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Abstract

In this work we prove a high dimensional analogue of the beloved Goldreich-Levin theorem
(STOC 1989). We consider the following algorithmic problem: given oracle access to a function
f : Zmq → Znq such that Prx∼Zmq

[
f(x) = Ax

]
≥ ε for some A ∈ Zn×mq and ε > 0, recover A (or

a list of all such matrices). We focus on the case ε ≤ 1/q since when ε ≥ 1/q + δ, the problem
is solved by the original Goldreich-Levin theorem. As stated, this problem cannot be efficiently
solved, since when ε ≤ 1/q the list of A with good agreement with f might be exponentially large.
Our main theorem gives an algorithm which efficiently recovers a list of linear maps of sizeO

(
1/ε
)

which have good agreement with f , and such that every linear map which has good agreement with
f , also has good agreement with some map in our list. Our proof makes novel use of Fourier
analysis.

1 Introduction
The celebrated Goldreich-Levin Theorem [GL89] is a cornerstone theorem in theoretical computer
science. It yielded fundamental applications in cryptography [Blu83, HILL99], led to the develop-
ment of new categories of error-correcting codes [Sud97, KT00], and was an early success in boolean
learning theory [KM93] (to name but a few of the uses of this terrific theorem). The technical core
of the Goldreich-Levin theorem is the “prediction implies inversion” lemma which states that a func-
tion f : {0, 1}n → {0, 1} which predicts random inner products with a secret y ∈ {0, 1}n, with
any advantage at all over guessing randomly, must “know” y, in the sense that y can be recovered
efficiently given oracle access to f . This lemma has been generalized in many different ways. One
line of follow up work proves prediction implies inversion lemmas for general group homomorphisms
f : G → H [GKS06, DGKS08, BBW18]. Another work proves a degree 2 analogue using quadratic
Fourier analysis [TW14]. With this work, we add to the Goldreich-Levin fandom by generalizing the
original theorem to the case when f has high dimensional output.

1.1 Statement of the Problem and our Main Theorem
We consider a function f : Zmq → Znq for integers n,m, q ∈ N with q prime which has the following
linear agreement guarantee:

Prx∼Zmq
[
f(x) = Ax

]
≥ ε, (1)
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for some A ∈ Zn×mq and ε > 0. We ask whether, given oracle access to such a function, it is possible
to efficiently recover A. More precisely, and in the list decoding spirit of [GL89], we ask whether it
is possible to efficiently output a short list of matrices L =

{
A1, . . . ,A`

}
such that any A ∈ Zn×mq

which has good agreement with f is in L. When ε ≥ 1/q + δ, list decoding algorithms from prior
work [GL89, DGKS08], indeed recover such a list. However, these algorithms fail when ε ≤ 1/q.
Actually, when ε ≤ 1/q, the problem is not possible as stated, since the list might be exponentially
large (and so cannot be efficiently recovered). For example, suppose that f always outputs Ax except
for the first coordinate, which it chooses randomly. In other words,

f(x)i =

{
$ ∼ Zq, i = 1
(Ax)i, i ≥ 2

where (Ax)i denotes the i−th coordinate of Ax ∈ Znq . Clearly, in this case f(x) = Ax occurs with
probability 1/q. However, f(x) = A′x also holds with probability 1/q for any A′ whose final n − 1
rows are the same as those in A. Indeed, the function f possesses no information about the first row of
A, so any matrix which equals A outside of the first row (there are qn such matrices) will have just as
good agreement with f as A does.

So to summarize, the algorithmic question above is solved by prior work when ε ≥ 1/q + δ and
is impossible when ε ≤ 1/q. This is unfortunate because the setup is very natural when ε ≤ 1/q.
When n = 1, the barrier of 1/q + δ makes sense conceptually since a random function (from which no
secret can be extracted) will have agreement 1/q. So the original (one-dimensional) Goldreich-Levin
theorem promises that a secret can be extracted from any function which has a prediction advantage
over guessing randomly. In higher dimensions, a random function will agree with a linear function with
probability q−n � 1/q and so one might hope that some information about A would be recoverable
from a function with agreement probability ε > q−n.

The problem is that we have asked the wrong question. Rather than aiming to recover every matrix
with good agreement with f , we should try to recover a short list of matrices such that every A which
has good agreement with f has good agreement with some matrix in the list. Indeed, in the previous
example, all of the matrices which agree with A outside of the first row (a qn−sized family) agree with
f for the same reason (because they agree with A on the final n − 1 rows). Thus, recovering multiple
matrices from this family is repetitive and should not be our goal. Once the question has been modified,
we are able to answer it positively.

Theorem 1. Let m,n, q ∈ N be integers with q prime, m sufficiently large, let ε > 0 be a parameter
with ε > 12 ·max{q−m/9, q−n/3}, and let f : Zmq → Znq be a function. There exists a randomized oracle
algorithm A which has the following syntax, runtime and correctness guarantees.

• Syntax: A takes no input, gets oracle access to f , and outputs L ⊂ Zn×mq of size |L| = O
(
1/ε
)
.

• Runtime: A runs in expected time poly
(
n, log q,mlogq(1/ε), ε− logq(1/ε)

)
.

• Correctness: With probability at least 1 − 2−Ω(m) over the randomness of L ∼ A(ε,f), the
following both hold:

· for all A ∈ L, Prx∼Zmq
[
f(x) = Ax

]
= Ω(ε);

· for all A′ ∈ Zn×mq , either

− Prx∼Zmq
[
f(x) = A′x

]
< ε, or
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− Prx∼Zmq
[
A′x = Ax

]
= Ω(ε2) for some A ∈ L.

All uses of O(·) and Ω(·) above hide absolute constants which are independent of all other
parameters.

Remarks. We make two brief remarks about the parameters of our result.

1. The running time of A is exponential in logq(1/ε), and so our result promises a polynomial
time matrix recovery algorithm only in parameter regimes where this quantity is constant. While
logq(1/ε) is constant in some parameter regimes of interest (e.g., q = poly(m), ε = poly(1/m)),
there are others where it is super-constant (e.g., q = 2 and ε = 1/m). Removing the exponential
dependence on logq(1/ε) is a nice open question.

2. The requirement that ε ≥ 12 · max{q−m/9, q−n/3} is due to our use of the Chernoff-Hoeffding
inequality in a few places. In the body of the paper (Section 4.1), we design another algorithm
which does not require ε > 12q−n/3, instead requiring just that ε ≥ q−n + δ for δ > 0, but
paying with a running time of poly(δ−n). This alternative algorithm is best when n is small,
which incidentally is the case when the requirement that ε ≥ 12q−n/3 is most intrusive.

1.2 Related Work
Approximate List Decodable Codes. Theorem 1 says that it is possible to efficiently recover from f
a short list of matrices such that any A ∈ Zn×mq with good agreement with f also has good agreement
with some matrix in the list. This type of relaxed list decoding guarantee is called approximate list
decoding. Approximate list decodable codes are used in coding theory to build list decodable codes via
code concatenation [Tre03, DHK+19]. They were also used in earlier work [IJK09] to prove hardness
amplification theorems.

Effective Property Testing. The BLR test [BLR93] says that if f : {0, 1}n → {0, 1} is such that
f(x + y) = f(x) + f(y) holds with good probability over x,y ∼ {0, 1}n then there exists a linear
map ϕ : {0, 1}n → {0, 1} such that f has good agreement with ϕ. In the high dimensional and large
modulus setting, such linearity tests are much harder to prove. Samorodnitsky [Sam07] showed using
methods from additive combinatorics that if f : Zmq → Znq passes this linearity test with probability
ε then it is ε′−close to a linear function where ε′ depends exponentially on ε and n. A breakthrough
result of Sanders [San12] obtains a better (quasipolynomial) relationship between ε′ and ε. The holy
grail of this area would be a proof that ε′ depends polynomially on ε. This is known to follow from the
polynomial Frieman-Ruzsa conjecture in additive combinatorics (and is, in fact, equivalent to a special
case of PRF). Our work makes any high dimensional linearity testing theorem effective by offering an
algorithm which would recover the linear map which is close to f (whose existence would be ensured
by the linearity testing theorem).

Other Relevant Prior Work. A recent work of Asadi, Golovnev, Gur and Shinkar [AGGS22] proves
effective property testing theorems en route to giving worst-case to average-case reductions for matrix
multiplication and related problems. The effective property testing theorems are proved by converting
Sanders’ result [San12] into an efficient algorithm. This result is general and is used to give worst-case
to average-case reductions for several problems simultaneously. All of their results inherit the quasi-
polynomial dependence on the test-passing probability from [San12]. Our result is less general as it
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focuses only on the problem of matrix recovery, however we obtain better parameters as we do not
inherit the quasi-polynomial dependence of Sanders’ theorem.

1.3 Technical Overview
Suppose f : Zmq → Znq and ε > 0 are such that Prx∼Zmq

[
f(x) = Ax

]
≥ ε holds for some A ∈ Zn×mq .

We give a high level overview of how to algorithmically recover A. This is the crux of our algorithm;
the full list is recovered by repeating this procedure. In this discussion we isolate and over-explain
what we feel are the key ideas, in order to highlight them as much as possible. Because of this, there
are several important (but in our opinion secondary) points which are swept under the rug, and so the
algorithm presented in this section is a significant oversimplification of our work. Full details can be
found in the body of the paper.

Our first observation is that for any z ∈ Znq , we can get a map fz : Zmq → Zq via fz(x) = 〈z, f(x)〉.
The key point here is that

Ez∼Znq

[
Prx∼Zmq

[
fz(x) = 〈Atz,x〉

]]
= 1/q +

(
1− 1/q

)
· ε,

from which it follows that if z ∼ Znq is chosen uniformly, then fz is likely to have non-trivial agreement
with the linear function x 7→ 〈Atz,x〉. In this case, the vector Atz ∈ Zmq can be recovered with
non-negligible probability by running the (one-dimensional) Goldreich-Levin algorithm.

While this is a good start, this procedure only obtains what amounts to a single row of A with
non-negligible probability. Thus, we have burned a considerable amount of probabilistic “good will” in
order to make one step of progress. We cannot hope to recover every row of A in this fashion because
the probability of running the procedure successfully n times in a row is exponentially small. For this
reason, once we recover Atz ∈ Zmq , we double down: we modify the function f to disregard f(x)
whenever 〈z, f(x)〉 6= 〈Atz,x〉. The new function stands to have better (conditional) agreement with
A since

Prx∼Zmq

[
f(x) = Ax

∣∣∣〈z, f(x)〉 = 〈Atz,x〉
]
≥ ε
/

Prx∼Zmq
[
〈z, f(x)〉 = 〈Atz,x〉

]
.

In other words, we hope to increase the chance that f agrees with A by conditioning on f agreeing
with the rows of A which have already recovered. By looking at the above equation, we understand
that whenever Prx

[
〈z, f(x)〉 = 〈Atz,x〉

]
is bounded away from 1, we have made progress.

The above discussion suggests the following algorithm: repeat a small number of times the proce-
dure 1) choose z ∼ Znq , 2) extract Atz using Goldreich-Levin on fz, 3) update f to demand agreement
with x 7→ 〈Atz,x〉. Repeating only a small number of times ensures that we don’t burn too much
probabilistic good will. Our hope is that in only a few steps, the conditional agreement probability will
grow so that it is close to 1. If this occurs, we will be able to easily recover the matrix.

