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Abstract

More than twenty years ago, Capalbo, Reingold, Vadhan and Wigderson gave the first (and up to
date only) explicit construction of a bipartite expander with almost full combinatorial expansion. The
construction incorporates zig-zag ideas together with extractor technology, and is rather complicated. We
give an alternative construction that builds upon recent constructions of hyper-regular, high-dimensional
expanders. The new construction is, in our opinion, simple and elegant.

Beyond demonstrating a new, surprising, and intriguing, application of high-dimensional expanders,
the construction employs totally new ideas which we hope may lead to progress on the still remaining
open problems in the area.

1 Introduction

Expanders are regular graphs of low-degree and high expansion (or connectivity). There are several ways to
measure the expansion of a graph, and, most notably:

• One way to measure the ”expansion” of a graph is by its set expansion, i.e., the minimal fraction
between the number of neighbors of S and the size of S itself, for not too large sets S. we call this
measure combinatorial expansion.

• Another way to measure the ”expansion” of a graph is by its spectral expansion. We look at the
adjacency matrix of the graph and view it as a linear operator. The gap between the first and second
largest eigenvalues is the spectral gap of the graph and is intimately connected with connectivity
properties of the graph.

A D-regular graph is Ramanujan if its spectral gap is at least 1−2
√
D−1
D . Alon and Boppana (see [Nil91])

proved a matching lower bound, showing that any family of D-regular graphs, with the number of vertices
going to infinity, has a spectral gap that in the limit is at least as high as this bound. Friedman [Fri03]
showed that random graphs are (w.h.p.) almost Ramanujan. Lubotzky, Philips and Sarnak [LPS88], and
Margulis [Mar88] explicitly constructed truly Ramanujan graphs, building on deep mathematical results in
representation theory. An alternative method based on lifts is given in [MSS13]. It is an amazing fact that
the explicit constructions achieve spectral expansion that is better than what is guaranteed by the random
construction.

We next turn to combinatorial expansion. Pinsker [Pin73] observed that random, constant-degree D
graphs have (w.h.p.) combinatorial expansion close to D. Several works [AM85, Alo86, Kah95] showed
intimate connections between combinatorial expansion and spectral expansion, and in particular, show that
all Ramanujan graphs have combinatorial expansion at least D/2 [Kah95]. Kahale [Kah95] showed an exam-
ple of a Ramanujan graph with combinatorial expansion of only D/2. Thus, with respect to combinatorial
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expansion, random constructions provably beat spectral techniques. It is an outstanding open problem to
explicitly construct D-regular graphs with combinatorial expansion above D/2.

We remark that if G is a graph with combinatorial expansion (1− ε)D, then any small enough set must
have at least (1 − 2ε) unique neighbors. Alon and Capalbo [AC02], building on the zig-zag construction,
showed an explicit construction of a graph in which every small enough set has many unique neighbors. This
construction inspired our work. However, the combinatorial expansion of the Alon-Capalbo construction
does not exceed D/2.

One can view expanders as hash functions. A D-regular graph G = (V,E) represents a function G :
V × [D] → V where G(v, i) is the i’th neighbor of v. As we often want to hash a large domain to a smaller
domain, it is natural to ask for unbalanced structures G : V × [D] → W where W is much smaller than
V . In graph terminology, we are looking for sparse bipartite graphs G = (V,W,E) where every “not too
large” subset of V has many neighbors in W . These objects retain the original “expansion” property, while
simultaneously mapping elements of V into a much smaller domain. Often this last feature is crucial, e.g.,
in the error correcting codes of [SS96]. Unbalanced expanders are often called condensers. Condensers that
have combinatorial expansion close to D are called lossless.

Capalbo, Reingold, Vadhan, and Wigderson [CRVW02] give constructions of lossless condensers with
optimal seed length and construction time that is doubly exponential in the shrinking factor, i.e., if |V | = 2n

and |W | = 2m then the running time is doubly exponential in n − m. This, in particular, solves the
balanced, and slightly unbalanced cases, and is sufficient for many important applications, including the
error-correcting code construction of [SS96]. Specifically, the theorem states that:

Theorem 1.1. [CRVW02, Thm 7.1] For every N = 2n, T = 2t < N , and 0 < ε ≤ 1
2 , there exists a D = 2d

left-regular bipartite graph B = (L = [N ], R = [M = 2n−t], E) such that for every A ⊆ L of cardinality at
most K = 2k, the set of neighbors of A has cardinality |Γ(A)| ≥ (1− ε)D · |A|, where

• k = n− t− d− log 1
ε −O(1), and,

• d = O(log(t+ 1) + log( 1ε )).

Furthermore, given x ∈ L and i ∈ [D], the i’th neighbor of x can be computed in time poly(nε , 2
2t).

As can be seen from the theorem, highly unbalanced lossless condensers also exist, alas with non-constant
degrees. This is (up to constant factors) also what is achieved by random constructions, see, e.g., Lemma 2.5
for concrete bounds. It also matches (again, up to constant factors) the lower bounds. The only drawback of
the theorem is that the construction running time is double-exponential in n−m. Having such a construction
with a running time polynomial in n would almost immediately solve the long-standing open problem of
constructing an almost optimal explicit extractor with a small entropy loss (see, e.g., [TSUZ07]). We refer
the reader to [TSUZ07, TSU12] for further work on the lossless condenser problem in the non-constant degree
regime.

Recently, Asherov and Dinur [AD23] generalized the Alon-Capalbo approach and obtained explicit con-
structions of arbitrarily bounded-degree bipartite graphs G = (V,W,E), where every “not too large” subset
of V has many unique neighbors in W , and V and W may be arbitrarily unbalanced. While weaker than the
[CRVW02] result (that has almost lossless expansion) their construction is much simpler. Another recent
work of Hsieh et al. [HMMP23] extends the Alon-Capalbo construction in a generic way and constructs
highly unbalanced bipartite graphs where small enough sets (from either side) have many unique neighbors.
We elaborate on both of these works later on in the introduction.

1.1 High-dimensional expanders

In this paper we give an alternative construction of slightly unbalanced lossless condensers, building on high-
dimensional expanders. High-dimensional expanders (HDXs) are hyper-graphs with downward closure. A
graph X is a set of points X(0) together with a set of edges X(1), where an edge e is a subset of cardinality
two of vertices. A dimension t hyper-graph X is a set of vertices X(0) along with hyper-edges e that are
subsets of vertices of cardinality at most t + 1. A hyper-graph is a complex if it is downward-closed, i.e.,
whenever e is a hyper-edge then so does every subset of it, for example, if e = (i, j) is an edge in a graph,
then i and j are vertices in the graph.
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The question of how to measure the expansion of a hyper-graph is fascinating. In a sense, the question
already arises for graphs, and we have already mentioned two different natural measures: spectral expansion
and combinatorial expansion. In this paper we need two properties from the complex:

• We need that if we restrict attention to the graph G = (V = X(0), E = X(1)) that contains only the
vertices and edges of the complex, then G is a good spectral expander, and,

• That G is hyper-regular, which we explain next.

A hyper-graph is hyper-regular if any face x ∈ X of cardinality i is contained in the same number of
faces of X of cardinality j (where i < j ≤ t+1). For example, a graph is regular if every vertex is contained
in the same number of edges. A 2-dimensional complex is hyper-regular, if every vertex is contained in the
same number of edges, and every edge is contained in the same number of triangles.

Random complexes are far from being good high-dimensional expanders because typically the neighbors
of a vertex in a random bounded-degree graph are completely disconnected (i.e., the vertex v does not
participate in any triangle). The first high-dimensional expanders of [LSV05] were not hyper-regular. A
few years ago, Kaufman and Oppenhein gave an alternative construction based on coset geometries. Their
construction gives, among other things, hyper-regular dimension-two high-dimensional expander. Other
hyper-regular constructions appear in [CLP20, CLST22]. Shortly after, Friedgut and Iluz [FI20] showed a
hyper-regular construction for any dimension, see, e.g., Theorem 2.20 for a precise statement of their result.

Unlike expanders, condensers, and other pseudo-random objects, HDXs are not pseudo-random as they
possess strong combinatorial properties, that are not present in random objects, and their existence is
a miracle. Thus, they perhaps should be more adequately termed ”pseudo-diamond” objects. However,
surprisingly, so far these marvelous objects have only found a few applications. Dinur and Kaufman [DK17]
showed HDXs are good agreement testers. HDXs were used for list decoding direct-product and direct-
sum codes [DHK+21], but it turned out this task can be done better using the Sum-Of-Squares (SOS)
semi-definite programming hierarchy [AJQ+20] or weak regularity decomposition [JST21]. HDXs are also
the inspiration behind the recent constructions of locally testable codes with a constant rate, distance, and
locality ([DEL+21] and independently Panteleev and Kalachev [PK22] who also constructed quantum LDPC
codes) but the actual construction does not use HDXs.

