
Learning in Pessiland via Inductive Inference

Shuichi Hirahara∗ Mikito Nanashima†

Abstract

Pessiland is one of Impagliazzo’s five possible worlds in which NP is hard on average, yet no
one-way function exists. This world is considered the most pessimistic because it offers neither
algorithmic nor cryptographic benefits.

In this paper, we develop a unified framework for constructing strong learning algorithms
under the non-existence of a one-way function, indicating a positive aspect of Pessiland. Using
our framework, we improve the learning algorithm for adaptively changing distributions, which
was introduced by Naor and Rothblum (ICML’06). Although the previous learner assumes
the knowledge of underlying distributions, our learner is universal, i.e., does not assume any
knowledge on distributions, and has better sample complexity. We also employ our framework
to construct a strong agnostic learner with optimal sample complexity, which improves the
previous PAC learner of Blum, Furst, Kearns, and Lipton (Crypto’93). Our learning algorithms
are worst-case algorithms that run in exponential time with respect to computational depth,
and as a by-product, we present the first characterization of the existence of a one-way function
by the worst-case hardness of some promise problem in AM. As a corollary of our results,
we establish the robustness of average-case learning, that is, the equivalence among various
average-case learning tasks, such as (strong and weak) agnostic learning, learning adaptively
changing distributions with respect to arbitrary unknown distributions, and weak learning with
membership queries with respect to the uniform distribution.

Our framework is based on the theory of Solomonoff’s inductive inference and the universal
extrapolation algorithm of Impagliazzo and Levin (FOCS’90). Conceptually, the framework
demonstrates that Pessiland is, in fact, a wonderland for machine learning in which various
learning tasks can be efficiently solved by the generic algorithm of universal extrapolation.

∗National Institute of Informatics, Japan. s hirahara@nii.ac.jp
†Tokyo Institute of Technology, Japan. nanashima@c.titech.ac.jp

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 100 (2023)

Contents

1 Introduction 1

2 Our Results 2
2.1 A Unified Framework of Learning in Pessiland . 2
2.2 Worst-Case Learning in Pessiland . 5
2.3 Worst-Case Characterization of One-Way Functions 6

3 Proof Techniques 8
3.1 Universal Extrapolation . 8
3.2 Time-Bounded Universal Inductive Inference . 9
3.3 Translating Universal Extrapolation into Learning 10
3.4 Improving Sample Complexity in Agnostic Learning 12

4 Discussion 13
4.1 “Learnabilica”: An Alternative Name of Pessiland 13
4.2 Limitations . 14
4.3 Future Research Directions . 15

5 Related Work 16

6 Preliminaries 18
6.1 Infinitely-Often One-Way Function . 20
6.2 Domination Property . 21
6.3 Basic Properties of qt and Computational Depth . 21

7 Estimating Universal Probability and Kolmogorov Complexity 25
7.1 Estimating the Probability with respect to Known Distributions 26
7.2 Universal Approximation of Qt and Qt,∗ . 30
7.3 Applications to Meta-Complexity Theoretic Characterizations of OWFs 32

8 Universal Extrapolation 34
8.1 Proof by Distributional Inverter . 34
8.2 Proof by Estimating Universal a Priori Probability 36

9 Distributional Learning in Pessiland 39
9.1 Time-Bounded Universal Inductive Inference . 40
9.2 Universal Distributional Learning and Universal Learning ACDs 43

9.2.1 Definitions of Learning Models . 44
9.2.2 Main Result . 46
9.2.3 Necessity of OWF for Nontrivial Bloom Filters with Hidden Codes 48

9.3 Universal Top-k Prediction . 52
9.4 Universal Likelihood Estimation . 54

10 Agnostic Learning in Pessiland 55
10.1 Time-Bounded Universal Prediction . 56
10.2 Universal Agnostic Learning . 61
10.3 Universal Agnostic Learning for General Loss . 66

A Lower Bound on Sample Complexity in Agnostic Learning on Average 76

B Universal Distribution and Probabilistic Kolmogorov Complexity 78

C MINLT under Separated Distributions in Pessiland 79

D Usage of Pre-Knowledge 85

1 Introduction

One of the major open questions in theoretical computer science is to base the security of a crypto-
graphic primitive on the hardness of NP. In an influential paper of Impagliazzo [Imp95], he clearly
addressed the gap between the hardness of NP and the existence of a cryptographic primitive, by
proposing the notion of five possible worlds. Pessiland is one of the five possible worlds in which NP
is hard to solve on average but there exists no one-way function (OWF)—a cryptographic primitive
whose existence is often considered to be a minimal assumption for complexity-based cryptogra-
phy [IL89]. This is the most pessimistic possibility of our world: In Pessiland, there is no generic
heuristic algorithm that solves NP on average, yet no complexity-based cryptography is possible,
which would have devastating impacts on our society. Unfortunately, so far researchers have not
succeeded in excluding Pessiland from the five possible worlds, and our world could correspond to
Pessiland at present. Towards closing the gap between the (average-case) hardness of NP and the
existence of a secure cryptographic primitive, it is important to investigate the following question.

What kind of computational tasks can be efficiently solved in Pessiland?

Note that the security of a one-way function can be based on the hardness of any tasks that can be
solved in Pessiland. The major open problem of ruling out Pessiland is equivalent to proving that
there exists a heuristic algorithm that solves NP on average under the non-existence of a one-way
function.

One of the most general tasks that can be achieved in Pessiland is learning adaptively changing
distributions (ACDs), which was introduced by Naor and Rothblum [NR06]. ACDs model the
setting in which two parties, Alice and Bob, interact with each other, and a learner, Eve, tries to
impersonate Bob so that Alice cannot distinguish Bob’s true message from Eve’s imitation. Alice
and Bob have some shared secret information at the beginning of the protocol, but Eve does not
have access to the secret information and can just observe the communication between Alice and
Bob. During the communication, Alice and Bob can adaptively change their internal states, which
makes the learning task highly nontrivial even in a resource-unbounded setting. Specifically, the
learning task for an ACD (G, D) is formalized as follows. (i) At the initial step, a hidden initial
state s := s0 ∈ {0, 1}poly(n) is selected according to a samplable distribution G (s0 corresponds to
the secret information shared by Alice and Bob); (ii) at each i-th stage, a sample xi is generated by
a polynomial-time sampler D as (xi, s′) := D(s; r), where r is a hidden random seed, and D updates
its internal state s to s′ (D corresponds to the algorithms of Alice and Bob); (iii) a learner is given
a stream of the samples x1, x2, . . ., and the task of the learner is to choose a stage i (which we call a
prediction stage) and to approximately simulate the conditional distribution of the next outcome xi

given the initial state s0 and the past stream x1, . . . , xi−1 without observing xi. The main result of
[NR06] is that for each ACD (G, D), there exists a polynomial-time algorithm LG,D that learns the
ACD (G, D) if there is no one-way function (and vice versa). Naor and Rothblum [NR06, Section
1.3] argued “several (seemingly innocuous) modifications to the definition of learning ACDs would
make the learning task too hard or impossible,” suggesting that their learning model might be the
most general learning setting which cannot be extended further.

The learning algorithm for ACDs is useful for investigating minimal assumptions required for
the existence of cryptographic primitives. The original motivation of Naor and Rothblum [NR06]
was to show the necessity of a one-way function for constructing online memory checking algorithms
[NR09]. Similarly, Naor and Yogev [NY19] considered the question of constructing a Bloom filter
in an adversarial setting, i.e., a space-efficient randomized data structure such that no efficient

1

adversary can find a false positive given black-box access to the data structure. By using the
learner for ACDs, they showed that for any “nontrivial” Bloom filter, there exists an adversary
that finds a false positive under the non-existence of a one-way function; that is, the existence of a
one-way function is necessary for constructing a Bloom filter with non-trivial space complexity in
the adversarial setting. However, there remains an interesting loophole in the impossibility results
of [NR09; NY19] because the learner LG,D of [NR06] assumes the knowledge of the ACD (G, D).
By hiding the source code of a Bloom filter from the adversary, it might be possible to construct a
non-trivial Bloom filter without using a one-way function.

2 Our Results

In this paper, we develop a unified framework for constructing efficient learners in various learning
models under the non-existence of a one-way function. We use the framework to construct an
improved learner for ACDs and an agnostic learner in Pessiland. The framework is based on the
inductive inference of Solomonoff [Sol64a; Sol64b], which is more general than the task of learn-
ing ACDs. In Solomonoff’s inductive inference, we assume that an infinite sequence x1, x2, x3, . . .
of symbols is generated from some unknown computable distribution. The theory of inductive
inference [Sol64a; Sol64b; MF98; Hut05; LV19] shows that there is an inefficient learner that pre-
dicts the next symbol xi given the previous symbols x1, . . . , xi−1 for most choices of i. Under the
non-existence of a one-way function, we prove that there exists a polynomial-time algorithm for a
time-bounded analogue of Solomonoff’s inductive inference. In fact, as early as 1990, Impagliazzo
and Levin [IL90] suggested that this is possible, and called their (unspecified) algorithm univer-
sal extrapolation; unfortunately, details are not given in their paper, and the relationship among
universal extrapolation and other learning models was unclear. Surprisingly, we prove that univer-
sal extrapolation improves, generalizes, and unifies previous results developed over the last three
decades in the literature. Moreover, our agnostic learner achieves an optimal sample complexity up
to a constant factor. Conceptually, our results suggest that Pessiland is, in fact, a wonderland for
machine learning in which various learning tasks can be efficiently solved by the generic algorithm
of universal extrapolation, indicating a positive aspect of Pessiland.1 Philosophical implications of
our results will be discussed in Section 4.1. We proceed to describe our results in detail.

2.1 A Unified Framework of Learning in Pessiland

As a corollary of our general framework, we improve the result of [NR06].

Theorem 2.1 (informal; see Theorem 9.7 for a formal statement). There exists no infinitely-often
one-way function2 if and only if there exists an efficient randomized algorithm that ε-closely learns
every unknown ACD with an s-bit initial state with sample complexity O(s ·ε−2δ−1) with probability

1In this sense, the name of Pessiland becomes a bit misleading. Following that Algorithmica is a wonderland for
algorithms and Heuristica is a wonderland for heuristics, we could give Pessiland an alternative name “Learnabilica”.
See Section 4.1.

2In this paper, we mainly discuss the relationships between learnability for all large enough example sizes and all
parameters (i.e., accuracy and confidence) and OWF with infinitely often security (i.e., the security holds for infinitely
many seed lengths) to focus on algorithmic aspects. Note that our results also hold for OWF with sufficiently large
security (i.e., the security holds for any sufficiently large seed length) by considering the learnability on infinitely
many example sizes with arbitrarily small parameters fixed beforehand.

2

1 − δ. Moreover, the learner chooses a prediction stage i ∼
{

1, . . . , O(s · ε−2δ−1)
}

uniformly at
random.

Our learning algorithm for ACDs improves [NR06] in the following points. (i) The sample
complexity of [NR06] is O(s · ε−4δ−2), which is improved to O(s · ε−2δ−1). (ii) Our learner chooses
a prediction stage i uniformly at random and works at a (1− δ)-fraction of i’s, whereas the learner
of [NR06] adaptively chooses the prediction stage.3 (iii) Our learner is universal, i.e., it does not
depend on the description of ACDs. In particular, by replacing the leaner for ACDs in [NY19] with
Theorem 2.1, we eliminate the loophole in the result of [NY19].

Corollary 2.2 (informal; see Section 9.2.3 for details). If there exists no one-way function, then
there exists a universal adversary A such that for any source code B generated in time t, the
adversary A finds a false positive for the non-trivial Bloom filter specified by B in time poly(t).

In other words, to construct a non-trivial Bloom filter B in Pessiland, a legitimate user must
spend (super-polynomially) more time than the adversary A.

Another consequence of our unified framework is a characterization of the existence of a one-
way function by agnostic learning [KSS94], which generalizes PAC learning. In agnostic learning,
a learner is given samples of the form (x, b) (we call x ∈ {0, 1}n and b ∈ {0, 1}≤n an example
and a label of x, respectively) that are selected identically and independently according to an
unknown distribution. The goal of the learner for a target class C of functions is to output a
good hypothesis that approximates (within an additive accuracy parameter ε) the best function
f ∈ C that approximates the labels.4 More precisely, for a given accuracy parameter ε and a
distribution D over samples, an agnostic learner outputs a hypothesis h satisfying Pr(x,b)∼D[h(x) 6=
b] ≤ optC (D) + ε, where optC (D) = minf∈C Pr(x,b)∼D[f(x) 6= b].

Theorem 2.3 (informal; see Theorem 10.6 for details). For any (multi-output) target class C that
contains polynomial-size circuits, the following are equivalent.

1. There exists no infinitely-often one-way function.

2. C is efficiently agnostic learnable on average when samples are independently and identi-
cally drawn from an unknown sampling algorithm with s(n) = poly(n)-bit secret advice that
is selected according to another unknown samplable distribution. Furthermore, the sample
complexity is O(s(n)/ε2) for any accuracy parameter ε ∈ (0, 1] and the description length of
hypotheses output by the learner is O(n · s(n)/ε2).

The sample complexity O(s(n)/ε2) (i.e., the number of samples required for learning) is op-
timal up to a constant factor; see Appendix A for a proof. Moreover, our algorithm learns the
target class C = {f : {0, 1}n → {0, 1}n} of all the (possibly not efficiently computable) functions—
as long as samples are drawn from efficiently samplable distributions. Note that the same learning
task is provably impossible in a worst-case setting because there exists a function that cannot be
approximated by any efficiently computable function.

3This results falsify the following incorrect statement in [NR06]: “An algorithm for learning ACDs must use its
knowledge of the ACD (G, D) in order to decide, on-the-fly, at what round it outputs its hypothesis.”

4Strictly speaking, we focus on agnostic learning for the 0-1 loss (i.e., the prediction loss in [KSS94]) in this work.
Note that our learner can be generalized to the case of general (polynomial-time computable) loss functions if the
number of labels is polynomially bounded (see also Sections 3.3 and 10.3).

3

Theorem 2.3 generalizes the work of Blum, Furst, Kearns, and Lipton [BFKL93], which char-
acterizes the existence of a one-way function by the hardness of an average-case variant of PAC
learning, in the following points: (i) the learning model is generalized from PAC learning to agnos-
tic learning; (ii) the label is generalized from binary to polynomial length; and (iii) the applicable
settings of distributions on samples are broadened. Specifically, the work [BFKL93] only considered
the case in which a target function is selected independently of the example distribution, while our
learner works on average for randomly selected P/poly-samplable joint distributions over samples.
Note that the previous learner in [BFKL93] does not work in the general case of joint distributions
unless Pessiland is ruled out. This is because (i) the learner in [BFKL93] is proper, i.e., it out-
puts a hypothesis in the same class of target functions, and (ii) the NP-hardness result of proper
learning [PV88] implies that every distributional NP problem is reducible to proper learning 2-term
DNFs in our average-case setting. We bypass this difficulty by considering improper learning.

More generally, our framework shows that any learning task which admits a “cheating learner”
can be solved in Pessiland. Details will be discussed in Section 3.3.

As a consequence of our framework, we show that various average-case learning tasks are, in
fact, equivalent to each other, thereby establishing the robustness of average-case learning.

Theorem 2.4 (informal; see Theorems 9.7 and 10.6 for details). The following are equivalent:

1. The non-existence of infinitely-often one-way function;

2. (Learning ACDs.) Every unknown ACD is learnable in polynomial time.

3. (Distributional learning.) P/poly-samplable distributions are distributionally learnable in
polynomial time on average under every unknown sampling algorithm for the target distribu-
tion the learner attempts to statistically approximate.

4. (Agnostic learning.) The class of all (polynomial-length multi-output) functions is agnos-
tically learnable in polynomial time on average under an unknown sampling algorithm with
secret advice that is selected according to another unknown samplable distribution.

5. (Weak learning with membership queries.) P/poly is weakly PAC learnable in poly-
nomial time with membership queries under a uniform example distribution and a samplable
distribution (fixed beforehand) over target functions.

Here, distributional learning in Item 3, introduced in [KMRRSS94], is a special case of learning
ACDs, where the internal state never changes, i.e., samples are drawn independently and iden-
tically from an unknown distribution D, and the task of the learner is to find a hypothesis that
statistically simulates D. The equivalence between Items 1 and 5 follows from the well-known
relationship between a pseudorandom function generator [GGM86] and hardness of weak learning
with membership queries [Val84].

In Theorem 2.4, we can observe many surprising phenomena in average-case learning, such
as (i) a reduction from agnostic learning to PAC learning, (ii) a reduction from learning under
general distributions to learning under the uniform distribution, (iii) boosting of accuracy, (iv) a
reduction from learning distributions to learning binary classification, (v) a reduction from learning
with membership queries to learning with random samples. Note that in the time-unbounded (i.e.,
statistical) setting, such a robustness of learnability is well known as the fundamental theorem of
statistical learning [cf. SB14, Section 6], where the learnability is characterized by VC dimension.

4

To the best of our knowledge, the robustness of learnability was not much known in a time-bounded
(i.e., computational) setting.5 Theorem 2.4 establishes a computational variant of the fundamental
theorem through the non-existence of a one-way function.

2.2 Worst-Case Learning in Pessiland

Although we stated our results in terms of average-case learning, our learning algorithms, in fact,
have a worst-case guarantee based on the notion called computational depth [AFMV06; AF09].
This worst-case guarantee is important for obtaining Corollary 2.2. To introduce the notion of
computational depth, we first review the notion of time-bounded universal a priori probability,
which was used by Impagliazzo and Levin [IL90]. We fix an efficient universal Turing machine U
arbitrarily. For every t ∈ N, we use the notation U t to refer to the execution of U in t steps6. Then,
U gives rise to the following important distribution.

Definition 2.5 (Universal probability [IL90]). For each t ∈ N, the t-time-bounded universal dis-
tribution Qt is defined as the distribution of the output of U t(r) for a uniformly random seed
r ∼ {0, 1}t. For a string x ∈ {0, 1}∗, we define the t-time-bounded universal a priori probability of
x as

Qt(x) := Pr
r∼{0,1}t

[
U t(r) = x

]
.

We also define qt(x) := − log Qt(x). (When Qt(x) = 0, we regard qt(x) as ∞.)

In Appendix B, we observe that this notion is essentially equivalent to the notion of probabilistic
Kolmogorov complexity, which was recently introduced by Goldberg, Kabanets, Lu, and Oliveira
[GKLO22].

Now, we introduce the notion of computational depth.7

Definition 2.6 (Computational depth). For every t ∈ N and x ∈ {0, 1}∗, we define the t-time-
bounded computational depth cdt(x) of x as

cdt(x) := qt(x)−K(x),

where K(x) denotes the Kolmogorov complexity of x, that is, min{|d| | U(d) = x}.

This notion has a beautiful interpretation in terms of a conditional probability:

cdt(x) ≈ − log Pr
r∼{0,1}t

[
U t(r) = x

∣∣ U(r) = x
]
.

That is, 2−cdt(x) is approximately equal to the probability that the universal Turing machine halts
in time t over a uniformly random program r ∼ {0, 1}t, conditioned on the event that U prints x.

One of the fundamental properties of computational depth is that no randomized efficient
algorithm can generate a computationally deep string with all but negligible probability.

5An important exception is boosting [e.g., Sch90].
6More precisely, we assume that each Turing machine has a write-only output tape, and we do not take into

account whether it halts when we consider U t.
7In the original definition [AFMV06], the computational depth is defined as cdt := Kt(x) − K(x). In this work,

we employ qt instead of Kt, which gives essentially the same quantity with ones used in [Ben88; LOZ22].

5

Lemma 2.7 (see Lemma 6.14 for a proof). There exists a polynomial τ such that for every p(n)-
time samplable distribution D = {Dn}n∈N, every n ∈ N, every t ≥ τ(p(n)), and every k ∈ N,

Pr
x∼Dn

[
cdt(x) > k

]
≤ 2−k+log t+O(1).

This indicates that most strings that can be produced efficiently have a logarithmically small
computational depth. More properties of computational depth can be found in Section 6.3.

The running time of our learning algorithms is proportional to an exponential in the compu-
tational depth. For example, as long as the initial state s0 of an ACD has shallow computational
depth, our learning algorithm runs efficiently in the worst case.

Theorem 2.8 (informal; a worst-case variant of Theorem 2.1). There exists no infinitely-often one-
way function if and only if there exists an efficient randomized algorithm L that ε-closely learns
every unknown ACD with every s-bit initial state s0 with sample complexity O(s · ε−2δ−1) in time
poly(2cdt(s0), ε−1, δ−1) with probability 1− δ over the internal randomness of L and the ACD.

Note that this is a worst-case learning algorithm that works for every initial state s0 ∈ {0, 1}s.
Theorem 2.1 and Corollary 2.2 are corollaries of Theorem 2.8 since no efficient algorithm can
generate computationally deep strings. We mention that Antunes and Fortnow [AF09] showed that
the running time of an arbitrary average-case algorithm for solving a decidable problem on input
x can be characterized by 2O(cdt(x)+log t). However, it is unclear whether a similar characterization
can be directly applicable to Theorems 2.1 and 2.8.