This turns out not to fully work. However, before explaining the problems and how we fix them, let
us start by looking at an example where it does work. The ideas from this simple algorithm make up
an important special case of our main algorithm, so they are worthwhile to understand. Let A ∈ Zn×mq

be a matrix, T ⊂ Zmq a subset of density |T |/qm = q−2, and let f : Zmq → Znq be the function

f(x) =

{
Ax, x ∈ T

$ ∼ Znq , x /∈ T

Suppose the above procedure is run three times with z1, z2, z3 ∈ Znq and Atz1,A
tz2,A

tz3 ∈ Zmq are
recovered using the Goldreich-Levin theorem. Let S ⊂ Zmq be shorthand for the set of x ∈ Zmq such that
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fzi(x) = 〈Atzi,x〉 holds for i = 1, 2, 3. The key point is that, conditioned on x ∈ S, the chance that
f(x) = Ax is very good (about 1 − 1/q). This means that membership in S (which can be efficiently
tested) can be used as a proxy for f agreeing with A, and this is good enough to allow recovering A.

The problem with this plan, and the reason it does not fully work, is that in order to make progress
we require the probability that fz agrees with the linear function x 7→ 〈Atz,x〉 to be both larger than
1
q

+ δ (so that Atz can be recovered using Goldreich-Levin) and also bounded away from 1 (so that
sufficient progress is made). In general, it might be that for almost all z, one but not both of these
conditions hold. Indeed, consider the example function f which outputs f(x) = Ax except with the
first coordinate replaced with a random value. The functions fz will have either perfect agreement with
x 7→ 〈Atz,x〉 (if z1 = 0), or else fz will be a random function (if z1 6= 0). In this case, our plan
outlined above will not work since any z for which fz has good agreement, enabling Goldreich-Levin
recovery of Atz, will have perfect agreement, so the conditional probability does not increase.

Our main conceptual contribution is characterizing the conditions under which the above plan fails,
and handling them. We prove using Fourier analysis that the only way the plan fails is if there exists
a vector w ∈ Znq such that fz having good agreement with x 7→ 〈Atz,x〉 is heavily correlated with
the event “z ⊥ w”. Equivalently, the only way the plan fails is if there exists w ∈ Znq such that
Prx∼Zmq

[
f(x) ∈ Ax + Span(w)

]
is much larger than Prx∼Zmq

[
f(x) = Ax

]
. In the above example

where f(x) = Ax except with a random first coordinate, fz has good agreement with x 7→ 〈Atz,x〉
exactly when z ⊥ e1 (e1 the first unit vector). Also, in this example Prx∼Zmq

[
f(x) = Ax

]
= 1/q,

while Prx∼Zmq
[
f(x) ∈ Ax + Span(e1)

]
= 1.

With the major ideas in place, we can now describe our algorithm and its analysis. Our algorithm
begins by instantiating a set S ⊂ Zmq to S = Zmq and our analysis instantiates a subspace W ⊂ Znq to
W = {0}. The analysis keeps track of the probability potential P := Prx∼Zmq

[
f(x) ∈ Ax+W

∣∣x ∈ S].
Note at the start of the algorithm P ≥ ε holds. The algorithm and analysis now proceed in stages. In
each stage P will be increased either by updating S or W. Specifically, if conditions are such that
progress is likely to be made by running the Goldreich-Levin procedure, then the algorithm draws
z ∼ Znq , recovers Atz using Goldreich-Levin, and sets S = S ∩

{
x ∈ Zmq : fz(x) = 〈Atz,x〉

}
. With

non-negligible probability, P will increase. If, on the other hand, conditions are not such that progress
is likely via the Goldreich-Levin procedure, then by the Fourier analysis argument, significant progress
can be made by adding some w ∈ Znq to W, thereby increasing W by one dimension. After about
logq(1/ε) stages, P will be close enough to 1 that A can be recovered with good probability.

2 Preliminaries
Basic Notation. For a prime q ∈ N, we denote by Zq the field of integers modulo q. We will denote
scalars, vectors and matrices with lowercase italic, lowercase bold, and uppercase bold respectively
(e.g., z ∈ Zq, z ∈ Znq and Z ∈ Zn×mq ). Given a matrix Z ∈ Zn×mq , we denote by Zt ∈ Zm×nq its
transpose. For vectors z,w ∈ Znq , we write 〈z,w〉 for their dot product: 〈z,w〉 = z1w1 + · · · + znwn.
For a distribution D (resp. set D), we write r ∼ D (resp. r ∼ D) to indicate that the random variable
r is drawn according to D (resp. the uniform distribution on D). For an event E, we denote by 11E the
indicator random variable corresponding to E. Namely, 11E = 1 (resp. 11E = 0) when E occurs (resp.
does not occur).

Linear Algebra. We assume familiarity with basic concepts from linear algebra. For example, if
W ⊂ Znq is a subspace, then we denote by W⊥ ⊂ Znq the set {z ∈ Znq : 〈z,w〉 = 0 ∀ w ∈W}. It is
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known that W⊥ ⊂ Znq is a subspace of dimension n− d, where d = dim(W). For a matrix A ∈ Zn×mq

and vectors x ∈ Zmq , z ∈ Znq we will use the identity 〈z,Ax〉 = 〈Atz,x〉.

Fourier Analysis. The set of functions {f : Znq → C} is a complex vector space of dimension qn.
The Fourier basis is {χw : w ∈ Znq } where χw(z) = ω〈z,w〉 where ω = e2πi/q is a primitive q−th root
of unity on the complex unit circle. When a function f : Znq → C is represented with respect to the
Fourier basis, we denote by f̂(w) the complex coefficient in front of χw, so f =

∑
w∈Znq

f̂(w)χw. We
will use the following well known facts.

Claim 1 (Basic Fourier Analysis). Let q, n ∈ N be integers with q prime.

(a) The Fourier Basis is Orthonormal: For any subspace W ⊂ Znq , Ez∼W
[
ω〈z,w〉

]
= 11w∈W⊥ .

(b) Explicit Formula for the Fourier Coefficients: For any function f : Znq → C, the Fourier
coefficients are given by: f̂(w) = Ez∼Znq

[
f(z) · ω−〈z,w〉

]
.

(c) Parseval’s Identity: For any f : Znq → C, we have Ez∼Znq
[
|f(z)|2

]
=
∑

w∈Znq
|f̂(w)|2.

The One-Dimensional Goldreich-Levin Theorem. The following generalization of the Goldreich-
Levin theorem [GL89] to large fields was proved in [AGS03].

Claim 2. Let q,m ∈ N be integers such that q is prime. There is a randomized oracle algorithm AGL

which has the following syntax, runtime and correctness guarantees.

• Syntax: AGL is parametrized by ε > 0, takes no input, gets oracle access to f : Zmq → Zq and
outputs u ∈ Zmq .

• Running Time: AGL runs in time poly
(
m, log q, log(1/ε)

)
.

• Correctness: If f is such that Prx∼Zmq
[
f(x) = 〈u,x〉

]
≥ 1/q + ε, then AGL outputs u with

probability at least ε2 (probability over the random coins of AGL).

The Chernoff-Hoeffding Inequality. Let n ∈ N be an integer, µ1, . . . , µn ∈ [0, 1] and δ > 0.
Suppose X1, . . . , Xn are n independent copies of the 0/1 random variables whose expectations are
E[Xi] = µi. Let X = 1

n
·
(
X1 + · · · + Xn

)
be their mean, so E[X] = 1

n
·
(
µ1 + · · · + µn

)
=: µ. The

Chernoff-Hoeffding inequality says:

Pr
[
|X − µ| > δ

]
≤ 2e−

δ2

3µ
n.

The following form will be useful to us.

Claim 3. Let m,n, q ∈ N be integers with m ≥ 18, n ≥ 2 and q prime, let δ ≥ q−m/3 be a parameter,
T ⊂ Zmq a subset of density τ := |T |/qm, and let G be the set of all functions mapping T into Znq , so
G :=

{
g : T → Znq

}
. Then

Prg∼G

[
∃A ∈ Zn×mq st

∣∣Prx∼Zmq
[
g(x) = Ax & x ∈ T

]
− τq−n

∣∣ > δ
]
≤ e−m.
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Proof. For g ∈ G and A ∈ Zn×mq , let P(g,A) := Prx∼Zmq
[
g(x) = Ax & x ∈ T

]
be shorthand.

Note that a random function g ∼ G is specified by independently choosing random outputs in Znq
for every input x ∈ T . For a matrix A ∈ Zn×mq , define the 0/1 random variables {XA

x }x∈Zmq via
XA

x = 11x∈T ·11g(x)=Ax (randomness over g ∼ G). Note that for all A ∈ Zn×mq , the XA
x are independent

copies of the 0/1 random variables whose expectations are

E
[
XA

x

]
=

{
q−n, x ∈ T
0, x /∈ T ,

and furthermore, the quantity P(g,A) is equal to q−m ·
∑

x∈Zmq
XA

x . Thus, the union bound and the
Chernoff-Hoeffding inequality combine to give

Prg∼G

[
∃A ∈ Zn×mq s.t.

∣∣P(g,A)− τq−n
∣∣ > δ

]
≤ qmn · max

A∈Zn×mq

{
Prg∼G

[∣∣P(g,A)− τq−n
∣∣ > δ

]}
≤ 2qmne−

δ2qm+n

3τ ≤ 2e−( 1
3
·qm/3+n−mn ln q),

using δ ≥ q−m/3 and τ ≤ 1. Finally, note that

1

3
qm/3+n −mn ln q ≥ 1

3
qm/3+2 − 2m ln q ≥ 1

3
2m/3+2 − 2m ln 2 ≥ 2m/3 − 2m ≥ m+ 1,

completing the proof. The first inequality above holds because the function φ(x) = 1
3
qm/3+x−(m ln q)x

has positive derivative for all x ≥ 2 when q ≥ 2 and m ≥ 8; the second inequality holds because
ψ(x) = 1

3
xm/3+2− 2m lnx has positive derivative for all x ≥ 2 when m ≥ 9; the final inequality holds

because χ(x) = 2x/3 − 3x− 1 is positive for all x ≥ 18.

3 Proving the Main Theorem
We restate Theorem 1 below in a more quantitative form.

Theorem 1 (Restated). Let m,n, q ∈ N be integers with m ≥ 18 and q prime, let ε > 0 be such that
ε ≥ 12 · max{q−m/9, q−n/3}, and let f : Zmq → Znq be a function. There exists an algorithm AList.Dec

with the following syntax, runtime and correctness guarantees.

• Syntax: AList.Dec takes no input, gets oracle access to f , and outputs a set L ⊂ Zn×mq of size at most
|L| ≤ 9/ε.

• Runtime: AList.Dec runs in expected time poly
(
n, log q,mlogq(1/ε), ε− logq(1/ε)

)
.

