
New ways of studying the BPP = P conjecture

Lijie Chen * Roei Tell †

June 29, 2023

Abstract

What’s new in the world of derandomization? Questions about pseudoran-
domness and derandomization have been driving progress in complexity the-
ory for many decades. In this survey we will describe new approaches to the
BPP = P conjecture from recent years, as well as new questions, algorithmic ap-
proaches, and ways of thinking. For example: Do we really need pseudorandom
generators for derandomization, or can we get away with weaker objects? Can
we prove free lunch theorems, eliminating randomness with zero computational
overhead? What hardness assumptions are necessary and sufficient for deran-
domization? And how do new advances in this area interact with progress in
cryptography and in interactive proof systems?

Note: A version of this text originally appeared as an ACM SIGACT News Complexity
Theory Column [CT23a].

*Miller Institute for Basic Research in Science at University of California, Berkeley, CA. Email:
wjmzbmr@gmail.com

†The Institute for Advanced Study at Princeton NJ and the DIMACS Center at Rutgers University, NJ.
Email: roeitell@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 94 (2023)

Contents

1 The classical question of derandomization 1

2 A recent shift in approach 2
2.1 The textbook approach: PRGs and their discontents 2
2.2 A non-black-box approach: Replacing PRGs with targeted PRGs 5

3 Non-black-box hardness vs randomness 7
3.1 Constructing targeted PRGs from hard functions 7
3.2 A lunch that looks free: Derandomizing without (noticeably) paying for it 8
3.3 Proving that prBPP = prP from uniform hardness assumptions 14

4 Broader effects: Explicit constructions, cryptography, algorithms, interactive
proof systems 19
4.1 Finding prime numbers . 19
4.2 Cryptography: Fiat-Shamir, new argument systems, targeted PRGs vs

hash functions . 20
4.3 Algorithms: Efficiently certifying #SAT with computational soundness . 21
4.4 Proof systems vs targeted PRGs . 21
4.5 Uniform hardness vs randomness . 22

5 A roadmap for open problems 23

i

1 The classical question of derandomization

“We use randomness, because we must”. (Shafi Goldwasser, Weizmann Com-
plexity Seminar, 2017.)

The authors of this column know how to add two n-bit integers without flipping
any random coins. In fact, we know how to do it well: By a simple and fast algorithm.
There are many textbook problems like that, which can be solved by algorithms that
are fast, simple to describe and to analyze, and that do not need to flip random coins
during their execution.

Yet, as Goldwasser’s quote above asserts, some problems force us to use random-
ness. If we want to solve a problem on big data – data that is so big that is infeasible
to read all of it – we must use randomness; this is the case in learning theory, property
testing, and (more generally) sublinear-time algorithms. A similar situation arises in
cryptography: In standard cryptographic settings, we are facing an adversary who
is computationally stronger than us, and who knows all of our secret plans (i.e., the
algorithm that we’ll use); we must act unpredictably to thwart it.

There are computational tasks for which the picture is less clear: They can be
solved efficiently using randomness, and they may or may not be solvable by efficient
deterministic algorithms (that aren’t allowed to flip random coins); that is, a deter-
ministic algorithm might exist, but we haven’t found one yet. A natural example is
the polynomial identity testing problem, and there are many others (see, e.g., [Wig19,
Section 7.1]). Nevertheless, in many cases over the years, when researchers high-
lighted such a computational task, someone came along and designed a good de-
terministic algorithm for it, robbing us of the illustrative example. Two celebrated
instances have been deciding primality [AKS04], and solving undirected connectivity
in logspace [Rei08].

Can we derandomize general classes? Since we seem to be able to derandomize
algorithms for specific computational tasks, maybe we can do so more generally, for
every task in some large class? To the best of our knowledge, this question was first
formally studied by Gill [Gil77] (see also [AM77; Adl78; AKL+79; BG81]), and already
in his initial paper he conjectured that fast general derandomization is possible.1

The BPP = P conjecture, which asserts that all languages decidable in probabilis-
tic polynomial time are also decidable in deterministic polynomial time, is one of the
main open problems in complexity theory. And, as one might expect, it is connected to
basically every other major theoretical area: For example, to P vs NP , lower bounds
for Turing machines and for non-uniform circuits, cryptography, interactive proof sys-
tems, fine-grained complexity, learning theory, meta-complexity, and more.

1Our understanding of his conjecture is that every function (possibly with multiple output bits) that is
computable in probabilistic time T(x) on every input x is also computable in deterministic time O(T(x)),
on infinitely many inputs x; see [Gil77, Section 3].

1

These days, a more general conjecture is studied, asserting that derandomization
holds also for the corresponding classes of promise problems, i.e. prBPP = prP .2 The
reason that we study the more general conjecture is that we understand the struc-
ture of prBPP better than that of BPP ,3 and that all of the known derandomization
techniques apply to promise problems.

2 A recent shift in approach

This column describes a new approach towards studying the prBPP = prP conjecture
that has been developed in recent years, and its initial fruit. In a gist, instead using
classical pseudorandom generators, recent works focused on targeted pseudorandom

generators, which are objects whose goals are more modest, but nevertheless still suffice
for derandomization. (In fact, targeted PRGs are the right object to study: They are
sufficient and necessary for derandomization.)

Well, why is it good to have more modest goals? As it turns out, these goals can be
achieved from weaker assumptions, and using less computational resources, compared to
classical PRGs. But this is all jumping ahead. We first briefly recall what are classical
PRGs and what are their shortcomings (in Section 2.1), and introduce targeted PRGs
(in Section 2.2).

In Section 3 we describe the recent results obtained by constructing targeted PRGs,
and their advantages. In Section 4 we present some broader applications of these
new developments, for example in the areas of explicit constructions, cryptography,
interactive proof systems, and algorithm design. Also, throughout the text we suggest
many interesting open problems to pursue, and we include a “roadmap” for studying
these open problems in Section 5.

2.1 The textbook approach: PRGs and their discontents

To set the stage, let’s very briefly describe the classical theoretical evidence for the
prBPP = prP conjecture, which can be found in any relevant textbook (see, e.g. [Gol08,
Chapter 8], [AB09, Chapter 20], and [Wig19, Chapter 7]). This is the celebrated “hard-
ness vs randomness” framework.

2.1.1 Derandomization from PRGs

The theoretical evidence for prBPP = prP originated in cryptography in the 1980’s,
from the study of pseudorandom generators (PRGs) (the earliest pioneers have been [Sha81;

2Recall that a promise problem is a pair Π = (Y,N) ⊆ {0, 1}∗ × {0, 1}∗ such that Y ∩N = ∅, and an
algorithm solves Π if it accepts every x ∈ Y and rejects every x ∈ N (we do not care how the algorithm
behaves on x /∈ (Y ∪N)).

3Specifically, we know of a complete problem for prBPP under P-reductions, called CAPP (see,
e.g., [Gol08, Exercise 6.14]); we have hierarchy theorems for prBPT IME (see, e.g., [Bar02, Section 3.2]);
we have a search-to-decision reduction for prBPP (see [Gol11]); and we have a reduction of prBPP to
the “one-sided error” version, i.e. prBPP = prRP prRP (see [BF99]). None of these are known for BPP .

2

BM84; Yao82]). These are objects that stretch a short random seed to a long pseudoran-
dom output, where this output needs to look random to every procedure from some
predetermined class C:

Definition 2.1 (PRGs). A PRG with seed length `(n) and error ε(n) for a class C of Boolean
functions is an algorithm G satisfying, for every C ∈ C that takes n input bits,

Pr
s∈{0,1}`(n)

[C(G(1n, s)) = 1] ∈ Pr
r∈{0,1}n

[C(r) = 1]± ε(n) .

The textbook approach uses PRGs for derandomization, by considering the class C
of all circuits of linear size:4 A circuit C : {0, 1}T → {0, 1} of size O(T) can represent
the computation of a probabilistic T-time machine M on an input x, by letting C(r) =
M(x, r). Then, a PRG for such circuits allows to reduce the number of random coins
used by M from T to `(T). Finally, if `(T) is small enough – say, `(T) = O(log(T))
– then we can obtain a completely deterministic algorithm, by enumerating over all
choices of s ∈ {0, 1}`(T).

In contrast to cryptography, in derandomization we allow G to use more computa-
tional resources than the procedures in the adversarial class C. For example, to deran-
domize linear-time machines in polynomial time (and deduce that prBPP = prP), it
suffices to have a PRG for linear-sized circuits that has seed length O(log(n)), error
< 1/6, and running time poly(n).

2.1.2 Hardness vs randomness: PRGs are equivalent to strong circuit lower bounds!

Here’s one of the most celebrated theorems in complexity theory, which builds on
earlier breakthroughs [Nis91; NW94]:

Theorem 2.2 (hardness vs randomness [IW97]). There exists a PRG for linear sized circuits
that has seed length `(n) = O(log(n)) and error 1/poly(n) and running time poly(n) if
and only if there is some constant ε > 0 and L ∈ DT IME [2n] such that no circuit of size
2ε·n can compute L correctly on infinitely many input lengths.

Thus, if you believe in certain strong circuit lower bounds, then you get the PRGs
you need for prBPP = prP ! And moreover, we’re not asking you to believe in too
much: This is exactly the right hypothesis for the existence of such PRGs (i.e., sufficient
and necessary).

Theorem 2.2 is the poster-child of a rich line of works on hardness vs randomness.
For example, with much effort, Theorem 2.2 is now known to scale well: Quantitatively
weaker circuit lower bounds yield slower derandomization (i.e., hardness for smaller
circuits yields slower PRGs with longer seed); see, e.g., [BFN+93; STV01; TSZS06;
SU05; Uma03]. Also, Theorem 2.2 extends to hardness-vs-randomness tradeoffs for in-
teractive proof systems: Lower bounds for circuits that use non-determinism yield gen-
erators for co-nondeterministic circuits, which suffice to prove that prAM = prNP ,

4To avoid confusion, we note that some sources consider PRGs for circuits of polynomial size, but to
deduce that prBPP = prP it suffices to consider circuits of linear size.

