
New Explicit Constant-Degree Lossless Expanders

Louis Golowich∗

January 8, 2024

Abstract

We present a new explicit construction of onesided bipartite lossless expanders of constant
degree, with arbitrary constant ratio between the sizes of the two vertex sets. Our construction
is simpler to state and analyze than the only prior construction of Capalbo, Reingold, Vadhan,
and Wigderson (2002), and achieves improvements in some parameters.

We construct our lossless expanders by imposing the structure of a constant-sized lossless
expander “gadget” within the neighborhoods of a large bipartite spectral expander; similar con-
structions were previously used to obtain the weaker notion of unique-neighbor expansion. Our
analysis simply consists of elementary counting arguments and an application of the expander
mixing lemma.

1 Introduction

We construct infinite families of constant-degree onesided lossless bipartite expanders with arbitrary
constant ratio between the sizes of the left and right vertex sets. A lossless expander is defined as
a graph for which for all sufficiently small vertex sets, most of the outgoing edges lead to distinct
vertices. These objects are applicable to various areas of computer science, including networks and
distributed algorithms [PU89, ALM96, BFU99, MMP20], compressed sensing [XH07, JXHC09,
IR08], error-correcting codes [SS96, LH22a, LH22b], and proof complexity [BSW01, ABSRW04,
AR01], among others.

While constant-degree random graphs give lossless expanders with high probability, the only pre-
viously known explicit construction1 was obtained by Capalbo, Reingold, Vadhan, and Wigderson
[CRVW02], using a fairly involved form of the zigzag product [RVW02]. Therefore given the nu-
merous applications of lossless expanders described above, it is desirable to have additional, simpler
explicit constructions. A new such construction, which simplifies the construction of [CRVW02], is
the main result of this paper.

Unlike lossless expanders, there are numerous known explicit constructions of spectral expanders
(e.g. [Mar73, LPS88, Mor94, RVW02, BATS11, KO18]), which are defined as graphs with no large
nontrivial eigenvalues of the adjacency matrix. Yet Kahale [Kah95] showed that even optimal
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1Shortly after our paper was posted online, a similar result obtained independently and concurrently was posted
in [CRTS23]; see Remark 3.
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spectral expanders can fail to exhibit lossless expansion. Hence constructions of lossless expanders
must rely on different techniques.

We now formally define lossless expansion.

Definition 1. For real numbers 0 ≤ µ, ε ≤ 1, a bipartite graph G = (L(G) t R(G), E(G)) with
left-degree d is a (onesided) (µ, ε)-lossless expander if for every S ⊆ L(G) with |S| ≤ µ|L(G)|, it
holds that |NG(S)| ≥ (1− ε)d|S|.

The main result of [CRVW02], which we recover with a simpler construction and analysis, is
stated below.

Theorem 2. For every open interval β = (β(1), β(2)) ⊆ R+ and every ε > 0, there exists a
sufficiently large D = D(β, ε) ∈ N and a sufficiently small µ = µ(β, ε) > 0 such that there is an
infinite explicit family of (µ, ε)-lossless expanders G with left-degree D and with |R(G)|/|L(G)| ∈
(β(1), β(2)).

For fixed β, ε, our construction achieves a smaller degree D than [CRVW02], but [CRVW02]
achieves a larger expansion cutoff µ (see Remark 19). Thus the two constructions have incompa-
rable parameters. For instance, for a fixed constant β, we obtain D = Õ(1/ε2) and µ = Ω̃(ε10),
whereas [CRVW02] obtains D = Õ(1/ε3) and µ = Ω̃(ε4). Neither construction achieves the optimal
dependencies D = Õ(1/ε) and µ = Ω̃(ε2) (see Proposition 12 below).

Reducing the degree D as a function of ε is useful in recent applications of lossless expanders
[GMM22, DMOZ23]. For instance, by Corollary 10 of [GMM22], our improved dependence D =
Õ(1/ε2) immediately yields explicit constructions of matrices with the `p-restricted isometry prop-
erty for new values of p; such matrices have applications to compressed sensing (see e.g. [AZGR15]).

We remark that while Theorem 2 provides explicit onesided lossless expansion, there remains no
known explicit construction of twosided lossless expanders, which require lossless expansion from
right to left as well as from left to right.

