC learning, etc.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 86 (2023)

ResNS

CP
Res(𝑘)

AC0-Frege
Res(⊕)

AC0[𝑝]-Frege

Frege

IPS

PCR
SOS

CPS

Lower bounds
random Δ-CNF

Figure 1: State of the art of lower bounds in proof complexity.

Related results. The state of art results in proof complexity are presented in figure 1. We know some lower
bounds for proof systems in shaded region. The second line indicates proof systems for which we know also
lower bounds for randomΔ-CNF formulas. In particular, we know lower bounds for randomΔ-CNF formulas
in:

• Resolution (Chvátal–Szemerédi, [CS88]);

• Polynomial Calculus (Ben-Sasson, Impagliazzo [BI99]);

• Sum-of-Squares (Grigoriev, [Gri01]).

The notable exception is an AC0-Frege proof system for which current techniques require extremely struc-
tured formulas and do not allow to deal with random CNFs.

There are two proof systems on the frontier: Cutting Planes and Res[𝑘] (𝑘-DNF Resolution). Exponential
lower bounds on Res[𝑘]-proofs for random CNF formulas was given by Atserias, Bonet and Esteban [ABE02],
the result was significantly improved by Segerlind, Buss, Impagliazzo [SBI04] and by Alekhnovich [Ale11].
Recently these results were unified and generalized by Sofronova and Sokolov [SS22]. To show lower bounds
for 𝑘 ≫ √log𝑛 is an open problem. Lower bound for Cutting Planes was shown by Hrubeš and Pudlák
[HP17] and independently by Fleming, Pankratov, Pitassi, and Robere [Fle+22]. We give an overview of the
technique that was used in these papers.

1.1 Technique and Results

All current techniques for proving lower bounds on Cutting Planes proofs can be divided into two classes:
interpolation and lifting.

Lifting works for structured formulas [Gar+18; Göö+20] and at the current moment this approach is not
useful for random Δ-CNFs and many other classes of formulas. We refer readers to papers [Gar+18] and
[Lov+22]. At the same time we notice that proving lifting-like theorem for symmetric gadgets like inner
product may also allow advance with random formulas.

Interpolation technique based on Craig’s Interpolation Theorem. In other words: let 𝜑(𝑥, 𝑦, 𝑧) ≔
𝐴(𝑥, 𝑧) ∨ 𝐵(𝑧, 𝑦) be an unsatisfiable CNF formula, then one can define a function 𝑓(𝑧) that for given as-
signment to variables 𝑧 says which formula 𝐴 or 𝐵 is unsatisfiable (we skip the question of what happens
if both 𝐴 and 𝐵 are unsatisfiable for simplicity). Krajíček [Kra97] showed that if 𝜑(𝑥, 𝑦, 𝑧) has monotone
encoding and has an efficient proof in Cutting Planes with bounded coefficients then 𝑓(𝑧) can be computed

2

by an efficient monotone circuit. And based on known lower bounds for monotone circuits Krajíček showed
lower bounds for Cutting Planes with bounded coefficients. The restriction was removed by Pudlák [Pud97]
who showed the first lower bound for the full version of Cutting Planes.

Random CNF formula 𝜑 does not have the structure required by the interpolation technique, however,
in both papers [HP17] and [Fle+22] authors suggested an adaptation of this technique. The general plan for
proving lower bounds in these papers consists of the following steps.

1. Choose a monotone function 𝑓𝜑 associated with the formula 𝜑.
2. Show that if there is a small CP-proof for 𝜑 then there is a small real monotone circuit for 𝑓𝜑.

3. Use Jukna’s criteria to show that there are no small real monotone circuits for chosen 𝑓𝜑.

There are several known ways how to associate a monotone function with a formula in a natural way, see for
example [GP18]. In terms of communication complexity these methods are based on the fact that “monotone
Karchmer–Wigderson relation is complete” (we refer readers to [RGR22] for more details). Usage of Jukna’s
criteria in [HP17; Fle+22] requires a precise description of the 𝑓𝜑 that requires some technical job and ideas.
In these papers, authors showed that whp smallest CP-proof of random 𝒪 (log𝑛)-formula has size 2𝑛/polylog𝑛.
In this paper we show a much simpler proof of the stronger result.

Theorem 1.3 [See also Theorem 4.2]

There is a constant 𝑐 > 0 such that if 𝜑 ∼ 𝔉(𝑚, 𝑛, Δ) where 𝑚 = 𝒪 (𝑛2Δ) and Δ ≥ 𝑐 log𝑛, then
whp every semantic CP-proof of 𝜑 has size 2Ω(𝑛).

To show thisTheorem we modify the general plan from papers [HP17] and [Fle+22]. First, we notice, that
all extractions of the function 𝑓𝜑 utilize dag-like communication protocols as an intermediate constructions
either in explicit [Fle+22] or implicit way [HP17; Pud97]. The notion of dag-like protocols formally was
introduced by Sokolov in [Sok17] as a simplification of communication PLS games introduced by Razborov
[Raz95] and simplified by Pudlák [Pud10] (the restricted version was independently introduced by Hrubeš
and Pudlák [HP18]). Instead of extraction of function the 𝑓𝜑 we stop at the intermediate step, create the
dag-like communication protocol, and give a combinatorial analysis of this protocol. Hence the full plan is
the following.

1. We use the lemma from [Sok17] and say that if there is a small CP-proof for 𝜑 then there is a small real
dag-like communication protocol for the Unsatisfied clause search problem (for the sake of completeness
we give the proof in the Appendix A.4).

2. We use general idea of the bottleneck counting argument [HC99] (see also [Sok17]) and show that there
is no small real dag-like communication protocol for the Unsatisfied clause search problem.

As an intermediate step inside bottleneck counting we introduce a 2-dimensional width measure for the
Cutting Planes proofs. We believe that this measure is of independent interest.

Remarks. In fact, in Theorem 1.3 it is allowed to have slightly large clause density, namely 𝑚 = 𝑛1+𝛿2Δ

for small enough 𝛿. But due to saving the simplicity of computations we do not try to reach the optimal
parameters.

The notion of 2-width is related to the notion of fences from the papers [HC99]. But this connection
passed through a reduction between unsatisfied clause search problem and monotone Karchmer–Wigderson
relation.

2 Preliminaries

Denote by H (𝑥) ≔ 𝑥 log𝑥 − 1
𝑥 log 1

𝑥 the binary entropy function. We use the symbol ⊔ for the disjoint
union.

3

With an unsatisfied CNF formula 𝜑 on variables of disjoint union of sets 𝑉𝑥 and 𝑉𝑦 we associate an
unsatisfied clause search problem Search𝜑 ⊆ 𝑋 × 𝑌 × 𝒪 where:

• 𝑋 is a set of assignments with support 𝑉𝑥, 𝑌 is a set of assignments with support 𝑉𝑦;

• 𝒪 is a set of clauses of 𝜑;

• (𝑥, 𝑦, 𝑜) ∈ Search𝜑 iff clause 𝑜 ∈ 𝜑 is not satisfied by assignments 𝑥 and 𝑦.

Communication protocols and triangles. Consider a bipartite input domain 𝑋 ×𝑌 . A triangle 𝑇 ⊆ 𝑋 ×𝑌
is a set that can be written as 𝑇 ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 ∣ 𝑎𝑇 (𝑥) < 𝑏𝑇 (𝑦)} for some labeling 𝑎𝑇 : 𝑋 → R of the
set 𝑋 and labelling 𝑏𝑇 : 𝑌 → R of the set 𝑌 by real numbers.

