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Abstract

The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space
algorithm. In this work we study interactive proofs for non-deterministic bounded space computations.
While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by
deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive
protocols for nondeterministic algorithms directly to get faster verifiers.

More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in
which the verifier runs in time Õ(n+ S2). This improves on the best previous bound of Õ(n+ S3) and
matches the result for deterministic space bounded algorithms, up to polylog(S) factors.

We further generalize to alternating bounded space algorithms. For any language L decided by a time
T , space S algorithm that uses d alternations, we construct an interactive proof in which the verifier
runs in time Õ(n+ S log(T ) + Sd) and the prover runs in time 2O(S). For d = O(log(T )), this matches
the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves
on the previous best verifier time for nondeterministic algorithms by a factor of log(T ). We also improve
the best prior verifier time for unbounded alternations by a factor of S.

Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain
faster verifiers for bounded depth circuits with unbounded fan-in.
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1 Introduction

Interactive proofs, introduced by Goldwasser Micali and Rackoff [GMR89], are proof systems that enable a
prover to convince a verifier of the truth of a given statement. The interaction proceeds in rounds where in
each round the prover sends a message and the verifier responds. Crucially, in every round the verifier uses
randomness that the prover cannot predict. At the end of the interaction the verifier either accepts or rejects
the statement. We require that the honest prover convinces the verifier to accept true statements with high
probability (and in fact, in most1 protocols with probability 1) and that no prover, even a computationally
unbounded one, can convince the verifier to accept a false statement other than with some small probability.

One of the most celebrated results in complexity theory is that IP = PSPACE [Lun+90; Sha92]. That
is, the set of languages with polynomial space algorithms is exactly the set of languages with interactive
protocols whose verifiers run in polynomial time. Interactive proofs have been prolific throughout other
areas of complexity theory, including circuit lower bounds [San07; MW18], pseudorandomness from uniform
assumptions [TV02], and has also been very influential in other proof systems, such as MIPs [BFL90], PCPs
[Bab+91; Fei+91; AS98; Aro+98], and IOPs [BSCS16; RRR16].

The IP = PSPACE result can be generalized to any deterministic bounded space computation. For a
space S deterministic algorithm, the interactive protocols with the fastest verifiers [Coo22b; Tha20] have a
time Õ(n+ S2) verifier and time 2O(S) prover, where Õ hides polylog(S) factors.2

In this work we study interactive proofs for more general forms of bounded space computations: non-
deterministic bounded space and alternating bounded space. Recall that a non-deterministic space S algorithm
is a space S Turing machine that gets in addition read-once access to a witness (which can be as long as 2S).
For example, the complexity class NL refers to non-deterministic logarithmic-space algorithms. Alternating
algorithms are a generalization of nondeterministic algorithms that can ‘alternate’ quantifiers. The prior
best protocols [Coo22b] for space S nondeterministic algorithms have verifier time Ω(n+ S3), which is an S
factor slower than the best verifiers for deterministic algorithms. See Table 1 for a more complete comparison
with prior works, and Section 2 for further details.

1.1 Our Results

Our main result is an improved interactive proof for alternating algorithms. We start by highlighting a
special-case of this result for nondeterministic bounded-space algorithms. We construct interactive proofs
for space S nondeterministic algorithms whose verifier runs in time Õ(n+S2), matching the time bound for
deterministic verifiers (up to polylog(S) factors). Broadly, our techniques combine the recent verifier efficient
interactive proofs for bounded space by Cook [Coo22b], with an efficient interactive proof for AC0

⊕ circuits
of Goldreich and Rothblum [GR20], and an improved derandomization through random walks on expander
graphs.

The new interactive proof for non-deterministic bounded space is a special case of a more general result
that we show for alternating bounded space algorithms. To state the result precisely, we first set up the
notation. Let ATISPd[T, S] be the set of languages decided by a simultaneous time T , space S and d
alternation algorithm. Alternating algorithms have 3 tapes, a read only input tape containing the input,
a read once input containing a witness, and a work tape. Only the work tape is limited to have space S.
The input tape is read only, but can be read many times. The witness tape can have T symbols on it, but
must be read sequentially and each symbol can only be read once. The witness can be thought of as being
separated into d segments, each with a different quantifier. The change of quantifier is called an alternation.
For example, nondeterministic algorithms have d = 1 since they only use existential quantifiers.

Let ITIME[TV , TP ] be the set of languages with an interactive proof whose verifier runs in time TV and

1By [Für+89], probability 1 can always be achieved, but that reduction has a significant cost to the prover’s runtime.
2Throughout this work we mostly optimize for verification time and leave the proving time as a secondary consideration.

This is in contrast to doubly efficient interactive proofs (see [Gol18]) in which we insist on a polynomial-time prover. In this
“doubly-efficient” regime, interactive proofs with a polynomial-time prover and almost linear time verifier are known for linear
depth, poly-size, uniform circuits [GKR15] and poly-time and bounded-poly space computation [RRR16]. See Section 2 for
details.
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whose prover runs in time TP . If TP is omitted, we assume it is the trivial bound of TP = O(2TV ). In this
paper, all our protocols are public-coin and have perfect completeness.

Our most general result is an interactive protocol for alternating bounded-space algorithms.

Theorem 1.1 (Interactive Proof For Alternating Space). For any T , S, and d constructible in time
O(S log(T )) and space O(S):

ATISPd[T, S] ⊆ ITIME
[
Õ (n+ S log(T ) + Sd) , 2O(S)

]
.

Further, the verifier runs in space O(S log(d+S)), the protocol is public coin, has O(S log(S)(log(T )+d))
rounds, O(S log(S)(log(T ) + d) log(d+ S)) bits of communication, and perfect completeness.

For d = O(log(T )), up to small polylog(S) factors, our protocol has the same verifier time and prover time
as the best known protocol for deterministic bounded space algorithms [Coo22b]: verifier time Õ(n+S log(T ))
and prover time 2O(S). As a special case for nondeterministic algorithms, this gives an interactive protocol
with verifier time Õ(n + S log(T )), improving upon the nondeterministic algorithms in [Coo22b], whose
verifiers required time Õ(n+ S log(T )2), by a factor of log(T ). We note log(T ) may be as large as S.

In a limited sense, these results could be seen as tight, as they match, up to polylog(S) factors, the best
known results for simulating deterministic algorithms by alternating ones. Chandra, Kozen, and Stockmeyer
[CKS81] show that any deterministic algorithm running in time T and space S has an alternating algorithm
running in time S log(T ). Specifically, TISP[T, S] ⊆ ATISPlog(T )[O(S log(T )), O(S)]. If we improved our
verifier time dependence on S log(T ) or Sd, this would improve the time of alternating algorithms simulating
deterministic ones.

For d = T , Theorem 1.1 improves over the best known interactive proofs for alternating algorithms, with
unbounded alternations, by Fortnow and Lund [FL93], which have verifier time Õ(n + S2T ) and verifier
space O(S log(T )). Our protocol’s verifier is at least a factor S faster (when ST = Ω(n)).

See Table 1 for a comparison of how our protocol compares to prior protocols for nondeterministic
algorithms, and Table 2 for a comparison of how our protocol compares to prior protocols for alternating
algorithms. See Section 2 for a more detailed comparison to prior works.

The best verifiers [Coo22b; Tha20] for deterministic algorithms have verifier time Õ(S log(T )+n), verifier
space O(S log(S)), and provers with time 2O(S). The best provers [RRR16] for deterministic algorithms
have prover time T 1+o(1)poly(S), but require verifier time T o(1)poly(S) + npolylog(T ). These protocols are
incomparable for T much larger than S, but much smaller than 2S .

NTISP[T, S] Verifier Time Verifier Space Prover Time

[Sha92] (n+ S) log(T )2 (n+ S) log(n+ T ) 2poly(S,n)

[FL93] n+ S3 log(T ) S log(S) 2poly(S,n)

[GKR15] n+ S2 log(T ) S log(S) 2O(S)

[Coo22b] n+ S log(T )2 S log(T ) 2O(S)

This Work n+ S log(T ) S log(S) 2O(S)

Table 1: Comparison of different protocols for NTISP[T, S] with polylog(S) factors omitted.

When S = O(log(n)), our prover runs in polynomial-time. This gives us doubly efficient proofs for
alternating algorithms with few alternations and logarithmic space. As a special case, we give doubly
efficient interactive proofs for NL where the number of bits communicated is Õ(log(n)2). This improves
on the amount of communication achieved by GKR (specialized for NL), which uses Ω̃(log(n)3) bits of
communication.

Corollary 1.2 (Doubly Efficient Interactive Proofs for NL). NL has interactive protocols whose provers
run in polynomial time, verifiers run in quasilinear time, verifiers use Õ(log(n)) space, the protocol uses
Õ(log(n)2) rounds, Õ(log(n)2) bits of communication, is public coin and has perfect completeness.
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ATISPd[T, S] Verifier Time Verifier Space Prover Time

[Sha92] (n+ S(log(T ) + d))S(log(T ) + d) n+ S log(T ) + Sd 2poly(S,n)

[FL93] n+ S2T S log(T ) 2poly(S,n)

[GKR15] n+ S2 log(T ) + S2d S log(S + d) 2O(S)

[Coo22b] n+ (S log(T ) + Sd)2 S log(T ) + Sd 2O(S log(T )+Sd)

This Work n+ S log(T ) + Sd S log(S + d) 2O(S)

Table 2: Comparison of different protocols for ATISPd[T, S] with polylog(S) factors omitted.

More generally, our protocols for nondeterministic algorithms use a factor log(T ) less communication
then the previous best protocols by Cook, and match the best prior protocols for deterministic algorithms,
up to polylogarithmic factors.

Unbounded Fan in Circuit Results. Let SIZE−DEPTH[2S , d] be the set of space O(S) uniform cir-
cuits of size 2S and depth d with unbounded fan in AND and OR gates. Let T -uniform SIZE−DEPTH[2S , d]
be the set of time T uniform, space S circuits of size 2S and depth d with unbounded fan in AND and OR
gates. Then due to a close relationship between alternating circuits and low depth circuits by Ruzzo and
Tompa [SV84] (see Section 3.3), we have

Theorem 1.3 (Uniform Shallow Circuits Have Fast Interactive Proofs). For any d, T, S constructible in
time O(S log(T )) and space O(S), we have

T -uniform SIZE−DEPTH
[
2S , d

]
⊆ITIME

[
Õ(n+ S log(T ) + Sd), 2O(S)

]
SIZE−DEPTH

[
2S , d

]
⊆ITIME

[
Õ(n+ S2 + Sd), 2O(S)

]
.

Further, the verifier runs in space O(S log(d + S)) and the protocol is public coin and has perfect com-
pleteness.

For fan in 2 circuits, this matches the verifier time of GKR, while the prover time remains polynomial
in the circuit size3. For unbounded fan in circuits, or for alternating algorithms, our verifier is a factor of S
faster than GKR.

1.2 Proof Overview

We start by reviewing our efficient interactive proofs for deterministic algorithms. Then we explain the
difficulty of extending this to nondeterministic algorithms, and how to overcome these problems. Finally
we show how to extend this technique to alternating algorithms. We assume familiarity with the sumcheck
protocol [Lun+90]. For a more detailed explanation of our interactive proofs for deterministic algorithms,
see [Coo22b], the nearly identical protocol by Thaler [Tha22, Section 4.5.5] (see also [Tha20]), the similar
protocol by Rudich [BM00], or Hirsch, Melkebeek and Smal [HMS13].

1.2.1 Deterministic Algorithms

For a deterministic algorithm A, we first reduce the problem to repeated matrix squaring, then give an
interactive protocol for that. Suppose A runs in time T on some input x and has unique start state a and
accept state b. Let M be the adjacency matrix of A’s computation graph on input x. Then A accepts x if
and only if (MT )a,b = 1 (where MT is M raised to the T th power, not M transposed). For notation, we
write Ma,b as M(a, b). At a high level, the idea is that if we have an interactive protocol that can reduce a

3Note however that recent improvements [CMT12; Tha13; Xie+19; Zha+21] of GKR have a (close to) linear prover, whereas
our prover is only polynomial in the circuit size.
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claim that M2i(u, v) = α to the claim that M i(u′, v′) = α′, then by applying this protocol log(T ) times, we
can verify the value of MT (a, b). We give such a reduction, but on the multilinear extensions of M2i and
M i.

Like [Coo22b; Tha20], we reduce to matrix exponentiation and give an interactive protocol for that,
instead of reducing to a quantified Boolean formula [Sha92], or to a uniform circuit [GKR15]. This both
simplifies the protocol somewhat and makes it more efficient to compute the prover. The idea is to arithmetize
these adjacency matrices, and then use a sum check [Lun+90] to reduce the statement about M2i to the
statement about M i. In particular, we use the sum check for matrix exponentiation given by Thaler [Tha13],
details follow.

For a finite field F, for any i define M̂ i : FS × FS → F as the multilinear extension of M i. That is, M̂ i

is multilinear and for each u, v ∈ {0, 1}S we have M̂ i(u, v) = M i(u, v). Then observe that for any i, and
u, v ∈ FS we have

M̂2i(u, v) =
∑

w∈{0,1}S

M̂ i(u,w)M̂ i(w, v).

To see that this formula is correct, first observe that it is correct for Boolean values as it precisely corresponds
to the definition of matrix multiplication. So the formula is correct on Boolean values. Since both sides of
the equation are multi-linear4, it follows that the formula holds for all values.

Then, we can use the sum check of [Lun+90] to reduce this to a claim that for some w′ ∈ FS and some

β ∈ F we have β = M̂ i(u,w′)M̂ i(w′, v). Then using a multi-point reduction, as was done in GKR [GKR15],

we reduce this to a claim that for some u′, v′ ∈ FS and α′ ∈ F we have that α′ = M̂ i(u′, v′).
Finally running this log(T ) times gives the interactive protocol for deterministic algorithms, since the

verifier can efficiently calculate M̂ itself.
We remark that, using linearization type ideas (as in [She92]), the above can be extended from the task

of deciding whether a deterministic algorithm accepts, to verifying the multilinear extension of a function
that the algorithm computes. This will be important for us later on when we use the above interactive proof
as a subroutine in the protocol for nondeterministic algorithms.

1.2.2 Nondeterministic Algorithms and Changing Arithmetization

To try to apply this technique to a nondeterministic algorithm, A, we immediately encounter an issue with
how to formulate the problem. Namely, if we are doing arithmetic over Z, if the underlying matrix M
corresponds to a non-deterministic computation, then the matrix MT

a,b is no longer 1 if and only if A accepts

x. Rather, MT
a,b specifies the number of length T paths from a to b. This might be as large as 2Ω(T ). If we

do arithmetic over a field of characteristic q, then MT
a,b is the number of paths mod q. If the number of paths

is some adversarial product of many small primes, we may need q = Ω(T ) for the number of accepting paths
to be non zero, mod q. This gave the less efficient verifier time for nondeterministic algorithms in [Coo22b].

We will still solve this problem by arithmetization, but we need to change our matrix multiplication
from a field matrix multiplication to a binary multiplication, then arithmetize that. We define the matrix
multiplication with binary operations where multiplication is AND and addition is OR. So letM (2) : {0, 1}S×
{0, 1}S → {0, 1} denote this binary matrix multiplication, squaring, so that for any u, v ∈ {0, 1}S we have

M (2i)(u, v) =
∨

w∈{0,1}S

M (i)(u,w)M (i)(w, v).

With this form of matrix exponentiation, it suffices to check if M
(T )
a,b = 1. To do so, we convert binary

matrix multiplication into an algebraic circuit. The obvious approach is to use a formula like

˜M (2i)(u, v) = 1−
∏

w∈{0,1}S

(
1− M̂ (i)(u,w) · M̂ (i)(w, v)

)
.

4To show it is multilinear, we take any variable, say ui, and show the formula is linear in ui. For any w see that M̂ i(u,w)

is linear in ui since M̂ i is multilinear, and M̂ i(w, v) is constant in ui. Thus
∑

w∈{0,1}S M̂ i(u,w)M̂ i(w, v) is linear in ui.
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Unfortunately, this has too high of individual degree: 2S . One can insert some linearization operations
between the multiplications to reduce the degree, like those used by Shen [She92]. But then for each of the
S variables in w, one would need to add O(S) linearization operations, giving a size O(S2) algebraic circuit,
which we cannot afford.

Instead, we use an idea of Goldreich and Rothblum [GR20] to probabilistically reduce the degree of these
large conjunctions by leveraging the Razborov-Smolensky [Raz87; Smo87] approximation of large disjunctions
as low degree polynomials. Razborov-Smolensky give a reduction from a large disjunction to a random parity
check that succeeds with high probability:

∀g ∈ {0, 1}n : Pr
r∈{0,1}n

 ∨
i∈[n]

gi =
∑
i∈[n]

giri (mod 2)

 ≥ 1

2
.

We note that if g = 0n, then for any r, we have
∑

i∈[n] giri (mod 2) = 0. That is, the error is one sided.

The formula
∑

i∈[n] giri (mod 2) is a linear polynomial in a field of characteristic 2. As this is useful for us,
we shall only work with fields of characteristic 2 in this paper.

Then, taking an OR of k independent choices of randomness, we get an individual degree k polynomial
that succeeds with probability 1− 1

2k
. If n = 2S and k = S, this gives us a degree log(n) polynomial for the

disjunction that is only wrong with probability 1
n .

The idea is to replace our boolean formula with a low degree polynomial through Razborov-Smolensky.
So let Dr : {0, 1}ℓ × {0, 1}S → {0, 1} be a function outputting our random bits. Here 2ℓ = k = O(S) is the
number of choices of random bits. Then our new approximation for M (2i) is

M̃ (2i)(u, v) = 1−
∏

j∈{0,1}ℓ

1−
∑

w∈{0,1}S

Dr(j, w)M̂ (i)(u,w)M̂ (i)(w, v)

 . (1)

Now we only need to insert ℓ = log(S) levels of linearizations. In the technical details of the paper, we
will not actually use algebraic circuits with linearization operations, but will work with these polynomials
directly with an “unlinearization” procedure, to avoid discussing circuit uniformity.

1.2.3 Efficient Randomness

At this point we encounter a problem - Eq. (1) calls for sampling 2ℓ+S random bits for Dr, which we cannot
afford (since we want our verifier to run in time Õ(S)). So as in GR, we need to sample these using an ϵ
biased set. For our ϵ biased set, we use the same one as GR, described in [Alo+90] (which is based on a
Reed-Solomon code concatenated with a Hadamard code).

Thus, for every value of j ∈ {0, 1}ℓ, we would like to set Dr(j, ·) to be an ϵ-biased set. As ℓ = log(S),
if we were to sample these independently, as in GR (i.e., the protocol given in [GR20]), our verifier would
require O(S2) bits of randomness. Instead, we sample these small bias sets in a correlated manner - via a
random walk on an expander (each node in the expander specifies a seed for a small bias set). We use the
Margulis [Mar73] expander since it is a constant degree, constant spectral expander with extremely simple
edge descriptions: simple additions and subtractions. This makes it very easy to take a start vertex and a
(specification of a) random walk and compute any given step on that walk in both small space and small
time.

Thus, we only require R = O(S) truly random bits to describe a length O(S) random walk on the ϵ biased
sets described by a Reed-Solomon code concatenated with a Hadamard code. So let D : {0, 1}R × {0, 1}ℓ ×
{0, 1}S → {0, 1} be a function that generates our pseudorandomness, given R bits of true randomness. The
verifier first chooses that randomness r, and then Dr(j, w) = D(r, j, w).

