
Tri-State Circuits
A Circuit Model that Captures RAM⋆

David Heath1, Vladimir Kolesnikov2, and Rafail Ostrovsky3

1 daheath@illinois.edu, UIUC
2 kolesnikov@gatech.edu, Georgia Tech

3 rafail@cs.ucla.edu, UCLA

Abstract. We introduce tri-state circuits (TSCs). TSCs form a natural
model of computation that, to our knowledge, has not been considered by
theorists. The model captures a surprising combination of simplicity and
power. TSCs are simple in that they allow only three wire values (0, 1,
and undefined – Z) and three types of fan-in two gates; they are powerful
in that their statically placed gates fire (execute) eagerly as their inputs
become defined, implying orders of execution that depend on input. This
behavior is sufficient to efficiently evaluate RAM programs.
We construct a TSC that emulates T steps of any RAM program and that
has only O(T · log3 T · log log T) gates. Contrast this with the reduction
from RAM to Boolean circuits, where the best approach scans all of
memory on each access, incurring quadratic cost.
We connect TSCs with cryptography by using them to improve Yao’s
Garbled Circuit (GC) technique. TSCs capture the power of garbling
far better than Boolean Circuits, offering a more expressive model of
computation that leaves per-gate cost essentially unchanged.
As an important application, we construct authenticated Garbled RAM
(GRAM), enabling constant-round maliciously-secure 2PC of RAM pro-
grams. Let λ denote the security parameter. We extend authenticated
garbling to TSCs; by simply plugging in our TSC-based RAM, we ob-
tain authenticated GRAM running at cost O(T · log3 T · log log T · λ),
outperforming all prior work, including prior semi-honest GRAM.
We also give semi-honest garbling of TSCs from a one-way function
(OWF). This yields OWF-based GRAM at cost O(T ·log3 T ·log log T ·λ),
outperforming the best prior OWF-based GRAM by more than factor λ.

Keywords: Models of Computation, Random Access Machines, Circuits, Obliv-
ious Computation, MPC, Garbled RAM.

1 Introduction

Boolean circuits form perhaps our simplest complete model of computation.
The model allows only a small set of gate types, each of which computes a basic
⋆ Abridged version appears in proceedings of IACR Crypto 2023.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 95 (2023)

2 D. Heath, V. Kolesnikov, R. Ostrovsky

function. Moreover, a circuit’s structure is static and explicit. This simplicity is
ideal for both theory and practice, making them popular in complexity theory
and, in particular, in cryptography.

On the other hand, random access machine programs (RAM programs)4
form our most ubiqituous practical model of computation. The random access
capability approximates the power of real-world devices, so theoretical advances
in RAM can more readily translate to real-world impact.

Unfortunately, it is difficult to connect Boolean circuits and RAM. Indeed,
the two models seem inherently at odds. RAMs are inherently dynamic, allowing
the program to quickly and arbitrarily access one element in an immense array;
circuits are inherently static, requiring that the program fix the order in which
it manipulates data before input is known.

It is therefore unsurprising that reductions from RAMs to Boolean gates
are expensive. The straightforward reduction emulates each memory access by
linearly scanning the entire RAM memory. This simple approach is also the best
known. Since RAMs access memory at each step, this reduction yields a circuit
that grows quadratically in the RAM runtime T .

Motivation for introducing tri-state circuits: Constant round 2PC. It is unfortu-
nate that reductions from RAMs to circuits are so expensive. Many technologies
are more compatible with circuits than with RAMs, and a concretely efficient
reduction would automatically connect real-world RAM programs with circuit-
based technologies.

As our crucial example, we consider Yao’s Garbled Circuit (GC) [Yao86], a
multiparty computation (MPC) technology that achieves symmetric-key-based
constant-round protocols.

The GC literature is extensive, see [NPS99,ZRE15,HJO+16,GLNP18,RR21]
and many more. Most GC works, including all listed above, garble Boolean gates
only, suggesting a natural connection between garbling and circuits. On the other
hand, the goal of GC is to enable secure computation of arbitrary programs, and
many programs are best handled by RAMs, not by circuits.

It is possible – though challenging – to garble RAM programs. Garbled RAM
(GRAM) [LO13] does so without reducing to circuits. GRAM also has a rich liter-
ature [GHL+14,GLO15,GLOS15,CH16,CCHR16,LO17,HKO22,PLS22]. The ba-
sic observation of GRAM is that it is possible to garble interconnected collections
of circuits that execute in an order decided at runtime. This dynamic ordering
breaks from the circuit model, where the order of execution is static.

Advancing GRAM was challenging. The problem was that reasoning about
GRAM required reasoning simultaneously about multiple complex topics, in-
cluding gate garbling techniques, the above dynamic circuit execution, and con-
structions of Oblivious RAM [GO96]. Worse still, the community lacked an ef-
fective vocabulary for discussing the dynamic mechanisms of GRAM; prior work

4 The RAM model we consider is called the word RAM model [Hag98]; it is a RAM
with a fixed word size that incurs unit cost per random access. We state the definition
of the in Section 3. Throughout this work, by ‘RAM’ we mean ‘word RAM’.

Tri-State Circuits 3

explained these mechanisms via a concept they called dynamic language trans-
lation, see e.g. [GLO15,GLOS15,HKO22,PLS22]. Language translation is deeply
intertwined with the specifics of circuit garbling, and thus understanding even
the basic ideas of GRAM required intimate GC knowledge.

Matching the power of garbling to a model of computation. The mere existence
of non-trivial GRAM, which leverages dynamic behavior, demonstrates that the
circuit model poorly approximates the power of garbling. Clearly some additional
expressive power is available, sufficient to efficiently execute RAM programs.

Thus, it is interesting to search for another model of computation – cheap
to garble, simpler than RAM, and more expressive than Boolean circuits – that
captures the dynamic power of garbling. Such a model would be useful, since it
would decompose the GRAM problem into pieces, allowing us to think modularly
about RAM constructions, untethered from garbling-specific concerns.

1.1 Our Contribution

We demonstrate that there exists a simple, circuit-like model of computation that
closely approximates (within a polylogarithmic factor) the expressive power of
RAM. Our tri-state circuit (TSC) model is strongly compatible with our target
use-case of garbling, in the sense that it admits efficient and natural protocols.

Like a Boolean circuit, a TSC is composed from statically connected gates,
each of which has one of only a small number (three) of possible gate types. Each
gate computes a basic function of its two tri-value input wires. Despite their
simplicity, TSCs are distinctly more powerful than Boolean circuits; they admit
a primitive form of control flow where the order in which gates fire depends on the
input. This basic control flow can efficiently emulate RAM computation. Thus,
TSCs capture a surprising combination of conceptual simplicity and expressive
power which, to our knowledge, has not been explored by theorists.56

We emphasize that while we feel the tri-state circuit model has intrinsic value,
we are motivated by the concrete objective of improving symmetric-key-based
constant-round secure computation (i.e., garbling).

Our contributions include:
We formalize the tri-state circuit model.
We reduce RAM programs to (deterministic) tri-state circuits. Let

T denote a runtime. We construct a tri-state circuit of size O(T · log4 T) that
can emulate T steps of any RAM program.

5 While tri-state circuits have not been theoretically explored, tri-state gates are used
in practice. We chose our naming based on these real-world gates. A key gate in
our model, which we call a buffer, exists as a digital logic element called a tri-state
buffer. We show that RAM reduces to a relatively small number of such gates.

6 Tri-state circuits are distinct from ternary logic. Ternary logic has been explored by
theorists, even in the context of garbling [LY18,NPS99]. In ternary logic, wires can
take three distinct values; however, the circuit executes in a standard topological
order. In tri-state circuits, gates execute in a data-dependent order.

4 D. Heath, V. Kolesnikov, R. Ostrovsky

We formalize randomized and oblivious tri-state circuits. In cryp-
tography, data-independent orders of execution are useful for protecting privacy.
Basic tri-state circuits discard input independence, losing cryptographic utility.
Oblivious tri-state circuits reclaim this utility. A tri-state circuit is oblivious if
its order of execution appears (to a distinguisher) independent of the input.

We reduce RAM programs to oblivious tri-state circuits. We con-
struct an oblivious tri-state circuit of size O(T · log3 T · log log T) that can sim-
ulate T steps of any RAM program. This oblivious reduction improves over our
deterministic reduction by leveraging randomness.

We apply tri-state circuits to secure 2PC. Let λ denote the computa-
tional security parameter. We achieve two results:

– Our most exciting application is authenticated GRAM, a maliciously-secure
constant-round 2PC RAM protocol. Our authenticated GRAM executes T
RAM steps at cost O(T ·log3 T ·log log T ·λ). Prior malicious GRAM relied on
the expensive cut and choose technique, and was more than factor σ slower,
for statistical security parameter σ.

– Our second application is improved semi-honest Garbled RAM from only
one-way functions. Prior to our work, the best GRAMs were based on random-
oracle-like assumptions [HKO22,PLS22]. The best GRAM avoiding such an
assumption had quadratic scaling in λ [PLS22]. Our construction outper-
forms all prior RO-based GRAMs, and it relies only on one-way functions.
It runs at cost O(T · log3 T · log log T · λ).

TSC garbling is lean. For example, Boolean circuits can be compiled to tri-
state gates, and the communication cost of our resulting authenticated TSC
protocol is less than 2× that of state-of-the-art authenticated garbling of Boolean
gates [DILO22], and with effort this overhead can likely be removed.

Impact on Garbled RAM. While [HKO22] and follow-on work [PLS22] substan-
tially improved GRAM, these works left pressing and challenging open questions,
including efficient malicious GRAM and standard-assumption-based GRAM.

We abstract garbled computation as tri-state circuits, not Boolean circuits,
and the payoff is a modular approach to GRAM. This modularity allows us to
make significant advances that would have been highly technically involved if ex-
pressed in the prior GRAM framework of language translation. We demonstrate
that the above more challenging versions of GRAM can be constructed with
overhead similar to basic GRAM. Going further, we discovered compatibility
between a state-of-the-art Oblivious RAM construction [WCS15] and tri-state
circuits, further improving GRAM’s asymptotic cost.

Perhaps best of all, tri-state circuits markedly simplify GRAM fundamentals.
Indeed, our new garbling procedures are extremely similar in complexity to their
Boolean-circuit-based counterparts. This reduced complexity will allow a broader
cryptographic audience to understand, improve, and apply GRAM.

Tri-State Circuits 5

2 Background and Related Work

2.1 Garbled Circuits and Garbled RAM

Garbled Circuit (GC) [Yao86] is a fundamental MPC primitive that allows two
parties – a garbler G and an evaluator E – to securely execute a program of their
choice on their private inputs. GC is distinct from other secure computation
primitives in that it allows for protocols that (1) run in a constant number of
rounds and (2) rely almost entirely on fast symmetric key primitives.

Roughly speaking, GC splits program execution into two steps: garbling and
evaluation. Garbling is independent of the input, and evaluation of the garbled
program appears independent of the input. When these two steps are carried out
by two different parties, we can arrange that each party’s execution hides the
input of the other, allowing privacy-preserving protocols.

While GC traditionally works in the Boolean circuit model, a number of
works starting with [LO13] developed Garbled RAM (GRAM), an extension to
the more expressive RAM model. [LO13] demonstrates that for a word-RAM
program running in time T and for computational security parameter λ, we can
garble the program at the following cost:

O(T · log3 T · logc log T · |Cprf | · λ) [LO13]

Here, c is an unspecified constant, and |Cprf | is the circuit size of a PRF with λ
bits of output (asymptotic analysis by [PLS22]).

A sequence of works subsequently improved the Garbled RAM primitive,
e.g. [GHL+14,GLOS15,GLO15,HKO22,PLS22]. The most recent garbled RAM
constructions achieve the following costs:

O(T · log4 T · λ) [HKO22]

O(T · log3 T · (log log T)2 · λ) [PLS22]

[HKO22] and follow-on work [PLS22] far surpass prior GRAMs, bringing the
technique’s overhead in line with what is expected from more traditional Boolean-
circuit-based GC.

Improving GRAM remains a crucial direction. In particular, it is interesting
to (1) improve asymptotic cost, (2) extend GRAM to interesting and challenging
settings, and (3) simplify the GRAM formalism, easing further exploration and
application. Our work simultaneously achieves each of these goals.

Malicious GRAM. GC provides natural protection against malicious evaluator
E, but protecting against malicious garbler G is more challenging. G can in-
correctly garble the program, causing the program to, for instance, erroneously
output bits of E’s input. It is difficult to arrange that E can detect incorrectly
garbled programs, because E’s inability to reason about garbled programs is
exactly the property that protects G’s input.

Despite this challenge, prior work developed powerful techniques for efficient
handling of malicious garbled circuits (see later discussion of authenticated gar-
bling). Until this work, malicious garbled RAM was far less effective.

6 D. Heath, V. Kolesnikov, R. Ostrovsky

Prior work, e.g. [GGMP16,HY16,Mia20], demonstrated feasibility of mali-
cious GRAM, but performance was poor, especially as compared to semi-honest
GRAM. The best prior GRAM could be constructed by combining semi-honest
GRAM [HKO22] (or the asymptotically more efficient [PLS22], framed as a gar-
bling scheme [BHR12]) with the classic cut and choose technique, see e.g. [Lin13].

Cut and choose upgrades semi-honest garbling to the malicious setting. The
idea is to have G garble many copies of the same program, then allow E to
challenge a randomly selected subset of those programs. While this works, G
must garble a number of copies that grows with the statistical security parameter
σ, leading to highly undesirable factor σ slowdown as compared to the semi-
honest execution. The best malicious GRAM had the following asymptotic cost:

O(T · log3 T · (log log T)2 · λ · σ) [PLS22] with Cut and Choose

We avoid this factor σ slowdown by implementing tri-state circuits via the
techniques of authenticated garbling (see next). Our maliciously secure GRAM
dramatically improves over prior state of the art, achieving the following cost:

O(T · log3 T · log log T · λ) Our maliciously secure GRAM

Authenticated Garbling. The breakthrough work [WRK17] introduced a far su-
perior approach to malicious GC. Their authenticated garbling technique achieves
performance that asymptotically matches semi-honest garbling, incurring only
O(n · λ) cost for an n-gate circuit. The approach is also practically performant.

In classic GC, each wire value is represented by a length-λ label. These labels
are used as keys to encrypt/decrypt subsequent labels in a way that achieves
the program semantics. Authenticated GC extends each GC label with an addi-
tional σ bits, forming a MAC on the wire value. These MACs allow G to reveal
particular wire values to E such that E is confident the value is indeed correct.

To securely evaluate each AND gate, the parties require an authenticated
multiplication triple. Multiplication triples can be computed offline in a function-
independent preprocessing phase. Improving the efficiency of authenticated gar-
bling is the subject of a growing body of works [KRRW18,YWZ20,DILO22].

We demonstrate natural compatibility between authenticated garbling and
tri-state circuits. Our construction achieves cost O(n · λ) for an n-gate tri-state
circuit. While formal treatment of any non-trivial malicious technique is com-
plex, authenticated garbling of tri-state circuits is – at least at an intuitive level
– a straightforward extension of the core ideas given by the above prior works.

Standard-Assumption-Based GRAM. In the semi-honest setting, the fastest gar-
bling techniques rely on a non-standard random-oracle-like assumption called a
circular correlation robust hash (CCRH) function [CKKZ12]. This assumption
stems from the classic “Free XOR” extension [KS08] whereby each GC wire has
two labels related by a global correlation. The CCRH assumption is needed to
achieve security in the presence of this correlation.

Tri-State Circuits 7

It is interesting to remove this assumption and to garble assuming only one-
way functions (OWFs) [GLNP18].7 Prior to our work, Garbled RAM from one-
way functions was far inferior to GRAM based on Free XOR. Indeed, the best
construction had the following cost (note the problematic scaling in λ):

O(T · log3 T · (log log T)2 · λ2) [PLS22]

We demonstrate that classic OWF-based techniques from the literature can
be almost directly applied to tri-state circuits. Indeed, our standard-assumption-
based garbling scheme is relatively obvious, once the tri-state circuit model is
understood. Applying this scheme in conjunction with our RAM constructions,
we as a corollary achieve the best standard-assumption-based GRAM:

O(T · log3 T · log log T · λ) Our OWF-based semi-honest GRAM

2.2 Oblivious RAM

Oblivious RAM (or ORAM, [GO96]) is a powerful technology that allows a weak
client to outsource its database to a powerful untrusted server. The client can
repeatedly query its sensitive database without the server learning what data is
accessed, or even the pattern in which data elements are accessed. In ORAM, for
each logical access, the client issues a sequence of queries to physical locations.
These physical locations reveal nothing about the logical accesses, which can be
formalized by showing that the server’s view can be simulated.

ORAM is highly relevant to our notion of oblivious tri-state circuits. In par-
ticular, our reduction from RAM programs to oblivious tri-state circuits directly
leverages the Circuit Oblivious RAM construction of [WCS15], implementing
their ORAM algorithms via tri-state gates. Our reduction leverages this con-
struction to hide memory access patterns, allowing for a circuit that executes
RAM programs and whose gates execute in an order that can be simulated.

