
Relaxed Local Correctability from Local Testing
Vinayak M. Kumar* Geoffrey Mon†

Abstract
We cement the intuitive connection between relaxed local correctability and local testing by pre-

senting a concrete framework for building a relaxed locally correctable code from any family of
linear locally testable codes with sufficiently high rate. When instantiated using the locally testable
codes of Dinur et al. (STOC 2022), this framework yields the first asymptotically good relaxed locally
correctable and decodable codes with polylogarithmic query complexity, which finally closes the su-
perpolynomial gap between query lower and upper bounds. Our construction combines high-rate
locally testable codes of various sizes to produce a code that is locally testable at every scale: we can
gradually “zoom in” to any desired codeword index, and a local tester at each step certifies that the
next, smaller restriction of the input has low error.

Our codes asymptotically inherit the rate and distance of any locally testable code used in the
final step of the construction. Therefore, our technique also yields nonexplicit relaxed locally cor-
rectable codes with polylogarithmic query complexity that have rate and distance approaching the
Gilbert–Varshamov bound.

1 Introduction
Locally correctable codes (LCCs) and locally decodable codes (LDCs) are error correcting codes that
allow any bit of the original codeword or message to be recovered using very few queries to a cor-
rupted form of the codeword. This is a natural and useful property, but unfortunately little is known
about the best possible parameter tradeoffs. In particular, the optimal query complexity for locally
correctable and decodable codes has been a longstanding mystery. In the asymptotically good (con-
stant rate and distance) regime, existing lower bounds imply that any LDC (and any linear LCC)
must make Ω(log𝑛) queries [KT00, Woo07]. However, the most query-efficient constant-rate LCCs
and LDCs, constructed by Kopparty et al. [KMRS17], require 2�̃�(√log𝑛) queries which is subpolyno-
mial but superpolylogarithmic. Whether the true optimal query complexity is polylogarithmic or
not is still an open problem. A Reed–Muller code with appropriate parameters brings us tantaliz-
ingly close: such a code is locally correctable with polylogarithmic query complexity, but with block
length slightly superlinear (see e.g. [Yek12, Section 2.3]).

Ben-Sasson et al. [BGH+06] and Gur, Ramnarayan, and Rothblum [GRR20] introduced the no-
tions of relaxed locally decodable codes (RLDCs) and relaxed locally correctable codes (RLCCs), re-
spectively. These codes admit local decoders or correctors that either return the right answer, or
detect corruption in the codeword by returning a rejection symbol⊥. For constant-rate RLDCs (and
linear RLCCs), the gap between lower and upper bounds is smaller but still significant: the best
lower bound is Ω̃(√log𝑛) [GL21, DGL21, Gol23b], while the best upper bound, due to Cohen and
Yankovitz [CY22], is quasipolylogarithmic: (log𝑛)𝑂(log log log𝑛).

In this work, we construct RLCCs with constant rate, constant correcting radius, and polyloga-
rithmic query complexity, thereby finally bringing the query upper bound polynomially close to the
lower bound.

*Department of Computer Science, University of Texas at Austin. vmkumar@cs.utexas.edu. Supported by NSF Grant
CCF-2008076 and a Simons Investigator Award (#409864, David Zuckerman).

†Department of Computer Science, University of Texas at Austin. gmon@cs.utexas.edu. Supported by NSF Grant
CCF-2200956.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 93 (2023)

mailto:vmkumar@cs.utexas.edu
mailto:gmon@cs.utexas.edu

Theorem 1.1 (informal, see Section 5). For infinitely many positive 𝑛 and any constant 𝑅 ∈ (0, 1),
there exist explicit linear RLCCs (and thus RLDCs) of block length 𝑛, rate 𝑅, constant correcting (or
decoding) radius, and query complexity

𝑟 = 𝑂(log69 𝑛).

Wemake no effort to optimize the exponent, instead striving for a simpler exposition. The related
and well-studied notion of locally testable codes (where errors can be detected with few queries)
proves to be key: we are able to build a relaxed local correctable code from any existing linear locally
testable code with vanishing loss in rate.

Theorem 1.2 (informal, see Section 4). Let 𝑛 be a sufficiently large integer. Let LTC be a linear lo-
cally testable code of block length 𝑛, rate 𝑅LTC and distance 𝛿LTC which has a local tester 𝑇 with query
complexity 𝑟LTC that satisfies

completeness: ∀𝑐 ∈ LTC.Pr[𝑇𝑐 = ⊥] = 0, and (1)
soundness: ∀𝑤 ∈ {0, 1}𝑛.Pr[𝑇𝑤 = ⊥] ≥ 𝜅 ⋅ dist(𝑤, LTC). (2)

Then, there exists a linear RLCCwith block length 𝑛, rate 𝑅LTC−𝑂(1/log log𝑛), distance≥ 𝛿LTC, correct-
ing radius 𝛿LTC/2, and query complexity 𝑂(𝑟LTC/𝜅) ⋅ polylog(𝑛).

Then, by leveraging known locally testable codes, we construct explicit RLCCs with high rate
(constant arbitrarily close to 1), constant distance, and polylogarithmic query complexity. We also
get nonexplicit RLCCswith polylogarithmic query complexity that approach theGilbert–Varshamov
bound, which is the best known general tradeoff between rate and distance for which codes ex-
ist. The last known RLCCs to approach the Gilbert–Varshamov bound are the LCCs of Gopi et
al. [GKO+18] which require polynomially many (i.e., 𝑛𝜀) queries.

1.1 Techniques
We first construct RLCCswith high rate and polylogarithmic query complexity, butwith subconstant
correcting radius. This is the core of the construction. Then, we apply a similar technique to amplify
the correcting radius to be constant while still preserving the polylogarithmic query complexity.

Our construction is based on the remarkable power of locally testable codes (LTCs). An LTC is a
code which has a testing algorithm 𝑇 that, given oracle access to a string 𝑤, always accepts (returns
⊤) when𝑤 is a codeword, but otherwise outputs a rejection symbol⊥with probability proportional,
up to a testability factor 𝜅, to the distance between 𝑤 and the code (see Equation (2)). Let LTC be a
locally testable code with distance 𝛿LTC, and let 𝑤 be a string. For a threshold 𝜀 < 𝛿LTC/2, suppose
that we would like to test whether dist(𝑤, LTC) ≥ 𝜀. We can run (1/𝜅𝜀) log(1/𝑝) independent runs of
𝑇 so that if dist(𝑤, LTC) ≥ 𝜀, then with probability ≥ 1 − 𝑝 at least one of these runs will return ⊥.
Notice the number of runs necessary (and hence the query complexity) only depends on 𝜅, 𝜀, and 𝑝;

Technique Query complexity Due to

multiplicity codes 𝑛𝜀 [KSY14]
lifted Reed–Solomon codes 𝑛𝜀 [GKS13]

expander graphs 𝑛𝜀 [HOW15]
distance amplification 2�̃�(√log𝑛) [KMRS17]
repeated tensoring (log𝑛)𝑂(log log𝑛) [GRR20]

row-evasive partitions (log𝑛)𝑂(log log log𝑛) [CY22]
nested LTCs log𝑂(1) 𝑛 Cor. 5.1

Table 1: High-rate RLCCs (and LCCs) with emphasis on query complexity for block length 𝑛.

2

there is no explicit dependence on the block length of the code. Therefore, two different-sized LTCs
satisfying the same parameters would have the same query complexity for certifying that an input
has Hamming distance ≤ 𝜀 from the code.

Local testing techniques have been used to construct RLDCs and RLCCs since their inception,
which makes sense because these codes capture intuitive properties of LTCs and probabilistically
checkable proofs (PCPs). Relaxed local decodability originates with Ben-Sasson et al. [BGH+06],
and their constant-query RLDC constructions make use of PCPs. Gur, Ramnarayan, and Roth-
blum [GRR20] continued this line of work by introducing relaxed local correctability, and their
high-rate RLCC construction works by showing that tensoring, used by Kopparty et al. [KMRS15]
to construct LTCs, preserves relaxed local correctability.

In this work, we will make this intuition formal by presenting a black-box transformation that
builds an RLCC from any family of linear high-rate LTCs—in contrast to prior work, we will as-
sume nothing about the internal structure of the LTCs we use. To do so, we will need to patch a
crucial shortcoming of LTCs. What prevents an LTC from being an RLCC? An RLCC is effectively a
“targeted LTC” which, when given a noisy codeword 𝑤 and an index 𝑖, needs to determine whether
the 𝑖th bit of the noisy codeword is uncorrupted. If so, it is safe to return the 𝑖th bit as our answer;
otherwise if any corruption is detected, we can return ⊥. However, an LTC is designed to detect
corruption uniformly over the entire input. For example, if𝑤𝑖 is the only bit which has been flipped,
then dist(𝑤, LTC) = 1/𝑛. The LTC’s local tester could have 𝑂(1/𝑛) probability of returning ⊥, in
which case Ω(𝑛) independent trials would be required to detect this single bit flip with constant
probability (which is as bad as reading the entire input). Essentially, if a few bits of 𝑤 have been
flipped, then the local tester has little chance of even querying any of them, even though they may
be critical to achieving relaxed local correctability.