We can also state the result of agnostic learning in terms of computational depth.

Theorem 2.9 (informal; a worst-case variant of Theorem 2.3). For any (multi-output) target class
C that contains polynomial-size circuits, the following are equivalent:

1. There exists no infinitely-often one-way function.

2. C is agnostic learnable with accuracy ε in time poly(2cdt(z), ε−1), when O(|z|/ε2) samples are
identically and independently selected according to an unknown distribution samplable with
secret advice z ∈ {0, 1}∗.

2.3 Worst-Case Characterization of One-Way Functions

As a by-product of our proof techniques, we obtain the first characterization of the existence of a
one-way function (which has an average-case security requirement) by the worst-case intractability
of some promise problem. The characterization contributes to a line of research on meta-complexity,
which we briefly review below.

Impagliazzo and Levin [IL90] not only foreshadowed the significance of universal extrapolation,
but also stated the first characterization of a one-way function based on some average-case hardness
of a computational problem.

Theorem 2.10 ([IL90, “Proposition” 1]). The following are equivalent.

1. There exists no infinitely-often one-way function.

6

2. There exists a randomized polynomial-time algorithm M such that, for every polynomial sam-
plable distribution D, there exists a polynomial t0 such that for all large n ∈ N, for every
integer t ≥ t0(n), for every δ−1 ∈ N,

Pr
x∼Dn
M

[
Qt(x) · (1− δ) ≤M(x, 1t, 1δ

−1
) ≤ Qt(x) · (1 + δ)

]
≥ 1− δ.

Unfortunately, the proof of Theorem 2.10 is omitted from the paper [IL90]. As a consequence,
Theorem 2.10 is not appreciated in the recent line of research on meta-complexity. It is recently
that Liu and Pass [LP20] established the characterization of the existence of a one-way function by
the average-case hardness of time-bounded Kolmogorov complexity with respect to the uniform dis-
tribution, which spawned many subsequent works. Since qt(x) and the time-bounded Kolmogorov
complexity Kt(x) are approximately equal under a standard derandomization hypothesis (which
follows from Appendix B and [GKLO22]), the main difference between [IL90] and [LP20] is that
the former considers every efficiently samplable distribution, whereas the latter considers the uni-
form distribution. Inspired by [LP20], Ilango, Ren, and Santhanam [IRS22] (among other results)
presented the characterization of the existence of a one-way function by the average-case hardness
of resource-unbounded Kolmogorov complexity with respect to every efficiently samplable distri-
bution. This result was instrumental to obtaining the equivalence between the non-existence of a
one-way function and average-case symmetry of information [HILNO23].

We observe that the result of [IRS22] is, perhaps surprisingly,8 a corollary of Theorem 2.10.
Specifically, since any output of a randomized efficient algorithm has shallow computational depth
(Lemma 2.7), we have qt(x) ≈ K(x) with high probability over a random x drawn from any
unknown efficiently samplable distribution.9 Thus, the approximation algorithm of Theorem 2.10
also approximates K(x) on average. We also present the “first written” proof of Theorem 2.10,
which can be used to construct the universal extrapolation algorithm; see Section 7 for the proof
of Theorem 2.10.

Moreover, using the notion of computational depth, we characterize the existence of a one-
way function by the worst-case hardness of some promise problem Π ∈ pr-AM, which asks to
approximate K(x) for every computationally shallow input x.

Theorem 2.11. There exists a constant c such that the following are equivalent.

1. There exists no infinitely-often one-way function.

2. The following promise problem Π = (ΠYes,ΠNo) ∈ pr-AM is in pr-BPP.

ΠYes =
{

(x, 1s, 1t)
∣∣ K(x) ≤ s and cdt(x) ≤ log t

}
,

ΠNo =
{

(x, 1s, 1t)
∣∣ K(x) > s+ c log t and cdt(x) ≤ log t

}
.

Recently, Hirahara [Hir23] characterized the existence of a one-way function by NP-hardness
of distributional Kolmogorov complexity (under randomized reductions) and the worst-case in-
tractability of NP. He left open the question of characterizing the existence of a one-way function

8In [IRS22, page 1580], the authors discussed the reason why their results were not shown in the 1990s. We
observe that one of their results follows from Theorem 2.10.

9It is worth mentioning that the algorithm obtained from Theorem 2.10 is universal, i.e., it does not depend on a
input distribution, whereas the algorithm of [IRS22] depends on an input distribution.

7

by the worst-case intractability of some natural problem. Theorem 2.11 complements this question,
by giving a somewhat artificial problem whose worst-case intractability characterizes the existence
of a one-way function.

3 Proof Techniques

Our main contributions are to implement the ideas of using “universal extrapolation” suggested
by Impagliazzo and Levin [IL90] and to identify the connection between universal extrapolation
and various learning algorithms. To this end, we first need to give a formal definition of universal
extrapolation, which was not formally defined in the original paper [IL90]. In Section 3.1, we define
universal extrapolation as an algorithm that predicts a next symbol according to the time-bounded
universal distribution. In Section 3.2, we employ the theory of inductive inference to show that the
universal extrapolation algorithm indeed predicts a next symbol with respect to any efficiently sam-
plable distribution. Although the ideas of Sections 3.1 and 3.2 were suggested by Impagliazzo and
Levin [IL90], prior to our work, the relationship between the universal extrapolation algorithm and
other learning algorithms was unclear. We observe that the framework of Solomonoff’s inductive
inference is more general than the framework of learning ACDs, which enables us to complete the
proofs of Theorems 2.1 and 2.8. Extending these ideas to agnostic learning is highly non-trivial. In
Section 3.3, we introduce a general framework for translating the universal extrapolation algorithm
into various learning algorithms, such as PAC learners, learners for ACDs, and agnostic learners.
It is worth emphasizing that this framework enables us to construct learning algorithms in various
settings, which were previously constructed using ad hock approaches in [NR06; BFKL93; Nan21a].
To obtain the optimal sample complexity of agnostic learning in Theorem 2.3, we develop a different
framework based on the theory of universal prediction in Section 3.4.

3.1 Universal Extrapolation

To state universal extrapolation formally, we introduce relevant notations. For every distribution D
over {0, 1}∗, every x ∈ {0, 1}∗, and k ∈ N, we use the notation Nextk(D;x) to refer to the conditional
distribution of the k-bit prefix of a subsequent string of x selected according to D.10 For example,
if D is a uniform distribution over {0, 1}≤n := ∪i≤n{0, 1}i, then for every x ∈ {0, 1}≤n and every
k ∈ N, Nextk(D;x) is a uniform distribution over {0, 1}≤min{k,n−|x|}. For any distributions D and
E , let L1(D, E) denote the total variation distance between D and E . For every distribution D
over strings and every x ∈ {0, 1}∗, we define D(x) = Prx′∼D[x′ = x]. In particular, Qt(x) is the
probability that x is drawn from the t-time-bounded universal distribution Qt, which is consistent
with Definition 2.5.

We formulate universal extrapolation as a randomized algorithm UE that, for a given k ∈ N
and a computationally shallow string x, extrapolates the next k bits subsequent to x under the
time-bounded universal distribution Qt. We construct UE under the non-existence of one-way
functions.

Theorem 3.1 (Universal extrapolation). If there exists no infinitely-often one-way function, then
there exists a randomized polynomial-time algorithm UE such that for all k, t, ε−1, α ∈ N and all

10If x does not match any prefix in the support of D, we regard Nextk(D;x) as the distribution of the empty symbol.

8

x ∈ {0, 1}∗ with cdt(x) := qt(x)−K(x) ≤ α,

L1
(
UE(x; 1〈k,t,ε

−1,2α〉),Nextk(Q
t;x)

)
≤ ε.

Although Theorem 3.1 is stated using the notion of computational depth, it is essentially equiv-
alent to saying that UE is an efficient heuristic algorithm that extrapolates Nextk(Q

t;x) on average
with respect to every efficiently samplable distribution [AF09].11 The fact that UE is an efficient
heuristic algorithm follows from the fact that no randomized efficient algorithm can produce com-
putationally deep strings (Lemma 2.7).

In this work, we present two different proofs of Theorem 3.1. The first one is based on an
inverter for a distributional one-way function [IL89], and the second one is based on the universal
approximation algorithm of the universal a priori probability (Theorem 2.10). The former is simpler
in the sense that it extrapolates the next bits simultaneously, and it is analogous to the extrapolation
algorithms that have been considered in several works [Ost91; OW93; NR06; ABX08; Xia10; NY19].
The latter extrapolates next k bits inductively one-by-one, and this appears to be the original
intention in [IL90].

3.2 Time-Bounded Universal Inductive Inference

Since the universal extrapolation algorithm UE predicts the next k bits subsequent to an input x
according to the time-bounded universal distribution Qt, it is not clear from the definition whether
it predicts the next k bits according to an unknown efficiently samplable distribution. The theory
of Solomonoff’s inductive inference suggests that UE indeed extrapolates the next k bits for every
unknown efficiently samplable distribution. Let KL(D||E) represent the KL divergence between
two distributions D and E .

Lemma 3.2 (see also [Hut05; LV19]). There exists a polynomial τ such that for every distribution
D over y1, . . . , ym ∈ {0, 1}∗, if D has a tD-time sampler described by d bits, then for every t, q ∈ N
with t ≥ τ(d, tD),

E
[
KL
(
Next|yi|(D; y1 · · · yi−1) || Next|yi|(Qt; y1 · · · yi−1)

)]
≤ O(d)

m
,

where the expectation is taken over i ∼ [m] and y1, . . . , ym ∼ D.

Lemma 3.2 shows that the distribution of the next symbol yi given y1, . . . , yi−1 according to an
unknown distribution D is close to that of the next symbol yi given y1, . . . , yi−1 according to the
universal distribution Qt if m is sufficiently large. Lemma 3.2 can be easily proved by the chain rule
for KL divergence (Lemma 6.3), and the only property of Qt used in the proof is that Qt dominates
every efficiently samplable distribution D; that is, for each y1, . . . , ym,

Qt(y1, . . . , ym) ≥ 2−O(d) · D(y1, . . . , ym).

This domination property holds because the prefix of a random seed to U t in the sampling process
of Qt matches the d-bit description of a sampling algorithm for D with probability at least 2−O(d), in

11Note, however, that a similar equivalence may not be easily shown for the learning task for ACDs (Theorem 2.1
versus Theorem 2.8). Using the notion of computational depth makes our final results slightly more general.

9

which case Qt is statistically identical to D. A self-contained proof for (an extension of) Lemma 3.2
can be found in Section 9.1.

Since the distribution Next|yi|(Q
t; y1 · · · yi−1) can be approximated by UE (Theorem 3.1), Lemma 3.2

implies that UE also approximates the distribution Next|yi|(D; y1 · · · yi−1), that is, the next symbol

with respect to an unknown distribution D. In more detail, if we choose m := O(d/(δε2)), then

by Markov’s inequality, Lemma 3.2 implies that with probability at least 1 − O(d)
mε2
≥ 1 − δ over a

choice of i and y1, . . . , ym,

KL
(
Next|yi|(D; y1 · · · yi−1) || Next|yi|(Qt; y1 · · · yi−1)

)
≤ ε2.

By Pinsker’s inequality (Fact 6.1), this implies

L1
(
Next|yi|(D; y1 · · · yi−1),Next|yi|(Q

t; y1 · · · yi−1)
)
≤ ε. (1)

We are ready to complete a proof sketch of Theorems 2.1 and 2.8. Learning ACDs (G, D) can be
regarded as a special case of Solomonoff’s inductive inference in which the symbols y1, . . . , ym are
generated from an ACD (G, D). By Eq. (1), to ε-closely learn ACDs with probability at least 1− δ,
it suffices to run UE on input yi, . . . , yi−1 for a random choice of i ∼ [m], where m := O(d/(δε2))
and d is the length of the initial state of (G, D). It is worth emphasizing that the overall proofs are
simple, yet the sample complexity is improved from O(d/(δ2ε4)) [NR06] to O(d/(δε2)).

3.3 Translating Universal Extrapolation into Learning

Although our learner for ACDs can be easily obtained from the universal extrapolation algorithm
UE, it is highly non-trivial to construct an agnostic learner from UE. In this section, we develop a
general framework for translating UE into learning algorithms in various settings.

Generalizing the previous setting of Solomonoff’s inductive inference, we consider the following
setting of online learning. At each stage i ∈ N, a learner first observes a string xi ∈ {0, 1}∗, which
represents auxiliary information for the i-th prediction. A typical goal of the learner is to predict
the next symbol yi from the previous observations x1, y1, . . . , xi−1, yi−1, xi. At the end of stage i,
the learner observes the outcome yi, and proceeds to the next stage.

This general setting captures many learning problems, including PAC learning, agnostic learn-
ing, and learning ACDs. In learning ACDs, each xi is an empty string ε, and each yi is the i-th
sample drawn from an ACD. In PAC learning, each xi is an example independently and identically
drawn from an example distribution D, and each yi is f(xi), where f is a target function. Agnostic
learning is also captured in the same way, except that each yi is also selected according to some
distribution determined by xi.

The same bound with Lemma 3.2 can be proved for the generalized online learning, and this
enables us to show that UE also solves PAC learning. One may be tempted to conjecture that
UE also solves the task of agnostic learning by just predicting the next symbol yi. However, the
same approach fails for agnostic learning, as the following simple example shows. Consider the
distribution D over samples (x, b), where x is the empty string ε and b is 1 with probability 2

3 and 0
with probability 1

3 . An optimal hypothesis for this distribution D is the constant-1 function (h ≡ 1),
which achieves Pr(x,b)∼D[h(x) = b] = 2

3 . However, if UE is run on input z = (ε, b1, ε, b2, . . . , ε),
where (ε, bi) is an independent sample from D, the output of UE is close to the distribution of

b, which achieves Pr(x,b)∼D[UE(z) = b] ≈
(

2
3

)2
+
(

1
3

)2
= 5

9 �
2
3 . The issue is that the universal

10

extrapolation algorithm is designed for predicting the next symbol, which differs from the goal of
agnostic learning.12

To fix this issue, we introduce a general framework that incorporates the goal of each learning
task. The goal is specified by the notion of cheating learner.13 Unlike the standard learner, a
cheating learner is given access to the oracle that returns, for each access, an independent sam-
ple drawn from the distribution of the next symbol yi conditioned on the previous observations
x1, y1, . . . , xi−1, yi−1, xi. Note that the oracle access is so powerful that most learning tasks become
trivial. For example, cheating learners for PAC learning and learning ACDs can just output the
sample returned from the oracle. The construction of a cheating learner for agnostic learning with
an accuracy parameter ε is as follows. The cheating learner invokes the oracle q := O(1/ε2) times
to obtain independent samples y1, . . . , yq ∈ {0, 1} and outputs the majority of y1, . . . , yq.

14 This
cheating learner achieves the goal of agnostic learning because for any example x, the output of
the cheating learner achieves maxy∗∈{0,1} Pr(x′,y′)[y

′ = y∗|x′ = x] up to an additive error ε.
To obtain an agnostic learner in the standard learning model, we need to eliminate the oracle

access from the cheating learner. The next theorem shows that, by replacing the oracle access with
UE, a cheating learner can be transformed into a standard learner.

Theorem 3.3 (informal; see Theorem 9.1 for details). Let Lcheat be a randomized cheating learner
of query complexity q. Then, there exists a learner L such that for every polynomial-time samplable
distribution D = {Dz}z∈{0,1}∗, where each Dz is over streams x1, y1, . . . , xm, ym (for m := m(z)),
every z ∈ {0, 1}∗, every sufficiently large t ∈ N, every δ−1, λ−1, α ∈ N, if m ≥ O(|z| · q · δ−1λ−2)
and cdt(z) ≤ α, then

Pr
[
L1
(
L(x1, y1 . . . , xi−1, yi−1, xi; 1〈t,2

α,δ−1,λ−1〉), LEcheat

)
≤ λ

]
≥ 1− δ,

where the probability is taken over i ∼ [m] and x1, y1 . . . , xm, ym ∼ Dz, and E is an oracle that
returns a sample drawn from the conditional distribution of yi given x1, y1 . . . , xi−1, yi−1, xi with

respect to Dz. Here, the learner L(x1, y1 . . . , xi; 1a) is defined as L
UE(x1,y1,...,xi;1a

′
)

cheat for some param-
eters a and a′.

This theorem provides a unified framework for constructing learners in various learning models
in Pessiland. Any cheating learner, which is often easy to construct, can be implemented as an
efficient learning algorithm that uses the universal extrapolation algorithm UE.

The proof of Theorem 3.3 is similar to the construction of our universal learner for ACDs
in Section 3.2. As in Lemma 3.2, even if q samples are drawn from the distributions, the KL
divergence between E := Next|yi|(Dz;x1, y1, . . . , xi) and Next|yi|(Q

t;x1, y1, . . . , xi) is at most q ·
O(d)
m (see Lemma 9.2 for the formal statement). By Theorem 3.1, the latter distribution can be

approximated by UE. Thus, LEcheat is statistically close to LUE
cheat =: L.

Although Theorem 3.3 enables the statistical simulation of every polynomial-time cheating
learner by using UE for a sufficiently large m, the sample complexity m depends on the number of
queries q. This results in suboptimal sample complexity in the case of agnostic learning. Specifically,
the cheating agnostic learner with an accuracy parameter ε ∈ (0, 1) makes q = O(ε−2) queries to

12This example indicates that our framework Theorem 9.1 is a strict generalization of the framework of [NR06].
13The term “cheating” is due to the fact that the learner can freely read the future through the oracle without

making any prediction from the past.
14For simplicity, we consider agnostic learning for binary-output functions.

11

the oracle. In addition, we need to set the parameter λ := O(ε) so that the learner simulates the
cheating learner within an approximation error O(ε). Furthermore, we need to set δ := O(ε) to
bound the failure probability of the simulation above by O(ε) over the choice of an example. As a
result, the learner obtained by Theorem 3.3 requires O(q · λ−2 · δ−1) = O(ε−5) samples, which is
much worse than the optimal dependence ε−2 in Theorem 2.3; see Corollary 9.14 for details.

3.4 Improving Sample Complexity in Agnostic Learning

In order to improve the sample complexity of the agnostic learner, we present another framework.
The main reason why the bound obtained from Theorem 3.3 is loose for agnostic learning is that
the setting is too general. The main idea of improving the sample complexity is to restrict ourselves
to a setting in which a cheating learner tries to minimize a certain loss function. In such a setting,
we obtain the sample complexity m that does not depend on the query complexity of a cheating
learner, which enables us to construct the agnostic learner with the optimal sample complexity
(Theorem 2.3).

In more detail, we consider the following specific task of cheating learners. Let b ∈ N be the
length of each label yi. At stage i, a learner is given a stream x<i := x1, y1 . . . , xi−1, yi−1 and xi

and chooses an action α from a set A of actions. For a loss function l : A× {0, 1}b → [0, C], where
C > 0 is a constant, the goal of the learner is to minimize the expected loss Exi,yi [l(α, yi)]. For
instance, agnostic learning is captured as the case where the action set A is the set {0, 1}b of labels,
and the loss function l : {0, 1}b × {0, 1}b → [0, 1] is the 0-1 loss function defined as

l(α, y) =

{
0 if α = y,

1 if α 6= y.

In this case, the expected loss is

E
xi,yi

[l(α, yi)] = Pr
xi,yi

[α 6= yi],

whose minimization is the goal of agnostic learning.
Now, we state our framework for a cheating learner that tries to minimize an expected loss. The

following theorem shows that any cheating learner can be transformed into a learner that achieves
an approximately minimum expected loss by replacing the oracle with UE.

Theorem 3.4 (informal; see Theorem 10.2 for a formal statement). Let b ∈ N. Let A be a
set of actions, and let l : A × {0, 1}b → [0, C] be a loss function. For every cheating learner
Lcheat that outputs an action in A, there exists a learner L such that for every polynomial-time
samplable distribution D = {Dz}z∈{0,1}∗, where each Dz is over streams x1, y1, . . . , xm, ym, for every
z ∈ {0, 1}∗, every sufficiently large t ∈ N, and every ε−1, δ−1, α ∈ N, if m ≥ O(|z| ·C2 · ε−2δ−2) and
cdt(z) ≤ α, then

Pr
i,x<i

[
E

xi,yi,L

[
l(L(x<i, xi; 1〈b,t,2

α,ε−1,δ−1〉), yi)
]
≤ E

xi

[
min
α∈A

E
yi

[l(α, yi)]

]
+ 2∆ + ε

]
≥ 1− δ,

where x<i := x1, y1 . . . , xi−1, yi−1 is selected according to Dz; xi, yi are selected according to the
conditional distribution of the i-th observation given x<i under Dz, and

∆ := sup
O:distribution over {0,1}b

 E
LOcheat
y∼O

[l(LOcheat, y)]−min
α∈A

E
y∼O

[l(α, y)]

 .

12

Here, the learner L(x<i, xi; 1a) is defined as L
UE(x<i,xi;1a

′
)

cheat for some parameters a and a′.