2.3 Other models of computation

The tri-state circuit model shows that, surprisingly, there exists a concrete set of
gates that can efficiently (with polylog overhead) implement RAM. Said another
way, tri-state circuits admit a small statically defined structure whose collection
of use-once components jointly implement RAM. This capability distinguishes
the model from other widely considered models.

Other models either inefficiently support RAM (e.g., Turing Machines, deci-
sion trees, Boolean circuits, arithmetic circuits, etc.), or have implicitly specified
“static structure” that is either large or involves components that can be used re-
peatedly. For instance, while RAM can, of course, efficiently implement itself, it
7 Of course, full semi-honest GC protocols also use OT, which is not implied by OWFs.

It is now traditional to view semi-honest GC as a primitive, independent of any
particular protocol [BHR12]. This primitive, called a garbling scheme, can be mean-
ingfully instantiated from OWFs alone.

8 D. Heath, V. Kolesnikov, R. Ostrovsky

in some sense involves a very large static structure, where each RAM step is im-
plicitly connected to each memory cell. Similarly pointer machines form a model
of computation that proceeds by editing a directed graph, see e.g. [Sch80]; be-
cause of the large number of possible graphs that can emerge at runtime, pointer
machines similarly have large implicit static structure.

Said yet another way, tri-state circuits require that we statically define a fixed
“stage” that establishes explicit connections between computational elements and
explicitly named memory cells. Runtime execution may only proceed within the
connection constraints of this stage, and we measure cost in terms of the size of
the stage, namely, the number of connections. Indeed, in GC, the garbler must
account for each possible action and state of the evaluator. This accounting
corresponds to generation of garbled tables – garbling the stage.

Despite these constraints, the model is expressive. It has sufficient freedom
to (obliviously) implement RAM. This expressiveness in the presence of GC-
compatible constraints is what makes tri-state circuits so useful in garbling.

While our focus is on secure computation and garbling, we envision that the
tri-state circuit model may be interesting in other settings as well. For instance,
it is intriguing that our tri-state circuit constructions can – at least in principle
– be implemented via digital circuits, and the model may also have interesting
connections to complexity theory.

3 Notation

Word RAM Model. In the word RAM model [Hag98], an abstract machine op-
erates on length-w words. Basic operations, such as addition, comparisons, and,
in particular, memory reads/writes are assumed to take constant time.

Let T denote RAM program runtime. We assume w is large enough to point
into the program input (i.e., w ≥ log2 n) and, for simplicity of analysis, we
assume w = Θ(log T). We assume that each non-memory-accessing instruction
can be implemented by a Boolean circuit of size O(w2) = O(log2 T), sufficient
to capture powerful operations such as multiplication. Throughout this work, we
refer to word RAMs as RAMs.

Common Notation. x || y denotes the concatenation of strings x and y. We
denote by ⟨x⟩ a Boolean encoding of the value x. E.g., if P is a RAM program,
then ⟨P ⟩ denotes a Boolean encoding of that RAM program. We leave the details
of such encodings unspecified, as they are not interesting. σ denotes a statistical
security parameter (e.g. 40 or 60). λ denotes a computational security parameter
(e.g. 128). X s

= Y denotes that distributions X and Y are statistically close.

Tri-state notation. Section 4 introduces the following; we catalog for reference.
Based on notation from digital circuits, Z denotes the distinguished tri-state

high impedance value. Z can be pronounced “nil”, and can be informally under-
stood as the value of a wire that is not yet defined. A wire carrying 0 or 1 is

Tri-State Circuits 9

⊕ 0 1 Z
0 0 1 Z
1 1 0 Z
Z Z Z Z

/ 0 1 Z
0 Z 0 Z
1 Z 1 Z
Z Z Z Z

▷◁ 0 1 Z
0 0 ⊥ 0
1 ⊥ 1 1
Z 0 1 Z

1 procedure notify(gate):
2 (f, in0, in1, out)← gate

3 x← wires[in0]

4 y ← wires[in1]

5 z ← f(x, y)

6 if z ̸= Z and wires[out] = Z:
7 wires[out]← z

8 for gate ′ ∈ subscribers(out):
9 notify(gate ′)

Fig. 1: The semantics of tri-state circuits. Tri-state circuits have three types of
fan-in two gates: XORs (⊕), buffers (/), and joins (▷◁). We define the function
of each gate type (left), and we define a recursive procedure notify (right) which
defines semantics. The array wires is a global object that stores the value of each
wire. Each wire can take on three different values: 0, 1, or Z. Z indicates that a
wire has not yet been assigned. At initialization, all non-input wires are set to Z.
The function subscribers maps from wire ID w to the set of gates that take wire
w as input. Circuit execution begins by calling notify on each gate subscribed
to an input wire. The symbol ⊥ denotes an illegal state; if any join evaluates to
⊥, we set all wires to ⊥, execution terminates, and the circuit outputs ⊥.

set; a wire carrying Z is not set. We denote buffers by division8 (written / or
x
y), and joins by ▷◁. The second argument to each buffer is called its control.
The symbol ⊕ denotes XOR. XOR is extended to tri-state values in a natural
manner. Namely, if either XOR input is Z, then the output is Z (see Figure 1).

4 Tri-State Circuits

This section describes and formalizes the tri-state circuit model. Sections 5 and 6
later shows that tri-state circuits can efficiently implement RAM programs.

Tri-state circuits center on a non-Boolean gate that we call a buffer. A buffer
takes two inputs, a control wire and a data wire:

control

data output

If the control is set to 1, then the output wire acquires the value of the data
wire; if the control is set to 0, then the output wire remains unassigned, which
8 We chose division to denote buffers because buffer semantics produce the ‘undefined’

value Z when dividing by 0.

10 D. Heath, V. Kolesnikov, R. Ostrovsky

we denote by stating the output wire has value Z. 9 If the control is set to 1,
we say that the buffer is active and that the output is set; else the buffer is
inactive and the output is not set.

Because a buffer might not set its output, it is possible to implement inter-
esting circuit arrangements, such as the following:

f

Here, we connect the outputs of two buffers, denoted by the black circle which
we formalize as a gate that we refer to as a join. The join polls its two inputs,
forwarding an input to its output as soon as some input is set. We connect the
join’s output to a subcircuit labelled f .

The crucial point is that the two buffers might be far apart in the circuit
topology. Subcircuit f eagerly fires as soon as its inputs are set. Since the buffers
fire at different times, the time at which f fires depends on wire values, not just
the topology. This input-dependent order of execution is the key ingredient of
tri-state circuits and is what distinguishes them from Boolean circuits.

Definition 1 (Tri-state Circuit). A tri-state circuit is a circuit allowing
cycles (i.e., its graph need not be acyclic) with three gate types: XORs, buffers,
and joins. Each tri-state wire carries one of three values: 0, 1, or Z. The seman-
tics of each gate type and of circuit execution are formally specified in Figure 1.
Tri-state circuits may use two distinguished wires, named 0 and 1, which respec-
tively carry the corresponding constants 0 and 1.

Looking forward, we will consider constrained classes of tri-state circuits
satisfying (combinations of) additional properties (see Definitions 4, 5 and 8).

The dynamic nature of tri-state circuits is formalized by notify (Figure 1).
When a wire is set to 0 or to 1 – i.e., when it is not Z – each gate subscribed
to that wire (each gate taking the wire as input) is notified and fires.

At initialization, each non-input wire holds Z. As gates fire, wire values
change from Z to 0 or 1. Once set, a wire value cannot change again. Thus, the
state of the wires converges to a final configuration, the halt-time state.

Definition 2 (Halt-time state). The halt-time state of a tri-state circuit C
is a wiring w (i.e., a map from circuit wires to wire values) such that there is
no gate g ∈ C where notify(g) changes w.

A gate only notifies its subscribers if it sets its output. This, combined with
the fact that each gate has only two inputs, means that each gate is notified
at most twice, tightly bounding the total runtime. I.e., it is a straightforward
9 We use Z, pronounced ‘nil,’ to denote ‘no signal’. In digital circuits, the ‘no signal’

value is called high impedance, and is denoted ‘hi-Z’. In GC, Z on a wire corresponds
to E holding no key on that wire; see Section 7.

Tri-State Circuits 11

fact that a random access machine (e.g., a computer evaluating the TSC) can
emulate a size-n tri-state circuit in time O(n) by simply running notify .

The halt-time state of a tri-state circuit C is unique, even when we allow
calls to notify to occur in an arbitrary order. Indeed, in Appendix A of the full
version of this paper10 we prove the following:

Lemma 1 (Halt-Time State Unique). Let C be a TSC that, on input x and
for some sequence of calls to notify, reaches a halt-time state w. Any sequence
of calls to notify reaching a halt-time state will reach the same state w.

Circuits with cycles. Definition 1 explicitly allows circuit graphs with cycles.
Indeed, cycles seem to be essential for implementing efficient RAM with TSCs.

Consider two executions of a RAM program. In the first execution, suppose
we first access some index i, then we access some index j; in the second execution,
suppose we first access index j, then index i. Ideally, we would save indexes i
and j on particular collections of wires such that the two executions read the
same two collections of wires, just in different orders. To achieve this, we must
admit cycles in our circuits: there is a possible data path from the i wires to the
j wires, and from the j wires to the i wires.

There is no inherent inconsistency in allowing circuits with cycles, so long as
we are careful in our circuit designs. Namely, tri-state circuits are allowed to have
cycles, but their runtime data paths are not. Consider the following example:

storage

⊕1

user

control

in0

in1

Here, we connect a wire named user to a wire named storage, allowing user to
read from/write to storage. At first glance, the circuit appears to allow user to
write to itself, a potentially problematic arrangement (especially when proving
GC security). On closer inspection, it becomes clear that the wire control stat-
ically rules out this possibility: at most one buffer can activate, so there is no
way for user to write to itself. This circuit has a cycle, but there is no possible
cycle in the runtime data paths through the circuit.

We rule out runtime cycles by considering circuits that are runtime acyclic:

Definition 3 (Runtime Dependency). A tri-state gate g is runtime de-
pendent on another gate g′ with respect to a circuit input x if:

– g is an XOR, join, or a buffer with control 1, and g is subscribed to the
output wire of g′.

– g is a buffer with control 0 or Z (at halt-time), and g is subscribed to g′

w.r.t. g’s control wire (i.e., g′ outputs the control of g).

10 https://eprint.iacr.org/2023/455

12 D. Heath, V. Kolesnikov, R. Ostrovsky

We explicitly emphasize that a buffer with control 0 or Z (at halt-time) is not
runtime dependent on the gate that outputs its data wire.

Definition 4 (Runtime Acyclic). A tri-state circuit C is runtime acyclic
if for all inputs x, there exists a winning strategy to a graph pebbling game with
the following rules:

– The player is allowed to place a pebble on each circuit input.
– The player is allowed to place a pebble on a gate g iff there is a pebble on

each of g’s runtime dependencies with respect to x (Definition 3).
– The player wins if it successfully places a pebble on each gate.

Roughly speaking, Definition 4 states that for any input, there is no data
cycle; if there were, then it would be impossible to win the pebbling game, since
pebbling a gate requires first pebbling each of that gate’s runtime dependen-
cies.11 Note, the above example circuit is runtime acyclic. Indeed, if control = 0,
then the left buffer is inactive, and we can pebble the cycle by first pebbling this
left buffer; if instead control = 1, then we can first pebble the right buffer.

For the rest of this work, we only consider tri-state circuits that are runtime
acyclic, and our formal security theorems (see Appendices C and D of the full
version) require runtime acyclicity.

Subcircuit sharing. Because tri-state gates run dynamically, we can arrange a
trick that we call subcircuit sharing. Consider the following circuit:

f

in0

in1

out0

out1

control

⊕1

For sake of argument, suppose subcircuit f is composed from a large number of
gates. Our example allows f to be called in two different ways: we can either
set control = 1, running circuit f on input port in0 and setting output port
out0, or we can symmetrically set control = 0, running f on input port in1 and
setting output port out1. Since we can only set control to either 0 or 1, we can
only activate one of the pairs of buffers, and so f is used only once. We again
emphasize that the time at which f fires depends on control : in0 and in1 might
each be set by the calling circuit at an arbitrary time.

Thus, f can be used in a conditional manner, solving a subproblem at one
of two very different points in time. Crucially, our example is efficient in the
sense that it contains only enough gates to implement f once; the gates in f are
shared across the two call sites.
11 One might wish to consider simpler definitions of runtime acyclicity, such as removing

inactive buffers from the circuit, then requiring that the remaining graph is acyclic.
Unfortunately, our attempts at such a definition admitted circuit designs for which
we cannot prove GC security. Such designs feature cycles which set their own control
wires. Our pebbling-game-based definition leads to a natural proof of GC security;
it is inspired by pebbling-based techniques from adaptively secure GC [HJO+16].

Tri-State Circuits 13

RAM from cyclic circuits with subcircuit sharing. Subcircuit sharing is the key
idea of our RAM reductions. In short – and as we later explain in detail – we
arrange our RAM memory as a collection of small subcircuits, each of which
stores RAM elements and is shared across many accesses. By sharing each such
subcircuit, we allow each data-dependent access to consume only the subcircuit
storing its desired element. Thus, the number of required gates is amortized
across accesses; in total, we only need a number of gates that grows quasilinearly
in the number of accesses. Each gate in our RAM can be used to satisfy a variety
of different accesses because our RAM circuits feature cycles, allowing accessed
memory elements to “flow backwards through the topology” to the particular
RAM step where it is needed.

The complexity of our RAM constructions arises from arranging subcircuit
sharing at a large scale. We ultimately share each of a large number of subcircuits
across a large number of memory accesses. This is achieved by arranging sub-
circuits in a binary tree where each node is itself a shared subcircuit providing
shared access to further subcircuits. Section 5 explains in detail.

Preventing short circuits. Definition 1 includes the possibility of illegal states,
denoted ⊥. One can erroneously join two wires where one wire holds 0 and the
other holds 1. This causes a ‘short circuit’, and is ill defined. We must restrict
ourselves to circuit designs that cannot enter an illegal state. For this reason, we
focus on tri-state circuits that compute Boolean functions:

Definition 5 (Computing a Boolean function). Let f : {0, 1}n → {0, 1}m
denote a Boolean function and C denote a tri-state circuit. We say that C com-
putes f if for all x ∈ {0, 1}n, C(x) = f(x).

This definition rules out illegal states, because entering an illegal state causes
the circuit to output ⊥, which is not a possible output of a Boolean function.

Note, the property of computing a Boolean function (Definition 5) neither
implies nor is implied by runtime acyclicity (Definition 4).

Completeness. Definition 1 does not include AND gates. Even without AND,
tri-state circuits are as expressive as Boolean circuits. Indeed, for every Boolean
circuit, there is a similarly-sized tri-state circuit computing the same function:

Theorem 1 (Emulating Boolean circuits; tri-state AND gates). For
any Boolean circuit C, there exists a tri-state circuit C′ such that:

C′ computes C and |C′| = O(|C|)

Proof. By constructing Boolean gates from tri-state gates.
Indeed, it suffices to construct AND gates; XORs and constants are part of

the tri-state circuit definition, and {∧,⊕, 1} is a complete Boolean basis. We
use division to denote the buffer operation (Section 3). An AND gate can be
constructed as follows:

AND(x, y) ≜

(
x

y

)
▷◁

(
0

y ⊕ 1

)

14 D. Heath, V. Kolesnikov, R. Ostrovsky

The above definition can be read as follows: When the value of y is 1, the result
is x; when the value of y ⊕ 1 is 1, the result is 0.

4.1 Randomized and Oblivious Tri-State Circuits

In cryptographic settings, one of the principal advantages of non-tri-state circuits
is their input independent order of execution. However, the entire point of the
tri-state circuit model is its dependence on the input. This leads to a natural
question: can we construct tri-state circuits where orders of execution – which
depend on inputs – appear to be independent of the input?

Indeed, we can meaningfully define oblivious tri-state circuits. This definition
is sufficient for cryptographic applications, as we demonstrate in Section 7. The
definition of oblivious tri-state circuits is analogous to that of oblivious Turing
Machines and of oblivious RAMs (ORAM, [GO96]).

In short, a tri-state circuit is oblivious if we can simulate all of its buffer
control wires. I.e., there exists a poly-time simulator that outputs a distribution
of control bits which – on every input – is close to the distribution of the real
controls. This idea is reasonable because the order in which gates are executed
can be deduced from the controls alone. Indeed, buffer control wires are the only
mechanism in a tri-state circuit that can set a wire conditionally, and hence they
determine the order of execution. Thus, if the controls can be simulated, then
the order of gate execution hides the input.

Given our definitions so far, we cannot construct non-trivial oblivious circuits.
So far, there is no mechanism for deviating from an order of execution that is
deterministically prescribed by the input. Thus, the value on each control wire
is a determined by the input, and we cannot simulate. Somehow we must mask
each sensitive wire value before using it to control a buffer, e.g. by applying a
one-time pad. Thus, we consider tri-state circuits with randomized inputs:

Definition 6 (Randomized Tri-State Circuit). A randomized tri-state
circuit is a pair consisting of a tri-state circuit C and a distribution of bit-
strings D. The execution of a randomized tri-state circuit on input x is defined
by randomly sampling a string r from D, then running C on x and r:

(C,D)(x) ≜ C(x; r) where r ∈$ D

A randomized tri-state circuit obliviously computes f if its controls (Defini-
tion 7) can be simulated:

Definition 7 (Controls). Let C be a tri-state circuit with input x ∈ {0, 1}n.
The controls of C on x, denoted controls(C, x) ∈ {0, 1,Z}∗, is the set of all
buffer control wire values (each labeled by its gate ID) at halt-time.