Our construction may be seen as a generalization of Alon-Capalbo using HDXs. Thus, our result joins a
very short list of examples where HDXs serve as a building block for some other combinatorial or algorithmic
application. Remarkably, we do not require the links to be good spectral expanders1, and the most crucial
property we require from the HDX is hyper-regularity, on top of the requirement that the underlying graph
is a good spectral expander.

We conclude the introduction by explaining how HDXs help in the construction of constant-degree lossless
condensers.

1.2 The bi-variate Alon-Capalbo construction

Our starting point is the zig-sag product of [RVW02] and the related replacement product. Let G = (V,E)
be a D-regular graph, and H a graph on D-vertices. In the replacement product G′ = (V ′, E′), we put a
cloud around each vertex, yielding vertex set V ′ = V × [D]. On V ′ we put edges E′ of two types:

• Inter-cloud edges E′
1: We first choose a two-side labeling of the edges, such that every vertex v labels the

edges connected to it with distinct labels. We define a permutation Rot : V × [D] → V × [D] by letting
Rot(v, i) = (w, j) where w is the i’th neighbor of v, and v is the j’th neighbor of w. Notice that Rot is
an involution, i.e., Rot2 = id. We put an inter-cloud edge ((v, i), (w, j)) whenever Rot(v, i) = (w, j).

• Intra-cloud edges E′
2: For every vertex v ∈ V , we put a copy of H on the D vertices {(v, i) | i ∈ [D]}.

Reingold, Vadhan, and Wigderson [RVW02] choose H to be a graph with a good spectral expansion and
analyze the spectral properties of the replacement product. Alon and Capalbo [AC02] used a variant of
the replacement product, where the goal is obtaining a graph with a good combinatorial expansion and the
graph H is a good combinatorial expander. Specifically, Alon and Capalbo construct a graph G′′ = (V ′′, E′′)
where:

1See Section 2 for the definition of a link.
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• V ′′ is the set of inter-cloud edges E′
1. We may identify V ′′ with E.

• Two inter-cloud edges e1, e2 ∈ E share an edge in E′′, if they share a vertex v ∈ V , e1 is the i’th edge
leaving v, e2 is the j’th edge leaving v, and (i, j) ∈ E(H). In words, the vertices of G′′ are the edges
of G, and two vertices in G′′ share an edge, if as edges of G they share a vertex v in G and they are
connected by H in the cloud of v.

Alon and Capalbo use very specific graphs H. The work of Hsieh et al. [HMMP23] mentioned before extends
the Alon-Capalbo construction to generic highly unbalanced bipartite graphs where small enough sets (from
either side) have many unique neighbors.

Intuitively, the idea behind the Alon-Capalbo construction is very clear. Let S1 ⊆ V ′′ = E be a small
(linear-size) subset of selected G-edges. Let S1 be the set of G-vertices that sit on a selected edge, and call
S0 the set of selected vertices (S0 is the downward closure of S1). Now, look at the graph G = (V,E) and
S0 ⊆ V . As G is a good spectral expander, and S0 is small, it must be the case that there are few edges
in E(S0, S0) (this is the Alon-Chung lemma, proved by the expander mixing lemma, see, e.g., Lemma 2.3
below). Thus, informally, for most G-edges e = (v1, v2) in S1, at most one of the two vertices in e has many
S0 neighbors. Let us call a vertex with ”many” S0 vertices ”heavy”, and ”light” otherwise. Informally,
light vertices expand well in H, and so we should expect at least roughly D/2 expansion. The challenge is
surpassing that, or at least, achieving many unique neighbors (without beating the D/2 expansion barrier).

The work of [AD23] studies a bipartite version of Alon-Capalbo, that is easier to handle. In this version,
the left-hand side of the bipartite graph is V ′′ = E. For every v ∈ V there are D incoming edges, and we label
them by {(v, i) | i ∈ [D]}. We call this set the ”cloud” of v. We choose a fixed bipartite graph H = ([D],W ′′)
that is a good bounded-degree, combinatorial expander. We put a copy of H on every cloud. More precisely,
the right-hand side of the bi-partite graph that we build is V ×W ′′, and we connect e = (v1, v2) ∈ E on the
left-hand size to all the H-neighbors of v1 and v2 in their respective clouds (for a precise description of the
construction see Section 2.3). It is relatively straightforward to prove that this construction has about D/2
expansion, following the argument given above. It is also not complicated to come up with G and H and
small sets that have no more than D/2 expansion.

1.3 Hyper-regular HDX to the rescue

In this work, we extend the argument to higher-dimension complexes. We first describe the construction.
Assume for simplicity X is a two-dimensional complex with vertices, edges, and triangles. We construct a
bipartite graph where on the left-hand side we have all the triangles X(2) of the complex. Further, assume
X is hyper-regular and every vertex v ∈ X(0) as exactly D0,2 triangles on it. Label the triangles on v with
distinct D0,2 labels. Let {(v, i) | i ∈ [D0,2]} be the ”cloud” of v. Let H be a bounded-degree, bipartite
graph with D0,2 edges on the left-hand side. As before, connect a triangle t = (v1, v2, v3) ∈ X(2) on the
left-hand side to all the H-neighbors of v1, v2 and v3 in their respective clouds (for a precise description of
the construction see Section 2.3).

Intuitively, we expect that if S2 ⊆ V ′′ = X(2) is small enough, then almost all triangles in S2 have at
most one heavy vertex, where a vertex v is heavy if there are many selected triangles containing v. Indeed,
this is the case, although the actual argument is a bit more involved. The most fundamental observation is
that every bad triangle t = {v1, v2, v3} has two heavy vertices, and therefore is responsible for one edge in
E(H0, H0), whereH0 is the set of heavy vertices. One should be careful because every edge in E(H0, H0) may
be contributed by D1,2 triangles, where D1,2 is the number of triangles sitting on an edge. The combinatorial
argument also uses the fact that in the inclusion graph (X(2), X(0)) there are many edges leavingH0 (because
every vertex in H0 is heavy) and they go to almost completely distinct vertices. The argument also naturally
extends to dimension t HDXs for higher values of t. We give the complete argument in Section 3.

In a sense, the construction has two separate stages. In the first stage, we map a triangle (or a t-dimension
face) to a cloud of a vertex with D0,t vertices, where D0,t is the number of t-faces sitting on a vertex. This
mapping has the property that whatever St ∈ X(t) is (as long as it is small enough), most clouds are light
(or more precisely, most edges leaving St fall in a light cloud), and then the second stage solves the hashing
problem (doing both contraction of the universe and expansion of the light set) on the cloud. This second
stage is done on a much smaller universe and may be found, e.g., by brute force. We take this approach
when presenting the correctness proof in Section 3.
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Another issue that deserves attention is explicitness. Previous HDXs constructions have not explicitly
addressed the explicitness issue. For that reason, we need to go back and check that previous constructions
are as explicit as we wish.

The paper is organized as follows: In Section 2 we give some preliminaries on expanders, condensers,
high-dimensional expanders and the routed product from [AD23]. In Section 3 we give the combinatorial
proof that the construction gives a lossless condenser. In Section 4 we show the construction is fully-explicit.
We give the definitions and top-level arguments in the main text, and in the Appendix we show previous
constructions ([KO23] and [FI20]) are explicit. In Section 5 we put all the claims together, choose parameters
and give our new lossless condenser construction.

1.4 Acknowledgements

The third author would like to thank Eshan Chattopadhyay, Irit Dinur and Avi Wigderson for intriguing
conversations on the lossless expansion problem.

2 Preliminaries

2.1 Expanders

Definition 2.1. Let G = (V,E) be a graph2 with N vertices, regular degree D, and normalized eigenvalues
−1 ≤ λ(N) ≤ . . . ≤ λ(2) ≤ λ(1) = 1.

• We say G is a (N,D, λ) one-sided expander if λ(2) ≤ λ.

• We say G is a (N,D, λ) two-sided expander if max(λ(2), |λ(N)|) ≤ λ.

Alon-Boppana gave a (tight) bound on the spectral gap:

Lemma 2.2 (Alon-Boppana). [Nil91] Let G be an (N,D) graph. Then λ(2)(G) ≥ 2
√
D−1
D − oN (1).

