
Succinct Computational Secret Sharing∗

Benny Applebaum
Tel Aviv University

Amos Beimel
Ben-Gurion University

Yuval Ishai
Technion

Eyal Kushilevitz
Technion

Tianren Liu
Peking University

Vinod Vaikuntanathan
MIT

June 16, 2025

Abstract
A secret-sharing scheme enables a dealer to share a secret s among n parties such that only

authorized subsets of parties, specified by a monotone access structure f : {0, 1}n → {0, 1}, can
reconstruct s from their shares. Other subsets of parties learn nothing about s.

The question of minimizing the (largest) share size for a given f has been the subject of a
large body of work. However, in most existing constructions for general access structures f , the
share size is not much smaller than the size of some natural computational representation of f ,
a fact that has often been referred to as the “representation size barrier” in secret sharing.

In this work, we initiate a systematic study of succinct computational secret sharing
(SCSS), where the secrecy requirement is computational and the goal is to substantially beat
the representation size barrier. We obtain the following main results.

• SCSS via Projective PRGs. We introduce the notion of a projective PRG, a pseudo-
random generator for which any subset of the output bits can be revealed while keeping the
other output bits hidden, using a short projective seed. We construct projective PRGs with
different levels of succinctness under a variety of computational assumptions, and apply
them towards constructing SCSS for graph access structures, monotone CNF formulas,
and (less succinctly) useful subclasses of monotone circuits and branching programs. Most
notably, under the sub-exponential RSA assumption, we obtain a SCSS scheme that, given
an arbitrary access structure f , represented by a truth table of size N = 2n, produces
shares of size polylog(N) = poly(n) in time Õ(N). For comparison, the share size of the
best known information-theoretic schemes is O(N0.58).

• SCSS via One-way Functions. Under the (minimal) assumption that one-way functions
exist, we obtain a near-quadratic separation between the total share size of computational
and information-theoretic secret sharing. This is the strongest separation one can hope
for, given the state of the art in secret sharing lower bounds. We also construct SCSS
schemes from one-way functions for useful classes of access structures, including forbidden
graphs and monotone DNF formulas. This leads to constructions of fully-decomposable
conditional disclosure of secrets (also known as privacy-free garbled circuits) for general
functions, represented by a truth table of size N = 2n, with share size polylog(N) and
computation time Õ(N), assuming sub-exponentially secure one-way functions.

∗This is the full version of a paper that appears in STOC’23.
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1 Introduction

Secret sharing [Sha79, Bla79, ISN87] is a powerful cryptographic technique that allows a dealer to
distribute shares of a secret to n parties such that certain authorized subsets of parties can recover
the secret, while unauthorized subsets do not learn any information about it. More formally, a secret-
sharing scheme realizing a monotone access structure (a monotone function) f : {0, 1}n → {0, 1} is
a randomized algorithm that, given a secret s, outputs n shares sh1, . . . , shn such that the following
properties hold:

• Correctness: for any (x1, . . . , xn) ∈ {0, 1}n where f(x1, . . . , xn) = 1, corresponding to an
“authorized subset” of parties T = {Pi : xi = 1}, the secret s can be recovered given the
(authorized) collection of shares (shi)i:xi=1;

• (Information-Theoretic) Secrecy: for any (x1, . . . , xn) ∈ {0, 1}n where f(x1, . . . , xn) = 0,
the (unauthorized) collection of shares (shi)i:xi=1 reveal nothing about the secret.

Throughout this work, we will assume that the secret s is a single bit, and focus on the share
size, defined as the bit-length of the largest share shi, as our main complexity measure. (It will
sometimes be convenient to consider the total share size instead.) The question of minimizing the
share size for a given f has been the subject of a large body of work, spanning more than three
decades. However, in most existing constructions for general access structures f , the share size is
not much smaller than the size of some natural computational representation of the access structure
f , be it monotone CNF or DNF formulas, monotone circuits or branching programs, or a graph.
This phenomenon has often been referred to as the “representation size barrier” in secret sharing.

In a prototypical scenario where the access structure f is an arbitrary monotone function, natural
constructions from the 1990s achieved a share size of 2n bits, and even slightly better, namely
O(2n/

√
n) bits [BL90]. This number corresponds to the size of the smallest possible monotone

formulas for worst-case functions f . A construction based on monotone span programs was presented
in [KW93]. This construction yields better secret-sharing schemes for some functions [BGW99];
however it does not improve the share size for arbitrary functions. We have also known from the
90s that there is an (explicit) monotone function f that requires a total share size of Ω(n2/ log n)

bits [Csi97, Csi96], a far cry from the upper bound. No better lower bounds are known for general
secret-sharing schemes, even in a non-explicit sense.1

The first improvement to this state of affairs came with the works of Liu, Vaikuntanathan,
and Wee [LVW18, LV18], that achieved a share size of 20.994n. This has since been improved to
(1.5)n+o(n) < 20.585n in a recent sequence of exciting results [ABF+19, ABNP20, AN21]. Notwith-
standing this excitement, Applebaum, Beimel, Nir, Peter, and Pitassi [ABN+22] have recently
shown that the approaches in these works cannot achieve a sub-exponential share size, in fact even
shares of size 2o(n/ log2 n). This is the starting point of our work.

Breaking the Impasse with Computational Assumptions. Modern cryptography was born
out of the ashes of Shannon’s seminal work from the 1940s, which showed that encrypting n bits

1Better lower bounds are known for the very special class of linear secret-sharing schemes, where the reconstruction
algorithm, for every subset of parties, is restricted to be a linear function of the shares, see e.g., [BGW99, PR17].
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required keys of size at least n bits, by moving to the world of computational security where secrecy
is guaranteed only against time-bounded adversaries. In the hopes of repeating this success story, it
is natural to ask:

Can computational cryptography help break the impasse in secret sharing?

Secret-sharing schemes with computational security have been considered previously (see Section 1.2);
however, the previous computational constructions fail to achieve this goal. Specifically, the following
concrete questions beg for our attention:

1. Super-polynomial improvements for high-end functions? Consider an arbitrary
monotone function f over n bits whose description length is close to the truth-table size
N = 2n. As already mentioned, information-theoretic constructions achieve polynomial
savings and yield secret sharing schemes with shares of size N c for a constant c < 1. Is
it possible to obtain super-polynomial savings in N by moving to computational security?
Ideally, we would like to reduce the share size to be polylogarithmic in the truth-table size,
i.e., poly(n) = poly(logN).

2. Polynomial improvements for efficient functions? The recent line of information-
theoretic constructions does not seem to yield significantly-better secret-sharing schemes for
“efficiently computable” functions. For example, even if a function f admits a polynomial-size
formula, say of size n3, we still do not know how to realize it with total share size of, say,
n2.99. The situation is essentially similar with respect to computational secret-sharing schemes.
While computational assumptions help us handle functions f that can be represented by
stronger, more expressive, computational models such as monotone circuits [Yao89] or even
monotone NP-relations [KNY17], the share size in these schemes grows at least linearly with
the description of f . The question of realizing functions that are S(n)-time computable with
respect to some natural expressive computational model (say monotone circuits) with share
size polynomially smaller than S, has so far remained open.

3. Separating computationally secure schemes from information-theoretic schemes?
It is known that computational secret sharing can lead to savings when the secret is
long [Kra94].2 However, in the case of single-bit secrets, where the cost is due to the
“structure” of the function f , we do not have such a separation, and we do not know whether
computational assumptions buy us anything beyond the power of information-theoretic tools.

To capture these questions, we initiate a systematic study of succinct computational secret-sharing
schemes (SCSS for short, pronounced “success”) that, given a description of a function f , under some
representation model (e.g., truth tables, graphs, CNFs, DNFs, or monotone circuits), realizes f with
share size smaller than the representation of f . We construct succinct computational secret-sharing
schemes for various classes of access structures, breaking the information-theoretic impasse, and

2In fact, the existence of encryption schemes for long messages with short keys that bypass Shannon’s lower-bound
also (weakly) demonstrates such a separation. To see this, observe that any symmetric-encryption scheme gives rise
to a “2-out-of-2” secret-sharing scheme in which one party receives the key and the other party receives the ciphertext.
(Formally, the underlying function f is an AND of 2 bits.) Shannon’s lower bound says that, information-theoretically,
each share must be as long as the message, whereas computationally-secure encryption beats this bound.
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providing affirmative answers to all the above questions. For example, one of our signature results
is the following:

Theorem 1.1 (SCSS for truth tables, Informal). Under the sub-exponential RSA assumption,
for every monotone function f : {0, 1}n → {0, 1}, represented as a truth table of size N = 2n,
there exists a computational secret-sharing scheme with share size polylog(N) = poly(n). The
scheme is secure against any poly(N)-time adversary, and its sharing and reconstruction
algorithms run in time Õ(N).

Alternatively, under the standard RSA assumption, we can achieve share size N ε for any constant
ε > 0. Note that here, and in the rest of the introduction, we simplify the security definition by
considering the representation size N to also be a security parameter. If we separate between the
two parameters (as in Definition 2.5), the shares have size poly(λ, logN). See Remark 2.6 for further
discussion.

Several of our constructions are enabled by a new cryptographic primitive called a projective
pseudorandom generator (projective PRG, or pPRG for short), which we define and construct
from several standard “public-key” type assumptions including the RSA assumption. We describe
these, and additional results that assume only one-way functions, in the sequel.

1.1 Our Results and Techniques

We now proceed to describe our results in greater detail.

1.1.1 pPRG-based Constructions

Projective pseudorandom generators. Our main tool for constructing SCSS is a new crypto-
graphic primitive called a projective pseudorandom generator (abbreviated pPRG) that we define
and construct. A pPRG expands a short seed into a longer pseudorandom string for which any
subset of the bits of the pseudorandom string can be revealed without disclosing any information
about the other bits of the string. Of course, this can be accomplished by simply giving the subset
of the output bits; however, we require that this is done using a short projective key (or seed). More
formally, a pPRG consists of 3 algorithms: (1) a setup algorithm, which outputs a master key that
can be used to generate a longer pseudorandom string, (2) a key generation algorithm that, given
the master key and a set T , outputs a short projective key that is associated with this set, and (3)
an evaluation algorithm that, given T and the projective key associated with T , outputs the subset
T of the output bits of the pseudorandom string. We require a pPRG to be robust in the sense
that an adversary who chooses sets T1, . . . , T` and is given their respective projective keys cannot
learn information on the output bits not in T1 ∪ · · · ∪ T`. (See Section 3 for the formal definition.)
We construct a pPRG with short projective keys under the sub-exponential RSA assumption.

Theorem 1.2 (PPRG from RSA, informal). Under the sub-exponential (resp., polynomial) RSA
assumption, there exists a sub-exponentially-robust pPRG (resp., polynomially-robust pPRG)
with sub-exponential stretch (resp., arbitrary polynomial stretch) whose projective keys and
public parameters are both fully succinct, i.e., of length poly(k, logm), where m is the output
length and k the input length.

3



Our pPRG from the RSA assumption is based on a construction of [AIKW15] of an online-
efficient randomized encoding based on the RSA assumption. However, the original construction
suffers from long public parameters. Specifically, for a pPRG with output length m, the public
parameters contain m random primes. In order to prove Theorem 1.2, we have to reduce the length
of the public parameters to polylog(m).

The idea is to generate the primes in a “pseudorandom” way, using a sampler algorithm that maps
a short random tape to the m primes; we provide the short tape as part of the public parameters.
This generation should be done with some care since the pPRG adversary gets to see the random
tape as part of the public parameters. It turns out that the security reduction to RSA goes through
as long as the sampler satisfies the following properties: (1) except with negligible probability, the
outputs of the sampler are m distinct primes; (2) the marginal distribution of every single prime
is uniform over the set of primes whose length is the security parameter; and (3) there exists an
efficient planting procedure that, given a prime e and an index i, samples a random tape that
generates e as its ith output. We present a simple construction of such a sampler with a random tape
of size polylog(m) using a k-wise independent distribution for an appropriate k. As a result, the
total length of the public parameters is small, and can be even integrated as part of the projective
keys. See Section 3.2 for a full description of this construction.

Perhaps unsurprisingly, strong cryptographic primitives such as indistinguishability obfuscation
(iO) give easier routes towards SCSS. For instance, general-purpose pseudorandom correlation
generators based on iO can be used to generically compress the shares of existing (non-succinct)
secret-sharing schemes. This requires a long but reusable common random string [HIJ+16, BCG+19,
ASY22] (building on [HW15]), which can be compressed using a random oracle. In Section 3.3, we
describe a simple construction of a pPRG from iO and somewhere statistically binding (SSB) hash
functions [HW15]. Combined with the iO construction of [JLS22] and constructions of SSB hash
functions [OPWW15], this implies a succinct pPRG based on (the conjunction of) three standard
assumptions that do not include RSA.

Theorem 1.3 (PPRG from IO and SSB hash functions, informal). Under the assumption that
indistinguishability obfuscation schemes and somewhere statistically binding hash functions
with sub-exponential (resp., polynomial) security exist, there exists a sub-exponentially-
robust pPRG (resp., polynomially-robust pPRG) with sub-exponential stretch (resp., arbitrary
polynomial stretch) whose projective keys and public parameters are both fully succinct, i.e.,
of length poly(k, logm), where m is the output length and k the input length.

Finally, we also construct pPRGs with weaker parameters based on other assumptions: the
decisional Diffie-Hellman assumption, with projective keys of size O(λ) where λ is the security
parameter, and public parameters of size O(m2)); the decisional bilinear Diffie-Hellman assumption,
with projective keys of size O(mδ) and public parameters of size O(m2(1−δ)) for every constant δ,
with the additional property that the public parameters are independent of the pPRG seed and
are reusable; and the learning with errors assumption, with projective keys of size O(λ) and public
parameters of size O(m). Since the public parameters in these constructions are not succinct, they
are insufficient to derive Theorem 1.2, though they do yield some non-trivial SCSS results for special
representations such as graphs. This is an uncommon situation in cryptography, namely, a natural
task for which we have an efficient construction from the RSA assumption but seemingly not from
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Representation
Information-theoretic

secret sharing
Computational
secret sharing

Computational
assumption

Truth tables of size N = 2n N0.585 = 20.585n [AN21] polylog(N) = poly(n) pPRG

CNF formulas with m clauses O(m) [ISN87] polylog(m) pPRG

Graphs with n vertices O(n/ logn) [EP97] polylog(n) pPRG

Partite functions with truth table size N 2Õ(
√
n) [LVW18] polylog(N) = poly(n) OWF

Forbidden graphs with n vertices 2Õ(
√
logn) [LVW17] polylog(n) OWF

Csirmaz’s access structure
(total share size)

Θ(n2/ logn) [Csi96] Õ(n) OWF

Table 1: Summary of our main SCSS constructions. We compare the share size to the best known
information-theoretic secret-sharing schemes. For each construction we list the assumption. We
assume sub-exponential security by default. We will let N = 2n. Recall that pPRGs can be based
either on RSA or on iO and SSB hash functions.

other concrete assumptions, even ones as powerful as bilinear maps and LWE. We defer further
description of these constructions to the full version of this paper.

SCSS for CNF. We use pPRGs to construct SCSS for various computational representations.
Our first construction is a SCSS for monotone CNF formulas.

Theorem 1.4 (SCSS for CNF, informal). Assume that there is a robust pPRG in which the
size of the projective keys is poly(logm), where m is the output length of the generator. Then,
there is a SCSS for monotone CNF formulas with share size poly(logm), where m is the
number of clauses in the CNF formula.

The idea for this construction is to start with the information-theoretic secret-sharing scheme
of [ISN87] for CNF formulas and use pseudorandom bits in it instead of random bits. In particular,
in the construction of [ISN87] for a formula ϕ(y1, . . . , yn) with m clauses, there is a random bit for
each clause of the formula and one public bit — the exclusive-OR of the m bits and the secret. The
share shi contains all bits of clauses that contain yi. Given a satisfying assignment x ∈ {0, 1}n, in
each clause there is at least one variable that is satisfied by x, meaning that the shares (shi)i:xi=1

contain the m bits of the clauses, and therefore the secret can be recovered from them and the
public bit. Note that in the above scheme, there are m random bits and each share contains a subset
of them. This is exactly the functionality provided by a pPRG — the m bits will be the output of
the pPRG and the share of a party is the projective key for the appropriate set. In particular, the
size of the shares is determined by the length of the projective keys.
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As we can represent every monotone function f : {0, 1}n → {0, 1} by a monotone CNF
formula with m ≤ 2n clauses, we can construct a SCSS for all access structures with share size
polylog(m) = poly(n), i.e., derive Theorem 1.1. In this case, we need the sub-exponential RSA
assumption, or a sub-exponentially secure IO scheme and an SSB hash function family.

SCSS for monotone circuits. We generalize the construction for monotone CNF to monotone
circuits. Yao [Yao89, VNS+03] showed how to construct a computational secret sharing (CSS)
scheme for monotone circuits over OR and AND gates of unbounded fan-in (hereafter referred to
as AND-OR circuits) with small share size and public information whose size is linear in the
number of wires in the circuit (and the security parameter). We use a pPRG to get a construction
whose public information size is linear in the number of gates which, for general circuits, yields a
quadratic improvement. In fact, we can get OR gates “for free” and pay only for AND gates (this
yields a strict generalization of the CNF construction).

Theorem 1.5 (Quadratic saving for efficient functions, Informal). Assume that there is a robust
pPRG in which the length of the projective keys is polylog(m), where m is the output length
of the generator. Then, there is a SCSS for monotone AND-OR circuits with share size
polylog(m) and public information of length m∧, where m is the number of gates and m∧ is
the number of AND-gates.