• Correctness: With probability at least 1−2−Ω(m) over the randomness of L ∼ A(ε,f)
List.Dec, the following

both hold:

· for all A ∈ L, Prx∼Zmq
[
f(x) = Ax

]
≥ ε/10;

· for all A′ ∈ Zn×mq , either Prx∼Zmq
[
f(x) = A′x

]
< ε, or Prx∼Zmq

[
A′x = Ax

]
≥ ε2/36 for

some A ∈ L.
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3.1 Agreement Decoding Implies List Decoding
Proving Theorem 1 requires designing an algorithm which outputs a list of matrices which "explains"
all of f ’s linear agreement. In this section, we show that it suffices to design an algorithm which
reconstructs a single matrix which has good agreement with f . The list decoding algorithm works by
simply calling this algorithm repeatedly.

Theorem 2. Let m,n, q ∈ N be integers with m ≥ 18, n ≥ 2 and q prime, let ε ≥ 12q−m/3, and let
f : Zmq → Znq be a function. There exists a randomized algorithm AMatrix.Rec which has the following
syntax, running time and correctness guarantees.

• Syntax: AMatrix.Rec takes no input, gets oracle access to f , and outputs a matrix Aout ∈ Zn×mq .

• Running Time: AMatrix.Rec runs in expected poly
(
m,n, log q, 1/ε

)
time.

• Correctness: With probability at least poly
(
1/n, εlogq(1/ε),m− logq(1/ε)

)
,

Prx∼Zmq
[
f(x) = Aoutx

]
≥ max

A∈Zn×mq

{
Prx∼Zmq

[
f(x) = Ax

]}
− ε.

Proof of Theorem 1 Using Theorem 2. Let ε > 0 be the parameter from Theorem 1, and assume that
n ≥ 2 since when n = 1, Theorem 1 follows easily from Claim 2 (the one-dimensional Goldreich-
Levin theorem). Our algorithm AList.Dec will call the algorithm AMatrix.Rec from Theorem 2 several
times with parameter ε/3, and our proof will invoke Claim 3 several times with parameter δ = 1

2
·
(
ε
6

)3,
so that δ ≥ q−m/3 is satisfied. Note q−n ≤ 1

2
·
(
ε
6

)3 ensures that
(
q−n + δ

)
≤
(
ε
6

)3. Our algorithm
AList.Dec works by initializing a list L ⊂ Zn×mq to empty L = { }, a function g : Zmq → Znq to g = f ,
and doing the following ` times, where ` = 9/ε is an upper bound on the size of the list we will output:

· call A(ε/3,g)
Matrix.Rec N = m/p times, where p = poly

(
1/n, εlogq(1/ε),m− logq(1/ε)

)
is the success prob-

ability of AMatrix.Rec. Let A1, . . . ,AN ∈ Zn×mq be the outputs.

· For each j = 1, . . . , N , approximate Pj := Prx∼Zmq
[
g(x) = Ajx

]
using m/ε samples.

· Let j ∈ {1, . . . , N} be such that Pj is maximal. If Pj ≥ 2ε/9, add Aj to L and update g by
changing g(x) to random for all x ∈ Zmq such that g(x) = Ajx.

After the loop completes, AList.Dec outputs L. Note that AList.Dec has the required syntax and runtime,
and also note that |L| ≤ ` clearly holds since the loop is executed ` times, with at most one matrix
being added to L each time. Additionally, each of the matrices Aj ∈ Zn×mq which gets added to L has
Prx∼Zmq

[
g(x) = Ajx

]
≥ ε/9 with probability at least 1− 2−Ω(m). This is because Pj ≥ 2ε/9 and Pj is

an approximation of Prx∼Zmq
[
g(x) = Ajx

]
which is accurate to within ε/9 with probability 1−2−Ω(m)

by the Chernoff-Hoeffding inequality. Furthermore, at all times during the algorithm, the function g is
the same as f except that some of the inputs have had their output overwritten with a random value. So
if we let T ⊂ Zmq be the set of inputs whose output has been overwritten with a random value at the
time when Aj ∈ Zn×mq is added to L, we see that with probability 1−2−Ω(m) over the randomness used
to overwrite the outputs,
ε

9
≤ Prx∼Zmq

[
g(x) = Ajx

]
= Prx∼Zmq

[
f(x) = Ajx & x /∈ T

]
+ Prx∼Zmq

[
g(x) = Ajx & x ∈ T

]
≤ Prx∼Zmq

[
f(x) = Ajx

]
+
(
q−n + δ

)
≤ Prx∼Zmq

[
f(x) = Ajx

]
+

ε

90
,
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holds by Claim 3, using q−n + δ ≤ ε/90. It follows that Prx∼Zmq
[
f(x) = Ajx

]
≥ ε/10 holds for all

Aj ∈ L. Therefore, to finish the proof, it remains to show that whenAList.Dec terminates, at least one of
the following holds for every A′ ∈ Zn×mq :

(1) Prx∼Zmq
[
f(x) = A′x

]
< ε;

(2) there exists some A ∈ L such that Prx∼Zmq
[
Ax = A′x

]
≥ ε

4`
.

For this purpose, we set some notation. For i = 1, . . . , `, let gi : Zmq → Znq denote the function
g during the i−th execution of the above loop; and let Φi := maxA′∈Zn×mq

{
Prx∼Zmq

[
gi(x) = A′x

]}
.

Note that if Φi ≥ 2ε/3, then with probability at least 1− 2−Ω(m), a matrix will be added to L during the
i−th loop execution. Indeed, by Theorem 2, with probability 1− 2−Ω(m), at least one of the N matrices
{Aj}j=1,...,N computed by AMatrix.Rec is such that

Prx∼Zmq
[
gi(x) = Ajx

]
≥ max

A′∈Zn×mq

{
Prx∼Zmq

[
gi(x) = A′x

]}
− ε/3 ≥ ε/3,

in which case Pj ≥ 2ε/9 holds (and thus Aj gets added to L) with probability 1 − 2−Ω(m) by the
Chernoff-Hoeffding inequality.

Now, let Φ`+1 := maxA′∈Zn×mq

{
Prx∼Zmq

[
g`+1(x) = A′x

]}
, where g`+1 denotes the function g after

the `−th loop execution has finished and AList.Dec has terminated. We complete the proof by proving
two things: (i) that Φ`+1 is small; (ii) small Φ`+1 implies that for every matrix, at least one of the two
conditions specified above holds. Specifically, we show:

• with probability at least 1− 2−Ω(m), Φ`+1 < 3ε/4 holds;

• if Φ`+1 < 3ε/4, then either (1) or (2) holds for every A′ ∈ Zn×mq .

We begin with the second point since it is easier. Suppose Φ`+1 < 3ε/4, and let A′ ∈ Zn×mq be such
that Prx∼Zmq

[
f(x) = A′x

]
≥ ε, i.e., so that (1) does not hold for A′. Let T ⊂ Zmq be the set of x ∈ Zmq

who have had their outputs overwritten with a random output in the final function g`+1. So in other
words, T =

{
x ∈ Zmq : ∃A ∈ L s.t. f(x) = Ax

}
. Since f = g`+1 away from T , we have

Prx∼Zmq
[
f(x) = A′x & x /∈ T

]
≤ Prx∼Zmq

[
gk+1(x) = A′x

]
< 3ε/4,

and so

ε ≤ Prx∼Zmq
[
f(x) = A′x

]
< Prx∼Zmq

[
f(x) = A′x & x ∈ T

]
+ 3ε/4

≤ |L| ·max
A∈L

{
Prx∼Zmq

[
f(x) = A′x & f(x) = Ax

]}
+ 3ε/4,

by the union bound. Rearranging and using |L| ≤ ` implies that condition (2) holds for A′.
To prove the first point, note that if there exists some k ∈ {1, . . . , `} such that Φk < 2ε/3, then

Φ`+1 < 3ε/4 holds with probability 1− 2−Ω(m). This is because g`+1 is the same function as gk except
that some of the outputs have been changed to random values in Znq . Specifically, if we let T ⊂ Zmq
be the inputs whose outputs under gk and g`+1 differ, then because g`+1 is random on T , we have by
Claim 3 that with probability at least 1− 2−Ω(m), for all A′ ∈ Zn×mq :

Prx∼Zmq
[
g`+1(x) = A′x

]
= Prx∼Zmq

[
g`+1(x) = A′x & x /∈ T

]
+ Prx∼Zmq

[
g`+1(x) & x ∈ T

]
≤ Prx∼Zmq

[
gk(x) = A′x

]
+
(
q−n + δ

)
≤ Φk +

(
q−n + δ

)
< 3ε/4,
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using q−n + δ < ε/12. Therefore, assume that Φ1, . . . ,Φ` ≥ 2ε/3 and let us show in this case that
Φ`+1 < 3ε/4 holds. This will complete the proof.

By the discussion above, since Φi ≥ 2ε/3 holds for all i = 1, . . . , `, a matrix will be added to L in
every loop execution with probability 1 − 2−Ω(m). Let A1, . . . ,A` ∈ Zn×mq denote these matrices and
let Ti ⊂ Zmq be the set of inputs whose outputs are overwritten by a random value because of agreement
of gi with Ai; namely Ti =

{
x ∈ Zmq : gi(x) = Aix

}
. By the discussion above, |Ti| ≥

(
ε/9
)
qm holds

for all i. By Claim 3, with probability 1− 2−Ω(m), we have∣∣Ti ∩ Ti′∣∣ = qm · Prx∼Zmq
[
gi′(x) = Ai′x & x ∈ Ti

]
≤ qm ·

(
q−n + δ

)
,

for all i < i′, since gi′ is random on Ti. By inclusion-exclusion, we have∣∣∣∣ ⋃̀
i=1

Ti

∣∣∣∣ ≥ ∑̀
i=1

|Ti| −
∑
i<i′

∣∣Ti ∩ Ti′∣∣ ≥ qm ·
(
`ε

9
− `2

2

(
q−n + δ

))
= qm ·

(
1− `2

2
·
(
q−n + δ

))
.

Using Claim 3 one more time gives that for all A′ ∈ Zn×mq ,

Prx∼Zmq
[
g`+1(x) = A′x

]
≤ Prx∼Zmq

[
g`+1(x) = A′x & x ∈

⋃̀
i=1

Ti

]
+
`2

2
·
(
q−n + δ

)
≤
(
`2

2
+ 1

)
·
(
q−n + δ

)
,

since g`+1 is random on
⋃
i Ti. Thus Φ`+1 ≤

(
`2

2
+ 1
)
·
(
q−n+ δ

)
≤ 3ε/4 (follows from q−n+ δ ≤

(
ε
6

)3

and ` = 9/ε), as desired.

3.2 Proving Theorem 2 via Two Lemmas
As discussed in the introduction, the algorithm AMatrix.Rec works by initializing a subset S ⊂ Zmq to the
entire domain S = Zmq , and proceeds to iteratively shrink S so that the chance of f agreeing with A
given that the input is in S increases. Once this probability is sufficiently close to 1, A (or, at least,
some other matrix which is almost as good) can be recovered algorithmically. For this reason, we break
our algorithmAMatrix.Rec into two subroutines: Aamplify, which amplifies f ’s conditional agreement; and
Aoutput which recovers an output matrix once f ’s conditional agreement is sufficiently close to 1. The
following lemmas summarize the correctness guarantees for these two subroutines.