We address this weakness by building a nested LTC. This code combines LTCs of various sizes
to be locally testable at every scale: we can gradually “zoom in” to any desired index 𝑖 and run
local testers for successively smaller restrictions (or blocks) of the input that contain 𝑖. If bits have
been flipped, then reducing the block length increases the relative proportion of these flipped bits,
such that eventually the relative distance of the restricted input from the closest codeword is high
enough to be noticeable by the local tester. To construct a nested LTC of block length 𝑛, we start with
an explicit family of linear LTCs {LTC1,… , LTC𝑚} which all have distance 𝛿LTC, testability 𝜅, query
complexity 𝑟, and block lengths 𝑛1 < ⋯ < 𝑛𝑚 = 𝑛 such that ∀𝑗.𝑛𝑗+1/𝑛𝑗 ≈ 𝑄 for a small factor 𝑄.
Then, we can build a code 𝐶 such that for every fixed index 𝑖 of the codeword, there exist a series of
nested1 blocks 𝐵1 ⊊ 𝐵2 ⊊ ⋯ ⊊ 𝐵𝑚 = [𝑛] such that 𝑖 ∈ 𝐵1 and 𝐵𝑗 ∈ LTC𝑗 for all 𝑗 ∈ [𝑚].

Let 𝑤 be an input such that dist(𝑤, 𝐶) < 𝛿LTC/2. Let 𝑐 be the unique codeword of 𝐶 which is
closest to 𝑤. Since 𝐶 ⊆ LTC𝑚 and the minimum distance of LTC𝑚 is ≥ 𝛿LTC, it follows that 𝑐 is also
the unique codeword of LTC𝑚 which is closest to 𝑤:

dist(𝑤, 𝐶) = dist(𝑤, 𝑐) = dist(𝑤, LTC𝑚).
Therefore, we can bound dist(𝑤, 𝑐) by using the local tester 𝑇𝑚 for LTC𝑚. We can run 𝑇𝑚 sufficiently
many times to detect with probability ≥ 2/3 whether

dist(𝑤, 𝑐) ≥ 𝛿LTC
2𝑄 ≈ 𝛿LTC𝑛𝑚−1

2𝑛𝑚
.

If this distance is less than 𝛿LTC/2𝑄, then the next smaller restriction of 𝑤 is very close to the cor-
responding restriction of 𝑐. In the worst case, all of the corrupted indices lie in 𝐵𝑚−1, so we can
compute the absolute number of corrupted bits and renormalize by 𝑛𝑚−1.

dist(𝑤|𝐵𝑚−1 , 𝑐|𝐵𝑚−1) <
𝛿LTC
2𝑄 ⋅ 𝑛𝑚

𝑛𝑚−1
≈ 𝛿LTC

2
Now we can repeat the same argument; 𝑤|𝐵𝑚−1 is so close to 𝑐|𝐵𝑚−1 that

dist(𝑤|𝐵𝑚−1 , 𝐶|𝐵𝑚−1) = dist(𝑤|𝐵𝑚−1 , 𝑐|𝐵𝑚−1) = dist(𝑤|𝐵𝑚−1 , LTC𝑚−1).
1Later on we will show that the blocks do not necessarily have to be nested; instead, there will be a constant number of

relevant blocks at each level, such that the unions of the blocks at each level are nested.

3

This allows us to use the next local tester 𝑇𝑚−1 to test whether dist(𝑤|𝐵𝑚−1 , 𝑐|𝐵𝑚−1) is high with prob-
ability ≥ 2/3. We can repeat these steps, gradually narrowing down the relevant view of the code-
word until we have reached the final restriction 𝑤|𝐵1 , at which point we can read the entire block
and check all of the parity constraints for LTC1 to determine if there is any corruption present. The
probability of a step returning a false negative (that is, failing to detect that the distance of some re-
stricted input is too high) is at most 1/3, because the first block with distance ≥ 𝛿LTC/2𝑄 will trigger
a ⊥ with probability ≥ 2/3. Therefore, with probability ≥ 2/3, the relaxed local corrector described
above can determine whether the 𝑖th index of the input is corrupted, and return ⊥.

The overall query complexity will be

𝑚
∑
𝑗=2

𝑂(𝑄𝑟
𝜅𝛿LTC

) + 𝑛1 = 𝑂(𝑄𝑟𝑚𝜅𝛿LTC
) + 𝑛1.

We want to emphasize that because all of the LTCs in the family satisfy the same parameters, the
query cost is roughly the same for each of the𝑚 levels. Also, while this technique is iterative over𝑚
many levels, the testing procedure at each level is self-contained, and does not recurse on other levels.
Therefore, the query cost of each level is additive, rather thanmultiplicative as in priorwork [GRR20,
CY22]. Hence, as long as the number of levels𝑚, the query cost at each level 𝑂(𝑄𝑟/𝜅𝛿LTC), and the
smallest block length 𝑛1 are all polylog(𝑛), our total query complexity will be polylogarithmic. In
addition, the rate of these LTCsneeds to be high enough, i.e.,≥1−𝑂(1/log𝑛), such that the final code
still has constant rate. In fact, the recent breakthrough work of Dinur et al. [DEL+22] constructs
families of LTCs with rate arbitrarily close to 1 that fulfill all of our requirements,2 allowing us to
instantiate our construction.

1.2 Related work
Prior constructions and lower bounds. The two main parameter regimes for RLDCs and
RLCCs are the constant query regime (optimizing block length for 𝑘-bit messages and 𝑞 queries)
and the asymptotically good regime (optimizing query complexity for 𝑛-bit codewords). In the
constant-query regime, the best known block length is 𝑛 = 𝑂(𝑘1+1/𝑞) [AS21], following a line of
work [BGH+06, GRR20, CGS22]. Interestingly, this asymptotically matches the block length lower
bound for full-fledged LDCs [KT00, Woo07].

Table 1 summarizes the historic state of the art for query-efficient high-rate RLCCs. Other prior
works [BFLS91, RS96] give constant-rate RLCCs with 𝑛𝜀 query complexity, but these codes do not
support rate arbitrarily close to 1, and so are not included in the table. In addition, this table does
not include Gopi et al. [GKO+18] who construct LCCs with optimized rate approaching the Gilbert–
Varshamov bound, but with 𝑛𝜀 query complexity.

Recently, Block et al. [BBC+22] prove an exponential block length lower bound for 2-query
RLDCs, asymptotically matching the exponential block length lower bound for 2-query LDCs es-
tablished by Kerenidis and de Wolf [KdW03]. Gur and Lachish [GL21] and Dall’Agnol, Gur, and
Lachish [DGL21] establish lower bounds for arbitrary-query RLDCs, while the recent work of Gol-
dreich [Gol23b] provides an alternative and simpler proof, which is also stronger for certain cases.

Alternative error models. LDCs, LCCs, and their relaxed counterparts have been studied in
other error models, distinct from the Hamming worst-case bit flip setting that we study in this work.
These codes have been studied in the insertion-deletion error model, where a limited number of bits
can be added or removed (rather than simply flipped) anywhere in the codeword [OP15, BBG+20,
CLZ20, BBC+22]. In addition, both the Hamming and insertion-deletion models have been stud-
ied in the computationally bounded setting, where the adversary choosing where to perform bit
flips or insertions/deletions has limited resources. Then, cryptographic assumptions can be used to

2Similar codes were also independently discovered by Panteleev and Kalachev [PK22] with rate up to 1/2. We require the
stronger rate guarantee from Dinur et al. [DEL+22].

4

construct LDCs and LCCs [OPS07, HO08, HOSW11, BKZ20, BB21, ABB22] as well as their relaxed
counterparts [BGGZ21, BB23].

In particular, the latter two works use additional assumptions to construct asymptotically good
RLDCs and RLCCs in the Hamming setting with polylogarithmic query complexity. We achieve this
unconditionally.

1.3 Organization
The remainder of the paper is organized as follows. Section 2 introduces all preliminary notation,
definitions, and theorems necessary for our result. Section 3 demonstrates how to construct RLCCs
with 1− 𝑜(1) rate and polylog(𝑛) query complexity, but 𝑜(1) correcting radius. Section 4 then shows
how amplify the radius of any RLCC using an LTC with good distance. Section 5 finally constructs
the final RLCC with constant rate, constant radius, and polylogarithmic query complexity by using
the procedure in Section 4 and a suitable LTC to amplify the radius of the RLCC constructed in
Section 3.

2 Preliminaries
2.1 General notation
Let dist(𝑥, 𝑦) denote the relative Hamming distance between two binary strings 𝑥 and 𝑦, and let
dist(𝑥, 𝐶) denote the relative Hamming distance between a string 𝑥 and a subset 𝐶 ⊆ {0, 1}𝑛. We
say that 𝑓(𝑛) ≤ poly(𝑛) if there is a fixed polynomial 𝑝 such that for large enough 𝑛, 𝑓(𝑛) ≤ 𝑝(𝑛),
and analogously for ≥. We say 𝑓(𝑛) = poly(𝑛) if 𝑓(𝑛) ≤ poly(𝑛) and 𝑓(𝑛) ≥ poly(𝑛). Analogous
conventions are used for polylog(𝑛), which denotes poly(log𝑛). The polynomials implicitly defined
by poly or polylog are fixed with respect to all parameters involved.