SCSS for graphs. Let us move back to “low-end” functions and consider secret-sharing schemes
for graphs. An undirected graph G = (V = {1, . . . , n} , E) represents the monotone function
f : {0, 1}n → {0, 1} whose minterms are the edges of G. That is, a coalition I should be able to
recover the secret if and only if I contains a pair of parties, i, j ∈ [n] such that (i, j) ∈ E. Equivalently,
any such graph structure can be represented by a monotone 2-DNF. Graph access structures form
an intriguing example of a simple family of functions for which we can hardly get any improvement
over the trivial upper bound of O(n) on the per-party share size. Indeed, despite an intensive study
(e.g., [BD91, BS92, CSGV93, vD95, BDDV97, Csi05, CT13, Csi09, Csi15, BFM16, FKMP18, BF20]),
the best-known information-theoretic secret-sharing scheme for graphs have per-party share size
O(n/ log n) [EP97]. In contrast, we construct a SCSS for graphs with polylog(n)) per-party share
size.

Theorem 1.6 (SCSS for graphs, Informal). Assume that there is a robust pPRG in which the
length of the projective key is polylog(m), where m is the output length of the generator. Then,
there is a SCSS for graphs with per-party share size polylog(n), where n is the number of
vertices in the graph. In particular, under the sub-exponential RSA assumption, there is a
SCSS for graphs with share size polylog(n).

The idea of this scheme is to start with the following simple information-theoretic scheme: Let
r1, . . . , rn be random bits. The share shi contains ri⊕ s and (rj)(i,j)∈E . For (i, j) ∈ E, the share shi
contain rj and the share shj contains rj ⊕ s, thus the secret s can be reconstructed from these two
shares. In this scheme, all bits (but one) held by each party are random bits, thus, we can use a
pPRG to generate them. The share shi will contain the bit ri ⊕ s and the projective key for the
(pseudo)-random bits corresponding to the set of its neighbors.
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1.1.2 SCSS from One-Way Functions

For several classes of functions, we can construct SCSS schemes under the most basic cryptographic
assumption that one-way functions exist. We first consider a central sub-class of monotone functions
that we call partite functions.

Partite Functions (aka CDS). Partite functions f : {0, 1}2n → {0, 1} are monotone functions
that encode every (possibly non-monotone) function g : {0, 1}n → {0, 1} by essentially allocating
a variable to each original literal, i.e., f(x1,¬x1, x2,¬x2, . . . , xn,¬xn) = g(x1, . . . , xn) for every
x ∈ {0, 1}n. (See Definition 5.1 for a formal definition.) Secret sharing for partite functions is an
extremely useful primitive that captures cases where the parties are partitioned into pairs, and
we mainly care about coalitions that contain exactly one party from each pair. For example,
this notion was studied by [BI05, VV15] under the terminology of non-monotone secret sharing
schemes. Furthermore, secret-sharing schemes for partite functions are equivalent to multi-server
fully-decomposable conditional disclosure of secrets (CDS) protocols, a cryptographic primitive
introduced by Gertner et al. [GIKM00], which has interesting applications, such as symmetric
private information retrieval protocols [GIKM00], attribute based encryption [GKW15, Att14,
Wee14, IW14], (priced) oblivious transfer [AIR01], and secret-sharing schemes [LV18, ABF+19,
ABNP20, AN21]. Finally, partite secret-sharing schemes are essentially equivalent to privacy-free
garbling schemes [FNO15], and can also be captured by partial garbling schemes [IW14]. The
best-known share size in (information-theoretic) secret-sharing schemes for general partite functions
is 2O(

√
n logn) [LVW18].

Theorem 1.7 (SCSS for partite functions, informal). Assuming one-way functions with sub-
exponential security exist, for partite functions f : {0, 1}2n → {0, 1}, represented by truth tables
of size N = 2n, there exists a SCSS with share size polylog(N) = poly(n).

As before, under the existence of polynomially-hard OWF, we can achieve share size N ε for any
constant ε > 0. The same applies to the other results in this subsection.

Thinking of secret-sharing for general partite functions as a weak form of “non-monotone” secret-
sharing, we get a high-end result (“every function can be realized by a non-monotone SCSS with
polylogarithmic complexity”) that is weaker than our strongest RSA-based theorem (Theorem 1.1)
but can be based on a more conservative cryptographic assumption.

Forbidden graphs. Secret-sharing schemes for forbidden graphs [SS97] are similar to secret
sharing for graphs discussed above, except that all triplets are authorized. That is, an undirected
graph G = (V = {1, . . . , n} , E) defines a function f : {0, 1}n → {0, 1} that accepts an input I,
representing a subset of [n], if |I| ≥ 3, or if I is an edge in the graph. That is, f is a slice function
that rejects (resp. accepts) inputs of weight smaller (resp., larger) than 2, and handles weight-2
inputs according to the specification of the graph G. Secret-sharing schemes for forbidden graphs
are equivalent (up to a factor of log n) to 2-server conditional disclosure of secrets (CDS) protocols,
defined in [GIKM00]. The following theorem can be obtained as a corollary of Theorem 1.7.
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Theorem 1.8 (SCSS for forbidden graphs from one-way functions, informal). Assuming one-way
functions with sub-exponential security exist, for every n-vertex graph G there exists a SCSS
for the forbidden graph G with share size polylog(n).

Secret sharing for forbidden graphs seems easier to realize than for graphs: One can easily turn a
general graph SCSS into a forbidden-graph SCCS with a small overhead, but no such transformation
is known in the converse direction. Thus, compared to Theorem 1.6, Theorem 1.8 applies to a more
restricted family of functions but employs a weaker assumption.

SCSS for DNFs. We move on from sub-classes of monotone functions to general monotone
functions represented by monotone DNF formulas. The best information-theoretic secret-sharing
for monotone DNF formulas [ISN87] has share size m, the number of terms in the formula. This
scheme can be generically transformed into a computational secret-sharing scheme with small shares
and public information of size O(mn) (place an encryption of each share in the public file and hand
each party the corresponding key). We show that one can do better, obtaining SCSS for monotone
DNF with small share size and public information of size only m.

Theorem 1.9 (SCSS for DNFs from one-way functions). Assuming one-way functions with sub-
exponential security exist, there exists a SCSS for monotone DNF formulas over n variables
and m > n terms with polylog(m) share size and m bits of public information.

We show that for some monotone DNF formulas, the public information can be eliminated, and
use the scheme to derive the first separation between computational and information-theoretic single-
bit secret-sharing. Our separation strongly relies on the best-known lower bound of Ω(n2/ log n) on
the share size in information-theoretic secret-sharing scheme of [Csi97, Csi96]. We tweak the original
function from [Csi96] in a way that keeps the Ω(n2/ log n) information-theoretic lower-bound valid
but makes the resulting function simple enough to be realized by a DNF-based SCSS of share size
Õ(n).

Theorem 1.10 (Separation). There exists an infinite sequence of functions (fn : {0, 1}n →
{0, 1})n∈N such that, assuming that one-way functions exist, there is a SCSS for these fn with
total share size Õ(n). In contrast, in every information-theoretic secret-sharing scheme for fn
the total share size is Ω(n2/ log n).

We summarize our results in Table 1.

1.1.3 Discussion: SCSS and pPRG vs. Other Primitives

The abstraction of projective PRGs that we introduce in this work seems on the face of it closely
related to several objects studied in “mid-range” cryptography, some prominent examples in-
clude broadcast encryption [FN94, BGW05], laconic oblivious transfer [CDG+17], trapdoor hash
functions [DGI+19], laconic secure function evaluation [QWW18], and attribute-based encryption
(ABE) [SW05, GPSW06]. These primitives can be constructed from by-now standard cryptographic
assumptions such as LWE or Diffie-Hellman-like assumptions on groups that support bilinear maps.
Yet, there are significant differences.
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For example, consider a weak version of broadcast encryption, namely, a secret-key (single-
ciphertext-secure) broadcast encryption versus projective PRGs. In both cases, there is an algorithm
that takes in a master secret key and a set T and outputs a succinct key (of size much shorter than
|T |). On the other hand, in broadcast encryption, there is a single encrypted bit which can be
recovered using additional user-specific keys. In a pPRG, there are m “encrypted bits” and recovering
the appropriate subset can be done using just the projected key (and no additional information),
a seemingly harder task. Using stronger forms of broadcast encryption such as many-key, many-
ciphertext-secure secret-key broadcast encryption, or even public-key broadcast encryption, do not
seem to help either. Finally, using a broadcast encryption scheme to construct SCSS runs into
trouble as well: a ciphertext in a broadcast encryption scheme is associated with a single set S
whereas in a secret-sharing scheme, we seemingly need to compress ciphertexts associated to all the
(exponentially many) authorized sets into a succinct representation. Nonetheless, we can use an
appropriately succinct broadcast encryption scheme to construct non-trivial SCSS schemes with
shares of size Õ(2n/2) as described below.

The relation to ABE. Let us move on to the case of symmetric-key ABE which is closer
in spirit to secret sharing. Syntactically, the ABE key-generation algorithm takes a predicate
f : X × Y → {0, 1} and generates, for every policy x ∈ X, decryption key dkx, as well as a private
“global” encryption key ek that is not attached to x. (For symmetric-key ABE, we can assume,
w.l.o.g., that the encryption key is taken to be the random coins of the key-generation algorithm.)
Encryption uses ek to map a message and an attribute y to a ciphertext c, and decryption over dkx
recovers the message if f(x, y) = 1. Consider the following, somewhat-informal, security notions
given in increasing order (from weak to strong). In all cases, the ciphertext does not hide the
attribute string y.

1. (single message given single key): An adversary who chooses a single policy x, and gets the
decryption key dkx, “learns nothing” on a single message that is encrypted under an attribute
y for which f(x, y) = 0. This notion is essentially equivalent to so-called forbidden graph
secret sharing over bipartite graphs (aka 2-party CDS). Roughly, a bipartite graph over X ×Y
can be naturally associated with a predicate f : X×Y → {0, 1}, and the share of a left party x
(resp., right party y) is associated with the decryption key dkx (resp., with the ciphertext that
encrypts the secret s under the attribute y). By Theorem 1.8, such ABE can be constructed
based on one-way functions.

2. (single message given multiple keys): An adversary who chooses many policies x1, . . . , xk, and
gets the corresponding decryption keys dkx1 , . . . , dkxk , “learns nothing” on a single message
that is encrypted under an attribute y for which f(x1, y) = . . . = f(xk, y) = 0. This
notion is equivalent to graph secret sharing over bipartite graphs (aka fully-robust 2-party
CDS [ABNP20]) via the previous transformation. A succinct solution to this problem for
general predicates f : [N ]× [N ]→ {0, 1} with complexity of poly(logN,λ) suffices for getting
general n-party secret sharing with complexity of Õ(2n/2) via a standard reduction [Pet20,
ABNP20, Bei23]. Since such succinct ABE schemes exist from the (subexponential) LWE
assumption [BGG+14] and hence, we get a general n-party secret sharing with complexity of
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Õ(2n/2) from the same assumption. We describe this construction in more detail at the end
of this section.

3. (ciphertext-free ABE for pseudorandom messages with security against multiple keys): In
contrast, a pPRG scheme yields a stronger form of succinctness: Each attribute y is associated
with a single pseudorandom bit by that is induced by the key-generation algorithm, and can
be recovered, given a matching decryption key dkx for which f(x, y) = 1, without sending
any additional ciphertext ! Furthermore, even if one holds many keys for different policies,
all the bits that are associated with attributes that are not authorized, cannot be recovered
(remain pseudorandom). This extra feature allows us to realize CNFs succinctly.3

Note that LWE yields ABE with stronger security properties, such as the security of multiple
encryption queries (which is trivially true in the public-key setting) given multiple keys. However,
it is not clear whether these extra features can be converted into a ciphertext-free property. It
should also be noted that, while pPRGs seem like a strong object, we do not even know whether
public-key assumptions are necessary for realizing them.

As described in bullet (2) above, the existence of secret-key attribute-based encryption (ABE)
schemes with succinct keys or ciphertexts implies n-party SCSS schemes with share size roughly√
N = 2n/2 which, while a far cry from the polylogarithmic share size offered by Theorem 1.1, is

still an improvement over the best known information-theoretic constructions. Here, succinctness
refers to keys (or ciphertexts) with size that grows polylogarithmically with the size of the policy
circuit (or the attributes). Such ABE schemes are known from the LWE assumption [BGG+14] and
from the bilinear Diffie-Hellman exponent assumption [BGW05].4

For the sake of completeness, let us directly describe how to construct SCSS based on succinct
ABE schemes. (This is essentially the reduction from [Pet20, ABNP20, Bei23].) Consider a
symmetric-key ABE scheme as in bullet (2) above. To share a bit b, do the following. For every
string xi ∈ {0, 1}n/2, generate a secret key dkxi and for every yj ∈ {0, 1}n/2, generate a ciphertext
ctyj encrypting the secret bit b. Then:

• Publish dk0n/2 and ct0n/2 .

• Additively secret-share dkx, for each x ∈ {0, 1}n/2 \ {0n/2}, among all the players 1 ≤ i ≤ n/2
for which x[i] = 1.

• Additively secret-share cty, for each y ∈ {0, 1}n/2\{0n/2}, among all the players n/2+1 ≤ i ≤ n
for which y[i] = 1.

If players in a set (whose characteristic vector is) x||y come together, they can recover dkx and cty
and therefore the secret bit b if and only if f(x, y) = 1.

3Indeed, if we relax security and assume that the adversary holds only a single key, this notion is essentially
equivalent to puncturable PRFs [KPTZ13, BW13, BGI14] that can be based on (sub-exponentially strong) one-way
functions.

4The latter construction is via the construction of broadcast encryption with constant-size secret keys and
ciphertexts and linear-size public parameters from [BGW05] which immediately gives a succinct ABE scheme of the
type we need. See also [Wee16, CMM16] for constructions based on simpler assumptions related to bilinear maps.
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1.2 Other Related Works

For uniform access structures that are succinctly described by a Turing Machine (TM), the witness
encryption based approach of [KNY17] can be made succinct (in the sense of having shorter shares
than the TM runtime) by applying witness encryption for TMs, which in turn follows from iO for
TMs or just standard (subexponential) iO [BCG+18, KLW15, IPS15]. However, for general access
structures which are not decidable by succinct Turing machines, these results do not give us SCSS
schemes.

The use of computational assumptions in secret sharing is not new. Krawczyk [Kra94] considered
sharing large secrets supporting threshold access structures and showed how to use computational
assumptions to obtain shares of size smaller than the secret, breaking an information-theoretic
lower-bound proved by Karnin, Greene, and Hellman [KGH83]. Yao [Yao89, VNS+03] showed how to
construct, assuming the existence of one-way functions, a computational secret-sharing scheme with
polynomial-size shares for functions f computable by poly(n)-size monotone circuits, a feat that is
known in the information-theoretic world only for the special case of formulas [BL90]. Komargodski,
Naor, and Yogev [KNY17] gave a construction of a computational secret-sharing scheme for any
monotone function in NP (assuming witness encryption for NP and one-way functions). The shares
in Yao’s scheme and in Komargodski et al.’s scheme grow with the circuit size, and so these schemes
do not seem to achieve succinctness in our sense. Cachin [Cac95] constructed a computational
secret-sharing scheme for arbitrary monotone functions, where the size of each share is the size of
the secret, however, it has long public information of size 2n.

Computational assumptions were widely used in order to support security under active adversaries
starting with the works of Feldman [Fel87] and Pedersen [Ped91] on computational verifiable secret
sharing, and also in the more restricted setting of robust secret sharing [Kra94]. A formal treatment
of computational secret-sharing and robust secret-sharing was given by Bellare and Rogaway [BR07].

Organization. Following some preliminaries (Section 2), we define and construct projective PRGs
(Section 3) and use them to derive SCSS for graphs, CNF formulas, truth tables and monotone
circuits (Section 4). Finally, based on one-way functions, we construct SCSS for Partite Functions
and Forbidden Graphs (Section 5) and present a separation between computational secret sharing
and information-theoretic secret sharing (Section 6).

2 Preliminaries

Notation. Let [m] denote the set {1, 2, . . . ,m}. For a string x ∈ {0, 1}n and an index i ∈ {0, 1}n,
let x[i] denote the ith bit of x, and for a subset S ⊆ [n], let x[S] denote the substring of x indexed
by the locations in S. For a finite set S, let x←U S denote sampling x uniformly at random from
S. For a string x ∈ {0, 1}n, we denote Sx = {i : xi = 1} . A function ε(n) is a negligible function if
for every positive polynomial function p(n), there exists n0 ∈ N s.t. f(n) < 1/p(n) for all n > n0.
For two distributions D1 and D2, let D1 ≈c D2 denote the fact that D1 and D2 are computationally
indistinguishable.

Definition 2.1 (Monotone functions and minterms). For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
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{0, 1}n, we write x ≤ y if xi ≤ yi for every i ∈ [n], and we write x < y if x ≤ y and x 6= y. We
say that a function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) for every x ≤ y. A minterm
of a monotone function f is an input y ∈ {0, 1}n such that f(y) = 1 and f(x) = 0 for every
x < y.

One-way functions and output-variable pseudorandom generators. A poly(λ)-time com-
putable function f : {0, 1}∗ → {0, 1}∗ is t(λ)-secure one-way function (OWF) if for every t(λ)-time
non-uniform adversary A and all sufficiently large λ, it holds that

Pr
x∈U{0,1}λ

[A(1λ, f(x)) ∈ f−1(f(x))] ≤ 1/t(λ).

If f is a t(λ)-secure OWF for every polynomial t(λ) then is a polynomially-secure OWF, or
simply OWF. If f is a exp(λδ)-secure one-way function for some constant δ > 0 then it is a
sub-exponentially-secure OWF. A probability distribution D over m-bit strings is t-pseudorandom
if for every t-size circuit A it holds that∣∣∣∣ Pr

x∈UD
[A(D) = 1]− Pr

y∈U{0,1}m
[A(y) = 1]

∣∣∣∣ ≤ 1/t.

