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Abstract
We construct the first asymptotically good relaxed locally correctable codes with polylogarithmic

query complexity, bringing the upper bound polynomially close to the lower bound of Gur and
Lachish (SICOMP 2021). Our result follows from showing that a high-rate locally testable code can
boost the block length of a smaller relaxed locally correctable code, while preserving the correcting
radius and incurring only a modest additive cost in rate and query complexity. We use the locally
testable code’s tester to check if the amount of corruption in the input is low; if so, we can “zoom-in”
to a suitable substring of the input and recurse on the smaller code’s local corrector. Hence, iterating
this operation with a suitable family of locally testable codes due to Dinur, Evra, Livne, Lubotzky,
and Mozes (STOC 2022) yields asymptotically good codes with relaxed local correctability, arbitrarily
large block length, and polylogarithmic query complexity.

Our codes asymptotically inherit the rate and distance of any locally testable code used in the
final invocation of the operation. Therefore, our framework also yields nonexplicit relaxed locally
correctable codes with polylogarithmic query complexity that have rate and distance approaching
the Gilbert–Varshamov bound.

1 Introduction
Locally correctable codes (LCCs) and locally decodable codes (LDCs) are error correcting codes that
allow any bit of the original codeword or message, respectively, to be recovered using very few queries
to a noisy codeword with bounded corruption. This is a natural and useful property, but unfortunately
little is known about the best possible parameter tradeoffs between the rate and query complexity.
In the asymptotically good (constant rate and distance) regime, Katz and Trevisan [KT00] show
that any LDC (and any linear LCC) with block length 𝑛must make Ω̃(log𝑛) queries. However, the
most query-efficient constant-rate LCCs and LDCs, constructed by Kopparty, Meir, Ron-Zewi, and
Saraf [KMRS17], require 2�̃�(√log𝑛). Whether the true optimal query complexity is polylogarithmic
or not is a longstanding open problem. A Reed–Muller code with appropriate parameters brings us
tantalizingly close: such a code is locally correctable with polylogarithmic query complexity, but
with block length slightly superlinear in the rate (see for e.g. [Yek12, Section 2.3]).

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BGH+06] and Gur, Ramnarayan, and
Rothblum [GRR20] introduced the notions of relaxed locally decodable codes (RLDCs) and relaxed
locally correctable codes (RLCCs), respectively. These codes admit local decoders or correctors
that either decode/correct, or detect corruption in the input by returning a rejection symbol ⊥. For
asymptotically good RLDCs and (linear) RLCCs, the gap between lower and upper bounds is smaller
but still significant: the best lower bound is Ω̃(√log𝑛) due to Gur and Lachish [GL21], while the best
upper bound, due to Cohen and Yankovitz [CY22], is (log𝑛)𝑂(log log log𝑛). In this work, we improve
the upper bound by constructing asymptotically good RLCCs with polylogarithmic query complexity.

Theorem (informal, see Corollary 4.1). For infinitely many positive 𝑛 and any constant 𝑅 ∈ (0, 1),
there exist explicit binary linear RLCCs (and thus RLDCs) of block length 𝑛, rate 𝑅, constant correcting
(or decoding) radius, and query complexity 𝑂(log69 𝑛).
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Wemake no effort to optimize the exponent, instead striving for a simpler exposition. The related
and well-studied notion of locally testable codes (LTCs), where errors can be detected with few
queries, proves to be key: we can build a relaxed local correctable code from any family of high-rate
linear locally testable codes. Then, by leveraging the locally testable codes of Dinur, Evra, Livne,
Lubotzky, and Mozes [DEL+22], we construct explicit RLCCs with constant rate, constant distance,
and polylogarithmic query complexity. We also get nonexplicit RLCCs with polylogarithmic query
complexity that approach the Gilbert–Varshamov bound, which is the best known general tradeoff
between rate and distance for which codes exist. The last known RLCCs to approach the Gilbert–
Varshamov bound are LCCs by Gopi, Kopparty, Oliveira, Ron-Zewi, and Saraf [GKO+18] which
require polynomially many (i.e., 𝑛𝜀) queries.

1.1 Techniques
To construct an asymptotically good RLCC with an arbitrarily large block length 𝑛, we start with a
code with extremely small block length (say, polylogarithmic in 𝑛). Such a code is trivially an RLCC
with polylogarithmic query complexity, because it has a corrector which reads all polylog𝑛 symbols of
the input. Then, we apply a transformation that uses this small RLCC to build an RLCC with slightly
larger block length. We can repeat this transformation, building RLCCs with successively larger
block length, until we reach our target block length 𝑛. At each of these steps, we need to maintain
the distance and correcting radius of our code while minimizing the gain in query complexity and
loss in rate, so that the final code will be asymptotically good. Indeed, such an approach has been
used to construct asymptotically good LTCs and LCCs [Mei08, KMRS17], and is the basis for both
prior asymptotically good RLCC constructions [GRR20, CY22].

1.1.1 Prior Constructions

Gur, Ramnarayan, and Rothblum [GRR20] use the tensor product in this framework to construct
RLCCs. Starting from a RLCC with tiny block length, they build successively larger RLCCs by taking
the tensor product of the code with itself. If 𝐶 ⊆ 𝔽𝑛 is a linear code, then the tensor product code
𝐶 ⊗𝐶 ⊆ 𝔽𝑛×𝑛 can be viewed as the set of matrices where every row and every column is a codeword
of 𝐶. They show that if 𝐶 is an RLCC, 𝐶 ⊗ 𝐶 is also an RLCC because it has a local corrector that
calls the corrector for 𝐶 as a subroutine on relevant rows and columns of the input; the corrector
for 𝐶 ⊗ 𝐶 recurses on the smaller code’s corrector polylog𝑛 times. The tensor product step squares
the block length each time, so 𝑂(log log𝑛) iterations are required to construct an RLCC with block
length 𝑛; each step incurs a polylog𝑛 factor in the query complexity, so the total queries required is
(log𝑛)𝑂(log log𝑛).