We often consider a situation in which ∆ ≈ 0, i.e., the cheating learner outputs α ∈ A that ap-
proximately minimizes Ey∼O[l(α, y)], in which case we have E

[
l(LOcheat, y)

]
≈ minα∈A Ey∼O[l(α, y)]

for every oracle O. In this case, Theorem 10.2 shows that with high probability over i and x<i,

E
xi,yi,L

[
l(αL, y

i)
]
. E

xi

[
min
α∈A

E
yi

[l(α, yi)]

]
,

where αL is the choice of the action taken by the learner L. This inequality means that the learner
L achieves the best expected loss up to a small additive error. Moreover, the sample complexity m
does not depend on the number of queries of the cheating learner.

Now, we can obtain an agnostic learner with optimal sample complexity as follows. Let Lcheat

be the cheating learner for agnostic learning with an accuracy parameter ε > 0 (that is constructed
in Section 3.3). This cheating learner minimizes the expected 0-1 loss up to an additive error ε, and
thus we have ∆ ≤ ε. Applying Theorem 10.2 to Lcheat, we obtain an efficient learner L := LUE

cheat

that achieves the best expected 0-1 loss up to an additive error O(ε) with sample complexity
m = O(|z| · ε−2) (for a constant δ > 0), which completes a proof sketch of Theorem 2.3.

The proof of Theorem 3.4 is based on the theory of universal prediction [MF98; Hut05]. In
a nutshell, the theory shows that the minimization of an expected loss under the time-unbounded
universal distribution Q∞ yields the minimization of an expected loss under any computable distri-
bution, which is dominated by Q∞. We apply the theory to the time-bounded universal distribution
Qt. However, this presents a technical challenge because the theory of universal prediction deals
with time-unbounded settings. The main issue is that there may not exist a polynomial-time al-
gorithm that minimizes an expected loss under Qt. We close this computational-statistical gap by
assuming that ∆ ≈ 0 in Theorem 3.4, that is, a cheating learner efficiently minimizes the expected
loss. See Section 10 for details.

4 Discussion

4.1 “Learnabilica”: An Alternative Name of Pessiland

Our results suggest that Pessiland is a wonderland for machine learning. In order to highlight
the positive aspect of Pessiland, we put forward an alternative name of Pessiland—“Learnabilica”.
This is a world in which NP is hard on average but various learning tasks can be efficiently solved
on average. As shown in Theorem 2.4, Learnabilica is equivalent to Pessiland. In this section, we
discuss the property of Learnabilica and compare it with Heuristica.

Recall that Heuristica [Imp95] is a hypothetical world in which NP is hard in the worst case
but easy on average. This is a wonderland for heuristics because there exists an efficient heuristic
algorithm that solves every problem in NP on average. In Heuristica, it is hard to find a hard
instance on which heuristic algorithms for NP fail. This can be explained using the notion of
computational depth. In Heuristica, there exists a heuristic algorithm that solves any NP problem
on input x in time 2O(cdt(x)+log t) [AF09; Hir21; LOZ22]. Thus, to generate a hard instance for the
heuristic algorithm, one needs to generate a computationally deep string, which is very difficult: By
Lemma 2.7, any efficient randomized algorithm cannot generate computationally deep strings except
for a negligible probability. In fact, the randomized algorithm fails to generate computationally
deep strings unless a coin flip sequence given to the algorithm happens to be computationally

13

shallow. This follows from the slow growth law of computational depth (Theorem 6.13), which
states that no efficient algorithm can rapidly increase computational depth. Thus, in Heuristica,
NP is easy for all practical purposes. Note that NP contains many important problems in practice,
such as optimization problems and circuit minimization.

Similarly, in Learnabilica, there exists a learning algorithm that solves various learning tasks
in exponential time with respect to computational depth. Just as in the case of Heuristica, it is
very difficult to find a hard instance on which the learning algorithm fails. In Learnabilica, various
learning tasks can be solved efficiently. By designing cheating learners and using our frameworks,
one can obtain many learning algorithms. For example, we can design learning algorithms that
perform universal top-k prediction and universal likelihood estimation, as we show in Sections 9.3
and 9.4, respectively. Here, top-k prediction refers to the very natural task of predicting the next
outcome by producing the top k most likely candidates with the estimated likelihood for a given
k ∈ N, e.g., in the weather forecast, {(sunny, 0.8), (cloudy, 0.15), (rainy, 0.02)} when k = 3.
Top-k prediction is a common task in recommendation systems. Likelihood estimation refers to
the task of estimating the probability that a given label is observed as the next outcome within
an additive error, e.g., the probability of “rainy” in the weather forecast. Thus, in Learnabilica,
weather forecasts are extremely precise, recommendation systems are highly effective, and many
machine learning tasks that are important in practice can be easily solved.

It is an interesting research question whether an efficient “universal artificial intelligence” can
be constructed in Learnabilica. The definition of a universal artificial intelligence was proposed by
Hutter [Hut05]; however, the universal artificial intelligence involves solving optimization problems,
which may not be solvable in Learnabilica.

4.2 Limitations

Our learning algorithms run in exponential time in the computational depth of secret information.
It is natural to ask whether the running time can be improved to polynomial time in the worst
case under the non-existence of a one-way function. Unfortunately, this is not known even under
the stronger assumption that NP is easy on average (i.e., DistNP ⊆ HeurP): A learning algorithm
that runs in polynomial time can be used to break the security of a cryptographic primitive called
auxiliary-input one-way function [ABX08; Nan21a]. However, Hirahara and Nanashima [HN22]
showed that there exists no relativizing proof for the implication from the average-case easiness
of NP to the non-existence of auxiliary-input one-way functions. Since all the proofs in this work
are relativizing, improving the running time of our learning algorithms requires fundamentally new
ideas.

One could argue that our universal learning algorithm for ACDs is inferior to the learning algo-
rithm for specific ACDs (G, D) of [NR06] because the running time of our algorithm is proportional
to an exponential in the computational depth of the description of (G, D), which is a constant but
could be a huge constant. This is an unfair comparison because the universal learner is not given
the knowledge about the distribution. It is easy to incorporate prior knowledge in our univer-
sal learning algorithm, which improves the running time mildly; see Appendix D for details. We
emphasize that the exponential dependence in computational depth is only relevant to the time
complexity of our learning algorithms, but not to the sample complexity. For example, the sample
complexity of Theorem 2.8 does not depend on computational depth.

14

4.3 Future Research Directions

One of the most important future research directions is excluding Pessiland by improving the
learnability result. Recall that, in this work, we generalized the learnability results previously
shown in [BFKL93; NR06; Nan21a] to the more general average-case setting; e.g., from distributions
separated into an example distribution and a distribution over functions [BFKL93; Nan21a] to
joint distributions over samples. Towards the goal an important future research direction is to
achieve the same task under some “restriction” on hypotheses, which makes learning problems
closer to NP-hard problems. Recently, Hirahara [Hir22] proved the NP-hardness of MINLT (i.e.,
learning by hypotheses with the minimum description); thus, proving the feasibility of MINLT
in the average-case setting in Theorem 2.3 under the non-existence of OWF implies excluding
Pessiland. This approach appears hopeful at present in the sense that the proof presented in [Hir22]
is non-relativizing, and such a breakthrough does not contradict our current knowledge. Generally,
the description length of hypotheses our learner produces significantly depends on the sample
complexity. Therefore, as in Theorem 3.4, improving the sample complexity (depending on the
minimum description length of the consistent hypothesis in this case) can be one approach for
excluding Pessiland from learning theory. Another approach is to consider restricted average-case
settings at first and to generalize the result. According to this approach, in Appendix C, we
show that MINLT is feasible on average in the restricted average-case setting studied in [BFKL93]
under an additional derandomization assumption. We remark that extending Appendix C to the
average-case setting in Theorem 2.3 implies excluding Pessiland.

Another future research direction is to show reductions similar to Theorem 2.4 for more re-
stricted classes such as NC1 and AC0[p] instead of P/poly. In computational learning theory,
several novel learners have been developed for restrictive classes such as DNFs and AC0[p], but
almost all the learners require membership queries and work only under the uniform example dis-
tribution [LMN93; KM93; Jac97; CIKK16; CIKK17]. By showing a result similar to Theorem 2.4
for such restrictive classes, we can convert the previous (somewhat theoretical) learners into more
capable and practical learners.

Other future research direction is to establish the robust learning theory for the case where
samples are selected an unknown P/poly-samplable distribution (i.e., worst-case with respect to
P/poly-samplable distributions) under the non-existence of auxiliary-input one-way functions.

Open Question 4.1. Can we show the equivalence of the following by a relativizing proof? Or,
is there any oracle separation (i.e., the barrier against relativizing proofs)?

• The non-existence of auxiliary-input one-way function;

• Weak learning for P/poly with membership queries under all unknown P/poly-samplable dis-
tributions over samples.

• Agnostic learning under all unknown P/poly-samplable distributions over samples.

• Distributional learning for all unknown P/poly-samplable distributions.

Either result, i.e., the equivalence or the oracle separation, will provide important knowledge.
The former will yield new clear insights into the dichotomy between learning theory and cryptog-
raphy along with this work; the latter will show that the robustness of learning in Theorem 2.4
is indeed a unique property of average-case learning. We remark that Xiao [Xia10] presented a

15

related oracle separation between weak learning and distributional learning, but they considered
not efficiently samplable distributions (over examples) in weak learning.

5 Related Work

Valiant [Val84] observed that the existence of pseudorandom functions (which is equivalent to the
existence of one-way functions [GGM86; HILL99]) implies the hardness of learning for P/poly. A
line of subsequent work proved the cryptographic hardness of learning for several natural sub-
classes [KV94; AK95; Kha93; KS09; DV21]. Compared to our work, these works investigated the
opposite direction, i.e., from learning to the non-existence of cryptographic primitives.

Several learnability results have been shown under some related algorithmic assumptions. As
mentioned in the introduction, Impagliazzo and Levin [IL90] initiated the study on efficient learning
under the non-existence of OWF, and subsequent works [BFKL93; NR06; NY19] investigated the
capability of learning in more standard models. Oliveira and Santhanam [OS17] presented the
characterization of the existence of exponentially secure one-way functions based on the exponential
hardness of PAC learning with membership queries on the uniform example distribution in the non-
uniform setting, which is incomparable with our result. Nanashima [Nan21a] considered another
average-case variant of PAC learning, where a target function is selected according to a fixed
samplable distribution but examples are selected according to unknown (possibly not efficiently
samplable) distributions as in the original PAC learning model. He showed that PAC leaning
is feasible in such a model under the stronger assumption that there is no auxiliary-input one-
way function. Although his idea can be applied in the case of infinitely-often one-way functions,
the learner only works in the same setting as [BFKL93], which is improved by this work in the
same sense as discussed in Section 2. A line of study [CIKK16; CIKK17; BCKRS22] presented
distribution-specific efficient learners under the stronger assumptions of the existence of natural
proofs. Li and Vitányi [LV89] developed a universal PAC learner on simple distributions that
contain P/poly-computable distributions under the stronger assumption that every NP problem is
easy on average. Hirahara and Nanashima [HN21] also developed a universal agnostic learner that
works on all unknown P/poly-samplable distributions over examples under the stronger assumption
that every NP problem is easy on average with zero error. Nanashima [Nan20] showed that PAC
learning P/poly is feasible under the non-existence of a cryptographic primitive called an auxiliary-
input local hitting set generator, which has a significantly weaker security condition than OWF. In
another line of research, several cryptographic primitives were constructed based on the hardness
of learning linear functions with random noise (e.g. [Reg09; DP12]). In this context, our result can
be regarded as the construction of a one-way function whose security is based on far more general
assumptions of the average-case hardness of learning.

Our result has a similarity to the well-known Yao’s next-bit generator theorem [Yao82] in the
following sense. The next-bit generator theorem shows that, we can translate a distinguisher (from
random strings) into a next-bit predictor P for an efficiently computable function that expands
secret information (selected uniformly at random). Here, P weakly simulates the next bit of the
outcome on average over the choice of the secret information and a position of the simulated bit.
By contrast, through Theorem 3.3 for the trivial one-query cheating learner, we can translate a dis-
tributional inverter into a universal next-block predictor such that for every function that expands
secret information (selected according to some samplable distribution) as blocks, the generator
strongly simulates the distribution of the next block of the outcome on average over the choice of

16

the secret information and a position of the simulated block. Vadhan and Zheng [VZ12] obtained a
related equivalence result between conditional pseudo-entropy and KL-hardness by using the uni-
form min-max theorem [VZ13], but their work appears to have no direct connection to learnability
discussed in this work, such as learning ACDs and agnostic learning.

Klivans, Lee, and Wan [KLW10] introduced another formulation of agnostic learning on average,
where they assumed that a target function f is selected according to some samplable distribution
and ask a learner to learn all target functions that are close to f with high probability over the
choice of f . Unfortunately, our learning algorithm does not work under this formulation because
every case of adversarial noise must be considered regardless of samplability. Nevertheless, our
learner works as long as the unknown adversary that determines noise is selected according to a
uniform and efficient sampling mechanism. This computational assumption appears natural under
the strong form of the Church–Turing thesis.

Several novel techniques for learning natural classes (e.g., decision trees and DNFs) on average
have developed in PAC learning model [JS05; Sel08; Sel09; JLSW11; AC15] and in the agnostic
learning model with membership queries [KKMS08; GKK08; KK09; KLW10]. These results are
unconditional but work on only some specific distributions, particularly in many cases, the uniform
distribution over examples and target functions in the class.

A recent line of research [LP20; LP21c; LP21b; RS21; ACMTV21; IRS22; LP22] character-
ized the existence of OWF by the average-case meta-complexity, i.e., the average-case hardness of
computing the minimum description length of a given string. Our results indicated that, through
the existence of OWF, the feasibility of various learning problems (as in Theorem 2.4) is also
characterized by the average-case meta-complexity.

Recently, Hopkins, Kane, Lovett, and Mahajan [HKLM22] established a robust theory of learn-
ing in statistical settings, which includes the equivalence between PAC learning and agnostic learn-
ing (where they considered the worst-case setting with respect to distributions as in the original
models). Their idea relies on unbounded computational resources and appears not to hold when
we consider polynomial-time learners.

Organization of this Paper

The remainder of this paper is organized as follows. In Section 6, we introduce some additional
basic notions for our formal arguments. In Section 7, we present the full proof of the proposition
in [IL90] for universal estimation of probability, whose formal proof was not found in previous work.
We also discuss the relationships between [IL90] and meta-complexity in Section 7. In Section 8,
we present our formulation of universal extrapolation and present the formal proof. In Section 9,
we introduce the general framework for translating universal extrapolation into learning algorithms
and present the formal statement and the proof of Theorem 3.3. Note that Theorem 2.1 is also
proved in Section 8 as an application. In Section 10, we introduce the framework for translating
universal extrapolation into learning algorithms for minimizing the expected loss and present the
formal statement and the proof of Theorem 3.4. Note that Theorem 2.3 is also proved in Section 10
as an application.

17

6 Preliminaries

All logarithms are base 2 unless specified otherwise. We use ε to represent an empty symbol. We
distinguish ε from ε and often use ε for an accuracy parameter.

Let 〈, 〉 be a (standard) paring function that maps N×N to N. For each k ∈ N and n1, . . . , nk ∈ N,
we use the notation 〈n1, . . . , nk〉 to represent 〈n1, 〈n2, 〈· · · , 〈nk−1, nk〉〉〉〉 ∈ N. For each k ∈ N and
x1, . . . , xk ∈ {0, 1}∗, we abuse the notation 〈x1, . . . , xk〉 to represent the (standard) binary encoding
for the k-tuple (x1, . . . , xk). For every k, k′ ∈ N with k ≤ k′, let [k : k′] denote a set {k, k+1, . . . , k′}.
For each k ∈ N, let [k] := [1 : k] = {1, . . . , k}.

For every x, y ∈ {0, 1}∗, let x ◦ y denote the concatenation of x and y. For readability, we may
omit ◦ from x◦y. For each x ∈ {0, 1}n and each i ∈ [n], we let xi denote the i-th bit of x. For every
x ∈ {0, 1}n and every S = {i1, . . . , ik} ⊆ [n] (where i1 < · · · < ik), we let xS denote xi1 ◦ · · · ◦ xik ;
in particular, x[k] = x1 ◦ · · · ◦ xk and x[k:k′] = xk ◦ · · · ◦ xk′ for each k ≤ k′ ≤ n. For convenience,
we define x[k:k′] for any k, k′ ∈ N with k ≤ k′ as x[k:k′]∩[|x|]; e.g., 01101[3:7] = 01101[3:5] = 101 and
011[10:20] = ε.

For every function f : X → Y and every y ∈ Imf := {f(x) : x ∈ X}, let f−1(y) := {x ∈ X :
f(x) = y}.

For each n ∈ N, we let Un denote the uniform distribution over {0, 1}n or a random variable
selected uniformly at random from {0, 1}n in context. For any distribution D, we use the notation
x ∼ D to refer to the sampling of x according to D. For any finite set S, we use the notation x ∼ S
to refer to the uniform sampling of x from S. For each distribution D and each x ∈ {0, 1}∗, let
D(x) = Pry∼D[y = x]. Furthermore, we let D∗(x) denote the probability that a string whose prefix
matches x is selected according to D, i.e., D∗(x) = Pry∼D[y begins with x]. For simplicity, we may
identify a distribution D with a random variable drawn from D.

For each t : N→ N, we say that a familyD = {Dn}n∈N of distributions (on binary strings) is t(n)-
time samplable if there exists a t(n)-time deterministic algorithm D (called a sampling algorithm or
a sampler for D) such that, for each n ∈ N, the distribution of D(1n, Ut(n)) is statistically identical
to Dn. We say that a family D = {Dn}n∈N of distributions is (polynomial-time) samplable if D is
p(n)-samplable for some polynomial p(n). Let PSamp denote a set of all samplable distributions.
For each t : N → N, we say that a family D = {Dz}z∈{0,1}∗ of distributions (on binary strings) is
t(|z|)-time samplable if there exists a deterministic algorithm D such that, for each z ∈ {0, 1}∗,
the distribution of D(z, Ut(|z|)) is statistically identical to Dz, and D(z, -) halts in time t(|z|). For
every t(n)-time samplable distribution D = {Dn}n∈N, we use the notation d(D) to refer to the
description length of the sampler for D (with respect to the universal Turing machine U); i.e.,
there exists a t(n)-time algorithm D of description length d(D) such that each Dn is statistically
identical to D(1n, r) for r ∼ {0, 1}t(n). We use the same notation d(D) for samplable distributions
D = {Dz}z∈{0,1}∗ indexed by z.

For every randomized algorithm A using s(n) random bits on an n-bit input, we use the notation
A(x; r) to refer to the execution of A(x) with a random tape r for each x ∈ {0, 1}n and r ∈ {0, 1}s(n).
In this paper, we assume basic knowledge of probability theory, including the union bound, Markov’s
inequality, Jensen’s inequality, and Hoeffding’s inequality. In addition, we employ the following
useful lemma.

Fact 6.1 (Pinsker’s inequality). For any distributions X and Y,

L1(X ,Y) ≤
√

1

2
KL(X||Y).

18

We introduce conditional KL divergence and the chain rule for KL divergence.

Definition 6.2 (Conditional KL divergence). For random variables (X ,X ′) and (Y,Y ′), the con-
ditional KL divergence from X ′|X to Y ′|Y is defined as

KL((X ′|X)||(Y ′|Y)) = E
(x,x′)∼(X ,X ′)

[
log

Pr[X ′ = x′|X = x]

Pr[Y ′ = x′|Y = x]

]
.

Lemma 6.3 (Chain rule for KL divergence [cf. CT06, Theorem 2.5.3]). For any random variables
(X ,X ′) and (Y,Y ′), it holds that

KL(X ,X ′||Y,Y ′) = KL(X||Y) + KL((X ′|X)||(Y ′|Y)).

In particular, for any m ∈ N and any random variables (X 1, . . . ,Xm) and (Y1, . . . ,Ym),

KL(X 1, . . . ,Xm||Y1, . . . ,Ym) =
m∑
i=1

KL((X i|X 1, . . . ,X i−1)||(Y i|Y1, . . . ,Y i−1)).

We also employ the following useful fact.

Fact 6.4. For any distributions X and Y on a discrete domain D and every randomized function
f of domain D, if KL(X||Y) <∞, then KL(f(X)||f(Y)) ≤ KL(X||Y).

Proof. In cases of deterministic f , we verify KL(X||Y)−KL(f(X)||f(Y)) ≥ 0 as follows:

KL(X||Y)−KL(f(X)||f(Y)) =
∑
x∈D
X (x) log

X (x)

Y(x)
−
∑
a∈Imf

Pr[f(X) = a] log
Pr[f(X) = a]

Pr[f(Y) = a]

=
∑
x∈D
X (x) log

X (x)

Y(x)
−
∑
a∈Imf

∑
x∈D
X (x)1l{f(x) = a} log

Pr[f(X) = a]

Pr[f(Y) = a]

=
∑
x∈D
X (x) log

X (x)

Y(x)
−
∑
x∈D
X (x)

∑
a∈Imf

1l{f(x) = a} log
Pr[f(X) = a]

Pr[f(Y) = a]

=
∑
x∈D
X (x)

(
log
X (x)

Y(x)
− log

Pr[f(X) = f(x)]

Pr[f(Y) = f(x)]

)
= E

x∼X

[
log

PrX [X = x|f(X) = f(x)]

PrY [Y = x|f(Y) = f(x)]

]
.