We will need the following somewhat non-standard notion of an output-variable pseudorandom
generator (PRG) as defined in [Gol01, Def. 3.3.4]. A t(λ)-secure PRG is a polynomial-time algorithm
G that takes a seed a ∈ {0, 1}λ and an output length parameter 1m and outputs a string r of length
m such that for all sufficiently large λ, the distribution G(a, 1t(λ)), induced by a ∈U {0, 1}λ, is
t(λ)-pseudorandom.5 When the output length 1m is clear from the context we will omit it and treat
G as a mapping from λ bits to m bits. We say that G is a polynomially-secure PRG, or simply
PRG, if it is t(λ)-secure PRG for every polynomial t(λ). If G is exp(λδ)-secure PRG for some
constant δ > 0 then it is a sub-exponentially-secure PRG. By the classical result of [HILL99] and
standard stretch-expanding techniques (e.g., [GGM86]), for every function t(λ) > λ the existence
of t(λ)-secure OWF implies the existence of t′(λ)-secure PRG where t′ = tc for some universal
constant c. In particular, polynomially-secure (resp. sub-exponentially secure) one-way functions
imply polynomially-secure (resp. sub-exponentially secure) PRGs.

2.1 Computational Secret-Sharing Schemes

In this section we define computational secret-sharing schemes, that is, secret-sharing schemes in
which the sharing and reconstruction are efficient, and in which no polynomial-time adversary can
learn any information about the secret from the shares of any unauthorized set of parties. When
defining “efficiency” it is important to consider the way the access structure is represented. In this
paper, we will represent functions in several ways, e.g., as CNF formulas, DNF formulas, monotone
circuits, non-monotone circuits, and truth tables. To unify the different results, we start with an
abstract definition of a representation model for Boolean functions.

5In [Gol01, Def. 3.3.4] it is also required that for every seed a ∈ {0, 1}λ and integer t it holds that G(a, 1t) is a
prefix of G(a, 1t+1). We can adopt this convention as well although it is not crucial for us.
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Definition 2.2 (Representation model). A representation model is a polynomial time computable
function U : {0, 1}∗ × {0, 1}∗ → {0, 1}, where U(P, x) is referred to as the value returned by a
“program” P on an input x. We assume that each P specifies an input length n and |P | ≥ n.
We say that P represents the function f : {0, 1}n → {0, 1} in the representation model U if
f(x) = U(P, x) for every x ∈ {0, 1}n.

The correctness and security goals of secret sharing are defined with respect to a collection of
authorized sets called an access structure.

Definition 2.3 (Authorized sets and access structures). We consider a set of n parties {1, . . . , n}
and think of any string x ∈ {0, 1}n as representing the set of parties Sx = {i : xi = 1}.
Furthermore, we think of a Boolean function f : {0, 1}n → {0, 1} as representing a collection
of subsets of the parties {1, . . . , n}, called an access structure, consisting of all sets Sx such
that f(x) = 1. We refer to such a set of parties Sx as being authorized.

In this work, we will only be interested in monotone access structures f . We will typically
consider representation models U that are universal in the sense that for every monotone f :

{0, 1}n → {0, 1} there is a program P representing f .
We now define our main notion of computational secret sharing. For simplicity, we assume that

the secret is a single bit. This can always be generalized to sharing an `-bit secret by independently
sharing each bit of the secret. Moreover, using a symmetric encryption scheme, the amortized cost
of sharing long secrets can often be improved (see Remark 2.9).

Definition 2.4 (Computational secret sharing – Syntax and correctness). A computational
secret-sharing (CSS) scheme for a representation model U consists of a pair of algorithms
CSS = (CSS.Share,CSS.Recon) with the following syntax.

Sharing. CSS.Share(1λ, P, s)→ (sh0, sh1, . . . , shn) (where n denotes the input length of P ) is a
randomized poly-time algorithm that takes as input a security parameter λ, a program P ,
and a secret s ∈ {0, 1} and outputs n+ 1 shares sh0, sh1, . . . , shn, where shi, for 1 ≤ i ≤ n,
is the share of the ith party and sh0 is a public information given to all parties. By
default, the public information sh0 is an empty string.

Reconstruction. CSS.Recon(P, x, sh0, (shi)i∈Sx) → s is a deterministic poly-time algorithm
that takes as input a program P , a string x ∈ {0, 1}n describing the reconstructing set
(where n denotes the input length of P ), a public information sh0, and shares of the
parties in Sx. The algorithm outputs a secret s ∈ {0, 1}.

We say that CSS is correct (with respect to U) if for every λ, s, program P , and input
x ∈ {0, 1}n such that P (x) = 1 (where n denotes the input length of P ), the process of invoking
CSS.Share(1λ, P, s) and then invoking CSS.Recon(P, x, sh0, (shi)i∈Sx) (with the shi generated
by CSS.Share) always returns s.

Share size. When discussing the share size of computational secret-sharing schemes, we will
consider two measures: the (maximal) share size max {|shi| : i ∈ [n]} and the public information
size |sh0| (0 by default). We would like the share size to be very small, ideally polylogarithmic in
the size of the representation and polynomial in λ.
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Definition 2.5 (Computational secret sharing – Security). Consider the following game between
a non-uniform t(λ)-time adversary A and a challenger:

1. The adversary A on input 1λ chooses P and an input x ∈ {0, 1}n such that P (x) = 0

(where n is the input length of P ) and sends them to the challenger.

2. The challenger chooses a secret s ←U {0, 1} uniformly at random. It computes
(sh0, sh1, . . . , shn)← CSS.Share(1λ, P, s) and sends sh0, (shi)i∈Sx to the adversary.

3. The adversary outputs a bit s′.

The adversary wins the game if s′ = s.
We say that CSS is t(λ)-secure if for every non-uniform t(λ)-time adversary A and

sufficiently large λ, the probability that A wins is at most 1/2 + 1/t(λ). By default, we require
t(λ)-security for every polynomial t(·). In any case, we always assume that t > λ.

Remark 2.6 (Alternative single-parameter definition). Definition 2.5 uses the standard con-
vention of allowing the adversary’s resources to depend only on the security parameter λ.
This should be contrasted with the simpler single-parameter definition used in the introduc-
tion, where the size of P is also used as a security parameter, and any adversary of size
poly(|P |) should have a negligible advantage. Under sub-exponential security assumptions
(resp., standard polynomial assumptions) we can use λ = polylog(|P |) (resp., λ = O(|P |ε)
for every ε > 0) to obtain a scheme realizing the single-parameter definition from a scheme
realizing Definition 2.5.

Remark 2.7 (Information-theoretic secret sharing). The standard notion of (perfect)
information-theoretic secret sharing can be defined similarly by a pair ITSS =

(ITSS.Share, ITSS.Recon) with the following differences: the algorithms ITSS.Share,
ITSS.Recon, and A are computationally unbounded, and ε(λ) = 0 (so that the input λ
can be eliminated). Furthermore, in this setting the public information sh0 is not useful and
can also be eliminated.

Remark 2.8 (Trading share size for public information size). In computational secret sharing, it
is possible to generically shrink the private share size by using public information. Concretely,
if we have a CSS scheme producing shares sh1, . . . , shn, then the dealer can encrypt the share
shi of party pi with a semantically-secure symmetric encryption scheme using an independent
key ki; the share of pi is ki and the public information is the encryption of the n original shares.
Thus, the size of each share is λ (the key length) and the length of the public information
is the total size of the shares in the original scheme. Thus, this transformation does not
decrease the total size of all shares when we include the public information.

Remark 2.9 (Dispersing public information [Kra94]). The above transformation will typically
result in a large amount of public information. If all authorized sets are big, say of size
n/c for some small constant c, the public information can be efficiently dispersed between
the parties by using any good erasure code (such as a Reed-Solomon code), as observed by
Krawczyk [Kra94]. This results in a CSS scheme with no public information, where the
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total size of all shares is comparable to the total size of all information (including public
information) in the original scheme. As a corollary, for such an access structure, a secret of
size ` can be shared with information rate that tends to 1/c when ` tends to infinity (assuming
the existence of a one-way function). However, this asymptotic rate may only “kick in” when
` = Ω(2n). In this work, we focus on minimizing the share size for 1-bit secrets.

Definition 2.10 (Partial access structures). A partial function f : {0, 1}n → {0, 1,⊥} is monotone
if there is no pair of inputs x, x′ for which x ≤ x′, f(x) = 1, and f(x′) = 0. All the
above definitions naturally generalize to the case of partial monotone functions. Specifically,
correctness should hold for every input x that is accepted by f (i.e., f(x) = 1) and privacy
should hold for every input x that is rejected by f , i.e., f(x) = 0. The scheme may act
arbitrarily over other inputs x for which f(x) = ⊥ (e.g., the parties in Sx can learn partial
information on the secret).

3 Projective Pseudorandom Generators

An important conceptual contribution of this paper is introducing a new cryptographic primitive
called projective pseudorandom generators (pPRGs). We start this section by defining pPRGs and
then show several constructions: from the RSA assumption in Section 3.2; from iO and SSB hash
functions (Section 3.3); from Diffie-Hellman-like assumptions in Section 3.4; and from the learning
with errors assumption in Appendix A.

3.1 Definition of Projective PRGs

Intuitively, a projective pseudorandom generator (pPRG) is a PRG G : {0, 1}λ → {0, 1}m with an
additional property. Given a master key and a subset T ⊆ [m] of the output indices, one can produce
a projective key a{T}, which can be used to recover the subset of output bits of G indexed by the
set T , namely G(a)[T ], but reveals nothing about the other bits. This by itself is trivial as a{T}
could simply be G(a)[T ]. The feature that makes the notion usefull and non-trivial is a succinctness
requirement on the projected seed, that is, the bit-length of a{T} should be significantly smaller
than |T |. We define weak succinctness where |a{T}| = O(|T |1−δ) for some constant δ > 0, and
strong succinctness where |a{T}| = (log |T |)O(1). For technical reasons, we assume that the output
length of the pPRG is given as an additional input. Also, for our purposes, the seed may be long
and may be sampled from some arbitrary distribution; we therefore refer to it as a master secret
key msk.

Definition 3.1. A projective PRG (pPRG) is a triple of algorithms pPRG =

(pPRG.Setup, pPRG.KeyGen, pPRG.Eval) with the following syntax.

Setup. pPRG.Setup(1λ, 1m)→ (params,msk) is a randomized poly-time algorithm that takes
as input a security parameter λ and an output length parameter m, and samples public
parameters params and master secret key msk. We assume that the public parameters
are of length at least λ and that one can recover in time poly(λ, logm) the values of the
security parameter and the output length m from params.
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Key Generation. pPRG.KeyGen(params,msk, T ) is a deterministic poly-time algorithm that
takes as input the public parameters params, a secret key msk, and a set T ⊆ [m]

represented by its m-bit characteristic vector, and outputs a projective key a{T}.

Evaluation. pPRG.Eval(params, a{T}, T ) is a deterministic poly-time algorithm that takes
as input the public parameters params, a projective key a{T}, and a set T ⊆ [m] rep-
resented by an m-bit characteristic vector, and outputs a string y ∈ {0, 1}|T |. We
slightly abuse notation and let pPRG.Eval(params,msk) denote the outcome c ∈ {0, 1}m
of pPRG.Eval(params, a{all}, [m]), where a{all} = pPRG.KeyGen(params,msk, [m]) is the
projective key that corresponds to the entire set of outputs. We refer to c as the string
that is generated by (params,msk), or simply as the output of the pPRG.

Since the description length of params (resp., T ) is at least λ (resp., the output length m), the
algorithms pPRG.KeyGen and pPRG.Eval are implicitly allowed to run in time poly(λ,m).
We require the following properties:

Correctness. Correctness requires that for every λ,m, (params,msk) ∈ pPRG.Setup(1λ, 1m),
T ⊂ [m], and a{T} = pPRG.KeyGen(params,msk, T ), it holds that

y = c[T ],

where y = pPRG.Eval(params, a{T}, T ) is the string that is generated by the T -projective
key a{T} and c = pPRG.Eval(params,msk) is the string generated by (params,msk).

Succinctness. Weak succinctness requires that there is a constant δ > 0 such that for every
T ⊆ [m] the bit-length of a{T} is m1−δ poly(λ). Strong succinctness requires that there is
a fixed polynomial p such that the size of a{T} is p(logm,λ).

Security. Consider the following game between an adversary A and a challenger CA:

1. Given an input 1λ, the adversary A chooses 1m and T ⊂ [m] and sends (1m, T ) to
the challenger.

2. CA samples (params,msk) ← pPRG.Setup(1λ, 1m), computes c ←
pPRG.Eval(params,msk), sets c1 ← c[T ], and samples c0 ∈U {0, 1}|T |, where
T = [m] \ T is the complement of T . The challenger samples b ∈U {0, 1} and sends
params, a{T} = pPRG.KeyGen(params,msk, T ), and cb to the adversary.

3. The adversary outputs a bit b′ and wins if b = b′.

We say that pPRG is t(λ)-secure if for every non-uniform t(λ)-time adversary A the
probability that A wins is at most 1/2 + 1/t(λ).

An additional feature of a projective PRG is robustness, a strengthening of the above security
definition.

Robustness. Consider the following game between an adversary A and a challenger CA:

1. Given an input 1λ, the adversary A chooses 1m and sets T1, . . . , T` ⊂ [m] and sends
them to the challenger. Let T = T1 ∪ · · · ∪ T` denote the union of these sets.
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2. CA samples (params,msk) ← pPRG.Setup(1λ, 1m), computes c ←
pPRG.Eval(params,msk), sets c1 ← c[T ], and samples c0 ∈U {0, 1}|T |, where
T = [m] \ T is the complement of T . The challenger samples b ∈U {0, 1} and sends
params, a{Ti} = pPRG.KeyGen(params,msk, Ti) for all i ∈ [`], and the string cb to
the adversary.

3. The adversary outputs a bit b′ and wins if b = b′.

We say that pPRG is t(λ)-robust if for every non-uniform t(λ)-time adversary A the
probability that A wins is at most 1/2 + 1/t(λ).

Remark 3.2 (Defaults). By default, a pPRG should satisfy t-security for every polynomial t(λ).
That is, robustness is viewed as an additional feature. We will also consider sub-exponential
adversaries whose running time is 2λ

δ
for some constant δ > 0. Note that in our definition

the output length is allowed to scale with the adversary’s running time. To highlight this point
we will sometimes refer to a polynomially-secure pPRG as having an arbitrary polynomial
stretch and to a pPRG with sub-exponential security as having a sub-exponential stretch.

Remark 3.3 (PRG from pPRG). Observe that the mapping pPRG.Eval(params, a{all}, [m]]) 7→
y takes a short secret string a{all} of length smaller than m (and some public strings)
and outputs an m-bit string such that the output is pseudorandom if the input is sampled
from some efficiently samplable distribution, i.e., (params,msk)← pPRG.Setup(1λ, 1m) and
a{all} = pPRG.KeyGen(params,msk, [m]). Indeed, pseudorandomness follows from security in
the degenerate case where the adversary chooses T = ∅. Thus any pPRG essentially induces
some generalized version of PRG in which the seed, a{all}, is short but sampled from a
non-uniform efficiently samplable distribution. (One can easily transform this into a standard
PRG via an elementary use of randomness extractors; details omitted.)

Remark 3.4 (Bounded robustness). One can consider a bounded-robustness variant in which
the adversary can ask for at most `(λ) keys for some function `. This variant, which lies
between standard security and full robustness, suffices for some applications. However, since
all our constructions achieve full robustness, we will mostly ignore the bounded-robustness
variant.

Remark 3.5 (On the length of the public parameters). The definition does not put any restriction
on the length of the public parameters, and in principle, they can be polynomial in λ and
the output length. However, as we will later see, long public parameters will be translated
to a long public share. It is, therefore, useful to try and compress them to poly(λ) ·m1−δ for
some constant δ > 0 or even to poly(λ, logm). In the latter case, one can get rid of the public
parameters by embedding them as part of the projective keys. We can also consider the case of
reusable public parameters (e.g., it contains a description for a DDH-secure group) that can
be re-used with multiple freshly sampled master secret keys msk. For this one has to partition
the pPRG.Setup algorithm into a params-sampler and to an msk-sampler that receives the
sampled public parameters, params, as input. By a simple hybrid argument, such a partition
guarantees re-usability. Indeed, our bilinear maps-based construction achieves this property.
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3.2 Projective PRG from RSA

We describe a projective PRG based on the RSA assumption using ideas from [AIKW15, ODK+17].
Recall that the RSA assumption asserts that given a random RSA modulus N of bit-length λ, a
random exponent e←U Z∗ϕ(N) and a random element y ←U Z∗N no t(λ)-time algorithm can extract
the eth root of y except with probability 1/t(λ). (See Assumption 3.7.) The sub-exponential RSA
assumption takes t = 2λ

δ
for some constant δ > 0, and the polynomial RSA assumption asserts

that t can be taken to be an arbitrary polynomial. We prove the following theorem.

Theorem 3.6 (Theorem 1.2 restated). Under the sub-exponential (resp., polynomial) RSA
assumption, there exists a sub-exponential-robust pPRG (resp., polynomial-robust pPRG) with
sub-exponential stretch (resp., arbitrary polynomial stretch) whose projective keys and public
parameters are both strongly succinct, i.e., of length logm · poly(λ), where m is the output
length. The running time of generating the m-bit output of the pPRG is Õ(m) · poly(λ).

For ease of presentation, we will begin with a pPRG construction, based on [AIKW15], with
long public parameters and later explain how to compress them.