For a triangle 𝑇 ⊆ 𝑋 × 𝑌 and 𝑥 ∈ 𝑋 let 𝑇 𝑥 ≔ {(𝑥, 𝑦) ∈ 𝑇 ∣ 𝑦 ∈ 𝑌 } be a horizontal cut and for 𝑦 ∈ 𝑌
let 𝑇 𝑦 ≔ {(𝑥, 𝑦) ∈ 𝑇 ∣ 𝑥 ∈ 𝑌 } be a vertical cut.

A triangle-dag (aka real dag-like communication protocol) for a search problem 𝑆 ⊆ 𝑋 × 𝑌 × 𝒪 is a
directed acyclic graph 𝐻 of fan-out at most 2 where each node ℎ is associated with a triangle 𝑇ℎ ⊆ 𝑋 × 𝑌
satisfying the following:

root: there is a distinguished root node 𝑟 (fan-in 0), and 𝑇𝑟 = 𝑋 × 𝑌 ;

non-leaves: for each non-leaf node ℎ with children 𝑢, 𝑢′, we have 𝑇ℎ ⊆ 𝑇𝑢 ∪ 𝑇𝑢′ ;

leaves: each leaf node ℎ is labeled with an output 𝑜ℎ ∈ 𝒪 such that 𝑇ℎ ⊆ 𝑆−1(𝑜𝑣).

Expanders. We use the following notation: N𝐺 (𝑆) is the set of neighbours of the set of vertices 𝑆 in the
graph 𝐺, i.e. the set {𝑣 ∈ 𝑉 ∣ 𝑣 share an edge with some 𝑢 ∈ 𝑆} where 𝑉 is the set of vertices of 𝐺. We omit
the index 𝐺 if the graph is evident from the context.

A bipartite graph 𝐺 ≔ (𝐿, 𝑅, 𝐸) is an (𝑟, Δ, 𝑐)-expander if all vertices 𝑢 ∈ 𝐿 have degree at most Δ and
for all sets 𝑆 ⊆ 𝐿, |𝑆| ≤ 𝑟, it holds that |N (𝑆) | ≥ 𝑐 ⋅ |𝑆|.

Cutting Planes. We consider a semantic version of the Cutting Planes (CP) proof system [CCT87; Hru13].
A proof in semantic CP for CNF formula 𝜑 is a sequence of linear inequalities with real coefficients

𝐶1, 𝐶2, … , 𝐶ℓ, such that 𝐶ℓ is the trivially unsatisfiable inequality 0 ≥ 1 and 𝐶𝑖 can be obtained by one of
the following rules:

• 𝐶𝑖 is a linear inequality that encodes a clause of formula 𝜑;

• 𝐶𝑖 semantically follows on {0, 1} values from 𝐶𝑗 ∧ 𝐶𝑘 where 𝑗, 𝑘 < 𝑖.

The size of proof is the number of inequalities ℓ.

3 Formulas and Partitions

Witl a boolean formula 𝜑 we associate a dependency graph 𝐺 ≔ (𝑈, 𝑉 , 𝐸) in a natural way. There are two
bijections: between clauses of 𝜑 and verties from 𝑈 , and between variables of 𝜑 and vetices from 𝑉 . Edge
(𝑢, 𝑣) ∈ 𝐸 iff variable 𝑣 is appear in the clause 𝑢.

A well-known fact is the that dependency graph of a random CNF formula is an expander.

Lemma 3.1

Let Δ ≔ 𝑐 log𝑛, 𝑚 ≤ 𝛼𝑛2Δ, for some constants 𝛼 > 0, 𝑐 > 0. For any constant 𝜀 > 0 there
is a constant 𝜅 > 0 such that whp for 𝑟 ≔ 𝜅 ⋅ 𝑛

Δ a dependency graph of 𝜑 ∼ 𝔉(𝑚, 𝑛, Δ) is an
(𝑟, Δ, (1 − 𝜀)Δ)-expander.

Proof. For proof see Appendix A.2.

4

The following notion is of technical nature, but it will be useful for the main theorem. Let 𝜑 be a Δ-CNF
formula over boolean variables from a set 𝑍 . We say that a partition 𝑍 ≔ 𝑉𝑥 ⊔ 𝑉𝑦 is 𝛿-good iff 𝜑 can be
represented as 𝜓 ∧ 𝜓𝑥 ∧ 𝜓𝑦 such that:

• ∣|𝑉𝑥| − |𝑉𝑦|∣ ≤ 10√|𝑍|;

• each clause 𝐶 ∈ 𝜓 contains at least 𝛿Δ variables from 𝑉𝑥 and at least 𝛿Δ variables from 𝑉𝑦;

• Pr[𝜓𝑥|𝜌 = 1] ≥ 0.9, where 𝜌 is taken uniformly at random over all assignments with support 𝑉𝑥;

• Pr[𝜓𝑦|𝜌 = 1] ≥ 0.9, where 𝜌 is taken uniformly at random over all assignments with support 𝑉𝑦.

Lemma 3.2

For every constants 𝛼 > 0, 𝑐 > 1, if 𝜑 ∼ 𝔉(𝑚, 𝑛, Δ) where 𝑚 = 𝛼𝑛2Δ and Δ ≥ 𝑐 log𝑛 there exists
𝛿-good partition of variables 𝑉𝑥 ⊔ 𝑉𝑦 of 𝜑 for any 𝛿 such that 𝑐 > (1 − 𝛿 − H (𝛿))−1.

Proof. For proof see Appendix A.3.

4 Main Theorem

In this section we show the main result. We start with a technical theorem.

Theorem 4.1

Let 𝜑 be a CNF formula over variables from a set 𝑍 where |𝑍| = 𝑛. If dependency graph of 𝜑 is
(𝑟, Δ, (1 − 𝛿/2)Δ)-expander and there is 𝛿-good partition 𝑍 ≔ 𝑉𝑥 ⊔ 𝑉𝑦 then any triangle-dag for
Search𝜑 has size at least 2𝑘Δ𝛿/4−10√𝑛 where 𝑘 ≔ min(𝑟, 2Δ𝛿/8).

Here we may think that dependency graph of a given formula 𝜑 defines the expansion parameter and
hence it defines 𝛿. For fixed 𝛿 we know how good the partition of variables should be. And parameter 𝑘
depends on parameter of the partition.

We defer the proof of this Theorem to the Section 4.1. And start with the application to random formulas.

Theorem 4.2 [Reformulation of Theorem 1.3]

For constants 𝛼 > ln 2 and 𝑐 > 1, if 𝜑 ∼ 𝔉(𝑚, 𝑛, Δ) for 𝑚 = 𝛼𝑛2Δ and Δ ≥ 𝑐 log𝑛, then every
semantic CP-proof of 𝜑 has size 2𝑛Ω(1) whp over the choice of 𝜑. Moreover, if 𝑐 > 800 then every
semantic CP-proof of 𝜑 has size 2Ω(𝑛) whp over the choice of 𝜑.