Since D is both space and time efficient, we can have the prover compute its value for the verifier, and
then have the verifier run the deterministic interactive protocol to confirm its value. In contrast, the GR
verifier must calculate some low degree extension of Dr directly to use a constant number of rounds. This
saves us time over GR.
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Finally, as in GR, there is a chance that our pseudorandom bits give a polynomial that fails to compute
the disjunctions correctly. In this case, to get perfect completeness we need to prove that the pseudorandom
bits are incorrect. To do this, the prover just finds a disjunction closest to the input where the low degree
approximation fails and tells the verifier where it fails. This would be a gate where its value in the low
degree polynomial is one thing, but one of its input gates should force it to be something else. For instance,
an OR gate with a value of 0, and an input to it with a value of 1. Then the verifier can run the interactive
protocol to confirm that the low degree polynomial indeed says the gate’s value conflicts with its input gate
value, showing the pseudorandom bits were bad.

1.2.4 Alternating Algorithms In Terms Of Nondeterministic Algorithms

To use our protocol with alternating algorithms, we want to reduce the alternating algorithm to one with a
few large disjunctions or conjunctions over a nondeterministic algorithm. This is similar to what is done when
converting alternating algorithms to alternating circuits. Once we have few conjunctions and disjunctions
over a nondeterministic algorithm, we can do the same low degree approximations again.

The idea is to, instead of quantifying over the symbols in the read once proof, quantify over the potential
states the algorithm could be in when the quantifier changes. Then a nondeterministic algorithm describes if
a proof could cause the state to change from one intermediate state to the next when the quantifier changes.

For example, suppose A is an algorithm with d = 2 alternations and running in space S recognizing
language L. Think of A as a deterministic algorithm taking a proof and outputting true or false. Then since
A is an alternating algorithm, x ∈ L if and only if

∀BigProof1 : ∃BigProof2 : A(x, (BigProof1,BigProof2)).

We can instead be more fine grain with A and talk about its states. Let a be the start state of A and b
be its unique accept state. Let B be the algorithm which takes an initial state u a final state v and a proof
p, then checks if A starting at u is at state v when given the proof p after time |p|. Then our algorithm
accepts x if and only if

∀w ∈ {0, 1}S : ((∃Proof1 : B(x, a, w,Proof1)) =⇒ (∃Proof2 : B(x,w, b,Proof2))) .

If we know how long Proof1 is supposed to be, we can replace

∃Proof1 : B(x, a, w,Proof1)

with a nondeterministic algorithm C. Then our alternating algorithm becomes

∀w ∈ {0, 1}S : C(x, a, w) =⇒ C(x,w, b).

Now, beside our nondeterministic algorithm, we are only quantifying over a variable of size O(S), whereas
Proof1 has size O(T ).

For a more general example, we can replace

∀π1 : ∃π2 : ∀π3 : ∃π4 : A(x, (π1, π2, π3, π4))

with
∀w1 : C(x, a, w1) =⇒ (∃w2 : C(x,w1, w2) ∧ (∀w3 : C(x,w2, w3) =⇒ C(x,w3, b))).

1.2.5 Protocols for Alternating Algorithms

At this point, each quantification is now only over S variables, so we can use the same trick as before to
replace these quantifications with low degree polynomials. Each of the universal quantifiers gets replaced
with a large conjunction, and each of the existential quantifiers gets replaced with a large disjunction. Then
we use Razborov-Smolensky to replace these conjunctions and disjunctions with low degree polynomials and
use an interactive proof to remove the quantifiers one by one.
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A few subtleties show up when doing this. One subtlety of this process is that in a straightforward
reduction, a d alternation algorithm would give our verifier a claim about C at d different places. Running
an interactive protocol d times to confirm each of these d claims independently would require time dS log(T ),
which is too much for us. Instead, we need to use a multi point reduction again to reduce this to a claim
about C at one location before running an interactive protocol to confirm that value.

Another subtlety is that it is not convenient to represent C as a nondeterministic algorithm taking two
states as an input and checking if there is a computation path from one to the other. It is more convenient
to describe C directly with the computation graph of A (now viewing A as a nondeterministic algorithm).
For this to work, we need to make sure each alternation takes the same amount of time, say T . Then we

write C(x, u, v) = M̂
(T )
x (u, v).

So for example, consider the simple case of a 2 alternation algorithm. That is, suppose we want to verify
that

∀w ∈ {0, 1}S : C(x, a, w) =⇒ C(x,w, b).

As described before, we replace C with M̂ (T ). So we want to verify

∀w ∈ {0, 1}S : M̂
(T )
x (a,w) =⇒ M̂

(T )
x (w, b).

Now we need to arithmetize the formula being quantified. So let

Ẽ(w) = 1− M̂
(T )
x (a,w)(1− M̂

(T )
x (w, b)).

See that E is low degree and agrees with the predicate M̂
(T )
x (a,w) =⇒ M̂

(T )
x (w, b) on binary inputs. Of

course, Ẽ is not multilinear, it has individual degree 2. Luckily, if we let Ê be the multilinear function
consistent with D on binary inputs, then one can use an unlinearization operation (similar to those used by

Shen [She92]) to reduce from a statement about Ê to a statement about Ẽ. So we need to verify that

∀w ∈ {0, 1}S : Ê(w).

Using our low degree approximation, our verifier first chooses Dr, then wants to check if

1 =
∏

j∈{0,1}ℓ

1−
∑

w∈{0,1}S

Dr(j, w)(1− Ê(w))

 . (2)

Then we can reduce this to a statement about D̂r at a random location, and Ê at a random location by
using ℓ = O(log(S)) product reductions. We can unlinearize the statement about Ê to get a claim about Ẽ,

or equivalently, about M̂
(T )
x at two locations. Now we can verify the value of M̂

(T )
x by using our protocol for

nondeterministic algorithms. But to avoid doing this twice, we first run a multi-point reduction to reduce

this to a statement about M̂
(T )
x at one location first.

We can do a similar thing d times for an alternating algorithm. One more subtlety is that for d > 2, we
need to make Ê a function of a and b. This is so that we can view the formula in Eq. (2) as a function of a
and b so we can properly linearize and unlinearize it with respect to a and b. See the full proof for details.

Remark (Proof For Unbounded Fan in Depth Circuits Directly). We could have made an interactive protocol
for unbounded fan-in circuits directly. After all, we start with a formula that is essentially the low depth,
unbounded fan in circuit for an alternating algorithm, if we view C as a low depth circuit. We can think of
our alternating algorithms as a particular kind of very uniform circuit. We don’t give an interactive proof
for circuits directly to avoid handling uniformity.

One reason we chose not to just provide an interactive protocol for circuits directly is that we need a
faster interactive protocol for deterministic algorithms as a subroutine to verify our pseudorandom bits.
Since we view this interactive protocol as a problem for bounded space, we find it natural to present the rest
of the results in this framework.
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1.2.6 Extensions

We note that our paper focuses on verifier time, so we have not optimized other parameters, like verifier
space. There are also some other straightforward extensions to further generalizations of alternations we
don’t prove here.

Remark (Parity Gates and Parity Quantifiers). Like GR, our techniques can also be used on alternating
circuits with parity gates, or bounded space algorithms with parity quantifiers. This is clear since a parity
gate is an addition gate over fields of characteristic 2, so is of low degree already.

We emphasize that our protocol is different from GR since we need more randomness efficient pseudoran-
dom bits, efficient computation of those pseudorandom bits, more rounds of interaction to keep our degree
(and thus verifier time) lower, use of an interactive protocol for deterministic algorithms as a subroutine,
and by using connections between low space algorithms, low alternation algorithms, and uniform, low depth
circuits.

Remark (Space Efficiency of Our Verifier). While we only achieve a verifier running in space O(S log(S)),
for any ϵ > 0 we should be able to get verifier space O(S/ϵ) using standard techniques, at the cost of increasing
verifier time by a factor of Sϵ. Specifically, instead of using multilinear polynomials, we would use individual
degree Sϵ polynomials. Since we are focused on improving verifier time, we do not prove this result.

This technique was used by Shamir, Fortnow and Lund, and GKR [Sha92; FL93; GKR15] to give the
space efficiency claimed in those papers. We state the special case where ϵ = 1

log(S) in our results since we

want to compare verifier time.

2 Previous Results

In this section we give a detailed summary of prior interactive proofs in the literature. Most of these results
are summarized in Tables 1 and 2 above, and so this section can be safely skipped by an impatient reader.

The first interactive proofs for PSPACE were originally given by Shamir [Sha92] using techniques
by Lund, Fortnow, Karloff, and Nisan [Lun+90]. Shamir did not analyze the verifier time and prover
time beyond showing that the verifier runs in time poly(S) for a space S algorithm. However, analyzing
the space efficient interactive protocol included in Shamir’s result, we see that the protocol runs in time
Õ((n + S) log(T )), before the state transition function of the algorithm is arithmetized. If one assumes we
know a linear sized Boolean formula for the state transition function, then we get:

Theorem 2.1 (Shamir’s Protocol (Assuming Good Arithmetization)). Let S and T be time O(S log(T ))
and space O(S) computable with S = Ω(log(n)). Then

TISP[T, S] ⊆ITIME
[
Õ((n+ S) log(T ))

]
NTISP[T, S] ⊆ITIME

[
Õ((n+ S) log(T )2)

]
.

Further the verifier space for deterministic algorithms is O((n + S) log(n + S)), and for nondeterministic
algorithms is O((n+ S) log(n+ T )).

And as a corollary, using the relationship between alternations and space, Theorem 3.8, with Shamir’s
IP gives

Corollary 2.2 (Shamir’s Protocol For ATISP). Let S and T be time O(S log(T )) and space O(S) com-
putable with S = Ω(log(n)). Then

ATISPd[T, S] ⊆ITIME
[
Õ((n+ S log(T ) + Sd)(S log(T ) + Sd))

]
.

Further the verifier space is O((n+ S log(T ) + Sd) log(n+ Sd log(T ))).
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In a followup work, Fortnow and Lund [FL93] gave an interactive proof for bounded time and space
alternating algorithms. Interactive protocols can also be efficiently converted to alternating algorithms. So
this showed a strong relationship between time and space bounded alternating algorithms and verifier time
and space bounded interactive protocols. They proved5:

Theorem 2.3 (Fortnow and Lunds Protocol). Let S and T be time O(S2T + n) and space O(S log(T ))
computable with S = Ω(log(n)). Then

ATISP[T, S] ⊆ ITIME
[
Õ(S2T + n)

]
.

Further the verifier runs in space O(S log(T )).

Although Fortnow and Lund’s protocol only handles the case where d = T , when d ≪ T , we can apply
Theorem 3.9 to get

Theorem 2.4 (Fortnow And Lunds Protocol When d ≪ T ). Let S and T be time O(S2T + n) and space
O(S log(T )) computable with S = Ω(log(n)). Then

ATISPd[T, S] ⊆ ITIME
[
Õ(S3(d+ log(T )) + n)

]
.

Further the verifier runs in space O(S log(Sd)).

In a very influential paper, Goldwasser, Kalai and Rothblum gave doubly efficient interactive proofs for
depth bounded circuits with fan in 2 [GKR15] (GKR). To distinguish fan in 2 circuits from the unbounded
fan in circuits discussed earlier, let SIZE−DEPTH2[2

S , d] denote space S uniform fan in 2 circuits of size
2S and depth d. Doubly efficient proofs are proofs where the prover runs in polynomial time and the verifier
runs in almost linear time. With improvements by Cormode, Mitzenmacher, and Thaler [CMT12], GKR
gives:

Theorem 2.5 (GKR For Depth). Given S and d are computable in time O(n+ Sd) and space O(S). Then

O(S)− uniform SIZE−DEPTH2[2
S , d] ⊆ITIME

[
Õ(n+ dS), Õ(2S)

]
.

Further the verifier uses space O(S log(S + d)), the protocol has O(dS) rounds and uses O(dS log(d + S))
bits of communication.

We emphasize that GKR is for fan in 2 circuits, but our protocols are for unbounded fan in circuits. One
can use Theorem 3.14 with GKR to get protocols for log space uniform computation. Much work has been
done to further improve the low order terms in GKR style proofs [Xie+19; Zha+21].

Using the relationship between alternating algorithms and circuits Lemma 3.17 gives:

Corollary 2.6 (GKR For Alternating Time Space). Given T , S and d are computable in time O(n+ S2d)
and space O(S). Then

ATISPd[T, S] ⊆ ITIME
[
Õ(n+ S2 log(T ) + S2d), 2O(S)

]
.

Further the verifier uses space O(S log(S + d)), the protocol has O(S2(log(T ) + d)) rounds and uses
O(S2(log(T ) + d) log(d+ S)) bits of communication.

A work by Cook [Coo22b] gave an interactive protocol for space bounded computation which improved
the verifier time over Shamir’s protocol when S = o(n) while giving a smaller prover time. For deterministic
algorithms, a nearly identical protocol was given by Thaler [Tha20], but with a worse dependence on n due to
a worse arithmetization. A protocol by Rudich [BM00], with subsequent improvements by Hirsch, Melkebeek
and Alexander [HMS13] is also nearly identical, but also with a worse arithmetization than Cook’s.

5Fortnow and Lund state the verifier time as Õ((S2T + n)Sϵ) and space as O(S log(T )/ log(S)) for any ϵ > 0. But we state
the result when ϵ is very small for a more direct comparison.
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Theorem 2.7 (Cook’s Protocol). Let S and T be time O(S log(T )) and space O(S) computable with S =
Ω(log(n)). Then

TISP[T, S] ⊆ITIME
[
Õ(n+ S log(T )), 2O(S)

]
NTISP[T, S] ⊆ITIME

[
Õ(n+ S log(T )2), 2O(S)

]
.

For deterministic algorithms, the verifier space is O(S log(S)), the number of rounds is O(S log(T )), the
number of bits communicated is O(S log(T ) log(S)), and the protocol is public coin and has perfect complete-
ness.

For nondeterministic algorithms, the verifier space is O(S log(T )), the number of rounds is O(S log(T )),
the number of bits communicated is O(S log(T )2), and the protocol is public coin and has perfect completeness.

Again, we can use Theorem 3.8 to get

Corollary 2.8 (Cook’s Protocol For ATISP). Let S and T be time O(S log(T )) and space O(S) computable
with S = Ω(log(n)). Then

ATISPd[T, S] ⊆ITIME
[
Õ(n+ (S log(T ) + Sd)2), 2O(S log(T )+Sd)

]
.

Further the verifier space is O((S log(T ) + Sd) log(Sd log(T ))).

The GKR protocol, as well as ours, only have polynomial time provers when S = O(log(S)). Reingold,
Rothblum and Rothblum [RRR16] (RRR) gave a doubly efficient protocol whose prover is polynomial as
long as T is polynomial, but the verifier is only linear if T is polynomial.

Theorem 2.9 (RRR Protocol for Deterministic). For any constant δ > 0, and integers S and T computable
in time TO(δ)S2, and T = Ω(n) we have

TISP[T, S] ⊆ ITIME
[
O(npolylog(T ) + TO(δ)poly(S)), T 1+O(δ)poly(S)

]
.

Further the protocol only has
(
1
δ

)O(1/δ)
rounds.

We note the result in the [RRR16] paper allows sub constant δ, but is complex and can not give a verifier
with time poly(log(T )S). Unfortunately, the algorithm time blow up from something like Theorem 3.8 is
too much for RRR to handle and gives exponential time verifiers.

A major limitation of the RRR protocol is that the number of rounds are
(
1
δ

)O(1/δ)
, but one might expect

that it would be possible to achieve O
(
1
δ

)
rounds. Goldreich and Rothblum (GR) [GR20] gave an interactive

protocol that achieves this, but only for very shallow circuits: AC0[⊕].

Theorem 2.10 (GR Protocol For AC0 with Parity). For constants c, d and suppose that L is computable
by time O(log(n)) uniform circuits with unbounded fan in, AND, OR, parity and negation gates, depth d and
size nc. Then for every δ ∈ (0, 1], then there is an interactive protocol for L with O(cd/δ) rounds, a time
O(n1+o(1)) verifier and a time O(nc+o(1)) prover with only nδ bits of communication.

GR also gave an interactive protocol with fewer rounds for NC1.

Theorem 2.11 (GR Protocol For NC1). Suppose that L is computable by time O(log(n)) uniform circuits
with fan-in two and depth O(log(n)). Then for every δ ∈ (0, 1], then there is an interactive protocol for
L with O(1/δ2) rounds, a time O(n1+o(1)) verifier and a time poly(n) prover with only nδ+o(1) bits of
communication.

While GR’s protocols are highly optimized to the special case of very low depth circuits to get an
interactive protocol with very few rounds, we use some of its techniques in this paper. Unfortunately, we
can’t reduce general space bounded computation to an NC1 circuit, so its unclear how to compare it to our
results.

Other proofs that IP = PSPACE worth mentioning are Shen ’s [She92] variation of Shamir’s proof and
Meir’s combinatorial proof that IP = PSPACE [Mei13]. Neither of these improve verifier time.
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3 Preliminaries

We assume the reader is familiar with basic complexity concepts like circuits, Turing machines, and big O
notation. See [AB09] for a reference. For notation, we define Õ to hide polylogarithmic factors in whatever
is inside it in general, not specifically polylog(T ) or polylog(n). That is:

Definition 3.1 (Big Tilde O). For functions f, g : N → N, we define f(n) = Õ(g(n)) if and only if there
exists some constant c such that f(n) = O(g(n) log(g(n))c).

3.1 Bounded Space and Alternating Algorithms

We denote by TISP[T, S] languages that are computable by a Turing Machine running in time T and space
S.

Definition 3.2 (TISP). For functions T, S : N → N, we say language L is in TISP[T, S] if there is an
Turing Machine, A, running in time T and space S that decides L.

We want interactive proofs for a generalization of nondeterministic algorithms called alternating algo-
rithms, as was formally defined in [CKS81]. In a nondeterministic Turing Machine, from some Turing
Machine states, there are multiple state transitions, and the algorithm accepts if there are any choice of
state transitions leading to an accept state. That is, the Turing Machine accepts a state if there exists a
transition out of that state to a state the Turing Machine accepts. We call these existential states with
existential quantifiers, or exists quantifiers. Similarly, a co-nondeterministic algorithm is one with universal
states such that the algorithm would accept on every state transition. We call these universal states with
universal quantifiers, or for all quantifiers.

An alternating Turing Machine is like a nondeterministic one, except that it has both existential states
and can use exists quantifiers, and also has universal states and can use for all quantifiers. These are called
alternating machines because they can alternate between quantifiers, unlike nondeterministic algorithms or
co-nondeterministic algorithms that must use only one. So one can define alternating P, AP, as polynomial
time on an alternating Turing Machine. The natural complete language for alternating languages are quan-
tified Boolean formulas. This is why AP = PSPACE. We naturally define ATISP[T, S] as the languages
that are computable by a time T , space S alternating Turing Machine.

We further parameterize our alternating algorithms by the number of alternations. The number of
alternations is the number of quantifiers it uses, or equivlanetly, the number of times it switches between
existential and universal states, plus one. For instance, nondeterministic algorithms can be viewed as having
one alternation, the second level of the polynomial hierarchy has two, and so on.

Definition 3.3 (ATISP). For functions T, S, d : N → N, we say a language L is in ATISPd[T, S] if there
is an alternating Turing Machine, A, running in time T and space S that recognizes L such that on any input
x, our algorithm A only changes from no quantification to one, from existential to universal quantifiers, or
from universal to existential quantifiers d times.

So for instance, nondeterministic time T and space S algorithms would be contained in ATISP1[T, S].