Lemma 1 (The Amplification Algorithm Aamplify). Let m,n, q ∈ N be integers with q prime, let
ε > 0, and let f : Zmq → Znq be a function. There exists a randomized algorithm Aamplify which has the
following syntax, running time and correctness guarantees.

• Syntax: Aamplify takes no input, gets oracle access to f , and outputs the characteristic function
of a set Sout ⊂ Zmq .

• Running Time: Aamplify runs in expected poly
(
m,n, log q, log(1/ε)

)
time; the characteristic

function which Aamplify outputs can be computed in time poly
(
m,n, log q

)
using one oracle call

to f .
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• Correctness: If A ∈ Zn×mq is such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε, then with probability at

least poly
(
εlogq(1/ε),m− logq(1/ε)

)
over Sout ∼ A(ε,f)

amplify,
{
x ∈ Zmq : f(x) = Ax

}
⊂ Sout holds,

and additionally, there exists a subspace W ⊂ Znq of dimension at most dim(W) ≤ r for a
parameter r = O

(
logq(1/ε)

)
(here the O is hiding an absolute constant, independent of all

other parameters) such that

Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x ∈ Sout

]
≥ 1− 1

4m
.

Lemma 2 (The Output Recovery Algorithm Aoutput). Let m,n, q, r ∈ N be integers with q prime,
let ε ≥ 12q−m/3, let f : Zmq → Znq be a function, and S ⊂ Zmq a subset. There exists a randomized
algorithm Aoutput which has the following syntax, running time and correctness guarantees.

• Syntax: Aoutput takes no input, gets oracle access to f and to the characteristic function of S,
and outputs a matrix Aout ∈ Zn×mq .

• Running Time: Aoutput runs in expected poly
(
m,n, log q, 1/ε

)
time.

• Correctness: Assume A ∈ Zn×mq is such that
{
x ∈ Zmq : f(x) = Ax

}
⊂ S, and also that

Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x ∈ S] ≥ 1 − 1
4m

holds for some subspace W ⊂ Znq of dimension
at most r. Then with probability at least poly

(
1/n, εr, εlogq(1/ε),m− logq(1/ε)

)
, the output matrix

Aout ∈ Zn×mq satisfies

Prx∼Zmq
[
f(x) = Aoutx

]
≥ Prx∼Zmq

[
f(x) = Ax

]
− ε.

Proof of Theorem 2 Assuming Lemmas 1 and 2. The algorithmAMatrix.Rec simply callsAamplify with or-
acle access to f to obtain the characteristic function of a set S ⊂ Zmq ; then it calls Aoutput with oracle
access to f and to the characteristic function of S to obtain Aout ∈ Zn×mq ; if either subroutine fails to
give output AMatrix.Rec aborts. It is clear that AMatrix.Rec has the required syntax and running time. For
correctness, let A ∈ Zn×mq be such that Prx∼Zmq

[
f(x) = Ax

]
is maximal; we can assume this proba-

bility is at least δ, since otherwise any output matrix Aout ∈ Zn×mq will trivially satisfy the requirement.
By Lemma 1, with probability at least poly

(
εlogq(1/ε),m− logq(1/ε)

)
, Aamplify outputs S ⊂ Zmq such that{

x ∈ Zmq : f(x) = Ax
}

holds and also so that Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x ∈ S] ≥ 1− 1
4m

holds for
some subspace W ⊂ Znq of dimension at most r. By Lemma 2, when Aoutput is run with oracle access
to f and to the characteristic function of S, it outputs Aout ∈ Zn×mq such that

Prx∼Zmq
[
f(x) = Aoutx

]
≥ Prx∼Zmq

[
f(x) = Ax

]
− ε

with probability at least poly
(
1/n, εlogq(1/ε),m− logq(1/ε)

)
, using r = O

(
logq(1/ε)

)
. The result follows.

4 The Goldreich-Levin Machine
In order to make repeated use the one-dimensional Goldreich-Levin theorem of Claim 2, we analyze
an algorithmic process we call the “Goldreich-Levin Machine”, and denote by AGL.machine.
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The Goldreich-Levin Machine. Let m,n, q ∈ N be integers with q prime and let f : Zmq → Znq be
a function. AGL.machine is defined with a parameter δ > 0, gets oracle access to f , takes a set S ⊂ Zmq
as input (more precisely, AGL.machine gets oracle access to 11S , the characteristic function of S), and
outputs another set S ′ ⊂ Zmq (specifically, AGL.machine outputs the code for the characteristic function
11S′). The process works by drawing z ∼ Znq uniformly and then drawing u ∼ A(δ,fz)

GL , whereAGL is the
one-dimensional Goldreich-Levin algorithm from Claim 2 and fz : Zmq → Zq is the function

fz(x) =

{
〈z, f(x)〉, x ∈ S
$ ∼ Zq, x /∈ S .

Then S ′ is set to S ′ = S ∩
{
x ∈ Zmq : 〈z, f(x)〉 = 〈u,x〉

}
. AGL.machine is shown formally in Figure 1.

Setup: Let m,n, q ∈ N be integers such that q is prime, let δ > 0, and let f : Zmq → Znq
be a function, to which our algorithm has oracle access. Let AGL be the one-dimensional
Goldreich-Levin algorithm of Claim 2.

Input: A set S ⊂ Zmq .

Execution:

− Draw z ∼ Znq uniformly.

− Compute u ∼ A(δ,fz)
GL where fz : Zmq → Zq is the function

fz(x) =

{
〈z, f(x)〉, x ∈ S
$ ∼ Zq, x /∈ S .

If AGL fails to give output, abort and halt.

Output: Output S′ = S ∩
{
x ∈ Zmq : 〈z, f(x)〉 = 〈u,x〉

}
.

Figure 1: The Goldreich-Levin Machine AGL.machine

The Hope for Repeatedly Applying the GL Machine. Suppose that f has good agreement with
some A ∈ Zn×mq . We say that S ⊂ Zmq contains f ’s agreement with A if

{
x ∈ Zmq : f(x) = Ax

}
⊂ S.

Clearly when S = Zmq then S trivially contains f ’s agreement with A. Our hope is that ifAGL.machine is
run repeatedly, beginning with S = Zmq , and S = S ′ is updated after each run, then S will continue to
contain f ’s agreement with A and moreover, that S will shrink to the point where equality holds; i.e.,
S =

{
x ∈ Zmq : f(x) = Ax

}
. Notice that if S ′ is updated as S ′ = S ∩

{
x ∈ Zmq : 〈z, f(x)〉 = 〈x,u〉

}
for vectors (u, z) ∈ Zmq ×Znq which satisfy u = Atz, then S ′ contains f ’s agreement with A whenever
S does. In general, it is too optimistic to hope to obtain S =

{
x ∈ Zmq : f(x) = Ax

}
. However, our

analysis tracks the probability Prx∼Zmq
[
f(x) = Ax

∣∣x ∈ S] in order to measure how much larger the set
S is than

{
x ∈ Zmq : f(x) = Ax

}
. Lemma 3 below specifies conditions under which this probability

has good chances of increasing if one round of AGL.machine is executed and S = S ′ is updated. We first
set some extra notation and terminology.
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Notation. Our main algorithm uses the Goldreich-Levin machine to make progress in a variety of
circumstances and we need some extra notation in order to make Lemma 3 applicable to all necessary
settings. In addition to the usual integers m,n, q ∈ N with q prime and function f : Zmq → Znq , let
r ∈ N be an integer and W ⊂ Znq a subset of dimension dim(W) = r. For A ∈ Zn×mq , S ⊂ Zmq and
z ∈W⊥, let

• P(A,W,S) := Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x ∈ S];
• Q(A,S)(z) := Prx∼Zmq

[
〈z, f(x)〉 = 〈z,Ax〉

∣∣x ∈ S].
As mentioned above, we say S contains f ’s agreement with A if

{
x ∈ Zmq : f(x) = Ax

}
⊂ S holds.

Lemma 3. Let m,n, q, r ∈ N be integers with q prime, let σ, δ, η,∆ > 0, let f : Zmq → Znq be
a function, A ∈ Zn×mq a matrix, and W ⊂ Znq a subspace of dimension dim(W) = r. Suppose
AGL.machine is executed with parameter δ and oracle access to f with an input set S ⊂ Zmq of size
|S| = σqm which contains f ’s agreement with A ∈ Zn×mq . Suppose, furthermore, that the following
“Goldreich-Levin Progress Condition” (GLPC) holds:

• Goldreich-Levin Progress Condition: Prz∼W⊥

[
1
q

+ δ
σ
≤ Q(A,S)(z) ≤ ∆

]
≥ η.

Then with probability at least q−rηδ2 over S ′ ∼ A(δ,f)
GL.machine, S

′ contains f ’s agreement with A, and
moreover P(A,W,S′) ≥ P(A,W,S)/∆ holds.

Remark. Intuitively, the GLPC ensures that with good probability over z ∼ W⊥ both of the fol-
lowing occur: 1) 1

q
+ δ

σ
≤ Q(A,S)(z), ensuring that the call to Aδ,fzGL outputs u = Atz with good

probability; and 2) Q(A,S)(z) ≤ ∆ ensuring that P(A,W,S′) ≥ P(A,W,S)/∆ holds with good probability
since P(A,W,S′) =

P(A,W,S)

Q(A,S)(z)
is likely.

Proof. Fix a matrix A ∈ Zn×mq and a subspace W ⊂ Znq of dimension dim(W) = r and consider the
execution of S ′ ∼ A(δ,f)

GL.machine(S) for a set S ⊂ Zmq of size |S| = σqm which contains f ’s agreement
with A. Furthermore assume that the GLPC holds. With these choices fixed, let us write P, Q(z) and
P′ instead of P(A,W,S), Q(A,S)(z) and P(A,W,S′). Note that the execution ofAGL.machine consists of three
steps: first a random z ∼ Znq is chosen, then u ∼ A(δ,fz)

GL is computed, finally S ′ ⊂ Zmq is prepared and
output. Consider the following three events:

(1) z ∈W⊥; (2) 1
q

+ δ
σ
≤ Q(z) ≤ ∆; (3) u = Atz.

Since dim(W) = r, the probability of (1) is q−r. Moreover, conditioned on (1) holding, the probability
that (2) holds is at least η since the GLPC holds. Now, note that when (1) and (2) both hold we have

Prx∼Zmq
[
fz(x) = 〈Atz,x〉

]
≥ σ · Q(z) +

(
1− σ

)
· 1

q
≥ 1

q
+ δ.

Therefore by Claim 2, conditioned on (1) and (2) both holding, (3) also holds with probability at least
δ2. So in summary, all three events hold with probability at least q−rηδ2. Now, as noted above, (3)
holding means that S ′ contains f ’s agreement with A, since S does. Additionally, all three events
holding means that P′ = P/Q(z) ≥ P/∆. This completes the proof.
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4.1 An ε−O(n)−time Algorithm for Matrix Recovery
Simply by running the Goldreich-Levin machine from the previous section n times, we can already get
an ε−O(n)−time algorithm for matrix recovery. Specifically, the lemma below describes an algorithm
which recovers a matrix which has good agreement with f with probability εO(n); this can be used
to recover a list which explains all of the linear agreement of f in ε−O(n) time via the “agreement
decoding implies list decoding” argument of Section 3.1. Our main algorithm runs much faster (time
ε−O(logq(1/ε)))), but will make use of the following ε−O(n)−time algorithm for small values of n.