A simple consequence of the expander mixing lemma, as proved by [AC88] for the two-sided case and
generalized to the one-sided case by [DEL+21] is the following lemma:

Lemma 2.3 (Alon-Chung lemma). [AC88] Let G = (V,E) be a (N,D, λ) one-sided expander. For every set
S ⊆ V define E(S, S) = {(u, v) ∈ E | u, v ∈ S}. Then:

E(S, S)

D · |S|
≤ |S|

N
+ λ.

Definition 2.4 (Bipartite expander). Let B = (LB , RB , EB) be a bipartite graph. We say B is D left-
regular (resp. right-regular) if every vertex in LB (resp. RB) has degree D. We say B is (DL, DR) regular,
if it is DL left-regular and DR right-regular. A DL left-regular bipartite graph B is (K, ε) expanding, if for
every A ⊆ LB such that |A| ≤ K it holds that:

|Γ(A)| ≥ (1− ε)DL · |A|,

Where Γ(A) ⊆ RB is the set of neighbours of A in B. If B is DL left-regular and (K, ε) expanding, we say
B is a (DL,K, ε) bipartite expander. Similarly, if B is (DL, DR) regular and (K, ε) expanding, we say B is
a (DL, DR,K, ε) bipartite expander.

Non-explicitly, using the probabilistic method one can show that good left-regular bipartite (K, ε) ex-
panders exist. Specifically,

Lemma 2.5 (Non-explicit construction). [CRVW02] For every N ≥ M ≥ 0 and ε > 0, there exists a
(D,K, ε) bipartite graph B = (L = [N ], R = [M ], E) where

• K = Θ(εM
D ), and,

2When we say a graph we mean an undirected graph.

5



• D = Θ(
ln 2N

M

ε ).

Finally, we define what makes a construction explicit. We begin by defining polynomially dense sets:

Definition 2.6. We say a set S ⊆ N is polynomially dense, if there exists a polynomial p and a polynomial-
time algorithm such that on input N ∈ N outputs N ′ ∈ S such that N ≤ N ′ ≤ p(N).

For the rest of this section, let S be a polynomially dense set.

Definition 2.7 (Explicit bipartite graph). Let {GN}N∈S be a family such that for every N ∈ S, GN =
([N ], [M(N)], EN ) is a DL left-regular bipartite graph. We say {GN} is fully explicit if S is polynomially-
dense and there exists an algorithm that on inputs N ∈ S, x ∈ [N ] and j ∈ [DL] outputs the j’th neighbor of
x in GN in polynomial time in the input length, i.e., in time polylog(N +DL).

2.2 High dimensional expanders

Definition 2.8 (Hypergraph and simplicial complex). A hypergraph is a pair (V,E) with V a set of vertices
and E a set of subsets of V . G = (V,E) is called a simplicial complex if E is downwards closed with respect
to containment, i.e., for every s ∈ E and r ⊆ s it also holds that r ∈ E.

Definition 2.9 (Dimension). Let X be a simplicial complex and s ∈ X. The dimension of s is |s| − 1, i.e.,
one less the cardinality of s. We partition a simplicial complex X to

X = X(−1) ∪X(0) ∪X(1) ∪ . . . ∪X(t),

where X(i) is the set of all faces of size i+1 (and dimension i). Notice that X(−1) = {∅} and X(0) = V . If
s ∈ X(i) we say s is an i-face. We say X is t-dimensional if maxs∈X |s| ≤ t+1. A t-dimensional simplicial
complex X is pure if every s ∈ X is contained in some s ∈ X(t).

Definition 2.10 (Link). Let X be a D-dimensional simplicial complex and s ∈ X(i). The link of s is a
(D − |s|)-dimensional simplicial complex defined by

Xs = {r \ s : s ⊆ r ∈ X}.

Definition 2.11 (The graph of a link). Let X be a simplicial complex, and s ∈ X. The graph of the link
s is the graph Gs = (Vs = Xs(0), Es = Xs(1)). The graph of s = ∅ is called the 1-skeleton of X and is the
graph whose vertices are X(0) and whose edges are X(1).

Definition 2.12. (Clique complex) Let G be a graph. The clique complex of the graph G, denoted by X(G)
is the simplicial complex formed by the sets of vertices in all the cliques of G.

2.2.1 Hyper-regularity

Definition 2.13. Let X be a t-dimensional simplicial complex and let 0 ≤ i < j ≤ t. The j-degree of
s ∈ X(i), denoted by Dj(s) is the number of j-faces in X containing s.

Definition 2.14. (Faces regularity) Let X be a t-dimensional simplicial complex. Let 0 ≤ i < j ≤ t. We
say X is (i, j)-regular with regularity Di,j if the j-degree of every i-face in X is exactly Di,j

For example D0,1 denotes the edge regularity of the 1-skeleton, and D0,2 denotes the number of triangles
connected to each vertex.

Definition 2.15 (Hyper-regular simplicial complex). Let X be a t-dimensional simplicial complex. We say
X is (D−1, D0, . . . , Dt−1) hyper-regular if for every −1 ≤ i ≤ t− 2 and every s ∈ X(i), the graph of the link
Xs has Di vertices and is Di+1 regular.

A family X = {XN}N∈I⊆N of t-dimensional simplicial complexes is called (D0, . . . , Dt−1) hyper-regular
if XN is (D−1,N , D0, . . . , Dt−1) hyper-regular for some values D−1,N for all N ∈ I

Note that by this definition D−1 = |X(0)|. We sometimes omit D−1.
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Claim 2.16. Let X be a t-dimensional (D−1, . . . , Dt−1) hyper-regular simplicial complex. Then, for every
0 ≤ i < j ≤ t X is (i, j)-regular with regularity

Di,j =

j−1∏
m=i

Dm

j −m
=

1

(j − i)!

j−1∏
m=i

Dm. (2.1)

Proof. Fix 0 ≤ i < t and s ∈ X(i). We prove that for every i < j ≤ t, X is (i, j)-regular, by induction on
j − i.

Base case, j = i+ 1 : By assumption Gs = (Vs, Es), the graph of the link Xs, has Di vertices and is Di+1

regular. Notice that Vs is the set of (i + 1)-faces containing s. Thus, the number of (i + 1)-faces
containing s is Di, independent of s, and therefore Di,i+1 = Di.

The induction step : Assume the existence of Di,j . Fix s ∈ X(i). By the induction hypothesis, there are
Di,j j-faces containing s, and each such face has Dj,j+1 (j + 1)-faces containing it. Furthermore, each
(j + 1)-face is counted exactly j + 1 − i times, corresponding to the last item added to the face. We
see that the number of (j + 1)-faces containing s is independent of s and

Di,j+1 =
Di,j ·Dj,j+1

j + 1− i
.

Note that this relation holds trivially for j = i under the convention Di,i = 1.

We now prove Equation (2.1) by induction on j − i. The base case is j = i+ 1, and then Di,i+1 = Di =∏j−1
m=i

Dm

j−m . Then, by induction, and using Dj,j+1 = Dj :

Di,j+1 =
Di,j ·Dj,j+1

j + 1− i
=

j−1∏
m=i

Dm

j −m
· Dj

j + 1− i
=

∏j
m=i Dm∏j

m=i j + 1−m
.

A simple corollary is:

Corollary 2.17. Suppose X is a t-dimensional (D−1, D0, ..., Dt−1) hyper-regular simplicial complex. Then
the bipartite inclusion graph G = (V = X(t),W = X(0), E) where (t, v) ∈ E iff v ∈ t is (t+ 1, D0,t) regular.

Also note that by Claim 2.16

D0,t =
D0,1D1,t

t
. (2.2)

2.2.2 Hyper-expansion

Definition 2.18 (i-level expansion). Let X be a t-dimensional (D−1, . . . , Dt−1) hyper-regular simplicial
complex. Let −1 ≤ i ≤ t − 2. We say X has i-level one sided (resp. two sided) expansion λi, if for all
s ∈ X(i) the graph of its link, Gs, is a (Di, Di+1, λi) one sided (resp. two sided) expander.

Lemma 2.19 (Trickle-Down Theorem). ([Opp18], as presented, e.g., in [FI20, Lemma 1.6]) Let X be a
t-dimensional pure simplicial complex such that the graph of every link is connected and X has (t− 2) level
expansion λt−2. Then, X has (−1)-level expansion at least

λ−1 ≤ λt−2

1− (t− 1)λt−2
.

Hyper-regular, hyper-expanding graphs exist:

Theorem 2.20. [FI20, Theorem 1.1] For every t ∈ N and λ < 1 there exist constants Dt−1 < Dt−2 . . . < D0

and an infinite sequence {Xi}i∈N such that
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• Xi is a t-dimensional (D−1 = Mi, D0, . . . , Dt−1) hyper-regular pure simplicial complex,

• Mi → ∞ and

• Xi has (t− 2)-level one-sided expansion λt−2 ≤ λ.