For each x ∈ D, let X ′f(x) (resp. Y ′f(x)) be the conditional distribution of X (resp. Y) given the

event that f(X) = f(x) (resp. f(Y) = f(x)). By regarding that a sampling x ∼ X is performed as
x′ ∼ X and x ∼ X ′f(x′), we have

KL(X||Y)−KL(f(X)||f(Y)) = E
x′∼X

[
E

x∼X ′
f(x′)

[
log

PrX [X = x|f(X) = f(x)]

PrY [Y = x|f(Y) = f(x)]

]]
= E

x′∼X

[
KL(X ′f(x′)||Y

′
f(x′))

]
≥ 0,

19

where the inequality follows from the non-negativity of the KL divergence.
To extend the above to the cases of randomized f , we apply the chain rule for KL divergence

(Lemma 6.3). Let R be a distribution over randomness for f . Then,

KL(f(X ;R)||f(Y;R)) = KL(R||R) + E
r∼R

[KL(f(X ; r)||f(Y; r))] ≤ E
r∼R

[KL(X||Y)] = KL(X||Y),

where the inequality follows from the deterministic cases since each f(; r) can be regarded as a
deterministic function.

We introduce an important notion of Kolmogorov complexity.

Definition 6.5 (Kolmogorov complexity). For every t ∈ N and every x, z ∈ {0, 1}∗, we define the t-
time-bounded Kolmogorov complexity of x given z as Kt(x|z) = minp∈{0,1}∗{|p| : U t(p, z) = x}. We
also define the (time-unbounded) Kolmogorov complexity of x given z as K(x|z) = limt→∞Kt(x|z).
We omit the description “|z” if z is the empty string, i.e., Kt(x) = minp∈{0,1}∗{|p| : U t(p) = x}.

6.1 Infinitely-Often One-Way Function

We present the formal definition of infinitely-often one-way functions.

Definition 6.6 (Infinitely-often one-way function). A polynomial-time-computable family f =
{fn : {0, 1}s(n) → {0, 1}t(n)}n∈N of functions is said to be an infinitely-often one-way function if for
every randomized polynomial-time algorithm A and every polynomial p, for infinitely many n ∈ N,

Pr
x∼{0,1}s(n),A

[A(fn(x), 1n) ∈ f−1
n (fn(x))] ≤ 1/p(n),

where the probability is taken over the internal randomness of A and x ∼ {0, 1}s(n).

We also introduce infinitely-often pseudorandom functions.

Definition 6.7 (Infinitely-often pseudorandom function). A polynomial-time-computable family
f = {fn : {0, 1}s(n)×{0, 1}n → {0, 1}n}n∈N is said to be an infinitely-often pseudorandom function
if for every randomized polynomial-time oracle machine A? and every polynomial p, for infinitely
many n ∈ N, ∣∣∣∣ Pr

A,r∼{0,1}s(n)

[
Afn(r,·)(1n) = 1

]
− Pr
A,φn∼Fn

[
Aφn(·)(1n) = 1

]∣∣∣∣ < 1/p(n),

where Fn is a set of all functions that maps n-bit strings to n-bit strings.

In words, an infinitely-often pseudorandom function is an efficiently computable function in-
distinguishable from uniformly selected random functions for efficient adversaries as long as the
random seed r is hidden.

The following is a well-known result in cryptography.

Theorem 6.8 ([GGM86; HILL99]). An infinitely-often one-way function exists if and only if an
infinitely-often pseudorandom function exists.

20

Note that our results also hold for OWF with sufficiently large security (i.e., the security holds
for any sufficiently large seed length) by considering the learnability on infinitely many sample sizes
n with arbitrarily small parameters fixed beforehand as polynomial-time computable functions in
n. This follows from the observation that, for each sample size n, the number of relevant security
parameters is at most poly(n) in our reductions, and all of them are efficiently computable and
bounded by a polynomial in n and the parameters (when the parameters are efficiently computable
from n) and owing to the standard combining trick (cf. [NR06, Lemma 4.1]).

6.2 Domination Property

We introduce the important domination property of the time-bounded universal distribution Qt.

Lemma 6.9 (domination). For every distribution D that has a tD-time sampler of description
length d, there exists t0 ∈ N such that for every x ∈ {0, 1}∗ and for every t ∈ N with t ≥ t0, it
holds that Qt(x) ≥ D(x)/2O(d). Furthermore, t0 = τdom(d, tD) for a universal polynomial τdom (that
depends on U).

Proof. Let M ∈ {0, 1}d be the binary encoding of the sampler for D. If τdom is sufficiently large
(depending only on U), then any t ≥ τdom(d, tD) is sufficiently large that (i) U t simulates M and
(ii) 〈M,x〉 (where x is a seed for M) is encoded by t bits. Therefore, if the prefix of random seed
r to U t(r) corresponds to 〈M, -〉, then the conditional distribution of Qt is statistically equivalent
to D. The lemma holds because the condition is satisfied with probability at least 2−O(d).

It is not hard to verify that if a distribution X is dominated by another distribution X̃ , then X̃
approximates X with a constant KL divergence.

Proposition 6.10. Let X and X̃ be distributions over a discrete set. If there exists an absolute
constant d > 0 such that X̃ (x) ≥ X (x)/2d for all x ∈ supp(X), then KL(X||X̃) ≤ d.

Proof. The proposition is verified as follows:

KL(X||X̃) = E
x∼X

[
log
X (x)

X̃ (x)

]
≤ E

x∼X

[
log 2d

]
= d.

6.3 Basic Properties of qt and Computational Depth

Recall that for every t ∈ N and every string x ∈ {0, 1}∗,

qt(x) := − log Qt(x) = − log Pr
d∼{0,1}t

[
U t(d) = x

]
.

In the resource-unbounded case, it is known that limt→∞ qt(x) is equal to the Kolmogorov
complexity of x up to an additive constant [LV19].

We observe the upper bound on qt, which follows from the domination property.

Proposition 6.11 (Implicit in [IL90]). There exists a polynomial τ such that for every tD(n)-time
samplable distribution D, where tD(n) ≥ n, every n ∈ N, every t ≥ τ(d(D), tD(n)), and every
x ∈ supp(Dn),

qt(x) ≤ − logDn(x) + log t+O(Kt(D)) ≤ − logDn(x) + log t+O(d(D)),

where Kt(D) represents the t-time-bounded Kolmogorov complexity of the sampler of D.

21

Proof. Let S be a randomized polynomial-time algorithm that, on input 1n, outputs a string
distributed according to Dn. Since S(1n; -) is described by dn := O(d(D)+log n) bits, by Lemma 6.9,
for every n ∈ N, every t ≥ τdom(dn, tD(n)), and every x ∈ supp(Dn),

2−qt(x) = Qt(x) ≥ 2−C logn · 2−C·d(D) · Dn(x),

for some absolute constant C > 0. By selecting a polynomial τ as

τ(d(D), tD(n)) = max{τdom(dn, tD(n)), tD(n)C},

we have that for every t ≥ τ(d(D), tD(n)),

qt(x) ≤ − logDn(x) + C · d(D) + C log n

≤ − logDn(x) + C · d(D) + C log tD(n)

≤ − logDn(x) + C · d(D) + log t.

We also note that K(x) is a lower bound for qt(x).

Fact 6.12 (e.g., in [LV19, Chapter 4]). For every x ∈ {0, 1}∗ and every t ∈ N,

K(x) ≤ qt(x) +O(log t).

Recall that for every t ∈ N and x ∈ {0, 1}∗, the t-time-bounded computational depth cdt(x) of
x is defined as

cdt(x) := qt(x)−K(x).

We use the following theorem.

Theorem 6.13 (Slow growth low [Ben88; AFPS12; Hir23]). There exist polynomials τ, τ ′ such
that for every tf (n)-time computable function f : {0, 1}∗ → {0, 1}∗, every x ∈ {0, 1}∗, and every
t ≥ τ ′(|x|, |f |),

cdτ(t,tf (|x|))(f(x)) ≤ cdt(x) + log t+O(|f |),

where |f | represents the description size of f (as a Turing machine with respect to U tf (n)).

A worst-case algorithm that works in exponential time in the computational depth of input
also works on average under every samplable distributions because of the following fact that no
efficient algorithm can produce strings with high computational depth for most strings x produced
by efficient algorithms [AFMV06; AF09; Hir21].

Lemma 6.14. There exists a polynomial τ such that for every tD(n)-time samplable distribution
D, where tD(n) ≥ n, every n ∈ N, every t ≥ τ(d(D), tD(n)), and every k ∈ N,

Pr
x∼Dn

[
cdt(x) > k

]
= Pr

x∼Dn

[
qt(x)−K(x) > k

]
≤ 2−k+log t+O(d(D)).

Particularly, by letting k = log δ−1 + 2 log t for δ−1 ∈ N, we have for all n ≥ 2O(d(D)) and all
t ≥ τ(d(D), tD(n)),

Pr
x∼Dn

[
cdt(x) ≤ log δ−1 + 2 log t

]
≥ 1− δ.

22

Proof. Let τ be the polynomial in Proposition 6.11. Without loss of generality, we assume that
τ(d(D), tD(n)) ≥ 2tD(n).

By Proposition 6.11, for every n, t ∈ N with t1/2 ≥ τ(d(D), tD(n)) and every x ∈ supp(Dn),

2qt(x)−2−1 log t−O(d(D)) ≤ 2qt
1/2

(x)−2−1 log t−O(d(D)) ≤ 1

Dn(x)
.

Since Dn is sampled in time tD(n), we can assume that |x| ≤ tD(n) for every x ∈ supp(Dn).
For every n, t ∈ N with t1/2 ≥ τ(d(D), tD(n)) (≥ 2tD(n)),

E
x∼Dn

[
2−K(x)+qt(x)−2−1 log t−O(d(D))

]
≤ E

x∼Dn

[
2−K(x)

Dn(x)

]
=

∑
x∈supp(Dn)

Dn(x)
2−K(x)

Dn(x)

=
∑

x∈supp(Dn)

2−K(x)

≤
2tD(n)∑
i=1

∑
x∈{0,1}∗:

|x|≤tD(n),K(x)=i

2−i

≤
2tD(n)∑
i=1

2i · 2−i

= 2tD(n) ≤ t1/2.

This implies the lemma as follows:

Pr
x∼Dn

[qt(x)−K(x) > k] = Pr
x∼Dn

[2qt(x)−K(x)−2−1 log t−O(d(D)) > 2k−2−1 log t−O(d(D))]

≤
Ex∼Dn

[
2−K(x)+qt(n)(x)−2−1 log t(n)−O(d(D))

]
2k−2−1 log t−O(d(D))

≤ 22−1 log t · 2−k+2−1 log t+O(d(D))

= 2−k+log t+O(d(D)),

where the first inequality follows from Markov’s inequality. The lemma is obtained by regarding
τ2 as the polynomial τ in the statement.

We also use the following lemma that shows the time-bounded computational depth of a sample
drawn from a samplable distribution D = {Dz}z∈{0,1}∗ is not much different from the time-bounded
computational depth of the nonuniform advice z. Particularly when z represents computationally
shallow secret information used for generating samples, the sample set is also computationally
shallow with high probability.

Lemma 6.15. There exist polynomials τ, τ ′ such that for every tD(|z|)-samplable distribution D =
{Dz}z∈{0,1}∗, where tD(|z|) ≥ |z|, every z ∈ {0, 1}∗, every i ∈ N, and every t ≥ τ ′(d(D), tD(|z|)),

Pr
x∼Dz

[cdτ(t)(x[i]) ≤ cdt(z) + k] ≥ 1− 2−k+log t+O(d(D)).

23

Particularly, by letting k = log δ−1 +2 log t for δ−1 ∈ N, we have for all |z| ≥ 2O(d(D)), all i ∈ N,
and all t ≥ τ ′(d(D), tD(|z|)),

Pr
x∼Dz

[cdτ(t)(x[i]) ≤ cdt(z) + log δ−1 + 2 log t] ≥ 1− δ.

Proof. Let D be the tD(|z|)-time sampler for D described by d(D) bits; i.e., each Dz is statistically
equivalent to D(z; r) for r ∼ {0, 1}tD(|z|).

By Theorem 6.13, there exist universal polynomials τ, τ ′ such that for every t ≥ τ ′(d(D), tD(|z|))
(recall that tD(|z|) ≥ |z|) and every i ≤ tD(|z|),

cdτ(t)(D(z; r)[i]) ≤ cd2t(z, r) + 2−1 log t+O(d(D)) (2)

We will prove that there exists a universal polynomial τ ′′ such that for every t ≥ τ ′′(tD(|z|)),
every k′ ∈ N and every i ≤ tD(|z|),

Pr
r∼{0,1}tD(|z|)

[cd2t(z, r) ≤ cdt(z) + k′] ≥ 1− 2−k
′+2−1 log t. (3)

Note that Eq. (3) trivially holds for k′ ≤ 0 because 2−k
′+2−1 log t ≥ 1 in the case. For any k ∈ N, by

taking k′ = k − 2−1 log t−O(d(D)),

Pr
r∼{0,1}tD(|z|)

[cd2t(z, r) + 2−1 log t+O(d(D)) ≤ cdt(z) + k] ≥ 1− 2−k+log t+O(d(D)). (4)

Eq. (2) and Eq. (4) imply that for every t ≥ max{τ ′(d(D), tD(|z|)), τ ′′(tD(|z|))}, every i ∈ N, and
every k ∈ N,

Pr
x∼Dz

[cdτ(t)(x[i]) ≤ cdt(z) + k]

= Pr
r∼{0,1}tD(|z|)

[cdτ(t)(D(z; r)[i]) ≤ cdt(z) + k] ≥ 1− 2−k+log t+O(d(D)),

where we use the fact that x[i] = x in the case of i > tD(|z|) ≥ |x|.
In the remainder we prove Eq. (3). By selecting sufficiently large polynomial τ ′′′, we have that

for every z, r ∈ {0, 1}∗, and t ≥ τ ′′′(|z|, |r|)

Q2t(z, r) ≥ Qt(z)2−|r|−C

for some absolute constant C because there exists a 2t-time (|r| + O(1))-size program that prints
(r′, r) for r′ ∼ Qt and embedded r. Therefore, we have

q2t(z, r) ≤ qt(z) + |r|+ C.

By contrast, we apply the Symmetry of Information [ZL70] to obtain that

K(z, r) ≥ K(z) + K(r|z)− C ′ log |z||r|

for some absolute constant C ′.

24

Let τ ′′(tD(|z|)) = max{τ ′′′(tD(|z|), tD(|z|)), 4 · 22CtD(|z|)4C′}. Then, from the two inequalities
above, for any z ∈ {0, 1}∗, any r ∈ {0, 1}tD(|z|), and any t ≥ τ ′′(tD(|z|)),

cd2t(z, r) = q2t(z, r)−K(z, r)

≤ qt(z) + |r|+ C − (K(z) + K(r|z)− C ′ log |z||r|)
≤ cdt(z) + |r|+ 2−1 log t− 1−K(r|z),

where the last inequality follows from

2−1 log t ≥ 2−1 log τ ′′(tD(|z|)) ≥ 2−1 log(4·22CtD(|z|)4C′) = C+C ′ log tD(|z|)2+1 ≥ C+C ′ log |z||r|+1.

Therefore, for every k′ ∈ N,

Pr
r∼{0,1}tD(|z|)

[cd2t(z, r) ≤ cdt(z) + k′] ≥ Pr
r∼{0,1}tD(|z|)

[K(r|z) ≥ |r| − k′ + 2−1 log t− 1]

≥ 1−
∑|r|−k′+2−1 log t−1

i=0 2i

2|r|
≥ 1− 2−k

′+2−1 log t.

7 Estimating Universal Probability and Kolmogorov Complexity

In this section, we formally prove the following theorem. Note that Theorem 2.10 corresponds to
Item 1 ⇔ Item 3.

Theorem 7.1. The following are equivalent.

1. There exists no infinitely-often one-way function.

2. There exists a randomized polynomial-time algorithm M such that for all t, α, δ−1 ∈ N and
all x ∈ {0, 1}∗ with cdt(x) ≤ α,

Pr
M

[
Qt(x) · (1− δ) ≤M(x, 1〈t,δ

−1,2α〉) ≤ Qt(x) · (1 + δ)
]
≥ 1− δ.

3. There exists a randomized polynomial-time algorithm M such that for every D ∈ PSamp,
there exists a polynomial t0 such that for all large n ∈ N, for every integer t ≥ t0(n), for
every δ−1 ∈ N,

Pr
M,x∼Dn

[
Qt(x) · (1− δ) ≤M(x, 1〈t,δ

−1〉) ≤ Qt(x) · (1 + δ)
]
≥ 1− δ.

Furthermore, we show that Theorem 7.1 yields a universal algorithm that approximates the
resource-unbounded Kolmogorov complexity of a string chosen from unknown samplable distribu-
tions. This result implies the recent result of [IRS22] that constructed an efficient algorithm MD
that approximates the Kolmogorov complexity of x drawn from any fixed samplable distribution
D. In addition, we show the existence of a promise problem in AM whose worst-case hardness
characterizes the existence of one-way functions.

25

Theorem 7.2. The following are equivalent.

1. There exists no infinitely-often one-way function.

2. There exists a randomized polynomial-time algorithm M such that, for all n, δ−1, t, α ∈ N and
all x ∈ {0, 1}n with cdt(x) ≤ α,

Pr
M

[
K(x)− α−O(log t) ≤M(x, 1〈t,δ

−1,2α〉) ≤ K(x)
]
≥ 1− δ.

3. There exists a randomized polynomial-time algorithm M such that, for every D ∈ PSamp,
there exists a polynomial t0 such that for all large n ∈ N, for every integer t ≥ t0(n), for every
δ−1 ∈ N,

Pr
x∼Dn
M

[
K(x)− log(1/δ)−O(log t) ≤M(x, 1t, 1δ

−1
) ≤ K(x)

]
≥ 1− δ.

4. The following promise problem Π = (ΠYes,ΠNo) ∈ AM is in prBPP:

ΠYes = {(x, 1s, 1t) : K(x) ≤ s ∧ cdt(x) ≤ log t}
ΠNo = {(x, 1s, 1t) : K(x) > s+ c log t ∧ cdt(x) ≤ log t},

where c ≥ 1 is a universal constant.

The proof of Theorem 7.1 relies on another result of [IL89; IL90], which enables us to estimate
the probability D(x) for a string x drawn from a known distribution D. We prove this in Section 7.1.
In Section 7.2, we apply this to the time-bounded universal distribution, which yields a proof of
Theorem 7.1. Finally, we complete a proof of Theorem 7.2 in Section 7.3.

The proof of Theorem 7.1 (1 ⇒ 2) also yields the same theorem for Qt,∗(x) instead of Qt(x)
by replacing the universal Turing machine U t with the truncated universal Turing machine that
outputs the prefix of U t. Recall that Qt,∗(x) is the probability that the prefix of a sample y ∼ Qt

matches x. We will use the universal approximation for Qt,∗ in one of the proofs of the universal
extrapolation theorem in Section 8.

Theorem 7.3. If there is no infinitely-often one-way function, then there exists a randomized
polynomial-time algorithm M such that for all t, α, δ−1 ∈ N and all x ∈ {0, 1}∗ with cdt(x) ≤ α,

Pr
M

[
Qt,∗(x) · (1− δ) ≤M(x, 1〈t,δ

−1,2α〉) ≤ Qt,∗(x) · (1 + δ)
]
≥ 1− δ.

7.1 Estimating the Probability with respect to Known Distributions

We first apply a standard hardness amplification technique to obtain an inverter that takes an
additional parameter δ−1 ∈ N and successfully inverts a one-way function with probability 1− δ.

Proposition 7.4. If there exists no infinitely-often one-way function, then for every polynomial-
time-computable family f =

{
fn : {0, 1}s(n) → {0, 1}t(n)

}
n∈N, there exists a randomized polynomial-

time algorithm A such that for every n ∈ N and every δ−1 ∈ N,

Pr
x∼{0,1}s(n),A

[A(fn(x); 1n, 1δ
−1

) 6∈ f−1
n (fn(x))] ≤ δ.

26

Proof Sketch. We define a new family f ′ =
{
f〈n,k〉

}
〈n,k〉∈N so that

f ′〈n,k〉(x1, . . . , xk) = (f(x1), . . . , f(xk))

for every x1, . . . , xk ∈ {0, 1}s(n), where 〈-, -〉 : N × N → N is a bijection. Yao’s amplification
theorem [Yao82; Gol01] shows that inverting fn with probability 1 − δ reduces to the task of
inverting f〈n,k〉 for some k = poly(n, δ−1).

We now show that there exists an algorithm that approximates Dn(x) for a string x drawn from
Dn.

Lemma 7.5 ([IL89; IL90; Imp92]). Assume that there exists no infinitely-often one-way function.
Then, for every D ∈ PSamp, there exists a randomized polynomial-time algorithm A such that for
all large n ∈ N and all large δ−1 ∈ N,

Pr
x∼Dn
A

[
(1− δ) · Dn(x) ≤ A(x, 1n, 1δ

−1
) ≤ (1 + δ) · Dn(x)

]
≥ 1− δ.