Lemma 4. Let m,n, q ∈ N be integers with q prime, let ε > 0 and let f : Zmq → Znq be a function.
There exists a randomized poly

(
n,m, log q, log(1/ε)

)
−time algorithm Aexp which takes no input, gets

oracle access to f and outputs Aout ∈ Zn×mq such that with probability at least poly(εn),

Prx∼Zmq
[
f(x) = Aoutx

]
≥ max

A∈Zn×mq

{
Prx∼Zmq

[
f(x) = Ax

]}
− ε.

Remark. Lemma 4 is proved by repeatedly running the Goldreich-Levin machine (GLM), however
for technical reasons having to do with how the output is prepared, we will need to be slightly more
explicit about how we handle the sets which are the inputs and outputs of the GLM. Specifically, each
execution of the GLM, say with input S ⊂ Zmq , outputs S ′ = S∩

{
x ∈ Zmq : 〈z, f(x)〉 = 〈u,x〉

}
where

(u, z) ∈ Zmq ×Znq are the vectors encountered during the computation of the GLM. In this section it will
be necessary to keep track of the pairs (u, z) which occur in the various executions of the GLM. We do
this by maintaining a set L ⊂ Zmq × Znq , initialized to L = ∅, so that at all times during the algorithm,
S =

{
x ∈ Zmq : 〈z, f(x)〉 = 〈u,x〉 ∀ (u, z) ∈ L

}
holds. In this section only, we update the syntax

of the GLM having it take the pair (L, S) as input and giving the pair (L′, S ′) as output where S ′ is as
usual and where L′ = L∪{(u, z)}. Additionally, we extend the conclusion of the lemma to account for
our new sets L and L′. Specifically, rather than concluding only that “S ′ contains f ’s agreement with
A”, we add that L′ is updated from L by adding a pair (u, z) ∈ Zmq × Znq with u = Atz.

Proof. Given f : Zmq → Znq , let A ∈ Zn×mq be such that Prx∼Zmq
[
f(x) = Ax

]
is maximal; we can

assume this probability is at least ε since otherwise any output matrix Aout ∈ Zn×mq will satisfy the
requirement. Also, assume n ≥ 2 since if n = 1, then the result follows from Claim 2. The basic idea
is to recover the rows of A one-by-one using the Goldreich-Levin machine (GLM). The algorithmAexp

is shown in Figure 2, and it works as follows. A set pair (L, S) is initialized to L = ∅ and S = Zmq , a
vector space V ⊂ Znq is initialized to V = Znq and a function g : Zmq → V is initialized to g = f . The
following invariants will be maintained:

S =
{
x ∈ Zmq : 〈z, f(x)〉 = 〈u,x〉 ∀ (u, z) ∈ L

}
; and V = Span

(
{z ∈ Znq : (u, z) ∈ L}

)⊥
.

Then the GLM is run k times for a randomly chosen k ∼ {0, . . . , n} with parameter δ = ε2

16
on the

function g. Each time the GLM is run, a set pair (L′, S ′) is obtained and the updates

L = L′; S ′ = S; V = Span
(
{z : (u, z) ∈ L}

)⊥
; g = ΠV ◦ f

are registered, where ΠV : Znq → V is the linear projection map onto V. After the k executions of
the GLM, a random matrix Aout ∈ Zn×mq which satisfies At

outz = u for all (u, z) ∈ L is output. For
i = 1, . . . , k, let (Li, Si,Vi, gi) denote the values of (L, S,V, g) after the i−th execution of the GLM is
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Algorithm Setup: Let m,n, q ∈ N be integers such that n ≥ 2 and q is prime, let ε > 0,
and let f : Zmq → Znq be a function, to which our algorithm has oracle access. Let
AGL.machine be the Goldreich-Levin machine algorithm from Section 4, with syntax
modified according to the above remark.

1. Initialize: Let L ⊂ Zmq × Znq , S ⊂ Zmq , subspace V ⊂ Znq and g : Zmq → V be set to:

L = ∅; S = Zmq ; V = Znq ; g = f.

2. The Main Loop: Draw k ∼ {0, . . . , n}, and do the following k times.

· Compute (L′, S′) ∼ A(δ,g)
GL.machine(L, S), where δ = ε2

16 .

· Update (L, S) = (L′, S′), and V = Span
(
{z ∈ Znq : (u, z) ∈ L}

)⊥.

· Update g = ΠV ◦ f where ΠV is the projection map ΠV : Znq → V.

3. Output: Draw and output a uniform Aout ∼ Zn×mq such that At
outz = u ∀ (u, z) ∈ L.

Figure 2: A Matrix Recovery Algorithm with Exponentially Small Probability of Success Aexp

run, and let (L0, Si,V0, g0) = (∅,Zmq ,Znq , f). Also, let Pi(A) := Prx∼Zmq
[
f(x) = Ax

∣∣x ∈ Si], so that
P0(A) ≥ ε.

One subtle point is that since the GLM is run on the functions gi : Zmq → Vi and dim(Vi) = n− i
(since each execution of the GLM adds a single pair to L), the first step of the GLM chooses a random
z ∼ Zn−iq , not z ∼ Znq . Technically, what is happening here is that a random z is being selected from

the dual space of Vi, which is Znq /Span
(
{z : (u, z) ∈ Li}

)
since Vi = Span

(
{z : (u, z) ∈ Li}

)⊥.
Then, after the GLM recovers u and goes to add (u, z) to L, in order to make sure that L remains a
subset of Zmq × Znq , the vector z′ ∈ Znq is used instead of z where 〈z′,v〉 = 〈z,v〉 for all v ∈ Vi and
such that 〈z′, ẑ〉 = 0 for all (û, ẑ) ∈ Li.

Now, let us assume that Aexp got lucky with its choice of k and that k is maximal in {0, 1, . . . , n}
such that Pi(A) ≥ q−(n−i)+ε/2 holds for all i < k (occurs with probability 1

n+1
). As we explain below,

Lemma 3 ensures that for each of the first k executions of the GLM, with probability at least ε5/212, the
set L is updated by adding a pair (u, z) with u = Atz. In particular, this means that with probability at
least ε5n/212n = poly(εn), Lk agrees with A in the sense that u = Atz holds for all (u, z) ∈ Lk. Now,
the expected value of Pk(Â) over all matrices Â ∈ Zn×mq which agree with Lk is q−(n−k), and so with
probability at least ε/2 over Aout, Pk(Aout) ≥ q−(n−k) − ε/2 holds, in which case

Prx∼Zmq
[
f(x) = Aoutx

]
= Prx∼Zmq

[
x ∈ Sk

]
· Pk(Aout) ≥ Prx∼Zmq

[
x ∈ Sk

]
·
(
q−(n−k) − ε/2

)
> Prx∼Zmq

[
x ∈ Sk

]
·
(
Pk(A)− ε

)
≥ Prx∼Zmq

[
f(x) = Ax

]
− ε,

as desired. We have used that Pk(A) < q−(n−k) + ε/2. Thus it remains to explain how Lemma 3
ensures that in each of the first k executions of the GLM, the set L is updated with a pair of the form
(Atz, z) with good probability.

So fix some i < k, so that Pi(A) ≥ q−(n−i) + ε/2, assume that A agrees with Li and consider the
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(i+ 1)−th execution of the GLM. Let Qi(z) := Prx∼Zmq
[
〈z, f(x)〉 = 〈z,Ax〉

∣∣x ∈ Si]. Note that

Ez∼Zn−iq

[
Qi(z)

]
=

1

q
+

(
1− 1

q

)
· Pi(A),

where by z ∼ Zn−iq , we really mean that z is being drawn uniformly from the vector space quotient
Znq /Span

(
{ẑ : (û, ẑ) ∈ Li}

)
. We have used Ez∼Znq

[
Qi(z)

]
= Ez∼Zn−iq

[
Qi(z)

]
, which holds because

Qi(z+z′) = Qi(z) for all z ∈ Znq and z′ ∈ Span
(
{ẑ : (û, ẑ) ∈ L}

)
. Plugging in Pi(A) ≥ q−(n−i) +ε/2

and Qi(0) = 1 gives

q−(n−i) +
(
1− q−(n−i)) · Ez∼Zn−iq \{0}

[
Qi(z)

]
≥ q−(n−i) +

1

q
·
(
1− q−(n−i))+

ε

4
,

which simplifies to Ez∼Zn−iq \{0}
[
Qi(z)

]
≥ 1/q + ε/4. It follows that

Prz∼Zn−iq

[
Qi(z) ≥ 1

q
+
ε

8

]
≥
(
1− q−(n−i)) · Prz∼Zn−iq \{0}

[
Qi(z) ≥ 1

q
+
ε

8

]
≥ ε/16.

Thus the Goldreich-Levin Progress Condition holds with W = {0}, ∆ = 1, η = ε/16 and δ
σ

= ε
8
.

Also, note σ ≥ ε/2 because σ = Prx∼Zmq
[
x ∈ Si

]
≥ P0(A) ≥ q−n + ε/2. Therefore, by Lemma 3,

the (i + 1)−th execution of the GLM updates Li to Li+1 by adding a pair of the form (Atz, z) with
probability at least ηδ2 ≥ ε5/212, as needed.

Our main algorithm will use the algorithm promised by this corollary as a subroutine.

Corollary 1. Let m,n, q ∈ N be integers with m ≥ 18, q prime, and let ε > 0 be such that ε ≥ 4q−m/3

holds. Let f : Zmq → Znq be a function, and let T ⊂ Zmq be a subset. There exists a randomized
poly

(
n,m, log(q), log(1/ε)

)
−time algorithm which takes no input, gets oracle access to f and to the

indicator function 11T , and outputs Aout ∈ Zn×mq such that with probability at least poly(εn),

Prx∼Zmq
[
f(x) = Aoutx & x ∈ T

]
≥ max

A∈Zn×mq

{
Prx∼Zmq

[
f(x) = Ax & x ∈ T

]}
− ε.

Proof. Assume n ≥ 2, since if n = 1, the corollary follows from Claim 2. Invoke the algorithm Aexp

from Lemma 4 with parameter ε/2 on the function g : Zmq → Znq defined by

g(x) =

{
f(x), x ∈ T

$ ∼ Znq , x /∈ T ,

and let Aout ∈ Zn×mq be the output. Note that for any A ∈ Zn×mq ,

Pf,T (A) := Prx∼Zmq
[
f(x) = Ax & x ∈ T

]
= Prx∼Zmq

[
g(x) = Ax & x ∈ T

]
= Prx∼Zmq

[
g(x) = Ax

]
− Prx∼Zmq

[
g(x) = Ax & x /∈ T

]
=: Pg(A)− Pg,T (A).