Theorem 2 provides constant-degree lossless expanders with any constant ratio |R(G)|/|L(G)| =
Θ(1) between the sizes of the left and right vertex sets. Highly unbalanced lossless expanders, where
|R(G)|/|L(G)| decays polynomially and the left-degree grows poly-logarithmically with the number
of vertices, were constructed by [TSUZ07, GUV09, KTS22] to obtain randomness extractors.

Our construction follows the same framework as the unique-neighbor expander constructions
of [AC02, Bec16, AD23, HMMP23] in that we begin with a good spectral expander and then
impose the structure of a smaller “gadget graph” locally in the neighborhoods of vertices in the
spectral expander. In fact, our construction is essentially the same as the onesided unique neighbor
expanders of [AD23], though we provide a new analysis in order to obtain the stronger object
of onesided lossless expanders. Note that unlike lossless expanders, which require most vertices
in the neighborhood of every sufficiently small set S to be connected to S by a unique edge,
unique-neighbor expanders only require the existence of a single such vertex2 in the neighborhood
of S. Furthermore, whereas the analysis of [AD23] requires the construction to be instantiated
with an unbalanced bipartite Ramanujan graph with the optimal twosided expansion (of which few
constructions are currently known), our analysis is more robust in that near-Ramanujan onesided
expansion suffices (see Remark 11 for details).

2Some definitions of unique-neighbor expansion make the stronger requirement that at least a small constant
fraction of the neighbors of S are connected to S by a single edge. However, this requirement is still weaker than
lossless expansion.
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We construct our lossless expanders G by combining a large unbalanced bipartite spectral
expanderX with a constant-sized lossless expander (a “gadget”)G0 as follows. We let L(G) = L(X)
and R(G) = R(X) × R(G0), and then let G be the union of |R(X)| copies of the gadget G0.
Specifically, we add to G a copy of G0 for each v ∈ R(X) by associating neighbors of v with left-
vertices of G0, and elements of {v} ×R(G0) with right-vertices of G0. Note that this construction
requires the right-degree of X to equal |L(G0)|.

Whereas our construction combines a large unbalanced spectral expander with a small lossless
expander, the construction of [CRVW02] combines a large balanced spectral expander with two
small gadgets, namely one lossless expander and one more sophisticed object called a “buffer con-
ductor.” The unbalanced spectral expander in our construction essentially serves the same purpose
as the combination of the balanced spectral expander and buffer conductor in [CRVW02].

We remark that both our construction and that of [CRVW02] yield graphs permitting a free
group action on the vertices and edges, with group size linear in the number of vertices. Onesided
lossless expanders permitting such group actions in turn give asymptotically good locally testable
codes by [LH22a]. Thus our construction implies a new family of good locally testable codes.

Similarly, [LH22b] show that twosided lossless expanders permitting a group action imply
asymptotically good quantum LDPC codes with linear-time decoders. While no such expanders
are currently known, it is an interesting question whether our techniques could be extended to
obtain twosided expanders that can instantiate these codes. However, we note that there are other
unconditional constructions of good quantum LDPC codes [PK21, LZ22, DHLV23] with linear-time
decoders [LZ23, GPT23, DHLV23].

Remark 3. In independent and concurrent work, Cohen, Roth, and Ta-Shma [CRTS23] obtained
a similar construction of lossless expanders. Specifically, [CRTS23] and our work both use the same
framework described above of combining a large unbalanced bipartite spectral expander with a
constant-sized lossless expander. However, [CRTS23] construct the large bipartite spectral expander
using the hyper-regular high-dimensional expanders (HDXs) of [FI20]. In contrast, we show that
it suffices to use HDXs with weaker regularity properties, or to simply use bipartite Ramanujan
graphs.

2 Preliminaries

This section introduces basic notions and known results.
For a graph G = (V (G), E(G)) and a set of vertices S ⊆ V (G), we let NG(S) denote the

set of neighbors of S in G. For v, v′ ∈ V (G), we let wG(v, v′) denote the weight of the edge
from v to v′ (which for a simple graph is always 0 or 1). Similarly, for S, S′ ⊆ V (G), we let
wG(S, S′) =

∑
(v,v′)∈S×S′ wG(v, v′) denote the sum of the weights of edges from vertices in S to

vertices in S′. For a vertex v ∈ V (G), the degree deg(v) = wG(v, V (G)) equals the sum of the
weights of the edges incident to that vertex. For a bipartite graph G, we let V (G) = L(G) tR(G)
denote the decomposition into the left and right vertex sets.