3.2 Interactive Proofs

An interactive proof informally is a proof system where a verifier with access to unpredictable randomness
can verify a result such that if the statement is true, an honest prover can convince the verifier with high
probability. In this paper, honest provers succeed with probability 1. And if the statement is false, no prover,
no matter how powerful, can convince the verifier the statement is true above some constant probability,
as long as the prover can’t predict the random bits of the verifier. In this paper, we focus on the perfect
completeness case, where the prover can always convince the verifier of a true statement.

While we will mostly discuss the concept of an interactive protocol intuitively, we will briefly formally
define an interaction between a prover and verifier for concreteness.

13



Definition 3.4 (Interaction Between Verifier and Prover (Int)). Let V be an algorithm with access to
randomness, that can make oracle queries, and outputs something in {0, 1}. Let P ′ be any function, and x
be an input.

Now we define the interaction of V and P ′ on input x. For all i, define yi to be V ’s ith oracle query
given its first i− 1 queries were answered with z1, . . . , zi−1 and define zi = P ′(x, y1, . . . , yi). Then the yi will
be the verifiers messages (which will depend on some randomness used by the verifier), and the zi will be the
prover messages.

Define the output of V when interacting with P ′, Int(V, P ′, x), as the output of V on input x when its
oracle queries are answered by z1, z2, . . .. The verifier time and space will be the time and space of V . The
number of rounds is the max number of messages the verifier might send to the prover.

Our protocols in this paper will all be public coin, so the messages y1, . . . , yi will just be the randomness
used by the verifier.

Now we define interactive time. We note that in all our protocols, we achieve perfect completeness. That
is, c = 1.

Definition 3.5 (Interactive Time (ITIME)). If for any language L, soundness s ∈ [0, 1], completeness
c ∈ [0, 1], verifier V and prover P we have

Completeness: If x ∈ L, then Pr[Int(V, P, x) = 1] ≥ c, and

Soundness: if x /∈ L, then for any function P ′ we have Pr[Int(V, P ′, x) = 1] ≤ s,

then we say V and P are an interactive protocol for L with soundness s and completeness c.
If in addition verifier V runs in time TV , soundness s < 1

3 , and completeness c > 2
3 , then

L ∈ ITIME[TV ].

If P is also computable by an algorithm running in time TP , we say

L ∈ ITIME[TV , TP ].

3.3 Relations Between Alternating and Other Complexities

We now outline the known relationships between alternating algorithms and other complexity classes.
The relationship between the polynomial hierarchy and AC circuits was used by [FSS81] to show oracle

separations for the polynomial hierarchy. Chandra, Kozen, and Stockmeyer [CKS81] defined alternating
algorithms and showed many of the foundational relationships between it and other complexity classes.
They gave an equivalence between constant alternation alternating algorithms and the polynomial hierarchy,
citing [Wra76].

Theorem 3.6 ([CKS81], Theorem 4.1). For any constant d,

ATIMEd[poly(n)] = ΣkP ∪ΠkP.

[CKS81] also showed many very strong relationships between alternating time and deterministic space,
as well as alternating space and deterministic time.

Theorem 3.7 ([CKS81], Theorems 3.1-3.6). For S = Ω(n) and T = Ω(n):

NSPACE[S] ⊆ATIME[O(S2)]

ATIME[T ] ⊆SPACE[O(T )]

PSPACE =AP

EXPSPACE =AEXP.
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For S = Ω(log(n)),

TIME[T ] ⊆ASPACE[O(log(T ))]

ASPACE[S] ⊆TIME[2O(S)]

P =AL

EXP =APSPACE.

[CKS81] showed an extension of Savitch’s theorem to alternating algorithms with few alternations.

Theorem 3.8 ([CKS81], Theorem 4.2 (credited to Borodin.)). For S = Ω(log(n)) and T = Ω(n):

ATISPd[T, S] ⊆ SPACE[O(S log(T ) + Sd)].

This characterization was further generalized by Ruzzo [Ruz81] to give

Theorem 3.9 ([Ruz81], Proposition 1). For S = Ω(log(n)) and T = Ω(n):

ATISPd[T, S] ⊆ ATISP[O(S log(T ) + Sd), O(S)].

Remark. [CKS81; Ruz81] actually states this theorem for ATISPd[2
S , S], but it is clear from the proof that

the S2 term only needs the time to run Savitch’s theorem, which is only space S log(T ).

Now we describe the relationship between alternating algorithms and bounded depth circuits. First, we
give our notation for bounded depth circuits.

Definition 3.10 (Size, Depth, Uniformity of Circuits). For any d, S = Ω(log(n)), f ∈ N, and uniformity
measure U∗ define

U∗ − SIZE−DEPTHf [2
S , d]

to be the class of U∗ uniform circuits with fan in f , size 2S, and depth d where the gate set is AND, OR,
and NOT.

We let SIZE−DEPTH[2S , d] denote unbounded fan in, log space (space O(S)) uniform circuits of size
2S and depth d. That is, the entire circuit description can be constructed in O(S) space. This is UBC in
[Ruz81] and the uniformity used in [GKR15].

For any circuit C with 2S gates, let G : {0, 1}S → {∧,∨, ̸=} be the function that takes a gate’s index and
outputs its type. Let D : {0, 1}S × [f ] → {0, 1}S be the function such that D(u, v) is one if and only if u is
an input to v. For T = Ω(log(n)), we let

T -uniform SIZE−DEPTHf [2
S , d]

be the circuits with fan in f , size 2S, and depth d such that D and G can be computed in time T and space
O(S). If T = O(S), this is UD in [Raz87] and similar to deterministic log time uniform [Bus87; MBIS90].

Ruzzo [Ruz81] established a very strong relationship between very uniform, depth bounded circuits and
time bounded alternating algorithms. As well as giving strong relationships between the different notions of
uniformity, like those used by Borodin and Cook [Bor77; Coo79]. For the strongest relationships between
bounded depth circuits and bounded alternating time, Ruzzo gave some very strong notions of uniformity.

Definition 3.11 ([Ruz81], UE uniform.). We say a circuit family of size 2S is UE uniform if given any
gate, g, and path p (with |p| ≤ S) out of g (given as a sequence of left or right input gates), there is an
algorithm running in time O(S) who can verify if a given gate y is the gate reached by taking p out of g.

Remark. This allows us to traverse the circuit by only keeping track of our current path from a given gate,
instead of updating our entire gates label at each step. Then whenever we want to actually get our current
gate label, we can do so quickly given the path.
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This kind of uniformity is much more strict than the standard log space uniformity used by [GKR15], or
even deterministic log time uniformity. However, standard Turing Machine to circuit reductions often have
this kind of uniformity, and it allows Ruzzo to make a much stronger relationship between bounded depth
circuits and alternating algorithms.

Theorem 3.12 ([Ruz81], Theorem 3 ). For S, T = Ω(log(n)) both computable in time O(S):

ATISP[T, S] ⊆ UE − SIZE−DEPTH2[2
O(S), T ].

and

Theorem 3.13 ([Ruz81], Theorem 4). For S, T = Ω(log(n)):

UE − SIZE−DEPTH2[2
S , T ] ⊆ ATISP[O(T ), O(S)].

These show that for sufficiently uniform circuits, bounded depth is nearly exactly equivalent to bounded
alternations. But GKR applies to log space uniform circuits, not just UE uniform ones. Fortunately, Ruzzo
gave a reduction from log space uniformity (called UBC uniformity in [Ruz81]) to UE uniformity.

Theorem 3.14 ([Ruz81], Theorem 2). For S, d = Ω(log(n)) both computable in time O(S):

SIZE−DEPTH2[2
S , d] ⊆UE − SIZE−DEPTH2[2

O(S), O(d+ S2)].

This result can be further refined to give a relationship between depth d circuits with unbounded fan-
in and alternating algorithms with d alternations. Such a result was credited to Ruzzo and Tompa and
described by Stockmeyere and Vishkin [SV84].

Lemma 3.15 (Log Space Uniform Circuits Can Be Made Log Time). For S = Ω(log(n)) computable in
time O(S) and any d:

SIZE−DEPTH[2S , d] ⊆ O(S)− uniform − SIZE−DEPTH[2O(S), O(d+ S)].

A straightforward reduction reduces time T uniform circuit to an alternating algorithm. This uses similar
ideas to those used by Ruzzo.

Lemma 3.16 (Uniform Shallow Circuits have Few Alternations and Low Space). For S, T = Ω(log(n)) and
d ≥ 1 all computable in time O(S):

T -uniform SIZE−DEPTH[2S , d] ⊆ATISPd[O(dS + T ), O(S)]

Proof Sketch. For a time T space O(S) uniform circuit family of size 2S and depth d, let A be the space S
algorithm for C which takes as input a gate in the circuit, and recognizes its input gates.

Then the idea is to use ∃ on the OR gates, and to use ∀ on the AND gates. Our algorithm accepts a gate
if it is an OR gate and there exists an input gate, or it is an AND gate and for all input gates it accepts.
More specifically, for an OR gate, we ask if there exists a gate we transition to where both we accept that
gate and we transition to it. For an AND gate, we ask if for all gates, we either don’t transition to it, or we
accept it.

This can be implemented in two ways. Either for a gate, we check if the gate is reachable, then quantify
over the next level of the circuit, or use another quantifier to check if they are equal. We use two quantifiers
on every layer, except the last layer before the input. On the last layer, we just check if the input bit is one,
and if it is an input to this gate.

The quantifiers added between the layers of the circuit ‘collapse’ since they are next to quantifiers of the
same kind. So we only need d quantifiers. The time is just the time to guess the sequence of gates plus the
time to verify one of them (as each computation path verifies exactly one adjacency). Since we go through
d gates of size S, the time for the sequence of gates is just O(Sd). Thus the total time is just O(Sd + T ).
For space, we only ever need to know the current gate, and a candidate input gate we need to check. This
only requires space O(S).
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Lemma 3.15, Lemma 3.16 and Theorem 1.1 together give Theorem 1.3.
Another proof credited to Ruzzo and Tompa [SV84] also show that:

Lemma 3.17 (Few Alternations and Low Space have Uniform Shallow Circuits). For S, T = Ω(log(n)) and
d ≥ 1 all computable in time O(S):

ATISPd[T, S] ⊆ O(S)− uniform − SIZE−DEPTH[2O(S), d+ log(T )].

This shows how one can use GKR to give a proof for alternating algorithms as well. But to use GKR,
one must first make the fan in constant, which increases the depth by a factor of S. This is why GKR has
a verifier time which is a factor S slower than ours.

3.4 Expander Graphs

We will use expander graphs to create hitting samplers through the hitting properties of expanders [Kah95].
See [Vad12] for a more detailed review of expander graphs. We will assume some basic familiarity with
graphs here, and review the details of expanders we need.

Definition 3.18 (Expander Graph). We say a graph G is an expander graph if its normalized adjacency
matrix has second largest eigenvalue some constant less than 1. We call the second largest eigenvalue its
spectral expansion.

By normalized adjacency matrix, we mean the transition matrix of a uniform random walk on the graph.

We use an expander graph given by Margulis [Mar73] proven by Gabber and Galil [GG79]. We use this
expander because it’s simple structure makes it very clear that we can compute random walks on it in very
little time and linear space.

Lemma 3.19 (Efficient Expander Graphs). For any square n = m2, there exists an expander graph G with
constant degree d and constant spectral expansion λ < 1.

Let V be the vertex set of G, and E : V × [d] → V be the edge function taking in a vertex, v, and the
index of an edge, e, out of v, and outputting the other vertex incident to e. Then E can be computed in space
O(log(n)) and time O(log(n)).

Proof. The proof that the graph is an expander is given by [GG79]. The proof that the edge function can
be computed efficiently is clear from the definition. We view V = Zm ×Zm as the pairs of integers mode m.
Then E is defined by

E((a, b), 1) =(a+ 1, b)

E((a, b), 2) =(a− 1, b)

E((a, b), 3) =(a, b+ 1)

E((a, b), 4) =(a, b− 1)

E((a, b), 5) =(a+ b, b)

E((a, b), 6) =(a− b, b)

E((a, b), 7) =(a, b+ a)

E((a, b), 8) =(a, b− a).

Each of these is a simple addition or subtraction, which is easy to calculate in linear time.

The main lemma about expanders we will use is that random walks on expanders graphs hit any subset
with high probability. This was originally proved by Kahale [Kah95].

Lemma 3.20 (Random Walks on Expanders Hit With High Probability). Let G be an expander graph with
spectral expansion λ and vertex set V . For any length t, let Wt be the set of random walks on G with length
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t. That is w ∈ Wt if and only if w = (v1, v2, . . . , vt) ⊂ V t such that for each i ∈ [t − 1] we there is an edge
from vi to vi+1.

Then for any set B ⊆ V with |B|
|G| < µ, and any walk length t we have

Pr
(v1,...,vt)∈Wt

∧
i∈[t]

vi ∈ B

 ≤
(
µ+ λ(1− µ)

)t
.

3.5 Arithmetization

A core technique of standard interactive proofs is called “arithmetization”. Arithmetization is the process
of converting some Boolean function, f , to a low degree formula over a larger field, F, which agrees with f
on Boolean inputs. By using things like the Schwartz-Zippel lemma, this gives us an error correcting code
encoding of a function, which help us design interactive proofs. The main function we will be arithmetizing
is the state transition of Turing Machines. So let us formally define the state of a Turing machine.

First, we define our Turing machine’s state. We use multi-tape Turing Machines that have a read only
input tape, and a working tape. Then our Turing machine’s state will be the program state of the Turing
machine, the contents of the work tape, and the locations of the tape heads. We further encode the tape in
a convenient, binary format.

Definition 3.21 (Turing Machine State). Let A be a two tape Turing Machine with a read only input tape,
and a work tape. Let D = {−1, 0, 1} be the set of symbols indicating how we should move a tape.

Suppose A has alphabet Σ, states Q, start state a ∈ Q, accept state b ∈ Q, and state transitions Λ :
(Q× Σ× Σ)× (Q×D ×D × Σ).

Notably, we do not restrict our state transitions to be functions, A may be a nondeterministic algorithm
with many state transitions, or no state transitions. We identify Q with {0, 1}k1 for some constant k1, adding
states with no transitions in Λ if necessary. We do the same for Σ.

Suppose on any length n input, A only ever reads from or writes the positions in [S′], and reads the input
on positions in [n′] where n′ = n + 2. The positions on the tape may be appropriately indexed so that the
first bit of the input is position one, and the first bit of the working tape is at S′/2.

Then we define a state of A on input x with |x| = n as any tuple s = (q, h, w,m) ∈ Q× [n′]× [S′]×ΣS′
.

We identify [n′] and [S′] with binary strings so that for some S = O(S′ + log(n)) we have s ∈ {0, 1}S. We
also assume that A has a unique start state, and a unique accept state if it accepts.

Remark. Note that if S′ = Ω(log(n)), then S = O(S′). Thus, we generally just refer to S as the space of
the algorithm, and s as the state. We will call q the instruction state. We assume that all algorithms are
defined by such a Turing Machine.

Remark. We note that without loss of generality we can assume that our Turing Machine has a unique end
state. We just modify the Turing Machine to erase all the working tape whenever the algorithm accepts.

Now we define the state transition function to be the one that takes two states, and outputs if the
Turing machine can transition from the first state to the second in one step. Note we are talking about
nondeterministic Turing Machines that could have multiple transitions, with deterministic Turing Machines
as a special case.

Definition 3.22 (Turing Machine State Transition). For a Turing Machine A as in Definition 3.21, for
any n, we define the state transition “matrix” as the function Mn : {0, 1}n ×{0, 1}S ×{0, 1}S → {0, 1} such
that:
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for any s0 = (q0, h0, w0,m0) ∈ {0, 1}S and s1 = (q1, h1, w1,m1) ∈ {0, 1}S we have

Mn(x, s
0, s1) = 1 ⇐⇒ ∃ ((q0, σh, σs), (q1, dh, dw, σf )) = λ ∈ Λ : (3)

q0 = q0∧ (4)

q1 = q1∧ (5)

σh = xh0∧ (6)

h0 + dh = h1∧ (7)

σs = m0
w0∧ (8)

σf = m1
w0∧ (9)

w0 + dw = w1∧ (10)

∀j ∈ [S′] \ {w0} : m0
j = m1

j . (11)

Remark. Condition 1 just specifies a state transition, λ. Conditions 2 and 3 verify the instruction state is
updated according to λ. Conditions 4 and 5 verifies the input matches λ and the input head updates according
to λ. Condition 6 and 7 verifies the working tape is updated according λ. Condition 8 verifies the working
head updates according to λ. Condition 9 verifies nothing else on the working tape is changed.

Remark. We call this a transition matrix since after fixing x, Mx is just the adjacency matrix of the
computation graph for A on input x, where Mx(a, b) = M|x|(x, a, b).

Now we will show how to arithmetize the state transition function. In particular, we want a very low
degree arithmetization we call a multilinear extension.

Definition 3.23 (Multilinear Extension). For a field F, integer S and a function ϕ : {0, 1}S → F, we define

the multilinear extension of ϕ as the polynomial ϕ̂ : FS → F that is degree 1 in any individual variable such
that for all a ∈ {0, 1}S we have ϕ(a) = ϕ̂(a).

We start by giving an arithmetization of the equality function, both as a warm up, and because it is an
important component of our arithmetization.

Lemma 3.24 (Arithmetizing Equality). For any m, let equ′ : {0, 1}m × {0, 1}m → {0, 1} be such that
equ′(a, b) = 1 ⇐⇒ a = b. Let equ : Fm × Fm → F be the multilinear extension of equ′ for some finite field
F. (F and m will be clear from context).

Then equ(x, y) =
∏

i∈[m](xiyi + (1 − xi)(1 − yi)), and equ(x, y) can be computed in time Õ(log(|F|))m
and space O(log(|F|) + log(m)).

Proof. See this formula is multilinear since each term is multilinear in its xi and yi, and term is a function
of different variables. Further, equ and equ′ agree on binary inputs, since each term is one if and only if
xi = yi, and is 0 otherwise. Thus, equ is the unique multilinear extension of equ′.

We use [Coo22a, Lemma 36]. We include the proof in Appendix A.

Theorem 3.25 (Arithmetization of State Transition). Suppose A is a space S nondeterministic algorithm
with transition matrix Mn : {0, 1}n × {0, 1}S × {0, 1}S → {0, 1} as described in Definition 3.22.

Then we can compute the multilinear extension of Mn, denoted M̂n : Fn × FS × FS → F, in time
(n+ S)Õ(log(|F|)) and space O((log(S) + log(n)) log(|F|)).

3.6 Standard Algebraic, Interactive Proof Tools

Now we will review many standard algebraic tools used in algebraic interactive proofs, like [GKR15; Coo22b;
Lun+90; Sha92; She92]. Perhaps the most important tool is the original sum check from [Lun+90]. A proof
of sum check can be found in [AB09]. For completeness, the proofs of the rest of these lemmas can be found
in Appendix B.
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Lemma 3.26 (Sum Check [Lun+90]). Suppose f : FS → F has individual degree d. Then there is an S
round interactive protocol with a verifier V that runs in time SdÕ(log(|F|)) and space O((S + d) log(|F|)),
and a prover P that runs in time d2SÕ(log(|F|)) with O(d2S) oracle queries to f which takes as input α ∈ F
such that

Completeness: If
∑

w∈{0,1}S f(w) = α, then when V interacts with P , V outputs a uniform w′ ∈ FS and

some α′ ∈ F such that f(w′) = α′.