Each tensor product step incurs a polylog𝑛 factor in the query complexity because of its rate
deterioration. If 𝐶 has rate 𝑅 = 1 − 𝜀, then 𝐶 ⊗ 𝐶 has rate 𝑅2 ≈ 1 − 2𝜀; the loss in rate has doubled
after one iteration, so this loss will grow exponentially in the number of iterations. Therefore, for
the final RLCC to have constant rate after 𝑂(log log𝑛) tensoring steps, the initial RLCC must have
extremely high rate, at least 1 − 1/log𝑛, which limits the distance of the initial RLCC. This initial
distance causes the polylog𝑛multiplicative overhead in query complexity. To address this, Cohen
and Yankovitz [CY22] give an alternative to tensoring called row-evasive partitioning, which incurs
an additive loss in rate rather than a multiplicative one. The starting code can now have lower
rate, like 1 − 1/log log𝑛, and thus higher distance, so the query overhead of each step (which is
still a multiplicative factor) is improved to poly(log log𝑛). This yields a total query complexity of
(log log𝑛)𝑂(log log𝑛) = (log𝑛)𝑂(log log log𝑛).

1.1.2 Our Construction

To achieve asymptotically good RLCCs with polylog𝑛 query complexity, we develop a new operation
for boosting the block length of an RLCC. In contrast to tensoring and row-evasive partitioning, our
operation augments the block length of an RLCC by a very modest polylog𝑛 factor, but incurs only an
additive cost in both rate and query complexity. Each step solely requires polylog𝑛 additional queries,
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so although this operation needs to be iterated more often than tensoring, i.e., up to𝑚 = 𝑂(log𝑛)
times to reach block length 𝑛, the final query complexity is𝑚 ⋅ polylog𝑛 = polylog𝑛.

Intuitively, tensoring and row-evasive partitioning are operations that work by intertwining the
structure of many copies of a smaller RLCC, so that the local corrector of the smaller RLCC can be
used to cross-check overlapping portions of the input against each other. This necessitates multiple
recursive calls to a smaller code’s corrector at each step of the construction, which causes the final
query complexity to grow exponentially in the number of iterations. Instead of cross-checking smaller
RLCCs, our boosting operation enlists the outside help of a locally testable code to add structure. We
will use the LTC’s self-contained testing algorithm to ensure that it is safe to recurse on the smaller
RLCC’s corrector exactly once. This “tail recursion” is why our total query complexity grows linearly
in the number of iterations, rather than exponentially.

Our boosting step is called nesting. Say we have an RLCC 𝐶 ⊆ Σ𝑛 with correcting radius 𝛿 and a
locally testable code LTC ⊆ Σ𝑁 with distance 2𝛿 where (for simplicity) 𝑛 divides 𝑁. Then, the code
formed by nesting 𝐶 in LTC is defined to be

LTC ⋒ 𝐶 ≔ LTC ∩ 𝐶𝑁/𝑛,

andwe claim that this code is anRLCCwith correcting radius 𝛿. That is, this code has a local algorithm
that, given any input 𝑤 that satisfies dist(𝑤, LTC ⋒ 𝐶) ≤ 𝛿, either corrects or detects corruption.

To see why, suppose the distance from 𝑤 ∈ Σ𝑁 to the nearest codeword 𝑐 ∈ LTC ⋒ 𝐶 is very small,
i.e., dist(𝑤, LTC ⋒ 𝐶) ≤ 𝛿𝑛/𝑁. Then we can hope to correct any index of 𝑤 by resorting to the local
corrector of 𝐶. To correct 𝑤𝑖, we consider the unique interval 𝐼 ∶= {𝑘𝑛 + 1,… , 𝑘𝑛 + 𝑛} containing 𝑖.
We know by construction that 𝑐|𝐼 is a codeword of 𝐶. Furthermore, we know that 𝑤 differs from 𝑐 in
at most 𝛿𝑛 indices, so dist(𝑤|𝐼, 𝑐|𝐼) ≤ 𝛿 which is within the correcting radius of 𝐶. Hence, we can
“zoom-in” and use the corrector for 𝐶 to correct any symbol of 𝑤|𝐼, including 𝑤𝑖.

Otherwise, if 𝛿𝑛/𝑁 < dist(𝑤, LTC⋒𝐶) ≤ 𝛿, we can hope to detect (rather than correct) corruption
using the local tester of LTC. A locally testable code, by definition, has a local testing algorithm 𝑇
that rejects its input 𝑤 with probability proportional to dist(𝑤, LTC). Because LTC ⋒ 𝐶 ⊆ LTC and
LTC has distance 2𝛿, we know that dist(𝑤, LTC) = dist(𝑤, LTC ⋒ 𝐶) > 𝛿𝑛/𝑁, and so 𝑇 will reject 𝑤
with probability Ω(𝛿𝑛/𝑁). Thus, 𝑂(𝑁/𝛿𝑛) repetitions (hiding some minor factors) of the local tester
suffice to detect corruption with constant probability.

Therefore, by combining the corrector for 𝐶 and tester for LTC, we can handle both cases. Run
both the corrector and the tester; if the tester finds corruption, we can return the reject symbol ⊥,
and otherwise we are likely in the small distance case and can return the output of the corrector.
This shows that LTC ⋒ 𝐶 is an RLCC which inherits the larger block length of LTC while requiring
only roughly 𝑂(𝑁/𝛿𝑛)more queries than 𝐶.

Furthermore, we can show that nesting does not destroy the rate. If LTC and 𝐶 are linear, and if
LTC has rate 1− 𝜀LTC while 𝐶 has rate 1− 𝜀, then by counting the number of linear constraints, LTC⋒𝐶
has rate at least 1− 𝜀− 𝜀LTC. If we hope to repeatedly apply nesting with larger and larger LTCs (block
length growing by a small factor) to build an RLCC with arbitrarily large block length 𝑛, then we
will need to apply nesting𝑚 = 𝑂(log𝑛) times. Assuming that all of the LTCs have rate 1 − 𝜀LTC, the
RLCC will have rate of 1 − 𝑂(log𝑛) ⋅ 𝜀LTC which we need to be Ω(1) in order to be asymptotically
good. This forces us to use LTCs with rate at least 1 − 𝑂(1/log𝑛).

Fortunately, we can use the construction of Dinur, Evra, Livne, Lubotzky, and Mozes [DEL+22]
to get the high-rate linear LTCs we need. For any sufficiently large choice of 𝑛, there is an infinite
sequence of explicit LTCswith rate at least 1−𝑂(1/log𝑛) andwith appropriate local testing parameters
so that the additive query overhead of each nesting step is polylog𝑛 as desired. By iteratively nesting
these LTCs, we can build an RLCC of block length 𝑛 with constant rate and polylogarithmic query
complexity.

One may notice that since the LTCs have rate 1 − 𝑜(1), they must also have 𝑜(1) distance, because
of e.g. the Singleton bound. The correcting radius of our RLCC thus will also be 𝑜(1), and so our
code is not yet asymptotically good. This is remedied by nesting in one last LTC with constant rate
and distance. This boosts the correcting radius to be constant, and the rate of this last LTC dominates
the rate of the final RLCC, which at last is asymptotically good.