The main focus of our paper is to construct lossless expanders satisfying the following standard
notion of explicitness.

Definition 4. A family of graphs is explicit if there exists a poly(n)-time algorithm that takes as
input an integer n, and outputs an n-vertex graph in the family, if one exists.

Our analysis will rely heavily on the notion of spectral expansion, defined below.
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Definition 5. For an n-vertex graph G, the (onesided) spectral expansion λ2(G) is defined
as the second largest eigenvalue of the random walk matrix of G. Formally, letting WG denote
the random walk matrix, so that (WG)v,v′ = wG(v, v′)/ deg(v), if the eigenvalues of WG are 1 =
λ1(WG) ≥ λ2(WG) ≥ · · · ≥ λn(WG), then λ2(G) := λ2(WG) is the onesided spectral expansion.

We will make use of the following well known property of spectral expanders.

Lemma 6 (Expander Mixing Lemma; see for instance Lemma 4.15 of [Vad12]). For a D-regular
graph G, it holds for every subset of vertices S ⊆ V (G) that

wG(S, S) ≤
(
λ2(G) +

|S|
|V (G)|

)
D|S|.

We will make use of unbalanced bipartite graphs for which the “nonlazy” or “nonbacktracking”
length-2 walk (that is, the square) has good spectral expansion.

Definition 7. For a bipartite graph G, the nonlazy square G′ is the graph on vertex set V (G′) =
R(G), with edge weights given for v, v′ ∈ R(G) by wG′(v, v

′) = 0 if v = v′ and wG′(v, v
′) =∑

w∈L(G)wG(v, w)wG(w, v′) if v 6= v′.

Proposition 8. For every integer k ≥ 2 and for every λ2 ≥ 0, it holds for infinitely many D ∈ N
that there exists an infinite explicit family of (k,D)-biregular bipartite graphs whose nonlazy square
has (onesided) spectral expansion ≤ λ2.

Proof. We describe two different known constructions that each prove the proposition:

1. If X is a (k−1)-dimensional simplicial complex for k ∈ N and G is the incidence graph between
(k − 1)-dimensional faces X(k − 1) = L(G) and vertices X(0) = R(G), then the nonlazy
square G′ of G is the 1-skeleton of X. For any fixed k ∈ N and λ2 > 0, Ramanujan complexes
[LSV05b, LSV05a] as well as the coset complexes of [KO18, OP22] provide examples of explicit
such (k − 1)-dimensional simplicial complexes X with constant degree and arbitrarily good
spectral expansion λ2(G

′) ≤ λ2.

2. Let G be a (k,D)-biregular bipartite Ramanujan graph, for instance as constructed explicitly
in [GM21], so that every nontrivial eigenvalue of the unnormalized adjacency matrix MG of
G is at most λ2(MG) ≤

√
D − 1 +

√
k − 1. We emphasize that here (MG)v,v′ = wG(v, v′)

is unnormalized, so λ2(MG) 6= λ2(G) = λ2(WG). Then every nontrivial eigenvalue of the
unnormalized adjacency matrix MG2 of the (ordinary) square G2 is at most λ2(MG)2 ≤
(
√
D − 1 +

√
k − 1)2 = (D − 1) + (k − 1) + 2

√
(D − 1)(k − 1). Here we have used the fact

that the spectrum of MG is symmetric about 0 as G is bipartite. Furthermore, MG2 is block
diagonal with blocks L(G)×L(G) and R(G)×R(G) both having spectrum equal to the square
of the spectrum of MG, up to zero-eigenvalues. Therefore λ2(MG2 |R(G)) = λ2(MG)2. Thus
every nontrivial eigenvalue of the unnormalized adjacency matrix MG′ of the nonlazy square
G′ is at most λ2(MG′) = λ2(MG2 |R(G))−D ≤ (k−1)+2

√
(D − 1)(k − 1). As G′ is D(k−1)-

regular, it holds that WG′ = MG′/D(k − 1), so λ2(G
′) = λ2(WG′) ≤ 1/D + 2/

√
D(k − 1).

Thus λ2(G
′) ≤ λ2 if D is sufficiently large.

4



Remark 9. As Ramanujan complexes are Cayley complexes, the construction in the 1st proof of
Proposition 8 has the added benefit of permitting a free group action on the vertices and faces that
acts transitively on the vertices. Our entire construction can be made to respect this group action,
and the orbits have linear size with respect to the number of vertices. Hence our construction can
be used to instantiate the asymptotically good locally testable codes of [LH22a].