Proof. By Lemma A.3 instead of considering CP-proofs we show lower bound for triangle-dags for Search𝜑.
Fix 𝛿 > 0 such that 𝑐(1 − 𝛿 −H (𝛿)) > 1. Whp by Lemma 3.1 the dependency graph of 𝜑 is an (𝑟, Δ, (1 −

𝛿/2)Δ)-expander where 𝑟 = 𝜅 𝑛
Δ for some constant 𝜅 > 0. By Lemma 3.2 there exists 𝛿-good partition of

variables, hence the statement follows fromTheorem 4.1 since min(𝑟, 2Δ𝛿/8) = 𝑛Ω(1).
For the “moreover” part we fix 𝛿 ≔ 1

100 . Note that 𝑐(1 − 𝛿 −H (𝛿)) > 1 and min(𝑟, 2Δ𝛿/8) = 𝑟 = 𝜅 𝑛
Δ for

some constant 𝜅 > 0 by Lemma 3.1. Hence the statement follows fromTheorem 4.1.

Let us informally describe the bottneck counting argument for proving Theorem 4.1.

1. Fix some triangle-dag 𝐻 for Search𝜑. Partition of variables gives a representation of 𝜑 as a conjunction
𝜓∧𝜓𝑥 ∧𝜓𝑦. On clauses of 𝜓 the partition is well-behaved, what cannot be said about clauses of 𝜓𝑥 and
𝜓𝑦. By using properties of good partitions we do a pruning step and get rid of assignments that do not
satisfy 𝜓𝑥 and 𝜓𝑦. Since we deal with the unsatisfied clause search problem then we also can switch
from 𝜑 to 𝜓.

5

2. For each assignement 𝑧 either with support 𝑉𝑦 or with support 𝑉𝑦 and each node ℎ ∈ 𝐻 . We define a
measure 𝑤(ℎ, 𝑧) that we call 2-width such that if 𝑤(ℎ, 𝑧) > 𝑘 for some chosen threshold 𝑘 then triangle
𝑇ℎ contain some useful information about 𝑧. Informally speaking 𝑇ℎ contain useful information about
𝑧 iff in the formula 𝜓 restricted by 𝑧 is still hard to find an unsatisfied clause even on set of assignments
𝑇 𝑧

ℎ .

3. We show that for most of assignments 𝑧 there should be some node ℎ that contains useful information
about 𝑧.

4. At the same time we consider the bottomest node ℎ such that 𝑇ℎ contain useful information about
some 𝑧. We show that 𝑇ℎ may contain useful information only about few assignmets 𝑧′ (since it is the
bottomest for 𝑧).

4.1 Proof of Theorem 4.1

4.1.1 Pruning

Let 𝐶′ be a set of clauses appearing in 𝜑. Remind that we fix some 𝛿-good partition of variables 𝑉𝑥 ⊔ 𝑉𝑦. Let
𝑋′ be a set of assignments with support 𝑉𝑥, and 𝑌 ′ be a set of assignments with support 𝑉𝑦.

Consider a triangle-dag 𝐻′ for Search𝜑 ⊆ 𝑋′ × 𝑌 ′ × 𝒞′. We start by pruning the protocol and erasing
all assignments with support 𝑉𝑥 that do not satisfy 𝜓𝑥 and all assignments with support 𝑉𝑦 that not satisfy
𝜓𝑦. To be more formal, let 𝑋 ⊆ 𝑋′ be a set of assignments with support 𝑉𝑥 that satisfy 𝜓𝑥 and 𝑌 ⊆ 𝑌 ′

be a set of assignments with support 𝑉𝑦 that satisfy 𝜓𝑦. We define a protocol 𝐻 by taking 𝐻′ and replacing
each triangle 𝑇 ′

ℎ by a new triangle 𝑇ℎ ≔ 𝑇 ′
ℎ ∩ (𝑋 × 𝑌). Note that 𝐻 is a triangle-dag that solves Search𝜑 on

𝑋 × 𝑌 , and moreover all leaves are marked by clauses 𝒞 ⊆ 𝒞′ that correspond to 𝜓 (since all other clauses
are satisfied by any assignment from 𝑋 × 𝑌). Hence 𝐻 solves Search𝜓 on 𝑋 × 𝑌 . Note that by definition of
a good partition |𝑋| ≥ 0.9 ⋅ 2𝑛−5√𝑛 ≥ 2𝑛−6√𝑛 and |𝑌 | ≥ 2𝑛−6√𝑛.

Denote by ℳ ≔ {𝑅 ⊆ 𝑋 × 𝑌 ∣ 𝑅 is a rectangle, ∃𝐶 ∈ 𝒞, ∀(𝑥, 𝑦) ∈ 𝑅, 𝐶(𝑥, 𝑦) is unsat} the collection
of monochromatic rectangles of Search𝜓.

4.1.2 Formal Idea

Following the ideas of a bottleneck counting argument we define a partial map 𝜇: 𝑋 ∪ 𝑌 → 𝐻 such that:

• |Dom(𝜇)| ≥ 1
4 min(|𝑋|, |𝑌 |) ≥ 2𝑛−10√𝑛;

• for all ℎ ∈ 𝐻 : |𝜇−1(ℎ)| ≤ 2𝑛−𝑘Δ𝛿/4.

Hence size of the image of 𝜇 (that is the size of 𝐻) is as desired.
We start with a definition of a 2-width complexity measure 𝑤: 𝐻 × (𝑋 ∪ 𝑌) → N that helps us to define

the mapping 𝜇. We define 𝑤 as follows for all ℎ ∈ 𝐻 and all 𝑧 ∈ 𝑋 ∪ 𝑌 :

𝑤(ℎ, 𝑧) ≔ min(ℳ′ ⊆ ℳ ∣ ℳ′ is a covering of 𝑇 𝑧
ℎ).

See the Figure 2 for the example.

Remark 4.3

Measure 𝑤 is semi-additivewrt second argument, i.e. for all 𝑧 ∈ 𝑋 ∪𝑌 , 𝑤(ℎ, 𝑧) ≤ 𝑤(ℎ′, 𝑧)+𝑤(ℎ″, 𝑧)
where ℎ′, ℎ″ are children of ℎ.

Proof. Note that 𝑇ℎ ⊆ 𝑇ℎ′ ∪ 𝑇ℎ″ hence 𝑇 𝑧
ℎ ⊆ 𝑇 𝑧

ℎ′ ∪ 𝑇 𝑧
ℎ″ . Thus union of monochromatic coverings of 𝑇 𝑧

ℎ′ and
𝑇 𝑧

ℎ″ are also covering of 𝑇 𝑧
ℎ and the observation follows.

6

𝑋

𝑌

𝑇ℎ

𝑥0

Figure 2: “Width”-measure. The covering witnesses the fact 𝑤(ℎ, 𝑥0) ≤ 3

Nowwe describe the construction of 𝜇, see Algorithm 1. Informally, for each vertex ℎ in topological order
starting from leaves we put all 𝑧 ∈ 𝑋 ∪ 𝑌 such that 𝑤(ℎ, 𝑧) > 𝑘 and erase 𝑧 from the universe and repeat
this process.

Algorithm 1 Definition of 𝜇
1: for ℎ ∈ 𝐻 in topological order starting from leaves do
2: for 𝑥 ∈ 𝑋 do
3: if 𝑤(ℎ, 𝑥) > 𝑘 then
4: 𝜇(𝑥) ≔ ℎ.
5: Erase the line {𝑥} × 𝑌 from triangles 𝑇ℎ for all ℎ ∈ 𝐻 .
6: for 𝑦 ∈ 𝑌 do
7: if 𝑤(ℎ, 𝑦) > 𝑘 then
8: 𝜇(𝑦) ≔ ℎ.
9: Erase the line 𝑋 × {𝑦} from triangles 𝑇ℎ for all ℎ ∈ 𝐻 .