Denote ℤ to be the set of integers, 𝑛ℤ to be the set of multiples of 𝑛, ℕ to be the set of positive
integers, and 𝔽2 to be the finite field of 2 elements. For a positive integer 𝑥, define [𝑥] ≔ {1, 2,… , 𝑥}.
For integers 𝑥, 𝑦, let ⟦𝑥, 𝑦⟧ denote the interval {𝑥, 𝑥 + 1,… , 𝑦 − 1, 𝑦}. For a string 𝑥 ∈ {0, 1}𝑛 and an
index set 𝐼 ⊆ [𝑛], let 𝑥|𝐼 denote the restriction of 𝑥 to the indices in 𝐼. For a set of strings 𝑆 ⊆ {0, 1}𝑛,
let 𝑆|𝐼 denote the set {𝑥|𝐼 ∶ 𝑥 ∈ 𝑆}.

2.2 Error-correcting codes
In this paper, we treat {0, 1} and 𝔽2 as interchangeable, and all codes will be binary and linear.
Definition 2.1. A linear code with block length 𝑛, distance 𝛿, and rate 𝑅 is a subspace 𝐶 ⊂ 𝔽𝑛2 such
that min𝑐∈𝐶 dist(𝑐, 𝐶 ⧵ {𝑐}) ≥ 𝛿 and dim(𝐶) = 𝑅𝑛. Furthermore, we say a linear code is explicit if its
parity-check matrix (and thus its generator matrix) can be computed in time poly(𝑛).
Definition 2.2. A code 𝐶 with dimension 𝑘 is called systematic if there exists an index set 𝐼 such
that 𝐶|𝐼 = {0, 1}𝑘.

2.3 Locally correctable and decodable codes
The study of LDCs and LCCs was first formalized by Katz and Trevisan [KT00]; we refer the reader
to Yekhanin’s comprehensive survey [Yek12] for more context and details.

Definition 2.3. A code 𝐶∶ {0, 1}𝑘 → {0, 1}𝑛 is a locally correctable code (LCC)with correcting radius
𝛿 and query complexity 𝑟 if it has a randomized corrector 𝑀 that makes ≤ 𝑟 queries such that for
every 𝑐 ∈ 𝐶 and every 𝑤 ∈ {0, 1}𝑛 with dist(𝑤, 𝑐) ≤ 𝛿,

∀𝑖 ∈ [𝑛].Pr[𝑀𝑤(𝑖) = 𝑐𝑖] ≥
2
3 .

5

Definition 2.4. A code 𝐶∶ {0, 1}𝑘 → {0, 1}𝑛 is a locally decodable code (LDC)with decoding radius 𝛿
and query complexity 𝑟 if it has a randomized decoder𝑀 that makes ≤ 𝑟 queries such that for every
𝑚 ∈ {0, 1}𝑘 and every 𝑤 ∈ {0, 1}𝑛 with dist(𝑤, 𝐶(𝑚)) ≤ 𝛿,

∀𝑖 ∈ [𝑛].Pr[𝑀𝑤(𝑖) = 𝑚𝑖] ≥
2
3 .

Note that a systematic LCC implies an LDCwith the same radius and query complexity, because
every codeword can beuniquely identified by (and associatedwith) some restriction. Any linear LCC
can be made systematic, and hence implies an LDC. In addition, every LCC or LDC with correcting
radius 𝛿 also has distance > 2𝛿, or else there exists some 𝑤 which has Hamming distance 𝛿 from
two distinct codewords, contradicting the correctness of the local corrector/decoder. Therefore, we
often use correcting radius and distance interchangeably.

A relaxed locally correctable code is allowed to detect an error instead of successfully correcting
a codeword bit. We use the strongest definition of relaxed locally correctable and locally decodable
codes, which features perfect completeness. Recent work by Goldberg [Gol23a] shows that for lin-
ear relaxed locally correctable codes, this definition is essentially equivalent to allowing imperfect
completeness (the corrector/decoder can err even on true codewords) and requiring nonadaptivity
(the corrector/decoder’s queries do not depend on the outcome of prior queries). All of the codes
we construct can be made nonadaptive—see Remark 5.3.

Definition 2.5. A code 𝐶∶ {0, 1}𝑘 → {0, 1}𝑛 is a relaxed locally correctable code (RLCC)with correct-
ing radius 𝛿 and query complexity 𝑟 if it has a randomized corrector𝑀 that makes ≤ 𝑟 queries such
that
1. (Completeness) For every 𝑐 ∈ 𝐶,

∀𝑖 ∈ [𝑛].Pr[𝑀𝑐(𝑖) = 𝑐𝑖] = 1.

2. (Soundness) For every 𝑐 ∈ 𝐶 and every 𝑤 ∈ {0, 1}𝑛 with dist(𝑤, 𝑐) ≤ 𝛿,

∀𝑖 ∈ [𝑛].Pr[𝑀𝑤(𝑖) ∈ {𝑐𝑖, ⊥}] ≥
2
3 .

Relaxed locally decodable codes are analogously defined. A systematic RLCC (and hence any
linear RLCC) implies a relaxed locally decodable code with the same parameters in the same way
that an LCC implies an LDC.

Definition 2.6. A code𝐶∶ {0, 1}𝑘 → {0, 1}𝑛 is a relaxed locally decodable code (RLDC)with decoding
radius 𝛿 and query complexity 𝑟 if it has a randomized corrector𝑀 that makes≤ 𝑟 queries such that
1. (Completeness) For every𝑚 ∈ {0, 1}𝑘,

∀𝑖 ∈ [𝑘].Pr[𝑀𝐶(𝑚)(𝑖) = 𝑚𝑖] = 1.

2. (Soundness) For every𝑚 ∈ {0, 1}𝑘 and every 𝑤 ∈ {0, 1}𝑛 with dist(𝑤, 𝐶(𝑚)) ≤ 𝛿,

∀𝑖 ∈ [𝑛].Pr[𝑀𝑤(𝑖) ∈ {𝑚𝑖, ⊥}] ≥
2
3 .

Similar to LCCs, an RLCC with correcting radius 𝛿 must also have distance > 𝛿, and without
making additional restrictions on the query complexity, this is tight: anRLCCwith query complexity
𝑛 could have a relaxed local corrector that reads the entire input and tests whether it is a codeword
or not.

The study of RLDCs originates with Ben-Sasson et al. [BGH+06] and is closely related to prob-
abilistically checkable proofs. Gur, Ramnarayan, and Rothblum [GRR20] introduced the notion of
RLCCs, and gave the first constructions.

6

2.4 Locally testable codes
Locally testable codes (LTCs) are codes with testers that are able to locally check for corruption. We
will make use of the following (strong) definition of LTCs:

Definition 2.7. A code 𝐶∶ {0, 1}𝑘 → {0, 1}𝑛 is a locally testable code (LTC) with distance 𝛿, testabil-
ity3 𝜅, and query complexity 𝑟 if it has a randomized tester 𝑀 that makes ≤ 𝑟 queries and returns
either ⊤ (accept) or ⊥ (reject), such that
1. (Completeness) For every 𝑐 ∈ 𝐶,

Pr[𝑀𝑐 = ⊤] = 1.

2. (Soundness) For every 𝑤 ∈ {0, 1}𝑛,

Pr[𝑀𝑤 = ⊥] ≥ 𝜅 ⋅ dist(𝑤, 𝐶).

Recent breakthroughs by Dinur et al. [DEL+22], and by Panteleev and Kalachev [PK22] were
able to construct locally testable codes with constant rate, distance, and query complexity (referred
to as 𝑐3-LTCs), thereby resolving a longstanding conjecture and capping off decades of work. In
particular, Dinur et al. [DEL+22] were able to construct explicit families of linear LTCs with rate
arbitrarily close to 1:
Theorem 2.8 ([DEL+22, Theorem 1.1 and Remark 5.3]). For any rate 𝑅 = 1 − 𝜀 ∈ (0, 1), there exist
𝛿 ≥ Ω(𝜀3), 𝜅 ≥ Ω(𝜀15), and 𝑟 ≤ 𝑂((1/𝜀)20) such that there is an explicit infinite family of linear LTCs
of rate 𝑅, minimum distance 𝛿, testability 𝜅, and query complexity 𝑟.

In particular, there exists an odd prime power 𝑞 = Θ((1/𝜀)10) such that for all integers 𝑗 ∈ ℕ, there
exists an LTC LTC𝑗 with rate≥ 𝑅, minimum distance≥ 𝛿, testability≥ 𝜅, query complexity 𝑟, and block
length (𝑟/8) ⋅ (𝑞3𝑗 − 𝑞𝑗).

3 Achieving polylogarithmic query complexity
In this section, we will build RLCCs with constant rate and polylogarithmic query complexity, but
with subconstant correcting radius. Later on, we will be able to amplify the correcting radius to be
constant while still preserving the asymptotic query complexity.