3

and these results also scale quantitatively; see, e.g., [KM02; MV05; IKW02; SU05;
GSTS03; SU07]. Lastly, we also know of uniform hardness vs randomness tradeoffs,
in which lower bounds for probabilistic Turing machines (e.g., EXP 6= BPP) yield
derandomization “on average” (e.g., for every L ∈ BPP there is L′ ∈ P such that
Prx∈{0,1}n [L(x) = L′(x)] ≥ 1 − o(1) for all n ∈ N); this line of works on uniform
tradeoffs is, in fact, not complete yet, and see, e.g. [IW98; CNS99; Kab01; TV07; GV08;
CIS18; CRT+20; CRT22].

2.1.3 Why not stop here? Why can’t complexity theorists ever just be happy?

Going back to the 1980’s, why did we rush to use PRGs in the first place? If one
looks at the problem of derandomization from first principles, then PRGs seem like an
overkill: We are trying to design a single algorithm G that works against an entire class
C.

This is a non-obvious thing to do. Consider the textbook algorithm that uses PRGs
to derandomize a probabilistic machine M. This algorithm gets an input x, computes
a set S of pseudorandom strings while completely ignoring x (i.e., by running the PRG
on all seeds), and only then remembers that it had x in the first place, and evaluates
M(x, s) for every s ∈ S.

This textbook PRG approach has two well-known shortcomings. First, to get a PRG
against the class of linear-sized circuits, we need strong circuit lower bounds, provably
(recall that Theorem 2.2 asserts an equivalence); this is a strong assumption, which
we don’t understand well. Secondly, the textbook PRG approach incurs considerable
computational overheads. This is because: (1) The PRG needs a seed of length `(T) ≥
log(T) to fool all circuits of size O(T); and (2) The derandomization enumerates over
the `-bit seeds. When derandomizing T-time machines, this yields a multiplicative
time overhead of T; when derandomizing T-time interactive protocols, this yields a
multiplicative time overhead of T per round (so for 100 rounds, the overhead is T100).

A daunting open problem. Maybe PRGs are, nevertheless, necessary for prBPP =
prP? Equivalently, does prBPP = prP imply strong circuit lower bounds as in
Theorem 2.2?

This is essentially the case (with some caveats) for non-deterministic derandom-
ization; that is, showing that prMA = prNP requires PRGs that are computable in
non-deterministic polynomial time (see, e.g., [Wil13; MW18; Che19; CR20; CLW20]).
However, there has been virtually zero unconditional progress on this question for the
prBPP = prP setting, despite the importance of this problem and decades of interest.
(See [CRT+20] for a conditional affirmative answer.)

Most frustratingly, until a few years ago, we also didn’t know of any barriers to
solving the open problem: If someone would’ve popped up and just solved the problem
(as the authors have certainly tried), we didn’t know of any other major consequences
that would follow. These days we can say a bit more about surprising consequences
(see Section 5).

4

Figure 1: A visual depiction of a targeted PRG G, which gets as input a description of
a procedure C, and maps a random seed of `(n) bits to a long sequence of n bits that
is pseudorandom for C. An alternative useful way to think of G is as mapping C to
the pseudorandom set {G(〈C〉 , s)}s∈{0,1}` .

2.2 A non-black-box approach: Replacing PRGs with targeted PRGs

The cornerstone for recent progress is a pseudorandom object that is weaker than
classical PRGs, and still suffices for derandomization. In fact, it is the right object, in
the sense that it’s both sufficient and necessary for derandomization of prBPP !

2.2.1 Defining targeted PRGs

In 2011, Goldreich [Gol11] introduced what he called targeted pseudorandom generators.
Recall that a classical PRG stretches an `(n)-bit seed to an n-bit sequence that looks
random to every procedure from a class C of computational procedures. A targeted
PRG works just the same – it stretches `(n) random bits to n pseudorandom bits –
except that it also gets a description of a specific procedure C ∈ C, and we’re only asking
that the n-bit output will look random to this particular C. For concreteness, let us
define a targeted PRG for circuits:

Definition 2.3 (targeted PRG). A targeted pseudorandom generator (targeted PRG) with
seed length `(n) and error ε(n) is an algorithm G that gets as input a description of a circuit
C : {0, 1}n → {0, 1} of size O(n), and a random seed of length `(n), and satisfies

Pr
s∈{0,1}`(n)

[C(G(〈C〉 , s)) = 1] ∈ Pr
r∈{0,1}n

[C(r) = 1]± ε(n) .

Intuitively, what we are asking the targeted PRG to do is read the description of
the specific procedure C, understand something from the description, and use what it
learned to produce pseudorandomness that is targeted specifically to C. This is why
we think of targeted PRGs as non-black-box algorithms: They don’t treat the procedure
C as a black-box.

One can also define a targeted PRG for uniform classes. For example, fix a machine
M (say, M solves the complete problem CAPP); then, the targeted PRG gets input

5

x ∈ {0, 1}n, and satisfies

Pr
s
[M(x, G(x, s)) = 1] ∈ Pr

r
[M(x, r) = 1]± ε .

Note that we didn’t bother to give a description of M to G as explicit input. This is
because the description of M consists of constantly many bits of information – which
can be hard-wired into G – whereas the interesting information is the input x, which
can be arbitrarily long.

2.2.2 These are exactly the right object for prBPP = prP !

It is clear that targeted PRGs suffice for derandomization, because in derandomization
we get an input x, and we only want to fool the specific procedure M(x, ·); using the
terminology of Definition 2.3, we have an explicit description of C(r) = M(x, r). In
his original work, Goldreich [Gol11] showed that targeted PRGs are also necessary for
derandomization of prBPP :

Theorem 2.4. A targeted PRG as in Definition 2.3 with seed length O(log(n)), error 1/poly(n),
and running time poly(n) exists if and only if prBPP = prP .

The second author of this column did not think highly of Theorem 2.4 during his
PhD, because the proof is technically simple. Needless to say, the second author is
eating his hat these days.

An indication for the non-triviality of Theorem 2.4 is the fact that we don’t know
whether or not an analogous result holds in the setting of AM vs NP . Recall that a
hitting-set generator (HSG) H is the one-sided error version of a PRG, where we require
that if Prr[C(r) = 1] ≥ 1/2 then Prs[C(H(s)) = 1] > 0. HSGs for co-nondeterministic
circuits5 suffice for derandomization of prAM (see [FGM+89]), and in fact targeted

HSGs, which are defined analogously to Definition 2.3, also suffice for this purpose. In
his original paper, Goldreich asked:

Open Problem 2.5. Is is true that prAM = prNP if and only if there exists a targeted
HSG for co-nondeterministic circuits of linear size that has seed length O(log(n)) and runs in
non-deterministic time poly(n)?6

The non-trivial direction is showing that derandomization of prAM implies the
existence of targeted HSGs for co-nondeterministic circuits. One step towards this was
taken by Sdroievski and van Melkebeek [SM23], who showed that derandomization of
prAMT IME [2polylog(n)] yields a targeted HSG for co-nondeterministic circuits, albeit
one that uses some non-uniform advice bits.

5A co-nondeterministic circuit C gets input r and a (non-deterministic) witness w. We say that C
accepts r if for all w it holds that C(r, w) = 1, and that C rejects r if there exists w such that C(r, w) = 0.

6The meaning of the generator G being computable in non-deterministic time poly(n) is that there is a
non-deterministic w such that Prs[C(G(〈C〉 , s, w)) = 1] ≈ Prr[C(r) = 1], in which case we call w good;
and that for every w that is not good, we have G(〈C〉 , s, w) =⊥.

6

Theorem 2.6 (derandomization of prAM requires targeted HSGs). If prAMT IME [nO(log(n)3)] ⊆
i.o.-prNEXP , then there exists a targeted HSG for co-nondeterministic circuits that yields
the result prAM ⊆ i.o.-prNT IME [2nc

]/nε for some c > 1 and all ε > 0.

3 Non-black-box hardness vs randomness

Having defined targeted PRGs, and explained why they seem to be the right object of
study for derandomization, the natural question is: Can we build one?

3.1 Constructing targeted PRGs from hard functions

The pivotal development in derandomization in recent years has been

Constructions of targeted PRGs from functions that are hard for proba-
bilistic (uniform) machines.

The known constructions are sufficiently general, scalable, and robust that they can
be viewed as a non-black-box version of the classical hardness vs randomness framework. The
common thread in all of them is an instance-wise tradeoff of hardness vs randomness.

Instance-wise hardness vs randomness. Classical results assume the existence of a
function f that is hard for small (non-uniform) circuits, and construct a PRG G = G f
based on f . Correctness is established by proving that “if a small circuit can break
the generator, then a small circuit can compute the hard function”; since f is hard for
small circuits, the generator is secure.

Results from recent years assume the existence of a function f that is hard for
uniform probabilistic machines, and construct a targeted PRG G = G f . Correctness is
established by proving a very similar statement, but when all the players in this game are
uniform, and are given access to a fixed auxiliary input x. In more detail, fixing a function
f and a machine M, we define a targeted PRG G = G f and a probabilistic uniform
machine F = FM, f , and prove that:

For every fixed input x, if F(x) fails to compute f (x), then G(x, ·) fools
M(x, ·).

What does this give us? If we only assume that f is hard (for F) in the worst-case,
i.e. hard on one input x ∈ {0, 1}n, then the derandomization succeeds only on x,
which is obviously not useful at all. However, if f is hard on 99% of inputs, then the
derandomization succeeds on 99% of inputs, which is definitely better. And if f is
hard for F on 100% of inputs – indeed, such functions exist! see Section 3.3 – then the
derandomization succeeds in the worst-case.

7

Current lines of work. There are, at the time of writing, two lines of constructions
of targeted PRGs and of targeted HSGs from hard functions. Each line of works
optimizes a different goal, addressing one of the two main shortcomings of classical
PRGs (that were described in Section 2.1.3):

1. Constructions that optimize the computational overhead, and in particular avoid
the overheads that are inherent to classical PRGs. Targeted PRGs with no com-
putational overhead allow to obtain free lunch theorems, eliminating random-
ness at no (observable) cost. These constructions rely on strong (and quite non-
standard) hardness assumptions.