We need one slight modifications of the theorem: We want λ to be associated with λ−1 rather then λt−2.

Lemma 2.21. For every t ∈ N and for every λ < 1 there exist constants Dt−1 < Dt−2 . . . < D0 and an
infinite sequence {Xi}i∈N such that

• Xi is a t-dimensional (D−1 = Mi, D0, . . . , Dt−1) hyper-regular pure simplicial complex,

• Mi → ∞,

• Xi has (−1)-level one-sided expansion λ−1 ≤ λ

Proof. Given λ set λ′ = βλ for β = 1√
bt+(t−1)λ

. By Theorem 2.20 there exist constantsDt−1 < Dt−2 . . . < D0

and an infinite sequence {Xi}i∈N such that Xi is a t-dimensional (D−1 = Mi, D0, . . . , Dt−1) hyper-regular
pure simplicial complex with (t− 2)-level expansion λt−2 ≤ λ′.

By Lemma 2.19, we get that

λ−1 ≤ λ′

1− (t− 1)λ′ =
βλ

1− (t− 1)βλ
=

λ√
bt
. (2.3)

In particular, λ−1 ≤ λ.

2.3 The high-dimension routed product

Definition 2.22 (Routed product). [AD23] Let:

• G = (V,W,E) be a (DL, DR)-regular graph, and,

• H = (V ′ = [DR],W
′, E′) be a D′

L left-regular graph.

Let π : E → V ′ be a labelling of the edges in E such that for every w ∈ W , the DR edges in E containing w
have distinct labels (and recall that V ′ = [DR]). Then, the routed product G ◦H is a bipartite graph

(V ′′ = V,W ′′ = W ×W ′, E′′)

where (v, (w, j)) ∈ E′′ iff (v, w) ∈ E and (π(v, w), j) ∈ E′.

We illustrate the definition in Figure 1.

Claim 2.23. G ◦H is DL ·D′
L left-regular. If, further, H is (D′

L, D
′
R) regular then G ◦H is (DL ·D′

L, D
′
R)

regular.

Proof. For the first assertion, every vertex v ∈ V ′′ = V has DL edges going out of it in G, and each such
edge is captured by a unique (w, j) ∈ W × [D′

R], which, in turn, has D′
L neighbors in W ′.

For the second assertion assume H is (D′
L, D

′
R) regular. Every vertex w′ ∈ W ′′ has D′

R neighbors
(w, j) ∈ W × [D′

R], which, in turn, has a unique neighbor in V ′′ = V . See Figure 1. Indeed one can check
that

|V | ·DL ·D′
L = |W | ·DR ·D′

L = |W | · |V ′| ·D′
L = |W | · |W ′| ·D′

R = |W ′′| ·D′
R.
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Figure 1: Illustration of the routed product G ◦H = (V ′′,W ′′, E′′). A node w ∈ W is replaced with a copy
of H.

3 Lossless Bipartite expanders

3.1 Scattering the input

Definition 3.1. Let G = (L,R,E) be a (DL, DR)-regular bipartite graph. Given a set S ⊆ L we say a
vertex r ∈ R is S-heavy, if |E(S, r)| ≥ K ′. Let H ⊆ R be the set of all S-heavy vertices. We say G is
(K,K ′, ε)-scattering, if for every S ⊆ L of size at most K,

|E(S,H)| ≤ ε|S|DL.

Theorem 3.2 (HDXs are scattering). Suppose X is a t-dimensional (D−1, D0, ..., Dt−1) hyper-regular sim-
plicial complex with (−1)-level expansion λ−1. Let G = (L = X(t), R = X(0), E) be the bipartite inclusion
graph, and note that by Corollary 2.17 G is (DL = t + 1, DR = D0,t) regular. Then, for every ε > 0, G is
(K,K ′, 1

t+1 + ε)-scattering for:

• K = λ−1

D0,t
|L|

• K ′ = 2t(t+ 1
ε )λ−1D0,t

Proof. Let St ⊆ X(t) be a set of t-faces of cardinality at most K. Define:

Definition 3.3 (Heavy vertices and bad t-faces).

• An element x ∈ X is selected if x ∈ s for some s ∈ St. We let Si be the set of selected elements of
dimension i and we call S1 the set of selected edges and S0 the set of selected vertices.

• A vertex v ∈ S0 is heavy if

|{t ∈ St | v ∈ t}| ≥ K ′,

Let H0 ⊆ S0 be the set of heavy vertices.

• A t-face r ∈ St ⊆ X(t) is bad if |r ∩H0| ≥ 2, i.e., if at least 2 out of its t+ 1 vertices are heavy. Let
Bt ⊆ St denote the set of bad (and selected) t-faces.

We illustrate the definition in Figure 2.
The most crucial observation in the proof is that bad t-faces contribute edges going inside H0, in the

1-skeleton of the graph. This, in turn, implies by the Alon-Chung lemma that Bt is small. Specifically,
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Figure 2: Illustration of the bipartite inclusion graph G. The left side vertices are the t-faces of X and the
right vertices are the vertices of X. H0 ⊆ S0 is the set of heavy vertices, and Bt ⊆ St is the set of bad t-face.
A t-face is bad if at least two out of its t+ 1 vertices are heavy.

Lemma 3.4. |Bt| ≤ 2tλ−1 ·D0,t · |H0|.

Proof. We have

|H0| ≤ |S0| ≤ (t+ 1)|St| ≤ (t+ 1)K = (t+ 1)
λ−1

D0,t
|X(t)| = λ−1|X(0)|,

where we have used the facts that K = λ−1

D0,t
|L| = λ−1

D0,t
|X(t)|, (t+ 1)|X(t)| = D0,t|X(0)|. Using Lemma 2.3

on the 1-skeleton G = (V = X(0), E = X(1)):

E(H0, H0)

D0,1 · |H0|
≤ λ−1 +

|H0|
|X(0)|

≤ 2λ−1.

Now, every bad t-face t = {v1, ..., vt+1} ∈ Bt contains at least two vertices from H0, and therefore at
least one edge in E(H0, H0). Also, every edge in E(H0, H0) may be contributed by at most D1,t t-faces in
Bt. Therefore,

E(H0, H0) ≥
|Bt|
D1,t

. (3.1)

It therefore follows that:

|Bt| ≤ D1,tE(H0, H0) ≤ 2λ−1D0,1D1,t|H0| = 2tλ−1
D0,1D1,t

t
|H0| = 2tλ−1D0,t|H0|.

We also note that:
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Lemma 3.5. |St \Bt| ≥ |E(St \Bt, H0)| ≥ K ′|H0| − (t+ 1)|Bt|.

Proof. For the first inequality, notice that in the subgraph E(St \Bt, H0) the degree of vertices in St \Bt is
at most one. This is true because otherwise there is some s ∈ St \ Bt and two distinct vertices v1, v2 ∈ H0

such that v1, v2 ∈ s, but then the t-face s contains at least two heavy vertices and therefore s ∈ Bt which is
a contradiction. Hence,

|E(St \Bt, H0)| ≤ |St \Bt|. (3.2)

For the second inequality notice that since every vertex in H0 is heavy, every vertex in H0 participates
in at least K ′ t-faces in St, and therefore

|E(St, H0)| ≥ K ′|H0|. (3.3)

Also, since every t-face touches at most t+ 1 heavy vertices we have

|E(Bt, H0)| ≤ (t+ 1)|Bt| (3.4)

Equations (3.3) and (3.4) together give the second inequality.

We conclude that:

|St|
|Bt|

=
|St \Bt|
|Bt|

+ 1

≥ K ′|H0|
|Bt|

− (t+ 1) + 1

≥ K ′

2tλ−1D0,t
− t ≥ t+

1

ε
− t =

1

ε
,

where the first inequality is by Lemma 3.5, the second inequality is by Lemma 3.4 and the last inequality is
by plugging K ′ = 2t(t+ 1

ε )λ−1 ·D0,t. Thus,

|Bt| ≤ ε|St|. (3.5)

Concluding the proof for Theorem 3.2, for every St ⊆ L of size at most K,

|E(St, H0)| = |E(St \Bt, H0)|+ |E(Bt, H0)| ≤ |St \Bt|+ |Bt| · (t+ 1)

≤ |St|(t+ 1) · ( 1

t+ 1
+ ε), (3.6)

using Equations (3.2) and (3.5).