Definition 8 (Obliviously computing a function). Let f : {0, 1}n →
{0, 1}m be a Boolean function. Let σ ∈ N be the statistical security parame-
ter. Let (C,D)i∈[N] denote a family of randomized tri-state circuits. The family
obliviously computes f if:

Tri-State Circuits 15

1. For all x ∈ {0, 1}n, (C,D)σ outputs f(x) with overwhelming probability:

Pr
r∈$D

[C(x; r) = f(x)] > 1− negl(σ)

2. The distribution of controls of (C,D)σ can be simulated. I.e., there exists a
simulator S such that for all inputs x ∈ {0, 1}n the following holds:

S(1σ) s
= { controls(C, (x; r)) | r ∈$ D }

While only tri-state circuit families obliviously compute functions, we will
sometimes slightly abuse notation and omit the explicit mention of families.

As a warm up, we show that for every Boolean circuit, there exists a similarly-
sized randomized tri-state circuit obliviously computing the same function:

Theorem 2 (Obliviously Emulating Boolean Circuits). For any Boolean
circuit C, there exists a randomized tri-state circuit (C′,D) s.t.:

(C′,D) obliviously computes C and |C′| = O(|C|)

Proof. By reducing Boolean gates to tri-state gates with randomized input.
As in Theorem 1, we need only demonstrate how to build an oblivious AND

gate, since XOR gates are part of the tri-state circuit definition.
To construct each AND gate, we use the classic idea of Beaver multiplication

triples [Bea92]. For each AND gate, we define a distribution D as follows:

D ≜ { α, β, α · β | α, β ∈$ {0, 1} }

Our oblivious AND gate uses the multiplication triple to mask its input bits
before using them as buffer controls:

ANDobv (x, y;α, β, γ = α · β) ≜((
y

x⊕ α
▷◁

0

(x⊕ α)⊕ 1

)
⊕
(

α

y ⊕ β
▷◁

0

(y ⊕ β)⊕ 1

))
⊕ γ

Both x⊕α and y⊕β (and their complements) are controls, so to prove this gate
is oblivious, we must simulate these values. This is straightforward: α and β act
as one-time pads, masking x and y:

S(1σ) ≜ { r0, r0 ⊕ 1, r1, r1 ⊕ 1 | r0, r1 ∈$ {0, 1} }

Formally, the full circuit (C,D) consists of many such AND gates, each with
its own triple, and we must jointly simulate all controls. This is trivial: multi-
plication triples are mutually independent and each is used only once.

Simple Distributions. The formal definition of randomized tri-state circuits al-
lows arbitrary distributions D. In practice, we cannot handle any distribution.
For instance, some distributions are not computable. Moreover, in some settings

16 D. Heath, V. Kolesnikov, R. Ostrovsky

– and in particular in the authenticated garbling setting – we wish to consider
distributions that are as simple as possible, such that they are easy to sample.

Constructions presented in this work use simple distributions. In particular,
our distributions can be described as the concatenation of independent copies of
the following two sub-distributions: (1) a uniformly sampled bit r ∈$ {0, 1} and
(2) a uniform multiplication triple { α, β, α · β | α, β ∈$ {0, 1} }. Uniform bits
and multiplication triples suffice for our oblivious tri-state RAM.

Simple distributions are important because, as we will see, our approach to
authenticated garbled tri-state circuits samples D via a (malicious) preprocess-
ing functionality. Efficient protocols exist for our considered class of distribu-
tions [WRK17,KRRW18,YWZ20,DILO22].

5 Deterministic Tri-State RAM

In this section, we reduce RAM execution to deterministic tri-state circuits. We
emphasize that this section constructs only RAM, not oblivious RAM.

Our focus is our later oblivious reduction (Section 6), which has utility in
2PC. We give a deterministic reduction here for two reasons. First, it explores
the theoretical capabilities of TSCs. Second – and more importantly – our de-
terministic reduction is simpler than our oblivious reduction. Our deterministic
RAM sets the stage for our more complex oblivious reduction, which mixes the
same high-level ideas with the Oblivious RAM construction of [WCS15].

We set the stage by defining what it means for a TSC to emulate a RAM:
Definition 9 (T -Emulation). Let T ∈ N denote a runtime. A tri-state circuit
C T -emulates a RAM if C computes (Definition 5) the following function: Let
P denote a word RAM program and x ∈ {0, 1}n denote a string. ⟨x⟩ denotes a
Boolean encoding of value x.

C(⟨P ⟩, x) =

{
P (x) if P halts on input x within T steps
⟨⊥⟩ otherwise

Theorem 3 (Deterministic Tri-State RAM). For any runtime T ∈ N,
there is a tri-state circuit C s.t. C T -emulates a RAM and |C| = O(T · log4 T).

We describe our deterministic RAM. Our oblivious construction (Section 6)
is more sophisticated, but builds on the ideas developed in this section.

The challenge of emulating a RAM is in accessing a large main memory.
Other details – including operating on machine words and managing internal
state – are straightforward, even without tri-state-specific capabilities. Thus we
focus on repeatedly and arbitrarily accessing main memory.

Our approach is strongly inspired by the GRAM construction of [HKO22]; we
show that their high level ideas are compatible with tri-state circuits, replacing
their complex language translation mechanism by simple tri-state gates. We later
asymptotically improve over [HKO22]’s construction.

Throughout the following discussion, we refer the reader to Figure 2, which
depicts our deterministic RAM construction.

Tri-State Circuits 17

random

machine

read

write

access

Fig. 2: Our deterministic tri-state RAM is arranged as a binary tree where mem-
ory elements are stored in the leaves. Each inner node has two stacks (concate-
nated rectangles) which allow the node to dynamically communicate with its
two children. On each access, the RAM sets the desired leaf address on a top
port of the RAM. This causes the circuit to dynamically traverse a path to the
addressed leaf (example depicted in green). At each node, the RAM pops one
stack and not the other, allowing the RAM to proceed either left or right. This
establishes a path through which the requested element will flow back up to the
root. Traversing the tree uses up parts of the circuit (previously used up com-
ponents are in grey). Since the accessed memory element might be needed again
later, the RAM writes an element back to a statically chosen and unused leaf.

5.1 Deterministic Tri-State RAM Overview

Our main idea is to construct inside a tri-state circuit a binary tree of nodes,
where each leaf holds one memory element, and where each internal node con-
tains machinery needed to access its descendants.

On an access, the emulated RAM uses this machinery to dynamically traverse
a path towards the particular leaf holding the target memory element. By lever-
aging subcircuit sharing, we ensure that while each traversal uses up some
gates, it crucially does not use any gates off of its path. Thus, those gates can
be used later. This basic idea leads to single circuit structure that is amortized
across all RAM accesses.

Note that Boolean circuits cannot realize the above amortization since there
is no mechanism by which to set aside a portion of the circuit for later use. In
contrast, TSCs can, based on their dynamic order of execution and support for
cyclic graphs. This is the expressive advantage of TSCs.

Communicating nodes. Leveraging this ability to amortize gates, the next crucial
insight of our deterministic RAM is to view each tree node as an object that
can dynamically send messages to and receive messages from its two children,
consuming only “on-the-path” TSC gates. (Boolean circuits do not have this
ability, and each access to a child requires processing both children, ultimately
resulting in a linear scan.) Messages are passed by setting particular collections

18 D. Heath, V. Kolesnikov, R. Ostrovsky

of wires that we refer to as ports. By setting a child’s input port, a parent
can send a message to its child; by setting its own output port, the child can
respond to its parent. The challenge is in allowing each parent to communicate
with its children dynamically. Namely, we must arrange that a parent sends a
message to its child if and only if that child is on a dynamically traversed path.

Circuit-based stacks. Like [HKO22], we arrange this dynamic communication
via circuit-based stacks [ZE13]. Namely, there exists a Boolean-circuit-based
analog of a stack data structure. These stacks are created with n elements and
can support up to m conditional pop (cpop) operations. On each cpop, a stack
takes as argument a single control bit p. If p = 1, then the stack indeed pops,
returning and removing its top element; if p = 0, then the stack instead returns
the all zeros string and its contents remain unchanged.

We can port stacks to tri-state gates by simply substituting ANDs by buffers
and XORs by joins.12 A stack with n w-bit elements supporting m cpop opera-
tions requires O(w ·m · log n) tri-state gates. Thus, each of the m cpop operations
requires only an amortized log number of gates. This straightforward substitu-
tion unlocks substantial utility. Leveraging tri-state semantics, we can use stacks
as dynamic communication channels between nodes; see next.

Using stacks. A parent node and its children communicate via a stack. The par-
ent manages the stack’s control bits and outputs. The child manages the stack’s
content: it appropriately connects the stack’s content wires to its input/output
ports. To communicate with its child, the parent pops the stack (the call to cpop

with p = 1 is non-oblivious). This establishes a chain of buffers whose control
wires are each set to 1, but whose data wires are not yet set. As soon as we
set the data wire of the first buffer in the chain, the buffers will one-by-one fire,
sending the data through the chain, from parent to child.

To enable two-way communication, we place two kinds of buffers in the stack.
Some buffers are oriented from parent to child, allowing messages to flow from
the parent into the input port of the child; other buffers are oriented from child
to parent, allowing the child to set messages on its output port which will flow
through the stack to its parent. (In Appendix B.1 of the full version, we formalize
this notion by giving two variants of a stack, one that sends messages from inputs
to outputs and the other that sends messages from outputs to inputs.) Thus,
by calling cpop with p = 1, the parent dynamically connects itself to one input
port and one output port of its child.

Now that ports are connected, the parent can send a message to its child
by setting data wires on its side of the stack. These values automatically flow
through the stack into the child’s input port, causing gates in the child to fire,
compute the relevant response, and load the response onto an output port, where
it, again, automatically flows through the stack back to the parent.

12 In addition to wires that store data elements, stacks include control logic that tracks
element positions. Here, we do not simply replace ANDs by buffers (XORs by joins),
but rather translate Boolean control logic into tri-state gates via Theorem 1.

Tri-State Circuits 19

Crucially, if the parent instead calls cpop with p = 0, no communication
occurs. The parent does not connect to its child’s port, and hence no gates
inside the child fire, so all gates in the unused child remain ready for later use.

Inner nodes. Let tree level 0 denote the root; level i has 2i nodes. Let level ℓ de-
note the tree’s largest level. Each node on level i has two stacks, each supporting
2ℓ−i calls to cpop, of which half can be called with p = 1. I.e., each stack allows
the node to communicate with its respective child up to 2ℓ−i−1 times.

Each node also consists of 2ℓ−i subcircuits, each of which performs the fol-
lowing task: (1) receive the address of some leaf from an input port, (2) use the
first bit of this address as a stack control bit such that we pop only the stack
corresponding to the subtree that stores the requested address, (3) save the re-
maining bits of the address on the output wires of each stack (sending the bits
to the active child), (4) read the response from each child, (5) join the responses
together, and (6) save the joined response on the output port. We note that as
we inspect nodes closer and closer to the leaves, the nodes become progressively
smaller, until the leaves are subcircuits capable of handling exactly one request.

Read Traversals. The RAM can read elements from memory by traversing full
root-to-leaf paths through the tree. To do so, the RAM loads into the root the
address of the target leaf. The root strips the most significant bit from this
address and uses it to conditionally communicate with its two children, indeed
popping (i.e. calling cpop with p = 1) the stack for the child on the target path,
and not popping (i.e. calling cpop with p = 0) the other child’s stack. The root
can now forward a message to its child, so it forwards the address’s remaining
bits. The child then recursively computes this same procedure, and so on, until
we reach the target leaf.

This leaf stores a single element, and it sets its single output port to this
element. Based on the semantics of tri-state circuits, this automatically triggers
a cascade of events. The element flows through the stack of its immediate parent,
causing the parent to fire and set its own output port to this newly received
element. This causes the element to flow through a stack in the next level of the
tree, and so on until the element reaches the root. At this point, the RAM can
read the element from the root, completing the memory read.

Direct Writes. Now that the RAM has read its desired element, it must write
something back. Note, we require this even if the goal of the memory access is
simply to read. The problem is that we have now used up the gates associated
with the accessed leaf, so we cannot reach that same leaf again. Thus, we need to
write back to a fresh leaf, allowing later reads to access the same element again.

It is straightforward to arrange that each step of the RAM is statically and
directly connected to one leaf, allowing it to directly write back without a dy-
namic traversal. Note, these connections induce cycles in the circuit graph, but
not at runtime (Definition 4).

20 D. Heath, V. Kolesnikov, R. Ostrovsky

Recursive Position Map. As just discussed, each time we read a memory ele-
ment, we write it back to a fresh location. This introduces a problem: how does
the RAM remember where it last placed a particular element? This problem
is typical in Oblivious RAM constructions, e.g. [SvS+13,WCS15], and can be
solved via recursion. Namely, we explicitly store the current position of each
memory element in a smaller, recursively-instantiated position map.

We can ensure that each recursively instantiated memory holds half the num-
ber of elements as the last, so only O(log T) levels of memory are needed. To
achieve this, we arrange that each position map element holds the positions of
(at least) two elements in memory. To terminate the recursion, we instantiate
the smallest, constant-sized memory via Boolean-logic-based linear scans.

In sum, the RAM construction is binary tree where each node on level i is
capable of handling 2ℓ−i RAM read requests. We dynamically traverse the tree
via tri-state-circuit-based stacks; each node holds two stacks, and on each access
we pop only the stack on the path to the desired element.

5.2 Sources of Logarithmic Overhead

Our deterministic tri-state RAM has O(T · log4 T) gates. We characterize four
distinct sources of cost, each of which adds a logarithmic factor:

1. Word size. The first source of scaling is unavoidable, as it stems simply
from the size of RAM words. Words are assumed to have size Θ(log T), and
tri-state gates operate on only one bit at a time. Hence, each action on a word
requires O(log T) gates. This factor highlights that the comparison between
the word RAM model and the circuit model is “unfair”. Word RAMs can
manipulate entire words at unit cost; tri-state circuits cannot.

2. Binary Tree. On each access, our RAM traverses a path through a binary
tree of size O(T). Each traversal touches O(log T) nodes.

3. Stacks. During each traversal and at each tree node, our RAM calls cpop on
a constant number of stacks, each of size O(T). Circuit-based stacks of size
n have O(log n) overhead per cpop, yielding an additional O(log T) factor.
Our oblivious construction leverages randomness to reduce the size of
stacks from O(T) to only O(poly(log T)), and hence reduces stack overhead
from O(log T) to only O(log log T). This is how our oblivious construction is
able to improve over our deterministic RAM.

4. Recursion. To track positions of elements, we use O(log T) position maps.

It is difficult to foresee methods for achieving a tri-state RAM with fewer
than O(T · log3 T · log log T) gates. Indeed, each above source of scaling seems
relatively inherent to our constructions, so further asymptotic improvement will
likely require fundamentally new techniques.

Tri-State Circuits 21

5.3 Formal Construction

We present our formal reduction from RAM to deterministic tri-state circuits in
Appendix B.2 of the full version of this paper. We emphasize that the circuit
described there is simply a formalism of the key ideas explained in Section 5.1.

6 Oblivious Tri-State RAM

In this section, we reduce RAM programs to oblivious tri-state circuits. At the
highest level, we demonstrate that techniques in Section 5 can be combined with
the Circuit Oblivious RAM construction of [WCS15].

We note that as a proof of concept, one can achieve oblivious tri-state RAM
by simply employing off-the-shelf ORAM. Namely, use our deterministic RAM
construction to emulate an ORAM server, and use oblivious tri-state Boolean
gates (Theorem 2) to emulate an ORAM client. This works, but introduces high
overhead which we would like to avoid. Here, we give a direct construction that
is far more efficient than this proof of concept.

We begin by formalizing our claim:

Definition 10 (Oblivious T -Emulation). Let T ∈ N denote a runtime. A
randomized tri-state circuit family (C,D)i∈[N] obliviously T -emulates a RAM
if it obliviously computes the following function: Let P denote a word RAM
program and x ∈ {0, 1}n denote a string.

C(⟨P ⟩, x) =

{
P (x) if P halts on input x within T steps
⟨⊥⟩ otherwise

Theorem 4 (RAM to Oblivious Tri-State Circuits). For any runtime
T = Θ(poly(σ)), there is a randomized tri-state circuit family (C,D)i∈N such
that (C,D)σ obliviously T -emulates a RAM and |C| = O(T · log3 T · log log T)

6.1 Circuit ORAM [WCS15] Review

Our key idea is to implement inside a tri-state circuit the Circuit Oblivious RAM
construction of [WCS15]. We thus review the relevant ideas of Circuit ORAM.

Circuit ORAM is a statistically-secure ORAM: it hides memory access pat-
terns without computational assumptions. This property is achieved because the
Circuit ORAM client does not use cryptographic primitives to choose its queries.
The simplicity of the ORAM client is compatible with the tri-state circuit setting
where implementing cryptographic primitives via gates is expensive.