3



1.2 RelatedWork
Prior constructions and lower bounds. The two main parameter regimes for RLDCs and
RLCCs are the constant query regime (optimizing block length given the dimension 𝑘 and query
complexity 𝑞) and the asymptotically good regime (optimizing query complexity when 𝑘/𝑛 = Θ(1)
and 𝛿 = Θ(1)). In the constant-query regime, the best known block length is 𝑛 = 𝑂(𝑘1+𝑂(1/𝑞)) [AS21],
following a line of work [BGH+06, GRR20, CGS22]. Interestingly, this matches (up to a constant
factor in 𝑞) the block length lower bound for full-fledged LDCs [KT00, Woo07].

Table 1 summarizes the historic state of the art query complexity for asymptotically good RLCCs.
This table does not include Gopi, Kopparty, Oliveira, Ron-Zewi, and Saraf [GKO+18] who optimize
rate (approaching the Gilbert–Varshamov bound) instead of queries.

Gur and Lachish [GL21] establish lower bounds for RLDCs, including a Ω̃(√log𝑛) query lower
bound for asymptotically good RLDCs with nonadaptivity. Dall’Agnol, Gur, and Lachish [DGL21]
extend the lower bound to adaptive decoders, and Goldreich [Gol23b] provides an alternative and
simpler proof, which in some cases is stronger. Block, Blocki, Cheng, Grigorescu, Li, Zheng, and
Zhu [BBC+23] prove an exponential block length lower bound for 2-query RLDCs, asymptotically
matching the exponential block length lower bound for 2-query LDCs established by Kerenidis and
deWolf [KW03].

Alternative error models. LDCs, LCCs, and their relaxed counterparts have been studied in
other error models, distinct from the Hamming worst-case error setting that we study in this work.
These codes have been studied in the insertion-deletion error model, where a limited number of
symbols can be added or removed (rather than simply flipped) anywhere in the codeword [OP15,
BBG+20, CLZ20, BBC+23]. In addition, both the Hamming and insertion-deletion models have been
studied in the computationally bounded setting, where the adversary choosing the location of bit
flips or insertions/deletions has limited resources. Then, cryptographic assumptions can be used to
construct LDCs and LCCs [OPS07, HO08, HOSW11, BKZ20, BB21, ABB22] as well as their relaxed
counterparts [BGGZ21, BB23].

In particular, the latter two works use these assumptions to (among other results) construct
asymptotically good RLDCs and RLCCs in the computationally bounded Hamming model with
polylogarithmic queries. We achieve this in the general setting.

Subsequent work. Soon after we posted the preprint for this work, Cohen and Yankovitz [CY23]
improved our technique and lowered the query complexity for asymptotically good RLCCs from our
log69 𝑛 to (log𝑛)2+𝑜(1). They observe that the nesting operation can boost an RLCC using a code that
is locally testable only on inputs with bounded corruption, rather than a full-fledged locally testable
code which must work on all inputs. Thus, they can use a family of expander codes, which satisfy
this weaker property, to simplify the RLCC construction and improve the query complexity.

Technique Query complexity Due to

low-degree polynomials 𝑛𝜀 [BFLS91, RS96]
multiplicity codes 𝑛𝜀 [KSY14]

lifted Reed–Solomon codes 𝑛𝜀 [GKS13]
expander graphs 𝑛𝜀 [HOW15]

distance amplification 2�̃�(√log𝑛) [KMRS17]
repeated tensoring (log𝑛)𝑂(log log𝑛) [GRR20]

row-evasive partitions (log𝑛)𝑂(log log log𝑛) [CY22]
nested LTCs log𝑂(1) 𝑛 this work

Table 1: Best known query complexity for asymptotically good RLCCs with block length 𝑛.
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2 Preliminaries

2.1 General Notation
Let dist(𝑥, 𝑦) denote the relative Hamming distance between two strings with the same length and
alphabet:

∀𝑥, 𝑦 ∈ Σ𝑛. dist(𝑥, 𝑦) ≔
#{𝑖 ∈ [𝑛] ∶ 𝑥𝑖 ≠ 𝑦𝑖}

𝑛 .

All of the necessary properties of a distance function are satisfied, including the triangle inequality.
For every subset 𝑆 ⊆ Σ𝑛, let dist(𝑥, 𝑆) ≔ min𝑦∈𝑆 dist(𝑥, 𝑦).

We say that 𝑓(𝑛) ≤ poly(𝑛) if there is a fixed polynomial 𝑝 such that for large enough 𝑛, 𝑓(𝑛) ≤
𝑝(𝑛), and analogously for≥. We say 𝑓(𝑛) = poly(𝑛) if 𝑓(𝑛) ≤ poly(𝑛) and 𝑓(𝑛) ≥ poly(𝑛). Analogous
conventions are used for polylog𝑛, which denotes poly(log𝑛). The polynomials implicitly defined
by poly or polylog are fixed with respect to all parameters involved.

Let ℕ denote the set of positive integers, and 𝔽2 denote the finite field of 2 elements. For every
𝑘 ∈ ℕ, define [𝑘] ≔ {1, 2,… , 𝑘}. For a string 𝑥 ∈ Σ𝑛 and an index set 𝐼 ⊆ [𝑛], let 𝑥|𝐼 denote the
restriction of 𝑥 to the indices in 𝐼. For a set of strings 𝑆 ⊆ Σ𝑛, let 𝑆|𝐼 denote the set {𝑥|𝐼 ∶ 𝑥 ∈ 𝑆}.

2.2 Error-Correcting Codes
An error-correcting code is a set of strings, called codewords, where every two codewords are well-
separated.

Definition 2.1. A code over an alphabet Σ with dimension 𝑘, block length 𝑛, and distance 𝛿 is a
subset 𝐶 ⊆ Σ𝑛 of size |Σ𝑘| where

∀𝑐 ∈ 𝐶. dist(𝑐, 𝐶 ⧵ 𝑐) ≥ 𝛿.

If Σ = {0, 1}, 𝐶 is called a binary code. In this work, we treat {0, 1} and 𝔽2 as interchangeable.
The ratio 𝑘/𝑛 is called the rate of a code. In this work, we study asymptotically good codes which

have constant rate and distance.