3.2 The composition theorem

Theorem 3.6. If G = (LG, RG, EG) is a (DL,G, DR,G)-regular bipartite graph that is (KL,G,KR,G, εG)-
scattering, and H = (LH = [DR,G], RH = [µHDR,G], EH) is a (DL,H ,KH , εH) bipartite expander, with
KR,G ≤ KH then G ◦H = (L,R,E) is such that:

• |L| = |LG|

• |R| = µHDL,G|L|,

• G ◦H is DL,GDL,H left-regular, and,

• G ◦H is (KL,G, (1− εG)(1− εH)) expanding.

If, further, H is (DL,H , DR,H) regular, then G ◦H is (DL,GDL,H , DR,H) regular.
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Proof. To see the first claim notice that L = LG, R = RG ×RH and therefore

|R| = |RG| · |RH | = |RG| · µHDR,G.

However, |RG|DR,G = |EG| = |LG| ·DL,G and therefore |R| = µHDL,G|LG|. For the second claim, we recall
that G is (DL,G, DR,G) regular and H is DL,H left-regular. Also, if, further H is (DL,H , DR,H) regular then
by Claim 2.23, G ◦H is (DL,GDL,H , DR,H) regular.

The main thing to prove is the fourth claim about expansion. Fix S ⊆ L = LG of cardinality at most
KL,G. It remains to be shown that |Γ(S)| ≥ (1− εG)(1− εH)|S|DL,GDL,H . Now, in the construction of the
routed product G ◦H, we put a gadget

Hz = (LH,z = [DR,G], RH,z, EH,z)

for every z ∈ RG, where a vertex in LH,z represents an incoming edge (x, z) in G. Let S′
z ⊆ LH,z be the set

of vertices from LH,z that correspond to incoming edges (x, z) ∈ EG with x ∈ S.

Definition 3.7. We say z ∈ RG is heavy if |S′
z| ≥ KR,G, and light otherwise. Let G0 denote the set of all

light elements in S0.

For every light z, |S′
z| ≤ KR,G ≤ KH . As Hz is a (DL,H ,KH , εH) bipartite expander,

|ΓH(S′
z)| ≥ (1− εH)DL,H |S′

z|

Thus,

|Γ(S)| ≥
∑
z∈G0

(1− εH)DL,H |S′
z| = (1− εH)DL,H

∑
z∈G0

|S′
z|.

To complete the proof we notice that as G is (KL,G,KR,G, εG)-scattering we have:∑
z∈G0

|S′
z| = |E(S,G0)| ≥ (1− εG)|S|DL,G,

4 Explicitness

A D-regular graph G = (V,E) is explicit if we can describe G with an algorithm running in time polynomial
in the description size of G. The graph G is fully explicit if we can describe local components of G efficiently,
e.g., if given v ∈ V and i ∈ [D] we can describe the i’th neighbor of v in time polynomial in the input length
to the task, i.e., polynomial in log |V | + logD. Similarly, we say an object is explicit if we can describe
the entire object in time polynomial in the description size, and we say it is fully explicit if we can locally
describe small parts of the entire object in time polynomial in the input length to the task.

However, there is a subtle problem that is swept under the rug in the above discussion. Suppose we wish
to construct a 2-dimensional HDX X. Suppose, as indeed is the case, we have a natural interpretation of X
as group elements of SL3(R) over some ring R. Further suppose that given s ∈ X(2) we can efficiently find
the three vertices in it, and given a vertex we can find the D0,2 triangles lying over it, using efficient group
operations. The subtle problem that we face is that often the group G is naturally represented in a redundant
way, e.g., SL3(R) might be represented as a 3×3 matrix, even though only some of the matrices are invertible
and with determinant one. Thus, if for the applications (e.g., for constructing lossless condensers) we want
to use the HDX on binary strings, we also need efficient procedures mapping strings to group elements (or
triangles), and vertices back to strings. Sometimes, we need even more. For example, for the routed product,
we need to map cloud names (which happen to be cosets of the group) to strings, and we need to index
vertices within the cloud. Often, we need this indexing to be compressed, i.e., without much redundancy,
and this is also the case when we want to construct a lossless condenser.

For this reason, we have two representations in mind: the first is a natural representation of the combi-
natorial object, and this representation is often redundant. The second is a compressed representation. The

12



way we treat this below, is that we first show (local) explicitness for the combinatorial object in the natural
redundant representation, and then we show how to translate back and forth between the redundant and
compressed representation. We divide our task into two parts, that allow us to talk separately about the
combinatorial object in its own language (e.g. as a group) and in the language of the “outside observer”
that does not need to understand the details of the combinatorial object but only needs to be able to easily
access it in a compressed way.

To be more concrete, consider the case of a Cayley graph C(G,S) of a group G with a set of generators
S. Using the language of group theory, the graph is very easily described. The vertices are G and the
edges correspond to pairs consisting of an element from the group and a generator. However, an “outside
observer”, which does not speak the group-theory language, also needs to know how to index (or represent)
group elements, and how to carry on the group operations. Schematically, this looks like:

[n]
Indexing−−−−−→ C

Explicit combinatorial description−−−−−−−−−−−−−−−−−−−−−→ C
Compact representation−−−−−−−−−−−−−−−→ [m] (4.1)

Note that Definition 2.7 does not separate between the different parts of Equation (4.1), but captures
the whole process at once.

Definition 4.1. (Combinatorial explicitness) Let G be a family of (DL, DR)-regular bipartite graphs G =
{GN}N∈N where GN = (LN , RN , EN ). We stress that LN , RN and EN may represent their object in a
redundant way, e.g., it may represent an invertible matrix with determinant one by its entries.

We say G is combinatorially explicit if there exists a polynomial-time algorithm that on input N ∈ N,
ℓ ∈ LN and k ∈ [DL] outputs a pair (r, j) such that r ∈ RN and j ∈ [DR], and r is the k’th neighbor of ℓ
and ℓ is the j’th neighbor of r.

Definition 4.2. Let A = {AN}N∈N be a family of sets.

• We say A has efficient indexing, if there exists a polynomial time algorithm that on input N ∈ N and
i ∈ [|AN |] outputs the i’th elements of AN .

• Let ∆ ∈ N. We say A has a ∆-efficient encoding, if there exists a polynomial time algorithm that for
every N ∈ N injectively maps AN to [∆ · |AN |].

Definition 4.3. Let X = {XN}N∈N be a sequence of t-dimensional, (0, t)-regular simplicial complexes. We
say X is combinatorially explicit if the bipartite inclusion graph family {(XN (t), XN (0))}N∈N is combinato-
rially explicit.

We now state a construction that parameter-wise is the same as Lemma 2.21, and in addition is also
explicit.

Theorem 4.4. For every t ∈ N and for every λ < 1 there exist constants Dt−1 < Dt−2 . . . < D0 and an
combinatorially explicit sequence X = {Xi}i∈N such that

• Xi is a t-dimensional (D−1, D0, . . . , Dt−1) hyper-regular pure simplicial complex,

• Xi has (−1)-level one-sided expansion λ−1 ≤ λ

• {XN (t)}N∈N has efficient indexing, {XN (0)}N∈N has ∆-efficient encoding for ∆ = ((t+ 1)!)(t+1)! and
the sequence {|XN (t)|}N∈N is polynomially-dense.

The proof is given in the appendix in Proposition A.13, the construction is a variant of the Friedgut-Iluz
construction. A direct consequence is:

Corollary 4.5. Let X be as in Theorem 4.4 and let G denote the bipartite (DL, DR)-biregular inclusion
graph family {(XN (t), XN (0))}N∈N. Let H = (L′, R′, E′) be a graph with L′ = [DR] and R′ = [M ] and
left degree DL′ then their routed product, {GN ◦ H}N∈N is combinatorially explicit, the left hand side of
{GN ◦H}N∈N has efficient indexing and the right hand side of {GN ◦H}N∈N has a ∆-efficient encoding for
∆ = ((t+ 1)!)(t+1)!.

The final bipartite graph is the same as GN ◦H, except that we identify an element on the left hand size
with its indexing, and we map an element of the right hand side to its encoding. This gives us a fully-explicit
bipartite graph, with the same properties as {GN ◦ H}N∈N, except that the right hand size is larger by a
factor of ∆. In the next section we analyze the parameters that we get.
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5 Putting it together

We first write what we get in the combinatorial representation:

Theorem 5.1. For every ε > 0 small enough and µ > 0 there exists a polynomially-dense subset A ⊆ N,
and a combinatorially-explicit construction {GN}N∈A s.t. for every N ∈ A, GN is a bipartite expander
(LN , RN , EN ) with |LN | = N , |RN | = µN , where

• GN is DL left-regular, where DL = Θ(
log( ε

µ )

ε2 ), and,

• GN is (KN , ε) expanding, where KN = (εµ)O(tt)|LN |.