Circuit ORAM arranges memory elements in a binary tree with O(T) leaves.
Each node holds up to a constant number (e.g., 3) of memory elements. The root
is the only exception: it stores a larger stash with capacity Θ(log T · log log T).

When the ORAM client accesses an element, that element is retrieved from
its node and moved to the stash. To prevent the stash from overflowing, Circuit

22 D. Heath, V. Kolesnikov, R. Ostrovsky

ORAM consistently moves elements away from the root in a process called evic-
tion. The key invariant – originally proposed by Path ORAM [SvS+13] – is that
even as an element is evicted, it remains on the path to a fixed leaf.

To access an element, we scan only those nodes along that element’s path.
By the invariant, this scan is guaranteed to find the target element, and because
each non-root node holds only a few elements, the scan is relatively cheap: the
entire path – including the stash – holds only O(log T · log log T) total elements.
Once the element is accessed, the ORAM places that element in the stash and
reassigns the element to a fresh, uniformly chosen (with replacement) path.

Because each path is chosen randomly, it is easy to simulate Circuit ORAM’s
access pattern: the simulator handles each access by choosing a uniform path.

Remembering paths. To access an element, the ORAM client must somehow re-
member that element’s path. Recall that each element’s path was chosen when it
was last accessed, and there might be long gaps between accesses of a particular
element. There are too many data elements for the client to remember paths lo-
cally, so the client remembers paths by recursively instantiating a smaller ORAM
called the position map. See also our discussion of recursion in Section 5.

Eviction. After each access, the RAM deterministically chooses two paths and
evicts elements along those paths. Each node on a chosen path evicts up to
one RAM element to its child. To ensure that the RAM does not get ‘stuck’
with too many elements in the stash, the identity of evicted elements must be
chosen carefully. The goal is to move elements towards the leaves – where there
is more space – as quickly as possible. [WCS15]’s key contribution is an efficient
procedure for deciding which element each node should evict.

Some details of this eviction strategy are highly relevant here, because we
must implement the procedure with tri-state gates within our asymptotic budget.

[WCS15]’s Eviction Strategy. During eviction, [WCS15] first computes meta-
data, deciding for each path node which element to evict. This metadata com-
putation scans the path twice, starting at the root, performing a (cheap) step
of computation at each node towards the leaf, then performing a second scan
starting from the leaf and returning to the root. Crucially, this metadata com-
putation has high locality : each step only considers local information stored in
the currently considered node, plus O(log T) bits from the previous step.

Jumping ahead to our construction, this locality is absolutely essential, be-
cause it bounds the amount of information that needs to be passed from a tree
node to its parent/child, and hence bounds the amount of information that
needs to pass through circuit-based stacks (see discussion in Section 5). Thus,
our reduction can use stacks of small items, each of size O(log T) bits.

The remaining details of metadata computation are not crucial for under-
standing our construction, except that they ensure eviction prevents the stash
from overflowing (except with negligible probability). For further detail, we refer
the reader to [WCS15] (see their Algorithms 2 and 3 as well as their Figure 2).

Tri-State Circuits 23

After metadata is computed, Circuit ORAM again performs a scan from root
to leaf where each node evicts (up to) one element to its child. The identity of
this child is chosen according to the metadata.

By evicting elements this way, Circuit ORAM maintains its crucial path
invariant while ensuring that the root will never overflow.

6.2 Overview of our Oblivious Tri-State RAM

In short, our oblivious tri-state RAM reuses almost every idea explained in Sec-
tion 5. It similarly maintains a binary tree of nodes, each of which conditionally
communicates with its two children via circuit-based stacks, and our RAM reads
elements by traversing paths through the tree. Our oblivious construction im-
proves over our deterministic RAM in two ways: it is oblivious, making it suitable
for crytographic use, and it is asymptotically smaller.

These properties are achieved by using tri-state circuits to directly imple-
ment the Circuit ORAM construction [WCS15]. We also leverage an insight
described by [PLS22] that allows us to use smaller circuit-based stacks, reducing
asymptotic cost. We describe our oblivious tri-state RAM by highlighting the
differences as compared to our deterministic reduction (Section 5).

Storage in every node. In our deterministic RAM, only the leaves store memory
elements. Our oblivious construction follows Circuit ORAM, where each node
can hold O(1) elements and where the root stores O(log T · log log T) elements.
When the RAM accesses an element, that element is written back to the root
(and not written directly to a leaf). These elements subsequently move down the
tree via Circuit ORAM’s eviction strategy, implemented via tri-state gates.

Multi-purpose node subcircuits. In our deterministic construction, each node
holds O(T) subcircuits, each of which completes a basic task: conditionally pop
both stacks, then join the resulting values and send them back to the parent. Our
oblivious construction’s subcircuits are more complex. They each conditionally
perform various tasks, depending on the current need of the ORAM construction.

Each subcircuit conditionally performs one of three tasks: (1) read, including
scanning the node’s local content, (2) evict, including computing appropriate
metadata and sending an element to a child, or (3) do nothing (the need for
this option is explained when we discuss “smaller stacks”). While each subcircuit
must include enough circuitry to complete any of these tasks, the subcircuit is
small. This is achieved by reusing parts of the circuit across the different possible
tasks. In particular, we need only two total calls to cpop per subcircuit.

Multiple scans. In our deterministic RAM, each access scans a path twice, from
root to leaf and then back to the root. Our oblivious tri-state RAM performs
three scans. While only two scans are needed to read, three are needed to evict.
When evicting, the RAM uses two scans to compute Circuit ORAM’s relevant
metadata, and it uses the third scan to evict elements from parent to child.

24 D. Heath, V. Kolesnikov, R. Ostrovsky

Our tri-state stacks are thus used multiple times per access: the parent sends
a message to its child, receives a message back, and then sends a second message.
We emphasize that there is no technical challenge in using a circuit-based stack
to communicate more than once: just increase the size of stack elements and
leverage tri-state semantics to send bits at the right time.

Even though our nodes use three scans, the total information flowing through
stacks remains small. In total, each node sends/receives O(log T) bits of informa-
tion. Keeping this amount of information small is crucial, because transmitted
bits pass through stacks, and hence we must pay in additional gates for every
bit of information transmitted between parent and child.

Smaller stacks. In our deterministic RAM, each node communicates with each
of its children via a circuit-based stack of size O(T). Our oblivious construction
improves on this by leveraging an elegant idea demonstrated by [PLS22], allowing
much smaller stacks that hold only O(poly(log T)) elements. The smaller stacks
account for our oblivious construction’s improved asymptotic size.

We explain [PLS22]’s observation – which is derived from an observation of
[FNR+15] – in the context of Circuit ORAM. Recall that in Circuit ORAM,
each memory access scans a uniformly chosen path.

Let B = Θ(log1+ϵ σ) denote a parameter super-logarithmic in the security
parameter for constant ϵ > 0. We call B the batch parameter. Let level 0 denote
the root of the RAM tree; each level i has 2i nodes. Consider: how often will a
particular node on level i be scanned over the course of 2i ·B accesses?

[FNR+15]’s insight is that because elements are randomly assigned to leaves,
accesses should be roughly evenly distributed amongst nodes on level i. Indeed,
it is incredibly unlikely that a particular node will be scanned significantly more
often than its peers. [FNR+15] proved that it is only negligibly likely that over
2i ·B accesses any node on level i will be used more than 2 ·B times.

The upshot is that we need never instantiate a stack with more than O(B)
entries (e.g., 256 entries in practice), since it is unlikely that we will exhaust its
entries over the course of 2i ·B accesses. Instead, every 2i ·B accesses, we insert
a reset step, forcibly clearing all stacks on level i and instantiating fresh stacks.
Since each cpop operation is made to a smaller stack, this strategy reduces stack
overhead from factor log T to factor log log T .

Smaller stacks introduce nuance in implementing node subcircuits. Consider a
particular node, consisting of many sequentially composed subcircuits. [PLS22]’s
strategy partitions these subcircuits into generations of size 2·B. After each gen-
eration, we insert a statically scheduled reset, preparing for the next generation.
For this to work, we must ensure that over the course of 2i ·B accesses, every
subcircuit in the current generation is consumed. If not, the circuit is not well
defined, since our reset will manipulate wires coming out of the generation’s last
subcircuit, and the wires of this last subcircuit are defined only if it and all of
its predecessors have been used. Thus we must ensure that each subcircuit is
ultimately used. Since subcircuits are used only if they are on a randomly chosen
path, it is highly unlikely that every subcircuit will be used up naturally.

Tri-State Circuits 25

To account for this problem, we insert additional logic allowing a parent to
burn through subcircuits in its children’s current generations. This is the role of
the do nothing subcircuit task. When a parent calls its child with a particular
flag set, the child’s subcircuit simply calls cpop on each of its respective stacks
with p = 0, and no further action is taken. This burns the subcircuit.

Because we reset level i every 2i ·B accesses, we reset level i+1 in synchrony
with one out of every two resets of level i. On each second reset of level i, we add
circuitry that causes each node on level i to call cpop on each of its stacks 2 ·B
additional times, sending a message that instructs the corresponding child to
burn a subcircuit (once all subcircuits are burned, the parent stops forwarding
this message by instead calling cpop with p = 0). a statically known state, and
we can correctly wire gates.

Oblivious Circuitry. To allow a simulator, our oblivious reduction uses oblivious
Boolean gates (see Theorem 2). There is nuance here: circuit-based stacks con-
tinue to elide obliviousness, and the role each subcircuit ends up executing (read,
evict, or do nothing) is leaked by the circuit. This leakage is fine, however, since
this information is implied by the RAM’s physical access pattern, and Circuit
ORAM ensures that the physical access pattern hides the logical access pattern.

On the other hand, some oblivious gates are required. In particular, any
circuitry that actually scans the content of a RAM node is oblivious. It is cheap
to instantiate these components with oblivious ANDs (Theorem 2).

In sum, our oblivious reduction builds on the basic ideas of Section 5, and
then layers in the key ideas of Circuit ORAM [WCS15] and of [PLS22]. Circuit
ORAM’s eviction procedure can be implemented by tri-state gates, allowing for
a lean memory structure whose access pattern can be simulated. The resulting
memory features an access pattern that touches nodes on each tree level uni-
formly, allowing us to use smaller stacks, reducing the size of circuitry required
to support intra-node communication. Together, these ideas yield a circuit that
obliviously simulates RAM and that has low poly-logarthmic overhead.

6.3 Formal Construction

We present our formal reduction from RAM to oblivious tri-state circuits in
Appendix B.3 of the full version of this paper. We emphasize that the circuit
described there is simply a formalism of the key ideas explained in Section 6.2.

7 Garbling Tri-State Circuits

In this section, we demonstrate how to garble tri-state circuits. We give two con-
structions. Our first construction garbles tri-state gates based only on one-way
functions, achieving a garbling scheme [BHR12] suited to semi-honest protocols.
Our second construction builds on authenticated garbling [WRK17] to achieve
malicious security. Both constructions leverage similar high level ideas.

26 D. Heath, V. Kolesnikov, R. Ostrovsky

Intuition. In short, garbling of tri-state circuits is similar to classic garbling of
Boolean circuits. Just as in classic garbling, the garbler G chooses two keys per
wire. One key encodes logical zero, the other encodes one. To garble the circuit,
G proceeds gate by gate. At each gate, G uses appropriate combinations of input
keys to encrypt output keys according to the gate’s function.

At runtime, the evaluator E obtains at most one key per wire. E walks the
circuit, using keys to decrypt subsequent keys until obtaining output keys.

The crucial point is this: G only chooses keys that encode 0 and 1; the
distinguished value Z is encoded by the lack of a key. If a particular wire holds
Z at halt-time, then E will never learn a key for that wire. The inability to
decrypt certain wires differentiates tri-state garbling from classic garbling.

Throughout evaluation, E will keep track of which wires are set and which
are not set. To arrange this, we reveal to E the cleartext value of every buffer
control wire. (It is easy to arrange that E learns the cleartext values of particular
wires.) Because E knows which wires hold Z and which do not, E can execute the
circuit in a dynamic order, at each step handling those gates for which input keys
are available. It is safe to reveal controls because the obliviousness (Definition 8)
of the circuit ensures that these bits give E no information about the input.

Note the fit between garbling and the out-of-order nature of tri-state circuits:
E can, of course, decrypt each GC gate as soon as matching keys are obtained,
making it easy to execute gates in an order prescribed by notify (Figure 1).

The following sections show how we garble tri-state gates. Our approaches
build on known techniques for garbling from one-way functions (e.g., see [LP09])
and for authenticated garbling [WRK17].

7.1 Tri-State Garbling from One-Way Functions

Recall that tri-state circuits include XORs, buffers, and joins. We present our
semi-honest garbling of each gate type from one-way functions.

Wire keys; point and permute. For each wire w, G uniformly samples two length-
λ keys K0

w and K1
w. The first key encodes logical zero; the second encodes one.

We use the classic point and permute trick [NPS99]. In GC, each gate uses
several ciphertexts, of which E should decrypt one. Point and permute allows
E to decrypt the correct ciphertext without using awkward tricks like trying to
decrypt a ciphertext and then checking if it decrypted correctly or not.

The trick requires that for each wire w, the least significant bits of K0
w and

K1
w differ. G conditionally flips the least significant bit of K1

w to ensure it differs
from that of K0

w. G then permutes gate ciphertexts according to these keys.
In the following, we elide details of point and permute, opting for a simpler

presentation. Appendix C of the full version presents a formal construction.

Gate Handling. With keys chosen, G garbles each gate one at a time. Consider
a gate with input wires x and y and with output wire z. Let Enc(·, ·) denote
CPA-secure encryption (which can be instantiated from one-way functions).

Tri-State Circuits 27

– XOR. For each XOR gate, G classically garbles the gate by encrypting each
output key according to the appropriate combination of inputs keys:

Enc(K0
x,Enc(K

0
y ,K

0
z)) Enc(K0

x,Enc(K
1
y ,K

1
z))

Enc(K1
x,Enc(K

0
y ,K

1
z)) Enc(K1

x,Enc(K
1
y ,K

0
z))

These four ciphertexts are shuffled according to point and permute and sent
to E. At runtime and when two input keys become available, E decrypts one
ciphertext, obtaining the corresponding output key.

– Buffer. For each buffer, G ensures that E can obtain an output key iff E
holds the one key for the control. Recall, E must learn the value of each
control. To achieve this, G send to E the least significant bit of K0

y ; E can
compare this to its own lsb and learn y. Altogether, G sends:

lsb(K0
y) Enc(K0

x,Enc(K
1
y ,K

0
z)) Enc(K1

x,Enc(K
1
y ,K

1
z))

The two encryptions are shuffled according to point and permute.
– Join. For each join, G ensures E obtains an output key if E holds any input

key. G sends the following rows (shuffled wire-wise with point-and-permute):

Enc(K0
x,K

0
z) Enc(K1

x,K
1
z) Enc(K0

y ,K
0
z) Enc(K1

y ,K
1
z)

As soon as E obtains any input key, E decrypts the appropriate ciphertext,
obtaining a corresponding output key. Here it is essential that (C,D) com-
putes a Boolean function, preventing the possibility of a short circuit (see
discussion near Definition 5) which would allow E to learn both output keys.

Sampling D. Recall that an oblivious tri-state circuit includes a distribution on
bits D. In the semi-honest setting, it is trivial to handle input randomness: G
locally samples r ∈$ D, then sends to E wire keys corresponding to r.

In sum, our OWF-based garbling scheme is simple: we gate-by-gate garble the
circuit, and each garbled gate has size O(λ) bits. E evaluates the circuit as keys
become available, implementing the dynamic behavior of the tri-state model.

Formal Construction. We present our OWF-based tri-state garbling scheme in
Appendix C of the full version of this paper. We emphasize that the presentation
there is just a formalization of the ideas presented above.

In terms of security, our proof gives a simulator and a hybrid argument
demonstrating that the garbled circuit hides the input. This proof is similar
to classic proofs of GC security, e.g. [LP09], with two key exceptions: we use
our oblivious tri-state circuit’s simulator (Definition 8) to argue that the E’s
observed order of execution can be simulated, and we use runtime acyclicity
(Definition 4) to guide our hybrid argument.

By combining facts of Appendix C with Theorem 4, we obtain:

Corollary 1 (Garbled RAM from one-way functions). Assuming one-way
functions and in the OT-hybrid model, there exists a constant-round, semi-honest
secure 2PC protocol for word-RAM programs such that for any program halting
in T steps, communication cost is O(T · log3 T · log log T · λ) bits.

28 D. Heath, V. Kolesnikov, R. Ostrovsky

7.2 Authenticated Garbling of Tri-State Circuits

In this section, we extend authenticated garbling [WRK17] to tri-state circuits.
This extension implies an efficient constant-round maliciously-secure 2PC pro-
tocol for RAM programs.

Our authenticated handling is similar to that of our standard-assumption-
based garbling (Section 7.1). We highlight the key differences:

– Doubly-authenticated labels. In standard GC, we encode each wire by a
pair of keys chosen by G. In authenticated GC, each key contains components
chosen by each party. In particular, each key includes a MAC, allowing E to
authenticate that certain values are well formed.