We will build our RLCC using appropriately instantiated LTCs constructed using Theorem 2.8.
The details of our parameter choices are left to Appendix A. In summary, we can get a nice family
of 𝑜(log𝑛) many LTCs of block lengths ranging from polylog(𝑛) to 𝑛, where each consecutive code
increases in block length by a polylog(𝑛) factor.
Corollary 3.1 (see Appendix A). For every sufficiently large ̃𝑛 ∈ ℕ, there exists an integer 𝑛 ∈
[̃𝑛, 𝑂(̃𝑛 log30 ̃𝑛)] and a family of linear LTCs {LTC1,… , LTC𝑚} such that
(a) Each LTC𝑗 has rate 𝑅 ≥ 1 − 𝑂(1/log𝑛), distance 𝛿LTC ≥ Ω(log−3 𝑛), testability 𝜅 ≥ Ω(log−15 𝑛),

and query complexity 𝑟 ≤ 𝑂(log20 𝑛).
(b) If 𝑛𝑗 is the block length of LTC𝑗 , then 𝑛1 ≤ 𝑂(log50 𝑛), 𝑛𝑚 = 𝑛, and ∀𝑗.𝑛𝑗+1/𝑛𝑗 = Θ(log30 𝑛).
(c) The number of codes is𝑚 = 𝑂(log𝑛/log log𝑛).

Theorem 3.2. For every sufficiently large ̃𝑛 ∈ ℕ, there is an integer 𝑛 ∈ [̃𝑛, 𝑂(̃𝑛 log30 ̃𝑛)] such that
there exists an explicit linear code𝐶 with rate≥1−𝑂(1/log log𝑛), which is a relaxed locally correctable
code with correcting radiusΩ(log−3 𝑛) and query complexity ≤ 𝑂(log69 𝑛/log log𝑛).

3This parameter has also been referred to as the detection probability e.g. [DEL+22].

7

In our construction, we will require minimal covers of [𝑛] by intervals of size 𝑛𝑗 , which we will
refer to as 𝑗-blocks. For each 𝑗 ∈ [𝑚], define the family of 𝑗-blocks, as well as the family of all blocks:

ℬ𝑗 ≔ {⟦(ℓ − 1)𝑛𝑗 + 1, ℓ𝑛𝑗⟧ ∶ ℓ ∈ [⌊ 𝑛𝑛𝑗
⌋]} ∪ {⟦𝑛 − 𝑛𝑗 + 1, 𝑛⟧}

ℬ ≔
𝑚

⋃
𝑗=1

ℬ𝑗

Intuitively, for each 𝑗, we are simply covering [⌊𝑛/𝑛𝑗⌋𝑛𝑗] by ⌊𝑛/𝑛𝑗⌋ disjoint 𝑗-blocks, and then
covering the remaining interval of size 𝑛 − ⌊𝑛/𝑛𝑗⌋𝑛𝑗 < 𝑛𝑗 with a single 𝑗-block if needed.

Our RLCC construction proceeds as follows:
1. Construct codes {LTC1,… , LTC𝑚} using Corollary 3.1 and ̃𝑛 large enough (to be specified in

Claim 3.5).
2. Construct𝑚 layers 𝐿1,… , 𝐿𝑚 of block length 𝑛 as follows:

𝐿𝑗 ≔ {𝑥 ∈ {0, 1}𝑛 ∶ ∀𝐵 ∈ ℬ𝑗 .𝑥|𝐵 ∈ LTC𝑗}

Each layer is a code which enforces that the restriction to each block inℬ𝑗 will be a codeword
in LTC𝑗 . If 𝑛𝑗 divides 𝑛, then 𝐿𝑗 is the Cartesian product of 𝑛/𝑛𝑗 copies of LTC𝑗 .

3. Construct the final code 𝐶 ≔ ⋂𝑚
𝑗=1 𝐿𝑗 .

3.1 Code parameters
We first verify that the code is explicit and has good rate and distance.

Proposition 3.3. The code 𝐶 described above is linear, explicit, and has rate ≥ 1 − 𝑂(1/log log𝑛).

Proof. 𝐶 is an intersection of linear codes, so it is linear.

Explicitness. We just need to show that constructing the parity-check matrix of 𝐶 is efficient.
Indeed by Corollary 3.1, the parity checks of the {LTC𝑗} can be constructed efficiently. Constructing
the parity-checkmatrix of each𝐿𝑗 can be done by concatenating |ℬ𝑗 | shifts of the parity-checkmatrix
of LTC𝑗 , where the shift is induced by each𝐵 ∈ ℬ. The final parity-checkmatrix is the concatenation
of the𝑚 parity-check matrices from each 𝐿𝑗 .

Rate. Because our code is linear, we can compute the rate by upper bounding the number of
linear constraints. Recall that 𝑅 = 1 − 𝑂(1/ log𝑛) and 𝑛𝑗 are the rate and block-length of each
LTC𝑗 , respectively. So each LTC𝑗 has 𝑛𝑗(1 − 𝑅) linear constraints, and each 𝐿𝑗 has ≤ 𝑛𝑗(1 − 𝑅)|ℬ𝑗 |
constraints. The final code 𝐶 then has at most

𝑚
∑
𝑗=1

𝑛𝑗(1 − 𝑅)||ℬ𝑗 || = (1 − 𝑅)
𝑚
∑
𝑗=1

𝑛𝑗⌈
𝑛
𝑛𝑗
⌉

≤ (1 − 𝑅)
𝑚
∑
𝑗=1

(𝑛 + 𝑛𝑗) ≤ 2(1 − 𝑅)𝑚𝑛

≤ 𝑂(1
log𝑛) ⋅ 𝑂(

𝑛 log𝑛
log log𝑛) ≤ 𝑂(𝑛

log log𝑛)

linear constraints. Therefore, the rate of this code is ≥ 1 − 𝑂(1/log log𝑛).

8

𝑖

∩ ∩ ∩ ∩ ∩⋯ ⋯=

𝐿1 𝐿2 𝐿𝑗 𝐿𝑚𝐶

𝑛

𝑛𝑗

∈ LTC𝑗
𝒞𝑗

Figure 1: The construction of our RLCC as an intersection of layers. The highlighted () blocks indicate
the canary blocks 𝒞𝑗 at each layer 𝐿𝑗 for a codeword index 𝑖. The dashed lines indicate the overlap
between litter blocks and their corresponding runt blocks (see Claim 3.5 for terminology).

3.2 Relaxed local correctability
We now show that 𝐶 is indeed an RLCC with correcting radius 𝛿LTC/2 and good query complexity.
Let 𝑇𝑗 be the tester for LTC𝑗 . Our relaxed corrector𝑀 for input 𝑤 and codeword index 𝑖 is as follows.

1. Recursively compute the following intervals (which we will refer to as the 𝑗-canary blocks):
• Let𝒞1 be the singleton of an arbitrary 1-block containing 𝑖.
• For 𝑗 ≥ 2,𝒞𝑗 ≔ {𝐵 ∈ ℬ𝑗 ∶ ∃𝐵′ ∈ 𝒞𝑗−1 such that 𝐵 ∩ 𝐵′ ≠ ∅}.

2. For descending 𝑗 = 𝑚,𝑚 − 1,… , 2
• For each canary 𝐵 ∈ 𝒞𝑗 repeatedly execute 𝑇𝑤|𝐵𝑗 independently 𝑡𝑗 ≔ 12𝑛𝑗/𝜅𝛿LTC𝑛𝑗−1
many times. If ⊥ is returned by 𝑇𝑗 at any point, abort and output ⊥.

3. For the unique canary 𝐵 ∈ 𝒞1, check if 𝑤|𝐵 ∈ LTC1 by reading all of 𝑤|𝐵 and verifying the
parity checks of LTC1. Output 𝑤𝑖 if it is, and output ⊥ otherwise.

Proposition 3.4. The code 𝐶 is an explicit RLCC with correcting radius 𝛿LTC/2 and query complexity
𝑂(log69 𝑛/log log𝑛).

Proof.

Explicitness. We first verify 𝑀 is polytime computable. Step 1 clearly is as this is a matter of
dividing integers by 𝑛𝑗 . Step 2 runs in polytime since 𝑡𝑗 and 𝑗 ≤ poly(𝑛), and 𝑇𝑗 runs in polytime for
all 𝑗. Step 3 is efficient as LTC1 is an explicit linear code, so we have access to its parity checkmatrix.