Furthermore, given x ∈ LN and i ∈ [DL], the i’th neighbor of x can be computed in time polynomial in
log(Nε ).

Proof. Given ε and µ let ε′ = ε
3 , t =

1
ε′ and µH = µ

t+1 .

• Apply Theorem 4.4 with t and λ−1 = c · (ε′)4µ2
H for some small enough constant c. By Theorem 4.4

there exist constants Dt−1 < Dt−2 < . . . < D0 and a combinatorially explicit sequence {XN}N∈N with
∆ = ((t+1)!)(t+1)! such that XN is a t-dimensional (D−1, D0, . . . , Dt−1) hyper-regular pure simplicial
complex with (−1)-level one-sided expansion λ−1. Also each XN is (0, t)-regular with D0,t.

• Applying Theorem 3.2 with {XN}N∈N and ε′, we see that the family of bipartite graphs G(XN ) =
(LGN

= XN (t), RGN
= XN (0), EGN

) is (t + 1, D0,t)-regular and (KL,GN
,KR,GN

, 1
t+1 + ε′)-scattering

for:

– KL,GN
= λ−1

D0,t
|LGN

|,

– KR,GN
= 2t(t+ 1

ε′ )λ−1D0,t.

Next, we find the small (fixed) bipartite graph H by brute force. We apply Lemma 2.5 with |LH | = D0,t,
ε′ and µH to get a bipartite graph H = (LH , RH , EH) that is a (DL,H ,KH , ε′) expander with

• DL,H = Θ
(

log 2
µH

ε′

)
.

• |KH | = Θ
(
ε′ |RH |

DL,H

)
.

We first notice that

KR,GN
≤ O

(
λ−1D0,t

ε2

)
≤ O(ε2µ2

H)D0,t

KH = Θ

(
(ε′)2µHD0,t

log(2/µH)

)
= Θ(ε2µ2

H)D0,t.

Thus, KR,GN
≤ KH when the constant c chosen above is small enough.

Having {G(XN )}N∈N and H we let G′
N = G(XN ) ◦ H (for every N ∈ N). By Theorem 3.6, G′

N =
G(X) ◦H = (L′

N , R′
N , E′

N ), where |L′
N | = |XN (t)|. Thus, the right-hand side R′

N of G′
N has cardinality:

|R′
N | = µHDL,GN

|LN | = µH(t+ 1)|LN | = µ|LN |.

We also have

• G′
N is DL = (t+ 1)DL,H = Θ

(
log( ε

µ )

ε2

)
left-regular.

• G′
N is (K = λ−1

D0,t
|LN |, (1− 1

t+1 − ε′)(1− ε′)) expanding.

Notice that 1 − 1
t+1 = t

t+1 = 1
1+ε′ ≥ 1 − ε′ and so (1 − 1

t+1 − ε′)(1 − ε′) ≥ (1 − 2ε′)(1 − ε′) ≥ 1 − 3ε′ =

1 − ε. Also K = λ−1

D0,t
|LN |. From [FI20, sec 4.4.1.1] we can upper bound D0,t ≤ (1/λ−1)

O(tt). This gives

K = λ
O(tt)
−1 |LN |.

14



To get full-explicitness we need to map the vertices on the right-hand side of the bipartite graph of
Theorem 5.1 to an efficient representation. This enlarges the right-hand size by a factor of ∆t = (t+1)!(t+1)!,
or equivalently, in the above theorem we shrink by a factor of ∆tµ instead of µ. Thus, if we want a constant
ε > 0, this fixes a constant t = O(1/ε) and we get:

Theorem 5.2. For every constant ε > 0 and µ > 0 there exists a polynomially-dense subset A ⊆ N, and a
fully-explicit construction {GN}N∈A s.t. for every N ∈ A, GN is a bipartite expander (LN , RN , EN ) with
|LN | = N , |RN | = µN , where

• GN is DL left-regular, where DL = Θε(log(
1
µ )), and,

• GN is (KN , ε) expanding, where KN = µOε(1)|LN |,

where the constants hide the dependence on ε. Furthermore, given x ∈ [LN ] and i ∈ [DL], the i’th neighbor
of x can be computed in time polynomial in logN .
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A Explicitness of the Friedgut-Iluz construction

In the t-dimensional KO construction (see Appendix B), the 1-skeleton G = (X(0), X(1)) is a (t+1)-partite
graph where every t-face selects one vertex from each color. The regularity in the KO construction (e.g.,
the number of t-dimensional faces on an i-face (i < t) depends on the coloring of the i-face). The [FI20]
construction may be seen as a symmetrization of the KO construction. In Appendix A.1 we define type-
regularity for HDX like KO, where the regularity depends on the type. In Proposition A.13, we show that
the [FI20] reduction from type-regular to hyper-regular preserves combinatorial explicitness, as well as the
efficient indexing of the t-faces and the efficient encoding of the vertices. In Appendix B we show that the
KO construction has all these properties, thus proving that the complete construction is combinatorially
explicit with efficient indexing and encoding.

A.1 Type-regularity

The construction of hyper-regular high-dimensional expanders is highly non-trivial. As stated in Theo-
rem 2.20, such complexes are constructed in [FI20]. Their construction starts with clique complexes with a
weaker notion of regularity.

Definition A.1 (P -partite). Let P be an arbitrary finite set. We say that a graph G = (
⋃

x∈P Vx, E) is
P -partite if Vi and Vj are disjoint for every i ̸= j ∈ P , and each Vi is an independent set. We say that a
simplicial complex X is P -partite if it is a clique complex and its 1-skeleton is a P -partite graph.

In the following definitions, let X be a t-dimensional P -partite simplicial complex. Informally, a face s
of type I is a face that touches exactly the parts I, formally,

Definition A.2 (Type). A face s ∈ X is of type I ⊆ P if for every i ∈ I there exists a unique v ∈ s ∩ Vi

and for every i /∈ I: s ∩ Vi = ∅. We let X(I) denote the set of faces s ∈ X of type I.

Definition A.3 (Type-regularity). Let I ⊆ J ⊆ P . X is (I, J) regular, with degree DI,J , if the every
face s of type I in X is contained in exactly DI,J faces of type J . X is P -partite type-regular if for every
I ⊆ J ⊆ P , X is (I, J) regular.

We remark that in [FI20] type regularity is defined only with respect to types I ⊂ J where J extends
I with a single element. However, it is easy to see that the two definitions are equivalent, similarly to
Claim 2.16.

We restrict out discussion to P = [t + 1] and to type regular complexes which are also (0, t) regular in
the sense of Definition 2.14. In the type notations, this means that for every i, the simplicial complex is
({i}, [t + 1])-regular, and all these degrees are equal. For such objects, we already defined combinatorial
explicitness in Definition 4.3.

A.2 Explicitness preservation under symmetrization

Definition A.4. (Partite graph product [FI20]) Let G1 = (V1, E1), G2 = (V2, E2) be P -partite graphs,
where V1 = (V p

1 )p∈P , V2 = (V p
2 )p∈P are ordered tuples of mutually disjoint subsets. We define their P -

partite product, denoted by ⊛, to be

G1 ⊛G2 = G12 = (V12, E12)

Where
V12 =

(
V p
1 × V p

2

)
p∈P

E12 =
⋃

p1<P p2

{{
(vp1

1 , vp1

2 ), (vp2

1 , vp2

2 )
}

: (vp1

1 , vp2

1 ) ∈ E1 and (vp1

2 , vp2

2 ) ∈ E2

}
Definition A.5. [FI20] For clique complexes X(G1), X(G2), the product is naturally defined as follows:

X(G1)⊛X(G2) = X(G1 ⊛G2)
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Let X = {XN}N∈N Y = {YN}N∈N be sequences of [t+ 1]-partite t-dimensional simplicial complexes the
P -partite product of X and Y is naturally defined as follows:

Z = X ⊛ Y = {XN ⊛ YN}N∈N.

Claim A.6. Let G1 = (V1, E1), G2 = (V2, E2) be two P -partite clique complexes. For every I ⊆ P , {vi1}i∈I =
C1 ⊆ V1 is a clique of type I in G1 and {vi2}i∈I = C2 ⊆ V2 is a clique of type I in G2 if and only if
C12 = {(vi1, vi2)}i∈I is a clique of type I in G12.

Proof. For all p ∈ P denote V p
12 ≜ V p

1 × V p
2 .

( =⇒ ) Let C1 and C2 be as in Claim A.6. Fix two vertices ua = (vp1

1 , vp1

2 ) and ub = (vp2

1 , vp2

2 ) in
C12. Since C1 is a clique of type I, there exists an edge e = (vp1

1 , vp2

1 ) ∈ E1. The same holds for C2 with
e = (vp1

2 , vp2

2 ) ∈ E2. Thus, by definition, {(ua, ub)} ∈ E12. Since this is true for every ua, ub ∈ C12, they
form a clique.