– Preprocessing. In Section 7.1, we allowed G to sample randomness r ∈$ D.
In the authenticated setting, we instead require that G and E jointly sample
r via a preprocessing functionality. This achieves two goals. First, it ensures
that r is indeed sampled from D, and not arbitrarily chosen by malicious G.
Second it ensures that neither G nor E knows r. This (1) prevents E from
learning wire values and (2) prevents G from performing selective abort at-
tacks. Note, prior work on authenticated garbling also leverages preprocessed
randomness in the form of doubly authenticated multiplication triples.

– Correlations; Random Oracle Assumption. In Section 7.1, we garbled
tri-state gates using only one-way functions. Our authenticated approach
uses a function H modeled as a random oracle. The use of RO stems from
correlations in wire labels. It is typical to use RO for authenticated GC.

We next describe authenticated garbling in more detail.

Garblings. The crucial authenticated GC invariant [WRK17] is that on each
wire, G and E hold XOR secret shares of two MACs, one that authenticates the
cleartext value to G and one that authenticates the cleartext value to E.

These garblings are defined over two global secrets:

– ∆ ∈$ {0, 1}λ is a global key drawn by G and hidden from E. G uses ∆ as a
key with which to encrypt gates.

– µ ∈$ {0, 1}σ is a global MAC drawn by E and hidden from G. E uses µ to
check that values opened by G are honestly constructed.

For convenience of notation, we define a value Γ ≜ ∆ || µ || 1.
As the circuit executes, for each wire holding value x, G and E will hold

XOR secret shares of the value x · Γ . We refer to these shares as garblings:

Notation 1 (Distributed Pair). We denote by ⟨⟨x, y⟩⟩ a distributed pair of val-
ues, where G holds value x and E holds value y.

Definition 11 (Garbling). Let x ∈ {0, 1,Z} be a tri-state value. The gar-
bling of x is a secret share held between G and E. G’s share is a string X ∈
{0, 1}λ+σ+1. E’s share is either (1) the symbol Z if x = Z or (2) the following:

X ⊕ (x ·∆ || x · µ || x) = X ⊕ x · Γ

Tri-State Circuits 29

We denote a garbling of x by JxK:

JxK ≜

〈〈
X,

{
Z if x = Z
X ⊕ x · Γ otherwise

〉〉
For values x ̸= Z, we refer to the ∆ component of a garbling as the key part of
the garbling, to the µ component as the MAC part, and to the third component
as the value part. We use key, mac, val to denote appropriate projections. I.e.,
when x ̸= Z, we define the following projections:

key(JxK) = ⟨⟨X0, X0 ⊕ x ·∆⟩⟩ where X0 ∈ {0, 1}λ

mac(JxK) = ⟨⟨X1, X1 ⊕ x · µ⟩⟩ where X1 ∈ {0, 1}σ

val(JxK) = ⟨⟨X2, X2 ⊕ x⟩⟩ where X2 ∈ {0, 1}
and X0 || X1 || X2 = X

Garbling XORs. Garblings are linearly homomorphic. Namely, if each party
locally XORs the shares of two garbled bits, the result is itself a garbled bit.
XOR gates are ‘free’ [KS08]:

Lemma 2 (Free XOR). JxK⊕ JyK = Jx⊕ yK

Revealing Values to E. Recall that in tri-state execution we reveal to E the
cleartext value of each control bit. In the authenticated setting, we must be
careful when revealing values. In particular, we must preserve two properties:

– Privacy. Revealed values should not leak G’s input to E. Data privacy is
preserved via tri-state obliviousness (Definition 8).

– Authenticity. Even a malicious G should not be able to reveal the wrong
value. We prevent G from cheating via the MAC µ on the revealed wire.

It is relatively straightforward for G to reveal a circuit value JxK to E. The
parties first compute:

⟨⟨X1, X1 ⊕ x · µ⟩⟩ ← mac(JxK) ⟨⟨X2, X2 ⊕ x⟩⟩ ← val(JxK)

If G is honest, G can reveal x by sending to E the strings X1 and X2. Of course,
G might attempt to cheat, so it may be the case that G sends X ′

1 ̸= X1 and
X ′

2 ̸= X2. Thus, E must check that the strings are well formed. Recall that E
knows the MAC µ. E checks the following:

X ′
1 ⊕ x′ · µ ?

= X1 ⊕ x · µ where x′ = (X2 ⊕ x)⊕X ′
2 (1)

If this passes, E is convinced that the wire indeed holds x′; otherwise, E aborts.
The above check passes whenever G indeed sends X1 and X2. Moreover,

if G attempts to cheat, then the above check will only pass with probability
negligible in σ. Indeed, to successfully reveal x ⊕ 1, G must send X ′

2 = X2 ⊕ 1
and X ′

1 = X1 ⊕ µ. However, G does not know µ, and so G’s attempt to send
X1 ⊕ µ requires guessing µ, which succeeds with probability at most 1/2σ.

30 D. Heath, V. Kolesnikov, R. Ostrovsky

Note that obliviousness ensures that each revealed value x can be simulated.
This is important not only for protecting G’s privacy, but also for protecting E’s.
In particular, G cannot employ a selective abort attack. Without obliviousness, G
could cause E’s check to fail iff x has a particular value; E’s choice to abort/not
abort reveals to G information about x. Indeed, G can still attempt such an
“attack”. However, the attempt is useless, since it only reveals information about
a control wire which, by obliviousness, can be simulated anyway. Note that this
argument crucially relies on the fact that G does not know the circuit randomness
r ∈$ D, which is one reason r must be jointly computed in preprocessing.

Authenticated Buffers. Consider a buffer with data input JxK and control JsK.
Suppose s ̸= Z and x ̸= Z. We show how the parties compute Jx / sK.

First, the parties reveal the control s to E, as described above. Now, let:

⟨⟨S, S ⊕ s ·∆⟩⟩ = key(JsK) ⟨⟨X,X ⊕ x · Γ ⟩⟩ = JxK

Honest G wishes to let E propagate JxK to the gate output iff s = 1. The parties
publicly agree on gate-specific nonce ν, and G sets its output share as follows:

Y ≜ H(S ⊕∆, ν)⊕X

At runtime, E checks if s = 1. Note that if s = 1, in an honest execution E
holds S ⊕∆. In this case, E computes:

H(S ⊕∆, ν)⊕ (X ⊕ x · Γ) = (Y ⊕X)⊕ (X ⊕ x · Γ) = Y ⊕ x · Γ

E places this value on the output wire, matching G’s share Y . Thus, if s = 1,
the output wire holds JxK, as prescribed by buffer semantics. If instead s = 0
then the gate is indeed inactive: E cannot compute H(S⊕∆, ν) without S⊕∆.

Thus, a buffer is implemented by G revealing one value and having each party
compute H at most once.

Authenticated Joins. Consider a join with inputs JxK and JyK and suppose that
at runtime at least one input is set. We show how the parties compute Jx ▷◁ yK.

Let the shares of JxK, JyK be as follows:

JxK = ⟨⟨X,XE⟩⟩ = ⟨⟨X,X ⊕ x · Γ ⟩⟩ JyK = ⟨⟨Y, YE⟩⟩ = ⟨⟨Y, Y ⊕ y · Γ ⟩⟩

G sets its output share as X. Thus, if x ̸= Z is set, then E simply copies its share
X ⊕ x ·Γ onto the gate output wire. If instead x = Z, then E must translate its
share Y ⊕ y ·Γ to a format compatible with G’s share. Hence, G includes in the
GC the message X ⊕ Y , which E can use to compute a matching share:({

XE if y = Z
YE ⊕X ⊕ Y if x = Z

)
=

({
X ⊕ x · Γ if y = Z
X ⊕ y · Γ if x = Z

)
= X ⊕ (x ▷◁ y) · Γ

Thus, a join is implemented by having G send one correction value, which E
conditionally XORs with its local value.

Tri-State Circuits 31

In sum, the authenticated garbling of tri-state gates is a relatively straightfor-
ward extension of existing techniques. Adding a MAC to each key prevents G
from arbitrarily flipping wire values. Crucially, it remains possible for G to reveal
values to E, allowing E to execute the dynamic behavior of the tri-state model.

Communication cost of our protocol is low. For example, plugging in The-
orem 2, we evaluate an oblivious AND gate using an authenticated triple and
2λ+ 4σ + 2 additional communicated bits (two buffers, two joins). This is only
slightly worse than the authenticated AND garbling of [KRRW18], which con-
sumes an authenticated triple and 2λ+1 additional bits. For typical parameters
λ = 128 and σ = 40, our approach is less than 2× worse. Optimizations of
[KRRW18] can likely be integrated with TSC handling, improving performance.

Formal Construction. We defer our full malicious protocol to Appendix D of
the full version. Our protocol and its security proof are very similar to those of
[WRK17], with the crucial difference that we use the above gate handling.

By combining facts proved in Appendix D with Theorem 4, we trivially obtain
the following corollary:

Corollary 2 (Authenticated Garbled RAM). In the random oracle/OT-
hybrid model, there exists a constant-round, maliciously-secure 2PC protocol for
word RAMs such that for any program halting in T steps, communication cost
is O(T · log3 T · log log T · λ) bits.

Acknowledgements. Distribution Statement “A”: (Approved for Public Re-
lease, Distribution Unlimited). This research was developed with funding from
the Defense Advanced Research Projects Agency (DARPA), supported in part
by DARPA under Cooperative Agreement HR0011-20-2-0025, and DAPRA Con-
tract No. HR001120C0087, Algorand Centers of Excellence programme man-
aged by Algorand Foundation, NSF grants CNS-2246353, CNS-2246354, CNS-
2246355, CNS-2001096 and CCF-2220450, US-Israel BSF grant 2015782, Ama-
zon Faculty Award, Cisco Research Award and Sunday Group. Any views, opin-
ions, findings, conclusions or recommendations contained herein are those of the
author(s) and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA, the Department of Defense,
the Algorand Foundation, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copyright annotation therein.

References

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–
432. Springer, Heidelberg, August 1992.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

32 D. Heath, V. Kolesnikov, R. Ostrovsky

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive
succinct garbled RAM or: How to delegate your database. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 61–90. Springer, Heidelberg, October / November 2016.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu
Sudan, editor, ITCS 2016, pages 169–178. ACM, January 2016.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng
Zhou. On the security of the “free-XOR” technique. In Ronald Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 39–53. Springer, Heidel-
berg, March 2012.

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages
57–87. Springer, Heidelberg, August 2022.

[FNR+15] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil
Stefanov. Bucket ORAM: Single online roundtrip, constant bandwidth
oblivious RAM. Cryptology ePrint Archive, Report 2015/1065, 2015.
https://eprint.iacr.org/2015/1065.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure
multiparty RAM computation in constant rounds. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
491–520. Springer, Heidelberg, October / November 2016.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova,
and Daniel Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elis-
abeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
405–422. Springer, Heidelberg, May 2014.

[GLNP18] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. Journal of Cryptology, 31(3):798–844,
July 2018.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM.
In Venkatesan Guruswami, editor, 56th FOCS, pages 210–229. IEEE Com-
puter Society Press, October 2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled
RAM from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 449–458. ACM Press, June 2015.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[Hag98] Torben Hagerup. Sorting and searching on the word ram. In Michel Morvan,
Christoph Meinel, and Daniel Krob, editors, STACS 98, pages 366–398,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, Au-
gust 2016.

[HKO22] David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky. EpiGRAM: Prac-
tical garbled RAM. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 3–33. Springer,
Heidelberg, May / June 2022.

Tri-State Circuits 33

[HY16] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-
party computation in the RAM model. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 521–
553. Springer, Heidelberg, October / November 2016.

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Op-
timizing authenticated garbling for faster secure two-party computation.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 365–391. Springer, Heidelberg, Au-
gust 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious
and covert adversaries. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 1–17. Springer, Hei-
delberg, August 2013.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 719–734. Springer, Heidelberg, May 2013.

[LO17] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, vol-
ume 10402 of LNCS, pages 66–92. Springer, Heidelberg, August 2017.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LY18] Yehuda Lindell and Avishay Yanai. Fast garbling of circuits over 3-valued
logic. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I,
volume 10769 of LNCS, pages 620–643. Springer, Heidelberg, March 2018.

[Mia20] Peihan Miao. Cut-and-choose for garbled RAM. In Stanislaw Jarecki,
editor, CT-RSA 2020, volume 12006 of LNCS, pages 610–637. Springer,
Heidelberg, February 2020.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Proceedings of the 1st ACM conference on
Electronic commerce, pages 129–139. ACM, 1999.

[PLS22] Andrew Park, Wei-Kai Lin, and Elaine Shi. NanoGRAM: Garbled RAM
with Õ(logN) overhead. Cryptology ePrint Archive, Report 2022/191,
2022. https://eprint.iacr.org/2022/191.

[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating
the half-gates lower bound for garbled circuits. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–
124, Virtual Event, August 2021. Springer, Heidelberg.

[Sch80] A. Schönhage. Storage modification machines. SIAM Journal on Comput-
ing, 9(3):490–508, 1980.

[SvS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 299–310. ACM Press, November
2013.

34 D. Heath, V. Kolesnikov, R. Ostrovsky

[WCS15] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On tight-
ness of the Goldreich-Ostrovsky lower bound. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, ACM CCS 2015, pages 850–861. ACM
Press, October 2015.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling
and efficient maliciously secure two-party computation. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 21–37. ACM Press, October / November 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 1627–1646. ACM Press, November 2020.

[ZE13] Samee Zahur and David Evans. Circuit structures for improving efficiency
of security and privacy tools. In 2013 IEEE Symposium on Security and
Privacy, pages 493–507. IEEE Computer Society Press, May 2013.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

Tri-State Circuits 35

Appendices

A Tri-State Circuit Properties

Lemma 1 (Halt-Time State Unique). Let C be a TSC that, on input x and
for some sequence of calls to notify, reaches a halt-time state wires. Any sequence
of calls to notify reaching a halt-time state will reach the same state wires.

Proof. By the monotone semantics of tri-state gates.
We induce a partial order on values computed by tri-state gates:

Z < 0 Z < 1 0 < ⊥ 1 < ⊥

We extend this partial order to wirings (collections of tri-state values) in the
natural manner: one wiring is less or equal to another if each of its wires is less
than or equal to those of the other.

We argue that while gates can change C’s wiring, they can only do so by
increasing wire values according to this order. Ultimately, this means that the
halt-time state is a function of C and x alone, not a function of the order in
which we call notify .

Consider the gate functions {⊕, /, ▷◁}, extended to ⊥ in the natural manner:
each gate outputs ⊥ if either input is ⊥. By inspection of Figure 1, we see that
each extended gate function is monotone with respect to our partial order: if we
increase a gate input, its output will also increase (or stay the same).

For each gate gate, let notify(w, gate) denote an induced function that takes
as input one wiring w and outputs a new wiring w′ updated by the effect of
gate. Because the function of gate is monotone, the function notify(·, gate) is
also monotone:

w0 ≤ w1 =⇒ notify(w0, gate) ≤ notify(w1, gate)

Monotone functions are closed under composition, so any sequence of calls to
notify is also monotone.

Let f denote the monotone function computing the considered sequence of
calls notify leading to halt-time state wires. Now, consider an arbitrary sequence
of calls to notify leading to some halt-time state, and let g be a function com-
puting this sequence. Let wires0 denote the initial state of the wiring for C; i.e.,
the input wires are set to x and all non-inputs are Z. By definition, we have
that f(wires0) = wires. Our overall goal is to prove that g(wires0) = wires.

First, note that wires0 ≤ wires. Indeed, wires0 is Z everywhere except at
the inputs, where it stores x. All values are by definition greater than or equal
to Z, and by definition wires also has inputs that store x (or all ⊥). Thus,
wires0 ≤ wires holds.

Now, we claim that the following must hold:

g(wires0) ≤ g(f(wires0))

36 D. Heath, V. Kolesnikov, R. Ostrovsky

This is immediate by the fact that f and g are monotone. And wires is a halt-
time state, so by definition it must be that:

g(f(wires0)) = g(wires) = wires

Thus, g(wires0) ≤ wires.
To close, we must rule out the possibility that g(wires0) < wires. In particu-

lar, this would imply that there is some sequence of calls to notify that reaches
some halt-time state which is strictly less than wires.

This is impossible. Indeed, suppose, for sake of deriving a contradiction, that
g(wires0) < wires. Note that wires0 ≤ g(wires0), using the same logic as we
used to prove wires0 ≤ wires. Now, suppose we apply f to the halt-time state
g(wires0). The following holds by monotonicity:

f(g(wires0)) ≥ f(wires0)

Thus, f(g(wires0)) ≥ wires. In other words, g(wires0) < wires cannot hold,
because we can still change the wiring by applying f , and this will take us to a
state at least as high as wires, a contradiction.

In sum, it must be that g(wires0) = wires, so a tri-state circuit reaches a
unique halt-time state, regardless of the order in which we call notify .

B Tri-State RAM Constructions

In this section, we formalize our reductions from RAM to deterministic and
oblivious tri-state circuits. The main ideas of these reductions are explained in
Sections 5 and 6.

B.1 Stacks and Co-Stacks

As described in Section 5.1, circuit-based stacks are essential components in our
RAM constructions. Prior work has demonstrated how to construct (Boolean)
circuit-based stacks, see [ZE13].