2. Constructions that optimize the hardness assumption, and in particular allow
obtaining full equivalences between prBPP = prP and various assumptions
from cryptography, complexity theory, learning theory, and more. Another con-
struction optimizes the hardness assumption for derandomization of AM, com-
ing close to proving an equivalence.

The first line of works, and the resulting free lunch theorems, are presented in
Section 3.2. The second line of works, with the resulting equivalence theorems, are
presented in Section 3.3.

3.2 A lunch that looks free: Derandomizing without (noticeably) paying
for it

In 2020, before the first construction of a targeted PRG was presented, Doron, Moshkovitz,
Oh, and Zuckerman [DMO+20] asked the following question: Can we derandomize
prBPP faster than in classical results? Theorem 2.2 only guarantees that prBPP =
prP , which implies (by a padding argument) that there exists c ∈ N such that
prBPT IME [T] ⊆ prDT IME [Tc] for every reasonable time bound T(n). Certainly,
this is unsatisfying when c = 106.

How small a constant c can we get? This question lies in the realm of fine-grained
complexity. Doron et al. [DMO+20] showed that c ≈ 2 might be possible, under strong
hardness assumptions:

Theorem 3.1 (derandomization with quadratic overhead; see [DMO+20]). For every
ε > 0 there is δ > 0 such that the following holds. Assume that there is a problem in
DT IME [2n] that is hard on almost all input lengths for MA protocols that run in time
2(1−δ)·n and receive 2(1−δ)·n bits of non-uniform advice. Then, for every “nice” T(n) it holds
that prBPT IME [T] ⊆ prDT IME [T2+ε].

Their proof of Theorem 3.1 used classical PRGs. A follow-up work by the current
authors showed that the result can be refined: Instead of paying an overhead of T 7→
T2, under strong assumptions it is possible to pay an overhead of T 7→ n · T, where n
is the input length:

8

Theorem 3.2 (derandomization with overhead T 7→ n · T; see [CT21b]). For every ε > 0
there is δ > 0 such that for every “nice” T(n) there exists k = kT,ε ∈ N for which the
following holds. Assume that there are one-way functions secure against polynomial sized
circuits, and that there is a problem in DT IME [2k·n] that is hard on almost all input lengths
for algorithms running in time 2(k−δ)·n and receiving 2(1−δ)·n bits of non-uniform advice.
Then, prBPT IME [T] ⊆ prDT IME [n · T(n)1+ε].

The proof of Theorem 3.2 also used classical PRGs. As explained in Section 2.1.3,
the textbook PRG approach cannot do better than an overhead of T 7→ n · T. This
is because the approach relies on a PRG that fools the class “T-time machines that
have access to an arbitrary n-bit input”, and fooling this class requires a seed of length
`(n) ≥ log(n).

Trying to get a free lunch with targeted PRGs. The overhead T 7→ n · T1+ε in The-
orem 3.2 is significant, for example when T(n) = O(n) or for algorithms that are
only slightly faster than brute-force (where the “1+ ε” matters). The obvious question
motivating further progress is:

Can we get derandomization “for free”, eliminating randomness without
paying in computational resources?

Of course, we study this question using targeted PRGs. But there is still an obstacle
along the way: Under natural assumptions, there is no derandomization that succeeds
in the worst-case and avoids the computational overheads of PRGs, regardless of the
algorithm used to obtain it.

Proposition 3.3 (a conditional lower bound; see [CT21b], following [Wil16]). Sup-
pose that #NSETH is true.7 Then, for every T(n) = poly(n) and ε > 0 it holds that
BPT IME [T] 6⊆ DT IME [n1−ε · T].

The overhead of T 7→ n · T is most significant when T is small (e.g., T(n) = O(n)).
Moreover, when derandomizing interactive proof systems, under the same assumption
#NSETH, the necessary overhead is a large polynomial, specifically T 7→ n · Tdc/2e

where c is the number of messages exchanged in the interaction (see Section 3.2.2 for
details).

The specific problem that is hard to derandomize in the proof of Proposition 3.3
is essentially a polynomial identity testing problem (see [CT21b, Section 6]). There is
another natural candidate hard problem, which we call the Time-Bounded Approximate

Majority Problem (TAMP):

For a time-computable T = T(n) ≥ n, we are given as input n descriptions
of Turing machines M1, ..., Mn, where each description is of size O(log(n, T(n))).

7The assumption #NSETH asserts that for every constant ε > 0, and for a sufficiently large k = kε > 0,
there does not exists a non-deterministic machine that gets an n-bit k-SAT formula Φ, runs in time 2(1−ε)·n,
and outputs the number of assignments that satisfy Φ (for a precise formulation see, e.g., [CT21b, Section
6]).

9

For each i ∈ [n], define µi ∈ {0, 1} as follows: If, when Mi is executed on
an empty input, it halts after at most T(n) steps and outputs 1, then µi = 1;
otherwise, µi = 0. Our goal is to output “yes” if ∑i∈[n] µi ≥ 2n/3, and “no”
if ∑i∈[n] µi ≤ n/3.

Note that TAMP with time bound T can be solved probabilistically in time O(T)
(by randomly choosing i ∈ [n] and executing Mi for T steps). On the other hand, it
seems plausible that TAMP cannot be solved deterministically in time o(n) · T. We
do not have any concrete evidence for this possibility, though, and we pose obtaining
such evidence (e.g., deducing this lower bound from well-studied assumptions) as an
open problem.

Derandomization that costs nothing and looks correct. Even if #NSETH is true, or
if TAMP is hard for deterministic algorithms, there is still a way to bypass this ob-
stacle: Instead of insisting on derandomization that is correct on all inputs, we relax
the requirement and try to get derandomization that succeeds on “most” inputs. This
type of “average-case derandomization” was considered as far back as [IW98], and can
be viewed as part of the study of average-case complexity (see, e.g., [Gol08, Chapter
10.2], [AB09, Chapter 18]).

Recent works obtained a strong form of average-case derandomization: Under
strong assumptions, they deduced overhead-free derandomization such that no ef-
ficient algorithm can find inputs on which the derandomization errs, except with
negligible probability. In other words, these results do not necessarily yield a truly
free lunch, but they yield a lunch that looks free to all efficient observers. Yet another
way of putting it is that, under strong assumptions, randomness is indistinguishable
from useless in the broad settings to which the results apply.

We will mention three such results: A free lunch theorem for derandomization
of BPP , in Section 3.2.1; a free lunch theorem for derandomization of interactive
proof systems, in Section 3.2.2; and derandomization of space-bounded machines that
induces minimal memory overhead, in Section 3.2.3. We discuss the hardness assump-
tions needed for free lunch theorems in Section 3.2.4.

3.2.1 A free lunch theorem for derandomization of BPP

Our goal is to show that for every L ∈ BPT IME [T] there is L′ ∈ DT IME [≈ T]
such that no efficient algorithm can find an input on which L and L′ disagree. Let’s
define this notion:

Definition 3.4 (indistinguishable languages). We say that L ⊆ {0, 1}∗ and L′ ⊆ {0, 1}∗
are indistinguishable if for every probabilistic algorithm A that gets input 1n and runs in time
poly(n), the probability that A(1n) prints x ∈ {0, 1}n such that L(x) 6= L′(x) is at most
n−ω(1).

10

It turns out that this is possible under a strong non-batch-computability assumption
for probabilistic algorithms. Specifically, consider the assumption that there is a func-
tion f : {0, 1}n → {0, 1}k such that each individual output bit of f (x) is computable
in time T′, but printing the entire k-bit string f (x) requires more time than T′; specifi-
cally, assume that printing f (x) cannot be done in probabilistic time k.001 · T. (A trivial
algorithm can print f (x) in time k · T.)

So far, this is quite a standard assumption. For example, if we start from g : {0, 1}n/k →
{0, 1} and let f = g×k be the k-wise direct product of g, then this assumption seems
very appealing. The main issue is that we do not only want worst-case hardness, but
rather hardness over a class of distributions over the inputs; that is, we will require
that for every distribution xn over the inputs (from a certain class of distributions),
and every probabilistic algorithm A running in time k.001 · T, with high probability
over choice of x ∼ xn, the algorithm A fails to print f (x).8

A direct-product assumption where f = g×k yields average-case hardness over the
uniform distribution xn = un; this implies derandomization that succeeds on .99 of
the inputs over the uniform distribution (see [CT21a, Theorem 1.6]). We want deran-
domization that succeeds, with high probability, over all polynomial-time samplable
distributions. Therefore, we will require that the average-case hardness holds over all
polynomial-time samplable distributions, as follows.

Theorem 3.5 (free lunch derandomization of BPP ; see [CT21a]). Let T(n) be a poly-
nomial. Assume that one-way functions exist, and that for every ε > 0 there is δ > 0 and a
function f : {0, 1}n → {0, 1}nε

such that:

1. There is an algorithm that gets input (x, i) ∈ {0, 1}n × [nε] and outputs the ith bit of
f (x) in time T′(n), where T′(n) = T(n) · nε.

2. For every probabilistic algorithm A that runs in time T′(n) · nδ and every polynomial-
time samplable distribution x = {xn}n∈N and every large enough n ∈ N, with proba-
bility 1− n−ω(1) over x ∼ xn it holds that that Pri,A [A(x)i = f (x)i] < .99.

Then, for every L ∈ BPT IME [T] there is L′ ∈ DT IME [T · nO(ε)] such that L and L′ are
indistinguishable.

We do not know if the assumption about f in Theorem 3.5 is necessary for the
conclusion. However, we do know that a certain non-batch-computability assumption
is necessary for derandomization in one special case: An overhead-free derandomiza-
tion of probabilistic balanced DLOGTIME-uniform formulas. See [CT21a, Section 6.3]
for details.