Although a proof of this result appeared to be known to researchers in the 1990s (e.g., [OW93]),
we are not aware of any published proof. In fact, recent papers [Nan21b; IRS21] provide a weaker
algorithm that approximates Dn(x) within some constant factor (instead of a (1 + δ)-factor for an
arbitrary small δ > 0), which was further used in [LP21a]. Although such a weak algorithm was
sufficient for most applications in the previous studies, it is insufficient for our purpose of showing
the universal extrapolation theorem. To the best of our knowledge, the following is the first written
proof of Lemma 7.5. The proof closely follows the proof of the construction of a distributional
inverter presented in the PhD thesis of Impagliazzo [Imp92].

Proof of Lemma 7.5. Let f be the sampler of D. That is, f = {fn : {0, 1}n → {0, 1}n}n∈N and the
distribution of fn(x) over x ∼ {0, 1}n is identical to Dn. (Without loss of generality, we assume
that the input length of fn and the output length are identical.)

Let h` : {0, 1}n → {0, 1}` be a pairwise independent hash. Consider the family g =
{
g〈n,`〉

}
n,`∈N

of functions defined as follows: g〈n,`〉(x, h`) := (fn(x), h`(x), h`). Here, we identify h` with the
random bits used to generate h`. For simplicity, in the following, we omit the subscripts of g
because n and ` are clear from the context.

Since g is computable in polynomial time, the assumption implies that there exists a randomized
polynomial-time algorithm I such that

Pr
x,h`,I

[
I(g(x, h`); 1〈n,`〉, 1ε

−1
) ∈ g−1(g(x, h`))

]
≥ 1− ε. (5)

Here, the probability is taken over all x, h`, and the internal randomness of I. For notational
simplicity, we omit I from the subscript of probabilities in the following. We also often omit the
auxiliary input (1〈n,`〉, 1ε

−1
) from the input to I.

Using this inverter I, we present the definition of the algorithm A: The algorithm A takes
(y, 1n, 1δ

−1
) as input and sets ε := 1/poly(n/δ) for some polynomial poly to be chosen later. Then,

for each ` = n+ log(1/δ), . . . , 0 in decreasing order, A estimates

v` := Pr
r∼{0,1}`

h`

[
I(y, r, h; 1〈n,`〉, 1ε

−1
) ∈ g−1(y, r, h)

]

27

by randomly sampling r and h several times. Let ṽ` be the estimate of v` computed by A. If ṽ` ≤ δ,
the algorithm A continues to the next loop with ` reduced by 1. If ṽ` > δ, the algorithm A outputs
ṽ` · 2`−n and halts.

Below, we prove that the output of A approximates Dn(y) = 2−n ·
∣∣f−1
n (y)

∣∣ with probability at
least 1− δ.

By Hoeffding’s inequality, the algorithm A can compute ṽ` such that |ṽ` − v`| ≤ ε in time
poly(n/ε) with probability at least 1 − 2−n over the internal randomness of A. In the following,
we may assume that ṽ` satisfies |ṽ` − v`| ≤ ε. We may also assume that δ ≥ 2−n, as otherwise a
brute-force search can be used to compute

∣∣f−1
n (y)

∣∣ in time 2O(n).
Fix an input y ∈ image(fn). Let X ⊆ {0, 1}n denote f−1

n (y). Let ` ∈ N be the last integer in
the algorithm A on input y.

Claim 7.6. Assume that A halts with `. Then,

ṽ` − ε ≤ |X| · 2−`.

In particular,
δ − ε ≤ |X| · 2−`.

Proof. Since |ṽ` − v`| ≤ ε, it suffices to show v` ≤ |X| · 2−`. Observe that I successfully inverts g
on (y, r, h`) only if (y, r, h`) is in the image of g, in which case r = h`(x) for some x ∈ f−1(y) = X.
Since r ∼ {0, 1}`, by a union bound, the probability v` that I successfully inverts g on (y, r, h`) is
at most |X| · 2−`. The “in particular” part follows from the fact that ṽ` > δ when A halts. �

Claim 7.7. With probability at least 1 −
√
ε · 2n over a choice of y := fn(x) and x ∼ {0, 1}n, it

holds that for every `,

|X| · 2−` ·
(

1− |X| · 2−`
)
·
(
1−
√
ε
)
≤ ṽ` + ε.

Proof. For notational simplicity, we omit the subscript ` of h`. Fix y ∈ image(fn). For a hash
function h, let Sh denote the set of all the strings x ∈ X such that h(x) 6= h(x′) for every x′ ∈
X \ {x}. Let h(Sh) denote the image of Sh under h. For every x ∈ X, by a union bound, we have
Prh[x 6∈ Sh] ≤ |X| · 2−`. In particular, we obtain

E
h

[|Sh|] ≥ |X| · (1− |X| · 2−`). (6)

Let h(Sh) denote the image of Sh under h. Under the event that r ∈ h(Sh), the random variable
(r, h) is identical to the distribution of (h(x), h) over x ∼ Sh. Thus, we obtain

v` = Pr
r,h

[
I(y, r, h; 1〈n,`〉, 1ε

−1
) ∈ g−1(y, r, h)

]
≥ Pr[r ∈ h(Sh)] · Pr

h
x∼Sh

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

]
.

For the first factor, we have

Pr[r ∈ h(Sh)] = 2−` · E
h

[|h(Sh)|] ≥ 2−` · |X| · (1− |X| · 2−`),

28

where the last inequality follows from Eq. (6). The second factor can be bounded from below by

Pr
h

x∼X

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

]
= Pr

h
x∼{0,1}n

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

∣∣ y = f(x)
]

because Sh ⊆ X.
Finally, we consider the random variable y distributed according to fn(x) over x ∼ {0, 1}n. By

Markov’s inequality and Eq. (5), with probability at least 1−
√
ε over y ∼ fn(Un), it holds that

Pr
h

x∼{0,1}n

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

∣∣ y = f(x)
]
≥ 1−

√
ε.

By taking a union bound over all ` ≤ n+ log(1/δ) ≤ 2n, with probability at least 1−
√
ε · 2n over

y ∼ fn(Un), the same event occurs, in which case we have

v ≥ 2−` · |X| · (1− |X| · 2−`) · (1−
√
ε).

The claim follows from v` ≤ ṽ` + ε. �

Let ` be the last integer in the algorithm A on input y. Since A did not halt in all the preceding
loops, we have ṽ`′ ≤ δ for every `′ > `. By Claim 7.7, we obtain

|X| · 2−`′ ·
(

1− |X| · 2−`′
)
·
(
1−
√
ε
)
≤ ṽ`′ + ε ≤ δ + ε.

Let γ := |X| · 2−`. Then, we have

2−kγ · (1− 2−kγ) · (1−
√
ε) ≤ δ + ε

for every integer k ≥ 1. In particular, we obtain γ ≤ 4δ for sufficiently small δ and ε. (Otherwise,
we can select k so that 2−kγ ∈ [2δ, 4δ], which is a contradiction.) We also have δ − ε < γ from
Claim 7.6. We choose a small ε so that ε� δ2. Then,

√
ε� δ and ε� γδ.

By Claim 7.7 and γ ≤ 4δ, we obtain

γ · (1−O(δ)) ≤ γ · (1− 4δ) · (1−
√
ε)− ε ≤ ṽ`.

By Claim 7.6, we have
ṽ` ≤ γ + ε ≤ γ · (1 + δ).

Recall that the output of A is ṽ` · 2`−n. We conclude that

|X| · 2−n · (1−O(δ)) ≤ ṽ` · 2`−n ≤ |X| · 2−n · (1 + δ).

29

7.2 Universal Approximation of Qt and Qt,∗

We now apply Lemma 7.5 to the time-bounded universal distribution and obtain the “first written”
proof of the theorem of Impagliazzo and Levin [IL90].

Proof of Theorem 7.1. We only prove Item 1 ⇒ Item 2. Note that Item 2 ⇒ Item 3 follows from
Lemma 6.14. Consider the time-bounded universal distribution M = {Mt}t∈N defined as follows:
Mt is the distribution of U t(d) over a random choice of d ∼ {0, 1}t. Observe M ∈ PSamp. By
applying Lemma 7.5 toM, we obtain a randomized polynomial-time algorithm A such that for all
t ∈ N and all δ−1 ∈ N,

Pr
x∼Mt
A

[
(1− δ) · Mt(x) ≤ A(x, 1t, 1δ

−1
) ≤ (1 + δ) · Mt(x)

]
≥ 1− δ.

Define M(x, 1〈t,δ
−1,2α〉) = A(x, 1t, 1δ

−1(|x|tδ−1α)c2α), where c is a sufficiently large constant we will
choose later. Then, we have

Pr
x∼Mt
M

[
(1− δ) ·Qt(x) ≤M(x, 1〈t,δ

−1,2α〉) ≤ (1 + δ) ·Qt(x)
]
≥ 1− δ2−α(|x|tδ−1α)−c,

where we used the fact that δ22−α(|x|tδ−1α)−c < δ and Mt(x) = Qt(x). By Markov’s inequality,

Pr
x∼Mt

[
Pr
M

[
(1− δ) ·Qt(x) ≤M(x, 1〈t,δ

−1,2α〉) ≤ (1 + δ) ·Qt(x)
]
< 1− δ

]
< 2−α(|x|tδ−1α)−c.

We prove the theorem by contraposition. For each n ∈ N, let Enα ⊆ {0, 1}n be the subset of
x ∈ {0, 1}n satisfying

Pr
M

[
(1− δ) ·Qt(x) ≤M(x, 1〈t,δ

−1,2α〉) ≤ (1 + δ) ·Qt(x)
]
< 1− δ;

i.e., Enα is the error set for M given the parameter α. It suffices to show cdt(x) > α for every
x ∈ Enα.

By the choice of the confidence parameter for A, it holds that
∑

x∈Enα Qt(x) ≤ (ntδ−1α)−c2−α.

Thus, we have
∑

x∈Enα Qt(x)(ntδ−1α)c2α ≤ 1.

Since the error set Enα is decidable (with given M, t, α, δ−1, c and unbounded computational
resources) by trying all random strings for M , we can define a distribution family D = {Dn}n∈N
such that each Dn is (time-unconditionally) computable and Dn(x) ≥ Qt(x)(ntδ−1α)c2α for every
x ∈ Enα. By a coding theorem, this implies that

K(x) ≤ − log Qt(x)− c log(ntδ−1α)− α+O(log(ntδ−1α) + log c) < − log Qt(x)− α

by selecting a sufficiently large c.
Therefore, for every n ∈ N and every x ∈ Enα,

cdt(x) = qt(x)−K(x) = − log Qt(x)−K(x) > α.

30

We can also show Theorem 7.3 by replacing M = {Mt}t∈N in the proof above with M =
{M〈t,i〉}t,i∈N, where each M〈t,i〉 is the distribution of U t(d)[i] over d ∼ {0, 1}t, and defining M as

M(x; 1〈t,δ
−1,2α〉) := A(x, 1〈t,|x|〉, 1δ

−1|x|c2α). For completeness, we prove Theorem 7.3 formally below.

Proof of Theorem 7.3. Consider the time-bounded universal distribution M =
{
M〈t,i〉

}
t,i∈N de-

fined as follows: M〈t,i〉 is the distribution of U t(d)[i] over a random choice of d ∼ {0, 1}t. Observe
M ∈ PSamp. By applying Lemma 7.5 to M, we obtain a randomized polynomial-time algorithm
A such that for all t, i ∈ N and all δ−1 ∈ N,

Pr
x∼M〈t,i〉

A

[
(1− δ) · M〈t,i〉(x) ≤ A(x, 1〈t,i〉, 1δ

−1
) ≤ (1 + δ) · M〈t,i〉(x)

]
≥ 1− δ.

Define M(x, 1〈t,δ
−1,2α〉) = A(x, 1〈t,|x|〉, 1δ

−1(|x|tδ−1α)c2α), where c is a sufficiently large constant we
will choose later. Then, we have

Pr
x∼M〈t,|x|〉

M

[
(1− δ) ·Qt,∗(x) ≤M(x, 1〈t,δ

−1,2α〉) ≤ (1 + δ) ·Qt,∗(x)
]
≥ 1− δ2−α(|x|tδ−1α)−c,

where we used the fact that δ22−α(|x|tδ−1α)−c < δ and M〈t,|x|〉(x) = Qt,∗(x). By Markov’s
inequality,

Pr
x∼M〈t,|x|〉

[
Pr
M

[
(1− δ) ·Qt,∗(x) ≤M(x, 1〈t,δ

−1,2α〉) ≤ (1 + δ) ·Qt,∗(x)
]
< 1− δ

]
< 2−α(|x|tδ−1α)−c.

We prove the theorem by contraposition. For each n ∈ N, let Enα ⊆ {0, 1}n be the subset of
x ∈ {0, 1}n satisfying

Pr
M

[
(1− δ) ·Qt,∗(x) ≤M(x, 1〈t,δ

−1,2α〉) ≤ (1 + δ) ·Qt,∗(x)
]
< 1− δ;

i.e., Enα is the error set for M given the parameter α. It suffices to show cdt(x) > α for every
x ∈ Enα.

By the choice of the confidence parameter for A, it holds that
∑

x∈Enα Qt,∗(x) ≤ (ntδ−1α)−c2−α.

Thus, we have
∑

x∈Enα Qt,∗(x)(ntδ−1α)c2α ≤ 1.

Since the error set Enα is decidable (with given M, t, α, δ−1, c and unbounded computational
resources) by trying all random strings for M , we can define a distribution family D = {Dn}n∈N
such that each Dn is (time-unconditionally) computable and Dn(x) ≥ Qt,∗(x)(ntδ−1α)c2α for every
x ∈ Enα. This implies that

K(x) ≤ − log Qt,∗(x)− c log(ntδ−1α)− α+O(log(ntδ−1α) + log c)

≤ − log Qt(x)− c log(ntδ−1α)− α+O(log(ntδ−1α) + log c)

< − log Qt(x)− α

by selecting a sufficiently large c, where the second inequality follows from Qt,∗(x) ≥ Qt(x).
Therefore, for every n ∈ N and every x ∈ Enα,

cdt(x) = qt(x)−K(x) = − log Qt(x)−K(x) > α.

31

7.3 Applications to Meta-Complexity Theoretic Characterizations of OWFs

We now use Theorem 7.1 to estimate the resource-unbounded Kolmogorov complexity of a string
drawn from any unknown distribution.

With the ingredients developed so far, we now prove the main result of this section.

Proof of Theorem 7.2. Item 2 ⇒ Item 1, Item 3 ⇒ Item 1, and Item 4 ⇒ Item 1 can be easily
proved using [HILL99] (see [IRS22]) and Lemma 6.14 showing that most strings drawn from a
samplable distribution is logarithmically small.

Item 1⇒ Item 2. Using Theorem 7.1, let M be the algorithm of Item 2. We define an algorithm
M ′ so that M ′(x, 1〈t,δ

−1,2α〉) := − logM(x, 1〈t,δ
−1,2α〉). By the property of M , for every x ∈ {0, 1}∗

with cdt(x) ≤ α, with probability at least 1− δ over the randomness for M ,

qt(x)− 1 ≤ − logM(x, 1t, 1δ
−1

) ≤ qt(x) + 1.

In addition, for every x ∈ {0, 1}∗ with cdt(x) ≤ α,

qt(x) = K(x) + cdt(x) ≤ K(x) + α.

By Fact 6.12,
K(x) ≤ qt(x) +O(log t).

Therefore, it holds that

Pr
M ′

[
K(x)−O(log t)− 1 ≤M ′(x, 1〈t,δ−1,2α〉) ≤ K(x) + α+ 1

]
≥ 1− δ.

Item 2 follows from subtracting α+ 1 from the output of M ′.
Item 2⇒ Item 3. Let M be the efficient randomized algorithm in Item 2. We define an algorithm

M ′ so that M ′(x, 1t, 1δ
−1

) = M(x, 1〈t,2δ
−1,2δ−1t2〉). By Lemma 6.14, for every D ∈ PSamp, there

exists a polynomial t0 such that for every sufficiently large n ∈ N, every t ≥ t0(n), and every
δ−1 ∈ N,

Pr
x∼Dn

[cdt(x) ≤ log 2δ−1 + 2 log t] ≥ 1− δ/2.

Whenever cdt(x) ≤ log 2δ−1 + 2 log t holds,

Pr
M

[K(x)− log 2δ−1 − 2 log t−O(log t) ≤M(x, 1〈t,2δ
−1,2δ−1t2〉) ≤ K(x)] ≥ 1− δ/2.

Recall that
log 2δ−1 + 2 log t+O(log t) ≤ log δ−1 +O(log t).

Therefore, by the union bound,

Pr
M ′

[K(x)− log δ−1 −O(log t) ≤M ′(x, 1t, 1δ−1
) ≤ K(x)] ≥ 1− δ.

Item 2 ⇒ Item 4. Let M be the efficient randomized algorithm in Item 2. Let c′ be a constant
larger than the multiplicative constant in the O-notation in Item 2, i.e., for all n, δ−1, t, α ∈ N and
all x ∈ {0, 1}n with cdt(x) ≤ α,

Pr
M

[
K(x)− α− c′ log t ≤M(x, 1〈t,δ

−1,2α〉) ≤ K(x)
]
≥ 1− δ.

According to Fact 6.12, we can take sufficiently large c′ so that K(x) ≤ qt(x) + c′ log t− 1 for every
x and t.

We determine the constant c in Item 4 as c = c′ + 1.

32

Claim 7.8. The following promise problem Π = (ΠYes,ΠNo) is in AM:

ΠYes = {(x, 1s, 1t) : K(x) ≤ s ∧ cdt(x) ≤ log t}
ΠNo = {(x, 1s, 1t) : K(x) > s+ c log t ∧ cdt(x) ≤ log t}

We defer the proof of the following claim. Now, we prove that Item 2 implies Π ∈ prBPP.
We define an algorithm M ′(x, 1s, 1t) as

M ′(x, 1s, 1t) = 1 ⇐⇒ M(x, 1〈t,4,t〉) ≤ s.
We show that

(x, 1s, 1t) ∈ ΠYes =⇒ Pr[M ′(x, 1s, 1t) = 1] ≥ 3/4

(x, 1s, 1t) ∈ ΠNo =⇒ Pr[M ′(x, 1s, 1t) = 0] ≥ 3/4.

If (x, 1s, 1t) ∈ ΠYes, then cdt(x) ≤ log t, and with probability at least 1 − 1/4 = 3/4 over the
choice of the randomness for M ,

M(x, 1〈t,4,t〉) ≤ K(x) ≤ s.
Therefore, M ′(x, 1s, 1t) outputs 1 in this case.

If (x, 1s, 1t) ∈ ΠNo, then cdt(x) ≤ log t, and with probability at least 1 − 1/4 = 3/4 over the
choice of the randomness for M ,

M(x, 1〈t,4,t〉) ≥ K(x)− log t− c′ log t > s+ c log t− (c′ + 1) log t = s,

and M ′(x, 1s, 1t) outputs 0 in this case.
Π ∈ AM follows from the lower bound protocol [GS86; BT06] as follows.

Proof of Claim 7.8. Based on the lower bound protocol [cf. BT06, Lemma 2.6], the following lan-
guage Γ = (ΓYes,ΓNo) is contained in AM.

ΓYes = {(x, 1s, 1t) : log |{r ∈ {0, 1}t : U t(r) = x}| ≥ s}
ΓNo = {(x, 1s, 1t) : log |{r ∈ {0, 1}t : U t(r) = x}| ≤ s− 1}.

Since AM is closed under Karp reductions, it suffices to verify that

(x, 1s, 1t) ∈ ΠYes =⇒ (x, 1t−s−log t, 1t) ∈ ΓYes

(x, 1s, 1t) ∈ ΠNo =⇒ (x, 1t−s−log t, 1t) ∈ ΓNo.

If (x, 1s, 1t) ∈ ΠYes, then
qt(x) = K(x) + cdt(x) ≤ s+ log t.

Since qt(x) = − log Qt = t− log |{r ∈ {0, 1}t : U t(r) = x}|, we have

log |{r ∈ {0, 1}t : U t(r) = x}| ≥ t− s− log t,

and (x, 1t−s−log t, 1t) ∈ ΓYes.
By contrast, if (x, 1s, 1t) ∈ ΠNo, then

qt(x) + c′ log t− 1 ≥ K(x) > s+ c log t.

Recall that c = c′ + 1. Therefore, we have

log |{r ∈ {0, 1}t : U t(r) = x}| < t− s− log t,

and (x, 1t−s−log t, 1t) ∈ ΓNo. �

33

8 Universal Extrapolation

In this section, we formulate universal extrapolation and present the formal proof.

Theorem 8.1 (Universal Extrapolation). If there exists no infinitely-often one-way function, then
there exists a randomized polynomial-time algorithm UE such that for all k, t, ε−1, α ∈ N and all
x ∈ {0, 1}∗ with cdt(x) ≤ α,

L1
(
UE(x; 1〈k,t,ε

−1,2α〉),Nextk(Q
t, x)

)
≤ ε.