Recall that a stack of size n supports m conditional pop operations. We define
a tri-state-circuit-based stack’s cpop operation. Let w denote the bit-width of
stack elements. Each cpop operation takes as argument a single bit p and a stack
with content x0, x1, ..., and computes:

cpop(p,Stack(x0, x1, ...)) =

{
Zw,Stack(x0, x1, ...) if p = 0

x0,Stack(x1, ...) otherwise

I.e., if p = 0, the stack returns nothing and its contents remain unchanged; if
p = 1, the stack indeed pops: it evicts and returns its top element.

In short, our handling of tri-state stacks is identical to that of the Boolean-
circuit-based construction of [ZE13], except that we replace AND gates by buffers
and we replace XOR gates by joins. For completeness, we provide a procedure
that constructs a tri-state-circuit-based stack in full formal detail in Figure 3.

Tri-State Circuits 37

1 procedure stack(w, ps, xs) :

2 if |xs| = 0 :

3 return empty-string

4 n← |xs|/w ; m← |ps|
5 slot0 ← xs[0 : w] ; slot1 ← xs[w : 2w] ; slot2 ← xs[2w : 3w]

6 vac0 ← 0 ; vac1 ← 0 ; vac2 ← 0

7 subprocedure slide-vacs(s) :

8 vac0 ← (vac1/s) ▷◁ (vac0/¬s)
9 vac1 ← (vac2/s) ▷◁ (vac1/¬s)

10 vac2 ← (1/s) ▷◁ (vac2/¬s)

11 ss ← 0m/2 ; ps ′ ← 0m/2

12 for i ∈ [n] :

13 out ← out || (slot0/ps[i])
14 slide-slots(ps[i])

15 if i is odd :

16 ss[i/2]← vac0

17 ps′[i/2]← vac1

18 vac1 ← 0

19 vac2 ← (0/ps′[i/2]) ▷◁ (vac2/¬ps′[i/2])
20 slide-slots(vac0)

21 reload ← stack(2w, ps ′, xs[3w :])

22 subprocedure slide-slots(s) :

23 slot0 ← (slot1/s) ▷◁ (slot0/¬s)
24 slot1 ← (slot2/s) ▷◁ (slot1/¬s)
25 slot2 ← slot2/¬s
26 out ← empty-string

27 for i ∈ [n] :

28 out ← out || (slot0/ps[i])
29 slide-slots(ps[i])

30 if i is odd :

31 slot1 ← refill [(i− 1)w : iw] ▷◁ (slot1/¬ps ′[i/2])
32 slot2 ← refill [iw : (i+ 1)w] ▷◁ (slot2/¬ps ′[i/2])
33 slide-slots(ss[i/2])

34 return out

Fig. 3: A tri-state circuit construction of a stack data structure. Our construction
is based on the Boolean stack structure described of [ZE13].

38 D. Heath, V. Kolesnikov, R. Ostrovsky

slot0 slot1 slot2

slot ′0 slot ′1 slot ′2

s

⊕

1 1

⊕

slot0 slot1 slot2

slot ′0 slot ′1 slot ′2

s

stack co-stack

co
n
tr
o
ls

co
n
tr
o
ls

inputs

outputs inputs

outputs

co-stack stackco-stackstack

right childleft child

Fig. 4: Top left: This particular tri-state circuit, which we denote slide, is a
useful sub-circuit in the construction of tri-state stacks. The subcircuit takes
three data inputs – slot0, slot1, slot2 – and one control input s. Depending on
s, the circuit either slides each slot one position to the left, or leaves them as is.
Top right: our tri-state co-stack is constructed by simply reversing the direction
of buffers that operate on stack content and placing joins appropriately. We
demonstrate this by showing the co-slide component of our co-stack. Middle:
Stacks take as input n data elements and spread them out over m > n pops.
The controls of the stack activate certain combinations of buffers to transport
data to the correct output wires. Co-stacks run the stack mechanisms backwards,
compressing n data elements into m < n locations. Bottom: Our RAM nodes
use co-stacks to send messages to their children and stacks to receive responses.

Tri-State Circuits 39

Co-Stacks. Stacks take n elements and spread them across m > n pops. In our
RAM constructions, this mechanism allows a parent node to receive messages
from its children. However, stacks are not useful for allowing a parent to send
messages to its children. For this, we want a capability whereby – instead of
spreading messages out – we can compress messages together, allowing the parent
to send only a subset of its outgoing messages to each of its children.

While the intuition of the need of this capability is somewhat unnatural, the
solution is almost trivial: just reverse the direction of buffers inside the stack
(see Figure 4). This immediately arranges that each message sent by the parent
can be routed to the appropriate input port of a child. We call this reversed
construction a co-stack.

Our RAM constructions each utilize stacks and co-stacks to allow binary tree
nodes to communicate.

B.2 A Deterministic Tri-State Circuit for RAM Programs

Construction 1 (Deterministic Tri-State RAM). Our reduction from RAM to
a deterministic tri-state circuit is the circuit described in the following text of
this subsection.

WLOG, assume that T is a power of two. Our RAM construction consists of
several components:

– T state machine steps, implementing basic instruction handling.
– A main memory allowing T accesses.
– O(log T) position maps, allowing the machine to remember where in memory

it stored each memory element.

In the following formalism, we focus only on the main memory. Each state ma-
chine step can be implemented from Boolean logic alone, and the position maps
are simply recursive instantiations of the following procedure.

Since runtime is bounded by T , we know there are at most T memory ac-
cesses. We will initialize a binary tree of tri-state circuits where data elements
are stored at the leaves of the tree.

The RAM binary tree. Initialize a binary tree of circuits with 2 · T leaves, suffi-
cient for T reads. Let level 0 denote the root. Hence, level i consists of 2i nodes.
Let level ℓ denote the largest level of the tree; level ℓ holds 2ℓ = 2 · T nodes.

We initialize memory by storing 0 in each of the first T leaves; the remaining
T leaves are reserved for storing updated elements. We similarly initialize the
position map by indicating that each element i is stored at position i.

We arrange that each node on level i can handle 2ℓ−i RAM reads, corre-
sponding to the number of elements stored in the subtree rooted at that node.
To do so, we equip each node with two stacks and two co-stacks, each storing
2ℓ−i−1 elements and allowing 2ℓ−i pops. Each node on level i is also equipped
with 2ℓ−i input ports and 2ℓ−i output ports.

40 D. Heath, V. Kolesnikov, R. Ostrovsky

Connections between nodes. Notice that we have arranged that the number of
outputs of each co-stack in each node matches the number of input ports of
each child; similarly, the number of inputs to each stack matches the number
of output ports. We connect these stack wires to these ports. Namely, for each
node, we connect each output j of its left co-stack with input port j of its left
child. Similarly, we connect each input j of its left stack with output port j of
its left child. Symmetrically connect the right stack/co-stack to the right child.

For each non-leaf node, we construct 2ℓ−i internal subcircuits, each of which
is responsible for reading from one input port and writing to one output port.
Each j-th such circuit performs the following task:

1. Read the ℓ− i bits on input port j and interpret them as an address.
2. Split the address into (1) its most significant bit and (2) all other bits. Let

pj denote the most significant bit and let restj denote all other bits.
3. Call cpop on each stack and co-stack using pj as a control bit such that the

left stack/co-stack pops iff pj = 0, and the right ones iff pj = 1.
4. Load restj into input j of each co-stack, forwarding the remaining bits of the

address to the active child node. Note: formally, we are simply describing
the static structure of a tri-state circuit. Crucially, during evaluation, once
this node loads a value into each co-stack, all relevant inputs are delivered
to an input port of (only!) the active child. The dynamic nature of tri-state
circuit semantics will kick in, causing (only) a circuit inside the active child
to run. This will recursively invoke the currently described circuit in the
active child node. Once execution reaches the appropriate leaf, we have set
up a path from that leaf to the root. The leaf node’s value will then flow
back up the tree, through each stack on the active path, eventually reaching
the stack of this node.

5. Since the left stack is connected to the left child, the j-th output port of the
left stack will hold the output of the left child, if the left child is active. If
the left child is not active, this output port will instead hold Z. The same
respectively holds for the right stack/right child.
Read the output j-th port of each stack, join those wires together, and store
the result in the j-th output port.

Leaf nodes are different. Each leaf node has a single input port and a single
output port. Each leaf’s input port is not connected to the co-stack of its par-
ent. Later, we will instead connect leaf input ports to the RAM state machine
circuit, allowing the RAM to write to some leaf at each step. Leaf nodes simply
connect their input ports to their output ports. Note that each leaf output port
is connected to its parent’s stack, allowing each written element to flow to the
parent.

Thus, main memory consists simply of a tree of nodes, each of which holds two
stack/co-stacks. The leaves hold memory elements, and the RAM state machine
can read from a particular leaf by passing its index to the tree root.

Theorem 5. For runtime T ∈ N, let C denote Construction 1 instantiated for
runtime T .

Tri-State Circuits 41

1. C T -emulates a RAM.
2. C is quasilinear in size. Namely, |C| = O(T · log4 T).
3. C is runtime acyclic (Definition 4)

Proof. The fact that Construction 1 achieves RAM has already been argued
extensively. However, we briefly restate the main points.
C achieves RAM because the machine’s state machine can at each step read

an arbitrary element from a memory of size T , achieving the crucial random
access capability. Other operations, such as addition/comparison/multiplication
of words are achieved by Boolean circuits implemented as part of the machine’s
basic step operation.
C’s circuit size is dominated by the memory structure itself. As argued in

Section 5.2, there are four sources of this scaling: (1) word size, (2) the depth of
the binary tree, (3) the size of the stack circuit structure, and (4) the number of
position maps. Each of these sources contribute factor log T scaling, leading to
a circuit with total O(T · log4 T) total gates.

The fact that C is runtime acyclic (Definition 4) is based on the fact that
each traversal of the binary tree is determined by a value accessed prior to that
traversal. Note that the main concern that a runtime cycle might exist is that
it might be possible for a step of RAM computation to read its own (future)
write. However, this possibility is ruled out by the internal logic of the RAM
circuit, which uses position maps to store the locations of the current memory
elements. At the time a RAM step reads from memory, it is not possible that the
position map stores the position where the current RAM step will later write,
since only after the RAM step writes do we write back the new position to the
position map. Thus, it is not possible for the RAM step to read its own write.
This implies a pebbling strategy by which we can pebble gates following traversal
paths through the RAM tree.

B.3 An Oblivious Tri-State Circuit for RAM Programs

Construction 2 (Oblivious Tri-State RAM). Our reduction from RAM to a
oblivious tri-state circuit is the circuit described in the following text of this
subsection.

As with Construction 1, we focus only on the handling of main memory,
ignoring the details of position maps and state machine execution.

WLOG, let T be a power of two. Set batch parameter B = Θ(log1+ϵ σ). Set
node storage parameter Z = O(1).

Arrange a binary tree of 2 · T leaves. Equip each node with a local storage
sufficient for Z data elements. Each slot of local storage consists of three values:

– A single bit that denotes whether or not this slot is vacant.
– An (ℓ− i)-bit address, indicating which element (if any) is stored here.
– A O(log T)-bit data element.

42 D. Heath, V. Kolesnikov, R. Ostrovsky

Let level 0 denote the tree root; each level i has 2i nodes. Let level ℓ, which
holds 2ℓ nodes, denote the largest level of the tree.

Consider a node on level i. This node contains 2ℓ−i+1 internal subcircuits.
We split these subcircuits into generations, where each generation has 2B subcir-
cuits. We equip each generation with two stacks and two co-stacks, each storing
2B elements and allowing 4B pops. Each subcircuit additionally has one input
port of size O(log T) and one output port of size O(log T) which will be later
connected to the node’s parent.

As an additional detail, we equip each stack/co-stack with a length log(2B+
1) Boolean-circuit-based O(logB)-bit counter. When the stack is popped with
p = 1, we increment the counter; otherwise we leave the counter as is. These
counters allow us to track the number of elements remaining in each stack.

Consider the j-th subcircuit in a generation. This j-th circuit performs the
following task:

1. Read the input port. Split the first two bits from the input and interpret
them as a type indicator type. type can take on three different values:

type ∈ {dummy , read , evict}

2. Depending on type, the circuit conditionally performs one of three possible
tasks. Since this is a circuit, we in fact perform actions corresponding to
all three tasks, but we must propagate the changes corresponding to the
requested task only. We present the tasks from least to most complex:

3. Dummy.
(a) Note: a circuit is instructed to perform a dummy operation when its

parent needs to burn a child subcircuit.
(b) To implement a dummy operation, set control bit j of each stack/co-

stack to 0, indicating a pop should not occur.
(c) Store the all Z string on the output port.

4. Read.
(a) Split the next ℓ − i bits from the input port and interpret them as an

address addr .
(b) Further split addr into its most significant bit pj and the remaining bits

rest .
(c) Set the j-th control bit of its left stack/co-stack to 1⊕pj and of the right

stack/co-stack to pj .
(d) Store rest onto the j-th output of each co-stack, forwarding the remaining

bits of the address to the active child.
(e) Split O(log T) bits from the j-th output of the left stack, and call these

bits child0. Similarly, split O(log T) bits from the j-th output of the right
stack, and call these bits child1.

(f) Compute val = child0 ▷◁ child1.
(g) This node’s local storage might hold the desired RAM element. If so, we

should remove that value from local storage and return. We use oblivious
Boolean gates to scan local storage, searching for a matching address.

Tri-State Circuits 43

I.e., for each k ∈ [Z], let (vack, addrk, valk) denote the k-th entry. Then
update (using oblivious Boolean gates) val and vack via the following
computation:

matchk ← ¬vack ∧ (addr
?
= addrk)

val ← matchk ? valk : val

vack ← matchk ? 1 : vack

I.e., either (1) val holds a value propagated by a child or (2) local storage
contains exactly the desired element, and now val stores a copy of that
element.

(h) Store val on the output port.
5. Evict.

(a) Split the next ℓ − i bits from the input port and interpret them as an
address addr .

(b) Further split addr into its most significant bit pj and the remaining bits
rest .

(c) Metadata scan 1. We refer the reader to [WCS15], Algorithm 2 for
details of the following. Split the next O(log T) bits from the input port
and interpret them as two values: (1) src, which indicates an element cur-
rently residing higher up a path passing through this node and (2) goal ,
which indicates ‘along this path, what is the maximum tree depth that an
element currently residing above the considered node can legally reside
(according to the path invariant)’. Update src and goal , and compute
a value deepest by scanning local storage and using oblivious Boolean
gates (recall, i denotes the tree level of this node):

deepest ←

{
src if goal ≥ i

⊥ otherwise

ℓ← deepest level that a local element can legally reside

goal ′, src′ ←

{
ℓ, i if ℓ > goal

goal , src otherwise

Store deepest in the subcircuit, ready to be used in Metadata scan 2. Set
goal ′ and src′ on the co-stack output wires, sending these values to the
active child.

(d) Set the j-th control bit of its left stack/co-stack to 1⊕pj and of the right
stack/co-stack to pj .

(e) Split O(log T) bits from the j-th output of the left stack, and call these
bits child0. Similarly, split O(log T) bits from the j-th output of the right
stack, and call these bits child1.

(f) Compute val = child0 ▷◁ child1.
(g) Metadata scan 2. We refer the reader to [WCS15], Algorithm 3 for

detail of the following. Split the first O(log T) bits from val . Interpret

44 D. Heath, V. Kolesnikov, R. Ostrovsky

these bits as two values: (1) src, which indicates a level which should
evict an element and (2) dest , which indicates the level to which the
evicting level should send its element to. Recall, in Metadata scan 1, we
computed a value deepest . Update src and dest , and compute a value
target by scanning local storage and using oblivious Boolean gates:

target , dest ′, src′ ←

{
dest ,⊥,⊥ if i = src

⊥, dest , src otherwise

can-drop ← (dest ′ = ⊥) and there is a vacancy in local storage

src′′, dest ′′ ←

{
deepest , i if (can-drop ∨ (target ̸= ⊥)) ∧ (deepest ̸= ⊥)
src′, dest ′ otherwise

Store target in the subcircuit, ready to be used in the Eviction scan.
Append src′′, dest ′′ to the output port, sending them back to the parent.

(h) Eviction scan. We refer the reader to [WCS15], Algorithm 4 for detail
of the following. Split the next O(log T) bits from the input port, and
interpret them as two values: (1) hold , which stores an evicted element
from the parent and (2) dest , which indicates the level where the held
element should be dropped. Use oblivious Boolean circuitry and target
(saved from Metadata scan 2) to appropriately update hold , dest , and
the local storage:

to-write, hold ′, dest ′ ←

{
hold ,⊥,⊥ if (hold ̸= ⊥ ∧ (i = dest)

⊥, hold , dest otherwise

Next, the subcircuit obliviously scans local storage. If target ̸= ⊥, then
this scan reads and removes the element that can legally be placed lowest
in the tree, storing the evicted element in evicted . Else, evicted is set to
⊥. If to-write ̸= ⊥, then the subcircuit obliviously saves to-write in the
first vacant slot of local storage. The node computes one more update:

hold ′′, dest ′′ ←

{
evicted , target iftarget ̸= ⊥
hold ′, dest ′ otherwise

The subcircuit appends hold ′′ and dest ′′ to the output ports of the co-
stacks, sending these values to the active child.