Remark 4.4

1. In the beginning of the iteration of Algorithm 1 in node ℎ: for all 𝑧 ∈ 𝑋 ∪ 𝑌 it holds that
𝑤(ℎ, 𝑧) ≤ 2𝑘.

2. In the end of the iteration of Algorithm 1 in node ℎ: for all 𝑧 ∈ 𝑋 ∪ 𝑌 it holds that 𝑤(ℎ, 𝑧) ≤ 𝑘.

Proof. The second observation follows from the description of Algorithm 1 and the fact that after erasing any
point from triangle 𝑇ℎ the measure 𝑤 may only decrease.

The first observation follows from the Remark 4.3 and the fact that we process the node ℎ when we have
already processed all the children of ℎ.

To conclude the proof we show the required properties of 𝜇.

4.1.3 Size of Domain

In this section we show that |Dom(𝜇)| ≥ 1
2 min(|𝑋|, |𝑌 |). For the sake of contradiction assume that

|Dom(𝜇)| < 1
2 min(|𝑋|, |𝑌 |). In the remainder of the section we analyse the triangle protocol 𝐻 after the

application of Algorithm 1.
Note that after the application of Algorithm 1 in the root 𝑟 of 𝐻 we are left with a triangle (that is also a

rectangle) 𝑇𝑟 = 𝑋𝑟 × 𝑌𝑟 ⊆ 𝑋 × 𝑌 that consists of pairs (𝑥, 𝑦) such that 𝑥 ∉ Dom(𝜇) and 𝑦 ∉ Dom(𝜇). By
our assumption |𝑋𝑟| > 1

2 |𝑋| and |𝑌𝑟| > 1
2 |𝑌 |. For any point 𝑥0 ∈ 𝑋𝑟 it holds that 𝑤(𝑟, 𝑥0) ≤ 𝑘 by Remark

4.4, and hence there are at most 𝑘 monochromatic rectangles that cover the line 𝑇 𝑥0𝑟 = {𝑥0} × 𝑌𝑟.

7

𝑋

𝑌

𝑇ℎ

Figure 3: Reordering of rows and columns

We recall that monochromatic rectangles consist of points that violate some specific clause of 𝜓. Thus the
fact that the line 𝑇 𝑥0𝑟 can be covered by at most 𝑘 monochromatic rectangles implies that there is a set 𝑆 of
at most 𝑘 clauses of the formula 𝜓 such that any point 𝑦 ∈ 𝑌𝑟 does not satisfy at least one clause in 𝑆. At the
same time, pick a point 𝑦 from 𝑌 ′ uniformly at random:

Pr
𝑦∼𝑌 ′

[𝑦 ∈ 𝑌𝑟] ≤

Pr
𝑦∼𝑌 ′

[𝑦 does not satisfy some clause 𝐶 ∈ 𝑆] ≤

∑
𝐶∈𝑆

Pr
𝑦∼𝑌 ′

[𝑦 does not satisfy 𝐶] ≤

|𝑆| ⋅ max
𝐶∈𝑆

Pr
𝑦∼𝑌 ′

[𝑦 does not satisfy 𝐶] ≤

𝑘 ⋅ 2−𝛿Δ,

where the last inequality holds since each clause of 𝜓 has at least 𝛿Δ of 𝑉𝑦 variables. Hence

|𝑌𝑟| ≤ 𝑘 ⋅ 2−𝛿Δ|𝑌 ′| ≤ 10
9 2𝛿Δ/8 ⋅ 2−𝛿Δ|𝑌 | ≤ 10

9 2− 7
8 𝛿Δ|𝑌 | ≤ |𝑌 |

2 .

This is a contradiction with the assumption.

4.1.4 Size of Preimage

In this section we show that for all ℎ ∈ 𝐻 : |𝜇−1(ℎ)| ≤ 2𝑛−𝑘Δ𝛿/4.
Pick some vertex ℎ ∈ 𝐻 . We consider a situation in the beginning of the iteration of Algorithm 1 in node ℎ

and fix this time moment for the rest of the section. By Remark 4.4 we know that for all 𝑧 ∈ 𝑋 ∪𝑌 , 𝑤(ℎ, 𝑧) ≤
2𝑘. By using this fact we estimate the number of 𝑥 ∈ 𝑋 that can be mapped into the vertex ℎ by 𝜇, or in
other words, the number of 𝑥 ∈ 𝑋 such that 𝑤(ℎ, 𝑥) > 𝑘. In order to realize this we build a collection 𝒫 of
potential monochromatic coverings of size 𝑘 and count the number of 𝑥 ∈ 𝑋 such that 𝑇 𝑥

ℎ is not covered by
any covering in our collection 𝒫. By analogy the same counting holds for the set 𝑌 .

Let 𝑋0 ⊆ 𝑋 be a set of points 𝑥 such that 𝑇 𝑥
ℎ is not empty. The set 𝑋 ⧵ 𝑋0 is not interesting for us since

𝑤(ℎ, 𝑥′) = 0 for all 𝑥′ ∈ 𝑋 ⧵ 𝑋0. Let 𝑇ℎ = {(𝑥, 𝑦) ⊆ 𝑋 × 𝑌 ∣ 𝑎𝑇 (𝑥) < 𝑏𝑇 (𝑦)}. We sort 𝑥 ∈ 𝑋 wrt to
increasing order of 𝑎𝑇 (𝑥) and we sort 𝑦 ∈ 𝑌 wrt to decreasing order of 𝑏𝑇 (𝑥), see the resulting triangle in
Figure 3. Now we are ready to build the potential monochromatic coverings. During this process we create
an auxiliary tree 𝐿 whose vertices will be marked by subsets (subtriangles) of 𝑇ℎ and all edges are marked
by monochromatic rectangles. The collection 𝒫 will correspond to the set of root-leaf paths in this tree. We
start with the formal construction and give a description after.

8

𝑋

𝑌

𝑀1𝑀1

𝑀2

𝑀3

𝑇𝑎1
𝑇𝑎1

𝑇𝑎2

𝑇𝑎3

𝑇ℎ

𝑇𝑎1

𝑀1

𝑇𝑎2

𝑀2

𝑇𝑎3

𝑀3

≤ 2𝑘

⋮

𝑘

Figure 4: First iteration of Algorithm 2

Algorithm 2 Construction of 𝒫
1: 𝐿 consists of a single node 𝑟 that is labelled by 𝑇ℎ.
2: 𝐴 ≔ {𝑟} set of active leaves of 𝐿.
3: while 𝐴 is not empty do
4: Pick 𝑎 ∈ 𝐴. Erase 𝑎 from 𝐴. Let 𝑇 ⊆ 𝑇ℎ be the label of 𝑎.
5: Pick a first 𝑦 such that 𝑇 𝑦 ≠ ∅.
6: Let 𝑀1, 𝑀2, 𝑀3, … , 𝑀ℓ ∈ ℳ be the smallest covering of 𝑇 𝑦 ▷ Note that 𝑇 𝑦 ⊆ 𝑇 𝑦

ℎ
7: for 𝑖 ∈ [ℓ] do
8: Let 𝑀𝑖 = 𝑋𝑖 × 𝑌𝑖.
9: Add 𝑎𝑖 in 𝐿 as a child of 𝑎. Mark the edge (𝑎, 𝑎𝑖) by 𝑀𝑖.
10: Mark 𝑎𝑖 by 𝑇𝑎𝑖

≔ 𝑇 ∩ (𝑋𝑖 × (𝑌 ⧵ 𝑌𝑖)).
11: if the height of 𝑎𝑖 in 𝑇 is less than 𝑘 and 𝑇𝑎𝑖

≠ ∅ then
12: Add 𝑎𝑖 into 𝐴.