Remark 10. We prove Proposition 8 for the ordinary notion of (weak) explicitness given in Def-
inition 4. However, we could instead consider strong explicitness, which requires the family of
graphs to have a poly(logn)-time algorithm that takes as input integers n, i, j, and outputs the
jth neighbor of the ith vertex of the n-vertex graph in the family, if one exists. Some of our con-
structions proving Proposition 8, such as the construction using the high-dimensional expanders
of [KO18, OP22], satisfy this notion of strong explicitness (see [OP22] for a proof). With such an
instantiation, our entire construction of lossless expanders becomes strongly explicit. However, for
simplicity in this paper we primarily discuss ordinary (weak) explicitness.

Remark 11. The 2nd proof of Proposition 8 is robust in the sense that it will still work for
onesided near-Ramanujan bipartite graphs, that is, for (k,D)-biregular bipartite graphs for which
the nontrivial eigenvalues of the adjacency matrix have absolute value ≤

√
D − 1 +

√
k − 1 + α, as

long as α < o(
√
D). It for instance follows that this argument works for random bipartite graphs,

which achieve α = o(1) [BDH22]. In constrast, the analysis of unique-neighbor expansion in [AD23]
requires exactly Ramanujan bipartite graphs with twosided expansion, meaning they require all
nontrivial eigenvalues to have absolute value lying in the interval [

√
D − 1 −

√
k − 1,

√
D − 1 +√

k − 1].

We will make use of the following bound showing lossless expansion of random bipartite graphs.

Proposition 12 (Well known; see for instance Theorem 11.2.8 of [GRS22]). For all constants
β, ε > 0, there exists an integer d = d(β, ε) = Θ(log(1/εβ)/ε), a sufficiently large integer n0 =
n0(β, ε), and a sufficiently small real number µ = µ(β, ε) = Θ(εβ/d) such that for all n ≥ n0, there
exists a bipartite graph G with left-degree d and with |L(G)| = n, |R(G)| = bβnc such that G is a
(µ, ε)-lossless expander.

3 Construction

In this section, we present our construction that we use to prove Theorem 2. We will subsequently
prove that this construction has lossless expansion in Section 4. Our construction uses essentially
the same framework as the unique neighbor expanders of [AD23], though we analyze it differently
to obtain the stronger object of lossless expanders.

3.1 General framework

We first describe the general framework for constructing our lossless expanders G, and then present
precise parameters. Throughout this section we fix a constant interval β = (β(1), β(2)) ⊆ R+ inside
which we want the |R(G)|/|L(G)| to lie, and we fix ε > 0 denoting the desired expansion.

To construct G, we begin by taking a (k,D0)-biregular graph X for which the nonlazy square
X ′ has good spectral expansion λ2(X

′). We choose X using Proposition 8, so we think of |V (X)|
growing arbitrarily large for fixed k � D0 and fixed λ2(X

′) = poly(1/k, β(2)).
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NX(v)

{v} ×R(G0)
Gv0

Figure 1: An illustration of how we construct our lossless expanders G = G(X,G0) as the union
over v ∈ R(X) of the gadgets Gv0

∼= G0. A single such gadget is shown above, connecting the left
vertices L(Gv0) = NX(v) ∼= L(G0) to the right vertices R(Gv0) = {v} ×R(G0) ∼= R(G0).

We also choose a constant-sized bipartite “gadget” graph G0 with |L(G0)| = D0 and |R(G0)| =
bD0β

(2)/kc that is a lossless expander, as guaranteed to exist by Proposition 12.
We now define our desired lossless expander G = G(X,G0) as follows. An illustration is provided

in Figure 1.

• The left vertex set L(G) = L(X) of G equals the left vertex set of X.

• The right vertex set R(G) = R(X) × R(G0) of G is obtained by replacing each right vertex
of X with a cluster of |R(G0)| vertices.

• The edge set E(G) is defined as follows. For each v ∈ R(X), as |NX(v)| = D0 = |L(G0)|,
we may associate the neighborhood NX(v) with L(G0). We may similarly associate {v} ×
R(G0) ⊆ R(G) with R(G0). Therefore we may introduce a copy Gv0 of G0 with left vertex set
L(Gv0) := NX(v) ⊆ L(G) and right vertex set R(Gv0) := {v} ×R(G0) ⊆ R(G). We then let G
be the union of the graphs Gv0 over all v ∈ R(X). That is, (w, (v, v0)) ∈ E(G) if and only if
(w, (v, v0)) ∈ E(Gv0).