Soundness: If
∑

w∈{0,1}S f(w) ̸= α, then for any prover P ′ with probability at most dS
|F| will V output a

uniform w′ and some α′ such that f(w′) = α′.

There is an unlinearization protocol, like the one used by Shen [She92]. This can be proved using a sum
check.

Lemma 3.27 (Unlinearization). Suppose f : FS → F is a polynomial with individual degree d, and f̂
is the multilinear function consistent with f on binary inputs. Then there is an S + 1 round interactive
protocol with O(dS log(|F|)) bits of communication, a verifier V that runs in time SdÕ(log(|F|)) and space
O((d+ S) log(|F|)), and a prover P that runs in time d2SÕ(log(|F|)) and makes O(d2S) oracle queries to f
which takes as input a w ∈ FS and α ∈ F such that

Completeness: If f̂(w) = α, then when V interacts with P , V outputs a w′ ∈ FS and α′ ∈ F such that
f(w′) = α′.

Soundness: If f̂(w) ̸= α, then for any prover P ′ with probability at most (d+1)S
|F| will V output a w′ and

α′ such that f(w′) = α′.

There is a protocol to reduce a claim about a low degree polynomial at many points to a claim about a low
degree polynomial at one point. This multi-point reduction is used in previous interactive proofs [GKR15;
Coo22b] and similar query reductions have a long history in PCP literature [Aro+98; FL92; Din+99; Raz05;
KR08].

Lemma 3.28 (Multi-Point Reduction). Suppose f : FS → F has total degree d and m is some integer. Then
there is a one round interactive protocol with O(dm log(|F|)) bits of communication, a verifier V that runs in
time (S+d)mÕ(log(|F|)) and space O((md+S) log(|F|)), and a prover P that runs in time m2dSÕ(log(|F|))
with O(dm) oracle queries to f . The protocol takes as input (wi ∈ FS)i∈[m] and (αi ∈ F)i∈[m] and behaves
such that

Completeness: If for each i ∈ [m] we have f(wi) = αi, then when V interacts with P , V outputs a
w′ ∈ FS and α′ ∈ F such that f(w′) = α′.

Soundness: If for any i ∈ [m] we have f(wi) ̸= αi, then for any prover P ′ with probability at most d(m−1)
|F|

will V output a w′ and α′ such that f(w′) = α′.

A particular application of the multipoint reduction above is a product reduction.

Lemma 3.29 (Product Reduction). Suppose f : FS → F has total degree d. Then there is a one round
interactive protocol with O(d log(|F|)) bits of communication, a verifier V that runs in time (S+d)Õ(log(|F|))
and space O((S+d) log(|F|)) , and a prover P that runs in time SdÕ(log(|F|)) and makes O(d) oracle queries
to the f . The protocol takes as input u, v ∈ FS and α ∈ F and acts such that

Completeness: If f(u)f(v) = α, then when V interacts with P , V outputs a w ∈ FS and α′ ∈ F such that
f(w) = α′.

Soundness: If f(u)f(v) ̸= α, then for any prover P ′ with probability at most d
|F| will V output a w and α′

such that f(w) = α′.
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4 Interactive Proof For Deterministic Algorithms

Internally, our proof will need interactive proofs for deterministic algorithms. So we start by proving a
variation of the deterministic algorithms from [Coo22b; Tha20]. The algorithm is nearly the same, but we
will need to verify the multilinear extension of the function the algorithm computes, instead of just a binary
output.

The idea of the algorithm is that for a time T algorithm A, if on an input x algorithm A has computation
graph G with adjacency matrix M , then for unique start state a and end state b, algorithm A accepts A if
and only if MT

a,b = 1. The by using a matrix square reduction repeatedly, this can be reduced to a statement

about the value of M̂ , the multilinear extension of M , at a random point. And M̂ can be calculated quickly
using Theorem 3.25.

Our matrix square reduction is very similar to the matrix reduction in [Tha13], except generalized to the
case where the matrix is also a multilinear extension of a third input.

Lemma 4.1 (Matrix Square To Matrix Reduction). Given a function M : {0, 1}n × {0, 1}S × {0, 1}S → F,
denote for any x ∈ {0, 1}n the matrix Mx such that (Mx)u,v = M(x, u, v). Then M2

x is defined in the
usual way: (M2

x)u,v =
∑

w∈{0,1}S Mx(u,w)Mx(w, v). Now define M2 : {0, 1}n × {0, 1}S × {0, 1}S → F by

M2
x(u, v) = (M2

x)u,v. Let M̂ be the multilinear extension of M and M̂2 be the multilinear extension of M2.
Then there is an S + n+ 2 round interactive protocol with O((S + n) log(|F|)) bits of communication, a

verifier V that runs in time (S + n)Õ(log(|F|)) and space O((S + n) log(|F|)), and a prover P that runs in

time 2S+nÕ(log(|F|)) with O(2S+n) oracle queries to M̂ . The protocol takes as input α ∈ F, u, v ∈ FS, and
x ∈ Fn and acts such that

Completeness: If α = M̂2(x, u, v), then when V interacts with P , V outputs a u′, v′ ∈ FS, x′ ∈ Fn, and

α′ ∈ F such that α′ = M̂(x′, u′, v′).

Soundness: If α ̸= M̂2(x, u, v), then for any prover P ′ with probability at most 4S+3n
|F| will V output a

u′, v′ ∈ FS, x′ ∈ Fn, and α′ ∈ F such that α′ = M̂(x′, u′, v′).

Proof. We first run the unlinearization Lemma 3.27 on the first input to reduce the claim about M̂2 to a
claim that

α0 =
∑

w∈{0,1}S

M̂(x′, u, w)M̂(x′, w, v).

Then we use sum check Lemma 3.26 to reduce this to a claim that

α1 = M̂(x′, u′, w)M̂(x′, w, v′).

Then we use a product reduction Lemma 3.29 to reduce this to a that

α′ = M̂(x′, u′, v′).

The verifier runs unlinearization in time SÕ(log(|F|)) and space O(S log(|F|)) since

g(x∗) =
∑

w∈{0,1}S

M̂(x∗, u, w)M̂(x∗, w, v)

only has individual degree 2. The verifier runs the sum check in time SÕ(log(|F|)) and space O(S log(|F|)).
The verifier runs the product reduction in time SÕ(log(|F|)) and space O(S log(|F|)). Thus the verifier runs
in time SÕ(log(|F|)) and space O(S log(|F|))

The prover runs the unlinearization in time 2nÕ(log(|F|)) with O(2n) queries to

g(x∗) =
∑

w∈{0,1}S

M̂(x∗, u, w)M̂(x∗, w, v).
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Each query to g takes time 2SÕ(log(|F|)) using 2S queries to M̂ . Thus the unlinearization takes prover

time 2n+SÕ(log(|F|)) with 2n+S oracle queries to M̂ . The prover runs the sum check in time 2SÕ(log(|F|))
with O(2S) oracle queries to M̂(y, u, w)M̂(y, w, v), which only requires O(2S) queries to M̂ . The product

reduction only takes prover time S2Õ(log(|F|)) with O(S) oracle queries to M̂ . Thus the prover runs in time

2S+nÕ(log(|F|)) and makes O(2S+n) queries to M̂ .

For completeness, suppose α = M̂2(x, u, v). Then by completeness of unlinearization,

α0 =
∑

w∈{0,1}S

M̂(x′, u, w)M̂(x′, w, v).

By completeness of sum check,
α1 = M̂(x′, u′, w)M̂(x′, w, v′).

And by completeness of product reduction,

α′ = M̂(x′, u′, v′).

For soundness, suppose α ̸= M̂2(x, u, v). By soundness of unlinearization, with probability at most 3n
|F| will

the verifier not reject and α0 =
∑

w∈{0,1}S M̂(x′, u, w)M̂(x′, w, v). If α0 ̸=
∑

w∈{0,1}S M̂(x′, u, w)M̂(x′, w, v),

then by soundness of sum check, with probability at most 2S
|F| will α1 = M̂(x′, u′, w)M̂(x′, w, v′). Then by

soundness of product reduction, with probability at most 2S
|F| will α

′ = M̂(x′, u′, v′).

So by a union bound, the probability that α′ = M̂(x′, u′, v′) is at most 4S+3n
|F| .

Now applying this square reduction log(T ) times gives our interactive proof for the multilinear extension
of a space efficient function.

Theorem 4.2 (Interactive Proof For Multilinear Extension of Bounded Space). For any function D :

{0, 1}n×{0, 1}m → {0, 1}, for any x ∈ {0, 1}n, denote Dx : {0, 1}m → {0, 1} by Dx(y) = D(x, y). Let D̂x be
the multilinear extension of Dx. If D is computed by a space S time T deterministic algorithm, then there
is a (m+ S + 2) log(T ) round interactive protocol with O((m+ S) log(T ) log(|F|)) bits of communication, a
verifier V that runs in time (n+ (m+ S) log(T ))Õ(log(|F|)) and space O((log(n) +m+ S) log(|F|)), and a
prover P that runs in time 22m+2S log(T )Õ(log(|F|)) which takes as input an x ∈ {0, 1}n, w ∈ FS and α ∈ F
such that

Completeness: If D̂x(w) = α, then when V interacts with P , V accepts.

Soundness: If D̂x(w) ̸= α, then for any prover P ′ with probability at most (4S+3m) log(T )
|F| will V accept.

Proof. The idea is to apply Lemma 4.1 log(T ) times.
Let Mn : {0, 1}n × {0, 1}m × {0, 1}S × {0, 1}S → {0, 1} be the state transition function of D such that

D(x, y, s0, s1) = 1 if and only if D on input (x, y) and starting at state s0 transitions to state s1 after
one step, as in Definition 3.22. For any x ∈ {0, 1}n and y ∈ {0, 1}m, let Mx,y be the matrix defined by
(Mx,y)u,v = M(x, y, u, v). Let a be the starting state of the algorithm, and b be the unique accept state.

Then observe that (M i
x,y)u,v = 1 if and only if when D on input (x, y) starts at state u after i steps

is at state v. Since D runs in time T , see that D accepts (x, y) if and only if (MT
x,y)a,b = 1. That is,

Dx(y) = (MT
x,y)a,b. Now let MT

x : {0, 1}m×{0, 1}S ×{0, 1}S → {0, 1} be defined by MT
x (y, u, v) = (MT

x,y)u,v

and M̂T
x : Fn × FS × FS → F be the multilinear extension of MT

x . Then we have D̂(x) = M̂T
x (y, a, b).

We take T to be a power of 2 so that for some t we have T = 2t. So the verifier runs Lemma 4.1 to reduce

the claim that α = M̂T
x (w, a, b) to the claim that α1 = M̂2t−1

x (y1, a1, b1). Then the verifier repeats this log(T )

times to get the claim that α′ = M̂x(y
′, a′, b′) = M̂n(x, y

′, a′, b′). Finally, the verifier runs Theorem 3.25 to

calculate M̂n(x, y
′, a′, b′) and reject if it is not equal to α′.
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This verifier takes time (S + m) log(T )Õ(log(|F|)) and space O((S + m) log(|F|)) to run Lemma 4.1

log(T ) times. The verifier computes M̂n(x, y
′, a′, b′) in time (S + n+m)Õ(log(|F|)) and space O((log(S) +

log(n+m)) log(|F|)). Thus the verifier runs in time (n+ (S +m)) log(T )Õ(log(|F|)) and space O((S +m+
log(n)) log(|F|)).

The prover first needs to calculate M2i

x,y for every i ∈ [log(T )] and y ∈ {0, 1}m. First, we note that since

D is deterministic, M2i

x,y is sparse, as in each row has only one non zero entry. So we define N2i

x,y : {0, 1}S →
{0, 1}S∪ ⊥ such that N2i

x,y(u) = v if and only if (M2i

x,y)u,v = 1. Then the prover can calculate each N2i

x,y in

time 2m+S log(T )Õ(log(|F|)).
Now see that given each of these, we can calculate any M̂2i

x (y, u, v) in time (m + S)2m+SÕ(log(|F|)),
since there are only 2S entries in any M2i

x,y. Specifically,

M̂2i
x (y, u, v) =

∑
y∗∈{0,1}m

equ(y, y∗)
∑

z∈{0,1}S

equ(u, z)equ(v,N2i

x,y∗(v)),

which can be evaluated straightforwardly in time 2m+SÕ(log(|F|)).
Now the prover in the Lemma 4.1 runs in time m2m+SÕ(log(|F|)) with O(2m+S) oracle queries to

M̂2i . Thus each use of Lemma 4.1 can be run in time 22m+2SÕ(log(|F|)). Thus the prover runs in time
22m+2S log(T )Õ(log(|F|)).

For completeness, suppose D̂x(w) = α. Then M̂T
x (w, a, b) = α, and by completeness of Lemma 4.1, we

have α′ = M̂n(x, y
′, a′, b′). Thus the verifier accepts.

For soundness, suppose D̂x(w) ̸= α. Then M̂T
x (w, a, b) ̸= α, so by soundness of Lemma 4.1, with

probability at most 4S+2m
|F| will α1 = M̂2t−1

x (y1, a1, b1). Then by a union bound, with probability at most
(4S+2m) log(T )

|F| will α′ = M̂n(x, y
′, a′, b′). Thus with probability at most (4S+3m) log(T )

|F| will the verifier accept.

5 Interactive Proofs For Nondeterministic Algorithms

Now we give an interactive proof for nondeterministic algorithms because it is an interesting special case
in its own right, it develops the tools needed for the more general alternating algorithm, and gives a good
warm up for the general case.

But before we start, we quickly make a detour to explain that the matrix “multiplication” used here for
nondeterministic algorithms is different than the one used for deterministic algorithms. For deterministic
algorithms, we used standard multiplication and addition in some field. But for nondeterministic algorithms,
we do binary matrix multiplication, with multiplication replaced with AND, and addition replaced with OR.
To emphasize the difference, we use parentheses around the exponent to indicate we are performing binary
matrix multiplication.

Definition 5.1 (Binary Matrix Multiplication and Existential Walks). Let M : {0, 1}S × {0, 1}S → {0, 1}
be any function. Then by induction, define M (1) = M and for any i, define

M (i+1)(u, v) =
∨
w

M (i)(u,w)M(w, v).

See that if M is an adjacency matrix of a graph, then M (i)(s, t) = 1 if and only if there is a path from s
to t of length i.

Remark. M i is different from M (i) in that M (i+1) uses an OR function, whereas M i+1 uses a plus func-
tion. These are equivalent for the adjacency matrix of a deterministic algorithm, but crucially differ for a
nondeterministic algorithm.
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We emphasize that these binary matrix multiplications algebraically act very similarly to integer matrix
multiplication. Specifically, M (T ) can still be calculated with log(T ) repeated binary squaring.

Now our goal is to replace the matrix sum check used for deterministic algorithms, with a new efficient
reduction for nondeterministic algorithms. It is not clear how to do this in general, so we use a Razborov-
Smolensky style low degree approximation, and give a reduction for that instead.

5.1 Extended Product Reduction

The main tool for this new reduction is this extended product reduction. This reduces a statement about the
multilinear extension of a large product of terms to a statement about the multilinear extension of one term.
This product reduction could be used to give a square reduction for nondeterministic algorithms directly, but
is much more efficient if the number of multiplications is smaller. This is why we use Razborov-Smolensky.

The idea is to just apply many unlinearizations and product reductions, to one variable the product
ranges over at a time. First we prove it for one variable.

Lemma 5.2 (Single Variable Extended Product Reduction). Suppose f̂ : F×FS → F is multilinear. Suppose

g : FS → F is the function g(v) = f̂(0, v)f̂(1, v) and ĝ is the multilinear extension of g.
Then there is an S + 1 round interactive protocol with O(S log(|F|)) bits of communication, a verifier V

that runs in time SÕ(log(|F|)) and space O(S log(|F|)), and a prover P that runs in time 2SÕ(log(|F|)) and
makes O(2S) oracle queries to f . The protocol takes as input w ∈ FS, and α ∈ F and acts such that

Completeness: If ĝ(w) = α, then when V interacts with P , V outputs a u′ ∈ F, v′ ∈ FS, and α′ ∈ F such

that f̂(u′, v′) = α′.

Soundness: If ĝ(w) ̸= α, then for any prover P ′ with probability at most 3S+1
|F| will V output a u′ ∈ F,

v′ ∈ FS, and α′ ∈ F such that f̂(u′, v′) = α′.

Proof. The protocol first runs a unlinearization Lemma 3.27 to reduce to the claim that

α1 = g(v′) = f̂(0, v′)f̂(1, v′).

Then we run our product reduction Lemma 3.29 on the first variable to reduce this to the claim that

α′ = f̂(u′, v′).

The verifier for unlinearization runs in time SÕ(log(|F|)) and space O(S log(|F|)). The verifier for product
reduction runs in time Õ(log(|F|)) and space O(log(|F|)). So the verifier runs in time SÕ(log(|F|)) and space
O(S log(|F|)).

The prover for unlinearization runs in time 2SÕ(log(|F|)) and makes O(2S) oracle queries to g or equiv-

alently f̂ . The prover for the product reduction runs in time Õ(log(|F|)) and makes O(1) oracle queries to

the f . So the prover runs in time 2SÕ(log(|F|)) and makes O(2S) oracle queries to f̂ .
Completeness holds due to completeness of Lemma 3.27 and Lemma 3.29.
For soundness, suppose ĝ(w) ̸= α. Then by soundness of unlinearization, with probability at most 3S

|F|

will α1 = f̂(0, v′)f̂(1, v′). If α1 ̸= f̂(0, v′)f̂(1, v′), by soundness of the product reduction, with probability at

most 1
|F| will α

′ = f̂(u′, v′). So by a union bound, with probability at most 3S+1
|F| will α′ = f̂(u′, v′).

And now for several at a time.

Lemma 5.3 (Extended Product Reduction). Suppose f̂ : Fℓ × FS → F is multilinear. Let g : {0, 1}S → F
be defined by g(v) =

∏
u∈{0,1}ℓ f̂(u, v) and let ĝ be the multilinear extension of g.

Then there is an ℓ(S + 1) round interactive protocol with O(ℓS log(|F|)) bits of communication, a ver-
ifier V that runs in time ℓSÕ(log(|F|)) and space O((ℓ + S) log(|F|)), and a prover P that runs in time
2ℓ+SÕ(log(|F|)) which takes as input w ∈ FS, and α ∈ F such that
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Completeness: If ĝ(w) = α, then when V interacts with P , V outputs a u′ ∈ Fℓ, v′ ∈ FS, and α′ ∈ F
such that f̂(u′, v′) = α′.

Soundness: If ĝ(w) ̸= α, then for any prover P ′ with probability at most l(3S+1)
|F| will V output a u′ ∈ Fℓ,

v′ ∈ FS, and α′ ∈ F such that f̂(u′, v′) = α′.

Proof. The idea is to apply Lemma 5.2 ℓ times.
Define f1 : F × FS → F by f1(x, v) =

∏
u∈{0,1}ℓ−1 f̂((x, u), v) and let f̂1 be the multilinear extension of

f1. Let g1 : FS → F be defined by g1(v) = f̂(0, v)f̂(1, v) and ĝ1 be the multilinear extension of g1.
Now see that ĝ1 is multilinear and agrees with ĝ on Boolean assignments. Thus ĝ1 = ĝ. So ĝ(w) = α ≡

ĝ1(w). So our extended product reduction reduces to the claim that α1 = f̂1(u
′
1, v1).