In this algorithmwe start with a triangle 𝑇ℎ and first (in our order) 𝑦 ∈ 𝑌 . We start building our collection
𝒫 by considering the smallest monochromatic covering 𝑀1, 𝑀2, … , 𝑀ℓ of the line 𝑇 𝑦

ℎ . For any 𝑥 ∈ 𝑋0 the
line 𝑇 𝑥

ℎ intersects with at least one rectangle 𝑀𝑖, or in other words 𝑀𝑖 covers part of 𝑇 𝑥
ℎ . We divide 𝑋0

into ℓ parts (intersections are allowed) wrt which monochromatic rectangles intersects with 𝑇 𝑥
ℎ and deal

with each part independently. This division induces division of 𝑇ℎ into ℓ subtriangles 𝑇𝑎1
, … , 𝑇𝑎ℓ

such that
𝑇𝑎𝑖

≔ 𝑇ℎ ∩ (𝑋𝑖 × (𝑌 ⧵ 𝑌𝑖)), here we also erase parts that are already covered by 𝑀𝑖. Note that ℓ ≤ 2𝑘 since
𝑤(ℎ, 𝑦) ≤ 2𝑘. See an example of the first iteration of the Algorithm 2 in Figure 4. We repeat this process for
each 𝑇𝑎𝑖

independently.
For each 𝑥 ∈ 𝑋0 we trace a path 𝑃𝑥 ⊆ 𝐿 starting from the root in the natural way: suppose we reach

node 𝑎 with a label 𝑇 ,

• if 𝑇 𝑥 = ∅ then stop;

9

• if 𝑎 is a leaf then stop;

• pick an edge (𝑎, 𝑎′) marked by 𝑀 = 𝑋𝑀 × 𝑌𝑀 such that 𝑥 ∈ 𝑋𝑀 (if there are more than one edge
pick any). Note that such an edge is always guaranteed to exists since the collection ℳ, as defined in
Algorithm 2, covers 𝑇 𝑦 where 𝑦 is the smallest element of 𝑌 according to our order. Hence point (𝑥, 𝑦)
is in 𝑇 and it is also covered.

Note two properties of these constructed paths.

1. If an edge (𝑎, 𝑎′) is marked by 𝑀 is in 𝑃𝑥 then the monochromatic rectangle 𝑀 intersects with 𝑇 𝑥
ℎ , or

in other words 𝑥 does not satisfy a clause of 𝜓 that corresponds to 𝑀 .

2. If the length of 𝑃𝑥 is less than 𝑘 then 𝑇 𝑥
ℎ is covered by the monochromatic rectangles from edges of

𝑃𝑥. Indeed, consider a node 𝑎 ∈ 𝑃𝑥 with label 𝑇 and it is child 𝑎′ ∈ 𝑃𝑥 with label 𝑇 ′. By construction
𝑇 𝑥 ⧵ (𝑇 ′)𝑥 is covered by monochromatic rectangle on the edge (𝑎, 𝑎′), or say otherwise, while tracing
𝑃𝑥 we step by step cut parts of 𝑇 𝑥

ℎ that are covered by monochromatic rectangles on edges of 𝑃𝑥. But
note that (𝑇 ″)𝑥 = ∅ where 𝑇 ″ is the label of the last vertex of 𝑃𝑥 since the length of 𝑃𝑥 is less than 𝑘
and the desired property follows.

Let 𝒫 be the set of paths in 𝐿 from root of size 𝑘. A straightforward corollary from the second property is
that 𝑤(𝑥, ℎ) ≥ 𝑘 implies 𝑃𝑥 ∈ 𝒫. Hence the number of 𝑥 ∈ 𝑋 such that 𝑤(𝑥, ℎ) ≥ 𝑘 is

∑
𝑃∈𝒫

|{𝑥 ∈ 𝑋 ∣ 𝑃 is 𝑃𝑥}| ≤ |𝒫| ⋅ max
𝑃∈𝒫

|{𝑥 ∈ 𝑋 ∣ 𝑃 is 𝑃𝑥}|

By Remark 4.4 for any 𝑦 ∈ 𝑌 there is a monochromatic covering of 𝑇 𝑦
ℎ of size at most 2𝑘. Hence the

degree of the tree 𝐿 is at most 2𝑘 and there are at most (2𝑘)𝑘 different paths in 𝒫. Fix some path 𝑃 ∈ 𝒫. By
the first property there is a set 𝑆 of size 𝑘 of clauses of the formula 𝜓 such that if 𝑃 = 𝑃𝑥 for some 𝑥 then 𝑥
does not satisfy any clause from 𝑆. Note that there is at most one assignment with support N (𝑆) ∩ 𝑉𝑥 that
does not satisfy all clauses from 𝑆 hence there are at most 2𝑛−|N(𝑆)∩𝑉𝑥| different points 𝑥 ∈ 𝑋 that do not
satisfy any clause in 𝑆.

2𝑛−|N(𝑆)∩𝑉𝑥| = 2𝑛−|N(𝑆)⧵𝑉𝑦|

≤ 2𝑛−(|N(𝑆)|−(1−𝛿)Δ|𝑆|) partition 𝑉𝑥 ⊔ 𝑉𝑦 is 𝛿-good
≤ 2𝑛−(1−𝛿/2)Δ|𝑆|−(1−𝛿)Δ|𝑆| dependency graph is an expander
≤ 2𝑛−|𝑆|Δ𝛿/2.

We can use expansion property since |𝑆| = 𝑘 that is at most 𝑟. Hence

max
𝑃∈𝒫

|{𝑥 ∈ 𝑋 ∣ 𝑃 is 𝑃𝑥}| ≤ 2𝑛−𝑘Δ𝛿/2.

Altogether, the number of 𝑥 ∈ 𝑋 such that 𝑤(𝑥, ℎ) ≥ 𝑘 is at most 2𝑛−𝑘Δ𝛿/2+𝑘(log𝑘+1) = 2𝑛−𝑘(Δ𝛿/2−(log𝑘+1)).
An analoguous counting argument showes that the number of 𝑦 ∈ 𝑌 such that 𝑤(𝑦, ℎ) ≥ 𝑘 is bounded by
2𝑛−𝑘(Δ𝛿/2−(log𝑘+1)). Hence |𝜇−1(ℎ)| ≤ 2𝑛−𝑘(Δ𝛿/2−(log𝑘+1))+1 ≤ 2𝑛−𝑘(Δ𝛿/2−2 log𝑘) ≤ 2𝑛−𝑘Δ𝛿/4 as needed.

Acknowledgments

I would like to thank Kilian Risse, Paul Beame, Nikola Galesi and others who forced me to write down this
paper. Thank Kilian Risse for error correction. Part of this work was done while the author was visiting the
Simons Institute for the Theory of Computing. This work was supported by the Swiss State Secretariat for
Education, Research and Innovation (SERI) under contract number MB22.00026.