Remark 2.2. If 𝐶 ⊆ Σ𝑛 is a code with distance 𝛿, 𝑤 ∈ Σ𝑛, and 𝑐 ∈ 𝐶 satisfies dist(𝑤, 𝑐) < 𝛿/2, then 𝑐
must be the unique closest codeword to 𝑤. This is because for any other codeword 𝑐′ ∈ 𝐶,

dist(𝑐′, 𝑤) ≥ dist(𝑐′, 𝑐) − dist(𝑤, 𝑐) ≥ 𝛿 − 𝛿/2 > dist(𝑐, 𝑤)

by the triangle inequality.

Definition 2.3. A code 𝐶 ⊆ Σ𝑛 is systematic if there is a bijective map Enc ∶ Σ𝑘 → 𝐶 where the
message appears in the codeword:

∀𝑚 ∈ Σ𝑘. Enc(𝑚)|[𝑘] = 𝑚.

Definition 2.4. A linear code is a code 𝐶 ⊆ 𝔽𝑛 which is a linear subspace over a finite field. Every
linear code can be specified by a generator matrix which gives a basis for the code and which also
serves as an encoding map, or by a parity-check matrix which gives a set of linear constraints that
every codeword must satisfy. We say that a family of linear codes is explicit if each code’s parity-check
matrix can be computed uniformly in time polynomial to the size of the matrix.

Remark 2.5. A linear code can always be made systematic, because we can take its generator matrix,
apply Gaussian elimination, and permute columns until it contains a 𝑘 × 𝑘 identity matrix in the
first 𝑘 columns.
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2.3 Relaxed Locally Correctable Codes
LCCs and LDCs can recover any bit of the closest codeword or message, respectively, using very few
queries to a noisy codeword. The study of LCCs and LDCs has roots in program checking [BK95,
Lip90, BFLS91, RS96] and was first formalized by Katz and Trevisan [KT00]; we refer the reader to
Yekhanin’s comprehensive survey [Yek12].

Relaxed locally decodable codes and relaxed locally correctable codes have the option of de-
tecting corruption instead of decoding or correcting. The study of these codes is closely related to
probabilistically checkable proofs and originates with Ben-Sasson, Goldreich, Harsha, Sudan, and
Vadhan [BGH+06], who defined RLDCs and gave the first constructions.

Definition 2.6 (RLDC). A code 𝐶 ⊆ Σ𝑛 is a relaxed locally decodable code with decoding radius 𝛿
and query complexity 𝑞 if it has an encoding map Enc∶ Σ𝑘 → 𝐶 and a randomized corrector𝑀 that
makes 𝑞 queries such that

1. (Completeness) For every𝑚 ∈ Σ𝑘,

∀𝑖 ∈ [𝑘]. Pr[𝑀Enc(𝑚)(𝑖) = 𝑚𝑖] = 1.

2. (Soundness) For every𝑚 ∈ Σ𝑘 and every 𝑤 ∈ Σ𝑛 with dist(𝑤,Enc(𝑚)) ≤ 𝛿,

∀𝑖 ∈ [𝑛]. Pr[𝑀𝑤(𝑖) ∈ {𝑚𝑖, ⊥}] ≥
2
3 .

The superscript denotes the input that𝑀 queries.

Gur, Ramnarayan, and Rothblum [GRR20] later introduced the corresponding notion of RLCCs
along with constructions.

Definition 2.7 (RLCC). A code 𝐶 ⊆ Σ𝑛 is a relaxed locally correctable code with correcting radius 𝛿
and query complexity 𝑞 if it has a randomized corrector𝑀 that makes 𝑞 queries such that

1. (Completeness) For every 𝑐 ∈ 𝐶,

∀𝑖 ∈ [𝑛]. Pr[𝑀𝑐(𝑖) = 𝑐𝑖] = 1.

2. (Soundness) For every 𝑐 ∈ 𝐶 and 𝑤 ∈ Σ𝑛 with dist(𝑤, 𝑐) ≤ 𝛿,

∀𝑖 ∈ [𝑛]. Pr[𝑀𝑤(𝑖) ∈ {𝑐𝑖, ⊥}] ≥
2
3 .

The superscript denotes the input that𝑀 queries. We refer to𝑀 as a 𝐶-corrector.

Here, we have given strong definitions of RLDCs and RLCCs featuring perfect completeness.
Goldberg [Gol23a] shows that for linear RLDCs and RLCCs, the above definition is essentially
equivalent to allowing imperfect completeness (the corrector/decoder can sometimes err on true
codewords) and requiring nonadaptivity (the corrector/decoder’s queries do not depend on the
outcome of prior queries). That said, all of the codes that we construct have nonadaptive correctors.

A systematic RLCC implies an RLDC with the same radius and query complexity, because we
can use the local corrector on the portion of the codeword which corresponds to message symbols.
In addition, an RLCC with correcting radius 𝛿 must have distance at least 𝛿 in order for perfect
completeness and soundness to simultaneously hold. Therefore, we say an RLCC is asymptotically
good if it has constant rate and constant correcting radius, which implies constant distance.

2.4 Locally Testable Codes
Locally testable codes (LTCs) are codes with testing algorithms that can gauge corruption with few
queries to the input. We will make use of the following (strong) definition of LTCs:
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Definition 2.8 (LTC). A code 𝐶 ⊆ Σ𝑛 is a locally testable code with distance 𝛿, testability1 𝜅, and
query complexity 𝑞 if it has a randomized tester 𝑇 that makes 𝑞 queries and returns either ⊤ (accept)
or ⊥ (reject), such that
1. (Completeness) For every 𝑐 ∈ 𝐶,

Pr[𝑇𝑐 = ⊤] = 1.

2. (Soundness) For every 𝑤 ∈ Σ𝑛,

Pr[𝑇𝑤 = ⊥] ≥ 𝜅 ⋅ dist(𝑤, 𝐶).

The superscript denotes the input that 𝑇 queries. We refer to 𝑇 as a 𝐶-tester.

Dinur, Evra, Livne, Lubotzky, and Mozes [DEL+22] and Panteleev and Kalachev [PK22] con-
structed the first locally testable codes with constant rate, distance, and query complexity (referred to
as 𝑐3-LTCs). In particular, the former are able to construct explicit families of linear LTCs with rate
arbitrarily close to 1:

Theorem 2.9 ([DEL+22, Theorem 1.1 and Remark 5.3]). For any 𝑅 = 1 − 𝜀 ∈ (0, 1), there is a prime
power 𝑝 = Θ((1/𝜀)10) and values 𝛿 ≥ Ω(𝜀3), 𝜅 ≥ Ω(𝜀15), and 𝑞 ≤ 𝑂((1/𝜀)20), such that for all 𝑗 ∈ ℕ,
there exists a binary linear LTC LTC𝑗 with rate at least 𝑅, minimum distance at least 𝛿, testability at least
𝜅, query complexity at most 𝑞, and block length 𝑛𝑗 ≔ (𝑞/8) ⋅ (𝑝3𝑗 − 𝑝𝑗).