We similarly define f2 as f2(x, v) =
∏

u∈{0,1}ℓ−2 f̂((u′
1, x, u), v), f̂2 as its multilinear extension, g2 as

g2(v) = f̂2(0, v)f̂2(1, v) and ĝ2 as its multilinear extension. Then we note that ĝ2(v) = f̂1(u
′
1, v) since both

are multilinear and agree on Boolean inputs. So ĝ2(v1) = α1 ≡ α1 = f̂1(u
′
1, v1). Then we run Lemma 5.2

again.
After running the reduction ℓ times, we get the claim that α′ = f̂(u′, v′).
The verifier time and space is just the time and space to run Lemma 5.2 ℓ times, plus the space to hold

the resulting u′ and v′. This is time ℓSÕ(log(|F|)) and space O((ℓ+ S) log(|F|)).
The prover needs to provide oracle access to each f̂i. An oracle call to f̂i just uses 2

ℓ−i oracle calls to f̂ and
takes time 2ℓ−iÕ(log(|F|)). So for the ith invocation of Lemma 5.2, the prover runs in time (2SÕ(log(|F|))
plus time 2S2ℓ−iÕ(log(|F|)) and O(2S2ℓ−i) oracle calls to f̂ to make the 2S oracle calls. In total, this is time
2S+ℓÕ(log(|F|)) with O(2S+ℓ) oracle calls to f .

Completeness holds by completeness of Lemma 5.2. For soundness, this protocol only fails if for some
i we have αi = f̂i. By soundness of Lemma 5.2 and a union bound, this only happens with probability at

most l(2S+1)
|F| .

5.2 Low degree Approximations

To make this proof work, we need to be able to sample Dr which works with high probability that can
be calculated efficiently. Luckily, our Dr just needs to sample from a bunch of ϵ-biased sets. Construction
of efficient ϵ-biased sets is well researched and very efficient constructions are known [NN93; TS17] and is
equivalent to constructing good, linear codes. Then to sample the ϵ bias sets, we can use any efficient hitting
sampler. We use random walks on an expander graph.

We use the third construction in [Alo+90] as our ϵ biased sets. This is the same ϵ biased set used
in [GR20], except that we need to sample them more efficiently. A description and proof is included in
Appendix C.

Lemma 5.4 (ϵ-Biased Set). For any S, there is an m = O(S) and a function D′ : {0, 1}m×{0, 1}S → {0, 1}
such that for any X ⊆ {0, 1}S \ ∅

Pr
r∈{0,1}m

[∑
x∈X

D′(r, x) = 1 (mod 2)

]
≥ 1

4

such that D′ runs in poly(S) time and O(S) space.

Now we have a D′ which with constant probability correctly converts an OR to a parity. Now we need to
sample enough of these so that with constant probability, we convert 2S ORs into parities. If we take O(S)
independent samples of D′, then with probability less than 2−2S will any of these ORs fail to be converted
into a parity, so by a union bound with probability at most 2−S will any of them fail to be converted into
parity. Of course, we can not afford to take O(S) samples of a string of length O(S). So we take correlated
samples using random walks on an expander graph.

The following is a direct consequence of Lemma 3.19 and Lemma 3.20. A proof is in Appendix C.
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Lemma 5.5 (Efficient Hitting Sampler). For any m, and any ϵ > 0, there is an L = 2ℓ = O(log(1/ϵ)), an
R = O(m + L) and a function W : {0, 1}R × {0, 1}ℓ → {0, 1}m such that, if for any D∗ : {0, 1}m → {0, 1}
we have that Prr[D

∗(r) = 1] ≥ 1
4 , then

Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ : D∗(W (r, a)) = 0] ≤ ϵ.

Further, W is computable in time poly(R) and space O(R).

Now we construct our good ϵ biased set sampler.

Theorem 5.6 (Efficient Epsilon Biased Set Sampler). For any n = 2S and ϵ > 0, for some L = 2ℓ =
O(log(1/ϵ)) and R = O(S+L), there is a function D : {0, 1}R ×{0, 1}ℓ ×{0, 1}S → {0, 1}. For r ∈ {0, 1}R,
define Dr : {0, 1}ℓ × {0, 1}S → {0, 1}.

D is such that for any A ⊆ {0, 1}S with A ̸= ∅, we have

Pr
r
[∀i ∈ {0, 1}ℓ :

∑
j∈A

Dr(i, j) = 0 (mod 2)] ≤ ϵ.

Further, D is computable by a space O(R) time poly(R) algorithm.

Proof. Our function D is just our hitting sampler Lemma 5.5 (which is just random walks on an expander)
composed with an ϵ bias set Lemma 5.4.

Specifically, let D′ : {0, 1}m × {0, 1}S → {0, 1} be the small bias function from Lemma 5.4. See that
m = O(S). Let D∗ : {0, 1}m → {0, 1} be the function outputting if D′ has parity one on A ⊆ {0, 1}S . That
is D∗(i) = 1 if and only if

∑
j∈A D′(i, j) = 1 mod 2. Then by Lemma 5.4, Prr[D

∗(i) = 1] ≥ 1
4 .

Let W : {0, 1}R×{0, 1}ℓ → {0, 1}m be from Lemma 5.5. See that L = O(log(1/ϵ)) and R = O(m+L) =
O(S + log(1/ϵ)). Let Dr(i, j) = D′(W (r, i), j). Then by Lemma 5.5,

ϵ ≥ Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ : D∗(W (r, a)) = 0]

= Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ :
∑
j∈A

D′(W (r, a), j) = 0 (mod 2)].

In particular, we generally use the following result to show our D is often good for many, many ORs at
once with a modest amount of randomness.

Lemma 5.7 (Sampling a Good D for Many ORs). Suppose for n = 2S and m = 2S
′
, for each i ∈ [m] there

is an fi ∈ {0, 1} and ui ∈ {0, 1}i such that

fi =
∨

j∈[n]

ui
j .

Then for any ϵ, for R = O(S + S′ + log(1/ϵ)), L = 2ℓ = O(S′ + log(1/ϵ)), the D from Theorem 5.6, for
each i ∈ [m] define

F r
i =1 +

∏
k∈{0,1}ℓ

(1 +
∑
j∈[n]

Dr(k, j)u
i
j) mod 2.

If ∀i ∈ [m] : F r
i = fi, then we say Dr is good for each f .

Then
Pr
r
[Dr is not good for f ] < ϵ.
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Proof. The idea is that F r
i = fi is exactly equivalent to some parities of Dr being one. So by using

Theorem 5.6 and a union bound, we can get calculate all of these correctly with high probability.
First, see that for every i ∈ [m] and r ∈ {0, 1}R we have that fi = 0 =⇒ F r

i = 0. If fi = 0, then for
each j ∈ [n], ui

j = 0. So for every k,
∑

j∈[n] Dr(k, j)u
i
j = 0. Thus F r

i = 0. So if fi = 0, we have

Pr
r
[F r

i ̸= fi] = 0 < ϵ′.

So suppose fi ̸= 0. Then let A be the set of j ∈ [n] = {0, 1}S such that ui
j ̸= 0. Since fi = 1, we know

A ̸= ∅. Set ϵ′ = ϵ
2S′ . Then by Theorem 5.6, for L = 2ℓ = O(S′ + log(1/ϵ)) and R = O(S + S′ + log(1/ϵ)) we

have

ϵ′ ≥Pr
r

∀k ∈ {0, 1}ℓ :
∑
j∈A

Dr(k, j) = 0 (mod 2)


=Pr

r

∀k ∈ {0, 1}ℓ :
∑
j∈[n]

Dr(k, j)u
i
j = 0 (mod 2)


=Pr

r

 ∏
k∈{0,1}ℓ

(1 +
∑
j∈[n]

Dr(k, j)u
i
j) = 1 (mod 2)


=Pr

r

1 + ∏
k∈{0,1}ℓ

(1 +
∑
j∈[n]

Dr(k, j)u
i
j) = 0 (mod 2)


=Pr

r
[F r

i ̸= fi].

Thus for any i, we have Prr[F
r
i ̸= fi] < ϵ′. And since ϵ′ = ϵ

2S′ , by a union bound over all m = 2S
′
choices

of i, the probability any of them are not equal is at most ϵ.

Remark. One can use DeMorgans to convert any AND to an OR. So∨
j∈[n]

ui
j = ¬

∧
j∈[n]

¬ui
j .

5.3 Interactive Proofs For Nondeterministic Algorithms

Now we are ready to give our proof for nondeterministic algorithms. We do this by defining our interactive
proof we wish to run, assuming we got a good Dr. This is a square reduction, assuming we can use the
Razborov-Smolensky formula to describe M (2). We call the Razborov-Smolensky style polynomial given by
our pseudorandomness D as “M relative to D”. We say that our Dr is good if M (T ) relative to D is M (T ).
If Dr is good, we are done. Otherwise, Dr is bad, and makes some mistake first. Then we give an interactive
proof to show where it is bad.

First, we formally define M relative to D.

Definition 5.8 (M Relative to D). For any M : {0, 1}S × {0, 1}S → {0, 1}, and D : {0, 1}ℓ × {0, 1}S → F,
we define M relative to D as the functions, for k = 1, M

(1)
D = MD = M , and for any k > 1 the function

M
(2k)
D : {0, 1}S × {0, 1}S → {0, 1} is

M
(2k)
D (u, v) = 1 +

∏
j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

D(j, w)M
(2k−1)
D (u,w)M

(2k−1)
D (w, v)).

Now we give our square reduction for M (2), relative to D.
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Lemma 5.9 (Square Reduction ForM Relative ToD). For some M : {0, 1}S×{0, 1}S → {0, 1}, let M̂ be the

multilinear extension of M and M̂ (2) be the multilinear extension of M (2). For some D : {0, 1}ℓ×{0, 1}S → F

let M̂
(2)
D be the multilinear extension of M relative to D given by Definition 5.8.

Then there is an O(ℓS) round interactive protocol with O(ℓS log(|F|)) bits of communication, a verifier
V that runs in time ℓSÕ(log(|F|)) and space O((S + ℓ) log(|F|)), and a prover P (with access to the truth
table of M and D) that runs in time 2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and α ∈ F such that

Completeness: If M̂
(2)
D (u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and

α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Soundness: If M̂
(2)
D (u, v) ̸= α, then for any prover P ′ with probability at most (ℓ+1)(6S+1)

|F| will V output

a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Proof. The protocol simply runs our extended product reduction Lemma 5.3, a sum check Lemma 3.26, and
finally a product reduction Lemma 3.29.

For any u, v ∈ FS , we define F̃ : Fℓ × FS × FS × FS → F by

F̃ (j, u, v, w) = D̂(j, w)M̂(u,w)M̂(w, v).

See that F̃ is multilinear in j, u, v and has individual degree 3 in w.
Let Ĝ : Fℓ × FS × FS → F be the function

Ĝ(j, u, v) = 1 +
∑

w∈{0,1}S

F̃ (j, u, v, w).

See that Ĝ is multilinear since F̃ is in its first three arguments.
Let H : {0, 1}S × {0, 1}S → {0, 1} be defined by

H(u, v) =
∏

j∈{0,1}ℓ

Ĝ(j, u, v).

Let Ĥ be the multilinear extension of H.
By our definition of M

(2)
D , we have for any u, v ∈ {0, 1}S that

M
(2)
D (u, v) =1 +

∏
j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

D(j, w)M(u,w)M(w, v))

1 +M
(2)
D (u, v) =

∏
j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

F̃ (j, u, v, w))

=
∏

j∈{0,1}ℓ

Ĝ(j, u, v)

=H(u, v).

Thus since both 1+ M̂
(2)
D and Ĥ are multilinear and agree on binary inputs, they are equal. So a claim that

M̂
(2)
D (u, v) = α is equivalent to a claim that

α+ 1 = Ĥ(u, v).
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So by applying the extended product reduction, Lemma 5.3, we reduce to the claim that α+1 = H(u, v) to
the claim that for some α1 ∈ F, j′ ∈ Fℓ, and u∗, v∗ ∈ FS we have that

α1 =Ĝ(j′, u∗, v∗)

=1 +
∑

w∈{0,1}S

F̃ (j′, u∗, v∗, w)

α1 + 1 =
∑

w∈{0,1}S

F̃ (j′, u∗, v∗, w).

Then applying sum check, Lemma 3.26, we reduce to the claim that for some α2 ∈ F and w′ ∈ FS that

α2 =F̃ (j′, u∗, v∗, w′)

=D̂(j′, w′)M̂(u∗, w′)M̂(w′, v∗).

Next the prover provides β′ ∈ F with the claim that β′ = D̂(j′, w′) and α3 ∈ F with the claim that

α3 = M̂(u∗, w′)M̂(w′, v∗). If α3β
′ ̸= α2, the verifier rejects.

Now we apply the product reduction Lemma 3.29 to get the claim that for some α′ ∈ F and u′, v′ ∈ FS

we have
α′ = M̂(u′, v′).

The verifier time is just the sum of each of Lemma 5.3, Lemma 3.26, and Lemma 3.29. This is time

(ℓS + S + S)Õ(log(|F|)) = ℓSÕ(log(|F|)).

The verifier space is just the max space of any of these, which is

O((S + ℓ) log(|F|)).

For the prover time, we just add the prover times. But we need to be able to compute the oracles for
each prover as well. Notably an oracle to F̃ , Ĝ, Ĥ, or M̂ can be calculated in time 2ℓ+3SÕ(log(|F|)). So the
prover can run in time6

2ℓ+3S2ℓ+3SÕ(log(|F|)) = 2O(ℓ+S)Õ(log(|F|)).

Completeness holds by completeness of each of each of Lemma 5.3, Lemma 3.26, and Lemma 3.29. By a
union bound, the soundness is the sum of their soundness, which is

l(6S + 1) + 3S + S

|F|
=

(ℓ+ 1)(6S + 1)

|F|
.

Now we show our repeated square reduction for M relative to D. If D is good pseudorandomness, this
gives our interactive protocol for nondeterministic algorithms.

Lemma 5.10 (Repeated Square Reduction For M relative to D). For some M : {0, 1}S × {0, 1}S →
{0, 1}, let M̂ be the multilinear extension of M and M̂ (2) be the multilinear extension of M (2). For some

D : {0, 1}ℓ × {0, 1}S → F and T = 2t let M̂
(T )
D be the multilinear extension of M relative to D given by

Definition 5.8.
Then there is an O(ℓS log(T )) round interactive protocol with O(ℓS log(T ) log(|F|)) bits of communication,

a verifier V that runs in time ℓS log(T )Õ(log(|F|)) and space O((S+ℓ) log(|F|)), and a prover P (with access
to the truth table of M and D) that runs in time 2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and
α ∈ F such that

6We can do better by calculating the prover messages in the subroutines directly. This still requires computing F̂ , which
takes time 2ℓ+3SÕ(log(|F|)).
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Completeness: If M̂
(T )
D (u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS, j′ ∈ Fℓ,

and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Soundness: If M̂
(T )
D (u, v) ̸= α, then for any prover P ′ with probability at most log(T )(ℓ+2)(6S+2)

|F| will V

output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Proof. This is found by applying our square reduction Lemma 5.9 for log(T ) times and then using a union
bound. The main caveat is that each time we do this, we get a different claim about the value of D at a
different place. But we can reduce this to one location using our multi-point reduction Lemma 3.28. To keep
the space low, the verifier needs to use this after each application of Lemma 5.9.

Completeness holds by completeness of Lemma 3.28 and Lemma 5.9.
So the soundness for a single round of Lemma 5.9 and Lemma 3.28 is just

(ℓ+ 1)(6S + 1) + S + ℓ

|F|
≤ (ℓ+ 2)(6S + 2)

|F|
.

Similarly the verifier time is just

(ℓS + ℓ+ S)Õ(log(|F|)) = ℓSÕ(log(|F|)).

Then to get the total soundness and verifier time, we just multiply these by log(T ).
The verifier space is just the max space for any of these steps, which is just

O((ℓ+ S + ℓ+ S) log(|F|)) = O((ℓ+ S) log(|F|)).

The verifier does need to use log(log(T )) bits to store the current step, but using the trivial bound that
T < 2S , we only need to use S bits for that.

To run the prover, the prover needs to provide the truth tables of M
(2k)
D for each k ≤ log(T ) and to D.

This takes time
O(log(T )22S+ℓ+S + S22S + (ℓ+ S)2ℓ+S) = 2O(ℓ+S).

Then the rest of the prover time is the sum of the prover times for the subroutines, which is just

log(T )2O(ℓ+S)Õ(log(|F|)) = 2O(ℓ+S)Õ(log(|F|)).

Unfortunately, D is not always good. So we formally define when D is or is not good for M , then show
how to prove it is not good.

Definition 5.11 (D is Good for M up to time T ). For any T = 2t, we say that D is good for M up to time
T if for all k ∈ [t] we have

M (2k) = M
(2k)
D .

We note that by Theorem 5.6 and Lemma 5.7, we can sample a good D with high probability efficiently,
and that D can be calculated efficiently. Then when D is good, by Lemma 5.10, we have an efficient
interactive protocol for M (T ). All that is left is to show that when D is bad, we can prove D is bad with
perfect completeness.

Lemma 5.12 (Proving D is Bad for M with Time). For some M : {0, 1}S × {0, 1}S → {0, 1}, and integer

T = 2t, let M̂ be the multilinear extension of M and for any k let M̂ (2k) be the multilinear extension of

M (2k). Let ℓ be an integer and D : Fℓ × FS → F a multilinear function.
Then there is an O(ℓS log(T )) round interactive protocol with O(ℓS log(T ) log(|F|)) bits of communication,

a verifier V that runs in time ℓS log(T )Õ(log(|F|)) and space O((S+ℓ) log(|F|)), and a prover P (with access
to the truth table of M and D) that runs in time 2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and
α ∈ F such that
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Completeness: If D is not good for M up to T , then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,
j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Soundness: If D is good for M up to time T , then when V interacts with P , with probability at most
log(T )(ℓ+3)(6S+2)

|F| will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and

D(j′, w′) = β′.

Proof. The idea is the same as [GR20]. If D is not good, we ask the prover for the smallest power it is not
good, and then run the interactive proof on that claim. The verifier can then run the interactive proof on
these locations since D is good for all smaller powers.

If D is not good for M up to T , there must be a T ′ = 2t
′ ≥ 1 that D is good for M up to T ′, but D is

not good for M up to time 2T ′ ≤ T . If M is not good for 2T ′, then that means there is some u, v ∈ {0, 1}S
such that

M
(2T ′)
D (u, v) ̸=M (2T ′)(u, v)

=
∨

w∈{0,1}S

M (T ′)(u,w)M (T ′)(w, v).

Note that if M (2T ′)(u, v) = 0, then for each w ∈ {0, 1}S that M (T ′)(u,w)M (T ′)(w, v)) = 0. Since D is
good for M up to time T ′, this would mean that

M
(2T ′)
D (u, v) =1 +

∏
j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

D(j, w)M
(T ′)
D (u,w)M

(T ′)
D (w, v))

=1 +
∏

j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

D(j, w)M (T ′)(u,w)M (T ′)(w, v))

=1 +
∏

j∈{0,1}ℓ

(1 + 0)

=0

=M (2T ′)(u, v).

But we chose u and v such that M
(2T ′)
D (u, v) ̸= M (2T ′)(u, v). So M (2T ′)(u, v) = 1.

Thus it must be the case that M
(2T ′)
D (u, v) = 0, but M (2T ′)(u, v) = 1. More specifically, it must be the

case that for some w ∈ {0, 1}S we have M (T ′)(u,w)M (T ′)(w, v) = 1. Thus our prover just needs to provide
u, v, w ∈ {0, 1}S and then:

• Run the square reduction Lemma 5.9 to reduce the claim that M
(2T ′)
D (u, v) = 0 to the claim that for

some u0, v0, w0 ∈ FS , j0 ∈ Fℓ, and α0, β0 ∈ F that M̂T ′
D (u0, v0) = α0 and D(j0, w0) = β0. Since D is

good for M up to time D, see that M̂T ′
D (u0, v0) = M̂T ′(u0, v0).