With probability at least poly(εn),

Pf,T (A)− Pf,T (Aout) ≤
(
Pg(A)− Pg(Aout)

)
+
∣∣∣Pg,T (A)− Pg,T (Aout)

∣∣∣ ≤ ε

holds, since Pg(A) − Pg(Aout) ≤ ε/2 holds with probability poly(εn) over the random coins of Aexp

by Lemma 4, and since
∣∣Pg,T (A)− τq−n

∣∣ ≤ ε/4 and
∣∣Pg,T (Aout)− τq−n

∣∣ ≤ ε/4 both hold with high
probability over the randomness of g by Claim 3, where τ =

∣∣Zmq \ T ∣∣/qm. The result follows.
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5 The Amplification Step
Lemma 1 (Restated). Let m,n, q ∈ N be integers with q prime, let ε > 0, and let f : Zmq → Znq be
a function. There exists a randomized algorithm Aamplify which has the following syntax, running time
and correctness guarantees.

• Syntax: Aamplify takes no input, gets oracle access to f , and outputs the characteristic function of a
set Sout ⊂ Zmq .

• Running Time: Aamplify runs in expected poly
(
m,n, log q, log(1/ε)

)
time; the characteristic func-

tion which Aamplify outputs can be computed in time poly
(
m,n, log q

)
using one oracle call to

f .

• Correctness: If A ∈ Zn×mq is such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε, then with probability at least

poly
(
εlogq(1/ε),m− logq(1/ε)

)
(over the random coins ofAamplify), Sout contains f ’s agreement with

A, and moreover, there exists a subspace W ⊂ Znq of dimension at most dim(W) ≤ r for a
parameter r = O

(
logq(1/ε)

)
such that

Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x ∈ Sout

]
≥ 1− 1

4m
.

Proof. The algorithm initializes S = Zmq , chooses random k1, k2 ∼ {0, 1, . . . , T} for a sufficiently
large integer T ∈ N (specified later), and does the following for i = 1, . . . , k1 + k2:

• Compute S ′ ∼ A(δi,f)
GL.machine(S) and update S ′ = S, where δi =

{
ε2/1000, i ≤ k1

ε ·min{.01, q−2}, i > k1
.

After running the GLM k1 + k2 times, the set Sout = S is output. It is clear that Aamplify satisfies
the required syntax and running time guarantees. Towards proving correctness, assume A ∈ Zn×mq

is such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε. Note that at the start of the algorithm, S trivially contains

f ’s agreement with A since S = Zmq is initialized. The proof of correctness works by maintaining a
subspace W ⊂ Znq and keeping track of the probability

P(A,W,S) := Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x ∈ S]
throughout the execution of the algorithm. We initialize W to W = {0} so that P(A,W,S) ≥ ε holds at
the start of the algorithm. Our hope is that by repeatedly applying the GLM, we will gradually increase
P(A,W,S) from ε all the way to 1− 1

4m
while maintaining that S contains f ’s agreement with A. Crucial

to this plan is Lemma 3, which promises that if S contains f ’s agreement with A and additionally if
the Goldreich-Levin Progress Condition holds for parameters δ,∆, η > 0:

Prz∼W⊥

[
1

q
+
δ

ε
≤ Q(A,S)(z) ≤ ∆

]
≥ η, (GLPC)

where Q(A,S)(z) := Prx∼Zmq
[
〈z, f(x)〉 = 〈z,Ax〉

∣∣x ∈ S], then with probability q− dim(W) · δ2η over

S ′ ∼ A(δ,f)
GL.machine(S), S ′ contains f ’s agreement with A, and additionally, P(A,W,S′) ≥ P(A,W,S)/∆.

With this high level plan in place, our proof splits into two parts which are handled somewhat
differently. The goal of the first part of the proof is to amplify P(A,W,S) from ε to 1

q
+ γ where γ > 0 is

γ =

{
.01, q ∈ {2, 3, 5, 6}

1
q2
, q ≥ 11

.
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The goal of the second part is to amplify P(A,W,S) the rest of the way from 1
q

+ γ to 1 − 1
4m

. The
key difference between the two settings is that when P(A,W,S) ≥ 1

q
+ γ, (GLPC) is guaranteed to hold

for some choice of (δ,∆, η), whereas this is not true when P(A,W,S) <
1
q

+ γ. The following claims
summarize the two different parts of our proof.

Claim 4. Let notations be as above, let ∆ > 0 be

∆ =

{
.99, q ∈ {2, 3, 5, 7}
q−1/4, q ≥ 11

,

and let r ∈ N be the minimal integer such that ε/∆r ≥ 1
q

+ γ. Note that r = O
(
logq(1/ε)

)
. Suppose

A ∈ Zn×mq is such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε. Then there exists k1 ∈ {0, . . . , r} such that if the

GLM is run k1 times with parameter δ = ε2/1000, then with probability at least poly
(
εlogq(1/ε)

)
, the

resulting S ⊂ Zmq contains f ’s agreement with A and moreover is such that there exists a subspace
W ⊂ Znq of dimension at most dim(W) ≤ r such that P(A,W,S) ≥ 1

q
+ γ.

Claim 5. Let notations be as above. Suppose S ⊂ Zmq contains f ’s agreement with A and also that
P(A,W,S) ≥ 1

q
+ γ holds for some subspace W ⊂ Znq of dimension at most r. Then there exists a

k2 ∈ {0, . . . , 2 logq(4m)} such that if the GLM is run repeatedly k2 times with parameter δ = γε, then
with probability at least poly

(
m− logq(1/ε)

)
, the resulting S also contains f ’s agreement with A and is

moreover such that P(A,W,S) ≥ 1− 1
4m

.

Notice that these claims combine to easily prove Lemma 1. Suppose A ∈ Zn×mq is such that
Prx∼Zmq

[
f(x) = Ax

]
≥ ε holds, and let T = max{r, 2 logq(4m)}. Then if Aamplify chooses the k1

specified by Claim 4 (this k1 is chosen with probability at least 1
T+1

), then with probability at least
poly

(
εlogq(1/ε)

)
, the S ⊂ Zmq obtained after running the GLM with parameter δ = ε2/1000, k1 times

will contain f ’s agreement with A and be such that P(A,W,S) ≥ 1
q

+ γ for some subspace W ⊂ Znq of
dimension at most r. If Aamplify then chooses the k2 specified by Claim 5 (occurs with probability at
least 1

T+1
), then with probability at least poly

(
m− logq(1/ε)

)
the S ⊂ Zmq obtained after running the GLM

k2 times with parameter δ = γε contains f ’s agreement with A and is such that P(A,W,S) ≥ 1 − 1
4m

.
If we put everything together, we get that with probability at least poly

(
εlogq(1/ε),m− logq(1/ε)

)
, the set

Sout ⊂ Zmq output by Aamplify contains f ’s agreement with A and is such that P(A,W,S) ≥ 1 − 1
4m

for
some subspace W ⊂ Znq of dimension at most r, as desired.

5.1 Proof of Claim 4
Proof. Recall r ∈ N is the minimal integer such that ε/∆r ≥ 1

q
+ γ for the parameters γ,∆ > 0

specified above. We amplify P(A,W,S) from ε to 1
q

+ γ in at most r stages where in each stage we
hope to increase P(A,W,S) by a multiplicative factor of at least ∆−1. We do this in one of two ways,
depending on whether the following version of the Goldreich-Levin Progress Condition holds:

Prz∼W⊥

[
1

q
+

P(A,W,S)

1000
≤ Q(A,S)(z) ≤ ∆

]
≥

P(A,W,S)

1000
. (GLPC)

Clearly, when (GLPC) holds, progress can be made with good probability by running AGL.machine with
δ = ε2/1000, so that δ

ε
= ε

1000
≤ P(A,W,S)

1000
. In this case, Lemma 3 says that if S ⊂ Zmq contains f ’s

agreement with A then with probability at least ε3

qr·106
over S ′ ∼ A(δ,f)

GL.machine(S), S ′ also contains f ’s
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agreement with A and is such that P(A,W,S′) ≥ P(A,W,S)/∆. The crux of the proof lies in establishing
the following Claim which allows us to also make progress when (GLPC) does not hold.

Claim 6. Assume P(A,W,S) <
1
q

+ γ and that (GLPC) does not hold. Then there exists w ∈ Znq \W
such that P(A,W′,S) ≥ P(A,W,S)/∆, where W′ = W + Span(w).

In total, after at most r stages of increasing P(A,W,S) by a multiplicative factor of ∆−1 (either by
shrinking S using the GLM and invoking Lemma 3 or by increasing W via Claim 6), we will have that
P(A,W,S) ≥ ε/∆r ≥ 1

q
+ γ holds with probability

(
ε3

qr·106

)k1 = poly
(
εlogq(1/ε)

)
, where k1 ≤ r is the

number of stages during which (GLPC) held, and so progress was attempted by running AGL.machine.
Since Claim 6 was invoked at most r times, we also have dim(W) ≤ r. This proves Claim 4, and so it
remains only to prove Claim 6. We do this in Section 5.3.

5.2 Proof of Claim 5
Proof. Assume S ⊂ Zmq contains f ’s agreement with A and is such that P(A,W,S) ≥ 1

q
+ γ for some

subspace W ⊂ Znq of dimension at most dim(W) ≤ r. Recall that we say the Goldreich-Levin
Progress Condition holds for parameters δ,∆, η > 0 if

Prz∼W⊥

[
1

q
+
δ

ε
≤ Q(A,S)(z) ≤ ∆

]
≥ η, (GLPC)

and that Lemma 3 ensures that if S ⊂ Zmq contains f ’s agreement with A and if (GLPC) holds, then
with probability at least q−rδ2η over S ′ ∼ A(δ,f)

GL.machine(S), S ′ also contains f ’s agreement with A and
P(A,W,S′) ≥ P(A,W,S)/∆. Amplifying P(A,W,S) from 1

q
+γ to 1− 1

4m
simply involves invoking Lemma 3

repeatedly for different parameter choices. The following claim specifies the parameters we will use
for this part, asserting that (GLPC) holds for each of them. We prove Claim 7 below, after the current
proof.

Claim 7. Fix δ = γε, and write P instead of P(A,W,S) for shorthand. We have all of the following.

1. If P ≥ 1− q−t for
{

(1a) t ≥ 2, q ≥ 2
(1b) t ≥ 1, q ≥ 3

}
, then (GLPC) holds for (∆, η) =

(
P

1−q−(t+1/2) , .05
)
.

2. If P ≥ 1
q

+ γ, then (GLPC) holds for (∆, η) =
(
2P, 1

q
+ γ
)
.

3. If P ≥ 1/2, then (GLPC) holds for (∆, η) =
(

P
1−q−1 ,

1
q+1

)
.

4. If q = 2 and


(4a) .51 ≤ P ≤ .6
(4b) .6 ≤ P ≤ .68
(4c) .67 ≤ P ≤ .73
(4d) .73 ≤ P ≤ .75

 then (GLPC) holds for (∆, η) =


(4a) (.85, .02)
(4b) (.89, .04)
(4c) (.9, .02)
(4d) (.9, .1)

.