3.2.2 A free lunch theorem for derandomization of interactive proof systems

Can we derandomize interactive proof systems without overhead? The story here is very
similar to the one for derandomization of prBPP . Assuming strong lower bounds

8We also require that A fails to print even an approximate version of f (x). This is a stronger require-
ment, but it is obtained in the direct-product setting; see [CT21b, Section 1.2.1] for precise details.

11

for non-uniform models, and using classical PRGs, we can derandomize prMA with
a quadratic overhead, and derandomize prAM protocols in which c = O(1) messages
are exchanged with time overhead T 7→ n · Tdc/2e+ε (see [CT23b, Theorems 1.1 and
1.2]). These two results are optimal when using the PRG approach; and assuming
#NSETH, they are optimal regardless of the algorithm involved, when insisting on
derandomization that succeeds in the worst-case (see [CT23b, Theorems 6.1 and 6.2]).

We will take an approach similar to that in Section 3.2.2, of relaxing the worst-case
requirement. In the current setting, we are trying to derandomize an interactive proof
system into an NP-type verifier V. Instead of requiring that no efficient adversary
can find an input on which V might err with some proof, we require that no efficient
adversary can find an input x and a proof π that mislead the derandomized verifier
V. Let us define the appropriate notion:

Definition 3.6 (computationally sound NP). We say that a promise problem Π = (Y,N)
is in computationally sound NT IME [T] (or cs-NT IME [T], in short) if there exists a
deterministic verifier V running in time T and an honest prover P running in time Tc (for
some constant c ≥ 1) such that the following holds:

1. (Completeness.) For every x ∈ Y it holds that V(x, P(x)) = 1.

2. (Computational soundness.) For every adversary P̂ running in probabilistic time
poly(T) (this polynomial may be arbitrarily large), the probability that P̂(1n) finds
x ∈ {0, 1}n and π ∈ {0, 1}T(n) such that x ∈ N and V(x, π) = 1 is T(n)−ω(1).

Definition 3.6 puts forward a version of NP that has computational soundness,
rather than information-theoretic soundness.9 Indeed, Definition 3.6 can be viewed as
an argument system, in the cryptographic sense, in which the verifier is deterministic.10

The notion should not be confused with Micali’s [Mic00] notion of “computationally
sound proofs”.

Now, recall that a doubly efficient proof system (as introduced in [GKR15]) is an
interactive proof system in which the honest prover is efficient, and the verifier is
extremely efficient. We denote by deIP�c[T] the set of languages decidable by doubly
efficient interactive proof systems with a verifier running in time T, an honest prover
running in time poly(T), and c = O(1) turns of interaction. The following free lunch
theorem asserts that under strong assumptions, such systems can be derandomized
with essentially no overhead into computationally sound NP :

Theorem 3.7 (free lunch derandomization of deIP ; informal, see [CT23b]). Under
strong hardness assumptions, for every ε > 0 and c ∈ N and “nice” time bound T(n), it
holds that

deIP�c[T] ⊆ cs-NT IME [T1+ε] .
9The original definition in [CT23b] used a different name for the same notion, but we believe that the

name “computationally sound NP”, which was suggested to us by Oded Goldreich, is better.
10Moreover, in comparison to standard cryptographic proof systems, the adversary is uniform, and the

definition allows errors on some inputs, as long as such inputs are infeasible to find; see more details in
Section 4.

12

The hardness assumptions in Theorem 3.7 are cumbersome to state, and can be
found in [CT23b, Theorem 1.8]. At a high-level, the theorem relies on two assump-
tions. The first is a strengthening of the assumption in Theorem 3.5, now asserting
that the probabilistic algorithm A fails to (approximately) print f (x) even when it is
given oracle access to an Arthur-Merlin protocol that takes T-bit inputs, runs in linear
time O(T), and uses c turns of interaction. This is a plausible strengthening, since
computing even a single output bit of f (x) takes time T′ = T · nε > T, and thus it is
not clear why a proof system running in time T should be helpful.

The first hardness assumption suffices to derandomize deIP�c[T] verifiers that
use To(1) random coins (see [CT23b, Theorem 1.5]). To handle the general case, the
theorem relies on an additional assumption: There is a problem whose truth-tables
on n-bit inputs can be printed in time 2(1+ε/3)·n, but that is hard for constant-round
interactive protocols with a verifier that runs in time 2(1−δ)·n and uses 2(1−δ)·n bits of
non-uniform advice (where δ = δε > 0 is sufficiently small).

3.2.3 Forgetting to pay: Derandomizing BPL with minimal memory footprint

In Sections 3.2.1 and 3.2.2 we tried to minimize the time overhead for derandomization.
How about minimizing the space overhead? It turns out that this, too, can be done,
under assumptions.

Doron and the second author [DT23] showed two algorithms yielding such de-
randomization, one that uses classical PRGs and one that uses targeted PRGs. For
simplicity, let us only present the former. Recall that a function f is computable in cat-
alytic space S if there is a machine that gets input x and access to a worktape of length S
that is filled with arbitrary information, computes f (x) (while possibly manipulating
the contents of the worktape), and is required to return the contents of the worktape
to its original state before halting. Usually we consider machines that have access both
to a standard worktape and to a “catalytic” worktape. Then:

Theorem 3.8 (derandomization with minimal memory footprint; see [DT23]). For every
ε > 0 there is C > 1 such that the following holds. Suppose that there is a PRG for linear-
sized circuits that has arbitrarily long polynomial stretch and is computable in logspace, and
that there exists L computable in space (C + 1) · n that is hard on almost all input lengths for
algorithms that run in space C · n and get 2n/2 bits of non-uniform advice. Then, for S(n) =
Ω(log(n)) we have BPSPACE [S] ⊆ DSPACE [(2 + ε) · S]. Moreover, if L is computable
in space n using additional (C + 1) · n auxiliary catalytic space, then BPSPACE [S] ⊆
DSPACE [(1 + ε) · S].

The second construction [DT23, Theorem 3] yields the same conclusion using a
uniform hardness assumption: A function f : {0, 1}n → {0, 1}n2

computable in space
(C + 1) · n such that every probabilistic algorithm R that runs in space C · log(n) +
O(log(n)) fails to compress f (x) (i.e., to print a small circuit whose truth-table is f (x)).
This result uses a targeted PRG and an instance-wise hardness-vs-randomness trade-
off, and thus if hardness holds over a certain distribution xn, we get derandomization
that succeeds over precisely the same distribution.

13

3.2.4 Free lunch from weaker hardness assumptions?

The results in this section give the first theoretical evidence for free lunch theorems,
but they rely on strong hardness assumptions. Moreover, they rely on many differ-
ent types of assumptions: For example, non-batch-computable functions (in Theo-
rem 3.5), hardness for non-uniform algorithms with bounded time or space (as in
Theorems 3.1, 3.2, 3.8), variants of these assumptions asserting hardness for interac-
tive proofs (as in Theorem 3.7), and hardness of compressing outputs of functions
(mentioned after Theorem 3.8). It is reasonable that free lunch theorems will rely on
strong hardness assumptions, but can we understand which assumptions are really
needed?

Open Problem 3.9. Prove any of results mentioned in this section using weaker assumptions,
or alternatively prove that the assumptions are necessary for the conclusions.

Some free lunch theorems also relied on cryptographic assumptions, such as the exis-
tence of one-way functions, which were used to bypass the well-known hybrid argument
in analyses of PRGs (see, e.g., [DMO+20] for an explanation). An alternative way to
bypass the hybrid argument, without using cryptographic assumptions, is to rely on
hardness for non-uniform versions of NP or of MA (see, e.g., [CT23b]). Intuitively,
these assumptions do not seem necessary for free lunch derandomization of proba-
bilistic algorithms.

Open Problem 3.10. Prove conclusions as in Theorems 3.2 and 3.5 without relying on cryp-
tographic assumptions, or on hardness for non-uniform NP orMA.

The crucial missing part is a construction of a (classical) PRG that stretches nε bits
to n bits, runs in time n1+ε, and is pseudorandom for circuits of size O(n) (for an
arbitrarily small ε > 0).

A black-box barrier. Shaltiel and Viola [SV22] studied the necessity of the hardness
assumptions in Theorems 3.1 and 3.2. They showed that when using certain black-box
techniques, such as pseudoentropy generators (equivalently, black-box algorithms for
quantified derandomization [Tel22, Section 9]) and black-box hardness amplification,
standard circuit lower bounds (i.e., functions in time 2n that are hard for circuits of
size ≈ 2.99·n) do not suffice for the conclusion.

3.3 Proving that prBPP = prP from uniform hardness assumptions

If PRGs and the corresponding circuit lower bounds (as in Theorem 2.2) are an overkill
for derandomization, what are the right hardness assumptions for prBPP = prP? The
following observation from [CT21a] paves way for progress:

Observation 3.11. If prBPP = prP , then for every c ∈ N there is a length-preserving
function f : {0, 1}∗ → {0, 1}∗ computable in deterministic polynomial time such that for every
probabilistic machine M running in time nc, for all but finitely many inputs x ∈ {0, 1}∗ it
holds that Pr[M(x, r) = f (x)] < 2/3.

14

Proof idea. For every n ∈ N and x ∈ {0, 1}n and i ∈ [n], print an n-bit string such
that the ith output bit is different than the one that the ith Turing machine prints on
input x. Rely on the fact that prBPP = prP to deterministically simulate probabilistic
machines.

We refer to hardness as in Observation 3.11 as hardness on almost all inputs (where
“almost all” = “all but finitely many”). Note that the function f has multiple output
bits, and this is necessary for it to be hard on almost all inputs.11 This type of hardness
seems to better model what we need in derandomization, compared to circuit lower
bounds. Recall that in derandomization we get an input x, and our “adversary” is a
probabilistic machine M equipped with x (i.e., we want to “fool” M(x, ·)). Instead of
a circuit lower bound, which is a single truth-table that is hard for all small circuits
(representing all possible x’s), a function f that is hard on almost all inputs lets us
compute a value f (x) that is hard for machines equipped with this particular input x.