We present two proofs of Theorem 8.1 with different constructions of UE. The first one is based
on a distributional inverter [IL89]. The second one is based on the approximation of the universal
a priori probability in Section 7, which appeared to be the original intention of [IL90].

8.1 Proof by Distributional Inverter

We present the proof of the universal extrapolation theorem based on distributional inverters. In the
proof, we use the following theorem, which is well-known as the equivalence between the existence
of one-way functions and the existence of distributional one-way functions.

Theorem 8.2 ([IL89; Imp92]). The following are equivalent:

1. There exists no infinitely-often one-way function.

2. For every polynomial-time-computable family f = {fn : {0, 1}s(n) → {0, 1}t(n)}n∈N, there ex-
ists a randomized polynomial-time algorithm A such that for every n, ε−1, δ−1 ∈ N,

Pr
y∼fn(Us(n))

[
L1
(
A(y; 1n, 1ε

−1
, 1δ
−1

),UnifInvfn(y)
)
≤ ε
]
≥ 1− δ,

where UnifInvf (y) is a random variable selected according to the uniform distribution over
f−1(y) for each y ∈ Imf .

Theorem 8.2 implies distributional inverting under Qt in worst-case exponential time in the
time-bounded computational depth of input.

Lemma 8.3. If there exists no infinitely-often one-way function, then there exist a randomized
polynomial-time algorithm A′ and a polynomial τ such that for all t, ε−1, α ∈ N and all x ∈ {0, 1}∗
with cdt(x) ≤ α,

L1
(
A′(x; 1〈t,ε

−1,12
α 〉),UnifInvUt

[|x|]
(x)
)
≤ ε,

where U t[n] denotes the universal Turing machine whose output is truncated to the first n bits; i.e.,

U t[n](s) = U t(s)[n] for each s ∈ {0, 1}t.

Proof. Let A be the randomized algorithm obtained from Theorem 8.2 (1⇒2) for a polynomial-
time-computable family f defined as follows: for every n, t ∈ N and s ∈ {0, 1}t, f〈n,t〉(s) = U t[n](s).

For every input, A′ is defined as

A′(x; 1〈t,ε
−1,2α〉) = A(x; 1〈n,t〉, 1ε

−1
, 1(ntε−1α)c2α),

34

where n = |x| and c is a sufficiently large constant.
We prove the lemma by contraposition. For each n ∈ N, let Enα ⊆ {0, 1}n be the subset of

x ∈ {0, 1}n satisfying

L1
(
A′(x; 1〈t,ε

−1,2α〉),UnifInvUt
[n]

(x)
)
> ε;

i.e., Enα is the error set for A given the parameter α. We show cdt(x) > α for every x ∈ Enα.
For each x ∈ Enα, let δ(x) := Prs[f〈n,t〉(s) = x]. We have

δ(x) = Pr
s

[f〈n,t〉(s) = x] = Pr
s

[U t[|x|](s) = x] ≥ Pr
s

[U t(s) = x] = Qt(x).

For every x ∈ Enα,

L1
(
A(x; 1〈n,t〉, 1ε

−1
, 1n2α),UnifInvUt

[n]
(x)
)

= L1
(
A(x; 1〈n,t〉, 1ε

−1
, 1n2α),UnifInvf〈n,t〉(x)

)
> ε

By the choice of the confidence parameter for A, it holds that
∑

x∈Enα δ(x) ≤ (ntε−1α)−c2−α. Thus,

we have
∑

x∈Enα δ(x)(ntε−1α)c2α ≤ 1.

Since the error set Enα is decidable (with given M, t, ε−1, α, c and unbounded computational re-
sources), we can define a distribution familyD = {Dn}n∈N such that eachDn is (time-unconditionally)
computable and Dn(x) ≥ δ(x)(ntε−1α)c2α for every x ∈ Enα. This implies that

K(x) ≤ − logDn(x) +O(log(ntε−1α) + log c)

≤ − log δ(n)− c log(ntε−1α)− α+O(log(ntε−1α) + log c)

< − log δ(n)− α
≤ − log Qt(x)− α

by selecting a sufficiently large c.
Therefore, for every n ∈ N and every x ∈ Enα,

cdt(x) = qt(x)−K(x) = − log Qt(x)−K(x) > α.

Now, we derive Theorem 8.1 from Lemma 8.3.

Proof of Theorem 8.1. Let A′ be the randomized algorithm in Lemma 8.3. Then, the algorithm
UE is constructed as

UE(x; 1〈k,t,ε
−1,2α〉) = U t(A′(x; 1〈t,ε

−1,2α〉))[|x|+1:|x|+k].

The correctness is verified as follows: for every x ∈ {0, 1}∗,

L1
(
UE(x; 1〈k,t,ε

−1,2α〉),Nextk(Q
t, x)

)
= L1

(
U t(A′(x; 1〈t,ε

−1,2α〉))[|x|+1:|x|+k],Nextk(Q
t, x)

)
= L1

(
U t(A′(x; 1〈t,ε

−1,2α〉))[|x|+1:|x|+k], U
t(UnifInvUt

[|x|]
(x))[|x|+1:|x|+k]

)
≤ L1

(
A′(x; 1〈t,ε

−1,2α〉),UnifInvUt
[|x|]

(x)
)
.

35

By Lemma 8.3, for all t, ε−1, α ∈ N and all x ∈ {0, 1}∗ with cdt(x) ≤ α,

L1
(
UE(x; 1〈k,t,ε

−1,2α〉),Nextk(Q
t, x)

)
≤ L1

(
A′(x; 1〈t,ε

−1,2α〉),UnifInvUt
[|x|]

(x)
)
≤ ε.

8.2 Proof by Estimating Universal a Priori Probability

We present another proof of Theorem 8.1, where we construct another extrapolation algorithm that
predicts the next k bits one-by-one according to the approximated likelihood of the next 1 bit.

Proof of Theorem 8.1. Let D = {Dt,i}t,i∈N be a distribution family, where each Dt,i is a distribution
of x[i] ◦ b for x ∼ Qt and b ∼ {0, 1, ε}. Note that D is poly(t, i)-time samplable.

Under the nonexistence of an infinitely-often one-way function, from Theorem 7.3 and Lemma 6.14,
we have an algorithm M such that for any given parameters 1〈t,i〉, 1δ

−1
,

Pr
x∼D〈t,i〉,M

[
Qt,∗(x) · (1− δ) ≤M(x; 1〈t,i〉, 1δ

−1
) ≤ Qt,∗(x) · (1 + δ)

]
≥ 1− δ.

We construct the algorithm UE based on M as follows. On input x, 1〈k,t,ε
−1,2α〉, the algorithm

UE samples yj ∈ {0, 1, ε} inductively in j ∈ [k] according to the following procedure: if yj−1 = ε
and j ≥ 2, then yj = ε; otherwise,

yj =


0 with probability min{p0/pε, 1}
1 with probability min{p1/pε, 1}
ε with probability max{(pε − p0 − p1)/pε, 0}

where

p0 = M(x ◦ y1 ◦ · · · ◦ yj−1 ◦ 0; 1〈t,|x|+j−1〉, 1δ
−1

)

p1 = M(x ◦ y1 ◦ · · · ◦ yj−1 ◦ 1; 1〈t,|x|+j−1〉, 1δ
−1

)

pε = M(x ◦ y1 ◦ · · · ◦ yj−1; 1〈t,|x|+j−1〉, 1δ
−1

)

for δ = min{ε′/(4k2 + ε′), ε′/6k}. Here, ε′ = ε/(6 · 2α(|x|tε−1α)c), and c is a sufficiently large
constant specified later. Then, UE outputs y1 ◦ · · · ◦yk. If pε = 0 at some stage, UE outputs “error”
and halts.

We verify the correctness of UE via the following three steps. First, we assume the ideal case
in which M can output the exact value of Qt,∗(x) for any given x regardless of its computational
depth. Second, we take the multiplicative approximation error (1±δ) into account. Finally, we take
the confidence error and the computational depth into account. Below, we omit the parameters of
UE and M for readability.

Suppose that M can output the exact value of Qt,∗(x) for a given x with probability 1 over the
choice of x and randomness for M . Then, by induction in j, we can easily verify that if yj−1 6= ε,
then for each b ∈ {0, 1, ε},

Pr[yj = b|y1 · · · yj−1] = Pr[Next1(Qt, xy1 · · · yj−1) = b].

36

Thus, for every y∗ ∈ {0, 1}k,

Pr[UE(x) outputs y∗] =
k∏
j=1

Pr[yj = y∗j |y[j−1] = y∗[j−1]]

=
k∏
j=1

Pr[Next1(Qt, xy∗1 · · · y∗j−1) = y∗j]

= Pr[Nextk(Q
t, x) = y∗],

and for every y∗ ∈ {0, 1}k′ with k′ < k,

Pr[UE(x) outputs y∗] =
k′∏
j=1

Pr[yj = y∗j |y[j−1] = y∗[j−1]] · Pr[yk′+1 = ε|y[k′] = y∗[k′]]

=

k′∏
j=1

Pr[Next1(Qt, xy∗1 · · · y∗j−1) = y∗j] · Pr[Next1(Qt, xy∗1 · · · y∗k′) = ε]

= Pr[Nextk(Q
t, x) = y∗].

Therefore, the distribution of UE(x) is statistically equivalent to Nextk(Q
t, x).

Next, we take the approximation error into account; i.e., we assume that M(x) outputs a value
of p ∈ [Qt,∗(x)(1± δ)] for any given x.

Fix j ∈ [k] and x ∈ {0, 1}∗ arbitrarily. Notice that pb ∈ [Qt,∗(xy1 · · · yj−1b)(1 ± δ)] for each
b ∈ {0, 1, ε}. Let Dj denote the distribution of yj given y1 · · · yj−1. Then, the following claim holds:

Claim 8.4.

L1(Dj ,Next1(Qt, xy1 · · · yj−1)) ≤ ε′

2k2

We defer the proof of Claim 8.4 to the end of the proof because it has no technical novelty.
By Claim 8.4, we have

L1(D1 · · · Dj ,Nextj(Qt, x))

≤ L1(D1 · · · Dj ,D1 · · · Dj−1Next1(Qt, x ◦ D1 · · · Dj−1))

+ L1(D1 · · · Dj−1Next1(Qt, x ◦ D1 · · · Dj−1),Nextj(Q
t, x))

≤ ε′

2k2
+ L1(D1 · · · Dj−1Next1(Qt, x ◦ D1 · · · Dj−1),Nextj−1(Qt, x)Next1(Qt, x ◦ Nextj−1(Qt, x)))

≤ ε′

2k2
+ L1(D1 · · · Dj−1,Nextj−1(Qt, x)).

By induction in j ∈ [k], the total variation distance between Nextj(Q
t, x) and the distribution

D1 · · · Dj of y1 · · · yj is at most j · ε′

2k2
. By letting j = k, the total variation distance between

Nextk(Q
t, x) and UE(x) is at most ε′/2k ≤ ε/2.

Finally, we take the confidence error into account. Namely, we assume that for each x ∈ {0, 1}∗
and for each j ∈ N with j ≤ k,

Pr
xy1···yj−1∼Qt

[|x|+j−1]
,b∼{0,1,ε},M

[
M(xy1 · · · yj−1b) fails to output (1± δ)Qt,∗(xy1 · · · yj−1b)

]
< δ ≤ ε′

6k
.

37

Therefore, for every b ∈ {0, 1, ε},

Pr
xy1···yj−1∼Qt

[|x|+j−1]
,M

[
M(xy1 · · · yj−1b) fails to output (1± δ)Qt,∗(xy1 · · · yj−1b)

]
< 3δ ≤ ε′

2k
.

Recall that, as long as M succeeds in outputting (1± δ)Qt,∗(xy1 · · · yj′−1b) for each step j′ < j,
the distribution of xy1 · · · yj is ε′/2k-close to Qt

[i+j]. By the union bound, the probability that M

fails at some stage j ∈ [k] is bounded above by(
ε′

2k
+

ε′

2k

)
· 3k = 3ε′ =

ε

2
· 1

2α(|x|tε−1α)c
.

By Markov’s inequality,

Pr
x∼Qt

[|x|]

[
Pr
M

[M fails at some stage in executing UE(x)] ≤ ε/2
]
≥ 1− 1

2α(|x|tε−1α)c
.

For every choice of x that satisfies the event above, (i) if M does not fail, the total variation
distance between UE(x) and Nextk(Q

t, x) is at most ε/2, and (ii) the probability that M fails at
some stage is at most ε/2. Thus, we conclude that the total variation distance between UE(x) and
Nextk(Q

t, x) is at most ε/2 + ε/2 = ε for such x, i.e.,

Pr
x∼Qt

[|x|]

[
L1(UE(x),Nextk(Q

t, x)) ≤ ε
]
≥ 1− 1

2α(|x|tε−1α)c
.

Recall that Qt
[|x|] is the same distribution as the distribution of f〈|x|,t〉(Ut) in the proof of Theo-

rem 8.3. By selecting sufficiently large c and applying the same argument as Theorem 8.3, we have
that for every x with cdt(x) ≤ α,

L1(UE(x),Nextk(Q
t, x)) ≤ ε.

Thus, the remaining is the proof of Claim 8.4.

Proof of Claim 8.4. For each b ∈ {0, 1, ε}, let p∗b ∈ [0, 1] be p∗b = Qt,∗(xy1 · · · yj−1b). Recall that
pb ∈ [p∗b(1± δ)]. Therefore,

L1(Di,Next1(Qt, xy1 · · · yj−1)) ≤ 1

2

∑
b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣+
1

2

∣∣∣∣pε − p0 − p1

pε
− p∗ε − p∗0 − p∗1

p∗ε

∣∣∣∣
=

1

2

∑
b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣+
1

2

∣∣∣∣p∗0 + p∗1
p∗ε

− p0 + p1

pε

∣∣∣∣
≤

∑
b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣ .
For each b ∈ {0, 1}, if pb

pε
− p∗b

p∗ε
≥ 0, then∣∣∣∣pbpε − p∗b

p∗ε

∣∣∣∣ =
pb
pε
−
p∗b
p∗ε
≤

(1 + δ)p∗b
(1− δ)p∗ε

−
p∗b
p∗ε

=
p∗b
p∗ε
· 2δ

1− δ
;

38

otherwise, ∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣ =
p∗b
p∗ε
− pb
pε
≤
p∗b
p∗ε
−
p∗b(1− δ)
p∗ε(1 + δ)

=
p∗b
p∗ε
· 2δ

1 + δ
≤
p∗b
p∗ε
· 2δ

1− δ
.

In any case, ∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣ ≤ p∗b
p∗ε
· 2δ

1− δ
.

Therefore,

L1(Di,Next1(Qt, xy1 · · · yj−1)) ≤
∑

b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣
≤

∑
b∈{0,1}

p∗b
p∗ε
· 2δ

1− δ

=
2δ

1− δ
· p
∗
0 + p∗1
p∗ε

≤ 2δ

1− δ
≤ ε

2k2
,

where the last inequality is obtained by rearranging δ ≤ ε/(4k2 + ε).

9 Distributional Learning in Pessiland

In this section, we consider the online learning framework introduced in Section 3.3. Recall that, in
the framework, a learner first observes advice information xi ∈ {0, 1}∗ and then obtains yi ∈ {0, 1}∗
(we call yi the i-th label) at stage i ∈ N, where each data may be correlated with the previous
streams. The task of the learner at stage i is, for a given advice string xi, to predict the next
outcome yi.

We introduce several notions to discuss the learning framework above more formally. In Sec-
tion 9, we use a ∈ N ∪ {0} and b ∈ N to represent the size of each observation (xi, yi) as |xi| = a
and |yi| = b, and we use m ∈ N to represent the total number of stages. Our results hold in more
general cases where |xi| and |yi| vary, by the same proof.

For every offline stream x ∈ {0, 1}∗, a stream x1, y1, . . . , xm, ym of data for online learning is
determined as follows: for each i ∈ N,

xi = x[(a+b)(i−1)+1:(a+b)(i−1)+a] and yi = y[(a+b)(i−1)+a+1:(a+b)i].

Note that x = x1y1 ◦ · · · ◦xmym, and xi and yi can be empty when |x| < m(a+b). For each i ∈ [m],
we let x<i := x1y1 ◦ · · · ◦ xi−1yi−1 = x[(a+b)(i−1)]. Furthermore, for every distribution D on (offline)

binary strings, we let D<i represent a distribution of x<i for x ∼ D and let Di,x<i represent the
conditional distribution of the i-th advice string given x<i, i.e., Di,x<i ≡ Nexta(D, x<i).

39

When the offline string x is selected according to some distribution Dz indexed by z ∈ {0, 1}∗,
the conditional distribution of the i-th label given (x<i, xi) is Nextb(Dz, x<ixi). When Dz and x<i

are clear in context, we use the notation Labelz,x
i

i to refer to Nextb(Dz, x<ixi).
Recall that a cheating learner is a learner that can freely observe the labels in the future

through the additional oracle access to Labelz,x
i

i . The key insight for translating UE into learning

algorithms in the framework above is that we can replace the oracle access to Labelz,x
i

i with UE in
the average-case setting. This is stated as the following meta-theorem.

Theorem 9.1. Suppose that UE in Theorem 8.1 exists. Then, for every oracle machine (i.e., a
cheating learner) L?

cheat of polynomial-time computable query complexity q(·), there exist a ran-
domized algorithm L and a polynomial m0 satisfying the following: for every tD(|z|)-time sam-
plable family D = {Dz}z∈{0,1}∗, where each Dz is over binary strings, every a ∈ N ∪ {0}, every
s, b, t, δ−1, λ−1, α ∈ N with t ≥ max{d(D), tD(s)}, every z ∈ {0, 1}s with cdt(z) ≤ α, every auxiliary
input w ∈ {0, 1}∗, and every m ≥ m0(d(D), s, q(w), δ−1, λ−1),

Pr
i,x<i,xi

[
L1

(
L(x<i, xi, w; 1〈s,b,t,2

α,δ−1,λ−1〉), L
Labelz,x

i

i
cheat (w)

)
≤ λ

]
≥ 1− δ,

where i ∼ [m], x<i ∼ D<iz , and xi ∼ Di,x
<i

z .
Furthermore, m0(d(D), s, q, δ−1, λ−1) = O((d(D) + s) · q · δ−1λ−2), and L halts in polynomial

time in the input length and the running time of Lcheat.

The proof of Theorem 9.1 is presented in Section 9.1. Theorem 9.1 is sufficient for simulating
any polynomial-time cheating learners with polynomial-time overhead. We present distributional
learning and learning ACDs (i.e., Theorem 2.1) in Section 9.2. In addition, we present applications
to two natural learning tasks (i) finding top-k most possible labels and (ii) estimating likelihood of
given labels in Section 9.3 and 9.4, respectively.

9.1 Time-Bounded Universal Inductive Inference

First, we show the following key lemma, which is an extension of Lemma 3.2.

Lemma 9.2. For every distribution D over binary strings such that D has a tD-time sampler
described by d bits, and for every a ∈ N ∪ {0}, every t, q, b,m ∈ N with t ≥ τdom(d, tD), and every
q-query (possibility not efficiently computable) randomized oracle machine I,

E
i∼[m],x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]
≤ q · O(d)

m
,

where the hidden constant in O(d) depends on only the universal Turing machine.

Proof. Fix a ∈ N ∪ {0} and b,m, q ∈ N arbitrarily. For each x ∈ supp(D), we use the notations
x1, y1, . . . , xm, ym and x<i as defined at the beginning of Section 9. In addition, we introduce
random variables X1

D, Y
1
D, . . . , X

m
D , Y

m
D and X1

Qt , Y
1

Qt , . . . , X
m
Qt , Y

m
Qt as follows: for each i ∈ [m],

Xi
D := D[(a+b)(i−1)+1:(a+b)(i−1)+a]

Y i
D := D[(a+b)(i−1)+a+1:(a+b)i]

Xi
Qt := Qt

[(a+b)(i−1)+1:(a+b)(i−1)+a]

Y i
Qt := Qt

[(a+b)(i−1)+a+1:(a+b)i].

40

In words, Xi
D and Y i

D (resp. Xi
Qt and Y i

Qt) represent the i-th advice string and the i-th label drawn

from D (resp. Qt), respectively. Note that

D[(a+b)m] = X1
D ◦ Y 1

D ◦ · · · ◦Xm
D ◦ Y m

D

Qt
[(a+b)m] = X1

Qt ◦ Y
1

Qt ◦ · · · ◦X
m
Qt ◦ Y

m
Qt .

For every q-query randomized oracle machine I and every distribution O, the distribution of
IO is considered as I(a1, . . . , aq) for a1, . . . , aq ∼ O, where we regard I as a randomized function.
Thus, for any distributions O and O′ with KL(O||O′) <∞, we have

KL(IO||IO′) ≤ KL(I(O1, . . . ,Oq)||I(O′1, . . . ,O′q)) ≤ KL(O1, . . . ,Oq||O′1, . . . ,O′q) = q ·KL(O||O′),

where each Oi (resp. O′i) is an independent random variable drawn from O (resp. O′), and the
second inequality follows from Fact 6.4.