10

References

[ABE02] Albert Atserias, Maria Luisa Bonet, and Juan Luis Esteban. “Lower Bounds for the Weak Pigeon-
hole Principle and Random Formulas beyond Resolution.” In: Inf. Comput. 176.2 (2002), pp. 136–
152. doi: 10.1006/inco.2002.3114. uRl: https://doi.org/10.1006/inco.2002.3114.

[Ale+04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. “Pseudoran-
dom Generators in Propositional Proof Complexity.” In: SIAM J. Comput. 34.1 (2004), pp. 67–88.
doi: 10.1137/S0097539701389944. uRl: https://doi.org/10.1137/S0097539701389944.

[Ale11] Michael Alekhnovich. “Lower Bounds for k-DNF Resolution on Random 3-CNFs.” In: Comput.
Complex. 20.4 (2011), pp. 597–614. doi: 10.1007/s00037-011-0026-0. uRl: https://doi.
org/10.1007/s00037-011-0026-0.

[AR03] Michael Alekhnovich and Alexander A. Razborov. “Lower Bounds for Polynomial Calculus: Non-
Binomial Case.” In: Proceedings of the Steklov Institute of Mathematics 242 (2003). Available at
http://people.cs.uchicago.edu/~razborov/files/misha.pdf. Preliminary version
in FOCS ’01., pp. 18–35.

[Ats+18] Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and
Alexander A. Razborov. “Clique is hard on average for regular resolution.” In: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018. Ed. by Ilias Diakonikolas, David Kempe, and Monika Henzinger. ACM, 2018,
pp. 866–877. doi: 10.1145/3188745.3188856. uRl: https://doi.org/10.1145/3188745.
3188856.

[Bea+02] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. “The Efficiency of Resolution
and Davis–Putnam Procedures.” In: SIAM J. Comput. 31.4 (2002), pp. 1048–1075. doi: 10.1137/
S0097539700369156. uRl: https://doi.org/10.1137/S0097539700369156.

[BI99] Eli Ben-Sasson and Russell Impagliazzo. “Random CNF’s are Hard for the Polynomial Calculus.”
In: 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New
York, NY, USA. IEEE Computer Society, 1999, pp. 415–421. doi: 10.1109/SFFCS.1999.814613.
uRl: https://doi.org/10.1109/SFFCS.1999.814613.

[CCT87] William J. Cook, Collette R. Coullard, and György Turán. “On the complexity of cutting-plane
proofs.” In: Discret. Appl. Math. 18.1 (1987), pp. 25–38. doi: 10.1016/0166-218X(87)90039-4.
uRl: https://doi.org/10.1016/0166-218X(87)90039-4.

[CS88] Vašek Chvátal and Endre Szemerédi. “Many Hard Examples for Resolution.” In: J. ACM 35.4 (Oct.
1988), pp. 759–768. issn: 0004-5411. doi: 10.1145/48014.48016. uRl: http://doi.acm.org/
10.1145/48014.48016.

[Fei02] Uriel Feige. “Relations between Average Case Complexity and Approximation Complexity.” In:
Proceedings of the 17th Annual IEEE Conference on Computational Complexity, Montréal, Québec,
Canada, May 21-24, 2002. IEEE Computer Society, 2002, p. 5. doi: 10.1109/CCC.2002.10006.
uRl: http://doi.ieeecomputersociety.org/10.1109/CCC.2002.10006.

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek. “Witnesses for non-satisfiability of dense random
3CNF formulas.” In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006),
21-24 October 2006, Berkeley, California, USA, Proceedings. IEEE Computer Society, 2006, pp. 497–
508. doi: 10.1109/FOCS.2006.78. uRl: https://doi.org/10.1109/FOCS.2006.78.

[Fle+22] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. “Random Θ(log𝑛)-CNFs
are Hard for Cutting Planes.” In: J. ACM 69.3 (2022), 19:1–19:32. doi: 10.1145/3486680. uRl:
https://doi.org/10.1145/3486680.

11

https://doi.org/10.1006/inco.2002.3114
https://doi.org/10.1006/inco.2002.3114
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1007/s00037-011-0026-0
https://doi.org/10.1007/s00037-011-0026-0
https://doi.org/10.1007/s00037-011-0026-0
http://people.cs.uchicago.edu/~razborov/files/misha.pdf
https://doi.org/10.1145/3188745.3188856
https://doi.org/10.1145/3188745.3188856
https://doi.org/10.1145/3188745.3188856
https://doi.org/10.1137/S0097539700369156
https://doi.org/10.1137/S0097539700369156
https://doi.org/10.1137/S0097539700369156
https://doi.org/10.1109/SFFCS.1999.814613
https://doi.org/10.1109/SFFCS.1999.814613
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1145/48014.48016
http://doi.acm.org/10.1145/48014.48016
http://doi.acm.org/10.1145/48014.48016
https://doi.org/10.1109/CCC.2002.10006
http://doi.ieeecomputersociety.org/10.1109/CCC.2002.10006
https://doi.org/10.1109/FOCS.2006.78
https://doi.org/10.1109/FOCS.2006.78
https://doi.org/10.1145/3486680
https://doi.org/10.1145/3486680

[Gar+18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. “Monotone circuit lower bounds
from resolution.” In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. Ed. by Ilias Diakonikolas, David Kempe,
and Monika Henzinger. ACM, 2018, pp. 902–911. doi: 10.1145/3188745.3188838. uRl: https:
//doi.org/10.1145/3188745.3188838.

[Göö+20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. “Automating cutting planes is NP-hard.”
In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020. Ed. by Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy. ACM, 2020, pp. 68–77. doi: 10.1145/3357713.
3384248. uRl: https://doi.org/10.1145/3357713.3384248.

[GP18] Mika Göös and Toniann Pitassi. “Communication Lower Bounds via Critical Block Sensitivity.”
In: SIAM J. Comput. 47.5 (2018), pp. 1778–1806. doi: 10.1137/16M1082007. uRl: https://doi.
org/10.1137/16M1082007.

[Gri01] Dima Grigoriev. “Linear lower bound on degrees of Positivstellensatz calculus proofs for the par-
ity.” In: Theoretical Computer Science 259.1 (2001), pp. 613–622. issn: 0304-3975. doi: https://
doi.org/10.1016/S0304-3975(00)00157-2. uRl: http://www.sciencedirect.com/
science/article/pii/S0304397500001572.

[HC99] Armin Haken and Stephen A. Cook. “An Exponential Lower Bound for the Size of Monotone Real
Circuits.” In: Journal of Computer and System Sciences 58.2 (1999), pp. 326–335. issn: 0022-0000.
doi: http://dx.doi.org/10.1006/jcss.1998.1617.

[HP17] Pavel Hrubeš and Pavel Pudlák. “Random Formulas, Monotone Circuits, and Interpolation.” In:
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017. Ed. by Chris Umans. IEEE Computer Society, 2017, pp. 121–131. doi: 10.
1109/FOCS.2017.20. uRl: https://doi.org/10.1109/FOCS.2017.20.

[HP18] Pavel Hrubeš and Pavel Pudlák. “A note on monotone real circuits.” In: Inf. Process. Lett. 131 (2018),
pp. 15–19. doi: 10.1016/j.ipl.2017.11.002. uRl: https://doi.org/10.1016/j.ipl.
2017.11.002.