Open Problem 3.12. Prove a converse to Observation 3.11.

Open Problem 3.12 is our favorite challenge arising from works in recent years.
Beyond its elegance as a conjecture, an additional motivation suggesting that it might
be provable is a partial converse that was shown in [CT21a]:

Theorem 3.13 (derandomization from aai-hardness). There is a constant c > 1 such
that the following holds. Assume that there is a length-preserving function f computable by
logspace-uniform circuits of polynomial size and depth d(n) = n2, such that f is hard on
almost all inputs for probabilistic algorithms running in time nc. Then, prBPP = prP .

Note that the only meaningful restriction on f (i.e., the gap between Theorem 3.13
and resolving Open Problem 3.12) is the depth restriction d(n) = n2. That is, without
the depth restriction, logspace-uniformity would not be an issue (because functions
computable in time T are computable by logspace-uniform circuits of size and depth
Õ(T)). Moreover, Theorem 3.13 “scales down” to weak circuit classes, in fact as down
as T C0 (see [CTW23]); and extends to “low-end” parameter settings (i.e., obtaining
slow derandomization from weaker lower bounds), albeit with significantly subopti-
mal parameters (see [CT21a] for discussion).

So far there hasn’t been further progress on Open Problem 3.12 directly. However,
several works were able to prove full equivalences between prBPP = prP and assump-
tions that are (arguably) less clean. Most interestingly, these assumptions come from
different areas (e.g., cryptography, learning theory, and complexity theory). We de-
scribe these recent works in Section 3.3.1, and describe a work dealing with the setting
of prAM = prNP in Section 3.3.2.

11For simplicity, we fixed the output length to equal the input length, but any super-constant output
length suffices.

15

3.3.1 Characterizing prBPP = prP by assumptions from across theory

The first to show an equivalence between prBPP = prP and natural hardness as-
sumptions were Liu and Pass [LP22a; LP22b], who proved two equivalences with
assumptions from meta-complexity and from cryptography. The first assumption refers
to conditional Levin's Kolmogorov complexity. Fixing a universal machine U, denote
cKt(f , x) = minΠ∈{0,1}∗,t∈N

{
|Π|+ dlog(t)e : U(Π(x), 1t) = f

}
. The assumption is for

the following problem, denoted gap-cKt[s, S]:

1. YES inputs are (f , x) such that | f | = |x| and cKt(f , x) ≤ s(|x|).

2. NO inputs are (f , x) such that | f | = |x| and cKt(f , x) ≥ S(|x|).

When s(n) = O(log(n)) the problem gap-cKt[s, S] is solvable in deterministic poly-
nomial time, since we can enumerate all size-s programs and run them for 2s steps.
Liu and Pass [LP22a] showed that hardness of gap-cKt[O(log n), n− 1] on almost-all-
conditions characterizes prBPP = prP :

Theorem 3.14 (almost-all-conditions hardness of gap-cKt characterizes prBPP = prP ;
see [LP22a]). There is a constant c > 1 such that prBPP = prP if and only if the following
holds. There is c′ ≥ 1 such that for every probabilistic machine M running in time nc, for
all but finitely many z there exists x ∈ {0, 1}|z| such that M fails to compute gap-cKt[c′ ·
log(n), n− 1](x, z).

Tangentially, Theorem 3.14 fits nicely with two other results of Liu and Pass [LP20;
LP22c]. There is a related problem about conditional time-bounded Kolmogorov
complexity, denoted cMKtP, such that worst-case hardness of cMKtP characterizes
NP 6⊆ BPP , certain average-case hardness of cMKtP characterizes one-way func-
tions, and almost-all-conditions hardness of cMKtP characterizes derandomization!12

We also note that in [LP22a] they showed that it suffices to assume hardness for some
fixed (“universal”) sequence of conditions x1, ..., xn, ... where |xi| ∈ {0, 1}i.

The second characterization is with the notion of leakage-resilience from cryptogra-
phy (see, e.g., [RS85; Mau92; ISW03; MR04; DP08; AGV09]). Recall that a function is
leakage-resilient hard if it is hard to compute even when given “leakage”, i.e. a few
bits of the output f (x). More precisely, f : {0, 1}n → {0, 1}n is (`, T)-leakage-resilient
hard on input x ∈ {0, 1}n if there is no pair of T-time algorithms M and L such that L
gets input f (x) and prints `(n) bits b1, ..., b` of f (x); and M gets input (x, b1, ..., b`) and
prints f (x). Liu and Pass [LP22b] showed:

Theorem 3.15 (almost-all-inputs leakage-resilience characterizes prBPP = prP ; see [LP22b]).
There is a constant c > 1 such that prBPP = prP if and only if the following holds. There
exists ε ∈ (0, 1) and a length-preserving f : {0, 1}∗ → {0, 1}∗ such that f is compuable in
deterministic polynomial time, and is (nε, nc)-leakage-resilient hard on almost all inputs.

12The result statements iin [LP22a] refer to gap-cKt, but the proofs immediately imply similar results
for cMKtP.

16

Theorems 3.14 and 3.15 were proved in [LP22a; LP22b] by reinterpreting a stan-
dard analysis of [IW98] of the classical Nisan-Wigderson [NW94] construction,13 and
recasting the construction as a targeted PRG. The same approach yields a characteriza-
tion of prBPP = prP in terms of almost-all-inputs hardness of learning the truth-table
f (x) (see [CTW23] for details).

Generalizing these results using the terminology of refuters. The result above show
that derandomization can be characterized by lower bounds for gap-cKt, by leakage-
resilience lower bounds, and by learning lower bounds. It turns out that all these
results can be cast as characterizing derandomization by constructive lower bounds (see,
e.g., [Kab01; GSTS07; CJS+21]).

Consider a lower bound f /∈ C for some function f and class C. A refuter for f
against C is an algorithm that get as input a description of C ∈ C and finds x such
that C(x) fails to compute f (x). When an efficient refuter exists, we say that the lower
bound f /∈ C is constructive. As proved in [CTW23], derandomization is equivalent
to deterministically constructivizing known lower bounds for probabilistic algorithms. For
example, denoting by strT ISP [T, S] the class of non-uniform probabilistic streaming
algorithms running in time T and space S, we have:

Theorem 3.16 (derandomization vs refutation, a special case; see [CTW23]). For any
constant ε > 0 and function f : {0, 1}∗ → {0, 1}∗ computable in time T(n) = poly(n) such
that there is a BPP-refuter14 for f against strT ISP [T1+ε, nε], the following are equivalent.

1. prBPP = prP .

2. There is a refuter in FP against strT ISP [T1+ε, nε].

There are decades-old unconditional lower bounds in polynomial time for nε-space
streaming algorithms with unbounded running time (see, e.g., [AMS99]), and these
lower bounds indeed have BPP-refuters (since the lower bounds hold on average).
The point of Theorem 3.16 is that constructing deterministic refuters for such lower
bounds is equivalent to derandomization.

Theorem 3.16 (in a more technical form that appears in [CTW23]) generalizes and
strengthens Theorems 3.14 and 3.15, as well as the result about learning mentioned
after Theorem 3.15 and a result of Korten [Kor22, Theorem 40] (who showed that
prBPP = prP if and only if a certain problem is solvable in deterministic polynomial
time). For example, the hardness assumption in Theorem 3.15 is implied by the exis-
tence of a refuter for probabilistic one-way communication protocols that run in time
nc and send nε bits. The assumption in Theorem 3.16 is weaker, since it only requires
refuting the weaker class strT ISP [nc, nε]. Details appear in [CTW23].

13The analysis of [IW98] shows that the reconstruction algorithm of the Nisan-Wigderson PRG can be
viewed as a learning algorithm for the hard function.

14A BPP-refuter for f against C is a probabilistic algorithm that, on input C ∈ C, with high probability
outputs an input x such that C(x) fails to compute f (x)

17

Consequences: Amplification theorems, and a new network of connections. An
obvious consequence of all the equivalences listed in this section is that the mentioned
problems are equivalent not only to derandomization, but they are also equivalent to
each other. For example, refuters for streaming algorithms (as in Theorem 3.16) are
equivalent to almost-all-conditions hardness of gap-cKt (as in Theorem 3.14), which
is equivalent to almost-all-input leakage-resilience (as in Theorem 3.15). This is a
new and interesting network of equivalences between notions from various theoretical
areas that is centered around the prBPP = prP conjecture.

An additional implication (which wasn’t mentioned above) is amplification theorems
that follow from these results. As one example, Liu and Pass [LP22b] showed that
leakage-resilience with nε bits of leakage is equivalent to derandomization, which
in turn is equivalent to leakage-resilience with n1−ε bits of leakage. More generally,
in [CTW23] it is shown that refuters for weak classes (e.g., streaming algorithms) imply
refuters for stronger classes (e.g., general RAMs). At the moment, we only know how
to prove these amplification theorems by proving equivalences to derandomization.

3.3.2 The AM setting

Can we prove that prAM = prNP from weaker assumptions than the classical circuit
lower bounds in [KM02; MV05; SU05]? In this setting we can do significantly better
than in the BPP setting, and almost get a full equivalence. Specifically, while we still
don’t know if targeted HSGs are the right object of study in this setting, Sdroievski
and van Melkebeek [SM23] managed to show a near-equivalence between derandom-
ization of prAM and an almost-all-inputs hardness assumption.

Theorem 3.17 (near-equivalence between derandomization of prAM and almost-al-
l-inputs hardness; see [SM23]). The following two statements hold:

1. If prAM = prNP , then for every c ∈ N there is a length-preserving function that is
computable in non-deterministic polynomial time with log∗(n) bits of advice and that is
hard on almost all inputs for AMT IME [nc].15

2. If there exists a length-preserving function that is computable in non-deterministic time
na and that is hard on almost all inputs for prAMT IME [nO(log a)2

], then prAM =
prNP .

The only two gaps between Theorem 3.17 and a full equivalence are the log∗(n)
bits of advice, and the fact that the hardness in one direction is for prAM whereas the
hardness in the other direction is for AM. These seem smaller than the gap between
Observation 3.11 and Theorem 3.13.