Query complexity. We now check that the corrector does have polylogarithmic query complex-
ity. Step 1 never queries𝑤, and for Step 3, checking membership in LTC1 will have query complexity

9

at most the block length 𝑛1. By summing over the iterations of Step 2, the total number of queries is

𝑛1 +
𝑚
∑
𝑗=2

∑
𝐵∈𝒞𝑗

𝑟𝑡𝑗 ≤ 𝑛1 +
𝑚
∑
𝑗=2

𝑟𝑡𝑗 ⋅ max𝑗∈[𝑚]
||𝒞𝑗 ||

≤ 𝑛1 + 𝑂(log20 𝑛) ⋅ 12
𝜅𝛿LTC

⋅ max
𝑗∈[𝑚]

||𝒞𝑗 || ⋅
𝑚
∑
𝑗=2

𝑛𝑗
𝑛𝑗−1

≤ 𝑂(log50 𝑛) + 𝑂(log3+15+20+30 𝑛) ⋅ 𝑚 ⋅ max
𝑗∈[𝑚]

||𝒞𝑗 ||

≤ 𝑂(log69 𝑛
log log𝑛) ⋅ max𝑗∈[𝑚]

||𝒞𝑗 ||.

We now claim that max𝑗 |𝒞𝑗 | ≤ 3, from which the query complexity will follow. To prove this, we
will show a stronger claim.
Claim 3.5. For sufficiently large 𝑛 and all 𝑗 ∈ [𝑚],𝒞𝑗 consists of at most 3 contiguous 𝑗-blocks.

Proof. We can set ̃𝑛 large enough when constructing the LTC family in Corollary 3.1 so that each
𝑛𝑗+1/𝑛𝑗 > 3 (which can be done since by construction, each 𝑛𝑗+1/𝑛𝑗 = 𝜔(1)). We prove this lemma
using induction. The base case is trivial since𝒞1 is simply one interval.

Now assume𝒞𝑗−1 consists of at most 3 consecutive (𝑗 − 1)-blocks, which implies that the union

𝑈 ≔ ⋃
𝐵∈𝒞𝑗−1

𝐵

is an interval of size≤ 3𝑛𝑗−1. By construction,𝒞𝑗 is the set of 𝑗-blocks which intersect𝑈 . For brevity,
call the set of the first ⌊𝑛/𝑛𝑗⌋ contiguous disjoint 𝑗-blocks to be the litter, and call the remaining single
𝑗-block (if it exists) the runt. Define the set of points 𝐴 = 𝑛𝑗ℤ ∩ [𝑛]. Let ℓ be the number of litter
𝑗-blocks in 𝒞𝑗 . On the one hand, since the right-endpoint of each litter 𝑗-block is an element of
𝐴, and at most one litter 𝑗-block can intersect 𝑈 but have its right-endpoint outside 𝑈 , it follows
|𝑈 ∩ 𝐴| ≥ ℓ − 1. On the other hand, since 𝑛𝑗 > 3𝑛𝑗−1 and |𝑈| ≤ 3𝑛𝑗−1, it follows |𝑈 ∩ 𝐴| ≤ 1.
Clasping our hands together yields ℓ ≤ 2. Accounting for the possibility of a runt 𝑗-block gives us
the bound of at most 3 consecutive 𝑗-blocks in𝒞𝑗 .

Completeness. We now need to show that for arbitrary 𝑖 ∈ [𝑛] and 𝑤 ∈ 𝐶, 𝑀𝑤(𝑖) = 𝑤𝑖. This
is equivalent to verifying our procedure does not output ⊥. Indeed by construction of 𝐶, we know
that for any 𝑤 ∈ 𝐶, 𝑗 ∈ [𝑚], and 𝐵 ∈ ℬ𝑗 , it must be true that 𝑤|𝐵 ∈ LTC𝑗 . Therefore Step 3 cannot
output a ⊥, and by the completeness of the testers 𝑇𝑗 , Step 2 cannot produce a ⊥. Completeness
follows.

Soundness. We are now left with proving perhaps the most nontrivial part of the corrector: its
soundness. Let 𝛿LTC be the distance of all the LTC𝑗 . Fix an arbitrary 𝑖 and assume we have a string
𝑤 ∈ {0, 1}𝑛 such that 𝑤 ∉ 𝐶 but dist(𝑤, 𝐶) < 𝛿LTC/2 (which is our correcting radius). Since the
distance of 𝐶 is at least 𝛿LTC, there is a unique codeword 𝑐 ∈ 𝐶 such that dist(𝑤, 𝐶) = dist(𝑤, 𝑐).

We may assume that 𝑤𝑖 ≠ 𝑐𝑖. Notice that 𝑀𝑤 either outputs 𝑤𝑖 or ⊥. Therefore, in the case
𝑤𝑖 = 𝑐𝑖, 𝑀𝑤(𝑖) ∈ {𝑐𝑖, ⊥} surely which satisfies the RLCC definition. It suffices to show that with
this assumption, we output ⊥ with probability ≥ 2/3. We will utilize two claims. The first tells us
how we can use the tester 𝑇𝑗 to certify that a 𝑗-block in 𝑤 is close in distance to the corresponding
𝑗-block in 𝑐.
Claim 3.6. Assume that for some 𝐵 ∈ ℬ𝑗 we have 0 < 𝜀 ≤ dist(𝑤|𝐵, 𝑐|𝐵) < 𝛿LTC/2. Then if 𝑇𝑗 is run
independently 𝑡 times on 𝑤|𝐵, at least one run will output ⊥ with probability ≥ 1 − 𝑒−𝑡𝜅𝜀.

Proof. Let 𝜅 be the testability of all of the {LTC𝑗}. Since dist(𝑤|𝐵, 𝑐|𝐵) < 𝛿LTC/2, we know that 𝑐|𝐵 is
the closest codeword in LTC𝑗 to 𝑤|𝐵. This is because 𝑐|𝐵 ∈ 𝐶|𝐵 ⊆ LTC𝑗 and the distance of LTC𝑗 is

10

≥ 𝛿LTC, and so there cannot be a codeword in LTC𝑗 ⧵ 𝐶|𝐵 which is closer to 𝑤|𝐵 than 𝑐|𝐵. Crucially,
this allows us to use the local tester 𝑇𝑗 to reason about dist(𝑤|𝐵, 𝑐|𝐵). Then by the soundness of 𝑇𝑗 ,

Pr[𝑇𝑤|𝐵𝑗 = ⊥] ≥ 𝜅 ⋅ dist(𝑤|𝐵, LTC𝑗) = 𝜅 ⋅ dist(𝑤|𝐵, 𝑐|𝐵) ≥ 𝜅𝜀.

Therefore, the probability that 𝑡 independent runs of 𝑇𝑗 never output ⊥ is at most (1 − 𝜅𝜀)𝑡 ≤ 𝑒−𝑡𝜅𝜀
as desired.

The second claim shows that low corruption in the 𝑗-canaries implies low corruption in the
(𝑗 − 1)-canaries.
Claim 3.7. If for all 𝐵 ∈ 𝒞𝑗 it is the case dist(𝑤|𝐵, 𝑐|𝐵) < 𝜀, then for all 𝐵′ ∈ 𝒞𝑗−1, dist(𝑤|𝐵′ , 𝑐|𝐵′) <
3𝜀𝑛𝑗/𝑛𝑗−1.

Proof. From Claim 3.5 we know there are at most 3 blocks in𝒞𝑗 . Therefore if

𝑈𝑗 ≔ ⋃
𝐵∈𝒞𝑗

𝐵,

then the number of corrupted bits in 𝑤|𝑈𝑗 is

≤ ∑
𝐵∈𝒞𝑗

dist(𝑤|𝐵, 𝑐|𝐵) ⋅ 𝑛𝑗 ≤ ∑
𝐵∈𝒞𝑗

𝜀𝑛𝑗 ≤ 3𝜀𝑛𝑗 .

But by construction of𝒞𝑗 , we know that ∀𝐵′ ∈ 𝒞𝑗−1.𝐵′ ⊆ 𝑈𝑗 . Therefore, the number of corrupted
bits in each 𝑤|𝐵′ must be ≤ 3𝜀𝑛𝑗 as well, implying that dist(𝑤|𝐵′ , 𝑐|𝐵′) ≤ 3𝜀𝑛𝑗/𝑛𝑗−1 as desired.

Finally, we are ready to prove soundness. Assume that there is a largest 𝑗 ≥ 2 such that there
exists a 𝑗-canary 𝐵 with dist(𝑤|𝐵, 𝑐|𝐵) ≥ 𝛿LTC𝑛𝑗−1/6𝑛𝑗 . Then, dist(𝑤|𝐵, 𝑐|𝐵) < 𝛿LTC/2:

• If 𝑗 = 𝑚 then this follows because 𝛿LTC/2 is the correcting radius.
• Otherwise, all 𝑗′-canaries 𝐵′ for 𝑗′ > 𝑗 satisfy dist(𝑤|𝐵′ , 𝑐|𝐵′) < 𝛿LTC𝑛𝑗′−1/6𝑛𝑗′ . Applying
Claim 3.7, we get the same upper bound.

This allows us to use Claim 3.6 on 𝐵. The probability that the local tester on 𝐵 returns ⊥ is

≥ 1 − exp(−𝑡𝑗𝜅 ⋅
𝛿LTC𝑛𝑗−1
6𝑛𝑗

) = 1 − 𝑒−2 > 2
3

by Claim 3.6. Let ℰ be the event that the corrector tests 𝐵; that is, if ¬ℰ, then the corrector has
terminated early and returned ⊥ because of a prior iteration. Then,

Pr[𝑀𝑤(𝑖) = ⊥] > Pr[¬ℰ] + (1 − Pr[¬ℰ]) ⋅ 2/3 ≥ 2/3

as needed.
Thus, we may assume that for all 𝑗 ≥ 2, every 𝑗-canary 𝐵 satisfies dist(𝑤|𝐵, 𝑐|𝐵) < 𝛿LTC𝑛𝑗−1/6𝑛𝑗 .