( ⇐= ) Let C12 be as in Claim A.6. Fix two vertices in vp1

1 , vp2

1 ∈ C1 and two vertices vp1

2 , vp2

2 ∈ C2.
Since C12 is a clique in G12, there exists an edge

{
(vp1

1 , vp1

2 ), (vp2

1 , vp2

2 )
}
∈ E12. By the definition of partite

graph product, this means that (vp1

1 , vp2

1 ) ∈ E1 and (vp1

2 , vp2

2 ) ∈ E2. Since this is true for every vp1

1 , vp2

1 ∈ C1,
C1 forms a clique in G1. The same holds for C2 in G2.

Claim A.6 motivates the following notation. Let X and Y be two clique complexes and let Z = X ⊛ Y .
Let CZ =

{
(vp1

X , vp1

Y ), (vp2

X , vp2

Y )
}
be a clique in Z. We denote CZ |X and CZ |Y its corresponding cliques in

X and in Y .

Corollary A.7. If X has (I, J) degree DX and Y has (I, J) degree DY then Z has (I, J) degree DX ·DY .
Particularly, if X and Y are type regular, then Z is type regular.

Proof. This is trivial given Claim A.6

We now turn to prove that the partite graph product preserves the explicitness properties of type regular
simplicial complexes.

Claim A.8. Let X and Y be two sequences of type regular clique complexes. If X and Y are combinatorially
explicit then Z is combinatorially explicit.

Proof. First, note that the (0, t) degree of Z is DZ
0,t = DX

0,t ·DY
0,t. We are given an input N ∈ N, s ∈ Z(t)

and i ∈ [t + 1]. We use the combinatorial explicitness of X and Y on s|X and sY to obtain (vXi , jX) and
(vYi , jY ). We output ((vXi , vYi ), jX · |DY

0,t|+ jY ).

We proceed by proving that efficient indexing of top dimensional faces is preserved under the partite
graph product.

Claim A.9. Let X = {XN}N∈N and Y = {YN}N∈N be two sequences of [t+1]-partite t-dimensional simplicial
complexes. Let Z = {ZN}N∈N denote their partite graph product. If Xt = {XN (t)}N∈N and Yt = {YN (t)}N∈N
have efficient indexing then Zt = {ZN (t)}N∈N has efficient indexing.

Proof. Let AX and AY be algorithms for efficient indexing for Xt and Yt. We construct an algorithm for
efficient indexing on Zt. We are given an input N ∈ N and i ∈ |ZN (t)| = |XN (t)| · |YN (t)|. We divide it
with a remainder by |YN (t)|, i = a|YN (t)| + b. We then output the t-face obtained by AX (a), AX (b) and
Claim A.6.

The ∆-efficient encoding is slightly more difficult. The efficient encoding is preserved under ⊛, but with
some deterioration in the parameters. In a [t+ 1] partite graph, we index the vertices by their side, and by
their index in their side. That is, we index a vertex by (i, j) where i ∈ [t+1] and j ∈ [|Vi|], where Vi are the
vertices of type {i}.

Claim A.10. Let X = {XN}N∈N and Y = {YN}N∈N be two sequences of [t + 1]-partite t-dimensional
simplicial complexes. Let Z = {ZN}N∈N denote their partite graph product. If X0 = {XN (0)}N∈N and
Y0 = {YN (0)}N∈N have ∆X and ∆Y efficient encoding then Z0 = {ZN (0)}N∈N has ∆X · ∆Y efficient
encoding.
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Proof. Let AX and AY be algorithms for ∆X and ∆Y efficient encoding for X0 and Y0. We construct an
algorithm for ∆X · ∆Y efficient encoding for Z0. We are given an input N ∈ N and v ∈ ZN (0). By the
definition of the partite graph product, v is of the form (vX , vY ) where vX ∈ XN (0) and vY ∈ YN (0) and
both are of type {i} for some i ∈ [t+1]. We compute ((i, jX)) = AX (N, vX) and ((i, jY )) = AY(N, vY ). We
output (i, jX , jY ).

Claim A.11. If X0 = {XN (0)}N∈N and Y0 = {YN (0)}N∈N have ∆X and ∆Y -efficient encoding then Z0 =
{ZN (0)}N∈N has ∆X ·∆Y efficient encoding.

The symmetrization process described in [FI20] goes as follows. For a [t + 1]-partite graph G and a
permutation π on [t + 1], denote π(G) the graph obtained from X by changing the names of the sides.
That is, if the vertices of G are V = (V0, . . . , Vt), then the vertices of π(G) are (Vπ(0), . . . , Vπ(T )) (recall
that the names of the sides matter in the definition of the partite graph product, Definition A.4). The
symmetrization of a graph is then given by G⊛St+1 = ⊛

π∈St+1

π(G). The symmetrization of a clique complex

and the symmetrization of a family of [t+ 1]-partite complexes extend this definition naturally.

Lemma A.12. Fix a prime power q and an integer t. Let X be the family described in Appendix B.1 and
let S = {SN}N∈N denote its symmetrization. The set {|SN (t)|}N∈N is polynomially dense.

Proof. Let X = {XN}N∈N and S = {SN}N∈N be as in the claim. Observe that |XN (t)| = |SLt+1(FqN )|.
Using Claim A.6, for all N ∈ N, the t-faces in SN are exactly the sequences of (t + 1)! t-faces in XN .
Counting them, we have |SN (t)| = |XN (t)|(t+1)! and so the sizes of SN (t) are {|SLt+1(FqN )|(t+1)!}N∈N,
which is polynomially dense.

Proposition A.13. Fix a prime power q and an integer t. Let X be the family described in Appendix B.1
and let S denote its symmetrization. S is combinatorially explicit, St = {SN (t)}N∈N has an efficient indexing
and the sequence of their sizes is polynomially-dense. Additionally, S0 = {SN (0)}N∈N has a ((t + 1)!)(t+1)!

efficient encoding.

Proof. Note that changing the names of the sides of X trivially preserves the combinatorial explicitness, the
efficient indexing and the (t+1)! efficient encoding. The symmetrization is thus a repeated ⊛ operation ((t+
1)! times) on combinatorially explicit families with efficient indexing for their t-faces and efficient encoding
for their vertices. The combinatorial explicitness of S is obtained by a repeated application of Claim A.8.
The efficient indexing of St similarly follows Claim A.9. The polynomial density is by Lemma A.12. Finally,
the efficient encoding of S0 is again a repeated application of Claim A.10

B Explicitness of the Kaufman-Oppenheim construction

The goal of this section is to prove the explicitness of the HDX construction of [KO23]. We begin with
an overview of the construction. We then show the combinatorial description of its vertices and highest
dimension faces. We then suggest a small change in construction and claim that the use of polynomial rings
can be replaced with corresponding finite fields while preserving the HDX properties. This will allow us to
construct a polynomial time algorithm to enumerate the faces of the highest dimension. Finally, we present
a compressed representation for the vertices.

B.1 KO construction overview

The construction (theorem 4.10 of [KO23]) has 3 parameters: t, q and s where:

• t - controls the dimension of the highest dimensional face (denoted n in the original paper)

• q - controls the spectral gap

• s - controls the number of vertices, such that the number tends to infinity as s tends to infinity
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Let t ≥ 2 and let q be a prime power such that q > (t− 1)2 and s ∈ N. We let

Rs = Fq[x]/ ⟨xs⟩

Rs is an Fq algebra with generating set {1, x}. We let

G = SLt+1(Rs)

i.e., G is the set of (t+ 1)× (t+ 1) matrices with determinant 1 and elements from Rs.
Next, we define t + 1 subgroups K{i} of G. For 0 ≤ i, j ≤ t, i ̸= j and r ∈ Rs, let ei,j(r) be the

(t + 1) × (t + 1) matrix with 1’s along the main diagonal, r in the (i, j) entry and 0’s in all other entries.
We define the subgroup K{i} for every 0 ≤ i ≤ t to be the subgroup that is generated by all the elements
ej,j+1(r) where j ̸= i and r ∈ R2. It is a fact that K{0} is the subgroup of all upper triangular matrices with
1 on the diagonal, R2 elements on the next diagonal, R3 on the next one and so forth, and so it is a subgroup
of order qc for some constant that can be exactly computed and is O(t3). K{i} are the same excepts that
the entries of the matrix are permuted.