Setup. For a security parameter λ and output length m, we let msk = (p, q), where p and q are
random primes of length λ, and publish the following elements as part of params:

N = pq, u←U Z∗N , r ←U Zλ2 ,

and a tuple of m random primes, ~e = (e1, . . . , em), each of length λ.

Key Generation. Given p, q, ~e, and a set T we generate a projective key

a{T} ← u
∏
j∈T 1/ej mod N,

where, here and throughout this subsection, all computations in the exponent are computed
modulo ϕ(N) = (p− 1)(q − 1).

Evaluation. Given params = (N, u, r,~e), a set T , and a projective key a{T}, the string (ci)i∈T is
generaterated as follows: for every i ∈ T , raise a{T} to the power of

∏
j∈T\{i} ej record the

result as
y′i ← (a{T})

∏
j∈T\{i} ej mod N,

and set ci = hc(r, y′i), where hc is the Goldreich-Levin hard-core bit (i.e., inner product modulo
2).

The full output (c1, . . . , cm) of the pPRG (defined by using the evaluation algorithm with a fully-
authorized projective key a{all}) is given by ci = hc(yi, r), where yi = u1/ei mod N . Correctness
follows from the fact that if i ∈ T ,

y′i ≡ (a{T})
∏
j∈T\{i} ej ≡ (u

∏
j∈T 1/ej )

∏
j∈T\{i} ej ≡ u1/ei ≡ yi (mod N).

The proof of robustness is given in Section 3.2.2.Before that, we explain how to reduce the size of
the public parameters.
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3.2.1 Reducing the Size of the Parameters

In the above construction, the projective keys are of length λ but the public parameters, which contain
the random primes ~e = (e1, . . . , em) are long; we would like to replace them with some succinct
representation of length poly(λ, logm). The idea is to generate the primes in a “pseudorandom” way
(e1, . . . , em) ← S(ρ), where S(ρ) is an algorithm called sampler, and provide the short seed ρ as
part of the public parameters. This should be done with some care since the pPRG adversary gets
to see the seed ρ as part of the public parameters. It turns out that the security reduction to RSA
of [AIKW15] goes through as long as the sampler S satisfies the following properties: (1) Except
with negligible probability, the outputs of S are m distinct primes; (2) The marginal distribution of
every single prime is uniform over the set Pλ of primes of length λ; and (3) There exists an efficient
planting procedure that, given a prime e and an index i, samples a random seed ρ0 that generates
e as its ith output. A sampler that satisfies (1) – (3) is called admissible. We present a simple
construction of such a sampler with randomness complexity of O(λ3 logm) and time complexity of
Õ(m) · poly(λ), and modify the above construction in a natural way, i.e., replace ~e with the seed
ρ and let the evaluation and key generation compute ~e ← S(ρ). As a result, the total length of
the public parameters is λ3 log(m) + O(λ), and can be even integrated as part of the projective
keys(following Remark 3.5).

An admissible sampler S. Assume that m is at most, say, 2λ/3.6 Let k = λ(λ+ log(m)). The
idea is to sample mk integers of bit length λ via some k-wise independent distribution. We partition
these integers to m blocks of size k each and let ei denote the first prime in the ith block. If some
block does not contain a prime, we declare a “failure” and, say, set all ei’s to 1. By the density
of primes, the probability of this event is at most m · (1 − 1/Θ(λ))Ω(k) = exp(−Ω(λ)). Also, the
probability that we get the same prime twice is upper-bounded by the probability that some integer
occurs twice, which is at most (mk)22−λ = exp(−Ω(λ)). Furthermore, since the distribution is
k-wise independent the residual distribution of each generated prime is uniform (conditioned on
not failing). To derive an efficient planting algorithm, let us assume that the sampler S is realized
by a polynomial-based k-wise independent distribution. That is, the seed consists of a tuple of k
coefficients, ρ = (ρ0, . . . , ρk−1), sampled uniformly from the field F2λ . The seed specifies a univariate
degree-k polynomial Pρ(x) =

∑
i ρix

i over F2λ and the jth output of S is the value Pρ(αj), viewed
as a λ-bit integer, where α1, . . . , αmk is some canonical set of distinct evaluation points in F2λ . Now
efficient planting follows from efficient interpolation. In more detail, given an index i and a prime e,
we sample a random block of k integers, place e in the location of the first prime, and find a random
seed ρ that generates this modified block as its ith block. The latter task can be done efficiently via
polynomial interpolation.

3.2.2 Proof of Robustness

The proof of robustness is similar to [AIKW15] with two modifications. First, we prove robustness
(while in [AIKW15] they only proved security for one key); however this does not change the proof.

6In any case, RSA security breaks for such output lengths (or even smaller ones). When m is larger, we can assume
that S sets all the ei’s to 1, and the pPRG generates the string (hc(u, r), . . . , hc(u, r)).
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Second, we show that the proof remains valid even when the primes e1, . . . , em are sampled via an
admissible sampler whose seed is given to the adversary.

We start by quoting the RSA assumption parameterized with a time-bound t = t(λ).

Assumption 3.7 (The RSA assumption). For every non-uniform t(λ)-time adversary A (that
tries to break RSA), and all sufficiently large λ,

Pr

 p, q ←U primes of length λ;N ← p · q;
e←U Z∗ϕ(N); y ←U Z∗N ;

z ← ye mod N ;

: A((N, e), z) = y

 ≤ 1

t(λ)
.

The polynomial variant of the assumption refers to the case where the assumption holds for
every polynomial t(λ) (in this case, the probability is upper-bounded by a negligible function),
and the sub-exponential version refers to the case where t = 2Ω(λδ) for some constant δ > 0.

Recall that in the construction of pPRG from the RSA assumption we only use prime exponents
e. Since the density of primes in Z∗ϕ(N) is Θ(1/ logN), the RSA assumption implies the following
assumption.

Assumption 3.8 (The RSA assumption for prime exponents). For every non-uniform t(λ)-time
adversary A (that tries to break RSA)

Pr

 p, q ←U primes of length λ;N ← p · q;
e←U primes of length λ; y ←U Z∗N ;

z ← ye mod N ;

: A((N, e), z) = y

 ≤ 1

t(λ)
.

By the security of the Goldreich-Levin hardcore bit [GL89], it is hard to compute the bit hc(y, r)
given N, e, r, z ← ye mod N .

Proposition 3.9 (The GL hardcore for RSA [GL89]). Let C be an algorithm whose inputs are
N, e, r, z (this algorithm tries to compute the GL hardcore bit), where N, r ∈ {0, 1}λ for some
λ ∈ N, e ∈ Z∗ϕ(N), and z ∈ Z∗N and let

GOOD =
{

(N, e, y) : Pr
r

[C(N, e, r, ye mod N) = hc(r, y)] ≥ 1/2 + ε
}

for some ε. There is a non-uniform algorithm D(N, e, z = ye mod N) that uses poly(λ, 1/ε)

calls to C, each call is with N, e, z, and a uniformly distributed r, such that

Pr[D(N, e, ye mod N) = y] > 3/4

for every N, e, y ∈ GOOD (i.e., D breaks the RSA for such inputs).

Lemma 3.10. Under the sub-exponential (resp., polynomial) RSA assumption, the above
pPRG is sub-exponential-robust pPRG (resp., polynomial-robust pPRG) with sub-exponential
stretch (resp., arbitrary polynomial stretch).
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Proof. Fix λ and let B be any non-uniform sub-exponential time (resp. poly-time) adversary that
breaks the robustness of the pPRG based on the RSA assumption with advantage ε = ε(λ). We will
construct a non-uniform adversary A that breaks the RSA assumption (for prime exponents) with
probability ε/m and runs in time polynomial in λ, 1/ε, and in the running time of B. Let m be a
length parameter and T1, . . . , T` be the sets such that B(1λ) sends m,T1, . . . , T` to the challenger in
the first step. Define T ∗ = [m] \ ∪1≤i≤tTi. To simplify notation assume that T ∗ = {1, . . . , τ} for
some 0 ≤ τ < m. Below we describe an algorithm A(N, e, z ← ye mod N) that tries to break the
RSA assumption.

To describe A, we first define τ + 1 hybrids H0, . . . ,Hτ . The `th hybrid is the following
distribution:

• Let params = (N, r, ρ, u) be generated as in the setup algorithm of the pPRG, that is, N
is a product of two uniformly distributed primes p, q of length λ and r, ρ, u are uniformly
distributed in the appropriate sets, and let (e1, . . . , em)← S(ρ).

• The values a{T1}, . . . , a{T`} and c1, . . . , c` are computed as in the pPRG with seed N, r, ρ, u,
that is, a{Ti} ← u

∏
j∈Ti

1/ej mod N and ci ← hc(u1/ei mod N, r).

• Sample c`+1, . . . , cτ , where ci ∈U {0, 1} (i.e., ci is a uniformly distributed random bit).

• Output params = (N, u, r, ρ), a{T1}, . . . , a{T`}, c1, . . . , cτ .

Let
p` = Pr

N,r,ρ,c1,...,cτ ,a{T1},...,a{T`}←H`
[B(N, r, ρ, a{T1}, . . . , a{T`}, c1, . . . , cτ ) = 1].

In other words, in H` the first ` bits are pseudorandom while the last τ − ` bits are random.
Observe that Hτ corresponds to the message viewed by the adversary B in the robust-pPRG game
when the challenger’s bit is b = 1 and H0 corresponds to the message viewed by the adversary B
when the challenger’s bit is b = 0. That is, the adversary wins the robustness game of the pPRG if
when getting a sample from Hτ it answers 1 or when it gets a sample from H0 it answers 0. As B
wins the robustness game of the pPRG with probability at least 1/2 + ε:

0.5pτ + 0.5(1− p0) ≥ 0.5 + ε, (1)

That is, pτ − p0 ≥ 2ε.
Thus, there exists an index ` ∈ {1, . . . , τ} such that B distinguishes between samples from H`

and samples from H`−1 with probability at least ε/τ > ε/m, that is, without loss of generality(
PrH` [B(N, u, r, ρ, a{T1}, . . . , a{T`}, c1, . . . , cτ ) = 1]

− PrH`−1
[B(N, u, r, ρ, a{T1}, . . . , a{T`}, c1, . . . , cτ ) = 1]

)
≥ 2ε/m. (2)

Define GOOD0 as the set of all (N, u, ρ) such that the difference of the probabilities in (2) conditioned
on N, u, ρ is at least ε/m (the first probability is over the choice of r and c`+1, . . . , cτ and the second
probability is also over the choice of c`). Thus,

Pr[(N, u, ρ) ∈ GOOD0] ≥ ε/m.

Construct A(N, e, z ← ye mod N) that tries to invert the RSA encryption as follows:
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1. Using the planting algorithm, generate a random ρ such that (e1, . . . , em)← S(ρ) and e` = e.

2. Let u← z
∏
i6=` ei mod N , a{Tj} ← z

∏
i/∈Tj,i 6=`

ei
mod N for 1 ≤ j ≤ `, and yj ← z

∏
i6=`,j ei mod

N for 1 ≤ j ≤ m, j 6= `.

(∗ a{Tj} ≡ u
∏
i∈Tj

1/ei
(mod N) and yj ≡ u1/ej (mod N) as required. ∗)

3. Denote ỹ = y
∏
i 6=` ei mod N (∗ u ≡ ỹe (mod N); this notation is only used in the proof (A

does not know y) ∗).

4. Find ỹ using the GL algorithm (Proposition 3.9), where every hardcore query r, u ≡ ỹe mod N

is answered as follows:

(a) Let σ ←U {0, 1} and compute for every 1 ≤ i ≤ m

Ci =


hc(r, yi) if 1 ≤ i < `

σ if i = `

ri ←U {0, 1} if ` < i ≤ τ

(b) If B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , Cτ ) = 1 answer σ, else answer σ.

5. Let ŷ be the output of the GL algorithm. If u 6≡ ŷe (mod N), output “FAIL” and halt.

6. Otherwise, compute y from ŷ ≡ y
∏
i 6=` ei (mod N) and z ≡ ye (mod N) using Shamir’s

algorithm [Sha81], that is, find the integers coefficients a, b of Bézout’s identity a
∏
i 6=` ei+be =

gcd(
∏
i 6=` ei, e) = 1 using the extended Euclidean algorithm and compute y ← ŷa · zb mod N .

In A, the elements N, e are chosen with uniform distribution and ρ is a random element
conditioned on e` = e, thus, N, ρ are random elements. Furthermore, y is a random element and
y
∏

1≤i≤m ei is a permutation, thus, the element u computed in A is a random element in Z∗N . We
analyze the probability that A on a query r, u in step (4b) outputs hc(y, u).

Pr[A outputs hc(r, u)]

= 1/2 · Pr[A outputs hc(u, r)|σ = hc(r, u)] + 1/2 · Pr[A outputs hc(u, r)|σ = hc(r, u)]

= 1/2 · Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1]

+ 1/2 · Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 0]

= Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1]

− 1/2 Pr[B(N, u, r, τ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1]

+ 1/2− 1/2 · Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1].

Note that

Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1]
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is the probability that B outputs 1 on a sample from H` while

1/2 Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1]

+ 1/2 · Pr[B(N, u, r, ρ, a{T1}, . . . , a{T`}, C1, . . . , C`−1, hc(u, r), C`+1, . . . , Cτ ) = 1]

is the probability that B outputs 1 on a sample from H`−1. Thus, conditioned on the event that
(N, u, ρ) ∈ GOOD0, an event with probability at least ε/m, the probability that A answers hc(r, u)

is at least ε/m. By Proposition 3.9, for (N, u, ρ) ∈ GOOD0 algorithm A finds ŷ ≡ u1/e ≡ y
∏
i 6=`ei

(mod N) with probability at least 3/4. By the correctness of Shamir’s algorithm, in this case
algorithm A outputs the required y. I.e., if B breaks the pPRG with advantage ε, then A breaks
the RSA assumption with probability at least 3ε

4m .
To conclude, given any (sub-exponential) 2λ

δ
-time adversary B that breaks the robustness of

the pPRG with advantage 1/2λ
δ
, we constructed a sub-exponential adversary A that breaks the

RSA assumption with probability 3/(4 · 2λδ ·m). Since B is sub-exponential, the length m = m(λ)

is also sub exponential. By the sub-exponential 22λδ -time RSA assumption such A cannot exists
and robustness follows.

3.3 Projective PRG from iO and SSB Hash Functions

We now show a construction of projective PRGs from indistinguishability obfuscation (iO) [BGI+01,
GGH+13] and somewhere statistically binding (SSB) hash functions [HW15]. We will in fact show
how to take any puncturable pseudorandom function family and construct from it a projective PRG
using iO and SSB hash functions. Our ingredients are the following.

• An indistinguishability obfuscator O [BGI+01, GGH+13];

• An SSB hash function family SSB := (SSB.Gen,SSB.H,SSB.Open,SSB.Ver) [HW15]; and

• A puncturable PRF family Fn := {Fk : k ∈ {0, 1}λ} [BGI14, KPTZ13, BW13] which can be
constructed from OWF and therefore any SSB hash function family.

Given these ingredients, our construction proceeds as follows.

• The seed for the projective PRG is a uniformly random seed for the puncturable PRF
k ← {0, 1}λ. The output of the PRG is

G(k) = (Fk(0)||Fk(1)|| . . . ||Fk(m)) .

• The projective key k{T} is computed as follows. Consider the program Πh,y,k which has in
it an SSB hash function h ← SSB.Gen(1λ), the hash y ← SSB.H(h, T ) of the characteristic
vector of the set T using h, and the seed k.

The program takes as input an index i together with an SSB opening ρi to the value T [i] = 1,
and checks it against the root y. That is, it checks whether SSB.Ver(h, y, i, ρi) = 1. If the
check passes, the program computes Fk(i) and outputs it, otherwise it outputs ⊥.

The projective key k{T} is the obfuscated program O(Πh,y,k).
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• Running the program k{T} on input i ∈ T together with the SSB opening of leaf i recovers
the i-th output bit of the projective PRG, simply by the functionality of the program Πh,y,k.

Theorem 3.11. The above construction is a projective pseudorandom generator assuming
that Fn is a projective PRF family, O is an indistinguishability obfuscator and SSB is an
SSB hash function family. The projective keys have size poly(logm,λ).

Proof. (of Theorem 3.11.) The proof goes by a hybrid argument that is by now standard in the iO
literature. Assume that the adversary is given projective keys k{T1}, . . . , k{T`} and either G(k)T
or a random string of the same length, where T = T1 ∪ T2 ∪ . . . ∪ T`. We wish to show that no ppt
adversary can distinguish between the two possibilities. We show this using m− |T |+ 1 hybrids by
iterating over indices j ∈ T .

Hybrid j, for j ∈ {0, 1, . . . , |T |}. The adversary is given projective keys k{T1}, . . . , k{T`} and a
string z ∈ {0, 1}|T | whose first j bits are uniformly random and whose last m− j bits are the last
m− j bits of G(k)T .

Note that hybrid |T | corresponds to the adversary receiving a uniformly random string z and
hybrid 0 to the adversary receiving z = G(k)T .

Claim 3.12. For j ∈ {0, 1, . . . , |T |−1}, hybrids j and j+1 are computationally indistinguishable
under the assumptions of Theorem 3.11.

Proof. We construct the following hybrids.

Hybrid j.0. This is the same as Hybrid j.

Hybrid j.1. Change the hash function to be binding on index j + 1. That is, let

h← SSB.Gen(1λ, j + 1)

Hybrids j.0 and j.1 are computationally indistinguishable due to the indistinguishability of SSB
keys.

Hybrid j.2. Puncture the PRF key k on input j + 1, and let the program Πh,y,k{j+1},β=Fk(j+1) be
defined exactly as Πh,y,k except on input j + 1, it outputs β.