• Run the multi-point reduction Lemma 3.28 to reduce to the claim that M̂T ′(u0, v0) = α0,M
(T ′)(u,w) =

1 and M (T ′)(w, v) = 1 to the claim that for some α1 ∈ F and some u1, v1 ∈ FS that M̂T ′(u0, v0) = α1.

• Run the repeated square reduction Lemma 5.10 to reduce the claim that M̂T ′(u0, v0) = α1 to the claim

that for some u′, v′, w2 ∈ FS , j2 ∈ Fℓ, and α′, β2 ∈ F we have that M̂(u′, v′) = α′ and D(j2, w2) = β2.

• Finally, run the multi-point reduction Lemma 3.28 to reduce the claims that D(j0, w0) = β0 and
D(j2, w2) = β2 to the claim that for some j′ ∈ Fℓ, w′ ∈ FS , and β′ ∈ F that D(j′, w′) = β′.

,
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The verifier time is just the sum of all the times of these protocols, which is just ℓS log(T )Õ(log(|F|))
and the space is the maximum of any of these sub protocols, which is just O((S + ℓ) log(|F|)).

To run the prover, the prover needs to provide the truth tables ofM
(2k)
D andM (2k) for each k ≤ log(T ) and

the truth table of D. The prover has to compute M (2k) to find the u, v such that M (2k)(u, v) ̸= M
(2k)
D (u, v)

This takes time
O(log(T )(22S+ℓ+S + 22S) + S22S + (ℓ+ S)2ℓ+S) = 2O(ℓ+S).

Then the rest of the prover time is the sum of the prover times for the subroutines, which is 2O(ℓ+S)Õ(log(|F|)).
The completeness holds by completeness of the sub protocols. The soundness is the sum of the soundness

of the parts, so the soundness is

(ℓ+ 1)(6S + 1) + 4S + log(T ′)(ℓ+ 2)(6S + 2) + (ℓ+ S)

|F|
=

log(T )(ℓ+ 3)(6S + 2)

|F|
.

Finally, we show our final interactive proof for nondeterministic algorithms. We note here that we show
more exactly that the polylogarithmic overhead in our verifier time is Õ(log(S)2). This is worse than the
polylogarithmic overhead for deterministic algorithms given in [Coo22b], which was Õ(log(S)). This is
because our extended product reduction is slower than a sum check, but only a log(S) factor slower.

Theorem 5.13 (Interactive Proof For Nondeterministic Time and Space). For any T , S, d, and ϵ con-
structible in time T and space S:

NTISP[T, S] ⊆ ITIME1
[
(n+ S log(T ))Õ(log(S)2), 2O(S)

]
.

Further, the verifier runs in space O(S log(S)), the protocol is public coin, has O(ℓS log(T )) rounds,
O(ℓS log(T ) log(S)) bits of communication, and perfect completeness.

Proof. The idea is that the verifier first chooses some ϵ bias sets, D, by Lemma 5.7, which is good for M ,
the adjacency matrix of the computation graph, with high probability. If it isn’t good, the prover uses
Lemma 5.12. Otherwise the prover uses Lemma 5.10 to reduce to a claim about M̂ , which the verifier can
calculate itself using Theorem 3.25, and a claim about D̂, which can be verified with Theorem 4.2.

To be more specific, let L ∈ NTISP[T, S] be a language recognized by some nondeterministic algorithm
A running in simultaneous time T and space S. Assume T = 2t is a power of 2. On an input x, let M be
the adjacency matrix of the computation graph of A on input x. Let a be the start state of A and b be the
unique accept state of A. Then A accepts if and only if

M (T )(u, v) = 1.

Note that M (2) is just 22S ORs over 2S variables. So for a field of characteristic 2, D being good for M up
to time T is equivalent toD being good for log(T )22S different ORs of 2S variables. By Lemma 5.7, there is an
R = O(S) and L = 2ℓ = O(S), so that D : {0, 1}R×{0, 1}ℓ×{0, 1}S → {0, 1} from Theorem 5.6 is not good
for all these ORs with probability at most 1

6 . Define Dr : {0, 1}ℓ×{0, 1}S → {0, 1} by Dr(j, w) = D(r, j, w).
Then equivalently, the probability that Dr is not good for M up to time T , is at most 1

6 .
Let C = O(S) be the amount of space that D runs in so that the soundness of Theorem 4.2 on Dr is

(4C+2S) log(T )
|F| .

Let F be a field of characteristic 2 with size |F| ≥ 6 log(T )((ℓ+3)(6S+2)+4C) and |F| < 12 log(T )((ℓ+
3)(6S + 2) + 4C). Since S and T are efficiently computable, the verifier can calculate |F| efficiently. The
verifier first selects r ∈ {0, 1}R and sends it to the prover. Next the prover sends back a claim that either
Dr is good or Dr is bad.

If the prover claims Dr is good, the verifier runs Lemma 5.10 on the claim that M (T )(u, v) = 1, and gets

back the claim that for some u′, v′, w′ ∈ FS , j′ ∈ Fℓ, and α′, β′ ∈ F that M̂(u′, v′) = α′ and D̂(j′, w′) = β′. If
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the prover claims Dr is bad, the verifier runs Lemma 5.12 to reduce the claim that D is bad for M up to time
T to the claim that for some u′, v′, w′ ∈ FS , j′ ∈ Fℓ, and α′, β′ ∈ F that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

The verifier uses Theorem 3.25 to calculate M̂(u′, v′) and rejects if it is not equal to α′. Then the verifier

runs Theorem 4.2 to verify if D̂(j′, w′) = β′.
The verifier time is just the sum of the time of these subroutines, which is just

R+ (Sℓ log(T ) + n+ S + n+ S log(T ))Õ(log(|F|))
=(n+ S log(S) log(T ))Õ(log(S))

=(n+ S log(T ))Õ(log(S)2).

The verifier space is just the maximum space of any subroutine, which is just

O((S + ℓ) log(|F|)) = O(S log(S)).

For the prover time, the prover must first compute both M (2k) and M
(2k)
D for every k ∈ log(T ) to check

if D is good. This takes time 2O(ℓ+S). Then the prover runs either Lemma 5.10, or Lemma 5.12, either
of which takes time 2O(ℓ+S)Õ(log(|F|)). Finally the prover needs to run Theorem 4.2, which takes time
2O(S) log(T )Õ(log(|F|)). So the total prover time is

2O(ℓ+S) + 2O(ℓ+S)Õ(log(|F|)) + 2O(S) log(T )Õ(log(|F|)) = 2O(S).

For completeness, if Dr is good, then it follows from completeness of Lemma 5.10 and Theorem 4.2. If
Dr is not good, then it follows from completeness of Lemma 5.12 and Theorem 4.2.

For soundness, from soundness of Theorem 5.6, with probability at most 1
6 is Dr bad. If Dr is good, but

the prover claims Dr is bad, by soundness of Lemma 5.10, with probability at most

log(T )(ℓ+ 3)(6S + 2)

|F|
≤ 1

6

will M̂(u′, v′) = α′ and D̂(j′, w′) = β′. If either of these are false, then by soundness of Theorem 4.2, with
probability at most

(4C + 2S) log(T )

|F|
≤ 1

6

will the verifier accept. So by a union bound, the probability the verifier accepts if the prover claims Dr is
bad when Dr is good is at most 1

3 .
If Dr is good and the prover claims Dr is good, then if the verifier gives the incorrect claim about the

value of MT (a, b), then by the soundness of Lemma 5.10, with probability at most

log(T )(ℓ+ 2)(6S + 2)

|F|
≤ 1

6

will M̂(u′, v′) = α′ and D̂(j′, w′) = β′. If either of these are false, then by soundness of Theorem 4.2, with
probability at most

(4C + 2S) log(T )

|F|
≤ 1

6

will the verifier accept. So by a union bound, the probability the verifier accepts if the prover claims Dr is
good when Dr is good, but gives an incorrect value for MT (a, b), is at most 1

3 .
So the probability the verifier outputs the wrong value for MT (a, b) is the probability the prover convinces

the verifier that Dr is bad or that M (T )Dr (a, b) is the wrong value. If Dr is good, then either of these options
only occur with probability 1

3 , and there is only a 1
6 probability that Dr is bad. So our protocol only fails

with probability 1
2 .
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6 Interactive Proofs For Alternating Algorithms

Now we give our interactive protocols for alternating algorithms. This still uses the same Razborov-
Smolensky degree reduction technique used for nondeterministic algorithms to reduce the degree of large
fan in AND and ORs. The main conceptual challenge is rewriting the alternating algorithm in the correct
format. So we do this first.

6.1 Alternation Reductions For Bounded Space

To prove our interactive protocol with alternating algorithms, we first must convert our algorithm into a
simpler, layered algorithm. This is closely related to the reduction from an alternating algorithm to a low
depth circuit by Ruzzo and Tompa [SV84], and a similar reduction was used by Fortnow and Lund [FL93]
in their interactive proof for alternating algorithms.

Definition 6.1 (M with d Alternations). For any M : {0, 1}S × {0, 1}S → {0, 1} and integer d, define M
with time T and d alternations inductively on d as a function Bd : {0, 1}S × {0, 1}S → {0, 1} by

d = 1: B1(u, v) = M(u, v).

d is even

Bd(u, v) =∀w ∈ {0, 1}S : M(u,w) =⇒ Bd−1(w, v)

=¬
∨

w∈{0,1}S

(M(u,w) ∧ ¬Bd−1(w, v))

d is odd

Bd(u, v) =∃w ∈ {0, 1}S : M(u,w) ∧Bd−1(w, v)

=
∨

w∈{0,1}S

M(u,w) ∧Bd−1(w, v).

Our interactive proof will focus on this intermediate representation of an alternating circuit as a matrix
M with d quantifiers of S variables between them.

Lemma 6.2 (Layered Alternating Programs). For any L ∈ ATISPd[T, S], there is a nondeterministic
algorithm A running in time T ′ = O(T ) and space S′ = O(S) such that on any input x, if M is the
adjacency matrix of the computation graph of A on input x, then x ∈ L if and only if the M (T ′) with d
alternations, Bd as defined in Definition 6.1, has Bd(a, b) = 1 for some unique starting state a and unique
accepting state b.

Proof. The idea is to modify the alternating algorithm for L, call it A′, to keep a timer and synchronize
when quantifiers are alternated. Then instead of quantifying over all the state transitions themselves, we
only quantify over the states that can be reached between alternations.

If A′ ends with a for all quantifier instead of a there exists quantifier, swap the unique accept state with
the unique reject state and use the same protocol. So we assume A′ ends with an existential quantifier.

So for every alternation, our new algorithm A takes a starting state u, simulates A′ for up to time T ,
and if A′ changes quantifiers, we wait until the timer reaches time T before continuing. Then A only run
for the T ′ = O(T ) steps between our quantifiers is our new algorithm. The only space required for A is the
space for A′, plus log(T ) = O(S) for a timer.

Let c be the extra space used by A for a counter at time T (and the same counter for time 0), in addition
to anything else needed by A for book keeping. See that B1((c, u), (c, v)) = 1 if and only if A can transition
from state u to state v in time T with no change in alternation. By assumption, A′ ends in an existential
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quantifier, so if u is the unique start state and v is the unique accept state with d = 1, then x ∈ L if and
only if for a = (c, u) and b = (c, v), we have B1(a, b) = 1.

More generally, if u is the unique start state for A′ and v the unique accept state for A′, then a = (c, u)
is the unique start for A and b = (c, v) is the unique end state for A. Then one can show by induction that
we have Bd(a, b) = 1 if and only if

• For even d, for any state wd reachable from u (in A′) within time T without changing quantifiers
and the quantifier changes to existential at state wd, then by induction continuing on from state w1,
algorithm A′ will accept w1 using d− 1 alternations.

• For odd d, there exists a state w1 reachable from u (in A′) within time T without changing quantifiers
such that w1 changes to a for all and algorithm A′ will accept w1 using d− 1 alternations.

6.2 Interactive Proof For Layered Alternations

Now the rest of the proof closely follows the proof for nondeterministic algorithms, defining M with alter-
nations relative to D, showing how an alternation reduction for M with alternations relative to D, and a
protocol to show that D is bad.

A subtle difference is that our interactive protocols actually reduce a statement about our alternating
algorithm, to a statement about M (T ), where M is the adjacency matrix of a nondeterministic algorithm.
So we then have to apply our interactive proofs for nondeterministic algorithms. That is, we reduce our
statement about alternating algorithms to one about nondeterministic ones, which we already developed the
tools for.

Definition 6.3 (M with d Alternations, Relative to D). For any M : {0, 1}S × {0, 1}S → {0, 1}, and
D : {0, 1}ℓ ×{0, 1}S → {0, 1}, we define M with d alternations, relative to D, inductively on d as a function
Bd

D : {0, 1}S × {0, 1}S → {0, 1} by

d = 1: B1
D(u, v) = M(u, v).

d is even Bd
D(u, v) =

∏
k∈{0,1}ℓ(1 +

∑
w∈{0,1}S Dr(k,w)(M(u,w) +M(u,w)Bd−1

D (w, v))) mod 2.

d is odd Bd
D(u, v) = 1 +

∏
k∈{0,1}ℓ(1 +

∑
w∈{0,1}S Dr(k,w)(M(u,w)Bd−1

D (w, v))) mod 2.

Now we show a protocol for reducing the alternations by one.

Lemma 6.4 (IP for M with d Alternations, Relative To D, Single Step). For any M : {0, 1}S × {0, 1}S →
{0, 1} and integer d > 1, D : {0, 1}ℓ × {0, 1}S → {0, 1} let Bd

D : {0, 1}S × {0, 1}S → {0, 1} be M with d

layered alternations relative to D, as defined in Definition 6.3. Let B̂d
D be the multilinear extension of Bd

D.
Then there is an O(ℓS) round interactive protocol with O(ℓS log(|F|)) bits of communication, a verifier

V that runs in time ℓSÕ(log(|F|)), space O((ℓ + S) log(|F|)), and a prover P (given the truth table of M ,
Bd

D and D) that runs in time 2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and α ∈ F such that

Completeness: If B̂d
D(u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and

α′, β′, γ′ ∈ F such that B̂d−1
D (w′, v′) = α′, D̂(j′, w′) = β′, and M̂(u′, w′) = γ′.

Soundness: If B̂d
D(u, v) ̸= α, then for any prover P ′ with probability at most (ℓ+1)(6S+1)

|F| will V output a

u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′, γ′ ∈ F such that B̂d−1
D (w′, v′) = α′, D̂(j′, w′) = β′, and M̂(u′, w′) =

γ′.
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Proof. The proof is very similar to that of Lemma 5.9. We first use the extended product reduction

Lemma 5.3, then use the sum check Lemma 3.26 to get a claim about D̂, M̂ , and B̂d−1
D. The proof

is similar for even or odd d. So we will just prove this for the case that d is even.

More explicitly, the verifier gets the claim that B̂d
D(u, v) = α. Let f : {0, 1}ℓ ×{0, 1}S ×{0, 1}S → {0, 1}

be defined by

f(k, u∗, v∗) = 1 +
∑

w∈{0,1}S

Dr(k,w)(M(u∗, w) +M(u∗, w)Bd−1
D (w, v∗)).

Recall that for any binary u∗, v∗, we have that

Bd
D(u∗, v∗) =

∏
k∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

Dr(k,w)(M(u∗, w) +M(u∗, w)Bd−1
D (w, v∗)))

=
∏

k∈{0,1}ℓ

f(k, u∗, v∗).

Then we apply Lemma 5.3 to reduce to the claim that for some j′ ∈ F, u, v′ ∈ FS and α1 we have

α1 =f̂(j′, u′, v′)

=1 +
∑

w∈{0,1}S

D̂r(j
′, w)(M̂(u′, w) + M̂(u′, w)B̂d−1

D (w, v′))

1 + α1 =
∑

w∈{0,1}S

D̂r(j
′, w)(M̂(u′, w) + M̂(u′, w)B̂d−1

D (w, v′)).

To see that this formula for f̂ is correct, observe it agrees with f on binary inputs, and is multilinear in
j′, u′ and v′. Now we just run a sum check on this individual degree 3 function in w to get the claim that
for some w′ ∈ FS and α2 we have

α2 = D̂r(j
′, w′)(M̂(u′, w′) + M̂(u′, w′)B̂d−1

D (w′, v′)).

Finally, the prover asks for B̂d−1
D (w′, v′) = α′, D̂(j′, w′) = β′, and M̂(u′, w′) = γ′ and checks if

α2 = β′(γ′ + γ′α′).

The verifier time and space is just the verifier time and space from Lemma 5.3 and Lemma 3.26, which
matches the claim. The same for the prover time. Completeness holds by completeness of Lemma 5.3 and
Lemma 3.26.

For soundness, see that Lemma 5.3 gives a soundness of l(6S+1)
|F| , and Lemma 3.26 gives a soundness of

3S
|F| . This gives a total soundness of at most

(ℓ+ 1)(6S + 1)

|F|

.

Applying this many times gives an interactive protocol reducing a statement about our alternating
algorithm to one about a nondeterministic one, which we can solve using the ideas in Theorem 5.13.

Lemma 6.5 (IP for M with d Alternations, Relative To D). For any M : {0, 1}S × {0, 1}S → {0, 1} and
integer d, D : {0, 1}ℓ × {0, 1}S → {0, 1} let Bd

D : {0, 1}S × {0, 1}S → {0, 1} be M with d layered alternations

relative to D, as defined in Definition 6.3. Let B̂d
D be the multilinear extension of Bd

D.
Then there is an O(ℓSd) round interactive protocol with O(ℓSd log(|F|)) bits of communication, a verifier

V that runs in time ℓSdÕ(log(|F|)), space O((ℓ + S) log(|F|)), and a prover P (given the truth table of M ,
Bd

D and D) that runs in time d2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and α ∈ F such that
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Completeness: If B̂d
D(u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and

α′, β′ ∈ F such that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Soundness: If B̂d
D(u, v) ̸= α, then for any prover P ′ with probability at most d(ℓ+2)(6S+2)

|F| will V output a

u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Proof. Similar to Lemma 5.10, we will apply Lemma 6.4 for d times, applying multi point reductions
Lemma 3.28 on M̂ and D̂ at each step to keep the space down.

Thus the verifier only needs to run Lemma 6.4 and Lemma 3.28 O(d) times, this gives the claimed time,
noting the space can be reused. The prover similarly only needs to run Lemma 6.4 and Lemma 3.28 O(d)
times.

Completeness holds by completeness of Lemma 6.4 and Lemma 3.28. For soundness, we note that the

soundness of Lemma 6.4 is (ℓ+1)(6S+1)
|F| , which only needs to be performed d times. And the soundness of

Lemma 3.28 on M̂ is 2S
|F| and on D̂ is S+ℓ

|F| , which only needs to be performed d times. Thus total soundness
is

d
(ℓ+ 1)(6S + 1) + 2S + (S + ℓ)

|F|
=

d(ℓ+ 2)(6S + 2)

|F|
.

This would be enough if D was always good, but now let us formally define what it means for D to be
good and show how to handle when it is not.