3 Construction

3.1 Boosting RLCC Block Length
The building block of our construction is the nesting operation ⋒ which combines two codes.

Definition 3.1. Let 𝐶1 ⊆ Σ𝑁 and 𝐶2 ⊆ Σ𝑛 with 𝑛 ≤ 𝑁. Define

𝐶1 ⋒ 𝐶2 ≔ 𝐶1 ∩ (𝐶
⌊𝑁/𝑛⌋
2 × Σ𝑁−⌊𝑁/𝑛⌋⋅𝑛) ∩ (Σ𝑁−𝑛 × 𝐶2).

We say that 𝐶1 ⋒ 𝐶2 is the code formed by nesting 𝐶2 in 𝐶1.

That is, 𝐶1 ⋒ 𝐶2 is the subset of codewords 𝑐 in 𝐶1 such that 𝑐|{1,…,𝑛} ∈ 𝐶2, 𝑐|{𝑛+1,…,2𝑛} ∈ 𝐶2, and
so on. If 𝑛 does not divide 𝑁, then we also require 𝑐|{𝑁−𝑛+1,…,𝑁} ∈ 𝐶2. Because 𝐶1 ⋒ 𝐶2 is a subset of
𝐶1, it must have distance at least that of 𝐶1. In addition, when both codes are linear, we can bound
the rate of 𝐶1 ⋒ 𝐶2. Nesting 𝐶2 in 𝐶1 incurs an additive loss in rate:

Lemma 3.2. Let 𝑛 ≤ 𝑁. Let 𝐶1 ⊆ Σ𝑁 be a linear code with rate 1 − 𝜀1 and distance 𝛿1, and let
𝐶2 ⊆ Σ𝑛 be a linear code with rate 1 − 𝜀2. Then, 𝐶1 ⋒ 𝐶2 ⊆ Σ𝑁 is a linear code with rate at least
1 − 𝜀1 − (𝑛/𝑁 ⋅ ⌈𝑁/𝑛⌉)𝜀2.

Proof. Using the rank-nullity theorem, the total number of linear constraints defining 𝐶1 ⋒ 𝐶2 is

≤ 𝜀1𝑁 + 𝜀2𝑛 ⋅ ⌈
𝑁
𝑛 ⌉ = (𝜀1 +

𝑛
𝑁 ⋅ ⌈𝑁𝑛 ⌉ ⋅ 𝜀2) ⋅ 𝑁

which then implies that the rate of 𝐶1 ⋒ 𝐶2 is

≥ 1 − 𝜀1 −
𝑛
𝑁 ⋅ ⌈𝑁𝑛 ⌉ ⋅ 𝜀2.

Remark 3.3. If 𝑛 divides 𝑁, then 𝐶1 ⋒ 𝐶2 = 𝐶1 ∩ 𝐶𝑁/𝑛
2 , with rate at least 1 − 𝜀1 − 𝜀2. When 𝑛 does not

divide 𝑁, the rate of 𝐶1 ⋒ 𝐶2 is at least 1 − 𝜀1 − (1 + 𝑛/𝑁)𝜀2.
Next, we prove that nesting preserves relaxed local correctability when performed with an LTC.

We can lift a smaller RLCC to a larger block length by nesting it inside an LTC.
1This parameter has also been referred to as the detection probability e.g. [DEL+22].
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Lemma 3.4. Let LTC ⊆ Σ𝑛LTC be an LTC with query complexity 𝑞LTC, distance 𝛿LTC, and testability 𝜅.
Let 𝐶 ⊆ Σ𝑛 be an RLCC with query complexity 𝑞 and correcting radius 𝛿 where 𝑛 ≤ 𝑛LTC. Then,
LTC ⋒ 𝐶 ⊆ Σ𝑛LTC is an RLCC with correcting radius 𝛿LTC/2 and query complexity 𝑞 + 𝑂(𝑞LTC𝑛LTC/𝛿𝜅𝑛).

Proof. Given the LTC-tester 𝑇 and the 𝐶-corrector𝑀𝐶, we can give a corrector𝑀𝑤(𝑖) for LTC ⋒ 𝐶:

1. Let 𝐼 be an interval of [𝑛LTC] of size 𝑛, defined as follows:

𝐼 ≔ {
{⌈𝑖/𝑛⌉ ⋅ 𝑛 − (𝑛 − 1),… , ⌈𝑖/𝑛⌉ ⋅ 𝑛} if 𝑖 < 𝑛LTC − 𝑛
{𝑛LTC − (𝑛 − 1),… , 𝑛LTC} if 𝑖 ≥ 𝑛LTC − 𝑛

This is chosen so that that 𝑖 ∈ 𝐼 and ∀𝑐 ∈ LTC ⋒ 𝐶. 𝑐|𝐼 ∈ 𝐶.

2. Run𝑀𝑤|𝐼
𝐶 (𝑖∗), where 𝑖∗ ≔ 𝑖 + 1 −min 𝐼. We choose 𝑖∗ such that (𝑤|𝐼)𝑖∗ = 𝑤𝑖.

3. For 𝑡 ≔ 𝑂(𝑛LTC/𝛿𝜅𝑛) iterations, run 𝑇𝑤.
4. Output ⊥ if any run of the LTC-tester in step 3 returns ⊥; otherwise output the result of step 2.

The query complexity of step 2 is 𝑞, while the query complexity of step 3 is 𝑞LTC ⋅ 𝑂(𝑛LTC/𝛿𝜅𝑛). In
addition,𝑀 is nonadaptive as long as 𝑇 and𝑀𝐶 are nonadaptive.

Next, we can show that𝑀 satisfies the perfect completeness condition of the RLCC definition.
Since 𝑤 ∈ LTC ⋒ 𝐶 ⊆ LTC, every repetition of the LTC-tester in step 3 will return ⊤ (accept), so for all
𝑖,𝑀𝑤(𝑖) will return the result of step 2. By definition, if 𝑤 ∈ LTC ⋒ 𝐶, then 𝑤|𝐼 ∈ 𝐶. Therefore, the
𝐶-corrector in step 2 will return (𝑤|𝐼)𝑖∗ = 𝑤𝑖 with certainty, and so will𝑀𝑤(𝑖), as needed.