Hybrids j.1 and j.2 are computationally indistinguishable by the security of indistinguishability
obfuscation and the fact that the two programs in question are functionally identical.

Hybrid j.3. Change β to ⊥.

Hybrids j.2 and j.3 are computationally indistinguishable by the security of indistinguishability
obfuscation and the fact that there are no SSB openings to location j + 1 to the value T [j + 1] = 1.
Consequently, both programs in question output ⊥ on input j + 1.

Hybrid j.4. Change the (j + 1)-th bit of the string z to a uniformly random bit.

Hybrids j.3 and j.4 are computationally indistinguishable by the security of the puncturable PRF.

Hybrid j.5. Replace the punctured key with the true PRF key.
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Hybrids j.4 and j.5 are computationally indistinguishable by the security of indistinguishability
obfuscation scheme.

Hybrid j.6. Replace the hash key with one that is generated as h← SSB.Gen(1λ).

Hybrids j.5 and j.6 are computationally indistinguishable due to the indistinguishability of SSB
hash keys.

Finally, hybrid j.6 is the same as hybrid j + 1, an observation that finishes the proof of the
claim.

Since every adjacent pair of hybrids is computationally indistinguishable, an adversary can win
the projective PRG game with advantage only O(m) more than the advantage in any of the security
games: for the SSH hash, the projective PRG or the iO scheme. This finishes the proof of the
theorem.

3.4 Projective PRG from the Diffie-Hellman Assumption

We first describe a projective PRG based on the decisional Diffie-Hellman (DDH) assumption. The
construction results in small projective keys, but large (non-reusable) public parameters of size
quadratic in the output length of the PRG. Later in this section, we show a different construction
using bilinear maps that has reusable public parameters. This latter construction also admits a
“balancing trick” that allows us to trade off the size of the public parameters for the size of the
projective key.

3.4.1 A Construction from DDH-Hard Groups

We start with the DDH assumption.

Assumption 3.13 (The decisional Diffie-Hellman assumption). Let G = {Gλ}λ∈N be a family
of (Abelian) groups of prime order q = q(λ). The (t, ε)-decisional Diffie-Hellman (DDH)
assumption with respect to G requires that for every non-uniform t(λ)-time adversary A,

Pr
a,b←[q]

[
A(g, ga, gb, gab) = 1

]
− Pr
a,b,c←[q]

[
A(g, ga, gb, gc) = 1

]
≤ ε(λ),

where g is any generator of Gλ. If the (t, ε)-DDH assumption holds with respect to G, we refer
to G as a DDH-hard (family of) groups.

Theorem 3.14. Under the DDH assumption, there exists a robust pPRG whose projective keys
are strongly succinct, namely, of length O(λ). The public parameter has length m2 · poly(λ),
where m is the output length of the pPRG.

Proof. Our pPRG construction is inspired by [AIKW15].

Setup. For a security parameter λ, let Gλ be a DDH-hard group. For an output length m, we
sample

msk← (x1, . . . , xm, y1, . . . , ym) ∈ Z2m
q ,
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Sample elements r1, . . . , rm ∈ Zq and set params← (q, g,v,M) as

q, g,v =


gr1

gr2

...
grm

 and M =


gr1x1gy1 gr1x2 · · · gr1xm

gr2x1 gr2x2gy2 · · · gr2xm

...
...

. . .
...

grmx1 grmx2 · · · grmxmgym

 .
The ith output of the projective PRG is gyi . We note that the master secret key msk is long
as defined, but this is compatible with the pPRG definition that does not put any requirement
on the length of msk. (Moreover, one can always use an auxiliary ordinary PRG to generate
msk and set the seed of that PRG as the master secret key.)

Key Generation. Given the master key msk = (x1, . . . , xm, y1, . . . , ym) and a set T ⊆ [m], the
projective key is a{T} =

∑
i∈T xi.

Evaluation. Given params = (q, g,v,M), a set T ⊆ [m], and a projective key a{T}, we recover
the output gyi for i ∈ T by computing(∏

j∈T
Mi,j

)
· (vi)−a{T}.

The correctness of the construction follows from the following calculation:(∏
j∈T

Mi,j

)
· (vi)−a{T} =

(∏
j∈T

grixj
)
· gyi · (gri)−

∑
j∈T xj = (gri)

∑
j∈T xj · gyi · (gri)−

∑
j∈T xj = gyi ,

where the first equation holds as long as i ∈ T .
For robustness, assume that the adversary has received the projective keys for subsets

T1, T2, . . . , T`, and let T =
⋃
j Tj . All the revealed projective keys can be computed from (xi)i∈T .

Without loss of generality, assume that T = {k + 1, . . . ,m}. It suffices to show that (gyi)i/∈T is
computationally hidden from the adversary, who gets (xi)i∈T , as well as p, g,v, and M1:m,1:k, where
the latter denotes the first k columns of M. (Note that the last m − k columns of M can be
computed from v and xk+1, . . . , xm).

The proof relies on the DDH assumption (Assumption 3.13), which implies the following
matrix-DDH assumption [BHHO08]:

q, g,

g
r1

...
grm

 ,
g

x1

...
gxk

 ,
g

r1x1 · · · gr1xk

...
. . .

...
grmx1 · · · grmxk

 ≈c q, g,

g
r1

...
grm

 ,
g

x1

...
gxk

 ,
g

u1,1 · · · gu1,k

...
. . .

...
gum,1 · · · gum,k


where x1, . . . , xk, r1, . . . , rm, u1,1, . . . , um,k are independently randomly sampled. Thus

(q, g,v,M1:m,1:k) ≈c (q, g,v,U�Y)

where U ∈ Gm×k consists of uniformly random group elements, � stands for an entry-wise product,
and Y is a diagonal m-by-k matrix whose (i, i)th entry, for i ≤ k, is gyi and the rest of the entries
are all 1. The latter distribution statistically hides (yi)i/∈T .
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We can apply a balancing trick to achieve a trade-off between the projective-key’s length
and the public parameter’s length: Start from a robust pPRG whose projective keys and public
parameters have length `key(m) and `param(m), respectively, and fix δ ∈ [0, 1]. Then for a shorter
output length m′ = m1−δ, the public parameter (resp. projective key) has length `param(m1−δ)

(resp. `key(m1−δ)). The concatenation of mδ such shorter pPRG is a robust pPRG of output length
m. The resulting robust pPRG has projective key length mδ · `key(m1−δ) and public parameter
length mδ · `param(m1−δ). We obtain the following corollary.

Corollary 3.15. Under the DDH assumption, for every δ ∈ [0, 1] there exists a robust pPRG
whose projective keys have length mδ ·poly(λ) and the public parameter has length m2−δ ·poly(λ),
where m is the output length. Furthermore, the evaluation algorithm needs only m2−2δ ·poly(λ)

bits from the public parameter to evaluate a single bit ci.

3.4.2 Reusable Public Parameters via Bilinear Maps

We describe a projective PRG based on the bilinear DDH assumption. The improvement over the
DDH-based construction is that the (long) public parameters are independent of the PRG seed and
are reusable.

Assumption 3.16 (The decisional bilinear Diffie-Hellman assumption). Let PG =

{(Gλ,GT,λ, qλ, eλ)}λ∈N be a family of pairing groups of prime order q = q(λ). The (t, ε)-
decisional bilinear Diffie-Hellman (DBDH) assumption with respect to PG requires that for
every non-uniform t(λ)-time adversary A,

Pr
a,b,c←[q]

[
A(g, ga, gb, gc, e(g, g)abc) = 1

]
− Pr
a,b,c,d←[q]

[
A(g, ga, gb, gc, e(g, g)d = 1

]
≤ ε(λ),

where g is any generator of Gλ. If (t, ε)-DBDH assumption holds with respect to PG, we refer
to PG as a DBDH-hard (family of) pairing groups.

Theorem 3.17. Under the DBDH assumption, there exists a robust pPRG whose projective
keys are strongly succinct, i.e., of length O(λ). The public parameter is of length m2 · poly(λ),
where m is the output length. The public parameter is independent of the PRG master secret
key msk and is reusable.

Proof. The construction of Theorem 3.17 is as follows.

• For the given security parameter, let G,GT be the corresponding pairing groups of order
q = q(λ), let e : G×G→ GT be bilinear map.

• The parameter sampler algorithm chooses a generator g ∈ G, samples random r1, . . . , rm,

x1, . . . , xm, y1, . . . , ym ← [q] and creates the AIKW matrix M ∈ Gm×m whose (i, j)th entry is
grixj if i 6= j and grixj · gyi if i = j. The public parameters consist of g, M, gri and gxj for all
i, j ∈ [m]. Crucially, the yi’s are not revealed.

• The msk-sampler algorithm samples an element s ∈U Zq and sets msk← s.

Note that the public parameters do not depend on the master secret key msk. Indeed, we will
show that they are reusable across many different PRG seeds.
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• The projective key for a master secret key s and a subset T ⊆ [n] is

a{T} = (gs, gs·(
∑
j∈T xj)) .

• We define the ith output of the PRG to be e(g, g)yis. Given a projective key a{T} =

(gs, gs·(
∑
j∈T xj)), we can recover the ith output, if i ∈ T , by computing

e

(
gs,
∏
j∈T

Mi,j

) /
e

(
gs·

∑
j∈T xj︸ ︷︷ ︸

from a{T}

, gri
)
.

The correctness is easy to verify. Note that i ∈ T implies
∏
j∈T Mi,j = gri·(

∑
i∈T xi) · gyi . Thus

e

(
gs,
∏
j∈T Mi,j

)
e

(
gs·

∑
j∈T xj , gri

) =

e

(
gs, gri·(

∑
i∈T xi) · gyi

)
e

(
gs·

∑
j∈T xj , gri

)
=
e(g, g)sri·

∑
j∈T xj+syi

e(g, g)sri·
∑
j∈T xj

= e(g, g)syi ,

which is the ith output for the master secret key s.
We now show robustness, starting from the case when the public parameter is not reused.

Assume that the adversary has received the projective keys for T1, T2, . . . , T` and let T =
⋃
j Tj .

All the revealed projective keys can be computed from gs, (gsxi)i∈T . It suffices to show that given
gs, (gsxi)i∈T and the public parameter, the information of (e(g, g)syi)i/∈T is still computationally
hidden. Concretely, it suffices to show that when all ri, xi, ui are i.i.d. random,

g, (gri)i∈[m], (g
xi)i∈[m], g

s, (gsxj )j∈T ,M, (e(g, g)syj )j /∈T

≈c g, (g
ri)i∈[m], (g

xi)i∈[m], g
s, (gsxj )j∈T ,M, (e(g, g)uj )j /∈T .

(3)

By the standard hybrid argument, it suffices to show that for all t /∈ T ,

g, (gri)i∈[m], (g
xi)i∈[m], g

s, (gsxj )j∈T ,M, (e(g, g)syj if j ≤ t; uj if j > t)j /∈T

≈c g, (g
ri)i∈[m], (g

xi)i∈[m], g
s, (gsxj )j∈T ,M, (e(g, g)syj if j < t; uj if j ≥ t)j /∈T .

We now show that the above two distributions are computationally indistinguishable even if the
adversary additionally gets (rj)j 6=t, (xj)j 6=t, (yj)j 6=t. Note that, the adversary can perfectly simulate
part of its view, by randomly sampling (rj)j 6=t, (xj)j 6=t, (yj)j 6=t and computing by its own grj , gxj , gsxj

for all j 6= t and the matrix M except for Mt,t (= grtxt+yt). So it suffices to show that

g, grt , gxt , gs, grtxt+yt , e(g, g)syt ≈c g, g
rt , gxt , gs, grtxt+yt , e(g, g)u .

By the DBDH assumption, given g, grt , gxt , gs, grtxt+yt (the last one is one-time padded by yt), the
distribution of e(g, g)srtxt is indistinguishable from uniform distribution over GT. Then

e(g, g)syt = e(gs, grtxt+yt)
/
e(g, g)srtxt
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is also indistinguishable from a random group element, given g, grt , gxt , gs, grtxt+yt , since it is
one-time padded by e(g, g)srtxt .

For the reusable robustness, considering randomly sampled seeds s1, . . . , sk, assume that for each
i ∈ [k], the adversary has received si’s projective keys for Ti,1, Ti,2, . . . such that Ti =

⋃
j Ti,j . All

the revealed projective keys can be computed from (gsi)i∈[k], (gsixj )i∈[k],j∈Ti . It suffices to show that
given g, (gri)i∈[m], (g

xi)i∈[m], (g
si)i∈[k], (g

sixj )i∈[k],j∈Ti ,M, the distribution of (e(g, g)siyj )i∈[k],j /∈Ti is
computationally indistinguishable from uniform. Concretely, it suffices to show

g, (gri)i∈[m], (g
xi)i∈[m], (g

si)i∈[k], (g
sixj )i∈[k],j∈Ti ,M, (e(g, g)siyj )i∈[k],j /∈Ti

≈c g, (g
ri)i∈[m], (g

xi)i∈[m], (g
si)i∈[k], (g

sixj )i∈[k],j∈Ti ,M, (e(g, g)ui,j )i∈[k],j /∈Ti .
(4)

We prove (4) using the standard hybrid argument, by showing that for any t ∈ [k],

g, (gri)i∈[m], (g
xi)i∈[m], (g

si)i∈[k], (g
sixj )i∈[k],j∈Ti ,M, (e(g, g)siyj if i ≤ t; ui,j if i > t)i∈[k],j /∈Ti

≈c g, (g
ri)i∈[m], (g

xi)i∈[m], (g
si)i∈[k], (g

sixj )i∈[k],j∈Ti ,M, (e(g, g)siyj if i < t; ui,j if i ≥ t)i∈[k],j /∈Ti .

The two distributions are indistinguishable even if the adversary additionally gets (si)i 6=t. Note
that, since the adversary gets (si)i 6=t, the adversary is essentially distinguishing the following two
distributions. (The terms that are perfectly simulatable by the adversary are ignored.)

g, (gri)i∈[m], (g
xi)i∈[m], g

st , (gstxj )j∈Tt ,M, (e(g, g)styj )j /∈Tt

≈c g, (g
ri)i∈[m], (g

xi)i∈[m], g
st , (gstxj )j∈Tt ,M, (e(g, g)ut,j )j /∈Tt .

This is already proved in the case when the public parameter is not reused, as shown in (3).

Since the public parameters are reusable, we can apply a better balancing trick than in Corol-
lary 3.15. Start from a robust pPRG whose projective keys have length `key(m) and whose public
parameter is reusable and has length `param(m). Then for a shorter output length m′ = m1−δ, the
public parameter (resp. projective key) has length `param(m1−δ) (resp. `key(m1−δ)). The concatena-
tion of mδ such shorter pPRG is a robust pPRG of output length m. The resulting robust pPRG
has projective key length mδ · `key(m1−δ) and public parameter length `param(m1−δ) because the
public parameter is reusable. We obtain the following corollary.

Corollary 3.18. Under the bilinear DDH assumption, for every δ ∈ [0, 1] there exists a robust
pPRG whose projective keys have length mδ · poly(λ) and the public parameter has length
m2(1−δ)) poly(λ), where m is the output length. The public parameter is independent of the
PRG master secret key and is reusable.

4 SCSS from Projective PRGs

In this section, we show how to use pPRGs to construct SCSS for graphs, CNF formulas, and truth
tables.
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4.1 From Projective PRG to Graph SCSS

Next, we define the notion of secret-sharing schemes for graphs. Given an undirected graph
G = (V,E), we view the parties as the vertices in V , and the authorized sets are those sets that
contain at least one edge from E. That is, using the terminology of Section 2.1, given a graph
G = (V,E), where |V | = {1, . . . , n}, we consider the function fG : {0, 1}n → {0, 1} in which
fG(x) = 1 if and only if there are i, j ∈ [n] such that xi = xj = 1 and (i, j) ∈ E. We will focus on
bipartite graph access structures, namely, where V consists of two sets L,R and all edges connect
vertices from both sets, i.e. E ⊆ L×R. By [BFM16], efficient secret-sharing schemes for bipartite
graphs imply efficient secret-sharing schemes for arbitrary graphs.7

We next explain how to construct a secret-sharing scheme for bipartite graphs. We start by
describing a secret-sharing scheme for graphs with perfect security, however with share size O(|V |).
We will then explain how to compress the shares using a pPRG (settling for computational security).
To share a secret s ∈ {0, 1} for a bipartite graph G = (L = {v1, . . . , vm} , R,E), the dealer chooses
m random bits r1, . . . , rm, gives vertex vi ∈ L the share s⊕ ri and gives vertex w ∈ R the random
bits of all its neighbors, that is, denoting Tw = {i : (vi, w) ∈ E}, the share of w is (ri)i∈Tw . Notice
that in this scheme a vertex w has to know a subset Tw of the random bits without getting any
information on the other bits. This is exactly the functionality supplied by a pPRG.

Theorem 4.1 (Theorem 1.6 restated). Assume that there is a robust pPRG in which the length
of the projective keys is κ(λ,m) and the length of the public parameters is κ0(λ,m), where m
is the output length of the generator. Then, for every graph G = (V,E), there is a SCSS with
share size O(κ(λ, |V |)) and public information size of κ0(λ, |V |).

Proof. By [BFM16], it suffices to consider bipartite graphs G = (L,R,E). Let L = {v1, . . . , vm}.
The sharing algorithm CSS.Share(1λ, G, s) of the secret-sharing scheme works as follows.

• Compute (params,msk)← pPRG.Setup(1λ, 1m).

• Compute (c1, . . . , cm)← pPRG.Eval(params,msk).

• The public information sh0 is params.

• The share of vi ∈ L is s⊕ ci.

• For a vertex w ∈ R, let Tw = {i : (vi, w) ∈ E}. The share of the vertex w is a{Tw} ←
pPRG.KeyGen(params,msk, Tw).