15The advice length can be any increasing function, rather than log∗(n) specifically.

18

4 Broader effects: Explicit constructions, cryptography, algo-
rithms, interactive proof systems

Given that classical PRGs have a myriad of applications, one can expect the new con-
structions of targeted PRGs (and targeted HSGs) to have significant broader effects. In
this section we mention several applications known so far:

1. In Section 4.1 we describe a new algorithm for finding prime numbers.

2. In Section 4.2 we describe interactions with cryptography: Specifically, new ap-
proaches towards the Fiat-Shamir heuristic, and new types of argument systems.

3. In Section 4.3 we describe a new conditional construction of a fast algorithm for
solving a #P-hard problem, in the model of computationally sound NP .

4. In Section 4.4 we describe interactions between the area of proof systems and
new constructions of targeted PRGs and targeted HSGs.

5. In Section 4.5 we describe an application to the classical open problem of uni-
form hardness vs randomness tradeoffs.

4.1 Finding prime numbers

It is 2023 and we still don’t know how to efficiently find prime numbers, i.e. get
input 1n and deterministically print a prime number p ∈ [2n, 2n+1). Of course, using
randomness, we can just try O(n) uniformly chosen n-bit integers (relying on the
density of primes), testing each one for primality. But this doesn’t guarantee that we’ll
get the same prime in each execution.

Pseudodeterministic algorithms, introduced in [GG11], are randomized algorithms
that produce a fixed answer, with high probability (i.e., for every x there exists y
such that Prr[A(x, r) = y] ≥ 2/3). Oliveira and Santhanam [OS17] used classical
PRG constructions to build a pseudodeterministic algorithm that, for infinitely many
n ∈N, finds an n-bit prime in subexponential time. A recent work by the first author,
Lu, Oliveira, Ren, and Santhanam [CLO+23] was able to do better:

Theorem 4.1 (pseudodeterministically finding primes in polynomial time; see [CLO+23]).
There is a probabilistic polynomial-time algorithm A such that for infinitely many n ∈N, there
exists an n-bit prime p = p(n) for which Prr[A(1n, r) = p(n)] ≥ 2/3.

We stress that the algorithm in Theorem 4.1 is unconditional. (In contrast, a condi-
tional “superfast” algorithm for a broad class of explicit construction problem appears
in [CT21a, Corollary 1.9].) The proof of Theorem 4.1 in [CLO+23] uses a refined ver-
sion of a targeted HSG construction from [CT21a], and applies it recursively along
with a clever win-win analysis.

19

4.2 Cryptography: Fiat-Shamir, new argument systems, targeted PRGs vs
hash functions

The study of PRGs in derandomization originated from cryptography, and some of
the fast derandomization results (and free lunch theorems) mentioned in this column
rely on cryptographic assumptions (see Theorems 3.2 and 3.5). Let us now focus
on the reverse direction, in which the new developments in derandomization affect
cryptography. To do so, recall Theorem 3.7:

Theorem 4.2 (free lunch derandomization of deIP ; informal, see [CT23b]). Under
strong hardness assumptions, for every ε > 0 and c ∈ N and “nice” time bound T(n), for
every language L that is decidable by a doubly efficient interactive proof system with a verifier
running in time T and an honest prover running in time poly(T) and c turns of interaction,
it holds that L ∈ cs-NT IME [T1+ε].

The derandomization in Theorem 4.2 eliminates the random coins of the verifier in
the proof system for L, and when doing so it also eliminates the need for interaction
between the verifier and the honest prover. This is reminiscent of the classical Fiat-
Shamir heuristic [FS86] in cryptography, which is a technique to eliminate interaction
in certain classes of proof systems (for recent works see, e.g., [PS19; CCH+19; HLR21;
CJJ21]).

The similarity to Fiat-Shamir is substantial. First, both in Fiat-Shamir and in The-
orem 4.2, we compile a proof system (with information-theoretic soundness) into an
argument system (with computational soundness). Secondly, even the construction in
Theorem 4.2 is reminiscent of Fiat-Shamir: In the latter, we apply a hash function to the
transcript at each round to deterministically obtain the verifier’s next message; in the
former, we apply a targeted PRG to the transcript at each round to deterministically
obtain the verifier’s next message (see [CT23b] for further details).

Nevertheless, the analysis in the proof of Theorem 4.2 is completely different from
the analyses in known works concerning Fiat-Shamir (e.g., in [CJJ21]), and it uses
primarily derandomization-based techniques. Moreover, Theorem 4.2 only relies on
complexity-theoretic assumptions, which are not known to imply even one-way func-
tions.16 This raises the following questions:

Open Problem 4.3. Can we analyze the Fiat-Shamir heuristic in more settings (beyond the
one in Theorem 4.2) using complexity-theoretic assumptions and analyses? Can we replace
correlation intractable hash functions (which are the technical tool underlying analyses of Fiat-
Shamir) with targeted PRGs in other settings in cryptography, beyond Fiat-Shamir?

Argument systems with soundness against uniform adversaries. Another interest-
ing element in Theorem 4.2 is the introduction (and application) of argument systems

16Additionally, the NP-type verifier in Theorem 4.2 is fully deterministic, and does not use a common
random string as in Fiat-Shamir; soundness in Theorem 4.2 is only against uniform adversaries, rather than
the usual notion of non-uniform soundness in cryptography; and there are minor technical differences
in the construction.

20

where the adversary is a uniform algorithm. Recall, from Definition 3.6 that the sound-
ness requirement is that no uniform algorithm can find an input x and proof π that
mislead the verifier (i.e., x /∈ L but the verifier accepts (x, π)). This is a natural relax-
ation, and we suspect that such argument systems might find further applications in
cryptography.

4.3 Algorithms: Efficiently certifying #SAT with computational soundness

It is widely conjectured that 3-SAT for n-bit formulas of size O(n) cannot be solved in
time 2ε·n for an arbitrarily small constant ε > 0; this is the Exponential-Time Hypothesis

(ETH) [IP01; IPZ01]. A well-studied extension asserts that even co-nondeterministic
machines cannot achieve such a running time; this is the Non-Deterministic Exponential-

Time Hypothesis (NETH) [CGI+16].
It turns out that, under strong assumptions, the harder problem #SAT can be solved

in non-deterministic time 2ε·n, for an arbitrarily small ε > 0, if we relax the soundness re-
quirement to be computational; that is, it can be solved in computationally soundNT IME
as in Definition 3.6.

Theorem 4.4 (efficiently certifying #SAT with computational soundness; see [CT23b]).
Under strong hardness assumptions, for every ε > 0 there is a deterministic verifier V that
gets as input an n-bit formula Φ of size at most 2o(n), runs in time 2ε·n, and satisfies:

1. (Completeness.) There is a prover that, given any Φ as above, runs in time 2O(n) and
outputs a proof π such that V(Φ, π) = #SAT(Φ).

2. (Computational soundness.) For every adversary P̂ running in time 2O(n), the prob-
ability that P̂(1n) prints an n-bit formula Φ of size 2o(n) and a proof π such that
V(Φ, π) /∈ {#SAT(Φ),⊥} is 2−ω(n).

Theorem 4.4 is obtained by applying the free lunch theorem in Theorem 3.7 to an
interactive proof system for #SAT by Williams [Wil16]. It is natural to ask if we can do
better:

Open Problem 4.5. Can we solve #SAT for n-bit formulas of size poly(n) in computationally
sound NP (i.e., with a poly(n)-time verifier whose soundness is computational)?

More broadly, the model of computationally sound NP is natural, and has not
been studied before. We believe that other interesting problems can be solved quickly
in this model.

4.4 Proof systems vs targeted PRGs

Beyond the immediate implications of Theorems 3.7 and 3.17 to interactive proof sys-
tems, another connection between the two areas came in the form of constructions of
targeted HSGs based on proof systems. We will be brief, due to space considerations.

21

The construction of a targeted HSG in [CT21a] is based on the doubly efficient
interactive proofs of Goldwasser, Kalai, and Rothblum [GKR15]. Loosely speaking, the
targeted HSG gets input x and uses the prover strategy functions (thought of as “hard
functions”) to produce pseudorandom strings. We show that if an efficient machine
can break the targeted HSG at input x, then one can efficiently compute compressed
versions of the prover strategy functions, round-by-round, starting from the last round
and ending in the first round (in which the value f (x)) is asserted.

Similarly, the construction of a targeted HSG for co-nondeterministic circuits by
Sdroievski and van Melkebeek [SM23] is based on PCPs. Loosely speaking, the tar-
geted HSG on input x considers a set of PCP witnesses, one for each output bit of f (x),
and uses the witnesses (thought of as “hard truth-tables”) to produce pseudorandom
strings.

Open Problem 4.6. Discover more constructions of targeted HSGs and targeted PRGs that
are based on proof systems.

4.5 Uniform hardness vs randomness

An additional application of the new constructions of targeted PRGs and targeted
HSGs concerns a long-standing open problem in derandomization: Proving that BPP =
P “on average” from worst-case hardness assumptions for uniform algorithms.17 The idea
here is to start from mild, natural and appealing hardness assumptions, and still obtain
interesting derandomization results.

The work of Impagliazzo and Wigderson [IW98] raises the possibility we might
be able to deduce that BPP = P on average from the assumption that E is hard
for probabilistic algorithms running in time 2ε·n, for some ε > 0 (on almost all input
lengths). Progress on this challenge has been slow (see, e.g., [IW98; CNS99; Kab01;
TV07; GV08; CIS18; CRT+20; CRT22]), but recently, using the construction of a targeted
HSG from [CT21a] and new constructions of instance checkers, the authors and Ron
Rothblum proved a significant step towards this goal (see [CRT22] for details).