Finally, we show soundness. Let 0 < dist(𝑤, LTC ⋒ 𝐶) < 𝛿LTC/2, and let 𝑐 ∈ LTC ⋒ 𝐶 be the
unique closest codeword to 𝑤. Note that 𝑐 ∈ LTC and 𝑐|𝐼 ∈ 𝐶. Then, for all 𝑖, we need to show
Pr[𝑀𝑤(𝑖) ∈ {𝑐𝑖, ⊥}] ≥ 2/3.

• First, assume dist(𝑤, 𝑐) = dist(𝑤, LTC ⋒ 𝐶) ≥ 𝛿𝑛/2𝑛LTC. Because dist(𝑤, 𝑐) < 𝛿LTC/2, 𝑐 is the
unique codeword in LTC which is closest to 𝑤 by Remark 2.2. Hence, one run of 𝑇𝑤 will return
⊥ with probability at least 𝜅𝛿𝑛/𝑛LTC. Therefore, step 3 returns ⊥ with probability

≥ 1 − (1 − 𝛿𝜅𝑛
2𝑛LTC

)
𝑡
≥ 1 − exp (− 𝑡𝛿𝜅𝑛

2𝑛LTC
) ≥ 2/3,

for a suitable constant in 𝑡. Thus, ∀𝑖.Pr[𝑀𝑤(𝑖) = ⊥] ≥ 2/3 which satisfies soundness.
• Now assume dist(𝑤, 𝑐) < 𝛿𝑛/2𝑛LTC. From here we can bound the distance between the sub-
strings 𝑤|𝐼 and 𝑐|𝐼; the distance of the substrings is maximized if all of the symbols that differ
between 𝑤 and 𝑐 lie in the interval 𝐼. Consequently, dist(𝑤|𝐼, 𝑐|𝐼) < 𝛿/2, and 𝑐|𝐼 is the unique
codeword in 𝐶 closest to 𝑤|𝐼 (see Remark 2.2).
Applying the soundness condition of the 𝐶-corrector,

Pr[𝑀𝑤|𝐼
𝐶 (𝑖∗) ∈ {(𝑐|𝐼)𝑖∗⏟

𝑐𝑖

, ⊥}] ≥ 2/3.

𝑀𝑤(𝑖) will return either the output of 𝑀𝑤|𝐼
𝐶 (𝑖∗), or ⊥ if some iteration of step 3 rejects. Hence,

Pr[𝑀𝑤(𝑖) ∈ {𝑐𝑖, ⊥}] ≥ Pr[𝑀𝑤|𝐼
𝐶 (𝑖∗) ∈ {𝑐𝑖, ⊥}] ≥ 2/3.

This shows that the soundness condition is satisfied in all cases.

In summary, nesting an RLCC in an LTC yields a code which inherits the best properties of both:
the resulting code inherits distance and block length from the larger LTC, as well as the relaxed local
correctability of the smaller RLCC. Therefore, we can build an RLCC with arbitrarily large block
length by iteratively nesting the code in a series of LTCs with larger and larger block length.

Proposition 3.5. Let LTC1,… , LTC𝑚 be a sequence of linear LTCs over a finite field alphabet 𝔽 with
block lengths 𝑛1,… , 𝑛𝑚, which satisfy the following properties:
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• 𝑛𝑗 ≤ 𝑛𝑗+1 for all 𝑗,
• every LTC𝑗 has rate at least 1 − 𝜀LTC and distance at least 𝛿LTC, and
• every LTC𝑗 has a local tester with query complexity at most 𝑞LTC and testability at least 𝜅LTC.

Then, 𝐶 ≔ LTC𝑚 ⋒ (LTC𝑚−1 ⋒ ⋯(LTC2 ⋒ LTC1)… ) is a linear RLCC which satisfies the following
properties:

• alphabet 𝔽 and block length 𝑛𝑚,
• rate at least

1 − 𝜀LTC(1 +
𝑚
∑
𝑗=2

𝑗
∏
𝑗′=2

𝑛𝑗′−1
𝑛𝑗′

⌈
𝑛𝑗′
𝑛𝑗′−1

⌉),

• correcting radius at least 𝛿LTC/2, and
• query complexity at most

𝑛1 +
𝑚
∑
𝑗=2

𝑂(
𝑞LTC𝑛𝑗

𝛿LTC𝜅LTC𝑛𝑗−1
).

Remark 3.6. If 𝑛𝑗 divides 𝑛𝑗+1 for all 𝑗, then the rate lower bound simplifies to 1−𝑚𝜀LTC. Even when 𝑛𝑗
does not divide 𝑛𝑗+1, with appropriate parameter choices we can still simplify the rate to 1−𝑂(𝑚𝜀LTC).
Therefore, we can view each nesting step as reducing the rate of 𝐶 by 𝑂(𝜀LTC), so that each step incurs
an additive (rather than multiplicative) cost in both rate and query complexity.

Proof. The alphabet and block length of 𝐶 follows from the definition of nesting. Next, we show the
rate. Let LTC𝑗 ⋒⋯(LTC2 ⋒ LTC1) have rate 1 − 𝜀𝑗. We know 𝜀1 ≤ 𝜀LTC by definition, and Lemma 3.2
tells us that for 𝑗 ≥ 2,

𝜀𝑗 ≤ 𝜀LTC +
𝑛𝑗−1
𝑛𝑗

⌈
𝑛𝑗
𝑛𝑗−1

⌉ ⋅ 𝜀𝑗−1.

Hence by induction, 𝜀𝑚 is upper bounded by the series

𝜀𝑚 ≤ 𝜀LTC ⋅ (1 +
𝑚
∑
𝑗=2

𝑗
∏
𝑗′=2

𝑛𝑗′−1
𝑛𝑗′

⌈
𝑛𝑗′
𝑛𝑗′−1

⌉),

which gives the desired lower bound on the rate of 𝐶.
Finally, we show that 𝐶 is an RLCC. LTC1 can be viewed as an RLCC with correcting radius 𝛿LTC

because it has a trivial correcting algorithm that reads the entire input and checks whether it is
in LTC1. This corrector has query complexity 𝑛1. Then by applying Lemma 3.4, LTC2 ⋒ LTC1 has a
corrector with correcting radius 𝛿LTC/2 and query complexity

≤ 𝑛1 + 𝑂(
𝑞LTC𝑛2

𝛿LTC𝜅LTC𝑛1
).