The reconstruction algorithm CSS.Recon works as follows. Let x ∈ {0, 1}n be an input such
that xi = xj = 1 for (vi, wj) ∈ E. We use sh0 and the share of wj , namely a{Twj}, to decrypt the
bit ci; this is possible since i ∈ Twj . Computing the exclusive-or of ci with the share s⊕ ci, which is
held by vi, reconstructs s.

For the security of the scheme, consider an input x and a graph G chosen by the adversary
such that Sx does not contain an edge in G. Let Lx = {i : vi ∈ Sx ∩ L} and Rx = Sx ∩ R. The

7Given a graph G = (V,E) construct a bipartite graph H by taking two copies of each vertex and for every
(u, v) ∈ E connect the first copy of u to the second copy of v; the share of each party in V consists of the shares of
the corresponding two copies of this vertex in H.
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shares of the parties in Sx are (ci ⊕ s)i∈Lx and (a{Tw})w∈Rx . By the robustness of the pPRG, the
bits in T ∗ = [m] \ ∪w∈RxTw are indistinguishable in polynomial time from uniformly distributed
bits given the projective keys of Rx. Note that for uniformly chosen truly random bits (ri)i∈T ∗ ,
the distributions (ri)i∈T ∗ , (a{Tw})w∈Rx and (ri ⊕ 1)i∈T ∗ , (a{Tw})w∈Rx (i.e., “shares” of s = 0 and
“shares” of s = 1) are identical. Thus, a poly-time adversary cannot distinguish with non-negligible
advantage between shares of s = 0 and shares of s = 1.

We next plug-in the constructions of pPRG in Theorem 4.1.

Corollary 4.2. For every graph G = (V,E), there are a SCSSs with the following share size
and assumptions:

• Share size log |V | · poly(λ) under the polynomial RSA assumption.

• Share size |V |1/2 · poly(λ) under the polynomial LWE assumption.

• Share size |V |2/3 · poly(λ) under the polynomial DDH assumption.

Proof. The SCSS from the RSA assumption follows immediately from plugging-in Theorem 3.6 in
Theorem 4.1. For the construction from the DDH assumption, we use Corollary 3.15 with m = |V |
and = 2/3, i.e., a pPRG with key-size |V |2/3 poly λ and public parameter of length |V |4/3 poly λ.
We want to construct a SCSS without public information. We observe that in the construction
for bipartite graph in the proof of Theorem 4.1, the share of vi ∈ L is s ⊕ ci and an edge (vi, w)

reconstructs s by computing ci. By Corollary 3.15, this can be done by using |V |2/3 poly(λ) bits from
the public parameter. Thus, we modify the SCSS by adding this part from the public parameter
to the share of vi. The construction from the LWE assumption is done in a similar way using
Corollary A.4 with with m = |V | and = 1/2.

Remark 4.3. In the construction of the SCSS for bipartite graphs from the RSA assumption,
the share of each vertex vi ∈ L is one bit, while the share size of each vertex w ∈ R

is log |V | poly(λ). It can be shown that there exists a bipartite graph G such that in any
information-theoretic secret-sharing schemes for G in which the share of each vertex vi ∈ L
is one bit, the share size of the vertices in R is Ω(|V |). Thus, we get another example of
separation between computational and information-theoretic secret-sharing schemes.

Remark 4.4. We can consider a “multi-secret” generalization of secret-sharing schemes for a
bipartite graph G = (L = {v1, . . . , vm} , R,E) where every vertex vi has a secret si ∈ {0, 1} and
for an input x:

• The parties in Sx can reconstruct all secrets si such that vi ∈ Sx ∩ L and there is
w ∈ Sx ∩R such that (vi, w) ∈ E, and

• Let T ∗ = {i ∈ [m] : (vi /∈ Sx ∩ L) ∨ (∀w∈Sx∩R(vi, w) /∈ E)} (i.e., all the secrets that x cannot
learn from the previous item). The parties in Sx cannot distinguish if the secrets of the
vertices T ∗ are (sj)i∈T ∗ or (s′j)i∈T ∗ for every two vectors of secrets (sj)i∈T ∗ and (s′j)i∈T ∗.

To share the secrets s1, . . . , sm ∈ {0, 1} in a bipartite graph secret-sharing scheme, we
modify the above secret-sharing for bipartite graphs by giving every vertex vi ∈ L the share
si ⊕ ci. The share of w ∈ R is not changed.
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4.2 SCSS for CNF Formulas and Truth Tables

We next describe an efficient SCSS for functions represented as monotone CNF formulas. Let
ϕ = ∧mj=1Ci be a monotone CNF formula over the variables y1, . . . , yn with m monotone clauses,
where each clause is a disjunction over a subset of the variables. We first recall a variant of
the information-theoretic secret-sharing scheme of [ISN87] for the CNF formula ϕ: to share a
one bit secret s, the dealer chooses m random bits r1, . . . , rm, one for each clause, computes
sh0 = r1 ⊕ · · · ⊕ rm ⊕ s and gives the ith party the share sh0, (rj){j:yi is in the clause Cj}. As a result,
a coalition of parties can recover the secret if and only if they have at least one representative in
each clause. In this scheme, the share of a party can be as large as m + 1. To get a SCSS with
short shares, we generate c1, . . . , cm as the output of a robust pPRG, and the share of a party is a
projective key for the bits it should learn.

Theorem 4.5 (Theorem 1.4 restated). Assume that there is a t(λ)-robust pPRG in which the
size of the projective keys is κ(λ,m) and the size of the public parameters is κ0(λ,m), where m
is the output length of the generator. Then, there is a poly(t(λ))-secure SCSS for monotone
CNF formulas with share size κ(λ,m) and public information size κ0(λ,m), where m is the
number of clauses in the CNF formula.

The theorem states that the security loss in the reduction is polynomial and so the reduction
preserves both polynomial and sub-exponential hardness. This is true for all the constructions in
the paper, though we make this explicit only in some of the cases (where it is beneficial to consider
the setting of sub-exponential hardness).

Proof. The sharing algorithm CSS.Share(1λ, ϕ = ∧mj=1Ci, s) of the secret-sharing scheme works
as follows.

• Compute (params,msk)← pPRG.Setup(1λ, 1m).

• Compute (c1, . . . , cm)← pPRG.Eval(params,msk).

• The public information sh0 is (params, c1 ⊕ · · · ⊕ cm ⊕ s).

• For an index i ∈ [n], let Ti = {j : yi is in the clause Cj}. The share shi is a{Ti} ←
pPRG.KeyGen(params,msk, Ti).

For the correctness of the scheme, consider x ∈ {0, 1}n such that ϕ(x) = 1, that is, for every clause
Cj in ϕ there exists a variable yi in Cj such that xi = 1, i.e., j ∈ Ti and cj can be computed
by the key a{Ti} held by the parties in Sx. Thus, the parties in Sx can compute c1, . . . , cm and
reconstruct s from them and sh0. The security for an input x and a monotone formula ϕ chosen by
the adversary such that ϕ(x) = 0 follows from the fact that there is at least one clause Cj that is
not satisfied by x, i.e., xi = 0 for every yi in Cj . This implies that given the projective keys held by
Sx, the bit cj is indistinguishable in polynomial time from a random bit and an adversary cannot
distinguish with non-negligible probability between shares of s = 0 and shares of s = 1.

Given a truth table representing a monotone function f : {0, 1}n → {0, 1}, we can represent f by
a monotone CNF formula ϕf with m ≤ 2n clauses and execute the above SCSS for ϕf . We assume
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sub-exponential security of the pPRG, i.e., it is 2(λp)δ -secure for some constant δ > 0 (where λp is
the security parameter of the pPRG). We take the security parameter of the pPRG as λp = λ2/δ,
thus 2(λp)δ = 2λ

2
and we get exponential hardness of the SCSS.

Corollary 4.6. Assume that there exists a 2(λp)δ-robust pPRG for some constant δ > 0 in
which the size of the projective keys is κ(λp,m), where m is the size of the output of the
generator. Then, there exists a SCSS for functions f : {0, 1}n → {0, 1}, represented by a
truth tables of size N = 2n, with share size κ(λ2/δ, N) that is 2λ

2
-secure. The sharing and

reconstruction algorithms of the SCSS run in time Õ(N) · poly(λ).

Plugging in the pPRG constructed under the sub-exponential RSA assumption in Theorem 3.6
with projective key size poly(λp, logm), we obtain the following corollary.

Corollary 4.7. Under the sub-exponential RSA assumption, there exists a SCSS for functions
f : {0, 1}n → {0, 1}, represented by a truth table of size N = 2n with share size poly(λ, logN) =

poly(λ, n) that is 2λ
2
-secure. The sharing and reconstruction algorithms of the SCSS run in

time Õ(N) · poly(λ).

Remark 4.8. For every function f : {0, 1}n → {0, 1}, we construct a SCSS with short share
size, however the running time of the sharing and reconstruction algorithms is quasi-linear in
the representation size N , i.e., it is exponential in n. This is consistent with our definitions
as the size of the truth table (i.e., the “program”) is N = 2n. However, this exponential-time
run time stems from deeper reasons. The sharing algorithm has to “know” all minimal inputs
such that f(x) = 1 otherwise it will not be able to generate shares such that only inputs x
such that f(x) = 1 can reconstruct the secret. If we consider functions such that all minimal
such inputs have weight exactly n/2, there are Ω(2n/

√
n) possible inputs and the running time

has to be exponential.
The reconstruction algorithm could ignore the program P and reconstruct the secret from

x and the shares, thus possibly avoiding the exponential-time reconstruction. However, Larsen
and Simkin [LS20] proved that for almost all functions f : {0, 1}n → {0, 1} in any secret-sharing
scheme for f either the share size is exponential or the running-time of the reconstruction
algorithm is exponential (i.e., the circuit size computing the reconstruction is exponential).8

Thus, our scheme with polynomial share size has optimal running time for the sharing and
reconstruction algorithms.

4.3 SCSS for Monotone Circuits

Yao [Yao89, VNS+03] has shown how to construct a SCSS for monotone circuits of bounded fan-in
with share size that is linear in the circuit size and the security parameter. For the special case of

8The statement of the result of [LS20] only mentions information-theoretic secret-sharing schemes, however, their
results also apply to computational secret-sharing schemes as (in a special case of their result) they only require that
for every input x such that f(x) = 1 there exists a sub-exponential circuit that reconstructs the secret and for every
input x such that f(x) = 0 there does not exist a sub-exponential circuit that distinguishes with probability at least
1/4 between shares of 0 and shares of 1. The first property follows from the assumption that there is a SCSS with
sub-exponential time reconstruction algorithm and the second follows from the exponential-security of the SCSS.
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monotone circuits over OR and AND gates of unbounded fan-in (hereafter referred to as AND-OR
circuits), this gives a complexity that grows linearly in the number of wires (and the security
parameter). We use a pPRG to get a construction whose complexity grows linearly with the number
of gates which, for general circuits, yields a quadratic improvement. In fact, we can handle OR gates
“for free” and pay only for AND gates. (This yields a strict generalization of the CNF construction.)

Remark 4.9 (Block-pPRG). Instead of using a pPRG directly, it will be convenient to employ
a block pPRG which forms a natural generalization of a pPRG. Specifically, in a block pPRG
we think of the pseudorandom output as a sequence (c1, . . . , cm) of m blocks, where each block
ci is of length λ. A projective key a{T} of a set T ⊆ [m] should allow computing all the blocks
ci for which i ∈ T . The security and robustness games are defined naturally where the only
difference is that c0 is sampled uniformly from ({0, 1}λ)|T |.

Any (robust) pPRG with an output length of m′ = mλ can be viewed as a (robust) block
pPRG of length m by parsing the outputs as blocks and by setting the projective key of T
to a{T ′}, where T ′ is the set of all location that fall inside the blocks whose index is in T .
Alternatively, one can simply concatenate λ-independent copies of a pPRG of output length m
and set the ith bit of the jth block to be the jth output bit of the ith copy. This transformation
preserves robustness and increases the key size and the size of the public parameters by a
factor of λ, and therefore succinctness and strong succinctness are preserved. Finally, we
note that concrete constructions (e.g., those based on RSA, DDH) can be easily modified to
obtain block-pPRGs directly at a minor cost (e.g., in RSA, one can extract many hard-core
bits from the same element).

We prove the following theorem.

Theorem 4.10 (Theorem 1.5 restated). Assume that there is a robust block-pPRG in which
the length of the projective keys is κ(λ,m) and the length of the public parameters is κ0(λ,m),
where m is the output length (number of blocks) of the generator and each block is of length
λ. Then, there is a SCSS for AND-OR circuits whose share size is κ(λ,m) and its public
information size is κ0(λ,m)+m∧ ·λ+1, where m is the number of gates and m∧ is the number
of AND-gates.

Remark 4.11 (Extensions). The theorem and its proof extend naturally to the sub-exponential
setting. In particular, if the pPRG is sub-exponentially secure so is the resulting SCSS. One
can also extend the construction in a natural way to the case of multi-output circuits and get
a multi-output secret-sharing scheme in which each secret is associated with an output gate of
the circuit and is released if and only if the gate is satisfied. A refined analysis shows that the
share size in this case is κ(λ,m∨) + λ and its public information size is κ0(λ,m∨) +m∧ · λ+ `,
where m∨ is the number of OR gates, m∧ is the number of non-output AND gates, and ` is
the number of outputs.

Remark 4.12 (Special cases). Consider the case where the circuit C is a CNF formula. In
this case, we have a single AND-gate which is the output gate and so, by the refined analysis,
we essentially get the pPRG-based CNF construction up to an additive cost of λ in the
sharing size. In fact, a closer look at the construction below shows that, for CNF, one can
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get exactly the same parameters and also replace the block-pPRG with a robust pPRG, just
like in Theorem 4.5.

Next, consider the case where C is a DNF formula. In this case, we can remove the
top OR gate, view each term as an output gate, and associate the same secret s to all the
outputs. This allows us to realize an `-term DNF with a share size of κ(λ,m∨) + λ and public
information size of κ0(λ,m∨) +m∧ · λ+ `. Since there are neither OR gate nor non-output
AND gates, i.e., m∨ = m∧ = 0, we get shares of size λ and public information of size `.
Moreover, since m∨ = 0, we do not need pPRGs and can rely solely on PRGs, and we derive
Theorem 1.9 (that will be proved directly as Theorem 6.1).

4.3.1 Proof of Theorem 4.10

Notation and conventions. Let C be an AND-OR circuit with variables y1, . . . , yn. We will
assume, w.l.o.g., that all the outgoing wires of an OR gate are connected as incoming wires to AND
gates, and vice-versa, that all the outgoing wires of an AND gate are connected as incoming wires to
OR gates. If this is not the case and, say, an OR-gate g has an outgoing wire that enters an OR-gate
h, we can shortcut the gate g, i.e., duplicate all the input wires of g and connect them directly
to h. If the gate g has no additional outgoing wires it can be deleted. (If g is connected to some
AND gate, we keep it in the circuit.) This transformation does not increase the number of gates.
Furthermore, we assume, for simplicity, that each input gate is only connected to OR gates. This
can be achieved by adding for every yi an OR gate with fan-in 1. (Consequently, the number of OR
gates is increased by at most n, but as we will see, the theorem statement regarding the complexity
of the scheme remains as stated.) We also assume that gates are numbered from 1 to m according
to some topological order and that the first n gates are input gates that correspond to the inputs
y1, . . . , yn. We write i→ j if an output of the ith gate is being fed to the jth gate as an input.

Overview. At a high level, we allocate to each gate i a key Ki and make sure that a set of
authorized parties x ∈ {0, 1}n will be able to learn the keys of the gates that are satisfied by x
and learn nothing about the other keys. The keys of OR gates will be pseudorandom blocks from
the output of the pPRG, whereas the keys of the AND gates will be the projective keys. We will
also publish some public ciphertexts that allow us to move from an OR layer to an AND layer. In
addition to pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval), our construction employs a
(standard) output-variable pseudorandom generator G whose existence follows from the existence
of any one-way function [HILL99] and therefore also from the existence of a pPRG.

The construction. The sharing algorithm CSS.Share(1λ, C, s) of the secret-sharing scheme
works as follows.

• Let m∨ denote the number of OR gates in C and let m denote the number of gates in C. Let
κ = κ(λ,m∨) be the length of the projective keys of the pPRG scheme. Let ` = m · κ and
let us set the output length of the PRG G to `, we abuse notation and denote the mapping
G(·, 1`) : {0, 1}λ → {0, 1}` by G.9 We parse the output of G as composed of m blocks, each

9We restrict ourselves to polynomial adversaries and therefore assume that the output length ` is polynomial in λ.
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of length κ, and for a seed a ∈ {0, 1}λ and index i ∈ [m], we let G(a)[i] ∈ {0, 1}κ denote
the ith block of G. Compute (params,msk) ← pPRG.Setup(1λ, 1m∨), and (c1, . . . , cm) ←
pPRG.Eval(params,msk), where ci is a block of length λ. Place params as part of the public
information sh0.

• Set the key Ki of the ith gate as follows:

– For an OR gate set Ki ← ci ∈ {0, 1}λ to be the ith pseudorandom block of the pPRG.

– For an AND gate and an input gate, set Ki ∈ {0, 1}κ to be the projective key a{Ti} ←
pPRG.KeyGen(params,msk, Ti) that corresponds to the set Ti = {j : i→ j} of all i’s
out-neighbors. If this gate is an output gate, set Ki = s, where s is the secret. If this is
an input gate, set the ith share to shi = Ki = a{Ti}.

• Public information: for every non-output AND gate i, we publish, as part of the public
information sh0, the ciphertext Ei = Ki ⊕Ri, which is viewed as an encryption of Ki under
the mask Ri, defined via

Ri =
⊕
j→i

G(Kj)[i].