If t ≥ τdom(d, tD), then Qt(x) ≥ D(x)/2O(d) for every x ∈ {0, 1}∗ by Lemma 6.9; thus, for every
x ∈ {0, 1}∗, KL(Nextb(D, x)||Nextb(Qt, x)) <∞.

Therefore, for each i ∈ [m],

E
x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]

= q · E
x<i∼D<i,xi∼Di,x<i

[
KL
(
Nextb(D, x<ixi)||Nextb(Qt, x<ixi)

)]
= q ·KL

((
Y i
D|X1

D, Y
1
D, . . . , Y

i−1
D , Xi

D

)∣∣∣∣∣∣(Y i
Qt |X

1
Qt , Y

1
Qt , . . . , Y

i−1
Qt , X

i
Qt

))
. (7)

Thus, we obtain that for every t ≥ τdom(d, tD),

E
i∼[m],x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]

=
1

m

m∑
i=1

E
x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]

=
q

m

m∑
i=1

KL
((
Y i
D|X1

D, Y
1
D, . . . , Y

i−1
D , Xi

D

)∣∣∣∣∣∣(Y i
Qt |X

1
Qt , Y

1
Qt , . . . , Y

i−1
Qt , X

i
Qt

))
=

q

m

(
KL
(
X1
D, Y

1
D, . . . , X

m
D , Y

m
D

∣∣∣∣∣∣X1
Qt , Y

1
Qt , . . . , X

m
Qt , Y

m
Qt

)
−

m∑
i=1

KL
((
Xi
D|X1

D, Y
1
D, . . . , X

i−1
D , Y i−1

D

)∣∣∣∣∣∣(Xi
Qt |X

1
Qt , Y

1
Qt , . . . , X

i−1
Qt , Y

i−1
Qt

)))
≤ q

m
·KL

(
X1
D, Y

1
D, . . . , X

m
D , Y

m
D

∣∣∣∣∣∣X1
Qt , Y

1
Qt , . . . , X

m
Qt , Y

m
Qt

)
≤ q

m
·KL

(
D||Qt

)
≤ q

m
·O(d),

where the second equality follows from Eq. (7), the third equality follows from the chain rule
for the KL divergence (Lemma 6.3), the first inequality follows from the non-negativity of the
KL divergence, the second inequality follows from Fact 6.4, and the last inequality follows from
t ≥ τdom(d, tD), Lemma 6.9, and Proposition 6.10.

41

Theorem 9.1 follows from Theorem 8.1 and Lemma 9.2.

Proof of Theorem 9.1. Let UE be the universal extrapolation algorithm in Theorem 8.1. Let τ and
τ ′ be the polynomials in lemma 6.15. Let L?

cheat be an arbitrary oracle machine (a cheating learner)
of polynomial-time computable query complexity q := q(w). Let D = {Dz}z∈{0,1}∗ be a tD(|z|)-time
samplable distribution family.

We construct the learner L that executes Lcheat, where the query access is simulated by UE.
The formal construction is as follows: On input x<i, xi, w, 1〈s,b,t,1

α,δ−1,λ−1〉, the learner L executes

the cheating learner L?
cheat(w), where L answers each query access to Labelz,x

i

i by

ans← UE(x<ixi; 1〈b,t
′,λ′−1,1α

′ 〉)

for t′ = max{τ(τ ′(t, t)), τ1(t, s, t)}, λ′ = λ/(2q(w)), and α′ = α + log 2δ−1 + 2 log t′ where L′ uses
fresh randomness to execute UE for each access, and τ1 is a sufficiently large polynomial specified
later. It is easy to verify that L halts in polynomial time in the input length and the running time
of Lcheat(w). Below, we show the correctness of L. For readability, we omit parameters for L and
UE.

By Lemma 9.2, there exists a polynomial τ1 such that for every a ∈ N∪{0}, every s, t,m, b ∈ N,
every z ∈ {0, 1}s with t ≥ τ1(d(D), s, tD(s)), and every w ∈ {0, 1}∗,

E
i∼[m],x<i∼D<iz ,xi∼Di,x

<i
z

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w))

]
≤ q · c′(s+ d(D))

m

for some universal constant c′ > 0.
Let m0 := q·4c′(s+d(D))

λ2δ
= O(q·(s+d(D))

λ2δ
). Then, for every m ≥ m0, z ∈ {0, 1}s, and w ∈ {0, 1}∗,

we have

E
i,x<i,xi

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w))

]
≤ q · c′(s+ d(D))

m
≤ λ2δ

4
.

By the non-negativity of KL divergence and Markov’s inequality,

Pr
i,x<i,xi

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w)) >

λ2

2

]
<
δ

2
.

By Pinsker’s inequality (Fact 6.1),

Pr
i,x<i,xi

[
L1(L

Labelz,x
i

i
cheat (w), L

Nextb(Q
t,x<ixi)

cheat (w)) ≤ λ

2

]
≥ Pr

i,x<i,xi

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w)) ≤ λ2

2

]
≥ 1− δ

2
. (8)

We remark that the above holds for any a ∈ N ∪ {0}, any s, b, t,m, δ−1, λ−1 ∈ N, any z ∈ {0, 1}s,
and any w ∈ {0, 1}∗ satisfying t ≥ τ1(d(D), s, tD(s)) and m ≥ m0.

For all a ∈ N ∪ {0}, s,m, t, b, δ−1, λ−1, α ∈ N, i ∈ [m], and z, w ∈ {0, 1}∗ with m ≥ m0,
cdt(z) ≤ α, and t ≥ max{d(D), tD(s)}, we have τ ′(t, t) ≥ τ ′(d(D), tD(s)). By Lemma 6.15,

Pr
x<i∼D<iz ,xi∼Di,x

<i
z

[cdτ(τ ′(t,t))(x<ixi) ≤ cdτ
′(t,t)(z) + log 2δ−1 + 2 log τ ′(t, t)] ≥ 1− δ

2
.

42

In this case, by the choices of t′ and α′,

cdt
′
(x<ixi) ≤ cdτ(τ ′(t,t))(x<ixi)

≤ cdτ
′(t,t)(z) + log 2δ−1 + 2 log τ ′(t, t)

≤ cdt(z) + log 2δ−1 + 2 log t′

≤ α+ log 2δ−1 + 2 log t′ = α′.

Therefore, by Theorem 8.1,

Pr
x<i∼D<iz ,xi∼Di,x

<i
z

[
L1
(
UE(x<ixi; 1〈b,t

′,λ′−1,1α
′ 〉),Nextb(Q

t′ , x<ixi)
)
≤ λ

2q

]
≥ 1− δ

2
. (9)

Recall that (i) L simulates the oracle access by UE(x<ixi), and (ii) Lcheat accesses the oracle at
most q times. Thus, for every i, x<i, xi satisfying the event in Eq. (9) ,

L1(L(x<i, xi, w), L
Nextb(Q

t′ ,x<ixi)
cheat (w)) = L1(L

UE(x<ixi)
cheat (w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)) ≤ q · λ
2q

=
λ

2
.

Because t′ ≥ τ1(t, s, t) ≥ τ1(d(D), s, tD(s)), by Eq. (8) and Eq. (9) and the union bound,

L1(L
Labelz,x

i

i
cheat (w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)) ≤ λ

2

and

L1(L(x<i, xi, w), L
Nextb(Q

t′ ,x<ixi)
cheat (w)) ≤ λ

2

hold with probability at least 1 − δ over the choice of i ∼ [m], x<i ∼ D<iz and xi ∼ Di,x
<i

z . In this
case, we have

L1

(
L(x<i, xi, w), L

Labelz,x
i

i
cheat (w)

)
≤ L1

(
L(x<i, xi, w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)

)
+ L1

(
L
Nextb(Q

t′ ,x<ixi)
cheat (w), L

Labelz,x
i

i
cheat (w)

)
≤ λ

2
+
λ

2
= λ.

Thus, we conclude that

Pr
i,x<i,xi

[
L1

(
L(x<i, xi, w), L

Labelz,x
i

i
cheat (w)

)
≤ λ

]
≥ 1− δ.

9.2 Universal Distributional Learning and Universal Learning ACDs

In this section, we consider the problems of learning unknown distributions from samples, which
was first studied by Kearns, Mansour, Ron, Rubinfeld, Schapire, and Sellie [KMRRSS94] (see
also [Xia10]).

43

9.2.1 Definitions of Learning Models

First, we formally introduce the learning models, i.e., distributional learning and learning ACDs,
where the latter was introduced by Naor and Rothblum [NR06].

Distributional Learning. We define a sampler of sample size n as a multi-output algorithm
that is given a random seed as input and outputs an n-bit string. For convenience, we identify a
sampler S : {0, 1}` → {0, 1}n with a distribution of S(r) for r ∼ {0, 1}`. For each sampler S, we
define an example oracle EXS as the oracle that returns x ∼ S for each access. For simplicity, we
define the time complexity of sampler as a function in the sample size n instead of the seed length
`. For any t, s ∈ N, we say that a sampler S of sample size n is t/s-time computable if there exists
a program ΠS ∈ {0, 1}≤s such that U t(ΠS , r) = S(r[`]) for each seed r ∼ {0, 1}t. We also define

the t′-time-bounded computational depth of a t/s-time computable sampler S as minΠS cdt
′
(ΠS),

where the minimum is taken over programs ΠS ∈ {0, 1}≤s satisfying U t(ΠS , r) = S(r[`]) for each
seed r ∼ {0, 1}t (such ΠS exists since S is t/s-time computable).

A distributional learner for t/s-time samplable distributions is given oracle access to EXS for
an unknown t/s-time computable sampler S and attempts to construct a sampler that statistically
simulates S.

Definition 9.3 (Distributional learning). Let S be a class of samplers. We say that S is distribu-
tionally learnable in polynomial time if there exists a polynomial-time randomized oracle machine
(i.e., learner) L such that for every sufficiently large n ∈ N, every ε−1, δ−1 ∈ N and every sampler
Sn ∈ S of sample size n, the algorithm L satisfies

Pr
EXSn ,L

[
LEXSn (1n, 1ε

−1
, 1δ
−1

) outputs a circuit h s.t. L1(Sn, h(r)) ≤ ε
]
≥ 1− δ,

where r represents a uniformly random seed for h. We also define the sample complexity m(n, ε, δ)
as the upper bound of the number of oracle accesses L(1n, 1ε

−1
, 1δ
−1

) requires.

Note that the learner L does not know the target sampler Sn, except for the prior knowledge
of the class S (i.e., modeling of environment).

We also consider the average-case variant of distributional learning. We define a distribution on
samplers as a family G = {Gn}n∈N of distributions, where each Gn is a distribution on descriptions
of samplers of sample size n. For every distribution G on t(n)/s(n)-time computable samplers and
every n ∈ N, we use the notation Gn to refer to the n-th distribution in G, i.e., the distribution on
(at most s(n)-bit) descriptions of a t(n)/s(n)-time sampler of sample size n.

Definition 9.4 (Distributional learning on average). Let C be a class of distributions on the class
S of samplers. We say that S is distributionally learnable in polynomial time on average under C
if there exists a polynomial-time randomized oracle machine (i.e., learner) L such that for every
distribution G ∈ C (note that G is a distribution on samplers), every sufficiently large n ∈ N, and
every ε−1, δ−1 ∈ N, the algorithm L satisfies

Pr
Sn∼Gn,EXSn ,L

[
LEXSn (1n, 1ε

−1
, 1δ
−1

) outputs a circuit h s.t. L1(Sn, h(r)) ≤ ε
]
≥ 1− δ,

where r represents a uniformly random seed for h. We also define the sample complexity m(n, ε, δ)
as the upper bound of the number of oracle accesses L(1n, 1ε

−1
, 1δ
−1

) requires.

44

Note that the learner L knows neither the target sampler Sn nor the underlying distribution G.
Learning Adaptively Changing Distributions. Next, we introduce learning ACDs first

studied in [NR06].
An ACD (adaptively changing distribution) is a randomized Turing machine D satisfying the

following syntax: For every sample size n ∈ N,

1. D takes two inputs 1n and σ ∈ {0, 1}∗, where σ is called an internal state and initialized
by some initial state s0 ∈ {0, 1}∗. (In the original definition in [NR06], s0 is also selected
according to a samplable distribution. In this section, we apply a more general definition.)

2. For any σ ∈ {0, 1}∗, the algorithm D(1n, σ) randomly generates a sample x ∈ {0, 1}∗ and a
next state s′ ∈ {0, 1}∗ (x and s′ can be correlated).

Then, any ACD D determines an example oracle EXn,s0,D for each sample size n ∈ N and each
initial state s0, as follows:

1. EXn,s0,D has a hidden internal state σ, which is initialized by s0.

2. For each query access (without input), EXn,s0,D generates (x, s′)← A(1n, σ) and returns x as
a sample. Then, EXn,s0,D updates the internal state σ as σ := s′.

For any functions s(n) and t(n), we say that an ACD D is t(n)-time samplable and has an
s(n)-bit initial state if for every n ∈ N and every initial state σ0 ∈ {0, 1}≤s(n), for every possible
state σ in the execution with initial state σ0, D(1n, σ) halts in t(n) time (i.e., σ ∈ {0, 1}≤t(n)).

In learning ACD D, a learner has query access to EXn,s0,D for a given parameter 1n, where s0

is a hidden initial state. The goal of the learner is to select some stage i ∈ N and, after observing
the first i samples x1, . . . , xi from EXn,s0,D, to statistically simulate the conditional distribution of
the next sample xi+1 given the initial state s0 and x1, . . . , xi. For convenience, we use the notation
Ds0
i (x1, . . . , xi) to refer to the conditional distribution that the learner attempts to simulate at

stage i.

Definition 9.5 (Learning ACDs). Let s(n) and t(n) be polynomials. Let S = {Sn}n∈N, where
Sn ⊆ {0, 1}≤s(n), be a subset of initial states. We say that t(n)-time samplable ACDs of s(n)-
bit initial state in S are learnable in polynomial time if there exists a randomized polynomial-
time algorithm L such that for every t(n)-time samplable ACD D of s(n)-bit initial state, every
sufficiently large n ∈ N, every ε−1, δ−1 ∈ N, and every s0 ∈ Sn, the algorithm L satisfies the
following with probability at least 1 − δ over the choice of samples from EXn,s0,D and randomness
for L:

1. LEXn,s0,D(1n, 1ε
−1
, 1δ
−1

) obtains samples x1, x2, . . . , from EXn,s0,D.

2. After obtaining i samples x1, . . . , xi (where i is selected by L), LEXn,s0,D(1n, 1ε
−1
, 1δ
−1

) outputs
some circuit h as a hypothesis without additional access to EXn,s0,D.

3. The hypothesis h satisfies L1(D
s0
i (x1, . . . , xi), h(r)) ≤ ε, where r represents a uniformly ran-

dom seed for h.

We define the sample complexity m(n, ε, δ) as the upper bound of the number of oracle accesses by
L(1n, 1ε

−1
, 1δ
−1

).

45

Particularly we focus on the case in which the time-bound computational depth of the initial
state is bounded.

Naor and Rothblum [NR06] considered the average-case setting where the initial state is drawn
some efficiently computable randomized machine G and a learner knows (G,D). In this work, we
also extend their result to the more general case in which a learner does not know (G,D). When
(G,D) is known, then the task of learning ACDs can be regarded as learning the initial state s0.
However, when (G,D) is unknown, the task appears to be far more complex. In particular, even if
the learner knows the initial state s0, this does not mean that the learner can immediately simulate
Ds0
i (x1, . . . , xi).

Definition 9.6 (Universal average-case learning ACDs). Let s(n), t(n) and t′(n) be polynomials.
We say that t(n)-time samplable ACDs of s(n)-bit initial state are learnable in polynomial time
on average under t′(n)-time samplable distributions if there exists a randomized polynomial-time
algorithm L such that for every t′(n)-time samplable distribution G over {0, 1}≤s(n) and every
t(n)-time samplable ACD D of s(n)-bit initial state, every sufficiently large n ∈ N, and every
ε−1, δ−1 ∈ N, the algorithm L satisfies the following with probability at least 1 − δ over the choice
of s0 ∼ Gn, samples from EXn,s0,D, and randomness for L:

1. LEXn,s0,D(1n, 1ε
−1
, 1δ
−1

) obtains samples x1, x2, . . . , from EXn,s0,D.

2. After obtaining i samples x1, . . . , xi (where i is selected by L), LEXn,s0,D(1n, 1ε
−1
, 1δ
−1

) outputs
some circuit h as a hypothesis without additional access to EXn,s0,D.

3. The hypothesis h satisfies L1(D
s0
i (x1, . . . , xi), h(r)) ≤ ε, where r represents a uniformly ran-

dom seed for h.

We define the sample complexity m(n, ε, δ) as the upper bound of the number of oracle accesses by
L(1n, 1ε

−1
, 1δ
−1

).

Note that average-case distributional learning in Definition 9.4 is a special case of universal
average-case learning ACDs in Definition 9.6, where an initial state s0 is a target sampler, a
generator G of ACD is a sampling algorithm for selecting the target sampler, and a sampling
algorithm D of the ACD does not change the internal state (i.e., always outputs σ = s0 for a given
current state σ = s0).

9.2.2 Main Result

Now, we show the following learnability result as an application of Theorem 9.1. Note that Item 2
and Item 3 of Theorem 2.4 correspond to Item 5 and Item 3, respectively.

Theorem 9.7. The following are equivalent:

1. There is no infinitely-often one-way function.

2. (Learning computationally shallow distributions) For all polynomials s(n), t(n), t′(n) and all
α(n) = O(log n), t(n)/s(n)-time samplable distributions (i.e., t(n)/s(n)-time computable
samplers) of t′(n)-time-bounded computational depth α(n) are distributionally learnable in
polynomial time with sample complexity O((s(n) + n) · ε−2δ−1).

46

3. (Universal Average-Case Distributional Learning) For all polynomials s(n), t(n), and t′(n),
t(n)/s(n)-time samplable distributions are distributionally learnable in polynomial time on
average under (unknown) t′(n)-time samplable distributions with sample complexity O((s(n)+
n) · ε−2δ−1).

4. (Learning ACDs of computationally shallow initial states) For all polynomials s(n), t(n), t′(n)
and all α(n) = O(log n), there exists a polynomial-time randomized algorithm such that t(n)-
time samplable ACDs of s(n)-bit initial state whose t′(n)-time-bounded computational depth is
at most α(n) are learnable in polynomial time with sample complexity O((s(n) +n) · ε−2δ−1).

5. (Universal Learning ACDs) For all polynomials s(n), t(n), t′(n), t(n)-time samplable ACDs of
s(n)-bit initial state are learnable in polynomial time on average under t′(n)-time samplable
distributions with sample complexity O((s(n) + n) · ε−2δ−1).

6. There exists a polynomial-time randomized algorithm L that takes input (1n, 1ε
−1
, 1δ
−1

) and
additional meta-parameters 1〈s,t,t

′,2α〉 such that for all functions s(n), t(n), t′(n) and α(n), the

algorithm L(1n, 1ε
−1
, 1δ
−1

; 1〈s(n),t(n),t′(n),2α(n)〉) learns every t(n)-time samplable ACD of s(n)-
bit initial state whose t′(n)-time-bounded computational depth is at most d(n) with sample
complexity O((s(n) + n) · ε−2δ−1)

We remark that the implication (item 1⇒ item 5) strengthens the main result of [NR06] in the
sense that our learner works for unknown distributions. In addition, the dependence of parameters
ε−2δ−1 in sample complexity is improved from ε−4δ−2 in [NR06].

When the learner additionally obtains the upper bound d on the description length of the ACD
(and the underlying distribution of initial states in item 5), the query complexity O((s(n) + n) ·
ε−2δ−1) can be improved to O((s(n) + d) · ε−2δ−1). We will elaborate on this point after proving
Theorem 9.7.

Proof of Theorem 9.7. The main part of the proof is to prove (item 1 ⇒ item 6). First, we prove
other implications.

(item 6 ⇒ item 2) and (item 6 ⇒ item 4) are trivial by the statements. (item 6 ⇒ item 3) and
(item 6 ⇒ item 5) also follow from Lemma 6.14 and a basic probabilistic argument based on the
union bound.

(item 2 ⇒ item 1) follows from the observation in [KMRRSS94, Theorem 17]. An efficient
distributional learner can distinguish any infinitely-often pseudorandom function f = {fn : {0, 1}s×
{0, 1}n → {0, 1}n} from a truly random function φn by distributionally learning the distribution of
x◦fn(r, x) for x ∼ {0, 1}n, because the distribution of x◦φn(x) cannot be statistically approximated
by polynomial-size circuits with high probability. This matches our average-case framework, as the
secret seed r for f is selected uniformly at random. We can also prove (item 3 ⇒ item 1), (item 4
⇒ item 1), and (item 5⇒ item 1) base on the same proof because the time-bounded computational
depth of the random seed r is logarithmically small with high probability.

Now, we derive (item 1⇒ item 6) from Theorems 8.1 and 9.1. By the non-existence of infinitely-
often one-way functions and Theorem 8.1, there exists the universal extrapolation algorithm UE.
Therefore, we can apply Theorem 9.1.