Definition 6.6 (D is good for M up to d Alternations). For any M : {0, 1}S × {0, 1}S → {0, 1}, d and
D : {0, 1}ℓ × {0, 1}S → {0, 1}, we say that D is good for M with up to d alternations if for all k ∈ [d] with
k > 1 we have Bk

D = Bk.

But when D is bad, we give a protocol showing where it is bad.

Lemma 6.7 (Proving D is Bad for M with Alternations). For some M : {0, 1}S × {0, 1}S → {0, 1}, and
integer d, let M̂ be the multilinear extension of M . Let ℓ be an integer and D : Fℓ × FS → F a multilinear
function.

Then there is a round O(ℓSd) interactive protocol with O(ℓSd log(|F|)) bits of communication, a verifier
V that runs in time ℓSdÕ(log(|F|)) and space O((ℓ + S) log(|F|)), and a prover P (with access tot he truth
table of M) that runs in time d2O(ℓ+S)Õ(log(|F|)) such that

Completeness: If D is not good for M up to d alternations, then when V interacts with P , V outputs
u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Soundness: If D is good for M up to d alternations, then when V interacts with P , with probability at

most d(ℓ+2)(6S+2)
|F| will V output u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and

D̂(j′, w′) = β′.

Proof. The proof is similar to Lemma 5.12. We take the smallest k such that D is not good for M up to
k, show where D is bad at, and then run Lemma 6.5 to prove the value of M with d alternations at that
location.

Specifically,

• the prover provides d′ ≤ d, and u, v, w ∈ FS with the claims that

Bd′

D (u, v) ̸=Bd′
(u, v),

Bd′−1
D =Bk−1,
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if d′ is even

Bd′
(u, v) = 0,

Bd′

D (u, v) = 1,

M(u,w)(1−Bd′−1(w, v)) =1,

and if d′ is odd

Bd′
(u, v) = 1,

Bd′

D (u, v) = 0,

M(u,w)Bd′−1(w, v) =1.

• We use Lemma 6.4 to reduce the claim about Bd′

D (u, v) to a claim that for some u1, v1, w1 ∈ FS , j1 ∈ Fℓ,

and α1, β1, γ1 ∈ F that B̂d′−1
D (w1, v

′
1) = α1, D̂(j1, w1) = β1, and M̂(u1, w1) = γ1.

• Then we use the multi-point reduction, Lemma 3.28, to reduce the claims about Bd′−1
D to the claim

that for some u2, v2 ∈ FS and α2 ∈ F we have Bd′−1
D (u2, v2) = α2.

• Then we apply Lemma 6.5 to reduce this to the claim that for some u3, v3, w3 ∈ FS , j3 ∈ Fℓ, and
α3, β3 ∈ F such that M̂(u3, v3) = α3 and D̂(j3, w3) = β3.

• Finally we apply Lemma 3.28 again to reduce the claims about M̂ to the claim that for some u′, v′ ∈ FS

and α′ ∈ F we have M̂(u′, v′) = α′.

Similarly, we use Lemma 3.28 again to reduce the claims about D̂ to the claim that for some j′ ∈ Fℓ,
w′ ∈ FS and β;∈ F we have D̂(j′, w′) = β′.

The verifier time is just the sum of the times for Lemma 6.4, Lemma 6.5, and Lemma 3.28, which is
ℓSdÕ(log(|F|)). Similarly, the verifier space is just O((ℓ + S) log(|F|)). The prover only needs to compute
each Bi and Bi

D and run the lemmas, which takes time d2O(ℓ+S)Õ(log(|F|)).
For completeness, if d′ is the smallest such that D is bad for M up to d′ alternations, then by definition

Bd′

D ̸= Bk and Bd′−1
D = Bk−1. Thus there is some u, v ∈ {0, 1}S such that Bd′

D (u, v) ̸= Bd′
(u, v). Now we do

two cases based on whether d′ is even.

d′ is even: then Bd′
(u, v) = ∀w ∈ {0, 1}S : M(u,w) =⇒ Bd′−1(w, v). So if Bd′

(u, v) = 1, for any
w ∈ {0, 1}S , we must have M(u,w)(1−Bd′−1(w, v)) = 0. Thus

Bd′

D (u, v) =
∏

k∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

Dr(k,w)(M(u,w) +M(u,w)Bd′−1
D (w, v))) mod 2

=
∏

k∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

Dr(k,w)0) mod 2

=1.

Thus Bd′

D (u, v) = Bd′
(u, v), a contradiction. Thus Bd′

(u, v) = 0 and Bd′

D (u, v) = 1. Since Bd′
(u, v) = 0,

there must be a w such that M(u,w)(1−Bd′−1(w, v)) = 1.

d′ is odd: then Bd′
(u, v) = ∃w ∈ {0, 1}S : M(u,w) ∧ Bd′−1(w, v). So if Bd′

(u, v) = 0, for any w ∈ {0, 1}S ,
we must have M(u,w)Bd′−1(w, v) = 0. Thus

Bd′

D (u, v) =1 +
∏

k∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

Dr(k,w)(M(u,w)Bd′−1
D (w, v))) mod 2

=1 +
∏

k∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

Dr(k,w)0) mod 2

=0.
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Thus Bd′

D (u, v) = Bd′
(u, v), a contradiction. Thus Bd′

(u, v) = 1 and Bd′

D (u, v) = 0. Since Bd′
(u, v) = 1,

there must be a w such that M(u,w)Bd′−1(w, v) = 1.

Thus the prover can provide the requested d′, u, v and w. Then the rest of completeness follows from the
completeness of Lemma 6.4, Lemma 6.5, and Lemma 3.28.

For soundness, see that if D is good for M up to d alternations, then Bd′

D (u, v) = Bd′
(u, v). So either the

claimed value of Bd′
(u, v) is wrong, or the claimed value of Bd′

D (u, v) is wrong. If the claimed value of Bd′

D (u, v)

is wrong, then by soundness of Lemma 6.4, with probability at most (ℓ+1)(6S+1)
|F| will B̂d′−1

D (w1, v1) = α1,

D̂(j1, w1) = β1, and M̂(u1, w1) = γ1.

If the claimed value of Bd′
(u, v) is wrong, then the claimed value of M(u,w) or Bd′−1(w, v) = Bd′−1

D (w, v)

is wrong. If the claimed value of Bd′−1
D (w, v) is wrong, or B̂d′−1

D (w1, v1) ̸= α1, then by Lemma 3.28, with

probability at most 2S
|F| will B

d′−1
D (u2, v2) = α2.

If If the claimed value of Bd′−1
D (w2, v2) ̸= α2, then by soundness of Lemma 6.5, with probability at most

(d−1)(ℓ+2)(6S+2)
|F| will M̂(u3, v3) = α3 and D̂(j3, w3) = β3.

If the claimed value of M(u, v) is wrong, M̂(u1, w1) ̸= γ1, D̂(j1, w1) ̸= β1, or D̂(j3, w3) ̸= β3, then by

soundness of Lemma 3.28, with probability at most 2S+ℓ
|F| will M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

So the probability the verifier accepts that M̂(u′, v′) = α′ and D̂(j′, w′) = β′ is at most

(ℓ+ 1)(6S + 1) + 2S + (d− 1)(ℓ+ 2)(6S + 2) + 2S + ℓ

|F|
=
d(ℓ+ 2)(6S + 2)

|F|
.

Finally, we can prove our main theorem. Again, we see that the polylogarithmic factor overhead is
Õ(log(S)2). As noted in the nondeterministic section, this is worse than the Õ(log(S)) factor overhead for
deterministic algorithms in [Coo22b].

Theorem 1.1 (Interactive Proof For Alternating Space). For any T , S, and d constructible in time
O(S log(T )) and space O(S):

ATISPd[T, S] ⊆ ITIME
[
Õ (n+ S log(T ) + Sd) , 2O(S)

]
.

Further, the verifier runs in space O(S log(d+S)), the protocol is public coin, has O(S log(S)(log(T )+d))
rounds, O(S log(S)(log(T ) + d) log(d+ S)) bits of communication, and perfect completeness.

Proof. First, because of Lemma 6.2, we can assume that our algorithm comes in the form of a layered,
alternating program defined by some nondeterministic algorithm A, which for any x has a computation
graph with adjacency matrix M . Specifically, we let T be a power of 2, and let M (T ) with d alternations be
Bd as defined in Definition 6.1. Specifically, x ∈ L if and only if for some unique start state u and unique
end state v we have Bd(u, v) = 1.

Then our protocol (with an honest prover) is quite simple:

1. First we need to sample r so that Dr with high probability is good for M up to time T and good for
M (T ) up to d alternations. This is equivalent to D being good for log(T ) + d ORs, since being good
for M up to time T is just log(T ) ORs, and being good for M (T ) up to d alternations is just log(T )
ORs.

By Lemma 5.7, there is an R = O(S) and L = 2ℓ = O(S), so thatD : {0, 1}R×{0, 1}ℓ×{0, 1}S → {0, 1}
from Theorem 5.6 is not good for all these ORs with probability at most 1

6 . Thus with probability at
most 1

6 will Dr : {0, 1}ℓ × {0, 1}S → {0, 1} defined by Dr(j, w) = D(r, j, w) not be good for M up to

time T and good for M (T ) up to d alternations.
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Let C = O(S) be the amount of space that D runs in so that the soundness of Theorem 4.2 on Dr is
(4C+2S) log(T )

|F| .

Let F be a field of characteristic 2 with size |F| ≥ 6(d + log(T ))((ℓ + 3)(6S + 2) + 4C) and |F| <
12(d + log(T ))((ℓ + 3)(6S + 2) + 4C). Since S and T are efficiently computable, the verifier can
calculate |F| efficiently. The verifier first selects r ∈ {0, 1}R and sends it to the prover. Next the prover
sends back a claim that either Dr is good or Dr is bad.

2. If Dr is bad for M up to time T ,

(a) We use Lemma 5.12 to reduce the claim that Dr is bad to the claim that M̂(u′, v′) = α′ and

D̂r(j
′, w′) = β′.

(b) The verifier computes M̂(u′, v′) directly and checks if M̂(u′, v′) = α′.

(c) We use use Theorem 4.2 to check if D̂r(j
′, w′) = β′.

3. If Dr is bad for M (T ) up to d alternations,

(a) We use Lemma 6.7 to reduce the claim that Dr is bad to the claim that M̂ (T )(u′, v′) = α′ and

D̂r(j
′, w′) = β′.

(b) Then we run Lemma 5.10 to reduce the claim that M̂ (T )(u′, v′) = α′ to the claim that M̂(u′′, v′′) =

α′′ and D̂r(j
′′, w′′) = β′′.

(c) The verifier computes M̂(u′′, v′′) directly and checks if M̂(u′′, v′′) = α′′.

(d) We use Lemma 3.28 to reduce the claim that D̂r(j
′, w′) = β′ and D̂r(j

′′, w′′) = β′′ to the claim

that D̂r(j
′′′, w′′′) = β′′′.

(e) Finally, we use Theorem 4.2 to check if D̂r(j
′′′, w′′′) = β′′′.

4. Otherwise, Dr is good and we run Lemma 6.5 to reduce to the claim that M̂ (T )(u′, v′) = α′ and

D̂r(j
′, w′) = β′.

5. Then we run Lemma 5.10 to reduce the claim that M̂ (T )(u′, v′) = α′ to the claim that M̂(u′′, v′′) = α′′

and D̂r(j
′′, w′′) = β′′.

6. The verifier computes M̂(u′′, v′′) directly and checks if M̂(u′′, v′′) = α′′.

7. We use Lemma 3.28 to reduce the claim that D̂r(j
′, w′) = β′ and D̂r(j

′′, w′′) = β′′ to the claim that

D̂r(j
′′′, w′′′) = β′′′.

8. Finally, we use Theorem 4.2 to check if D̂r(j
′′′, w′′′) = β′′′.

The verifier time is just the sum of these subroutine times, which is just

(Sℓd+ Sℓ log(T )S + n+ S log(T ))Õ(log(|F|))
=(n+ S log(S)(log(T ) + d))Õ(log(S))

=(n+ S log(T ) + Sd)Õ(log(S)2).

Verifier space is the max of the space used, which is just O(R+(S+ ℓ) log(|F|)) = O(S log(|F|)). The prover
time is just the sum of the times of the sub protocols, which is just (d+ log(T ))2O(S+ℓ)Õ(log(|F|)) = 2O(S).

The completeness follows from all of the sub protocols. For soundness, if Dr is good, then the probability

the prover can convince the verifier that Dr is bad for M up to time T is at most log(T )(ℓ+3)(6S+2)
|F| ≤ 1

6 .
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Similarly, the probability the prover can convince the verifier that Dr is bad for M (T ) up to time T is at

most d(ℓ+2)(6S+2)
|F| < 1

6 .

If the prover does not claim Dr is bad when Dr is not bad, but x /∈ L then the probability that the
verifier accepts is at most

d(ℓ+ 2)(S + 2) + log(T )(ℓ+ 2)(6S + 2) + ℓ+ S + (4C + 2S) log(T )

|F|

=(d+ log(T ))
(ℓ+ 3)(6S + 3) + 4C

|F|

≤1

6
.

So by a union bound, the probability the verifier accepts is at most 1
3 .

7 Open Problems

While this does mostly close the gap between what the best verifier times between deterministic and nonde-
terministic algorithms are, many interesting open problems remain, including:

1. Finding a stronger relationship between verifier time (or even alternating time) and bounded space.
We know, for S ≥ n, that

TISP[T, S] ⊆ ITIME[Õ(S log(T ))].

But it is unknown whether even with the seemingly stronger class of alternating algorithms if

TISP[T, S] ⊆ ATIME[o(S log(T ))].

A major open question is whether the above relationship is true.

2. Finding a stronger relationship between verifier time and alternating time. We know, for T ≥ n, that

ATISP[T, S] ⊆ ITIME[Õ(ST )].

Can this factor of S be removed?

3. Giving interactive protocols for BPTISP[T, S] with simultaneous verifier time Õ(n+S log(T )), prover
time 2O(S) and perfect completeness. Cook [Coo22b] gave a protocol with that verifier and prover
time, but with imperfect completeness.

Perfect completeness can be achieved in a black box way [Für+89], but these black box reductions do
not preserve the prover time.

One could also reduce to alternating algorithms and use our protocols for alternating algorithms, but
known reductions are not efficient enough to get this verifier time.

4. Better doubly efficient proofs. In our special case of alternating algorithms, we can not get provers
who run in less than exponential time, without giving sub-exponential time deterministic algorithms
for nondeterministic problems.

But even in the deterministic time and space bounded setting, for S ≥ n, a major open problem is
whether

TISP[T, S] ⊆ ITIME[poly(S),poly(T )].

We do know from [GKR15] that

TISP[T, S] ⊆ ITIME[poly(S), 2O(S)],

and from [RRR16] that
TISP[T, S] ⊆ ITIME[T o(1),poly(T )],

but it is unknown if both the fast verifier time and prover time can be achieved simultaneously.
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5. Similar verifier time for algorithms with more general kinds of quantifiers. For instance, threshold
quantifiers.

Currently the most verifier efficient known interactive protocol for threshold circuits is to use shallow
circuits to compute threshold and run GKR. In this paper, we showed one can do better for unbounded
fan-in AND and OR gates. Can this also be done for unbounded fan-in threshold gates? This would
be interesting because threshold gates seem much more powerful than AND, OR, or parity gates.
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[FL92] Uriel Feige and László Lovász. “Two-Prover One-Round Proof Systems: Their Power and Their
Problems (Extended Abstract)”. In: Proceedings of the Twenty-Fourth Annual ACM Sympo-
sium on Theory of Computing. STOC ’92. Victoria, British Columbia, Canada: Association for
Computing Machinery, 1992, 733–744. isbn: 0897915119. doi: 10.1145/129712.129783. url:
https://doi.org/10.1145/129712.129783.

[FL93] Lance Fortnow and Carsten Lund. “Interactive Proof Systems and Alternating Time-Space Com-
plexity”. In: Theor. Comput. Sci. 113.1 (1993), 55–73. issn: 0304-3975. doi: 10.1016/0304-
3975(93)90210-K. url: https://doi.org/10.1016/0304-3975(93)90210-K.

[FSS81] Merrick Furst, James B. Saxe, and Michael Sipser. “Parity, circuits, and the polynomial-time
hierarchy”. In: 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981). 1981,
pp. 260–270. doi: 10.1109/SFCS.1981.35.

43

https://doi.org/10.1137/0206054
https://doi.org/10.1137/0206054
https://doi.org/10.1137/0206054
https://doi.org/10.1137/0206054
https://doi.org/10.1145/28395.28409
https://doi.org/10.1145/28395.28409
https://doi.org/10.1145/28395.28409
https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/2090236.2090245
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2090236.2090245
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2090236.2090245
https://eccc.weizmann.ac.il/report/2022/093/
https://eccc.weizmann.ac.il/report/2022/093/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.14
https://drops.dagstuhl.de/opus/volltexte/2022/17406
https://doi.org/10.1145/800135.804426
https://doi.org/10.1145/800135.804426
https://doi.org/10.1145/800135.804426
https://doi.org/10.1145/301250.301265
https://doi.org/10.1145/301250.301265
https://doi.org/10.1145/129712.129783
https://doi.org/10.1145/129712.129783
https://doi.org/10.1016/0304-3975(93)90210-K
https://doi.org/10.1016/0304-3975(93)90210-K
https://doi.org/10.1016/0304-3975(93)90210-K
https://doi.org/10.1109/SFCS.1981.35
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A Arithmetization of Nondeterministic Algorithm

For completeness, we include lemma 36 from [Coo22a], generalized to also be a multilinear extension of the
input.

Theorem 3.25 (Arithmetization of State Transition). Suppose A is a space S nondeterministic algorithm
with transition matrix Mn : {0, 1}n × {0, 1}S × {0, 1}S → {0, 1} as described in Definition 3.22.

Then we can compute the multilinear extension of Mn, denoted M̂n : Fn × FS × FS → F, in time
(n+ S)Õ(log(|F|)) and space O((log(S) + log(n)) log(|F|)).

Proof. The idea is to write the transition function as a sum over the transition rules of the multilinear
extension of that rule being followed. Then we write each transition rule as a product of several components
which use disjoint variables. Then we calculate the multilinear extension of each of these components
efficiently. Finally, we note that the sum of the products is multilinear, and agrees with Mn on binary
inputs, so is the multilinear extension of Mn.

From the definition of the state of a Turing Machine Definition 3.21, we can represent a state s0 ∈ {0, 1}S
as s0 = (q0, h0, w0,m0) where q0 is the instruction state, h0 is the index of the input tape head, w0 is the
index of the working tape head, and m0 is the contents of the working tape. And from the definition of a
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Turing Machine Transition matrix, Definition 3.22, for any x ∈ {0, 1}n and s1 = (q1, h1, w1,m1) we have

Mn(x, s
0, s1) = 1 ≡∃ ((q0, σh, σs), (q1, dh, dw, σf ) = λ ∈ Λ :

q0 = q0∧
q1 = q1∧
σh = xh0∧
h0 + dh = h1∧
m0

w0 = σs∧
m1

w0 = σf∧
w0 + dw = w1∧
∀j ∈ [S′] \ {w0} : m0

j = m1
j .