In addition, we can deduce average-case derandomization from fine-grained hard-
ness assumptions for natural problems in P . Results of this form were first proved by Car-
mosino, Impagliazzo, and Sabin [CIS18], and the authors and Ron Rothblum [CRT22]
used targeted HSGs to prove results that rely on significantly weaker hypotheses; for
example:

Theorem 4.7 (average-case derandomization from a natural weak hardness assump-
tion; see [CRT22]). Assume that for every c ∈ N there is k = k(c) ∈ N such that counting
k-cliques is hard for probabilistic time nc on almost all input lengths. Then, RP = P on
average.

17For simplicity, “on average” in this context means that every problem in BPP can be solved by
a deterministic polynomial-time algorithm that is correct on 1 − 1/n of the inputs, over the uniform
distribution.

22

The hypothesis in Theorem 4.7 is natural and appealing, and yields a surprisingly
strong conclusion. The result in [CRT22] is more general, and deduces the conclusion
not only from hardness of counting k-cliques, but from hardness of any problem that
is solvable by a (family of) logspace-uniform arithmetic formulas of polynomial size
and degree n2.

5 A roadmap for open problems

We conclude by reminding the reader of open problems that were posed throughout
this column, and hopefully presenting them in a more orderly way.

Theoretical foundations for free lunch theorems. The known free lunch theorems
for derandomization do not yet form a sufficiently coherent and established theory,
because we do not understand their assumptions well enough. Open Problems 3.9
and 3.10 in Section 3.2.4 suggest two paths for progress. Another challenge is un-
derstanding whether it is indeed necessary to pay an overhead of T 7→ n · T when
derandomizing in the worst-case, and one potential path for progress is understand-
ing the complexity of the problem TAMP, mentioned in the beginning of Section 3.2.

Non-black-box hardness vs randomness. Open Problem 3.12 calls for proving an
equivalence between derandomization and almost-all-inputs hardness. There are sev-
eral problems that can serve as stepping-stones towards this goal. For example, can
we prove a result as in Theorem 3.13 where the hard function isn’t required to be com-
putable in depth n2, but only with nε bits of space? The intuition is that Theorem 3.13
was proved relying on the proof system of [GKR15] for functions computable in low
depth, and Reingold, Rothblum, and Rothblum [RRR18] constructed a similar proof
system for functions computable in low space.

Additionally, as mentioned after Theorem 3.13, the result does not scale well to
low-end setting. One reason is that construction underlying Theorem 3.13 is of a
targeted HSG rather than of a targeted PRG.18 Constructing a targeted PRG from the
hypothesis is an open problem, and seemingly calls for constructing an object called
computational mergers (see [CT21a] for a discussion).

We also remind the reader of Open Problem 2.5 (posed in [Gol11]), which asks
whether derandomization of prAM necessitates constructing targeted HSGs (for co-
nondeterministic circuits).

18A targeted HSG yields derandomization of algorithms with one-sided error, and by known reduc-
tions [Lau83; Sip83; BF99] this yields derandomization of algorithms with two-sided error. These re-
ductions incur significant time overheads when scaling the result to low-end settings. (There are known
reductions of derandomization with two-sided error to derandomization with one-sided error that do
not incur significant runtime overheads (see, e.g., [GVW11]), but these only apply to black-box deran-
domization (e.g., with HSGs), whereas Theorem 3.13 uses targeted HSGs.)

23

Broader effects of targeted PRG. In Section 4 we posed problems that call for ap-
plying targeted PRGs more broadly in theoretical computer science, and for further
pursuing results that were recently obtained in such applications. For example, Open
Problem 4.5 calls for further study of the model of computationally sound NP , and in
particular for trying to quickly solve hard problems (such as #SAT) in this model.

In addition, Open Problem 4.3 calls for analyzing the Fiat-Shamir heuristic in cryp-
tography using derandomization-based tools, and more generally to try and replace
correlation intractable hash functions with targeted PRGs in other cryptographic set-
tings. After posing it we also suggested studying the potential of argument systems
that are sound only against uniform adversaries.

The challenge posed in Open Problem 4.6, of constructing additional targeted PRGs
and targeted HSGs from interactive proof systems, might be related to the challenge
of making progress on Open Problem 3.12 (since using different proof systems for
constructing targeted PRGs/HSGs might allow using hard functions with different
properties).

And, as mentioned in Sections 2.1.2 and 4.5, the classical line of works concerning
uniform hardness vs randomness is not complete yet, and using targeted PRGs in this
context seems beneficial.

Are PRGs necessary for derandomization? Lastly, we cannot conclude the survey
without mentioning the decades-old open problem of proving that derandomization
necessitates classical PRGs (and the circuit lower bounds that are equivalent to classi-
cal PRGs). For example, can we prove the statement “prBPP = prP =⇒ EXP 6⊂
P/poly”?

A new challenge for proving such a result, which arises from the works in recent
years, is that such a result would imply that lower bounds on almost all inputs imply circuit
lower bounds. (For example, by Theorem 3.13, or more generally if Open Problem 3.12
is resolved.) The former type of lower bound seems intuitively weaker than the latter.

Acknowledgments

We are very grateful to Dean Doron, who contributed several useful comments on an
early draft of this column. We also thank Ben Lee Volk for the invitation to write this
column for SIGACT News, and for reading the text and pointing out inaccuracies and
typos. Lijie Chen is supported by a Miller Research Fellowship. Roei Tell is supported
by NSF Grants CCF-1445755 and CCF-1900460.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern ap-
proach. Cambridge University Press, Cambridge, 2009.

24

[Adl78] Leonard Adleman. “Two theorems on random polynomial time”. In: Proc.
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1978, pp. 75–83.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. “Simultane-
ous hardcore bits and cryptography against memory attacks”. In: Theory
of cryptography. Vol. 5444. 2009, pp. 474–495.

[AKL+79] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and
Charles Rackoff. “Random walks, universal traversal sequences, and the
complexity of maze problems”. In: Proc. 20th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 1979, pp. 218–223.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”.
In: Annals of Mathematics. Second Series 160.2 (2004), pp. 781–793.

[AM77] Leonard M. Adleman and Kenneth L. Manders. “Reducibility, Random-
ness, and Intractability”. In: Proc. 9th Annual ACM Symposium on Theory
of Computing (STOC). 1977, pp. 151–163.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of
approximating the frequency moments”. In: vol. 58. 1, part 2. Twenty-
eighth Annual ACM Symposium on the Theory of Computing (Philadel-
phia, PA, 1996). 1999, pp. 137–147.

[Bar02] Boaz Barak. “A probabilistic-time hierarchy theorem for “slightly non-
uniform” algorithms”. In: Proc. 6th International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science (RANDOM). Vol. 2483.
2002, pp. 194–208.

[BF99] Harry Buhrman and Lance Fortnow. “One-Sided Versus Two-Sided Er-
ror in Probabilistic Computation”. In: Proc. 16th Symposium on Theoretical
Aspects of Computer Science (STACS). 1999, pp. 100–109.

[BFN+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP
has subexponential time simulations unless EXPTIME has publishable
proofs”. In: Computational Complexity 3.4 (1993), pp. 307–318.

[BG81] Charles H. Bennett and John Gill. “Relative to a random oracle A, PA 6=
NPA 6= co−NPA with probability 1”. In: SIAM Journal of Computing 10.1
(1981), pp. 96–113.

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically
Strong Sequences of Pseudo-random Bits”. In: SIAM Journal of Computing
13.4 (1984), pp. 850–864.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. “Fiat-Shamir: from practice
to theory”. In: Proc. 51st Annual ACM Symposium on Theory of Computing
(STOC). 2019, pp. 1082–1090.

25

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ra-
mamohan Paturi, and Stefan Schneider. “Nondeterministic extensions
of the strong exponential time hypothesis and consequences for non-
reducibility”. In: Proc. 7th Conference on Innovations in Theoretical Computer
Science (ITCS). 2016, pp. 261–270.

[Che19] Lijie Chen. “Non-deterministic Quasi-Polynomial Time is Average-case
Hard for ACC Circuits”. In: Proc. 60th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). 2019, pp. 1281–1304.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. “Fine-grained
derandomization: from problem-centric to resource-centric complexity”.
In: Proc. 45th International Colloquium on Automata, Languages and Program-
ming (ICALP). 2018, 27:1–27:16.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “SNARGs for
P from LWE”. In: Proc. 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2021, pp. 68–79.

[CJS+21] Lijie Chen, Ce Jin, Rahul Santhanam, and Ryan Williams. “Constructive
Separations and Their Consequences”. In: Proc. 62nd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS). 2021, pp. 646–657.

[CLO+23] Lijie Chen, Zhenjian Lu, Igor Carboni Oliveira, Hanlin Ren, and Rahul
Santhanam. Polynomial-Time Pseudodeterministic Construction of Primes. Un-
der Submission. 2023.

[CLW20] Lijie Chen, Xin Lyu, and Richard Ryan Williams. “Almost-Everywhere
Circuit Lower Bounds from Non-Trivial Derandomization”. In: Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 2020,
pp. 1–12.

[CNS99] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. “Hardness and hierarchy
theorems for probabilistic quasi-polynomial time”. In: Proc. 31st Annual
ACM Symposium on Theory of Computing (STOC)). 1999, pp. 726–735.

[CR20] Lijie Chen and Hanlin Ren. “Strong average-case lower bounds from non-
trivial derandomization”. In: Proc. 52nd Annual ACM Symposium on Theory
of Computing (STOC). 2020, pp. 1327–1334.

[CRT+20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. “On Exponential-
Time Hypotheses, Derandomization, and Circuit Lower Bounds”. In: Proc.
61st Annual IEEE Symposium on Foundations of Computer Science (FOCS).
2020, pp. 13–23.

[CRT22] Lijie Chen, Ron D. Rothblum, and Roei Tell. “Unstructured Hardness
to Average-Case Randomness”. In: Proc. 63rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 2022.

26

[CT21a] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform,
Non-Black-Box, and Instance-Wise”. In: Proc. 62nd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS). 2021, pp. 125–136.

[CT21b] Lijie Chen and Roei Tell. “Simple and fast derandomization from very
hard functions: Eliminating randomness at almost no cost”. In: Proc. 53st
Annual ACM Symposium on Theory of Computing (STOC). 2021, pp. 283–
291.