If the AND gate i is an output gate the plaintext Ki is a single bit, and so we use only the first
bit of the mask Ri. If the output gate m is an OR gate, we also publish a one-bit ciphertext
Em = s⊕Km[1], where Km[1] is the first bit of the key Km of the mth gate. In any case, the
ciphertext Em is a single-bit ciphertext.

The reconstruction algorithm CSS.Recon works as follows. Let x ∈ {0, 1}n be an input that is
accepted by the circuit C. We traverse the circuit from the inputs to the output, and recover the
key Ki of each gate i that is satisfied by x (i.e., the gate is evaluated to 1 under the assignment x).
For an input gate, Ki is given as part of the shares of x. For an OR gate, the key Ki = ci can be
recovered based on the key Kj of the first gate j that is satisfied and whose outgoing wire enters i,
i.e., j → i. Indeed, j is either an input gate or an AND gate, and in any case its key Kj , which was
already recovered, consists of a projective key a{Tj} for a set Tj that contains i. For AND gate,
the key Ki can be recovered by XOR-ing the ciphertext Ei with the mask Ri. This mask can be
computed based on all the keys {Kj : j → i} that were already recovered (since j < i and since all
the gates j : j → i must be satisfied by x). After we reconstruct the key Km of the output gate, we
can recover the secret by decrypting the ciphertext Em.

Correctness, Complexity, and Security. It can be proved (e.g., by induction on i) that the
key of the ith satisfied gate is recovered correctly, thus correctness holds. The share size is κ(λ,m∨)

and its public information size is at most κ0(λ,m∨) +m∧ · λ+ 1, where m∨ is the number of OR
gates and m∧ is the number of AND-gates. Since we increased the original number of OR gates
by at most n (in order to make the assumption that inputs are only connected to OR gates), it
holds that m∨ is upper-bounded by m the number of gates in the original circuit, and so the

However, the construction naturally generalizes to sub-exponential adversaries, assuming that the pPRG and the
PRG are sub-exponentially secure. (Again, the existence of the latter follows from the existence of the former.)
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theorem’s statement holds. Security is proved via the following claim, which completes the proof of
Theorem 4.10.

Claim 4.13. The above construction forms a secure SCSS.

Proof. For the security of the scheme, consider an input x and a circuit C chosen by the adversary
A such that C(x) = 0. Let us assume that the adversary wins in the security game with a probability
of 0.5 + ε. For every 1 ≤ h ≤ m+ 1, consider the hybrid game Hh in which the secret sharing that
is given to the adversary is defined as in CSS.Share(1λ, C, s) except that for every i < h if the
ith gate is an unsatisfied AND/output gate, we sample the ciphertext Ei independently at random
and if the ith gate is an unsatisfied OR gate we sample its key Ki by a truly random string. Let
us refer to this distribution of the shares as CSS.Share(1λ, C, s, x, h). Let ph denote the winning
probability of the adversary in the hth game. Clearly, H0 corresponds to the standard security game
and so p0 = 0.5 + ε, by assumption. Also, in Hm the distribution CSS.Share(1λ, C, s, x,m) that is
given to the adversary is statistically independent of the secret s and so pm = 0.5. Therefore, it
suffices to show that, for every h ∈ [m], εh := ‖ph − ph+1‖ is negligible. Observe that the difference
is non-zero only if the hth gate is an unsatisfied gate which is either an AND gate or an OR gate
(but not an input gate). We consider the following 2 cases.

Case 1: the hth gate is an AND gate. In this case, at least one of the incoming wires j must
be connected to an unsatisfied OR gate j < h. The key Kj of this gate is chosen at random in both
hybrids, so we can use the distinguisher to break the pseudorandomness of G(Kj) as follows. Given
m blocks z = (z1, . . . , zm), where zi ∈ {0, 1}κ we distinguish between the case where

zi ←U {0, 1}κ, ∀i ≤ h− 1, and zi ← G(Kj)[i],∀i > h− 1, where Kj ←U {0, 1}λ (5)

and the case where

zi ←U {0, 1}κ, ∀i ≤ h+ 1, and zi ← G(Kj)[i],∀i > h+ 1, where Kj ←U {0, 1}λ, (6)

by sampling the shares exactly as in CSS.Share(1λ, C, s, x, h− 1) except that, for each i ∈ [m], we
replace the block G(Kj)[i] with the block zi. It is not hard to verify that if z is distributed as in (5)
the shares are distributed like in CSS.Share(1λ, C, s, x, h − 1) and if z is distributed according
to (6) we get CSS.Share(1λ, C, s, x, h). We can therefore distinguish between the two with an
advantage of εh, which by a standard hybrid argument allows us to break pseudorandomness of G
(by predicting a single bit) with an advantage of εh/κ. We conclude that εh must be negligible.

Case 2: the hth gate is an OR gate. In this case, all the incoming wires must be connected to
unsatisfied gates, and we can use the adversary to break the pPRG with an advantage of εh as follows.
Initialize the game with parameters (1λ, 1m) and ask for the projective keys of all the sets T ’s that
are used by CSS.Share(1λ, C, s) except for sets that contain h. Given the projective keys, and
the challenge that contains the block cj , we sample the shares as in CSS.Share(1λ, C, s, x, h− 1)

except that the key Kh is set to ch.10 In addition, we use the projective keys to generate all other
10Note that the projective keys for sets K that contain h are not needed in order to produce the output of

CSS.Sharei(1λ, C, s, x) since such keys can appear either as part of a sharing Ki of an input gate i→ h, or as part
of a ciphertext Ei of an AND gate i→ h. However, since h is an unsatisfied OR gate, any such input gate i (resp.,
AND gate i) must also be unsatisfied, and its share is omitted (resp., its ciphertext is just uniform).
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pseudorandom blocks cr for r ≥ h that are consumed by the sharing algorithm. This means that,
when cj is pseudorandom the shares are distributed just like in CSS.Share(1λ, C, s, x, h− 1) and
if cj is random the shares are distributed just like in CSS.Share(1λ, C, s, x, h). Hence, we can win
the pPRG game with advantage εh, by outputting 1 whenever A guesses s. We conclude that εh
must be negligible. This completes the proof of the claim.

5 SCSS for Partite Functions and Forbidden Graphs from OWFs

In this section, we construct an efficient SCSS for a class of functions, called partite functions,
under the most basic cryptographic assumption that one-way functions exist. Partite functions
f : {0, 1}2n → {0, 1} are monotone functions that encode every (possibly non-monotone) function
g : {0, 1}n → {0, 1} by essentially allocating a variable to each original literal (see Definition 5.1).
Secret-sharing schemes for partite functions are closely related to so-called multi-server fully-
decomposable CDS protocols [GIKM00] (which, in turn, are closely related to partial garbling
schemes [IW14] or privacy-free garbling schemes [FNO15]), and have many interesting applications.
In particular, they are used in the best-known constructions of information-theoretic secret sharing
(ITSS) for arbitrary access structures [LV18, ABF+19, ABNP20, AN21]. By [LVW17], every partite
function can be realized by an ITSS with share size 2O(

√
n logn). We construct a SCSS for partite

functions whose share size is λ.

Definition 5.1 (Partite Functions). We encode any input x = (x1, . . . , xn) ∈ {0, 1}n by an input
y = (y1, . . . , y2n) ∈ {0, 1}2n, where if xi = 0 then y2i−1 = 0 and y2i = 1 and if xi = 1 then
y2i−1 = 1 and y2i = 0 (note that such y has weight exactly n). We define the partite function
f : {0, 1}2n → {0, 1} of a function g : {0, 1}n → {0, 1} as a monotone function whose minterms
are:

• All inputs y of weight 2 such that y2i−1 = y2i = 1, for some i.

• All inputs y that encode an input x such that g(x) = 1.

We say that f is a partite function if it is a partite function of some function g.

Put differently, f is a simple monotone function that “agrees” with g, i.e., f(y) = g(x) for every
x and every y that encodes x. To make the function fully-defined, the first condition is added, and
as a result, if the weight of y is n+ 1 then f(y) = 1.

Theorem 5.2 (Theorem 1.7 restated). Assuming t(λ)-secure one-way functions exist, for all
partite functions f : {0, 1}2n → {0, 1}, for some n, represented by truth tables of size N = 2n,
there exists a poly(t(λ))-secure SCSS with share size λ+O(1). The sharing and reconstruction
algorithms of the SCSS run in time N · poly(λ).

Proof. Given a partite function F , it suffices to realize the partial function f that is defined only
over inputs of the form {01, 10}n. We can then write F (y) asf(y) ∧

∧
i∈[n]

(y2i−1 ∨ y2i)

 ∨
∨
i∈[n]

(y2i−1 ∧ y2i)

 .
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By using standard closure properties of secret sharing, this allows us to realize F with the same
share size as f with O(1) additive cost (concretely, with 2 additional bits per party). From here on
we focus on partial partite functions.

By [HILL99], t-secure one-way functions imply poly(t)-secure PRGs. The description of the
SCSS construction is recursive. If n = 2 (i.e., f : {0, 1}2 → {0, 1}) then sh1 = s if f(10) = 1 and
sh1 = 0 otherwise. Similarly, sh2 = s if f(01) = 1 and sh2 = 0 otherwise.

For the recursive step, we construct a SCSS for a partial partite function f : {0, 1}2n → {0, 1}
whose randomness complexity is 2λ+ 1 and its share complexity is at most λ+ 1. Define f1, f2 :

{0, 1}2n−2 → {0, 1} as the partite functions, where f1(y) = f(y ◦ 10) and f2(y) = f(y ◦ 01) (where
◦ is concatenation of strings). Thus,

f(y1, . . . , y2n) = (y2n−1 ∧ f1(y1, . . . , y2n−2)) ∨ (y2n ∧ f2(y1, . . . , y2n−2)).

Let CSS.Share(1λ, fb, s) be the sharing algorithm for the function fb for b ∈ {1, 2} that exists by
our recursive construction. The algorithm CSS.Share(1λ, f, s) for the function f is constructed as
follows:

• Choose two uniformly distributed seeds a1, a2 ∈U {0, 1}λ for a pseudorandom generator
PRG : {0, 1}λ → {0, 1}2λ+1, sample uniformly at random a bit s1 ∈U {0, 1}, and set
s2 = s⊕ s2.

• For b ∈ {1, 2}, let rb = PRG(ab) and shb1, . . . , sh
b
2n−2 ← CSS.Share(1λ, fb, sb; rb). That is, rb

is used by the randomized algorithm CSS.Share for the function fb as its random string.

• For 1 ≤ i ≤ 2n− 2, let shi = sh1
i ⊕ sh2

i .

• sh2n−1 ← (s2, a2) and sh2n ← (s1, a1).

Correctness. Let y ∈ {01, 10}n be such that f(y) = 1. If y2n−1 = 1, then f1(y1, . . . , y2n−2) = 1

(because f(y) = 1). In this case, CSS.Recon(1λ, f, (shi)i∈Sy) does the following:

• Compute sh2
1, . . . , sh

2
2n−2 ← CSS.Share(1λ, f2, s2; r2) using the secret s2 and the random

string r2 = PRG(a2), where s2 and a2 are retrieved from the share sh2n−1.

• Compute sh1
i ← shi ⊕ sh2

i for every i ∈ Sy1,...,y2n−2 (where all shares sh2
i were computed in the

previous step, and the needed shares shi are in the input) and

s1 ← CSS.Recon(1λ, f1, (sh
1
i )i∈Sy1,...,y2n−2

).

• Reconstructs s from s1 and s2 (that was already retrieved from sh2n−1).

The case y2n = 1 is analogous.

39



Security. Let A be a non-uniform t(λ)-time adversary that breaks the SCSS with probability
0.5 + ε(λ), we will show how to use A to break the security of the PRG. Fix the security parameter
λ, let t = t(λ), ε = ε(λ), and let f be the partite function with input length 2n and y ∈
{01, 10}n be the input chosen by A such that f(y) = 0. Let us arrange the recursive calls of
the sharing algorithm in a binary tree and label each call in the ith level of the recursion by
a string z ∈ {01, 10}i such that the zth call corresponds to the partial function f |z that takes
x ∈ {0, 1}2n−2i to f(x, z). We let sz denote the secret that is shared in the zth call, let rz denote
the random tape that is being used in the zth call, let az denote the seed that generates rz, and
let shz = (shz1, . . . , sh

z
2n−|z|)← CSS.Share(1λ, f |z, sz; rz) denote the shares that are sampled in the

zth call. Denote by zj := y[2n − 2j + 1 : 2n] the 2j-bit suffix of the string y. Consider the path
that is labeled by z0, . . . , zn−1. The main observation is for each vertex z in the path it holds that
(1) the partial function f |z evaluates to zero on the corresponding prefix of y; and (2) the seed
az that generates the random tape of the zth call is not given to the adversary (it appears in a
share of a party that does not participate in Sy). As a result, we can replace these pseudorandom
tapes with random tapes and argue that the corresponding scheme perfectly hides the secret and is
computationally indistinguishable from the original scheme. Details follow.

For every 0 ≤ h < n− 1, consider the hybrid game Hh in which the shares that are delivered to
A in the security game are modified as follows. For every j ≤ h, when making the recursive call
that is labeled by zj , we use a fresh random string rzj that is sampled uniformly at random and not
via the PRG. Observe that the first hybrid H0 corresponds to the standard security game. We also
claim that Hn−1 is statistically independent of the secret.

Claim 5.3. The distribution that the adversary sees in the game Hn−1 is statistically inde-
pendent of the secret s.

Proof. For 0 ≤ j ≤ n, let Wj = {i ≤ 2n− 2j : yi = 1} denote the parties that participate in (the
characteristic set of) y among the first 2n− 2j parties. We denote the shares that are sampled in
the zthj call by

shzj = (sh
zj
1 , . . . , sh

zj
2n−|z|)← CSS.Share(1λ, f |zj , szj ; rzj ),

where rzj is uniform (since we are in the hybrid Hn−1). We will prove that, in Hn−1, for every
j ≤ n, it holds that the secret szj that is secret-shared in the zthj call is distributed independently
from sh

zj
Wj

= (sh
zj
i )i∈Wj . Thus the claim follows from the case of j = n.

The proof is by induction on j. The base case j = 1 trivially follows from the information-
theoretic security of the base case of the construction. For the induction step, assume that
(y2j−1, y2j) = 10 (the other case is symmetric). Then, shzjWj

can be computed based on sh
zj
2j−1 =

(s2, a2) and the shares shzj−1

Wj−1
and (sh2

i )i∈Wj−1 . Here s2 = szj ⊕ szj−1 , the string a2 is a fresh random
seed, and (sh2

i )i∈Wj−1 can be efficiently sampled based on s2 and a2. By the induction hypothesis,
the random variable sh

zj−1

Wj−1
is statistically independent of the random variable szj−1 and so the

claim follows.

We conclude that the winning probability in Hn is 0.5, and so there must be a pair of neighboring
hybrids that can be distinguished with an advantage of ε′ = ε/n. We show that this leads to an
attack on the PRG.
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Claim 5.4. Suppose that Hh−1 and Hh can be distinguished with advantage ε′ by a t-size
circuit. Then the PRG can be broken with advantage ε′ by a t′ = t+N poly(λ)-size adversary.

Proof. Given a PRG challenge rzh sample the hybrid Hh−1 except that the random tape that
corresponds to zh is set to rzh . Note that we do not need the seed for zh since it only appears as
part of the share of the party i ∈ {n− 2h− 1, n− 2h} for which yi = 0. The resulting distribution
corresponds to Hh−1 if rzh is pseudorandom and to Hh if rzh is uniform. Thus we can apply the
distinguisher to break the PRG. The computational overhead of the reduction is N poly(λ) (which
is the complexity of sampling Hh−1).

Since the adversary specifies the truth table of f in time t it holds that t ≥ N , also n = logN

and, by assumption t > λ. Therefore t′ = poly(t) and ε′ = ε/n > ε/ log t. We conclude that
the PRG can be broken by a distinguisher with complexity t′ = poly(t, λ) and advantage of
ε′ > ε/ log t > ε/poly(t) as required. This completes the proof of the theorem.

5.1 SCSS for Forbidden Graphs

Secret-sharing schemes for forbidden graphs [SS97] are similar to secret sharing for graphs (defined
in Section 4.1), however the security requirement is relaxed. Given an undirected graph G = (V,E),
we view the parties as the vertices in V , and the authorized sets are those sets that contain at least
one edge from E and all sets of size at least 3. We will mainly consider secret-sharing schemes for
bipartite graphs, namely, where V consists of two sets L,R and all edges connect vertices from both
sets, i.e. E ⊆ L×R. Secret-sharing schemes for forbidden bipartite graphs are basically equivalent
to 2-server conditional disclosure of secrets (CDS) protocols, defined in [GIKM00]. Furthermore,
they imply secret-sharing schemes for arbitrary forbidden graphs with a log |V | multiplicative
overhead [BIKK14].

We show that a SCSS for partite functions imply a SCSS for bipartite forbidden graphs (and
therefor for arbitrary forbidden graphs), i.e., a 2-server CDS protocol for an arbitrary function.
Given a bipartite graph G = (L,R,E), we assume, w.l.o.g., that L = R = {0, 1}n/2 for some n ∈ N
and represent it by a function g : {0, 1}n → {0, 1}, where g(u ◦ v) = 1 for u ∈ L, v ∈ R if and only
if (u, v) ∈ E. Now we consider the partite function f of g and consider a SCSS for f creating
shares sh1, . . . , sh2n. We construct a SCSS for the forbidden graph G, where the share shu of vertex
u = (u1, . . . , un/2) ∈ L is (sh2−u1 , . . . , shn−un/2) and the share shv of vertex v = (v1, . . . , vn/2) ∈ V
is (shn/2+2−v1 , . . . , sh2n−vn/2). By the encoding of a function to a partite function, we obtain that
a pair u, v can reconstruct the secret from shu, shv if and only (u, v) ∈ E and the security holds
whenever (u, v) /∈ E. By plugging in Theorem 5.2 we derive the following theorem.