[Hru13] Pavel Hrubeš. “A note on semantic cutting planes.” In: Electronic Colloquium on Computational
Complexity (ECCC) 20 (2013), p. 128. uRl: http://eccc.hpi-web.de/report/2013/128.

[Kra97] Jan Krajícek. “Lower Bounds for a Proof System with an Expentential Speed-up over Constant-
Depth Frege Systems and over Polynomial Calculus.” In: Mathematical Foundations of Computer
Science 1997, 22nd International Symposium, MFCS’97, Bratislava, Slovakia, August 25-29, 1997, Pro-
ceedings. 1997, pp. 85–90. doi: 10.1007/BFb0029951. uRl: https://doi.org/10.1007/
BFb0029951.

[Lov+22] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. “Lifting with Sun-
flowers.” In: 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 -
February 3, 2022, Berkeley, CA, USA. Ed. by Mark Braverman. Vol. 215. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, 104:1–104:24. doi: 10.4230/LIPIcs.ITCS.2022.104.
uRl: https://doi.org/10.4230/LIPIcs.ITCS.2022.104.

[MT14] Sebastian Müller and Iddo Tzameret. “Short propositional refutations for dense random 3CNF
formulas.” In: Ann. Pure Appl. Log. 165.12 (2014), pp. 1864–1918. doi: 10.1016/j.apal.2014.
08.001. uRl: https://doi.org/10.1016/j.apal.2014.08.001.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. isbn: 978-0-521-83540-4. doi: 10.1017/
CBO9780511813603. uRl: https://doi.org/10.1017/CBO9780511813603.

12

https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1137/16M1082007
https://doi.org/10.1137/16M1082007
https://doi.org/10.1137/16M1082007
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00157-2
http://www.sciencedirect.com/science/article/pii/S0304397500001572
http://www.sciencedirect.com/science/article/pii/S0304397500001572
https://doi.org/http://dx.doi.org/10.1006/jcss.1998.1617
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1016/j.ipl.2017.11.002
https://doi.org/10.1016/j.ipl.2017.11.002
https://doi.org/10.1016/j.ipl.2017.11.002
http://eccc.hpi-web.de/report/2013/128
https://doi.org/10.1007/BFb0029951
https://doi.org/10.1007/BFb0029951
https://doi.org/10.1007/BFb0029951
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.1016/j.apal.2014.08.001
https://doi.org/10.1016/j.apal.2014.08.001
https://doi.org/10.1016/j.apal.2014.08.001
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603

[Pud10] Pavel Pudlák. “On extracting computations from propositional proofs (a survey).” In: IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2010, December 15-18, 2010, Chennai, India. 2010, pp. 30–41. doi: 10.4230/LIPIcs.FSTTCS.
2010.30. uRl: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30.

[Pud97] Pavel Pudlák. “Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computa-
tions.” In: J. Symb. Log. 62.3 (1997), pp. 981–998. doi: 10.2307/2275583. uRl: https://doi.
org/10.2307/2275583.

[Raz15] Alexander A. Razborov. “Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution.” In: Ann. of Math. 181 (2 2015), pp. 415–472. doi: https://doi.org/10.
4007/annals.2015.181.2.1.

[Raz95] Alexander A. Razborov. “Bounded Arithmetic and Lower Bounds in Boolean Complexity.” In: Fea-
sible Mathematics II. Ed. by Peter Clote and Jeffrey B. Remmel. Boston, MA: Birkhäuser Boston,
1995, pp. 344–386. isbn: 978-1-4612-2566-9.

[RGR22] Susanna F. de Rezende, Mika Göös, and Robert Robere. “Guest Column: Proofs, Circuits, and Com-
munication.” In: SIGACT News 53.1 (2022), pp. 59–82. doi: 10.1145/3532737.3532746. uRl:
https://doi.org/10.1145/3532737.3532746.

[SBI04] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. “A Switching Lemma for Small Re-
strictions and Lower Bounds for k-DNF Resolution.” In: SIAM J. Comput. 33.5 (2004), pp. 1171–
1200. doi: 10 . 1137 / S0097539703428555. uRl: https : / / doi . org / 10 . 1137 /
S0097539703428555.

[Sok17] Dmitry Sokolov. “Dag-Like Communication and Its Applications.” In: Computer Science - Theory
and Applications - 12th International Computer Science Symposium in Russia, CSR 2017, Kazan,
Russia, June 8-12, 2017, Proceedings. Ed. by Pascal Weil. Vol. 10304. Lecture Notes in Computer
Science. Springer, 2017, pp. 294–307. doi: 10.1007/978-3-319-58747-9_26. uRl: https:
//doi.org/10.1007/978-3-319-58747-9%5C_26.

[Sok20] Dmitry Sokolov. “(Semi)Algebraic proofs over ±1 variables.” In: Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020.
Ed. by Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy. ACM, 2020, pp. 78–90. doi: 10.1145/3357713.3384288. uRl: https://doi.org/
10.1145/3357713.3384288.

[SS22] Anastasia Sofronova and Dmitry Sokolov. “A Lower Bound for k-DNF Resolution on Random
CNF Formulas via Expansion.” In: Electron. Colloquium Comput. Complex. TR22-054 (2022). ECCC:
TR22-054. uRl: https://eccc.weizmann.ac.il/report/2022/054.

A Properties of Random Formulas

A.1 Probabilistic Tools

Theorem A.1 [Chernoff bound, [MU05]]

Suppose 𝑍1, … , 𝑍𝑛 are independent random variables taking values in {0, 1}. Let 𝑋 denote their sum
and let 𝜇 = E(𝑋) denote the sum’s expected value. Then for any 0 < 𝛿 ≤ 1 we have:

Pr[|𝑋 − 𝜇| ≥ 𝛿𝜇] ≤ exp(−𝛿2𝜇
3) .

A.2 Expansion of Random Formulas

For 𝑚, 𝑛, Δ ∈ N, we denote by 𝔊(𝑚, 𝑛, Δ) the distribution over bipartite graphs with disjoint vertex sets
𝑈 ≔ {𝑢1, … , 𝑢𝑚} and 𝑉 ≔ {𝑣1, … , 𝑣𝑛} where the neighbourhood of a vertex 𝑢 ∈ 𝑈 is chosen by sampling

13

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
https://doi.org/10.2307/2275583
https://doi.org/10.2307/2275583
https://doi.org/10.2307/2275583
https://doi.org/https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/10.1145/3532737.3532746
https://doi.org/10.1145/3532737.3532746
https://doi.org/10.1137/S0097539703428555
https://doi.org/10.1137/S0097539703428555
https://doi.org/10.1137/S0097539703428555
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9%5C_26
https://doi.org/10.1007/978-3-319-58747-9%5C_26
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1145/3357713.3384288
TR22-054
https://eccc.weizmann.ac.il/report/2022/054

a subset of size Δ uniformly at random from 𝑉 .

Theorem A.2

Let Δ ≔ 𝑐 log𝑛, 𝑚 ≤ 𝛼𝑛2Δ, for some constants 𝛼 > 0, 𝑐 > 0. For any constant 𝜀 > 0 there is
a constant 𝜅 > 0 such that whp for 𝑟 ≔ 𝜅 ⋅ 𝑛

Δ a randomly sampled graph 𝐺 ∼ 𝔊(𝑚, 𝑛, Δ) is an
(𝑟, Δ, (1 − 𝜀)Δ)-expander.