Then by Claim 3.7, it follows that the unique 1-canary 𝐵1 ∈ 𝒞1 satisfies

dist(𝑤|𝐵1 , 𝑐|𝐵1) <
3𝑛2
𝑛1

⋅ 𝛿LTC𝑛16𝑛2
= 𝛿LTC

2 .

This is less than the minimum distance of LTC1; because 𝑤𝑖 ≠ 𝑐𝑖, then 𝑤|𝐵1 ∉ LTC1 and Step 3 will
certainly return ⊥.

We have shown that for all inputs 𝑤 ∉ 𝐶 and all 𝑖 ∈ [𝑛], the relaxed corrector returns either 𝑐𝑖
or ⊥ with probability ≥ 2/3, which proves soundness.

11

4 Amplifying correcting radius to constant
In this section, we demonstrate how an LTC can be used to amplify the correcting radius of a relaxed
locally correctable code. This allows us to strengthen the RLCCs we constructed in the previous
section, yielding RLCCs with constant rate, constant correcting radius, and polylogarithmic query
complexity.

In the previous section, we constructed RLCCs with all the desired parameters except for the
correcting radius, which is 1/polylog(𝑛). In this section, we will boost the radius to a constant by
using a similar trick as above: we will take an LTC and nest a layer of our low-radius RLCCs inside
it. The LTC allows us to certify that the corruption is low enough that we can reduce to calling the
relaxed local corrector on the appropriate restriction of the codeword. In addition, because the local
tester is self-contained, the query cost of amplification is additive rather than multiplicative as in
prior amplification methods (e.g. [CY22, Claim V.2]).

Theorem 4.1. Let 𝐶 be an explicit linear RLCC with block length 𝑛, rate 𝑅, correcting radius 𝛿, and
query complexity 𝑟. Suppose that LTC is a linear LTC with block length 𝑁, rate 𝑅LTC, distance 𝛿LTC,
testability 𝜅, and query complexity 𝑟LTC.

Then, there exists a linear RLCC 𝐶𝑓 with block length 𝑁, rate 𝑅LTC − Θ(1 − 𝑅), distance ≥ 𝛿LTC,
correcting radius 𝛿LTC/2, and query complexity 𝑟+𝑂(𝑟LTC𝑁/𝜅𝛿𝑛). 𝐶𝑓 is explicit whenever LTC is explicit.

Proof. We will again split our 𝑁-bit codeword into blocks of size 𝑛 as follows:

ℬ ≔ {⟦(ℓ − 1)𝑛 + 1, ℓ𝑛⟧ ∶ ℓ ∈ [⌊𝑁𝑛 ⌋]} ∪ {⟦𝑁 − 𝑛 + 1,𝑁⟧}

Build a single layer which enforces that every restriction to a block in 𝐵 should be a codeword of 𝐶:

𝐿 ≔ {𝑥 ∈ {0, 1}𝑁 ∶ ∀𝐵 ∈ ℬ.𝑥|𝐵 ∈ 𝐶}

Finally, let 𝐶𝑓 ≔ 𝐿 ∩ LTC. We can now prove all of the desired properties of 𝐶𝑓. First, we can show
the basic properties of 𝐶𝑓 as a linear code.

Explicitness. We just need to show that constructing the parity-check matrix of 𝐶𝑓 is efficient,
when LTC is explicit. Because 𝐶 is explicit, we can construct the parity-check matrix of 𝐿 by concate-
nating ⌈𝑁/𝑛⌉ shifts of the parity-check matrix of 𝐶, where the shift is induced by each 𝐵 ∈ ℬ. The
final parity-check matrix is the concatenation of the matrix of 𝐿 with the matrix of LTC.

Distance. The distance of 𝐶𝑓 is at least 𝛿LTC because 𝐶𝑓 ⊆ LTC.

Rate. We proceed by counting the number of linear constraints. Each block in ℬ contributes
(1 − 𝑅)𝑛 linear constraints, and LTC contributes (1 − 𝑅LTC)𝑁 constraints. Then, 𝐶𝑓 has at most

(1 − 𝑅LTC)𝑁 + ∑
𝐵∈ℬ

(1 − 𝑅)𝑛 = (1 − 𝑅LTC)𝑁 + (1 − 𝑅)𝑛 ⋅ ⌈𝑁𝑛 ⌉ ≤ ((1 − 𝑅LTC) + 2(1 − 𝑅))𝑁

linear constraints. It follows that the rate is

≥ 1 − ((1 − 𝑅LTC) + 2(1 − 𝑅)) = 𝑅LTC − Θ(1 − 𝑅).

Next, we can show that 𝐶𝑓 is an RLCC with the desired correcting radius and query complexity.
Let𝑀 be the relaxed local corrector for 𝐶, and let 𝑇 be the local tester for LTC. We define the relaxed
local corrector𝑀𝑓 for 𝐶𝑓:
1. Repeatedly execute 𝑇𝑤 independently 𝑡 ≔ 2𝑁/𝜅𝛿𝑛 many times. If ⊥ is returned by 𝑇 at any

point, return ⊥.
2. Select 𝐵 ∈ ℬwhich is an arbitrary block containing 𝑖. Execute and return the result of𝑀𝑤|𝐵 (𝑖).

12

⋯

⋯

⋯

⋯

∩

𝐿 LTC

𝐶

𝐶𝑓 =

Figure 2: The construction of the final RLCC 𝐶𝑓 as an intersection of a layer of smaller RLCCs 𝐶 with
subconstant radius (from Theorem 3.2) with a constant distance LTC.

Explicitness. If both 𝑀 and 𝑇 are explicit and efficient, then our corrector 𝑀𝑓 is explicit and
efficient, since 𝑡 ≤ poly(𝑁).

Query complexity. We make 𝑡 calls to 𝑇 and one call to𝑀, so the query complexity is

𝑟 + 𝑟LTC𝑡 = 𝑟 + 𝑂(𝑟LTC𝑁𝜅𝛿𝑛).

Completeness. 𝑀𝑓 always succeeds on every index of an uncorrupted codeword by the complete-
ness of𝑀 and 𝑇.

Soundness. Let 𝑐 ∈ 𝐶𝑓 be the closest codeword to an input 𝑤 ∉ 𝐶𝑓. By the correcting radius
assumption, dist(𝑤, 𝑐) < 𝛿LTC/2.

• If dist(𝑤, 𝑐) < 𝛿𝑛/𝑁, then for all 𝐵 ∈ ℬ, dist(𝑤|𝐵, 𝑐|𝐵) < 𝛿. Therefore, either ⊥ is returned
in Step 1, or we return the result of𝑀𝑤|𝐵 (𝑖) in Step 2 for some 𝐵 that contains 𝑖. Because 𝑤|𝐵
is within the correcting radius of 𝐶, by the soundness of 𝑀, the probability that 𝑀 returns a
result which is neither 𝑐𝑖 nor ⊥ is ≤ 1/3. Therefore in either case, with probability ≥ 2/3,𝑀𝑓
returns 𝑐𝑖 or ⊥.

• Else, dist(𝑤, 𝑐) ≥ 𝛿𝑛/𝑁. Then by Claim 3.6, the probability that ⊥ is returned in Step 1 is

≥ 1 − exp(−𝑡𝜅 ⋅ 𝛿𝑛𝑁) = 1 − 𝑒−2 > 2
3

Therefore with probability ≥ 2/3 we return ⊥ in Step 1.
So in all cases when 0 < dist(𝑤, 𝐶𝑓) < 𝛿LTC/2, it holds that Pr[𝑀𝑤

𝑓 (𝑖) ∈ {𝑐𝑖, ⊥}] ≥ 2/3.

By instantiating this theorem with our weak RLCC construction from Theorem 3.2, we can get
relaxed local correctability from any sufficiently large LTC:

Corollary 4.2. Let LTC be a linear LTC with sufficiently large block length 𝑁, and with rate 𝑅LTC, dis-
tance 𝛿LTC, testability 𝜅, and query complexity 𝑟LTC. Then, there exists an RLCC 𝐶 with block length 𝑁,

13

rate 𝑅LTC − 𝑂(1/log log𝑁), distance ≥ 𝛿LTC, correcting radius 𝛿LTC/2, and query complexity

𝑂(𝑟LTC𝜅 ⋅ log33 𝑁 + log69 𝑁
log log𝑁).

𝐶 is explicit if and only if LTC is explicit.