[CT23a] Lijie Chen and Roei Tell. “Guest Column: New Ways of Studying the BPP
= P Conjecture”. In: SIGACT News 54.2 (2023), 44–69.

[CT23b] Lijie Chen and Roei Tell. “When Arthur has Neither Random Coins nor
Time to Spare: Superfast Derandomization of Proof Systems”. In: Proc.
55th Annual ACM Symposium on Theory of Computing (STOC). 2023.

[CTW23] Lijie Chen, Roei Tell, and R. Ryan Williams. Derandomization vs Refuta-
tion: A Unified Framework for Characterizing Derandomization. Under Sub-
mission. 2023.

[DMO+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
Optimal Pseudorandomness From Hardness”. In: Proc. 61st Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2020, pp. 1057–
1068.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. “Leakage-Resilient Cryp-
tography”. In: Proc. 49th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS). 2008, pp. 293–302.

[DT23] Dean Doron and Roei Tell. “Derandomization with Minimal Memory
Footprint”. In: Electronic Colloquium on Computational Complexity: ECCC
30 (2023), p. 036.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis
Zachos. “On Completeness and Soundness in Interactive Proof Systems”.
In: Advances in Computing Research 5 (1989).

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions
to identification and signature problems”. In: Advances in cryptology—
CRYPTO. 1986, pp. 186–194.

[GG11] Eran Gat and Shafi Goldwasser. “Probabilistic search algorithms with
unique answers and their cryptographic applications”. In: Electronic Col-
loquium on Computational Complexity: ECCC 18 (2011), p. 136.

[Gil77] John Gill. “Computational complexity of probabilistic Turing machines”.
In: SIAM Journal of Computing 6.4 (1977), pp. 675–695.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating
computation: interactive proofs for muggles”. In: Journal of the ACM 62.4
(2015), 27:1–27:64.

27

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[Gol11] Oded Goldreich. “In a World of P=BPP”. In: Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computation. 2011,
pp. 191–232.

[GSTS03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “Uniform hard-
ness versus randomness tradeoffs for Arthur-Merlin games”. In: Compu-
tational Complexity 12.3-4 (2003), pp. 85–130.

[GSTS07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “If NP languages
are hard on the worst-case, then it is easy to find their hard instances”.
In: Computational Complexity 16.4 (2007), pp. 412–441.

[GV08] Dan Gutfreund and Salil Vadhan. “Limitations of hardness vs. random-
ness under uniform reductions”. In: Proc. 12th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM).
2008, pp. 469–482.

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “Simplified deran-
domization of BPP using a hitting set generator”. In: Studies in complexity
and cryptography. Vol. 6650. Lecture Notes in Computer Science. Springer,
Heidelberg, 2011, pp. 59–67.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. “Fiat-Shamir
via list-recoverable codes (or: parallel repetition of GMW is not zero-
knowledge)”. In: Proc. 53rd Annual ACM Symposium on Theory of Comput-
ing (STOC). 2021, pp. 750–760.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”.
In: Journal of Computer and System Sciences 65.4 (2002), pp. 672–694.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-
SAT”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 367–375.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which prob-
lems have strongly exponential complexity?” In: Journal of Computer and
System Sciences 63.4 (2001), pp. 512–530.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private circuits: securing
hardware against probing attacks”. In: Advances in cryptology—CRYPTO.
2003, pp. 463–481.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires expo-
nential circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual
ACM Symposium on Theory of Computing (STOC). 1997, pp. 220–229.

[IW98] Russell Impagliazzo and Avi Wigderson. “Randomness vs. Time: De-
Randomization under a Uniform Assumption”. In: Proc. 39th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 1998, pp. 734–743.

28

[Kab01] Valentine Kabanets. “Easiness assumptions and hardness tests: trading
time for zero error”. In: Journal of Computer and System Sciences 63.2 (2001),
pp. 236–252.

[KM02] Adam R. Klivans and Dieter van Melkebeek. “Graph Nonisomorphism
Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy
Collapses”. In: SIAM J. Comput. 31.5 (2002), pp. 1501–1526.

[Kor22] Oliver Korten. “Derandomization from time-space tradeoffs”. In: Proc.
37th Annual IEEE Conference on Computational Complexity (CCC). Vol. 234.
LIPIcs. Leibniz Int. Proc. Inform. 2022, Art. No. 37, 26.

[Lau83] Clemens Lautemann. “BPP and the polynomial hierarchy”. In: Information
Processing Letters 17.4 (1983), pp. 215–217.

[LP20] Yanyi Liu and Rafael Pass. “On one-way functions and Kolmogorov com-
plexity”. In: Proc. 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 2020, pp. 1243–1254.

[LP22a] Yanyi Liu and Rafael Pass. “Characterizing derandomization through
hardness of Levin-Kolmogorov complexity”. In: Proc. 37th Annual IEEE
Conference on Computational Complexity (CCC). Vol. 234. LIPIcs. Leibniz
Int. Proc. Inform. 2022, Art. No. 35, 17.

[LP22b] Yanyi Liu and Rafael Pass. “Leakage-Resilient Hardness v.s. Random-
ness”. In: Electronic Colloquium on Computational Complexity: ECCC TR22-
113 (2022).

[LP22c] Yanyi Liu and Rafael Pass. “On One-Way Functions from NP-Complete
Problems”. In: Proc. 37th Annual IEEE Conference on Computational Com-
plexity (CCC). 2022, 36:1–36:24.

[Mau92] Ueli M. Maurer. “Factoring with an oracle”. In: Proc. Advances in cryptol-
ogy (EUROCRYPT). 1992, pp. 429–436.

[Mic00] Silvio Micali. “Computationally sound proofs”. In: SIAM Journal of Com-
puting 30.4 (2000), pp. 1253–1298.

[MR04] Silvio Micali and Leonid Reyzin. “Physically observable cryptography
(extended abstract)”. In: Theory of cryptography. 2004, pp. 278–296.

[MV05] Peter Bro Miltersen and N. V. Vinodchandran. “Derandomizing Arthur-
Merlin games using hitting sets”. In: Computational Complexity 14.3 (2005),
pp. 256–279.

[MW18] Cody Murray and R. Ryan Williams. “Circuit Lower Bounds for Nonde-
terministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”.
In: Proc. 50th Annual ACM Symposium on Theory of Computing (STOC).
2018, pp. 890–901.

[Nis91] Noam Nisan. “Pseudorandom bits for constant depth circuits”. In: Com-
binatorica 11.1 (1991), pp. 63–70.

29

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

[OS17] Igor C. Oliveira and Rahul Santhanam. “Pseudodeterministic construc-
tions in subexponential time”. In: Proc. 49th Annual ACM Symposium on
Theory of Computing (STOC). 2017, pp. 665–677.

[PS19] Chris Peikert and Sina Shiehian. “Noninteractive Zero Knowledge for NP
from (Plain) Learning with Errors”. In: Advances in Cryptology - CRYPTO.
2019, pp. 89–114.

[Rei08] Omer Reingold. “Undirected connectivity in log-space”. In: J. ACM 55.4
(2008), 17:1–17:24.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Efficient
Batch Verification for UP”. In: Proc. 33rd Annual IEEE Conference on Com-
putational Complexity (CCC). 2018, 22:1–22:23.

[RS85] Ronald L. Rivest and Adi Shamir. “Efficient factoring based on partial
information”. In: Proc. Advances in cryptology (EUROCRYPT). 1985, pp. 31–
34.

[Sha81] Adi Shamir. “On the generation of cryptographically strong pseudoran-
dom sequences”. In: Automata, languages and programming (Akko, 1981).
Vol. 115. Lecture Notes in Comput. Sci. 1981, pp. 544–550.

[Sip83] Michael Sipser. “A complexity theoretic approach to randomness”. In:
Proc. 15th Annual ACM Symposium on Theory of Computing (STOC). 1983,
pp. 330–335.

[SM23] Nicollas Sdroievski and Dieter van Melkebeek. “Instance-Wise Hardness
versus Randomness Tradeoffs for Arthur-Merlin Protocols”. In: Electronic
Colloquium on Computational Complexity: ECCC 30 (2023), p. 029.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudorandom generator”. In: Journal of the ACM
52.2 (2005), pp. 172–216.

[SU07] Ronen Shaltiel and Christopher Umans. “Low-end uniform hardness vs.
randomness tradeoffs for AM”. In: Proc. 39th Annual ACM Symposium on
Theory of Computing (STOC). 2007, pp. 430–439.

[SV22] Ronen Shaltiel and Emanuele Viola. “On hardness assumptions needed
for “extreme high-end” PRGs and fast derandomization”. In: Proc. 13th
Conference on Innovations in Theoretical Computer Science (ITCS). 2022, Art.
No. 116, 17.

30

[Tel22] Roei Tell. “Quantified derandomization: how to find water in the ocean”.
In: Foundations and Trendsr in Theoretical Computer Science 15.1 (2022), Pa-
per No 1, 125.

[TSZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. “Extractors from
Reed-Muller codes”. In: Journal of Computer and System Sciences 72.5 (2006),
pp. 786–812.

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-
Case Complexity Via Uniform Reductions”. In: Computational Complexity
16.4 (2007), pp. 331–364.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Wig19] Avi Wigderson. Mathematics and computation. A theory revolutionizing
technology and science. Princeton University Press, Princeton, NJ, 2019,
pp. xiii+418. isbn: 978-0-691-18913-0.

[Wil13] Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial
Lower Bounds”. In: SIAM Journal of Computing 42.3 (2013), pp. 1218–1244.

[Wil16] Richard Ryan Williams. “Strong ETH breaks with Merlin and Arthur:
short non-interactive proofs of batch evaluation”. In: Proc. 31st Annual
IEEE Conference on Computational Complexity (CCC). Vol. 50. 2016, 2:1–2:17.

[Yao82] Andrew C. Yao. “Theory and Application of Trapdoor Functions”. In:
Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1982, pp. 80–91.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