Proof. Let 𝜀 < 1/2. We estimate the probability that𝐺 is not an (𝑟, Δ, (1−𝜀)Δ)-expander for some parameter
𝑟. Let 𝐺 ≔ (𝑈, 𝑉 , 𝐸). We first estimate the probability that a set 𝑆 ⊆ 𝑈 of size at most 𝑟 violates the
expansion. For brevity, let us write 𝑠 = |𝑆| and 𝑑 = (1 − 𝜀)Δ. The probability that 𝑆 violates the expansion
can be bounded by:

Pr[|N (𝑆) | < 𝑑𝑠] ≤ (𝑛
𝑑𝑠) ⋅ ((𝑑𝑠

Δ)
(𝑛

Δ))
𝑠

≤ (𝑛
𝑑𝑠) ⋅ (𝑑𝑠

𝑛)
Δ𝑠

≤ [(𝑒𝑛
𝑑𝑠)

𝑑
⋅ (𝑑𝑠

𝑛)
Δ

]
𝑠

Hence, the probability that 𝐺 is not an expander can be bounded by

Pr[𝐺 is not an expander] ≤ ∑
𝑠∈[𝑟]

(𝑚
𝑠) [(𝑒𝑛

𝑑𝑠)
𝑑

⋅ (𝑑𝑠
𝑛)

Δ
]

𝑠

≤ ∑
𝑠∈[𝑟]

(𝑚𝑒
𝑠)

𝑠
[(𝑒𝑛

𝑑𝑠)
𝑑

⋅ (𝑑𝑠
𝑛)

Δ
]

𝑠

≤ ∑
𝑠∈[𝑟]

[𝑚𝑒
𝑠 (𝑒𝑛

𝑑𝑠)
𝑑

⋅ (𝑑𝑠
𝑛)

Δ
]

𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑑 𝑚
𝑠 (𝑑𝑠

𝑛)
𝜀Δ

]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝑒1+𝑑𝛼𝑛2Δ (𝜅)𝜀Δ]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝛼2(2𝑐+1) log𝑛 (2𝜅𝜀)𝑐 log𝑛]
𝑠

≤ ∑
𝑠∈[𝑟]

[𝛼 (23𝑐+1𝜅𝑐𝜀)log𝑛]
𝑠

.

And if 𝜅 < 2−(3𝑐+1)/(𝜀𝑐) this sum is 𝑜(1).

A.3 Proof of 3.2

Lemma 3.2

For every constants 𝛼 > 0, 𝑐 > 1, if 𝜑 ∼ 𝔉(𝑚, 𝑛, Δ) where 𝑚 = 𝛼𝑛2Δ and Δ ≥ 𝑐 log𝑛, then there
exists 𝛿-good partition of variables 𝑉𝑥 ⊔ 𝑉𝑦 of 𝜑 for any 𝛿 such that 𝑐 > (1 − 𝛿 − H (𝛿))−1.

14

Proof. We add variables into 𝑉𝑥 with probability 1
2 uniformly at random, and put all other variables into 𝑉𝑦

respectively. We show that with constant probability the partition is good.
Note that by Chernoff bound:

Pr [∣|𝑉𝑥| − 𝑛
2 ∣ ≥ 5√𝑛] ≤ exp(−(10/√𝑛)2 ⋅ (𝑛/2)

3) ≤ 𝑒−10.

Hence ∣|𝑉𝑥| − |𝑉𝑦|∣ ≤ 10√𝑛 with probability 1 − 𝑒−10.
Let 𝜓𝑥 ⊆ 𝜑 consists of all clauses that contain more than (1 − 𝛿)Δ variables from 𝑉𝑥, and 𝜓𝑦 ⊆ 𝜑 is

defined by analogy. To show the remaining properties we we show that size of 𝜓𝑥 and 𝜓𝑦 are not so big, and
random assignment satisfy so small formulas with high probability. We analyze 𝜓𝑥 and by analogy the same
holds for 𝜓𝑦.

Consider some clause 𝐶 ∈ 𝜑:

Pr[𝐶 contains at most 𝛿Δ variables from 𝑉𝑥] = 2−Δ
𝛿Δ
∑
𝑖=0

(Δ
𝑖) ≤ 2(H(𝛿)−1)Δ.

Hence by Markov inequality

Pr [|𝜓𝑥| ≥ 3𝑚2(H(𝛿)−1)Δ] = Pr [|𝜓𝑥| ≥ 3𝛼𝑛2H(𝛿)Δ] ≤ 1
3.

Now assume that |𝜓𝑥| ≤ 3𝑚2(H(𝛿)−1)Δ. Random assignment to variables 𝑉𝑥 does not satisfy some clause
𝐶 ∈ 𝜓𝑥 with probability at most 2−(1−𝛿)Δ since it contains at least (1 − 𝛿)Δ variables from 𝑉𝑥. Hence

Pr
𝑎∈{0,1}|𝑉𝑥|

[∃𝐶 ∈ 𝜓𝑥: 𝐶(𝑎) is not satisfied] ≤ 3𝛼𝑛 2H(𝛿)Δ

2(1−𝛿)Δ

= 3𝛼 𝑛
2(1−𝛿−H(𝛿))Δ

= 3𝛼 𝑛
𝑛(1−𝛿−H(𝛿))𝑐

= 𝑜(1). by the choice of 𝛿

Hence with probability 2
3 − 𝑒−10 − 𝑜(1) random assignment is 𝛿-good.

A.4 From Cutting Planes to Communication Protocols

Lemma A.3 [Sokolov, [Sok17]]

Let 𝜑 be an unsatisfiable CNF formula on variables 𝑉𝑥 ⊔ 𝑉𝑦, 𝑋 be a set of assignments to variables 𝑉𝑥
and 𝑌 is a set of assignment to variables 𝑉𝑦. If there is a semantic CP-proof for 𝜑 of size 𝑆 then there
is a triangle-dag of size 𝑆 for Search𝜑.

Proof. Let graph 𝐻 of the triangle dag be the graph of the semantic CP proof of the formula 𝜑 with inverted
edges. Consider a vertex ℎ ∈ 𝐻 , there is a proof line 𝑓(𝑉𝑥) + 𝑔(𝑉𝑦) ≥ 𝑐 that corresponds to ℎ. We associate
with the node ℎ a traingle 𝑇ℎ defined by labelling functions: 𝑎𝑇ℎ

(𝑥) = 𝑓(𝑢) − 𝑐 and 𝑏𝑇ℎ
(𝑦) = −𝑔(𝑦). Note

that (𝑥, 𝑦) ∈ 𝑇ℎ iff 𝑎𝑇ℎ
(𝑥) < 𝑏𝑇ℎ

(𝑦), hence 𝑓(𝑥) + 𝑔(𝑦) < 𝑐, i.e. the inequality is falsified by the assignment
(𝑥, 𝑦).

The root 𝑟 of 𝐻 corresponds to the trivially false inequality 0 ≥ 1, hence the triangle 𝑇𝑟 = 𝑋 × 𝑌 . If an
assignment satisfies all inequalities in the children ℎ′, ℎ″ ∈ 𝐻 of some vertex ℎ ∈ 𝐻 then this assignment
also satisfies the inequality in ℎ. Thus, 𝑇ℎ ⊆ 𝑇ℎ′ ∪ 𝑇ℎ″ .

By contruction in a leaf ℎ we have a triangle that consists of points that violate some clause 𝐶 ∈ 𝜑, we
mark the leaf ℎ by 𝐶 .

15 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