The resulting graph G = G(X,G0) :=
∑

v∈L(X)G
v
0 satisfies the following basic properties.

Claim 13. If G0 has left-degree d0, then G has left-degree D = d0k.

Proof. Each vertex w ∈ L(G) = L(X) has k X-neighbors v ∈ NX(w) ⊆ R(X), for each of which
the graph Gv0 contributes d0 edges to w in G.

Claim 14. If D0 ≥ k/(β(2) − β(1)), then |R(G)|/|L(G)| ∈ (β(1), β(2)).
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Proof. By construction

|R(G)|
|L(G)|

=
|R(X)| · |R(G0)|

|L(X)|
=

k

D0
·
⌊
D0

k
· β(2)

⌋
,

which is at most β(2) and at least k/D0 ·(D0/k ·β(2)−1) = β(2)−k/D0. Thus the claim follows.

3.2 Choosing the parameters

Formally, our construction uses the following parameters and components, for fixed β = (β(1), β(2)) ⊆
R+ and ε > 0:

• Let k = d10/εe.

• For balance constant β0 = β(2)/k and loss constant ε0 = ε/10, let d0 = d0(β0, ε0) =
Θ(log

(
k/β(2)ε

)
/ε), n0 = n0(β0, ε0), and µ0 = µ0(β0, ε0) = Θ(εβ(2)/d0k) be the degree, size

bound, and relative set size bound respectively given by Proposition 12.

• Let λ2 = µ0/10k3.

• Let D0 ≥ max{n0, k/(β(2) − β(1))} be an integer such that there exists an infinite explicit
family X of (k,D0)-biregular bipartite graphs X ∈ X for which the nonlazy square X ′ has
λ2(X

′) ≤ λ2. Such a D0 exists by Proposition 8.

• Let G0 be a bipartite graph with left-degree d0 and with |L(G0)| = D0, |R(G0)| = bβ0D0c
that is a (µ0, ε0)-lossless expander, as given by Proposition 12.

Our desired family G of graphs is then defined as G = {G(X,G0) : X ∈ X}, where G = G(X,G0)
is constructed from X and G0 as described above.

The following explicitness claim is immediate from our construction, as G = G(X,G0) is by
definition obtained from X by inserting vertices and edges locally within the (constant-sized) neigh-
borhoods of vertices in X.

Claim 15. If the family X is (strongly) explicit, then the family G is (strongly) explicit.

Note that X can be made strongly explicit by using a strongly explicit family of high-dimensional
expanders (e.g. [KO18]) as in the 1st proof of Proposition 8.

4 Proof of lossless expansion

We now show that the graphs G ∈ G defined in Section 3 have lossless expansion. Specifically, we
show the following result, which when combined with Claim 13, Claim 14, and Claim 15 directly
implies Theorem 2.

Proposition 16. Defining all variables as in Section 3, then for every X ∈ X , the bipartite graph
G = G(X,G0) ∈ G is a (µ, ε)-lossless expander for µ = k2λ22.
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Proof. Fix any set S ⊆ L(G) = L(X) of size |S| ≤ µ|L(G)|. Define the “heavy vertices” H = {v ∈
R(X) : |NX(v) ∩ S| ≥ µ0D0} ⊆ R(X) to be those vertices in R(X) incident to ≥ µ0D0 vertices in
S. Below we present the key claim for our proof, which states that most vertices in S are incident
to ≤ 1 heavy vertices, and therefore to ≥ k − 1 non-heavy vertices. We prove this claim with an
application of the expander mixing lemma.

We first need the following notation. For 0 ≤ i ≤ k, let S=i = {w ∈ L(X) : |NX(w) ∩ H| =
i} ⊆ L(X) be the set of vertices in L(X) incident to exactly i heavy vertices. Similary define
S≥i =

⋃
j≥i S=j and S≤i =

⋃
j≤i S=j .

Claim 17. It holds that

|S≤1|
|S|

≥ 1− 1

5k
.

Proof of Claim 17. By definition

|H| ≤ k|S|
µ0D0

=
|S|

10k2λ2D0
≤ µ|L(G)|

10k2λ2D0
=
λ2|R(X)|

10
,

where the equalities above apply the definitions of λ2 and µ respectively. Thus letting X ′ be the
nonlazy square of X, Lemma 6 implies that

wX′(H,H) ≤ 11

10
λ2D0(k − 1)|H|.