The set of vertices X(0) of the complex X, is the collection of the cosets gK{i} where g ∈ G and 0 ≤ i ≤ t.
The vertex gK{i} is said to have type i. Thus, the vertex set is a disjoint collection of t + 1 sets. There is
an edge between vertices v1 and v2 if their associated cosets have a non-empty intersection. Similarly, there
is a k-face on k+ 1 vertices if their associated cosets intersect. The top-dimensional faces correspond to the
intersection of t+1 cosets, and it is a fact that either this intersection is empty, or it has cardinally one, i.e.,
there is exactly one element g ∈ G thas has the specified cosets. It can also be verified that this complex is
a clique complex.

To make the HDX structure fully explicit we need to modify the [KO23] construction. Instead of defining
Rs to be Fq[x]/⟨xs⟩, we choose a degree s irreducible polynomial P over Fq and we let Rs = Fq[x] mod P .
This makes Rs a field rather than a ring, and does not affect anything else.3

We now show full explicitness, i.e., combinatorial explicitness, efficient indexing for t-faces, efficient
encoding for vertices and polynomial density of the sizes of the complexes in the family.

• (Combinatorial explicitness) We explain how to compute the rotation map of the inclusion graph of
the HDX. Given a t-face g and i ∈ [t+1], Rot(g, i) = (v, j) where v is the i’th vertex on g, and g is the
j’th t-face on v. To compute the rotation map we represent a t-face by a group element g ∈ G. Given
g and 0 ≤ i ≤ t we compute the coset gK{i} and order it lexicographically. The output vertex v is the
coset gK{i} (represented as an ordered set of group elements). We also let j be the index of g in the
coset.

• (Enumerating group elements) Our next goal is to show a mapping from [|G|] to group elements. We
first recall what |G| is. We first count the number of t × t non-singular matrices over a field Fb,
the field with b elements. This is equivalent to counting the number of t × t matrices with linearly
independent columns. For the first column out of all bt potential columns, only the all-zeros column
is invalid resulting in bt − 1 options for the first column. For the i ∈ {2, ..., t}’s column, we need to
choose a column that is independent of the previous i − 1 columns, which results in bt − bi−1 valid
options. Choosing the columns one by one results in

∏t−1
i=0(b

t − bi) distinct non-singular matrices. In
order to count the number non-singular matrices with determinant 1, notice that multiplying the last
column of any non-singular matrix M by a constant 0 ̸= a ∈ Fb results in a matrix with determinant
a · det(M), thus dividing the set of matrices into equivalence classes of size (b− 1). Then for the class

of non-singular matrices with determinant 1 we have |SLt(Fb)| = 1
b−1

∏t−1
i=0(b

t − bi).

Claim B.1. (Enumerating SLt(Fb)) Let b be a prime power and SLt(Fb) be the special linear group
over a field Fb. There exists a polynomial time computable bijection f : [|SLt(Fb)|] → SLt(Fb).

3Theorem 4.10 in Kaufman and Oppenheim states the properties we require from Rs and all of them hold: It is still the
case that Fb is finite and |Fb| tends to infinity with s. For every s > t, T t/P = T t where T = {a0 + a1x : a0, a1 ∈ Fq}.
Theorem 2.4, Corollary 3.3 and Theorem 3.10 are invariant to the replacement of ⟨xs⟩ by (P ). They also need the conditions
for corollary 4.9 which are: The construction still uses coefficients from R = Fq . Fq [x]/(P ) is a finitely generated R-algebra.
the smallest proper submodule of T = {a0 + a1x : a0, a1 ∈ Fq} is of index q.
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Proof. Following the size analysis of |SLt(Fb)|, in order to represent matrices from SLt(Fb), one has

(bt − bi) options for the i’th column when i ∈ [t− 1], and bt−bt−1

b−1 options for the last column.

A number c ∈ [|SLt(Fb)|] can be represented as a vector (a1, ..., at) where for i ∈ [t− 1]: ai ∈ [bt − bi]

and for i = t: at ∈ [ b
t−bt−1

b−1 ]. In order to compute f it remains to map the vector (a1, ..., at) into a

distinct matrix

 | |
v1 · · · vt
| |

. Notice that the encoding can be done iteratively, at the i’th step we

need to encode the i’th column vi given ai and the previous i−1 encoded columns v1, ..., vi−1 which are
linearly independent. Since the vectors are linearly independent, by using elementary row operations
one can find an invertible matrix M of size t× t such that

M ·

 | |
v1 · · · vi−1

| |

 =

(
I(i−1)×(i−1)

0t−(i−1)×(i−1)

)
(B.1)

Note that there are multiple solutions to M in Equation (B.1). In order for the encoding and decoding
process to be consistent, M should be calculated in any deterministic way from (v1, ..., vi−1).

Then in order to map ai to a new linearly independent vector in v1, ..., vi−1: first map ai to a vector
with a non zero element in the indices {t−(i−1), ..., t} and then apply M−1. ai can be simply mapped
to such vector by enumerating all b-ary vectors starting from bi.

For the last index i = t, one can map at to all vectors with 1 in their last non-zero index. While
not all such mappings result in encoded matrices with determinant > 1, an equivalence class of each
matrix can be efficiently computed by multiplying the last column by any scalar - allowing to find an
equivalent unique matrix with determinant 1.

• (Representing a vertex) We now get a vertex, which is a coset gK{i}, represented by an ordered set of
group elements, and we want to map it to a compressed set. The mapping will be one-to-one but not
a bijection, mapping the cosets to a slightly larger than optimal domain.

Given a coset gK{i}, let m be a member of the coset. As m is invertible with determinant one, the
matrix can be decomposed using PLU-factorization into Pm = LDU where P is permutation matrix,
L is lower-unitriangular, U is upper-unitriangular and D is diagonal with determinant one. While P
is not unique, the encoding is consistence as long as P is calculated in a deterministic way given m.

PLU factorization For an invertible matrix m, its m = LU decomposition is calculated using Gaus-
sian elimination without row swapping where U is the result of the elimination and L matches
the elimination process. While not every elimination process is possible due to zero division, one
can always find a row permutation matrix P such that the factorization Pm = LU exists (and is
unique for Pm). Then one can easily find a diagonal matrix D that normalizes L,U such that
they are unitriangular and Pm = LDU . Such a D is unique. Furthermore, the factorization can
be calculated in polynomial time. For more information we refer the reader to [Lyc20].

We begin by encoding vertices from the coset gK{0}. Since the multiplication of two upper-unitriangular
matrices results in an upper-unitriangular matrix and K{0} is a subgroup of upper-unitriangular ma-
trices, every matrix in gK{0} differs up to a multiplication in an upper-triangular matrix U ′. Then for
a fixed ordering of the rows, either all elements of gK{0} have an LDU decomposition with the same
L and D or do not have such a decomposition at all. Furthermore for a fixed ordering of the rows
where LDU decomposition exists, in every coset there is exactly one matrix U where each polynomial
Ui,j ∈ Fb = Fq[t]/(P ) for 0 < i < j ≤ t: the first j− i+1 monomials have zero coefficient. We illustrate
this for t = 2:
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Let U be any unitriangular matrix U =

1 u1 u2

0 1 u3

0 0 1

 for u1, u2, u3 ∈ Fb. According to the con-

struction K{0} is of the form K{0} =

1 a0 + a1t c0 + c1t+ c2t
2

0 1 b0 + b1t
0 0 1

 with a0, a1, b0, b1, c0, c1, c2 ∈ Fq.

Then the multiplication of U and the subgroup results in a matrix of the form:

UK{0} =

1 a0 + a1t+ u1 c0 + c1t+ c2t
2 + (b0 + b1t)u1 + u2

0 1 b0 + b1t+ u3

0 0 1


Then there is always a single member in K{0} such that:

– a0, a1t cancel the two lowest monomials of index (1, 2)

– b0, b1t cancel the two lowest monomials of index (2, 3)

– c0, c1t, c2t
2 cancel the three lowest monomials of index (1, 3)

Thus, given gK{0}, one can find and fix a row ordering P such that every member of the coset has an
LDU decomposition and encode the selected permutation out of the ∆ = (t+1)! possible permutations.
Then, find the member m ∈ gK{0} where for Pm = LDU , U has zero leading monomials as described
above. Encode the non-trivial polynomials coefficients of L, D, U where:

– In D there is no need to encode the last item Dt,t since the matrix is of determinant 1 and∏t
i=0 Di,i = 1.

– In U do not encode the appropriate zero coefficients. This ensures that the encoding of the cosets
is smaller by a |K{0}| factor in comparison to the previous encoding of SLt(Fb) elements.

When given a coset of K{i} for i ̸= 0, one can always permute the coset members to the form of K{0}
and encode it as described above. As part of the representation of each vertex the index i is encoded.

22
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