Each internal node additionally consists of reset steps between generations of
subcircuits. The following idea handling was described by [PLS22]. Between ev-
ery 2B subcircuits, we place a piece of circuitry that resets the node’s stacks/co-
stacks. These reset steps alternate in their behavior:

– Odd reset steps. On each odd reset, we flush the stacks/co-stacks by calling
cpop with p = 1 until the local counters indicate the stacks are empty. Then,
we continue calling cpop with p = 0 until we have exhausted all allocated

Tri-State Circuits 45

cpop operations. We use the flushed content to initialize fresh stacks/co-
stacks. This connects the next generation of subcircuits in this node to the
inputs/outputs of the current generation of each child.

– Even reset steps. On each even reset step, the reset synchronizes with the
reset step of each child. We first burn child subcircuits by sending a dummy
signal to each child until the local counters indicate we have burned all child
subcircuits. Then, we continue calling cpop until all allocated cpops are used.
Next, we construct fresh stacks/co-stacks that connect to the input/output
ports of the next generations of child subcircuits.

After the reset step is complete, we move to the next generation of node subcir-
cuits.

The root of the tree is implemented differently only in that its local storage
is a stash of size O(log T · log log T). On any scan of local storage, the root scans
its entire larger storage.

On each access, our state machine first consults the position map to learn the
path corresponding to the desired memory element. It then loads this address
into the root of the tree. The tree attaches a read tag to this message, then the
read scan begins. Based on the above described structure, this scans the target
path and returns the target element. The write-back element is stored in the
stash.

The element is assigned a leaf uniformly at random. Thus, the ORAM-specific
randomness is just uniformly random values between 0 and 2T , which is easily
arranged by sampling uniform bits. This ensures that the circuit’s random dis-
tribution D is simple.

Next, two paths are evicted. We employ [WCS15]’s deterministic eviction
strategy ([WCS15], Algorithm 6). This strategy ensures that each node on level
i is evicted only once every 2i evictions. This infrequent eviction is crucial, as it
ensures that [PLS22]’s sparse node usage argument still holds, and we can get
away with stacks of size B.

Theorem 6. For runtime T ∈ N, let (C,D) denote Construction 2 instantiated
for runtime T .

1. (C,D) obliviously T -emulates a RAM.
2. C is quasilinear in size. Namely, |C| = O(T · log3 T · log log T).
3. C is runtime acyclic (Definition 4).

Proof Sketch. There are two basic ideas that need to be argued: (1) the proba-
bility of failure is low and (2) the circuit has a simulator.

We sketch the proof at a high level. First, the circuit can ‘fail’ in two ways:

1. The stash overflows.
2. We exhaust a stack early.

Each of these events are negligibly unlikely in T . The first is argued in detail by
[WCS15]; the second is argued in detail by [PLS22].

46 D. Heath, V. Kolesnikov, R. Ostrovsky

We emphasize again that our circuit verbatim implements the Circuit ORAM
algorithm, which ensures each path is traversed randomly. This ensures that each
node is accessed only infrequently, and allows us to compress our stacks to size
O(B) while avoiding non-negligible failure probability [PLS22].

The fact that we employ Circuit ORAM is also the basis of our circuit’s
simulator. In short, our simulator uses the Circuit ORAM simulator to simulate
access patterns, and then within each access is simulates AND gate behavior via
the simulator given in Theorem 2.

We argue that C is ‘small’. As argued in Section 5.2, there are four sources
of this scaling: (1) word size, (2) the depth of the binary tree, (3) the size of
the stack circuit structure, and (4) the number of position maps. As compared
to Construction 1, Construction 2 uses smaller stacks, and hence incurs only
O(logB) = O(log log T) cost per cpop operation. The other three sources of
scaling continue to contribute O(log T) scaling. In total, the T steps require
O(T · log3 T · log log T) gates.

Finally, the fact that C is runtime acyclic follows exactly the same argument
as in Theorem 5: the logic of position maps mean that it is impossible for a RAM
step to read its own write, ruling out cycles. The pebbling strategy follows the
traversal order of the RAM tree.

C Standard-Assumption-Based Tri-State Circuit
Garbling Scheme

In this section, we formalize our standard-assumption-based garbling scheme for
tri-state circuits.

C.1 Garbling Scheme Definitions

A garbling scheme [BHR12] is a collection of procedures, not a protocol. Its
procedures specify G’s and E’s handling, and can be used as a building block
for achieving secure protocols.

Definition 12 (Garbling Scheme [BHR12]). A garbling scheme for a class
of programs is a tuple of procedures:

(Garble, Encode, Eval, Decode)

– Garble(1λ, P) 7→ (P̂ , e, d) takes as input a program P and outputs (1) a gar-
bled program P̂ , (2) an input encoding string e, and (3) an output encoding
string d. Informally, Garble specifies how G garbles the program.

– Encode(e, x) 7→ x̂ takes as input an input encoding string e and a cleartext
input x. It outputs an encoded input X. Note: Encode acts as a specification,
formalizing how cleartext inputs should be encoded. In protocols, the parties
typically implement Encode via oblivious transfer.

– Eval(P, P̂ , x̂) 7→ ŷ takes as input (1) a program P , (2) a garbled program
P̂ , and (3) an encoded input x̂. It outputs an encoded output ŷ. Informally,
Eval specifies how E evaluates the garbled circuit.

Tri-State Circuits 47

– Decode(d, ŷ) 7→ y takes as input (1) an output decoding string d and (2) an
encoded output ŷ. It outputs either y, the encoded output, or ⊥, indicating a
failure to correctly decode.

[BHR12] consider the garbling scheme properties of correctness, oblivi-
ousness, authenticity, and privacy:

Definition 13 (Scheme Correctness). A garbling scheme is correct if for
all programs P and all input strings x of appropriate length:

Decode(d, Eval(P, P̂ , Encode(e, x))) = P (x) where (P̂ , e, d)← Garble(1λ, P)

Definition 14 (Scheme Obliviousness). A garbling scheme is oblivious if
there exists a simulator Sobv such that for any program P and all inputs x of
appropriate length, the following are indistinguishable:

(P̂ , Encode(e, x))
c
= Sobv (1λ, P) where (P̂ , e, ·)← Garble(1λ, P)

Definition 15 (Scheme Authenticity). A garbling scheme is authentic if
for all programs P , all inputs x of appropriate length, and all PPT adversaries
A the following probability is negligible in λ:

Pr(y′ ̸= Eval(P, P̂ , Encode(e, x)) ∧ Decode(d, y′) ̸= ⊥)
where (P̂ , e, d)← Garble(1λ, P) and where y′ ← A(P, P̂ , Encode(e, x))

Definition 16 (Scheme Privacy). A garbling scheme is private if there ex-
ists a simulator Sprv such that for any program P and all inputs x of appropriate
length, the following are computationally indistinguishable:

(P̂ , Encode(e, x), d)
c
= Sprv (1λ, P, P (x)) where (P̂ , e, d)← Garble(1λ, P)

In practice, the most interesting of these is obliviousness. Obliviousness en-
sures that the garbled circuit reveals no information to E, a basic property
needed to achieve secure protocols. While privacy and authenticity do not tech-
nically follow from obliviousness, in typical garbling schemes (including ours),
these properties do follow straightforwardly from obliviousness. We refer the
reader to [HKO22] for proofs of these properties.

In the following sections, we construct our standard-assumption-based scheme,
then prove it satisfies obliviousness.

C.2 Standard-assumption-based tri-state garbling.

Construction 3 (One-Way-Function-Based Tri-State Garbling Scheme). Our
one-way-function-based garbling scheme for tri-state circuits is the collection
of procedures defined in the remainder of this section. We assume a procedure
Enc(·, ·) which takes as argument a key and a message satisfying the notion of
CPA security. Enc can be instantiated from one-way functions.

48 D. Heath, V. Kolesnikov, R. Ostrovsky

Garble(1λ, (C,D)) 7→ (Ĉ, e, d). Garbling proceeds in several steps:

– Set wire keys. G begins by sampling two keys per wire. For each wire w, G
uniformly samples two length-λ keys K0

w and K1
w. G then conditionally flips

the least significant bit of K1
w, ensuring that lsb(K0

w) ̸= lsb(K1
w). Differing

least significant bits enable the classic point and permute trick [NPS99].
– Garble gates. Next, for each gate g with input wires x, y and output wire

z. G proceeds as follows. Let α = lsb(K0
x) and β = lsb(K0

y) denote the least
significant bits of the zero keys. G conditionally dispatches on the gate type
of g, setting up appropriate garbled circuit material as follows:
• If g is an XOR, G sets up a standard four-row encrypted truth table:

Enc(Kα
x ,Enc(K

β
y ,K

α⊕β
z)) Enc(Kα

x ,Enc(K
β̄
y ,K

α⊕β̄
z))

Enc(Kᾱ
x ,Enc(K

β
y ,K

ᾱ⊕β
z)) Enc(Kᾱ

x ,Enc(K
β̄
y ,K

ᾱ⊕β̄
z))

• If g is a buffer, G attaches β, allowing E to learn the value of y, as well
as two additional encrypted rows that allow E to propagate the value
on x to z, iff y = 1. I.e., G sets up:

β Enc(Kα
x ,Enc(K

1
y ,K

α
z)) Enc(Kᾱ

x ,Enc(K
1
y ,K

ᾱ
z))

• If g is a join, G sets up four encrypted rows that allow E to propagate
x to z or y to z, regardless of which input is set:

Enc(Kα
x ,K

α
z) Enc(Kᾱ

x ,K
ᾱ
z) Enc(Kβ

y ,K
β
z) Enc(K β̄

y ,K
β̄
z)

– Input randomness. G samples randomness r ∈$ D. For each input wire w

corresponding to a random input r[i], G attaches key K
r[i]
w to the GC:

Formally, Garble outputs (1) the assembled GC as well as (2) the input
encoding string e, consisting of the pair of keys for each (non-randomized) input
wire, and (3) the output decoding string d, consisting of the pair of keys for each
output wire.

Encode(e, x) 7→ x̂. e stores each key for each non-random input key, and Encode

just selects the correct key for each wire. Namely, for each (non-random) input
wire w corresponding to input bit x[i], Encode outputs Kx[i]

w . We emphasize that
this handling is standard in GC.

Eval(C, Ĉ, x̂) 7→ ŷ. Recall, the input encoding x̂ contains keys for each input
wire, and the GC Ĉ contains keys for each randomized input wire. E proceeds
gate by gate through C, following an order of evaluation prescribed by notify
(Figure 1). Note that this dynamic evaluation is possible because E learns the
value of each control wire.

More precisely, for each gate g with input wires x, y and output wire z,
E proceeds as follows. Let Kx,Ky denote the keys on the input values. Let
(x ⊕ α) = lsb(Kx) and let (y ⊕ β) = lsb(Ky). Note that these least significant
bits are indeed consistent with α, β chosen by G as part of garbling, based on
the point and permute trick [NPS99].

Tri-State Circuits 49

– If g is an XOR, then, per Garble, E holds four encrypted rows. E fetches
the following row and decrypts it using the input keys:

Enc(Kx
x ,Enc(K

y
y ,K

x⊕y
z))

– If g is a buffer, then E first fetches β from the GC and computes β⊕ (y⊕β),
decrypting y. Iff y = 1, E fetches and decrypts the following row:

Enc(Kx
x ,Enc(K

1
y ,K

x
z))

– If g is a join, then E holds (at least) one input. WLOG, suppose E holds
Kx (if E instead holds Ky, handling is symmetric). E fetches and decrypts
the following row:

Enc(Kx
x ,K

x
z)

Formally, Eval returns the collection of keys on each circuit output wire.

Decode(d, ŷ) 7→ y. For each output wire w, let Kw denote the corresponding
wire key in ŷ. d holds two corresponding keys K0

w,K
1
w. Decode computes the

following: 
0 if Kw = K0

w

1 if Kw = K1
w

⊥ otherwise

We emphasize that this handling is standard in GC.

C.3 Security

We prove that Construction 3 satisfies the notion of obliviousness (Definition 14).

Theorem 7 (Security of Construction 3). Assuming one-way functions ex-
ist, assuming the randomized tri-state circuit family (C,D)i∈[N] obliviously com-
putes a function (Definition 8), assuming C is runtime acyclic (Definition 4),
and if D can be sampled in polynomial time, there exists a simulator S such that
for all inputs x the following indistinguishability holds:

(Ĉ, Encode(e, x)) c
= S(1λ, (C,D)) where (Ĉ, e, ·)← Garble(1λ, (C,D))

Proof. Recall, the definition of oblivious tri-state circuits requires the existence
of a simulator for control bits Sctrl . We use Sctrl to construct a simulator S.

We first construct S, then argue indistinguishability via hybrids.

50 D. Heath, V. Kolesnikov, R. Ostrovsky

Simulator. S proceeds as follows:

– Choose keys. Just as in Garble and for each wire w, S uniformly samples
two length-λ strings K0

w and K1
w, then conditionally flips the least significant

bit of K1
w to ensure that the least significant bits differ.

– Sample wire values. S chooses wire keys that appear consistent with a
real-world execution. In particular, S first samples ctrl ← Sctrl(1σ). Consider
each control bit ctrl [i] associated with wire w. S sets Kw = K

ctrl[i]
w . For each

non-control wire w, S sets Kw = K0
w.

– Garble. For each gate g with inputs x, y and output z, S hard-codes the
gate such that it decrypts to Kz under appropriate combinations of input
keys. More precisely, let α = lsb(K0

x) and let β = lsb(K0
y):

• If g is an XOR, S sets up a fake four-row encrypted truth table:

Enc(Kα
x ,Enc(K

β
y ,Kz)) Enc(Kα

x ,Enc(K
β̄
y ,Kz))

Enc(Kᾱ
x ,Enc(K

β
y ,Kz)) Enc(Kᾱ

x ,Enc(K
β̄
y ,Kz))

• If g is a buffer, S attaches β, as well as two encrypted rows that, when
y = 1, always decrypt to z:

β Enc(Kα
x ,Enc(K

1
y ,Kz)) Enc(Kᾱ

x ,Enc(K
1
y ,Kz))

• If g is a join, S sets up four fake rows that map x to z or y to z:

Enc(Kα
x ,Kz) Enc(Kᾱ

x ,Kz) Enc(Kβ
y ,Kz) Enc(K β̄

y ,Kz)

Hybrids. Our hybrid argument follows the structure of classic GC proofs of
security (see [LP09]) with one important exception. In classic GC, S arbitrarily
assigns wire values, e.g. setting each wire to zero. S then hard-codes GC gates
that always output a key corresponding to this assignment, regardless of the
combination of gate input keys. This enables a relatively straightforward hybrid
argument, based on (1) the CPA security of Enc and (2) the fact that for each
wire, one key is hidden.

The crucial exception in tri-state circuits is that we cannot arbitrarily assign
control wires. Indeed, each control wire is revealed during evaluation. The fix
is relatively simple: S first invokes Sctrl , sampling an appropriate setting for
each control wire. S then chooses its assignment of wire values according to
this sample. Now, revealing control bits is safe, because these control bits are
indistinguishable from the real-world distribution of control bits.

We emphasize: the fact that (C,D) computes a function ensures that no join
gate will have two input keys that encode two different values (see discussion of
Definition 5).

We describe our hybrids more formally. We find it convenient to “meet in
the middle”, showing that both the simulation and the real-world view are in-
distinguishable from some intermediate hybrid distribution. Recall, our goal is
the following indistinguishability:

(Ĉ, Encode(e, x)) c
= S(1λ, (C,D)) where (Ĉ, e, ·)← Garble(1λ, (C,D))

Tri-State Circuits 51

– Simulated controls s
= real-world controls. Our first step is also the most

crucial, in that it differs significantly from classic GC proofs. We adjust
the definition of our simulator, replacing the call to the control simulator
Sctrl(1σ) by the following:

ctrl ← controls(C, (x; r)) where r ∈$ D

This adjusted ensemble is indistinguishable from the simulation precisely
because of the obliviousness of (C,D) (Definition 8). This step is crucial,
because it means that this hybrid chooses all control wire values (i.e. values
that are revealed in the execution) according to the real-world input.

– Simulated labels ≡ real-world labels. In the second step, recall that
S associates zero with each non-control wire. We replace this handling by
instead associating each non-control wire with its real-world value, based on
x and r. This remains indistinguishable because each gate simply discards
its input anyway, so gate handling has not changed. See also [LP09]. Each
gate now outputs a key consistent with the real-world input. This hybrid
is our “meet-in-the-middle” ensemble.

– Real gates c
= input dependent simulated gates. From here, we start

from the real world view and work towards the previous hybrid. To do this,
we one by one replace real-world gates by simulated gates. These simulated
gates each ignore their input wire values and output a key consistent with
the real-world wire output wire value under all inputs (see also [LP09]). Each
such substitution is trivially indistinguishable by the CPA security of Enc.
Note, there is significant nuance in the order in which we replace real gates
by simulated gates. Recall that we assume the circuit is runtime acyclic
(Definition 4), meaning that for every input there is a winning strategy to
a pebbling game that respects the runtime dependencies of the circuit. Our
hybrid argument proceeds in an order consistent with this pebbling strategy.
This ensures that by the time we substitute a gate by its simulator, that
gate’s input inactive keys are no longer encrypted by any other gate (i.e., all
such encryptions have already been substituted out by prior hybrid steps).
Thus, we can indeed use CPA security to argue indistinguishability. We note
that the reason we use this ordering is analogous to the reason classic proofs
of security start at the input gates and work their way towards the outputs,
rather than arbitrarily substituting gates in the middle of the circuit.