For each vertex w ∈ S≥2, we may choose two distinct heavy vertices v, v′ ∈ NX(w)∩H, and let
e(w) = {v, v′} ∈ E(X ′) be the edge in X ′ induced by the path v → w → v′ in X. By definition all
edges e(w) for w ∈ S≥2 are distinct,3 and both endpoints of each e(w) lie in H, so

|S≥2| = |{e(w) : w ∈ S≥2}| ≤ wX′(H,H) ≤ 11

10
λ2D0(k − 1)|H|.

Meanwhile, as each vertex w ∈ S≥1 is incident to at least one but at most k heavy vertices, we
have that

|S≥1| ≥
µ0D0|H|

k
.

Thus

|S≤1| ≥ |S=1|
= |S≥1| − |S≥2|

≥
(
µ0
k
− 11

10
λ2(k − 1)

)
D0|H|

≥ 8k2λ2D0|H|
≥ 5k|S≥2|.

where the third inequality above applies the definition of λ2. Thus

|S≤1|
|S|

=
|S≤1|

|S≤1|+ |S≥2|
≥ 1− |S≥2|

|S≤1|
≥ 1− 1

5k
.

3Here we view E(X ′) as a multiset where the edge (v, v′) has a distinct copy for every path v → w → v′ in X.
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We now prove the proposition using this fact that most vertices w ∈ S are incident to at most
one heavy vertex. By definition G0 is a (µ0, ε0)-lossless expander, so the intersection of S with
the X-neighborhood NX(v) ⊆ L(X) = L(G) of every non-heavy vertex v ∈ R(X) \ H exhibits
expansion (1 − ε0)d0 in the subgraph Gv0

∼= G0 of G. Then it follows that most vertices in L(G)
contribute (k − 1)(1− ε0)d0 to the expansion of S in G, which implies the proposition.

Formally, for v ∈ R(X) \H then by definition |NX(v) ∩ S| ≤ µ0D0, so

|NGv
0
(NX(v) ∩ S)| ≥ (1− ε0)d0|NX(v) ∩ S|.

Thus

|NG(S)| =
∑

v∈R(X)

|NGv
0
(NX(v) ∩ S)|

≥
∑

v∈R(X)\H

(1− ε0)d0|NX(v) ∩ S|

=
∑
w∈S

∑
v∈NX(w)\H

(1− ε0)d0

≥
∑

w∈S≤1

(k − 1)(1− ε0)d0

≥ |S|
(

1− 1

5k

)
(k − 1)(1− ε0)d0

≥ |S|
(

1− ε

50

)(
1− ε

10

)
k
(

1− ε

10

)
d0

≥ |S|(1− ε)D,

where the third inequality holds by Claim 17, and the final inequality holds because D = kd0 by
Claim 13. Thus we have shown that G is a (µ, ε)-lossless expander, as desired.

Remark 18. One could hope that our construction G = G(X,G0) happens to expand losslessly
from right to left as well. However, if we fix any v ∈ R(X), then the set T = {v} ×R(G0) ⊆ R(G)
consisting of a single cluster of right vertices in G has neighborhood of size |NG(T )| = |NX(v)| = D0,
whereas (Ω(1), ε)-lossless right-to-left expansion would require the much larger neighborhood size
|NG(T )| ≥ (1− ε)D0d0. Thus a new approach is needed for twosided expansion.

Remark 19. Given ε > 0 and β(2) < 1/2, by tracing through the parameters in Section 3.2, we
find that our (µ, ε)-lossless expanders in Proposition 16 have degree

D = O

(
log 1

ε + log 1
β(2)

ε2

)

and exhibit expansion up to the cutoff

µ = Ω

 ε10β(2)
2(

log 1
ε + log 1

β(2)

)2
 .
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In comparison, the construction of [CRVW02] has degree

D′ = O


(

log 1
ε + log 1

β(2)

)2
ε3


and exhibits expansion up to the cutoff

µ′ = Θ

(
εβ(2)

D′

)
= Ω

 ε4β(2)(
log 1

ε + log 1
β(2)

)2
 .

Thus the two constructions achieve incomparable parameters; we achieve a smaller degree D < D′,
whereas [CRVW02] achieves a larger expansion cutoff µ′ > µ.
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