Proof. For any sufficiently large ̃𝑛, Corollary 3.1 gives a family of LTCs with maximum block length
𝑛 ∈ [̃𝑛, 𝑂(̃𝑛 log30 ̃𝑛)], which we use in Theorem 3.2. Hence, pick the largest ̃𝑛 such that 𝑛 ≤ 𝑁.
Then,

̃𝑛 ≤ 𝑛 ≤ 𝑁 ≤ (̃𝑛 + 1) ⋅ 𝑂(log30(̃𝑛 + 1))

⟹ 𝑁
𝑛 ≤ 𝑁

̃𝑛 ≤ 𝑂(log30 ̃𝑛) ≤ 𝑂(log30 𝑁).

We can plug in this upper bound for 𝑁/𝑛 in the query complexity, and all of the parameters follow
accordingly by substituting the other relevant parameters of our RLCC.

5 Final construction
We now have all the ingredients to finally construct the codes for the main theorem of this paper.

Corollary 5.1 (explicit RLCCs). For any rate 𝑅 = 1 − 𝜀 ∈ (0, 1) and for infinitely many 𝑛, there
is an explicit RLCC with block length 𝑛, rate 𝑅 − 𝑂(1/ log log𝑛), correcting radius Ω(𝜀3), and query
complexity

𝑂((1/𝜀)35 log33 𝑛 + log69 𝑛
log log𝑛).

Proof. We can instantiate Corollary 4.2 using the LTCs of Theorem 2.8.

Corollary 5.2 (nonexplicit RLCCs approaching Gilbert–Varshamov bound). Let 𝐻(⋅) be the binary
entropy function. For any 𝑅, 𝛿, 𝜀 ∈ (0, 1) such that

𝑅 + 𝐻(𝛿) = 1 − 𝜀

and for infinitely many 𝑛, there exists a nonexplicit RLCC with block length 𝑛, rate 𝑅 − 𝑂(1/ log log𝑛)
and distance ≥ 𝛿, with correcting radius 𝛿/2 and query complexity

poly(1/𝜀) ⋅ log33 𝑛 + 𝑂(log69 𝑛
log log𝑛).

Proof. Dinur et al. [DEL+22] construct explicit LTCs with rate arbitrarily close to 1, which implies
the existence of infinitely many nonexplicit LTCs that approach the Gilbert–Varshamov bound (see
[DEL+22, Corollary 1.2]). These LTCs can have any rate 𝑅 and distance 𝛿 such that 𝑅+𝐻(𝛿) = 1−𝜀,
in which case the testability is 𝜅 ≥ poly(𝜀) and the query complexity is 𝑟LTC ≤ poly(1/𝜀). We can plug
these parameters into Corollary 4.2 to yield RLCCs. Because the rate of the RLCC approaches the
rate of the LTC, and the distance of the RLCC is at least the distance of the LTC, we can say that the
RLCC also approaches the Gilbert–Varshamov bound.

Remark 5.3. All of the relaxed local correctors we describe can be made nonadaptive (by always
performing all of its queries even if ⊥ is returned) because the local testers of Dinur et al. [DEL+22]
are nonadaptive.

14

Acknowledgments
We would like to thank Dana Moshkovitz for valuable discussions and feedback on a draft of this
manuscript. We would also like to thank Siddhartha Jain for valuable advice towards the presenta-
tion of this work, Jeffrey Champion for proofreading, and Joshua Cook and Justin Oh for helpful
conversations.

References
[ABB22] Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-hard

puzzles in the standardmodelwith applications tomemory-hard functions and resource-
bounded locally decodable codes. In Clemente Galdi and Stanislaw Jarecki, editors, Se-
curity and Cryptography for Networks, pages 45–68, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-031-14791-3_3. 5

[AS21] Vahid R. Asadi and Igor Shinkar. Relaxed locally correctable codes with improved
parameters. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th
International Colloquium on Automata, Languages, and Programming (ICALP 2021),
volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–
18:12, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2021.18. 4

[BB21] Alexander R. Block and Jeremiah Blocki. Private and resource-bounded locally decod-
able codes for insertions and deletions. In 2021 IEEE International Symposium on In-
formation Theory (ISIT), pages 1841–1846, 2021. doi:10.1109/ISIT45174.2021.
9518249. 5

[BB23] Alexander R. Block and Jeremiah Blocki. Computationally relaxed locally decodable
codes, revisited, 2023. arXiv:2305.01083. 5

[BBC+22] Alex Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and
Minshen Zhu. On relaxed locally decodable codes for Hamming and insertion-deletion
errors, 2022. arXiv:2209.08688. 4

[BBG+20] Alexander R. Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni, and Min-
shen Zhu. Locally decodable/correctable codes for insertions and deletions. In Nitin
Saxena and Sunil Simon, editors, 40th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2020), volume 182 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:17, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.FSTTCS.2020.16. 4

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In Proceedings of the Twenty-Third Annual ACM Sympo-
sium on Theory of Computing, STOC ’91, page 21–32, New York, NY, USA, 1991. Associ-
ation for Computing Machinery. doi:10.1145/103418.103428. 4

[BGGZ21] Jeremiah Blocki, Venkata Gandikota, Elena Grigorescu, and Samson Zhou. Relaxed
locally correctable codes in computationally bounded channels. IEEE Transactions on
Information Theory, 67(7):4338–4360, 2021. doi:10.1109/TIT.2021.3076396. 5

[BGH+06] Eli Ben‐Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, January 2006. Publisher: Society for Industrial and Applied
Mathematics. doi:10.1137/S0097539705446810. 1, 3, 4, 6

[BKZ20] Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. On locally decodable codes in
resource bounded channels. In Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs,
editors, 1st Conference on Information-Theoretic Cryptography (ITC 2020), volume 163
of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:23, Dagstuhl,

15

https://doi.org/10.1007/978-3-031-14791-3_3
https://doi.org/10.4230/LIPIcs.ICALP.2021.18
https://doi.org/10.1109/ISIT45174.2021.9518249
https://doi.org/10.1109/ISIT45174.2021.9518249
http://arxiv.org/abs/2305.01083
http://arxiv.org/abs/2209.08688
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.16
https://doi.org/10.1145/103418.103428
https://doi.org/10.1109/TIT.2021.3076396
https://doi.org/10.1137/S0097539705446810

Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ITC.2020.16. 5

[CGS22] Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes with
nearly-linear block length and constant query complexity. SIAM Journal on Computing,
51(6):1839–1865, 2022. arXiv:https://doi.org/10.1137/20M135515X, doi:
10.1137/20M135515X. 4

[CLZ20] KuanCheng, Xin Li, and Yu Zheng. Locally decodable codes with randomized encoding,
2020. arXiv:2001.03692. 4

[CY22] Gil Cohen and Tal Yankovitz. Relaxed locally decodable and correctable codes: Beyond
tensoring. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 24–35, 2022. doi:10.1109/FOCS54457.2022.00010. 1, 2, 4, 12

[DEL+22] Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally
testable codes with constant rate, distance, and locality. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 357–374,
New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519935.3520024. 4, 7, 14, 17, 18

[DGL21] Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algo-
rithms with applications to coding, testing, and privacy. In Dániel Marx, editor, Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Vir-
tual Conference, January 10-13, 2021, pages 1651–1665. SIAM, 2021. doi:10.1137/1.
9781611976465.100. 1, 4

[GKO+18] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi
Saraf. Locally testable and locally correctable codes approaching the Gilbert-Varshamov
bound. IEEE Transactions on Information Theory, 64(8):5813–5831, 2018. doi:10.
1109/TIT.2018.2809788. 2, 4

[GKS13] AlanGuo, Swastik Kopparty, andMadhu Sudan. New affine-invariant codes from lifting.
InProceedings of the 4thConference on Innovations inTheoreticalComputer Science, ITCS
’13, page 529–540, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2422436.2422494. 2

[GL21] Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. SIAM
Journal on Computing, 50(2):788–813, 2021. doi:10.1137/19M1307834. 1, 4

[Gol23a] Guy Goldberg. Linear relaxed locally decodable and correctable codes do not need
adaptivity and two-sided error. Technical Report TR23-067, Electronic Colloquium on
Computational Complexity (ECCC), May 2023. URL: https://eccc.weizmann.
ac.il/report/2023/067/. 6

[Gol23b] Oded Goldreich. On the lower bound on the length of relaxed locally decodable
codes. Technical Report TR23-064, Electronic Colloquium on Computational Complex-
ity (ECCC), May 2023. URL: https://eccc.weizmann.ac.il/report/2023/
064/. 1, 4

[GRR20] Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes.
Theory of Computing, 16(18):1–68, 2020. doi:10.4086/toc.2020.v016a018. 1, 2,
3, 4, 6

[HO08] Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In David
Wagner, editor, Advances in Cryptology – CRYPTO 2008, pages 126–143, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-85174-5_8. 5

[HOSW11] Brett Hemenway, Rafail Ostrovsky, Martin J. Strauss, and Mary Wootters. Public key
locally decodable codes with short keys. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi,
and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 605–615, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-22935-0_51. 5