Using Claim 7, we can amplify P(A,W,S) from 1
q

+ γ to 1 − 1
4m

just by repeatedly running the GLM.
For example, suppose S contains f ’s agreement with A and that P(A,W,S) ≥ 1 − q−2 holds. Then
Point 1a of Claim 7 says that (GLPC) holds for the specified (δ,∆, η). By Lemma 3, this means that
with probability at least γ2ε2

qr
· (.05) over S ′ ∼ A(γε,f)

GL.machine(S), S ′ still contains f ’s agreement with
A, and additionally P(A,W,S′) ≥ 1 − q−2.5. Repeating this combination of Point 1a of Claim 7 and
Lemma 3 at most 2 logq(4m) − 4 times will result in P(A,W,S) ≥ 1 − 1

4m
with probability at least
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[
γ2ε2

qr
· (.05)

]2 logq(4m)−4. To get P(A,W,S) from 1
q

+ γ to 1 − q−2 we use the other points of Claim 7 in
combination with Lemma 3. When q ≥ 3, we use:

· point 2 to amplify from 1
q

+ γ to 1
2

with probability at least γ
2ε2

qr
·
(

1
q

+ γ
)
;

· point 3 to amplify from 1
2

to 1− q−1 with probability at least γ
2ε2

qr
· 1
q+1

;

· point 1b twice to amplify from 1− q−1 to 1− q−2 with probability at least γ
4ε4

q2r
· (.05)2.

When q = 2 this does not work because amplifying from 1
q

+ γ to 1
2

to 1− q−1 is not making progress.
Instead, when q = 2 we use point 4 to amplify from .51 = 1

2
+ γ to(

1

2
+ γ

)
· 1∏4

i=1 ∆i

=
.51

(.85)(.89)(.9)(.9)
> .75 = 1− 2−2,

with probability at least γ8ε8

q4r
· (.02)(.04)(.02)(.1). In total, by running the GLM at most 2 logq(4m)

times we will amplify P(A,W,S) from 1
q

+ γ all the way to 1− 1
4m

with probability at least[
γ2ε2

qr
· (.05)

]2 logq(4m)

·min

{(
1

q
+ γ

)
· 1

q + 1
· (.05)2, (.02)(.04)(.02)(.1)

}
,

which is poly
(
m− logq(1/ε),m−r

)
= poly

(
m− logq(1/ε)

)
.

Proof of Claim 7. Write P and Q(z) instead of P(A,W,S) and Q(A,S)(z) for shorthand. When δ = γε,
the GLPC is:

Prz∼W⊥

[
1

q
+ γ ≤ Q(z) ≤ ∆

]
≥ η. (GLPC)

Since Q(z) ≥ P holds for all z ∈W⊥, if P ≥ 1
q

+ γ, then the lower bound of the GLPC trivially holds,
and so (GLPC) simplifies to Prz∼W⊥

[
Q(z) ≤ ∆

]
≥ η. Let R := Prz∼W⊥

[
Q(z) ≤ ∆

]
; we must show

that R ≥ η holds in all cases. We have P + (1− P) · 1
q

= Ez∼W⊥
[
Q(z)

]
≥ R · P + (1− R) ·∆, which

rearranges to

R ≥ 1− 1− P

q(∆− P)
. (†)

For point 1, plug ∆−P = P
(

1
1−q−(t+1/2) − 1

)
≥ P · q−(t+1/2) into (†) and get R ≥ 1− 1√

q
· 1

1−q−t ≥ .05,
which holds if either t ≥ 2 and q ≥ 2 or if t ≥ 1 and q ≥ 3. For point 2, plug ∆− P = P into (†):

R− 1

q
− γ ≥ 1− 1

q
− γ − 1− P

qP
≥
(

1− 1

q
− γ
)
·
(

1− 1

1 + qγ

)
> 0.

For point 3, we plug q(∆ − P) = qP
(

1
1−q−1 − 1

)
≥ P · q+1

q
into (†) to get R ≥ 1 − q(1−P)

(q+1)P
≥ 1

q+1
.

Finally, all of the sub-parts of part 4 are proved exactly the same way, namely by plugging in q = 2, the
lower bound for P on the top and the upper bound for P on the bottom. For example, 4a is established
as follows, we omit the others as they are analogous:

R ≥ 1− 1− P

q(∆− P)
≥ 1− 1− .51

2(.85− .6)
= 1− .49

.5
= .02.
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5.3 Proof of Claim 6
In this section, (A,W, S) will all be fixed, so we write P instead of P(A,W,S) to simplify notations.
Recall also that for z ∈ Znq , the quantity Q(A,S)(z) was defined as Prx∼Zmq

[
〈z, f(x)〉 = 〈z,Ax〉

∣∣x ∈ S].
Claim 6 is proved using Fourier analysis on the function Q : Znq → R,

Q(z) =

{
Q(A,S)(z), w ∈W⊥

0, w /∈W⊥ .

Claim 8 (Fourier Coefficients of Q). For all w ∈ Znq ,

qdim(W)+1 · Q̂(w) =

{
Prx∼Zmq

[
f(x)−Ax ∈

(
W + Span(w)

)
\W

∣∣x ∈ S], w /∈W

1 + (q − 1)P, w ∈W

Proof. By definition, for all w ∈ Znq ,

qdim(W) · Q̂(w) = Ez∼W⊥

[
Prx∼Zmq

[
〈z, f(x)−Ax〉 = 0

∣∣x ∈ S] · ω−〈z,w〉],
since Q(z) = 0 for z /∈ W⊥. When w ∈ W, the quantity ω−〈z,w〉 vanishes from the right hand side
giving qdim(W) · Q̂(w) = P + 1

q
· (1 − P) in this case. When w /∈W, consider the quantity val(x,w)

for x ∈ Zmq defined by

val(x,w) := Ez∼W⊥

[
11z⊥f(x)−Ax · ω−〈z,w〉

]
,

so that qdim(W) · Q̂(w) = Ex∼S
[
val(x,w)

]
. Note that if f(x) ∈ Ax+W then z ⊥ f(x)−Ax trivially

holds for all z ∈W⊥, in which case Claim 1 says that val(x,w) = Ez∼W⊥
[
ω−〈z,w〉

]
= 0. On the other

hand, when f(x) /∈ Ax + W, Claim 1 gives

val(x,w) =
1

q
· E z∼W⊥

z⊥f(x)−Ax

[
ω−〈z,w〉

]
=

{
1/q, w ∈W + Span

(
f(x)−Ax

)
0, w /∈W + Span

(
f(x)−Ax

)
For w /∈W, this gives

qdim(W) · Q̂(w) =
1

q
· Prx∼Zmq

[
f(x) /∈ Ax + W & w ∈W + Span

(
f(x)−Ax

)∣∣∣x ∈ S]
=

1

q
· Prx∼Zmq

[
f(x)−Ax ∈

(
W + Span(w)

)
\W

∣∣∣x ∈ S],
proving the claim.

We are now ready to prove Claim 6, restated here for convenience.

Claim 6 (Restated). Assume P < 1
q

+ γ and furthermore that

Prz∼W⊥

[
1

q
+

P

1000
≤ Q(z) ≤ ∆

]
<

P

1000
. (+)

Then there exists w ∈ Znq \W such that P′ ≥ P/∆, where P′ := P(A,W′,S) for W′ = W + Span(w).
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Proof. Claim 8 translates Claim 6 into a statement about the Fourier coefficients of Q. Indeed, note
that if w ∈ Znq \W and W′ = W + Span(w) then

P′ = P + Prx∼Zmq

[
f(x)−Ax ∈

(
W + Span(w)

)
\W

∣∣∣x ∈ S] = P + qdim(W)+1 · Q̂(w).

Therefore, it suffices to show that under the hypotheses of Claim 6, there exists w ∈ Znq \W such that
qdim(W)+1 · Q̂(w) ≥ P ·

(
1/∆− 1

)
; i.e., we need to show that Q has a heavy Fourier coefficient outside

of W. This is what we prove below, however our argument is confounded by the fact that ∆ and γ have
different values for the small primes than they do for the large primes. For this reason, we first present
the proof skeleton which works for all q, then we zoom in to complete the proof in all cases for q.

Let µ := Ez∼W⊥
[
Q(z)

]
= 1

q
+
(
1− 1

q

)
· P. We have

Prz∼W⊥
[
Q(z) ≥ ∆

]
= Prz∼W⊥

[
Q(z) ≥ 1

q
+

P

1000

]
− Prz∼W⊥

[
1

q
+

P

1000
≤ Q(z) ≤ ∆

]
≥
(

1− 1

q
− 1

1000

)
· P− P

1000
=
(
.998− 1/q

)
· P,

using (+). Let Φ := (∆− µ)2
(
.998− 1/q

)
P be shorthand. Note,

Φ ≤ (∆− µ)2 · Prz∼W⊥
[
(Q(z)− µ)2 ≥ (∆− µ)2

]
≤ Ez∼W⊥

[
Q(w)2

]
− µ2

by Markov’s inequality. Also, we have

Ez∼W⊥
[
Q(z)2

]
= qdim(W) · Ez∼Znq

[
Q(z)2

]
= qdim(W) ·

∑
w∈Znq

Q̂(w)2,

since Q(z) = 0 for z /∈W⊥ and using Parseval (and that |Q̂(w)| = Q̂(w) since the Fourier coefficients
of Q are all positive reals by Claim 8). Plugging in qdim(W) · Q̂(w) = µ for all w ∈W gives

Φ ≤ qdim(W) ·
∑
w/∈W

Q̂(w)2 ≤ qdim(W) · max
w/∈W

{
Q̂(w)

}
·
∑
w∈Znq

Q̂(w) = qdim(W) · max
w/∈W

{
Q̂(w)

}
,

since
∑

w∈Znq
Q̂(w) = Q(0) = 1. So we have shown that there exists w ∈ Znq \W such that

qdim(W)+1 · Q̂(w) ≥ qΦ,

and so it just remains to show that we have set things up so that qΦ ≥ P ·
(
1/∆ − 1

)
for all q. We do

this separately for the cases when q ≥ 11 and when q ∈ {2, 3, 5, 7}.

• Case 1 (q ≥ 11). In this case we have ∆ = q−1/4,
(
.998− 1/q

)
≥ .9, and µ = 1

q
+
(
1− 1

q

)
P < 2

q
,

since P < 1
q

+ γ for γ = 1
q2

. It follows that qΦ ≥ .9
(
q1/2 − 4q−1/4 + 4q−1

)
≥ q1/4 − 1, where the final

bound holds because the function ψ(x) = 1 + .9(x1/2 − 4x−1/4 + 4x−1
)
− x1/4 is positive for x ≥ 6.6.

• Case 2 (q ∈ {2, 3, 5, 7}). In this case we have ∆ = .99 and µ = 1
q

+
(
1− 1

q

)
P < 2

q
− 1

q2
+ .01, since

P < 1
q

+ γ for γ = .01. The quantity (∆ − µ)2 is thus at least (.05, .17, .38, .5) when q = (2, 3, 5, 7).
One can now simply check that 1 + q(∆ − µ)2(.998 − 1/q) ≥ 1/∆ holds for q = 2, 3, 5, 7 using the
crude bound .998− 1/q ≥ .49 (crude, at least, when q > 2).
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6 Preparing the Output
Lemma 2 (Restated). Let m,n, q, r ∈ N be integers with q prime, let ε ≥ 12q−m/3, let f : Zmq → Znq
be a function, and S ⊂ Zmq a subset. There exists a randomized algorithm Aoutput which has the
following syntax, running time and correctness guarantees.

• Syntax: Aoutput takes no input, gets oracle access to f and to the characteristic function of S, and
outputs a matrix Aout ∈ Zn×mq .