Theorem 5.5 (Theorem 1.8 restated). Assume that there is a OWF with sub-exponential
security. Then, for every graph G = (V = {0, 1}n/2 , E), represented by an adjacency matrix
of size N = 2n, there exists a SCSS for the forbidden graph G with share size poly(n, λ) =

poly(log |V |, λ) that is 2λ-secure. The sharing and reconstruction algorithms of the SCSS run
in time poly(N,λ).

The best known secret-sharing scheme with information-theoretic security for forbidden bipartite
graphs (and arbitrary graphs) has share size 2Õ(

√
logn) [LVW17]. Our SCSS is much more efficient.
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6 SCSS for Monotone DNF and the Csirmaz Function from OWFs

Ito et al. [ISN87] showed that monotone DNF formulas can be realized by an information-theoretic
secret-sharing scheme with a share size of O(mn), where m is the number of terms and n is the
number of variables. In the computational setting, one can generically reduce the share size to
λ at the expense of increasing the public information to O(mn) by using the transformation of
Remark 2.8. In this section, we show that one can do better and reduce the public information size
to only O(m) bits. Moreover, if every term in the monotone formula contains many variables, e.g.,
n/10 variables, then, using ideas of Krawczyk [Kra94], we can construct a SCSS with share size
λ+O(m/n) without public information. Based on these ideas, we further show that computational
secret-sharing schemes are provably more efficient than information-theoretic secret-sharing schemes.
Specifically, we present a monotone function over n inputs which requires total share size Ω(n2/ log n)

in any information-theoretic secret-sharing scheme, as proved by Csirmaz [Csi97, Csi96], but admits
a computational secret-sharing scheme whose total share size is O(nλ). All the constructions in
this section are based solely on the existence of one-way functions.

6.1 SCSS for Monotone DNF Formulas

We construct a SCSS for monotone DNF formulas by compressing the shares in the inormation-
theoretic secret-sharing scheme of Ito et al. [ISN87]. Let ϕ be a monotone DNF formula over the
variables y1, . . . , yn. In a simple variant of the scheme of [ISN87], for each term yi1 ∧ yi2 ∧ · · · ∧ yik in
ϕ the secret is shared independently, that is, the dealer chooses k independent uniformly-distributed
bits r1, . . . , rk; it gives rj as part of the share shij and publishes s ⊕ r1 ⊕ · · · ⊕ rk as part of the
public information. Thus, each share shi contains random bits, one bit per term containing yi, and
the public information contains m bits that are appropriately computed from the secret and shares
of the parties. In this scheme each random bit is given to one party.

To compress the share of a party, its share will be a seed ai of a pseudorandom generator
G. Each seed ai is expanded to the number of terms that contain yi, and these bits are used to
construct the public information as in the secret-sharing scheme [ISN87]. As one-way functions
imply pseudorandom generators [HILL99], the above scheme can be based on one-way functions.
As explained in Remark 4.12, the DNF scheme can be derived from the more general construction
for monotone circuits (Theorem 4.10), and since there are no OR gates we do not need a pPRG and
can use only standard PRGs.

Theorem 6.1 (Theorem 1.9 restated). Assuming t(λ)-secure one-way functions, there exists
a poly(t(λ))-secure SCSS for monotone DNF formulas in which the share size is O(λ) – the
security parameter – and the public information size is m – the number of terms in the
formula.

Proof. Given a monotone DNF formula ϕ over n variables y1, . . . , yn and m terms let us denote
by Ti ⊆ [n] be the set of indices j ∈ [n] such that yj participates in the ith term. For each party i,
we set the ith share shi to be a random seed ai ∈U {0, 1}λ and stretch ai to a pseudorandom m-bit
string ri via an output-variable PRG G(·, 1m) : {0, 1}λ → {0, 1}m (such a PRG can be constructed
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from any one-way function). For each term j ∈ [m] we publish the bit s⊕
⊕

i∈Tj ri[j], where ri[j] is
the jth bit of the string ri and s is the secret.

The complexity and correctness are easily verified. Let us prove security. Let A be any non-
uniform t(λ)-time adversary. We will prove that its probability of winning the game of Definition 2.5
is at most 1/2 + ε(λ) for some negligible function ε(λ). Fix a security parameter λ ∈ N, set t = t(λ),
and let ϕ and x ∈ {0, 1}n such that ϕ(x) = 0 be the DNF formula and input selected by the
adversary in the first step of the game. Observe that n,m ≤ t since the adversary specifies the
formula ϕ and the input x. Also, as always, we assume that λ ≤ t. We define n + 1 hybrids
H0, . . . ,Hn. The hybrid H`, where 0 ≤ ` ≤ n, is similar to the game defined in Definition 2.5 for
the above secret-sharing scheme, except that for i ≤ ` if i /∈ Sx, the string ri is sampled uniformly
at random. Let p` be the probability that the adversary wins in the hybrid H`. Notice that the
hybrid H0 is the original game of the CSS and in the hybrid Hn all shares of the parties not in Sx
are generated using truly random bits. By the information-theoretic security of the secret-sharing
of [ISN87], the probability that the adversary wins in the hybrid Hn is pn = 1/2 (since for every term
the adversary misses at least one truly random bit of a party pi such that i /∈ Sx and yi is a variable
in the term). We next argue that for every 1 ≤ ` ≤ n there exists a negligible function ε` such that
|p` − p`−1| ≤ ε` by the security of the PRG G. If x` = 1 the hybrids H`−1 and H` are identical.
Otherwise, consider an adversary for the PRG that is given a string r that is either random or
pseudorandom and executes game defined in the hybrid H` except that it uses r as the random string
r` of the `th party. Note that if r is a random string, then this is exactly the hybrid H` and if r is an
output of the PRG, then this is exactly the hybrid H`−1. Since the complexity of the PRG-adversary
is poly(t,m, λ) = poly(t), by the security of the PRG, there exists a negligible function ε` such that
|p`−p`−1| ≤ ε`(t). To conclude p0 = pn+

∑n
`=1(p`−1−p`) ≤ pn+

∑n
`=1 |p`−p`−1| ≤ 1/2 +

∑n
`=1 ε`,

and since the sum of n = poly(t) negligible functions is negligible, this proves the claim.

We say that a monotone DNF formula over n variables is c-heavy if each term in the formula
contains at least cn variables. Using ideas of [Kra94], the public information can be eliminated for
heavy monotone DNF formulas, i.e., the public information can be efficiently dispersed between the
parties by using any good erasure code (such as a Reed-Solomon code).

Lemma 6.2. Let 0 < c < 1 be a constant. Assuming one-way functions, there exists a SCSS
for c-heavy monotone DNF formulas over n variables with m > cn log n terms in which the
share size is λ+m/cn and there is no public information.

Proof. Let ϕ be a c-heavy monotone DNF formula with m terms. We execute the SCSS for the
monotone DNF for ϕ, generating shares of size λ and public information of size m. We consider
the public information as a string of length cn over an alphabet of {0, 1}m/cn symbols, encode
the string using a Reed-Solomon code to a code word of length n, and append the ith symbol in
this code-word to the share shi. Since m ≥ cn log n, the size of the alphabet is at least n and an
appropriate Reed-Solomon code exists. As each term contains at least cn variables, each satisfying
assignment x of ϕ is of weight at least cn, hence the shares of Sx contain at least cn symbols of
the code-word, hence the shares of Sx can be used to decode the original m bits of the public
information and reconstructs s. Security holds since the adversary’s view in the current scheme can
be simulated given its view in the previous (non-optimized) scheme.
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6.2 SCSS for the Csirmaz Function

In this section we show that computational secret-sharing schemes are provably more efficient than
information-theoretic secret-sharing schemes. For this separation we use the best known lower
bound for information-theoretic secret-sharing scheme of [Csi97, Csi96]. We first consider a simple
function for which Csirmaz [Csi97] proved that there exists at least one party whose share size is
Ω(n/ log n).

Definition 6.3 (The simple Csirmaz function Cn [Csi97]). For every n ∈ N, let k be the largest in-
teger such that 2k ≤ n (i.e., k = blog nc). The function Cn : {0, 1}n+k → {0, 1} is parameterized
by some non-increasing ordering (st1, . . . , st2k) of all strings of length k. Here non-increasing
means that

for every i < i′, it holds that sti 6≤ sti′ . (7)

For example, we order the strings according to their weight, starting with st1 = 1k, then
strings of weight k − 1, and so on, ending with st2k = 0k. The function Cn : {0, 1}n+k → {0, 1}
is the monotone function whose minterms are 1i ◦ 0n−i ◦ sti for i = 1, . . . , 2k, that is, the ith

minterm contains i ones, concatenated with n− i zeros, concatenated by sti.

In Cn the variables are partitioned to a small set of size log n and a big set of size n; Csir-
maz [Csi97] proved that in any information-theoretic secret-sharing scheme realizing Cn there exists
an index i from the small set such that |shi| = Ω(n/ log n). The function Cn can be computed by a
monotone DNF formula with 2k ≤ n terms. Thus, we can construct a SCSS for Cn with share size λ
and public information size n (one bit per term). Our goal is a scheme without public information.
For Cn this is simple, we append the public bit of the term corresponding to 1i ◦ 0n−i ◦ sti to the
share shi. That is, each share sh1, . . . , shn gets one “public” bit, and its size is λ+ 1.11

Theorem 6.4. Assuming one-way functions, the above scheme is a secure computational
secret-sharing scheme for (Cn)n∈N in which the size of each share is at most λ+ 1.

Theorem 6.4 already provides a separation of Ω(n/ log n) vs. O(λ) with respect to the max-share
size. Next, we show how to derive a stronger separation with respect to the total share size. For
this, we will consider the following variant of the function of [Csi96].

Definition 6.5 (A variant of the full Csirmaz function [Csi96]). For every n ∈ N, define a
monotone function C ′n : {0, 1}2n → {0, 1} as follows: Let k be the largest integer such that
2k ≤ n and L = bn/kc, and define

C ′n(x1, . . . , x2n−k·L, y1,1, . . . , y1,L, . . . , yk,1, . . . , yk,L) = Cn(x1, . . . , xn,

L∨
`=1

y1,`, . . . ,
L∨
`=1

yk,`).

In C ′n there is one big set of variables as in Cn and O(n/ log n) copies of the small set of Cn.
11Since Cn is a single function, we assume that Cn is represented by 1n. This is aligned with the assumption that

representation is always at least as large as the input size and it also means that n can be taken to be an arbitrary
polynomial in the security parameter since 1n is specified by a poly(λ)-time adversary.
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Theorem 6.6. Assuming that one-way functions, there exists a SCSS for (C ′n)n∈N with share
size O(λ) and total share size O(nλ). In contrast, in every information-theoretic secret-sharing
scheme for C ′n the total share size is Ω(n2/ log n).

Theorem 1.10 follows by taking λ to n for a constant > 0. (Recall that n can be an arbitrary
polynomial in λ.)

Proof. We employ an output-variable PRG whose existence follows from the existence of OWFs.
By Theorem 6.4, there exists a computational secret-sharing scheme realizing Cn with share size
O(λ) and total share size O(nλ). In C ′n there are L copies of the j-party for n+ 1 ≤ j ≤ n+ k. To
construct a SCSS for C ′n, we execute the SCSS for Cn and give the share of the jth party, where
n+ 1 ≤ j ≤ n+ k, to its L copies. Thus, each share in the SCSS for C ′n has size O(λ).

To prove the lower bound on the share size of information-theoretic secret-sharing schemes
realizing C ′n, we use a result of [Csi97]: In every information-theoretic secret-sharing schemes realizing
Cn the sum of the sizes of shn+1, . . . , shn+k is Ω(n). For every j ∈ [k], the function C ′n projected
to the variables x1, . . . , xn, y1,j , . . . , yk,j (i.e., all other variables are fixed to zero) is isomorphic to
Cn, thus, in every information-theoretic secret-sharing schemes realizing C ′n the sum of the sizes of
sh′1,j , . . . , sh

′
k,j is Ω(n) and the sum of the sizes of (shi,j)1≤i≤k,1≤j≤L is Ω(Ln) = Ω(n2/ log n).
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A Projective PRG from LWE

We describe a projective PRG based on the LWE assumption. In contrast to the DDH-based
construction, we show how to make the size of the (non-reusable) public parameters linear in m (as
opposed to quadratic).

Assumption A.1 (The learning with errors assumption). Let n = nλ ∈ N, q = qλ ∈ N be positive
integers and let χ = χλ be a probability distribution over Z. Let Os be an oracle that, on every
invocation, samples a uniformly random a ∈ Znq , e← χ and returns the pair (a, 〈a, s〉+e mod q),
and let Orand be an oracle that returns (a, b), where a and b ∈ Zq are chosen uniformly at
random from the corresponding domains. The (t, ε)-(decisional)-learning with errors (LWE)
assumption with respect to these parameters (n, q, χ) requires that for every non-uniform
t(λ)-time adversary A,

Pr
s←Znq

[
AOs(1λ) = 1

]
− Pr

[
AOrand(1λ) = 1

]
≤ ε(λ),

where the probabilities are over the coin-tosses of both the oracle and the adversary as well as
the random choice of the LWE secret s.

Theorem A.2. Under the LWE assumption, there exists a robust pPRG whose projective
keys are strongly succinct, i.e., of length O(λ). The public parameter is of length m · poly(λ),
where m is the output length.
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Our starting point is a construction from LWE that is very similar to the one from DDH. That is,
the public parameters consists of an `-by-`matrixM ∈ Z`×`q whose (i, j)th entry is 〈ai, sj〉+eij mod q

if i 6= j and 〈ai, sj〉+ eij + ∆yi mod q, where ai ← Znq and sj ← Znq are uniformly random, eij ← χ

is a small error, ∆ = bq/pe for some plaintext modulus p < q, and yi ← Zp. The vectors {ai}i∈[`] are
also published as part of the public parameters while the vectors {sj}j∈[`] are kept secret. Similar
to the DDH construction, a projective key for a subset T ⊆ [`] is

msk{T} :=
∑
j∈T

sj .

Given msk{T}, one can recover the set of outputs {yj}j∈T just as in the DDH-based construction.
The key new observation that enables shrinking the public parameters is that it is possible to

generate the vectors ai in a special “pseudorandom” way, that additionally enables us to compress
each column of the matrix M to size polynomial in log ` and λ, all the while maintaining security.
In particular, we will choose a set of random matrices {A′i}i∈[`′], where `′ ≈ log `, and define the
vectors {ai}i∈[`] as the function of {A′i}i∈[`′]. The machinery necessary to accomplish this and to
compress each column of M comes from the literature on constrained pseudorandom functions
(PRFs), in particular constructions of these objects from LWE [BGG+14, BV15]. We will use the
following lemma from [BTVW17].

Lemma A.3. There are algorithms ExpandA,CompressC,ExpandC that work as follows:

• Given a sequence of matrices A′1, . . . ,A
′
`′ ∈ Zn×mq (where m = cn log q for some constant

c > 1, and `′ = poly(log `)), ExpandA outputs a sequence of ` vectors a1, . . . ,a`.

• Given A′1, . . . ,A
′
`′, an LWE secret s ∈ Znq and a function f : {0, 1}log ` → {0, 1}, CompressC

outputs a program Π{A′i},f,s whose size is polynomial in log `, n, log q and the description
size of the circuit f .

• Given the program Π{A′i},f,s, ExpandC outputs bj ≈ 〈aj , s〉 for all j such that f(j) = 1.

The security property says the converse, that is, given Π{A′i},f,s, the set of all

{〈aj , s〉+ ej : f(j) = 0}

is jointly pseudorandom (where ej ← χ).

The construction of the pPRG proceeds as follows.

• On input 1λ and `, choose parameters n = n(λ), q = q(λ), and χ = χ(λ) to achieve security
against adversaries running in time polynomial in λ and `.

• The parameter generation algorithm chooses uniformly random matricesA′1, . . . ,A
′
`′ , uniformly

random LWE secrets s1, . . . , s`, uniformly random errors ej ← χ, uniformly random numbers
yj ← Zp, and outputs ` programs, together with auxiliary information as follows:

Π
(j)
{A′i},fj ,s

← CompressC(A′1, . . . ,A
′
`′ , sj , fj) and cj = 〈aj , sj〉+ ej + ∆yj mod q,

where fj(i) = 1 if and only if i = j.

Note that the public parameters depend on the PRG seed, and are non-reusable.
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• The projective key for a subset T ⊆ [n] is
∑

j∈T sj .

• If i ∈ T , the ith output of the PRG can be recovered by first computing the jth columns for
all j ∈ T using the public parameters by running

m−j ← Π
(j)
{A′i},fj ,s

, where m−j ∈ Z`−1
q

and inserting cj in the (j, j) position to get the entire jth column mj .

Summing up all the mj for j ∈ T results in ≈ 〈aj ,
∑

j∈T sj〉+ ∆yj for all j ∈ T . Using the
projective key, one can now recover yj .

The security proof goes exactly analogously to the proof of the DDH construction, using in
addition the security property of the algorithms (ExpandA,CompressC,ExpandC). We defer the
details to the full version.

By applying similar balancing tricks as in Corollary 3.15, we obtain the following corollary.

Corollary A.4. Under the LWE assumption, for every δ ∈ [0, 1] there exists a robust pPRG
whose projective keys have length mδ · poly(λ) and the public parameter has length m · poly(λ),
where the evaluation algorithm needs only m1−δ · poly(λ) bits from the public parameter to
evaluate a single bit ci.

54

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