Now we will give a claimed formula for M̂n and then show that it is correct. We claim that

M̂n(x, s
0, s1) =

∑
((q0,σh,σs),(q1,dh,dw,σf ))=λ∈Λ

equ(q0, q
0)equ(q1, q

1)

inputλ(x, h
0, h1)

workλ(w
0,m0, w1,m1)

where inputλ checks that the input and input head is consistent with λ while workλ checks that the work
head and the working tape is consistent with λ. Specifically,

inputλ(x, h
0, h1) =

∑
i∈[n′],i+dh∈[n′]

equ(i, h0)equ(i+ dh, h
1)equ(xi, σh)

workλ(w
0,m0, w1, h1) =

∑
i∈[S′],i+dw∈[S′]

equ(i, w0)equ(i+ dw, w
1)

equ(m0
i , σs)equ(m

1
i , σf )

equ(m0
[i−1],m

1
[i−1])

equ(m0
[S]\[i],m

1
[S]\[i]).

Now see that workλ is multilinear, since for each term in the sum, each variable only appears in one equ.
Similarly, inputλ is multilinear, and M̂n is multilinear.

Now we argue that on binary inputs M̂n is equal to Mn. To see this, see that Mn(s
0, s1) = 1 if and only

if there exists some λ ∈ Λ such that all the equalities from Definition 3.22 hold. But these equalities are
exactly the equalities enforced by the corresponding term in M̂n. Further, each λ ∈ Λ is mutually exclusive,
so only at most one term in the sum is 1 on binary inputs.

Thus M̂n is the multilinear extension of Mn. Now it remains to show how to calculate M̂n efficiently.
Note that since there are only constantly many λ ∈ Λ, it suffices to show how to compute inputλ and workλ
efficiently.

The hardest part of inputλ is equ(i, h0). To calculate it directly each time it is used would take n log(n)
field operations, which is more than we claimed.

To calculate equ(i, h0) efficiently, for each j ∈ [log(n)] calculate equ(i[j], h
0
[j]), where the last bit in i is

the least significant bit. Note that for any j < log(n) we can efficiently calculate equ(i[j+1], h
0
[j+1]) from

equ(i[j], h
0
[j]). Then in expectation, as we increment i, we only change i[j] for constantly many j. Thus

we can iterate through each equ(i, h0) using in O(n) field operations storing only O(log(n)) field elements.
Similarly for equ(i+ dh, h

1).
Thus inputλ can be calculated in time Õ(log(|F|))n and space O(log(|F|) log(n)).
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For workλ, we handle equ(i, w
0)equ(i+dw, w

1) similar to inputλ. The hard terms are equ(m0
[i−1],m

1
[i−1])

and equ(m0
[S]\[i],m

1
[S]\[i]). If we recalculated these directly each time they were used, this would take O(S2)

field operations. Instead, we iteratively calculate each equ(m0
[i−1],m

1
[i−1]) from equ(m0

[i−2],m
1
[i−2]), which

only requires one field operation. So each equ(m0
[i−1],m

1
[i−1]) can be calculated with O(S) field operations

and only storing O(1) field elements.
Now for equ(m0

[S]\[i],m
1
[S]\[i]), we have some technical details. We calculate this for each i starting from

0, up to S. So we cannot get equ(m0
[S]\[i],m

1
[S]\[i]) from equ(m0

[S]\[i−1],m
1
[S]\[i−1]) from a multiplication.

Instead, we have to use a division:

equ(m0
[S]\[i],m

1
[S]\[i]) =

equ(m0
[S]\[i−1],m

1
[S]\[i−1])

equ(m0
i ,m

1
i )

If no equ(m0
i ,m

1
i ) = 0, then this also takes O(S) field operations and only requires storing O(1) field elements.

But now we must worry about potential division by 0. But we would only come across this possibility
if for some j we have equ(m0

j ,m
1
j ) = 0. If this is true, then for any i > j we have equ(m0

[i−1],m
1
[i−1]) = 0,

so that term in the sum is 0, and for any i < j we have equ(m0
[S]\[i],m

1
[S]\[i]) = 0. Thus the only term in

the sum potentially non zero is when i = j, so we can just calculate that term directly using O(S) field
operations and only storing O(1) field elements.

So workλ can be calculated in time Õ(log(|F|))S and space O(log(|F|) log(S)). Thus altogether M̂n can
be calculated in time (n+ S)Õ(log(|F|)) and space O((log(n) + log(S)) log(|F|)).

B Standard Algebraic Interactive Proof Tools

In this section, we include proofs of many of the theorems in Section 3.6. First we establish that polynomial
interpolation can be computed quickly. This is done essentially by defining the interpolating polynomials,
showing how to calculate them quickly, and showing how to interpolate with them. First, we define our
interpolating polynomials.

Definition B.1 (Interpolating Polynomials). For any m, and i ∈ [m], define ℓmi : F → F to be the unique
degree 1 polynomial such that ℓmi (i) = 1 and for all other j ∈ [m] \ {i} we have ℓmi (j) = 0.

Now we state that we can calculate them quickly. A proof can be found in [Coo22b].

Lemma B.2 (Calculating Interpolating Polynomials Fast). For any integer m , and for any x ∈ F, one can
calculate the sequence (ℓmi (x))i∈[m] in time Õ(log(|F|))m and space O(log(|F|)).

For any integer m and sequence of vectors (wi ∈ FS)i∈[m], for any x ∈ [m], one can calculate

g(x) =
∑
i∈[m]

wiℓ
m
i (x)

in time mSÕ(log(|F|)) and space O(S log(|F|)).

Now we state that the above formula is enough to do fast polynomial interpolation.

Corollary B.3 (Interpolating Polynomials Fast). For any integer d degree d polynomial g : F → FS, if one
is given for each i ∈ [d+ 1] the value g(i), then for any x ∈ F one can calculate

g(x) =
∑

i∈[d+1]

g(i)ℓd+1
i (x)

in time dSÕ(log(|F|)) and space O(S log(|F|)).
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Alternatively, if one is given for each i ∈ [0, d] the value g(i), then for any x ∈ F one can calculate

g(x) =
∑

i∈[0,d]

g(i)ℓd+1
i (x+ 1)

in time dSÕ(log(|F|)) and space O(S log(|F|)).

Now we begin the proofs from Section 3.6. Starting with unlinearization, which is a straightforward
application of sum check.

Lemma 3.27 (Unlinearization). Suppose f : FS → F is a polynomial with individual degree d, and f̂
is the multilinear function consistent with f on binary inputs. Then there is an S + 1 round interactive
protocol with O(dS log(|F|)) bits of communication, a verifier V that runs in time SdÕ(log(|F|)) and space
O((d+ S) log(|F|)), and a prover P that runs in time d2SÕ(log(|F|)) and makes O(d2S) oracle queries to f
which takes as input a w ∈ FS and α ∈ F such that

Completeness: If f̂(w) = α, then when V interacts with P , V outputs a w′ ∈ FS and α′ ∈ F such that
f(w′) = α′.

Soundness: If f̂(w) ̸= α, then for any prover P ′ with probability at most (d+1)S
|F| will V output a w′ and

α′ such that f(w′) = α′.

Proof. Observe that

f̂(w) =
∑

y∈{0,1}S

equ(w, y)f̃(y)

since f̃ agrees with f on binary inputs and both sides are multilinear.
Than applying a sum check reduces the claim that

f̂(w) = α

to the claim that for some β ∈ F and w′ ∈ FS that

β = equ(w,w′)f(w′).

We ask the prover to also provide α′, which should be equal to f(w′). The verifier then calculates equ(w,w′)
and rejects if β ̸= equ(w,w′)α′

Since g(y) = equ(w, y)f̃(y) only has individual degree d + 1, the sum check has soundness (d+1)S
|F| . See

that if β ̸= equ(w,w′)f(w′), and the prover provides α′ = f(w′), the verifier rejects. So this protocol also

has soundness (d+1)S
|F| . There is only one more round than sum check, and only a O(log(|F|)) bit message.

Similarly, the verifier time, space, and prover time are the same as sum check, plus a small time and space
to calculate equ.

Now for multi-point reduction.

Lemma 3.28 (Multi-Point Reduction). Suppose f : FS → F has total degree d and m is some integer. Then
there is a one round interactive protocol with O(dm log(|F|)) bits of communication, a verifier V that runs in
time (S+d)mÕ(log(|F|)) and space O((md+S) log(|F|)), and a prover P that runs in time m2dSÕ(log(|F|))
with O(dm) oracle queries to f . The protocol takes as input (wi ∈ FS)i∈[m] and (αi ∈ F)i∈[m] and behaves
such that

Completeness: If for each i ∈ [m] we have f(wi) = αi, then when V interacts with P , V outputs a
w′ ∈ FS and α′ ∈ F such that f(w′) = α′.

Soundness: If for any i ∈ [m] we have f(wi) ̸= αi, then for any prover P ′ with probability at most d(m−1)
|F|

will V output a w′ and α′ such that f(w′) = α′.
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Proof. The idea is to take a degree m − 1 polynomial, ϕ : F → FS that goes through each wi, and ask the
prover for f ◦ϕ, which is a degree d(m− 1) polynomial. This gives a claim from the prover of what f should
be at each wi. If any of these f(wi) are wrong, then the polynomial provided by the prover must not be
f ◦ ϕ. Then by Schwartz-Zippel, they agree on most random locations. Since the verifier can compute ϕ,
this gives us our new w′.

More specifically, define ϕ : F → FS as the unique degree m− 1 polynomial so that for i ∈ [m] (where we
associate integers with elements of F in any natural way) we have ϕ(i) = wi. This degree d polynomial is

ϕ(x) =
∑
i∈[m]

wiℓ
m
i (x)

where ℓmi are the interpolation polynomials in Definition B.1. Then by Lemma B.2 the verifier can calculate
ϕ(x) in time mSÕ(log(|F|)) and space O(S log(|F|) + log(m)).

Then the prover gives a degree d′ = d(m− 1) + 1 polynomial, g : F → F, which the verifier expects to be
f ◦ϕ. The polynomial g is specified by its value at every i ∈ [d′], and then g can be calculated by polynomial
interpolation in time d′Õ(log(|F|)) and space O(log(|F|) + log(d′)).

Notably, by its representation, if g = f ◦ ϕ, then for each i ∈ [m] we should have

g(i) = f(ϕ(i)) = f(wi) = αi.

If for any i ∈ [m], g(i) ̸= αi, the verifier rejects. Otherwise, the verifier chooses a random x ∈ F, sets
w′ = ϕ(x), and sets α′ = g(x).

By the representation of g, the verifier gets each g(i) for i ∈ [m] directly, so can check them all in time
O(m log(|F|)) and space O(log(|F|)+log(S)+log(m)). Just to store g, the verifier uses space O(md log(|F|)).
By Lemma B.2 the verifier can calculate ϕ(x) in time mSÕ(log(|F|)) and space O(S log(|F|) + log(m)).
Similarly, by Lemma B.2, the verifier can calculate g(x) in time mdÕ(log(|F|)) and space O(log(|F|) +
log(md)). So the overall verifier time is (S + d)mÕ(log(|F|)) and space O((S +md) log(|F|)).

The prover only needs to evaluate f ◦ ϕ at d′ locations and send those to the verifier. This requires the
prover to calculate ϕ at O(dm) locations. Each calculation of ϕ can be performed in time mSÕ(log(|F|)).
So calculating ϕ(i) for each i ∈ [d′] only takes time dm2SÕ(log(|F|)).

For completeness, suppose that if for each i ∈ [m] we have f(wi) = αi. Then for each i ∈ [m] the prover
will return g(i) = f(ϕ(i)) = f(wi) = αi. So the verifier doesn’t reject. Further since g and f ◦ ϕ are both
degree d(m− 1) and agree on d(m− 1) + 1 locations, by thw Schwartz-Zippel lemma they are equal. So in
particular, α′ = g(x) = f(ϕ(x)) = f(w′). So we have completeness.

For soundness, suppose for any i ∈ [m] we have f(wi) ̸= αi. Then if the verifier does not reject, we must
have g(i) ̸= f(wi) = f(ϕ(i)). Thus g ̸= f ◦ g. Then since both are degree d(m − 1) polynomials, the agree

on at most d(m− 1) points. The probability that g(x) = f(ϕ(x)) is at most d(m−1)
|F| . If g(x) ̸= f(ϕ(x)) then

α′ ̸= f(w′). So with probability at most d(m−1)
|F| will α′ = f(w′).

And the special application of multi-point reduction to product reductions.

Lemma 3.29 (Product Reduction). Suppose f : FS → F has total degree d. Then there is a one round
interactive protocol with O(d log(|F|)) bits of communication, a verifier V that runs in time (S+d)Õ(log(|F|))
and space O((S+d) log(|F|)) , and a prover P that runs in time SdÕ(log(|F|)) and makes O(d) oracle queries
to the f . The protocol takes as input u, v ∈ FS and α ∈ F and acts such that

Completeness: If f(u)f(v) = α, then when V interacts with P , V outputs a w ∈ FS and α′ ∈ F such that
f(w) = α′.

Soundness: If f(u)f(v) ̸= α, then for any prover P ′ with probability at most d
|F| will V output a w and α′

such that f(w) = α′.

50



Proof. This follows directly from the standard multi-point reduction Lemma 3.28. The prover first provides
a claimed value for α1 = f(u) and α2 = f(v). If α1α2 ̸= α, the verifier rejects. Then we run a multi-point
reduction, which asks the verifier to provide f composed with the line that goes through u and v. This
verifier and prover runs in the given time and space by Lemma 3.28.

For completeness, if f(u)f(v) = α, then an honest prover gives α1α2 = α. And by completeness of
Lemma 3.28, the verifier outputs α′ and w such that f(w) = α′.

For soundness, if f(u)f(v) ̸= α, then if α1 = f(u) and α2 = f(v), the verifier will reject since α1α2 ̸= α.
Otherwise, either α1 ̸= f(u) or α2 ̸= f(v). In either case, by soundness of Lemma 3.28, with probability at
most d

|F| will V output a w and α′ such that f(w) = α′.

C Derandomization Proofs

Here we give a proof of the existence of epsilon biased sets, and how to use random walks to sample efficiently.

Lemma 5.4 (ϵ-Biased Set). For any S, there is an m = O(S) and a function D′ : {0, 1}m×{0, 1}S → {0, 1}
such that for any X ⊆ {0, 1}S \ ∅

Pr
r∈{0,1}m

[∑
x∈X

D′(r, x) = 1 (mod 2)

]
≥ 1

4

such that D′ runs in poly(S) time and O(S) space.

Proof. Note that the existence of D′ is exactly equivalent to the existence of a 1/8 biased set generator for
2S bits with seed length O(S). As noted by Naor and Naor [NN93], this is equivalent to the construction

of a linear code with distance 1/4 and constant rate. Let the encoder of that linear code be E : {0, 1}2S ×
{0, 1}2m → {0, 1}. The function D′ itself just outputs individual bits of the generating matrices for E. More
specifically, for i ∈ {0, 1}S and j ∈ {0, 1}m (which we interpret as integer indexes), we have

D′(j, i) = E(ei)j

where ei is the vector which is all 0, except a 1 in the ith entry. So our problem reduces to constructing an
efficiently computable E.

Perhaps the most straightforward code is the concatenation code of a Reed-Muller code with a Hadamard
code. Since both codes are linear, their composition is linear. So our code E will consist of two linear codes,
E = E2 ◦ E1, and our j will be interpreted as two indices, j = (j1, j2), so that

E(ei)j = E2(E1(i)ji)j2

where E1 is the Reed-Muller code and E2 is the Hadamard code.
Specifically let E1 be the code of degree 2S polynomials over F22S so that j1 ∈ {0, 1}2S which we interpret

as j1 ∈ F22S . Specifically,

E1(x)j =
∑

i∈[2S ]

xij
i.

So E1(ei)j is just ji. This can be calculated by repeated squaring in time poly(S) and space O(S). As
a degree 2S polynomial in a field of size 22S, by the Schwartz-Zippel lemma, E1 has relative distance

1− 2S

22S
> 1

2 .

Since E2 is the Hadamard code, we have that E2 : {0, 1}2S → {0, 1}22S such that E2(u)v = u · v. Thus

j2 ∈ {0, 1}2S and
E(ei)j = (j1)

i · j2
where j1 is interpreted as an element of F22S , but (j1)

i is interpreted as an element of {0, 1}2S . We can
compute E2 in space O(S) and time O(S), and E2 has relative distance of 1

2 . Thus E has a relative distance
of δ with δ > 1

4 and D′(j, i) = E2(E1(ei)j1)j2 can be computed in time poly(S) and space O(S).
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Thus the total distance of E is δ with δ > 1
4 , and m = 4S. Let ∆ be the function computing relative

hamming distance, that is ∆(x, y) = Pri[xi ̸= yi]. By the well known correspondence between ϵ biased sets

and linear codes [NN93], for any X ⊆ {0, 1}S \ ∅ (also interpreted as an element of {0, 1}2S ), we have

Pr
r∈{0,1}m

[∑
x∈X

D′(r, x) = 1 (mod 2)

]
= Pr

r∈{0,1}m

[∑
x∈X

E(ex)r = 1 (mod 2)

]

= Pr
r∈{0,1}m

[
E
( ∑
x∈X

ex
)
r
= 1 (mod 2)

]
= Pr

r∈{0,1}m
[E(X)r = 1 (mod 2)]

=∆(E(X), 0)

=∆(E(X), E(∅))
≥δ

≥1

4
.

Lemma 5.5 (Efficient Hitting Sampler). For any m, and any ϵ > 0, there is an L = 2ℓ = O(log(1/ϵ)), an
R = O(m + L) and a function W : {0, 1}R × {0, 1}ℓ → {0, 1}m such that, if for any D∗ : {0, 1}m → {0, 1}
we have that Prr[D

∗(r) = 1] ≥ 1
4 , then

Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ : D∗(W (r, a)) = 0] ≤ ϵ.

Further, W is computable in time poly(R) and space O(R).

Proof. Our function W is just a random walk on an efficient expander Lemma 3.19, then using the hitting
property of random walks on expanders Lemma 3.20.

First if m is not even, add a bit to make it even, m′. If m is already even, set m′ = m. We can view D∗

as a function taking m′ bits by ignoring the last bit if m′ > m. Then see that |{0, 1}m′ | = n2, so there is an
expander, G, with size |{0, 1}m′ |, constant degree d, and constant spectral expansion λ < 1. Further, if V
are the vertices of G, then G has an edge function, E : V × [d] → V , that can be computed in space O(m)
and time O(m).

Let L be the smallest power of 2 at least L so that L > log(1/ϵ)
log(4)−log(3+λ) . See that L = O(log(1/ϵ)) since λ

is constant. Let k be the smallest power of 2 at least d. Then we can describe a length L walk on G using
R = m′ + Lk = O(m+ L) bits.

Then let W be the function which takes an R bit string describing a random walk on G, w1, . . . , wL, and
an ℓ bit string a time step of that walk, i ∈ [L], and outputs the vertex in the walk at that time: wi.

By Lemma 3.19, any wi can be computed in space O(m′ + ℓ) = O(R) and time O(Lm′) = O(R2). Let B
be the set of vertices in v ∈ V so that D∗(v) = 0. Then |B| ≤

∣∣ 3
4

∣∣. So by Lemma 3.20, the probability that
all steps in a length L walk on G land in B is

Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ : W (r, a) ∈ B] ≤
(
3 + λ

4

)L

Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ : D∗(W (r, a)) = 0] ≤.

Now we can derive the stated theorem.

log(1/ϵ)

log(4)− log(3 + λ)
<L

log(ϵ)

log(3 + λ)− log(4)
<
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Now using the fact that log(3 + λ)− log(4) = log
(
3+λ
4

)
< 0 we have

log(ϵ) > log

(
3 + λ

4

)
L

ϵ >

(
3 + λ

4

)L

> Pr
r∈{0,1}R

[∀a ∈ {0, 1}ℓ : D∗(W (r, a)) = 0].
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