By applying this lemma 𝑚 − 2 more times with LTC3,… , LTC𝑚, we can conclude that there is a
𝐶-corrector with correcting radius 𝛿LTC/2 and total query complexity

≤ 𝑛1 +
𝑚
∑
𝑗=2

𝑂(
𝑞LTC𝑛𝑗

𝛿LTC𝜅LTC𝑛𝑗−1
) .

3.2 Instantiating the Nesting Framework
We now have all of the tools we need to construct asymptotically good RLCCs, as long as we pick a
suitable sequence of LTCs. If the block length of each successive LTC grows by at least a constant
factor, then𝑚 ≤ 𝑂(log𝑛). Thus, using Remark 3.6 as guidance, we need a family of explicit LTCs
with rate at least 1 − 𝑂(1/log𝑛) in order for Proposition 3.5 to yield an RLCC with constant rate.
This means these LTCs will have subconstant distance, due to the Singleton bound. We will use the
following instantiation of Theorem 2.9:
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Corollary 3.7 ([DEL+22], see Appendix A). For every sufficiently large 𝑁 ∈ ℕ, there exists an integer
𝑛 ∈ [Ω(𝑁/log30𝑁), 𝑁] and a family of LTCs {LTC1,… , LTC𝑚} such that

• Each LTC𝑗 is binary, linear, and explicit.
• Each LTC𝑗 has:

– rate 𝑅 = 1 − 𝜀LTC ≥ 1 − 𝑂(1/log𝑁),
– distance 𝛿LTC ≥ Ω(1/log3𝑁),
– testability 𝜅LTC ≥ Ω(1/log15𝑁), and
– query complexity 𝑞LTC ≤ 𝑂(log20𝑁).

• Each LTC𝑗 has block length 𝑛𝑗, such that 𝑛1 ≤ 𝑂(log50𝑁), 𝑛𝑚 = 𝑛, and ∀𝑗.𝑛𝑗+1/𝑛𝑗 = Θ(log30𝑁).
• The number of codes is𝑚 = 𝑂(log𝑁/log log𝑁).

Remark 3.8. In this concrete family of LTCs, the block length of each successive LTC increases by
a polylogarithmic factor, instead of the constant factor we previously imagined using. Thus, 𝑚 =
𝑂(log𝑛/log log𝑛) = 𝑜(log𝑛). The 𝑛𝑗/𝑛𝑗−1 = polylog𝑛 factor also appears in the query complexity,
which is acceptable. One could choose the LTC rate to be 1 − 𝑂(log log𝑛/log𝑛) instead in order to
marginally improve parameters such as 𝛿LTC, 𝜅LTC, and 𝑞LTC which appear in the query complexity,
while worsening the rate.

With this family of LTCs, we can construct high rate RLCCs with polylogarithmic query complex-
ity, albeit with subconstant correcting radius.

Theorem 3.9. For sufficiently large 𝑁 ∈ ℕ, there is an explicit binary linear RLCC with block length
𝑛 ∈ [Ω(𝑁/log30𝑁), 𝑁], rate 1 − 𝑂(1/log log𝑁), correcting radiusΩ(1/log3𝑁), and query complexity
𝑂(log69𝑁/log log𝑁).

Proof. We can use the parameter 𝑁 with Corollary 3.7 to get a family of LTCs to plug into Proposi-
tion 3.5. Then, our code is 𝐶 ≔ LTC𝑚 ⋒ (LTC𝑚−1 ⋒…(LTC2 ⋒ LTC1)… ), with parameters as defined in
Corollary 3.7. We find that our code 𝐶 has block length 𝑛 ∈ [Ω(𝑁/log30𝑁), 𝑁] and rate at least

≥ 1 − 𝜀LTC(1 +
𝑚
∑
𝑗=2

𝑗
∏
𝑗′=2

(
𝑛𝑗′−1
𝑛𝑗′

⌈
𝑛𝑗′
𝑛𝑗′−1

⌉))

≥ 1 − 𝜀LTC(1 +
𝑚
∑
𝑗=2

𝑗
∏
𝑗′=2

(1 +
𝑛𝑗′−1
𝑛𝑗′

))

≥ 1 − 𝜀LTC
𝑚
∑
𝑗=1

(1 + 𝑂(1/log30𝑁))
𝑗−1

≥ 1 − 𝜀LTC𝑚 ⋅ exp(𝑂( 𝑚
log30𝑁

))

= 1 − (1 + 𝑜(1))𝑚𝜀LTC

= 1 − 𝑂( 1
log log𝑁).

In addition, 𝐶 is an RLCC with radius 𝛿LTC/2 = Ω(1/log3𝑁) and query complexity

≤ 𝑛1 +
𝑚
∑
𝑖=2

𝑂(
𝑞LTC𝑛𝑖

𝛿LTC𝜅LTC𝑛𝑖−1
)

≤ 𝑂(log50𝑁) +
𝑚
∑
𝑖=2

𝑂 (log20+30+3+15𝑁)

≤ 𝑂(
log69𝑁
log log𝑁).

10



𝐶 is an RLCC with the desired rate and query complexity, but it is not yet asymptotically good
since its correcting radius is determined by the distance of the LTC family from Corollary 3.7. This
distance is subconstant since all of the LTCs must have rate 1 − 𝑂(1/𝑚). Thankfully, we can boost
the correcting radius of our RLCC with one final nesting step using an LTC with constant distance
and rate. The increase in query complexity is negligible, and the rate of the last LTC dominates the
rate of the resulting RLCC.
Corollary 3.10. Let LTC be a binary linear LTC with sufficiently large block length 𝑁, and with rate 𝑅,
distance 𝛿LTC, testability 𝜅, and query complexity 𝑞. Then, there exists a binary linear RLCC 𝐶 with block
length 𝑁, rate 𝑅 − 𝑂(1/log log𝑁), correcting radius 𝛿LTC/2, and query complexity

𝑂(
𝑞
𝜅 ⋅ log

33𝑁 +
log69𝑁
log log𝑁).

𝐶 is explicit if and only if LTC is explicit.

Proof. We pick sufficiently large 𝑁 such that we can use Theorem 3.9 to craft RLCC 𝐶′ with block
length 𝑛 ∈ [Ω(𝑁/log30𝑁), 𝑁], rate 1 − 𝑂(1/log log𝑁), correcting radius 𝛿 = Ω(1/log3𝑁), and query
complexity 𝑂(log69𝑁/log log𝑁). We now construct

𝐶 ≔ LTC ⋒ 𝐶′.