• Running Time: Aoutput runs in expected poly
(
m,n, log q, 1/ε

)
time.

• Correctness: If A ∈ Zn×mq is such that S contains f ’s agreement with A, and if there exists a
subspace W ⊂ Znq such that P(A,W,S) ≥ 1− 1

4m
, then the output matrix Aout ∈ Zn×mq satisfies

Prx∼Zmq
[
f(x) = Aoutx

]
≥ Prx∼Zmq

[
f(x) = Ax

]
− ε,

with probability at least poly
(
1/n, εdim(W), εlogq(1/ε),m− logq(1/ε)

)
.

Algorithm Setup: Let m,n, q ∈ N be integers such that q is prime, let ε > 0, and let
f : Zmq → Znq be a function, to which our algorithm has oracle access. Let Aexp be the
matrix recovery algorithm of Section 4.1, Corollary 1 which has exponentially small
probability of success.

Input: A set S ⊂ Zmq (formally, Aoutput gets oracle access to 11S).

Part 1: Initialize a linearly independent set B ⊂ Zmq and a vector subspace X ⊂ Zmq to
B = ∅ and X = {0}; the invariant X = Span(B) will be maintained.

(a) Choose k ∼ {1, . . . ,m} and do the following k times:
· draw x ∼ Zmq ;
· if x /∈ S or if x ∈ X, reject x and resample (i.e., go back one instruction);
· if x ∈ S and x /∈ X, update B = B ∪ {x} and X = X + Span(x).

(b) Choose k ∼ {0, 1, . . . ,m− |B|}, and do the following k times:
· draw x ∼ Zmq and set B = B ∪ {x} and X = X + Span(x).

Part 2: Let A′ ∈ Zn×mq be any matrix such that A′x = f(x) holds for all x ∈ B.
Initialize a vector space V ⊂ Znq to V = {0}, choose k ∼ {0, 1, . . . , n}, and do the
following k times.
• Draw x ∼ X, let v = f(x)−A′x ∈ Znq and update V = V + Span(v).

Part 3: Let T ⊂ X be the set of x ∈ X such that f(x)−A′x ∈ V, and let g : T → V be
the function g(x) = f(x)−A′x. Call Aexp on g with parameter ε/3 and subset T ⊂ X,
and let A′out ∈ Zn×mq be the output.

Output: Output any Aout ∈ Zn×mq such that Aoutx = (A′ + A′out)x holds ∀ x ∈ X.

Figure 3: The Output Preparation Algorithm Aoutput
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Proof. The algorithm Aoutput is shown in Figure 3. It is clear that Aoutput satisfies the required syntax
and running time guarantees. Assume A ∈ Zn×mq and S ⊂ Zmq are such that the input set S contains
f ’s agreement with A and moreover that P(A,W,S) ≥ 1 − 1

4m
holds for some subspace W ⊂ Znq of

dimension at most r, and let Aout ∈ Zn×mq be the output matrix when Aoutput is run on input S. To
prove correctness, we specify notions of “success” for the different parts of the algorithm and observe
that when success occurs in each part, we have

Prx∼Zmq
[
f(x) = Ax

]
≤ Prx∼Zmq

[
f(x) = Aoutx

]
+ ε.

The following are the notions of success for the various parts of the algorithm.

• Success in Part 1: Let B ⊂ Zmq and X ⊂ Zmq be the linearly independent set and subspace
constructed in Part 1 of Aoutput. We say success occurs in part 1 if the following both hold:

· f(x) ∈ Ax + W for all x ∈ B;

· Prx∼Zmq
[
f(x) = Ax

∣∣x /∈ X
]
≤ ε/3.

• Success in Part 2: Let A′ ∈ Zn×mq be the matrix, and V ⊂ Znq the vector space computed
during Part 2 of Aoutput. We say success occurs in part 2 if V ⊂W and

Prx∼Zmq
[
f(x) ∈ A′x + W \V

∣∣x ∈ X
]
≤ ε/3.

• Success in Part 3: Let g : X → V be the function, T =
{
x ∈ X : f(x) ∈ A′x + V

}
the

subset, and A′out ∈ Zn×mq the matrix computed in Part 3. We say success occurs in part 3 if

Prx∼X
[
g(x) = A′outx & x ∈ T

]
≥ max

Â∈Zn×mq

{
Prx∼X

[
g(x) = Âx & x ∈ T

]}
− ε/3.

Success in Part 3 occurs with probability poly(εr) by Corollary 1, since ε ≥ 12q−m/3. Claims 9 and 10
below ensure that success also occurs in Parts 1 and 2 with good probability. These claims are proved
below, outside the current proof.

Claim 9. Assume S ⊂ Zmq contains f ’s agreement with A and that P(A,W,S) ≥ 1 − 1
4m

for some
subspace W ⊂ Znq of dimension at most r. Then success occurs in Part 1 of Aoutput with probability at
least poly

(
m− logq(1/ε), εlogq(1/ε)

)
.

Claim 10. Consider an execution ofAoutput where success occurred in Part 1. Then success also occurs
in Part 2 with probability poly

(
1/n, εr

)
.

It follows that with probability at least poly
(
1/n, εr, εlogq(1/ε),m− logq(1/ε)

)
, success occurs in all three

parts of Aoutput, in which case

Prx∼Zmq
[
f(x) = Ax

]
≤ q−d · P(1) + ε/3 ≤ q−d · P(2) + 2ε/3 ≤ q−d · P(3) + ε

≤ Prx∼Zmq
[
f(x) = Aoutx

]
+ ε,

holds, where d = m− dim(X), and

· P(1) := Prx∼Zmq
[
f(x) = Ax

∣∣x ∈ X
]
;

· P(2) := Prx∼Zmq
[
f(x) = Ax & f(x) ∈ A′x + V

∣∣x ∈ X
]
;
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· P(3) := Prx∼Zmq
[
f(x) = Aoutx & f(x) ∈ A′x + V

∣∣x ∈ X
]
.

Indeed, the first inequality holds because success occurs in Part 1:

Prx∼Zmq
[
f(x) = Ax

]
= q−d · P(1) +

(
1− q−d

)
· Prx∼Zmq

[
f(x) = Ax

∣∣x /∈ X
]
≤ q−d · P(1) + ε/3.

The second inequality follows from

P(1) = Prx∼Zmq
[
f(x) = Ax & f(x) ∈ A′x + W

∣∣x ∈ X
]
≤ P(2) + ε/3,

which holds when Parts 1 and 2 are successful because in this case (A − A′)x ∈ W holds for all
x ∈ X, and additionally Prx∼Zmq

[
f(x) ∈ A′x + W \ V

∣∣x ∈ X
]
≤ ε/3. The third inequality holds

when Part 3 is successful since in this case

P(2) = Prx∼X
[
g(x) = (A−A′)x & x ∈ T

]
≤ Prx∼X

[
g(x) = A′outx & x ∈ T

]
+ ε/3 = P(3) + ε/3.

Finally, the fourth inequality holds because

q−d · P(3) = Prx∼Zmq
[
f(x) = Aoutx & f(x) ∈ A′x + V & x ∈ X

]
≤ Prx∼Zmq

[
f(x) = Aoutx

]
.

This completes the proof of Lemma 2 and it remains only to prove Claims 9 and 10.

Proof of Claim 9. Let Ŝ =
{
x ∈ S : f(x) ∈ Ax + W

}
⊂ Zmq , and let σ := |S|/qm and σ̂ := |Ŝ|/qm.

Note σ ≥ ε, as S contains f ’s agreement with A, and σ̂ = (1−ζ)σ, where 1−ζ = P(A,W,S) ≥ 1− 1
4m

.
The two quantities of interest for Part 1a are

Prx∼Zmq
[
x ∈ S \X

]
; and Prx∼Zmq

[
x ∈ Ŝ

∣∣x ∈ S \X],
since these dictate the chances that the random sample x ∼ Zmq is kept, and that f(x) ∈ Ax + W
given that it is kept. Note that as long as the dimension of the subspace X ⊂ Zmq is not too large, these
probabilities are very close to σ and 1− ζ , respectively. Specifically, let m− d = dim(X) and assume
q−d ≤ σζ holds. Then we have

Prx∼Zmq
[
x ∈ S

∣∣x /∈ X
]

=
Prx∼Zmq [x ∈ S \X]

Prx∼Zmq [x /∈ X]
≥ σqm − qm−d

qm − qm−d
≥ σqm − σζqm

qm
= σ(1− ζ);

and similarly,

Prx∼Zmq
[
x ∈ Ŝ

∣∣x ∈ S \X] =
Prx∼Zmq [x ∈ Ŝ & x /∈ X]

Prx∼Zmq [x ∈ S & x /∈ X]
≥ σ̂qm − qm−d

σqm
≥ σ̂qm − σζqm

σqm
= 1− 2ζ.

In particular, this means that as long as the k chosen during Step 1a is maximal such that q−(m−k) ≤ σζ
(occurs with probability 1/m), the Step 1a loop terminates in expected poly

(
m,n, log q, 1/σ

)
time and

with B ⊂ T with probability at least 1−2ζm ≥ 1
2
, by the union bound. Note that B ⊂ T means exactly

that f(x) ∈ Ax + W holds for all x ∈ B.
Now, suppose that the random k ∼ {0, 1, . . . ,m− |B|} chosen during Step 1b is maximal such that

Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x /∈ Xj

]
≥ ε/3 holds for all j ≤ k, where Xj denotes the vector space X

at the beginning of the j−th execution of the loop in Step 1b. Note if we get lucky in this way with
our choice of k (occurs with probability at least 1/m), then Prx∼Zmq

[
f(x) ∈ Ax + W

∣∣x /∈ X
]
< ε/3

holds upon exiting Step 1b. Additionally, since Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣x /∈ X
]
≥ ε/3 holds at all
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times during the execution of Step 1b, for each x ∼ Zmq chosen during the loop, the chance that x /∈ X
and f(x) ∈ Ax + W hold is at least

Prx∼Zmq
[
x /∈ X

]
· Prx∼Zmq

[
f(x) ∈ Ax + W|x /∈ X

]
≥ ε

6
.

Therefore, with probability at least
(
ε/6
)m−|B| ≥ (ε/6)logq(1/σ)+logq(1/ζ) = poly

(
m− logq(1/ε), εlogq(1/ε)

)
,

B ⊂ Ŝ holds upon exiting Step 1b.

Proof of Claim 10. Let Vi for i = 1, . . . , k denote the vector space V after the i−th execution of the
loop in Part 2, let V0 = {0}, and let ρi := Prx∼Zmq

[
f(x) ∈ A′x + W \Vi

∣∣x ∈ X
]
. Assume we got

lucky with our choice of k ∼ {0, . . . , n} and that k is maximal such that ρi ≥ ε/3 for all i < k (happens
with probability 1

n+1
). Note in this case, ρk < ε/3 holds upon exiting Part 2. Also, since ρi ≥ ε/3 holds

for all i < k, each time through the loop in Part 2 with probability at least ε/3, the x ∼ X drawn will
be such that v = f(x) −A′x ∈W \Vi. Thus, with probability at least

(
ε/3
)k ≤ (ε/3)r, Vk ⊂W

holds.
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