16

https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://doi.org/10.4230/LIPIcs.ITC.2020.16
http://arxiv.org/abs/https://doi.org/10.1137/20M135515X
https://doi.org/10.1137/20M135515X
https://doi.org/10.1137/20M135515X
http://arxiv.org/abs/2001.03692
https://doi.org/10.1109/FOCS54457.2022.00010
https://doi.org/10.1145/3519935.3520024
https://doi.org/10.1145/3519935.3520024
https://doi.org/10.1137/1.9781611976465.100
https://doi.org/10.1137/1.9781611976465.100
https://doi.org/10.1109/TIT.2018.2809788
https://doi.org/10.1109/TIT.2018.2809788
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1137/19M1307834
https://eccc.weizmann.ac.il/report/2023/067/
https://eccc.weizmann.ac.il/report/2023/067/
https://eccc.weizmann.ac.il/report/2023/064/
https://eccc.weizmann.ac.il/report/2023/064/
https://doi.org/10.4086/toc.2020.v016a018
https://doi.org/10.1007/978-3-540-85174-5_8
https://doi.org/10.1007/978-3-642-22935-0_51

[HOW15] Brett Hemenway, Rafail Ostrovsky, and MaryWootters. Local correctability of expander
codes. Information and Computation, 243:178–190, 2015. 40th International Collo-
quium on Automata, Languages and Programming (ICALP 2013). doi:10.1016/j.
ic.2014.12.013. 2

[KdW03] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. In Proceedings of the Thirty-Fifth Annual
ACMSymposium on Theory of Computing, STOC ’03, page 106–115, New York, NY, USA,
2003. Association for Computing Machinery. doi:10.1145/780542.780560. 4

[KMRS15] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
testable codes with quasi-polylogarithmic query complexity. Technical Report TR15-
110, Electronic Colloquium on Computational Complexity (ECCC), July 2015. URL:
https://eccc.weizmann.ac.il/report/2015/110. 3

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. Journal of
the ACM, 64(2):11:1–11:42, 2017. doi:10.1145/3051093. 1, 2

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. Journal of the ACM, 61(5), September 2014. doi:10.1145/
2629416. 2

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, STOC ’00, page 80–86, New York, NY, USA, 2000. Association for
Computing Machinery. doi:10.1145/335305.335315. 1, 4, 5

[OP15] Rafail Ostrovsky and Anat Paskin-Cherniavsky. Locally decodable codes for edit
distance. In Anja Lehmann and Stefan Wolf, editors, Information Theoretic Secu-
rity, pages 236–249, Cham, 2015. Springer International Publishing. doi:10.1007/
978-3-319-17470-9_14. 4

[OPS07] Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes.
In Lars Arge, Christian Cachin, Tomasz Jurdziński, and Andrzej Tarlecki, editors, Au-
tomata, Languages and Programming, pages 387–398, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. doi:10.1007/978-3-540-73420-8_35. 5

[PK22] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical LDPC codes. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, page 375–388, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3519935.3520017. 4, 7

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.
doi:10.1137/S0097539793255151. 4

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. Technical Re-
port TR07-006, Electronic Colloquium on Computational Complexity (ECCC), January
2007. URL: https://eccc.weizmann.ac.il/report/2007/006. 1, 4

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Com-
puter Science, 6(3):139–255, 2012. doi:10.1561/0400000030. 1, 5

A Concrete parameters for locally testable codes
We instantiate the LTC construction from Theorem 2.8 with suitable parameters. In particular, for
any 𝑅 ∈ (0, 1), Dinur et al. [DEL+22] give an explicit construction for a family of LTCs with rate≥ 𝑅
and distance, testability, and query complexity that are within a polynomial (or inverse polynomial)
of 1−𝑅, such that consecutive codes in the family differ in block size by a factor which is an inverse
polynomial of 1 − 𝑅. Hence, to avoid a circular dependency in parameters, we can pick an arbitrary

17

https://doi.org/10.1016/j.ic.2014.12.013
https://doi.org/10.1016/j.ic.2014.12.013
https://doi.org/10.1145/780542.780560
https://eccc.weizmann.ac.il/report/2015/110
https://doi.org/10.1145/3051093
https://doi.org/10.1145/2629416
https://doi.org/10.1145/2629416
https://doi.org/10.1145/335305.335315
https://doi.org/10.1007/978-3-319-17470-9_14
https://doi.org/10.1007/978-3-319-17470-9_14
https://doi.org/10.1007/978-3-540-73420-8_35
https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1137/S0097539793255151
https://eccc.weizmann.ac.il/report/2007/006
https://doi.org/10.1561/0400000030

sufficiently large ̃𝑛 and begin by setting 𝑅 = 1−Θ(1/ log ̃𝑛), such that we get a family of LTCs where
all of the parameters are polylogarithmic or inversely polylogarithmic in ̃𝑛. Then, we show that
there is a choice of𝑚 such that the𝑚th LTC of the family has block length 𝑛 = poly(̃𝑛). This yields
a suitable family of𝑚 LTCs for an arbitrarily large final block length 𝑛, with parameters that are all
polylogarithmic or inversely polylogarithmic in 𝑛.
Theorem A.1 (computed from [DEL+22, Theorem 1.1, Lemma 5.1, and Remark 5.3]). For suffi-
ciently large ̃𝑛 ∈ ℕ, there exists an explicit odd prime power 𝑞 = Θ(log10 ̃𝑛) such that there is an
infinite family of explicit linear locally testable codes {LTC1, LTC2,… } where every LTC𝑗 satisfies the fol-
lowing parameters:

(a) block length 𝑛𝑗 = Θ((𝑞3𝑗 − 𝑞𝑗) ⋅ log20 ̃𝑛)
(b) rate 𝑅 ≥ 1 − 1/(100 log ̃𝑛)
(c) distance 𝛿LTC ≥ Ω(log−3 ̃𝑛)
(d) testability 𝜅 ≥ Ω(log−15 ̃𝑛)
(e) query complexity 𝑟 ≤ 𝑂(log20 ̃𝑛)

Corollary (Corollary 3.1 restated). For every sufficiently large ̃𝑛 ∈ ℕ, there exists an integer 𝑛 ∈
[̃𝑛, 𝑂(̃𝑛 log30 ̃𝑛)] and a family of linear LTCs {LTC1,… , LTC𝑚} such that
(a) Each LTC𝑗 has rate 𝑅 ≥ 1 − 𝑂(1/log𝑛), distance 𝛿LTC ≥ Ω(log−3 𝑛), testability 𝜅 ≥ Ω(log−15 𝑛),

and query complexity 𝑟 ≤ 𝑂(log20 𝑛).
(b) If 𝑛𝑗 is the block length of LTC𝑗 , then 𝑛1 ≤ 𝑂(log50 𝑛), 𝑛𝑚 = 𝑛, and ∀𝑗.𝑛𝑗+1/𝑛𝑗 = Θ(log30 𝑛).
(c) The number of codes is𝑚 = 𝑂(log𝑛/log log𝑛).

Proof. Let 𝑞 and {LTC1, LTC2,… } be instantiated with parameter ̃𝑛 using Theorem A.1. Let𝑚 be the
smallest integer such that 𝑛𝑚 ≥ ̃𝑛, and define 𝑛 ≔ 𝑛𝑚. We claim {LTC1,… , LTC𝑚} is our desired
family of LTCs.

We first show that ̃𝑛 and 𝑛 are asymptotically close so that we can estimate all parameters with
respect to 𝑛 rather than ̃𝑛. Since 𝑛𝑚−1 < ̃𝑛 ≤ 𝑛𝑚 and for all 𝑗 ≥ 1,

𝑛𝑗+1
𝑛𝑗

= Θ(1) ⋅ 𝑞
3(𝑗+1) − 𝑞𝑗+1
𝑞3𝑗 − 𝑞𝑗 ≤ 𝑂(1) ⋅ 𝑞

3(𝑗+1)

𝑞3𝑗/2 = 𝑂(𝑞3),

it follows that
𝑛 = 𝑛𝑚 ≤ 𝑂(𝑞3) ⋅ 𝑛𝑚−1 < 𝑂(𝑞3) ⋅ ̃𝑛 ≤ 𝑂(̃𝑛 log30 ̃𝑛).

Similarly,
𝑛𝑗+1
𝑛𝑗

= Θ(1) ⋅ 𝑞
3(𝑗+1) − 𝑞𝑗+1
𝑞3𝑗 − 𝑞𝑗 ≥ Ω(1) ⋅ 𝑞

3(𝑗+1)/2
𝑞3𝑗 = Ω(𝑞3).

This implies that 𝑛𝑗+1/𝑛𝑗 = Θ(𝑞3) = Θ(log30 𝑛). In addition, ̃𝑛 ≤ 𝑛 ≤ 𝑂(𝑞3 ̃𝑛), and so log𝑛 −
𝑂(log log𝑛) ≤ log ̃𝑛 ≤ log𝑛. Consequently, we can asymptotically express all parameters in terms
of the block length of the largest code, 𝑛. Now notice

𝑛 = Θ((𝑞3𝑚 − 𝑞𝑚) ⋅ log20 𝑛) ≥ Θ(log20 𝑛) ⋅ 𝑞𝑚

⟹𝑚≤ log𝑞(
𝑛

Θ(log20 𝑛)
) ≤ 𝑂(log𝑛

log log𝑛).

The desired result follows.

18
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