By construction, 𝐶 is explicit and has block length𝑁. By Lemma 3.2 (in particular, Remark 3.3) on LTC
and 𝐶′, the overall rate of 𝐶 is at least 𝑅 − (1 + 𝑛/𝑁) ⋅ 𝑂(1/log log𝑁) = 𝑅 − 𝑂(1/log log𝑁). Applying
Lemma 3.4 to LTC and 𝐶′, the correcting radius of 𝐶 is at least 𝛿LTC/2 and the query complexity of 𝐶 is

𝑂(
𝑞𝑁
𝛿𝜅𝑛) + 𝑂(

log69 𝑛
log log𝑛) ≤ 𝑂(

𝑞
𝜅 ⋅ log

33𝑁 +
log69 𝑛
log log𝑛).

This corollary states that for any binary linear LTC, there is a binary linear RLCC with nearly the
same rate and distance, and with the same (up to polylogarithmic factors) query complexity.

4 Final Construction
The main results of this paper follow from choosing an appropriate LTC for Corollary 3.10.
Corollary 4.1 (Explicit RLCCs). For any rate 𝑅 = 1 − 𝜀 ∈ (0, 1) and for infinitely many 𝑛, there is an
explicit RLCCwith block length 𝑛, rate 𝑅−𝑂(1/log log𝑛), correcting radiusΩ(𝜀3), and query complexity

𝑂((1/𝜀)35 log33 𝑛 +
log69 𝑛
log log𝑛).

Proof. We can instantiate Corollary 3.10 using the LTCs of Theorem 2.9.

Corollary 4.2 (Gilbert–Varshamov bound RLCCs). Let𝐻(⋅) be the binary entropy function. For any
𝑅, 𝛿, 𝜀 ∈ (0, 1) such that

𝑅 + 𝐻(𝛿) = 1 − 𝜀
and for infinitely many 𝑛, there exists a nonexplicit RLCC with block length 𝑛, rate 𝑅 − 𝑂(1/log log𝑛),
and distance at least 𝛿, with correcting radius 𝛿/2 and query complexity

poly(1/𝜀) ⋅ log33 𝑛 + 𝑂(
log69 𝑛
log log𝑛).

Proof. Dinur, Evra, Livne, Lubotzky, andMozes [DEL+22] construct explicit LTCswith rate arbitrarily
close to 1, which implies the existence of infinitely many nonexplicit LTCs that approach the Gilbert–
Varshamov bound (see [DEL+22, Corollary 1.2]). These LTCs can have any rate 𝑅 and distance 𝛿
such that 𝑅 + 𝐻(𝛿) = 1 − 𝜀, in which case the testability is 𝜅 ≥ poly(𝜀) and the query complexity is
𝑞LTC ≤ poly(1/𝜀). We can plug these parameters into Corollary 3.10 to yield RLCCs. Because the rate
of the RLCC approaches the rate of the LTC, and the distance of the RLCC is at least the distance of
the LTC, we can say that the RLCC also approaches the Gilbert–Varshamov bound.
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A Concrete Parameters for Locally Testable Codes
We instantiate the LTC construction from Theorem 2.9 with suitable parameters. In particular, for
any 𝜀 ∈ (0, 1), Dinur, Evra, Livne, Lubotzky, and Mozes [DEL+22] give an explicit construction for
a family of LTCs with rate at least 1 − 𝜀 and distance, testability, and query complexity within a
polynomial (or inverse polynomial) of 𝜀, such that consecutive codes in the family differ in block size
by a factor which is a polynomial of 1/𝜀. Setting 𝜀 = Θ(1/log𝑁) yields the following family of LTCs:

Theorem A.1 ([DEL+22, Theorem 1.1, Lemma 5.1, and Remark 5.3]). For sufficiently large 𝑁 ∈ ℕ,
there exists an explicit odd prime power 𝑝 = Θ(log10𝑁) such that there is an infinite family of explicit
binary linear locally testable codes {LTC1, LTC2,… } where every LTC𝑗 has

• block length 𝑛𝑗 = Θ((𝑝3𝑗 − 𝑝𝑗) ⋅ log20𝑁),
• rate 1 − 1/(100 log𝑁),
• distanceΩ(1/log3𝑁),
• testabilityΩ(1/log15𝑁), and
• query complexity 𝑂(log20𝑁).

Corollary (Corollary 3.7 restated). For every sufficiently large 𝑁 ∈ ℕ, there exists an integer 𝑛 ∈
[Ω(𝑁/log30𝑁), 𝑁] and a family of LTCs {LTC1,… , LTC𝑚} such that

• Each LTC𝑗 is binary, linear, and explicit.
• Each LTC𝑗 has:

– rate 𝑅 = 1 − 𝜀LTC ≥ 1 − 𝑂(1/log𝑁),
– distance 𝛿LTC ≥ Ω(1/log3𝑁),
– testability 𝜅LTC ≥ Ω(1/log15𝑁), and
– query complexity 𝑞LTC ≤ 𝑂(log20𝑁).

• Each LTC𝑗 has block length 𝑛𝑗, such that 𝑛1 ≤ 𝑂(log50𝑁), 𝑛𝑚 = 𝑛, and ∀𝑗.𝑛𝑗+1/𝑛𝑗 = Θ(log30𝑁).
• The number of codes is𝑚 = 𝑂(log𝑁/log log𝑁).

Proof. Let 𝑝 and {LTC1, LTC2,… } be instantiated using Theorem A.1 with parameter 𝑁. Let𝑚 be the
smallest integer such that 𝑛𝑚 ≤ 𝑁, and define 𝑛 ≔ 𝑛𝑚. Then, {LTC1,… , LTC𝑚} have the desired rate,
distance, testability, and query complexity. In addition, 𝑛1 ≤ 𝑂(𝑝3 log20𝑁) = 𝑂(log50𝑁). Next, for
all 𝑗 ≥ 1,

𝑛𝑗+1
𝑛𝑗

= Θ(
𝑝3(𝑗+1) − 𝑝𝑗+1

𝑝3𝑗 − 𝑝𝑗
) = Θ(𝑝3) = Θ(log30𝑁).

Hence, 𝑛 ≤ 𝑁 ≤ 𝑂(𝑝3𝑛), so 𝑛 ≥ 𝑁/𝑝3. Finally,

𝑚 ≤
log𝑁

𝑂(log(log30𝑁))
= 𝑂(

log𝑁
log log𝑁).
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