At this point, we have met in the middle, so the ideal-world simulation is
indistinguishable from the real-world view.

We do not formally prove our scheme satisfies privacy and authenticity, as
the proof of these is straightforward and uninteresting. We refer the reader
to [HKO22] for proofs of these properties.

52 D. Heath, V. Kolesnikov, R. Ostrovsky

Inputs:

– Parties agree on n, the number of required multiplication triples.
– Parties agree on m, the number of required authenticated random bits.
– G inputs ∆ ∈ {0, 1}λ
– E inputs µ ∈ {0, 1}σ

Outputs:

– Let Γ ∈ {0, 1}λ+σ+1 be defined as the concatenation Γ ≜ ∆ || µ || 1.
– For each i ∈ [n]:
• Uniformly sample α, β ∈$ {0, 1}.
• Uniformly sample A,B,C ∈$ {0, 1}λ+σ+1.
• Send to G the strings A,B,C.
• Send to E the following three strings:

A⊕ α · Γ = JαK B ⊕ β · Γ = JβK C ⊕ (α · β) · Γ = Jα · βK

– For each i ∈ [m]:
• Uniformly sample α ∈$ {0, 1}.
• Uniformly sample A ∈$ {0, 1}λ+σ+1.
• Send to G the string A.
• Send to E the string A⊕ α · Γ = JαK.

Fig. 5: The preprocessing functionality Fpre used to generate randomness for our
authenticated GRAM.

D Authenticated Garbling of Tri-State Circuits

In this section, we construct and then prove secure our protocol for maliciously
secure handling of tri-state circuits. Our handling is a relatively straightforward
extension of existing techniques [WRK17,KRRW18,YWZ20,DILO22], with the
very notable addition of tri-state-circuit-based out-of-order execution.

Construction 4 (Authenticated Garbling Protocol for Tri-State Circuits). Our
authenticated garbling protocol is the protocol described in the remainder of this
section. We assume a function H modeled as a random oracle. Our protocol is
described in the Fpre (see Figure 5) hybrid model.

In our protocol, G and E agree on a randomized tri-state circuit (C,D) that
obliviously computes some function f . G holds input x ∈ {0, 1}n and E holds
input y ∈ {0, 1}m. Our goal is to deliver to E the output f(x, y) (note, it is
typical in authenticated garbling to deliver output only to E).

The parties proceed as follows:

Preprocess. The parties first need to preprocess a garbled random string r ∈$ D.
To do so, the parties invoke the preprocessing functionality Fpre . G uniformly
samples a key ∆ ← {0, 1}λ and sends ∆ to Fn+m,D

pre (Figure 5). E uniformly

Tri-State Circuits 53

samples a MAC µ ← {0, 1}σ and sends µ to Fn+m,D
pre . Let Γ = ∆ || µ || 1.

Fn+m,D
pre samples a string r and distributes JrK to G and E.

Parties split r into three strings r0 || r1 || r2 as follows: Let r0 denote the
first n bits of r, corresponding to masks on G’s input. Let r1 denote the next m
bits of r, corresponding to masks on E’s input. Let r2 denote the remaining bits
of r, corresponding to random bits needed for circuit evaluation.

Garble. G next garbles the circuit gate by gate.
For each input wire w corresponding to a randomized input r[i], let W denote

G’s share of Jr[i]K. G stores W on wire w. For every other (non-random) input
wire w, G uniformly samples a label W ∈$ {0, 1}λ+σ+1 and stores W on wire w.

G now proceeds gate by gate through the circuit. For each gate with input
wires x, y respectively holding zero labels X,Y , G proceeds as follows:

– XOR. G computes X ⊕ Y and stores this label on the output wire.
– Buffer. G first attaches messages to the GC that reveal to E the control

wire y. In particular, G attaches:

mac(Y) val(Y)

Let ν denote a public gate-specific nonce. G sets the output wire label as
folows:

H(key(Y)⊕∆, ν)⊕X

– Join. G attaches X ⊕ Y to the GC, allowing E to map either input x or y
to the output wire. G stores X on the output wire.

G’s Input. The parties reveal r0 to G. Consider each bit Jr0[i]K. We define the
following for convenience:

⟨⟨R,R⊕ Γ ⟩⟩ = Jr0[i]K
⟨⟨R0, R0 ⊕ r0[i] ·∆⟩⟩ = key(Jr0[i]K)
⟨⟨R2, R2 ⊕ r0[i]⟩⟩ = val(Jr0[i]K)

E sends its above shares of the key and value parts to G, revealing r0[i]. Call
these messages R′

0 and R′
2. G computes r′ ← R2 ⊕ R′

2 G does not trust that r′

is well formed, so it checks the following equality using its key ∆:

r′ ·∆ ?
= R0 ⊕R′

0

If not, G aborts. Otherwise, G trusts that r′ = r0[i].
Now, G wishes to use r0 to mask its input. More specifically, for each bit of

G’s inputs x[i], G wishes to convert the garbling of r0[i] to a garbling of x[i]. G
computes a correction bit δi ← x[i]⊕ r0[i]. Recall, G sampled a label W for this
input wire. I.e., the parties currently hold the following two shares:

⟨⟨R,R⊕ r0[i] · Γ ⟩⟩ ⟨⟨W, ???⟩⟩

54 D. Heath, V. Kolesnikov, R. Ostrovsky

G wishes to set E’s share to W ⊕ x[i] · Γ . It sends the following string to E:

R⊕W ⊕ (δi ·∆ || 0σ || δi)

G also sends δi to E. E uses its knowledge of δi and µ to complete the following
offset string:

R⊕W ⊕ (δi ·∆ || µ || δi) = R⊕W ⊕ δi · Γ
It then adds this to R⊕ r0[i] · Γ , obtaining W ⊕ x[i] · Γ (without learning x[i]).
Thus, E now holds a garbling of G’s input.

E’s Input. Parties symmetrically reveal r1 to E, and E uses r1 to mask its own
input. For each bit of r1, G sends its MAC part and value part to convincingly
reveal the value; E checks consistency of the MAC.

For each of E’s input bits y[i], E wishes to change the garbling of r1[i] to
a garbling of y[i] that matches the corresponding input wire with label W . For
each i, E computes a correction bit δi ← y[i]⊕ r1[i]. E sends each δi to G, and
G sends back an appropriate label difference (see G’s input discussion). Thus,
E now holds a garbling of E’s input.

Evaluate. For each input wire w, E now holds label W ⊕w · Γ . Additionally, E
holds all GC messages. E proceeds in the order prescribed by tri-state semantics
(Figure 1). At each gate with inputs x, y respectively holding labels X ⊕ x · Γ
and Y ⊕ y · Γ , E proceeds as follows:

– XOR. E computes (X⊕Y)⊕((x⊕y) ·Γ) and stores this label on the output
wire (Lemma 2).

– Buffer. E first decrypts the control wire. We define the following:

Y0 = key(Y ⊕ y · Γ) Y1 = mac(Y ⊕ y · Γ) Y2 = val(Y ⊕ y · Γ)

E retrieves G’s messages Y ′
1 , Y

′
2 from the GC. Recall that if G is honest, these

respectively contain the MAC part and value part of G’s label. E computes
y′ ← Y ′

2 ⊕ Y2. E does not trust that G is honest, so E checks the following:

Y1 ⊕ Y ′
1

?
= y′ · µ

If this succeeds, E is convinced that the wire indeed holds y′; else, E aborts.
E now proceeds conditionally, depending on y′. If y′ = 0, E sets the output
wire as Z and proceeds to the next gate. Otherwise, E computes an output
label as follows:

H(Y0, ν)⊕X ⊕ x · Γ
Note that if indeed G proceeds honestly and y = 1, this matches G’s share.

– Join. E proceeds conditionally, depending on if x is set or if y is set. If both
input wires are set, E arbitrarily proceeds as if only x is set. Recall, honest
G attaches X ⊕ Y to the GC. E computes the following output label:{

X ⊕ x · Γ if x is set
(X ⊕ Y)⊕ Y ⊕ y · Γ if y is set

Tri-State Circuits 55

As one additional detail, handling is needed to close cycles in the circuit graph.
Specifically, note that the handling of each tri-state gate produces a fresh gar-
bling. We have not yet demonstrated how to connect two wires each of which
already has a garbling as defined by a previous gate. This handling is necessary
for cycles. Connecting wires. G can connect input wire JxK = ⟨⟨X,X ⊕ x · Γ ⟩⟩
to output wire with sharing ⟨⟨Y, ???⟩⟩ by sending to E X ⊕ Y . When E reaches
this connection, it can use this single XOR to compute:

(X ⊕ x · Γ)⊕ (X ⊕ Y) = Y ⊕ x · Γ

This matches G’s share Y , constructing a valid share JxK on the output wire.
At the end of an honest execution, for each output wire w, E holds a label

W ⊕ w · Γ .

Output. For each output wire w with label W , G sends the following to E:

mac(W) val(W)

E, who holds W⊕w ·Γ checks that each such message is well formed and obtains
w. This handling is identical to how G opens buffer controls to E.

E now outputs the collection of all output wire values, and G outputs ⊥.

D.1 Security

Theorem 8. If H is modeled as a random oracle, if (C,D)i∈[N] is a randomized
tri-state circuit family that obliviously computes f (Definition 8), if C is runtime
acyclic (Definition 4), and if D can be described as the concatenation of inde-
pendent sub-distributions each of which either (1) is a uniform bit or (2) is a
uniformly sampled multiplication triple, then Construction 4 securely implements
f in the presence of a malicious adversary in the Fpre-hybrid model.

Proof. By construction of ideal-world simulators SG and SE that respectively
simulate corrupted G/corrupted E.

Recall that the oblivious circuit (C,D) comes with a simulator Sctrl that
generates convincing settings of control bits (Definition 8). We will use this
simulator to construct fake garbled circuits.

Let F denote the ideal world functionality. Recall that the ideal-world proto-
col is as follows: (1) the honest party sends its input x to F , (2) the ideal-world
adversary S either aborts or sends an input y′ to F , (3) F sends f(x, y′) to S,
(4) S sends either abort or continue to F , and (5) if continue, F sends f(x, y′) to
the honest party, completing the protocol. To demonstrate security, we construct
simulators that each output a distribution of values indistinguishable from its
corresponding real-world adversary.

Simulating E. Let A denote the real-world adversarial E. SE simulates A by
interacting with A.

56 D. Heath, V. Kolesnikov, R. Ostrovsky

– Preprocessing. SE begins by implementing Fpre . A attempts to send µ
to Fpre , and SE collects this value. SE uniformly samples ∆ ∈$ {0, 1}λ. For
each random input wire w, SE samples a uniform zero label R ∈$ {0, 1}λ+σ+1

and sends R to A. SE remembers each sampled label.
– Garbling. SE constructs a fake garbled circuit. SE begins by sampling a

setting of control bits:
ctrl ← Sctrl(1σ)

For each input wire w, SE samples a uniform zero label W ∈$ {0, 1}λ+σ+1.
SE then traverses gates, building up a garbled circuit that it will later send
to A. To construct a convincing fake, SE keeps track of labels that honest E
would see while evaluating the fake GC, and uses this knowledge to reveal
wire values consistent with the control bits ctrl . Consider a gate with input
wires x and y, populated by labels X and Y . SE conditionally dispatches on
the gate type:
• XOR. SE just computes X ⊕ Y and stores it on the gate output wire.
• Buffer. SE adds bits to the GC that convincingly reveal an appropriate

control value. Let c denote the bit in ctrl corresponding to this buffer’s
control wire. We assign names to the parts of the control label:

Y0 ← key(Y) Y1 ← mac(Y) Y2 ← val(Y)

SE computes c ⊕ Y2 and attaches this bit to the GC; this attempts to
reveal that the control wire indeed holds c. To make this convincing, SE
also attaches an appropriate MAC: Y1 ⊕ c · µ. Here it is crucial that SE
knows µ. Note, honest E would indeed accept that the control wire must
hold c. SE sets the gate output label by querying a random oracle R
with input Y0 ⊕ c̄ ·∆, ν (where ν is the public gate-specific nonce):

R(Y0 ⊕ c̄ ·∆, ν)⊕X

When c = 1, this is consistent with honest E’s output label.
• Join. SE attaches X⊕Y to the GC. This is essential, as it is a convincing

fake for the scenario where E holds two inputs to a join, each of which
encodes the same value. SE stores X on the gate output wire.

• Connection. For each connection between input wire X and output
wire Y , SE attaches X ⊕ Y to the GC, matching the handling in the
real-world protocol.

SE sends the fake GC to A.
– G’s input. SE next plays G’s role in setting up G’s input using input x = 0n.

For each G input wire w, let R denote the label chosen in preprocessing and
let W denote the circuit input label. A must send the following two values
to SE :

key(R) val(R)

If not, SE aborts. SE sends R ⊕W to A; for honest E, this message would
allow E to convert its random label R to input label W .

Tri-State Circuits 57

– E’s input. SE takes advantage of the protocol step for setting up E’s input
to extractA’s input y′. For each E input wire w, let R denote the label chosen
in preprocessing and let W denote the circuit input label. SE convincingly
reveals uniform bits masking E’s input by sampling r ∈$ {0, 1} and then
sending to A the following:

mac(R)⊕ r · µ val(R)⊕ r

SE next receives r⊕ y′[i] from A and hence learns a bit of y′. For each such
wire, SE sends R⊕W to A, replacing label R by W .

– Output. SE sends y′ to F and F responds with z = f(x, y′). For each
output wire corresponding to output bit z[i], SE uses its knowledge of z[i],
µ, and E’s label Z to send:

mac(Z)⊕ z[i] · µ val(Z)⊕ z[i]

This convincingly reveals the correct output value. If A does not abort,
SE sends continue to F , allowing the ideal world protocol to complete. SE
outputs whatever A outputs.

Hybrids for E’s simulation. We argue the above simulation is indistinguishable
from the real-world output. We find it convenient to work backwards, starting
from the simulation and working towards the real-world distribution.

– Simulated controls s
= real-world controls. We first replace the call to

the simulator Sctrl(1σ) by the following:

ctrl ← controls(C, (x; r)) where r ∈$ D

The indistinguishability of this step follows precisely from the obliviousness
of (C,D) (Definition 8).

– Simulated labels ≡ real-world labels. Our simulation ensures that for
each wire w, honest E views the zero label W . However, our hybrids are in
a position to instead ensure that E views the correct label W ⊕w · Γ . Note
that this change can be viewed simply as changing the notation with which
wire labels are written, so the distributions are the same.

– Remove call to controls. We note that each wire label is now consistent
with the real-world input (x; r), and hence it is unnecessary to sample ctrl ←
controls(C, (x; r)): this call just produces values that match the real-world
values already on the wires.

This last hybrid is now identical to the real-world Fpre hybrid model where S
garbles the circuit as described by the real-world protocol and implements the
Fpre functionality. Thus, our protocol is indeed secure against a corrupt E.

58 D. Heath, V. Kolesnikov, R. Ostrovsky

Simulating G. Let A denote the real-world adversarial G. SG simulates A by
interacting with A.

– Preprocessing. SG begins by implementing the Fpre functionality. A thus
sends ∆ to SG. SG uniformly samples µ ∈$ {0, 1}σ, and draws r ∈$ D.
For each bit r[i], SG samples Ri ∈$ {0, 1}λ+σ+1, sends Ri to A, and keeps
Ri ⊕ r[i] · Γ for itself.

– Garbling. SG plays E’s role in the garbling step, receiving from A all gar-
bled circuit messages.

– G’s input. SG plays E’s role in setting upA’s input. In addition, SG extracts
A’s input: Let r0 denote the mask corresponding to G’s input and let δ denote
the string of correction bits sent by A. SG computes x = r0 ⊕ δ. SG sends x
to F .

– E’s input. SG plays E’s role in setting up E’s input by sending correction
bits δ consistent with an arbitrarily chosen input y = 0m.

– Evaluate. Now that SG has the GC and the garbled input, it proceeds
gate by gate, evaluating each gate as prescribed by the protocol. Note that
when handling buffers, SG thus receives messages from A that should reveal
the controls. Hence, SG aborts if the message from A is ill formed. We
emphasize that such an abort is not selective, because tri-state obliviousness
ensures that each revealed value is statistically independent of the input
(Definition 8).

– Output. SG plays E’s role in receiving output. For each wire, it plays E
when receiving opening messages from A, aborting if any message from A
is ill formed. Again, this does not allow a selective abort. If at any point
A aborts, then SG aborts Otherwise, SG sends continue to F , allowing the
ideal world protocol to complete. SG outputs whatever A outputs.

Hybrids for G’s simulation. It is relatively straightforward to prove the above
simulation indistinguishable from the Fpre hybrid world. Indeed, the only differ-
ence between the above simulation and the hybrid is that the hybrid simulator
uses E’s real input. This substitution simply swaps the meaning of zero and one
labels, and hence is identical to the simulated distribution.

Thus, our protocol is secure against a malicious corruption of G.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