We consider the trivial 1-query cheating learner L?
cheat that directly outputs a sample x obtained

from the oracle. We apply Theorem 9.1 for L?
cheat and obtain a learner L′ that simulates L?

cheat as
in Theorem 9.1. Note that L′ halts in polynomial time in the length of its input.

47

We construct the learner L that is taken meta-parameters 1〈s(n),t(n),t′(n),2α(n)〉 and learns t(n)-
time samplable ACDs of s(n)-bit initial state s0 with cdt

′(n) ≤ α(n) as follows: On input 1n, 1ε
−1

and 1δ
−1

, the learner L selects i ∼ [m0], where m0 := m0(n, s(n), 1, ε−1, δ−1) = O((s(n) + n)δε−2)
represents the sample complexity as in Theorem 9.1. Then, L obtains i samples x1, . . . , xi from the
example oracle EXn,s0,D and outputs a hypothesis h that takes a random seed r for executing L′ as
input and outputs

L′(x1 ◦ · · · ◦ xi, ε, ε; 1〈s(n),n,τ,2α(n),δ−1,ε−1〉; r),

where τ = O(m0t(n) + n + t′(n)) is specified later. It is easy to verify that L halts in polynomial
time in n, ε−1, δ−1, s(n), t(n), t′(n) and 2α(n), and the query complexity is m0 = O((s(n) +n)ε−2δ).

We verify that L learns all t(n)-time samplable ACDs D of s(n)-bit initial state s0 with
cdt
′(n) ≤ α(n). The ACD D determines a distribution family D = {Ds0}s0∈{0,1}≤s(n) , where Ds0

is a distribution of an infinitely long string x1x2x3 · · · , where each xi is the i-th sample gener-
ated by D(1n, -) with initial state s0. Then, for every n, ε−1, δ−1 ∈ N and every initial state
s0 ∈ {0, 1}≤s, the m0n-bit prefix of Ds0 is samplable in τ ′ = O(m0 · t(n)) time. By taking
τ = max{τ ′, n, t′(n)} = O(m0t(n) + n + t′(n)), we also have τ ≥ d(D) for any sufficiently large
n ≥ d(D). By Theorem 9.1, for every sufficiently large n ∈ N with n ≥ d(D), every ε−1, δ−1 and
every z ∈ {0, 1}≤s(n) with (cdτ (z) ≤)cdt

′
(z) ≤ α(n) (note that we select a = 0 and b = n),

Pr
L,x1,...,xi

[
L1(h(r), Ds0

i (x1, . . . , xi)) ≤ ε
]

= Pr
i,x1,...,xi

[
L1(L

′(x1 ◦ · · · ◦ xi, ε, ε; 1〈s(n),n,τ,2α(n),δ−1,ε−1〉), Labels0,εi) ≤ ε
]
≥ 1− δ,

where i ∼ [m0], and x1, . . . , xi are samples generated by D(1n, -) with initial state s0. Therefore,
L′ satisfies the requirements in Definition 9.6.

As mentioned before the proof, when the learner additionally obtains the upper bound d on the
description length of the ACD and the underlying distribution of initial states (if any), the query
complexity O((s(n) + n) · ε−2δ−1) can be improved to O((s(n) + d) · ε−2δ−1). This follows from
observations below on the proofs of Theorems 8.1, 9.1 and 9.7:

In the proof of Theorem 8.1, we can use the time-bounded universal distribution given secu-
rity parameter as an advice string for the universal Turing machine instead of the time-bounded
universal distribution. It yields the universal extrapolation algorithm under the situation where
the security parameter is given as a conditional string. The proof of Theorem 9.1 holds even for
such a conditional case in which an advise string is given to the universal Turing machine. In the
proof of Theorem 9.7, we can apply this version of universal extrapolation given a security param-
eter (which corresponds to 1n in learning ACDs), and it yields the improved sample complexity
O((s(n) + d) · ε−2δ−1) because the whole sampling process (i.e., D in the proof of Theorem 9.7 and
the sampler for the initial state) is described by O(d) bits when 1n is given.

9.2.3 Necessity of OWF for Nontrivial Bloom Filters with Hidden Codes

We state the necessity of one-way functions for constructing a nontrivial Bloom filter in environ-
ments where the source code of the Bloom filter is hidden from the efficient adversaries. The result

48

follows from the work by Naor and Yogev [NY19], who first studied Bloom filters in adversarial en-
vironments. The only difference is to apply Theorem 9.7 for unknown ACDs instead of average-case
learners for known ACDs [NR06].

Only in this subsection, we employ the standard sufficiently large security for one-way functions,
and the corresponding learnability result (Theorem 9.7 Item 3) holds for infinitely many n and for
an accuracy parameter ε = 1/p(n) and a confidence parameter δ = 1/q(n), where p, q is arbitrary
large polynomials fixed beforehand (see Section 6.1).

First, we introduce Bloom filters in adversarial environments, introduced in [NY19].

Definition 9.8 (Bloom filter with an unsteady representation). Let U = {0, 1}u be a universe.
For n ∈ N and ε ∈ [0, 1], an (n, ε)-Bloom filter of m-bit memory with an unsteady representation
is a pair of randomized polynomial-time algorithms B = (B1, B2) satisfying the following syntax:
B1 is given a set S ⊆ U of size n and outputs a representation of a (filtering) rule M0 ∈ {0, 1}m,
and B2 is given a rule Mi and query x and then outputs a new representation of a rule Mi+1 and
a response y ∈ {0, 1} (reject/accept) to the query x. Here, B determines an interface BF(·) as
follows: BF(·) has an internal memory M , which is initialized with M0. On input x, BF(·) acts as
follows:

The interface BF(x):

1. (M ′, y)← B2(M,x).

2. Update the internal memory as M := M ′.

3. Output y.

We also use the notation BF(·;x1, . . . , xt) to refer to the interface BF(x) after performing the queries
x1, . . . , xt; i.e.,

BF(x;x1, . . . , xt):

1. For each i = 1 to t, execute BF(xi).

2. Output BF(x).

Then, B satisfies the following completeness and soundness for any given set S:

1. Completeness: For any x ∈ S, any t ∈ N, and any sequence of queries x1, . . . , xt, we have
PrB[BF(x;x1, . . . , xt) = 1] = 1.

2. Soundness: For any x /∈ S, any t ∈ N, and any sequence of queries x1, . . . , xt, we have
PrB[BF(x;x1, . . . , xt) = 1] ≤ ε.

An instance x /∈ S that makes BF output 1 is called a false positive. Note that false positives can
change according to past queries.

When the amount m the memory is larger than O(nu), then (n, 0)-Bloom filter is trivially
achievable by storing the whole set S. Thus, we focus on the case in which m is not large enough to
store the whole set S. Particularly when u is enough large so that u ≥ 2 log n+ log ε−1, it is known
that the parameters n,m and ε must satisfy ε ≥ 2−m/n, and this is tight [CFGMW78]. Therefore,
ε0 := 2−m/n is called minimum error in [NY19].

49

The term unsteady representation is based on the property that Bloom filter in the definition
above can change its filtering rule adaptively during the execution. For example, in the case of
filtering out spam mails, we can think the filtering rules as a representation of a white list, where the
soundness requires that the probability that some spam mail x is accepted and passes the filtering
soft is at most ε. The unsteadiness enables to update the filtering rule adaptively according the
received emails.

An adversary for a Bloom filter attempts to find a false positive during the interaction with a
Bloom filter. The security of Bloom filters in such an adversarial environment is formally defined
by the security game as follows.

Definition 9.9 (Adversarial resiliency). Let B = (B1, B2) be an (n, ε)-Bloom filter. For q ∈ N, we
say that B is q-adversarial resilient if for every randomized polynomial-time adversary A = (A1, A2)
and for all large enough security parameter λ ∈ N, it holds that

Pr
A,B

[ChallengeA,q(λ) = 1] ≤ ε,

where ChallengeA,q(λ) is the outcome of the following process:

ChallengeA,q(λ):

1. S ← A1(1λ, 1〈n,u〉), and if |S| > n, output 0.

2. M0 ← B1(S, 1λ, 1〈n,u〉) and initialize BF with M0.

3. x∗ ← ABF
2 (1λ, 1〈n,u〉) where A2 performs at most q adaptive queries x1, . . . , xq.

4. If x∗ /∈ S ∪ {x1, . . . , xq} and BF(x∗) = 1, then output 1 (i.e., success in finding a false
positive); otherwise, output 0.

We say that an adversary A breaks the security of B with q queries if A satisfies the condition
above.

Note that A2 does not take S as input, which enhances the necessity result of one-way functions
than the case in which A2 takes S.

When the amount m of the memory is sufficiently large so that negligible ε can be accomplished,
any polynomial-time adversary has only negligible chance in finding any false positive, and con-
structing adversarial resilient Bloom filters is trivial. Therefore, we focus our attention on the case
of non-negligible minimum error, as in [NY19].

Definition 9.10. We say that m := m(n) is nontrivial memory complexity if ε0 = 2−m(n)/n ≥
1/poly(n); equivalently, m = O(n log n).

Naor and Yogev [NY19] proved the following theorem that shows the necessity of one-way
functions for non-trivial Bloom filters.

Theorem 9.11 ([NY19]). Let ε ∈ (0, 1), m := m(n) be a nontrivial memory complexity function,
and U = {0, 1}u be an universe for u := u(n) = ω(logmε30). If there exists no one-way function,
then for any large enough n ∈ N, there exists a constant C such that every (n, ε)-Bloom filter of
m-bit memory is not q-resilient for any q = Cmε30.

50

The theorem above shows that for each (n, ε)-Bloom filter B, there exists an adversary AB that
wins the security game for q = O(mε30). By observing the proof in [NR06; NY19], the adversary
AB heavily relies on B; so it remained the possibility that we can construct a Bloom filter in their
setting without one-way function by hiding B from adversaries. As a corollary to Theorem 9.7,
we exclude this possibility by generalizing the adversary to the universal one that works for every
(n, ε)-Bloom filter B that has small computational depth.

Corollary 9.12. Let ε ∈ (0, 1), m := m(n) be a nontrivial memory complexity function, and
U = {0, 1}u be an universe for u := u(n) = ω(logmε30). Let τ(n, λ) be an arbitrary polynomial.
If there exists no one-way function, then there exists a polynomial-time adversary A such that for
every t, d, α ∈ N and for every large enough n ∈ N, the adversary A(; 1〈d,t,2

α〉) breaks all τ(n, λ)-time
computable (n, ε)-Bloom filter B of m-bit memory, description size at most d, and t-time-bounded
computational depth at most α with q = O((m+ d)ε30) queries, where λ is a security parameter.

The informal statement of Corollary 2.2 follows from the fact that any source code B generated
in time t only has t′-time-bounded computational depth at most log t+O(1) for t′ = poly(t) based
on Theorem 6.13.

Proof sketch. The proof follows [NY19]; so here we briefly review their proof and highlight how the
universality of learning ACDs are inherited in the security game for breaking the security of Bloom
filters.

First, we describe the adversary A = (A1, A2) for a Bloom filter B = (B1, B2). At the initial
step A1 selects a uniformly random subset S of size n ∈ N. Then we consider the following learning
ACD problem:

1. B1(S, 1λ, 1〈n,u〉) outputs an initial filtering rule M0, and then we regard M0 as the initial state
in learning ACDs.

2. A2 executes a learner L for ACDs with an accuracy parameter ε = Θ(ε0) and a sufficiently
small constant confidence parameter δ, where we regard the outcome of k = Θ(ε−1

0) consecu-
tive transactions (x1, . . . , xk, b1, . . . , b

k), where xi ∼ {0, 1}u and bi ← BF(xi;x1, . . . , xi−1) for
each i, as one sample for each step.

3. If L halts and outputs a hypothesis h at some step, then A2 selects x1, . . . , xk ∼ {0, 1}u and
executes h repeatedly ` = Θ(ε−1

0) times to obtain samples b1,1, . . . , bk,1, . . . , b1,`, . . . , bk,` ∈
{0, 1} under the condition that the first half sample of h is x1, . . . , xk.15

4. If there exists i ∈ [k] such that bi,j = 1 for all j ∈ [`], then A2 queries x1, . . . , xi−1 to BF in
this order, and outputs x∗ := xi as a false positive.

As a crucial lemma, Naor and Yogev [NY19] showed that the outcome x∗ of the above adversary
A satisfies BF(x∗) = 1. When the size of universe is large enough than the query complexity of L
and log n, this must not be queried previously and not be in S with high probability; thus, x∗ is a
false positive with high probability.

Now, we use the universal learner for ACDs with sample complexity O((d+ s)ε2δ−1) = O((d+
s)ε20) as L above. Note that if the description of a Bloom filter has t-time-bounded computational

15Technically, we usually need distributional inverting for conditional sampling from the hypothesis h [cf. Xia10],
and this point seems not to be discussed explicitly in [NY19]. In our case, we can obtain the hypothesis that
statistically simulates the conditional distribution under the conditional string directly from Theorem 9.1.

51

depth at most α, then with probability 1 − δ′ (where δ′ > 0 is an arbitrarily small constant)
over the choice of S, an initial filtering rule M0 has t′-time-bounded computational depth at most
α + log t′ + O(1) for t′ = poly(τ(n, λ)) by Lemma 6.15 (where the constant term only depends on
the universal Turing machine). Therefore, A above works for such a Bloom filter with infinitely
many λ for every sufficiently large n ∈ N. For each sample in learning ACDs, we need to invoke
BF repeatedly k times. Therefore, we obtain the universal adversary with query complexity q =
k ·O((d+m)ε20) = O((d+m)ε30) and time complexity poly(q, u, 2α, t′) = poly(2α, λ, n,m, d, u).

9.3 Universal Top-k Prediction

In this section, we consider a natural task of predicting the next outcome by producing the top k
most likely candidates with the estimated likelihood for a given k ∈ N, e.g., {(sunny, 0.8), (cloudy,
0.15), (rainy, 0.02)} in the weather forecast when k = 3. We show that this learning task is feasible
on average under the non-existence of OWF.

Corollary 9.13 (Universal top-k prediction). If there is no infinitely-often one-way function, then
there exist a polynomial-time randomized algorithm L and a polynomial mL such that for every
tD(|z|)-time samplable family D = {Dz}z∈{0,1}∗, where each Dz is over binary strings, every suf-
ficiently large s ∈ N, every z ∈ {0, 1}s, and every a, b, k,m, t, ε−1, δ−1, λ−1, α ∈ N with t ≥ tD(s),
k ≤ 2b, cdt(z) ≤ α, and m ≥ mL(s, b, ε−1, δ−1, λ−1), the following holds with probability at least
1 − δ over the choice of i ∼ [m] and x<i ∼ D<iz . With probability at least 1 − ε over the choice of

xi ∼ Di,x
<i

z and the randomness for L, the learner L satisfies the following:

• L(x<i, xi, 1k; 1〈s,b,t,2
α,ε−1,δ−1,λ−1〉) outputs (y1, p1), . . . , (yk, pk) ∈ {0, 1}b × [0, 1].

• Let P = {p∗1, . . . , p∗2b} be an ordered multi-set defined as P = {Labelz,x
i

i (y) : y ∈ {0, 1}b} and

p∗j ≥ p∗j+1 for every j ∈ [2b− 1] (i.e., P is a ranking of probabilities of the next labels). Then,
for each j ∈ [k], ∣∣pj − p∗j ∣∣ ≤ λ and

∣∣∣pj − Labelz,x
i

i (yj)
∣∣∣ ≤ λ.

Furthermore, mL(s, b, ε−1, δ−1, λ−1) = O(sbλ−2ε−3(log ε−1)δ−1).

Particularly, top-1 prediction corresponds to agnostic learning for 0-1 loss, where the sample
complexity is worse than the result in Section 10.

Corollary 9.14. If there is no infinitely-often one-way function, then there exist a polynomial-
time randomized algorithm L and a polynomial mL such that for every tD(|z|)-time samplable
family D = {Dz}z∈{0,1}∗, where each Dz is over samples in {0, 1}n × {0, 1}b for n := poly(|z|) and
b := poly(|z|), every sufficiently large s ∈ N, every z ∈ {0, 1}s, and every m, t, ε−1, δ−1, α ∈ N with
m ≥ mL(s, b, ε−1, δ−1), t ≥ m · tD(s), and cdt(z) ≤ α,

Pr

[
Pr

(x,y)∼Dz
[L(x1, y1, . . . , xi, yi, x; 1〈s,t,2

α,ε−1,δ−1〉) = y] ≤ min
f :{0,1}n→{0,1}b

Pr
(x,y)∼Dz

[f(x) = y] + ε

]
≥ 1−δ,

where the outer probability is taken over i ∼ [m], (x1, y1), . . . , (xi, yi) ∼ Dz. Furthermore, mL(s, b, ε−1, δ−1) =
O(sbε−5(log ε−1)δ−1).

52

Proof of Corollary 9.13. We construct a cheating learner L?
cheat such that for every b, k, λ−1, ε−1 ∈

N with k ≤ 2b and every distribution Label over {0, 1}b, the learner LLabel
cheat satisfies the following

with probability at least 1− ε/2 over the choice of samples according to Label:

• LLabel
cheat(1

k, 1〈b,λ
−1,ε−1〉) outputs (y1, p1), . . . , (yk, pk) ∈ {0, 1}b × [0, 1].

• Let P = {p∗1, . . . , p∗2b} be an ordered multi-set defined as P = {Label(y) : y ∈ {0, 1}b} and

p∗j ≥ p∗j+1 for every j ∈ [2b − 1]. Then, for each j ∈ [k],∣∣pj − p∗j ∣∣ ≤ λ and |pj − Label(yj)| ≤ λ.

Furthermore, the query complexity of Lcheat is at most q = O(λ−2b log ε−1).
According to Theorem 9.1, we obtain an algorithm L′ that simulates Lcheat with UE. The

learner L is defined as

L(x<i, xi, 1k; 1〈s,b,t,2
α,ε−1,δ−1,λ−1〉) = L′(x<i, xi, 1k, 1〈b,λ

−1,ε−1〉; 1〈s,b,t,2
α,4ε−1δ−1,4ε−1〉),

and the sample complexity function is

mL(s, b, ε−1, δ−1, λ−1) = O(sqε−1δ−1ε−2) = O(sbλ−2ε−3(log ε−1)δ−1)

for sufficiently large s ≥ d(D).
The correctness of L is verified as follows. Without loss of generality, we assume that tD(s) ≥ s.

For every sufficiently large s ≥ d(D), we have t ≥ tD(s) ≥ d(D). Therefore, by Theorem 9.1, for
every sufficiently large s ∈ N and every a, b, k,m, t, ε−1, δ−1, λ−1, α ∈ N satisfying the assumptions,

with probability at least 1−δε/4 over the choice of i ∼ [m], x<i ∼ D<iz , xi ∼ Di,x
<i

z , with probability
at least 1−ε/2−ε/4 = 1−3ε/4 over the choice of randomness for L′, the output (y1, p1), . . . , (yk, pk)
of L′ (i.e., L) satisfies the same property as Lcheat. By the simple probabilistic argument (i.e.,
Markov’s inequality and the Union bound) with probability at least 1 − δ over the choice of i ∼
[m], x<i ∼ D<iz , xi ∼ Di,x

<i

z , and with probability at least 1− 3ε/4− ε/4 = 1− ε over the choice of

xi ∼ Di,x
<i

z and randomness for L, the same event occurs.
The remainder of the proof involves the construction of Lcheat, which follows from the standard

empirical estimation. On input 1k, 1〈b,λ
−1,ε−1〉, the learner Lcheat obtains q := 8λ−2b ln 4ε−1 samples

z1, . . . , zq ∈ {0, 1}b from Label and counts my := |{i ∈ [q] : zi = y}| for every y ∈ {0, 1}b. Let
ỹ1, . . . , ỹ2b ∈ {0, 1}b be the ordering of {0, 1}b based on the largeness of my, i.e., mỹj ≥ mỹj+1 for
each j ∈ [2b − 1]. Then, Lcheat outputs k pairs (ỹ1,mỹ1/q), . . . , (ỹk,mỹk/q).

We verify the correctness of Lcheat. For each j ∈ [2b], let pj = mỹj/q. Note that p1 ≥ p2 ≥
· · · ≥ p2b . For each y ∈ {0, 1}b, by Hoeffding’s inequality, it holds that my/q ∈ [Label(y) ± λ/4]

with probability at least 1− 2e−2q(λ/4)2 ≥ 1− e−b · ε/2 ≥ 1− 2−b · ε/2. By the union bound, every
y ∈ {0, 1}b satisfies my/q ∈ [Label(y) ± λ/4] with probability at least 1 − ε/2. We assume that
this event occurs. Then, for every j ∈ [k], it trivially holds that |pj − Label(ỹj)| ≤ λ/4 ≤ λ. We
also show that |pj − p∗j | ≤ λ (this indeed holds for any j ∈ [2b]) as follows: Let y∗1, . . . , y

∗
2b

be the

ordering of {0, 1}b such that p∗j = Label(y∗j) for each j, where we break ties arbitrarily. Let ` ∈ [2b]
be an index such that ỹ` = y∗1. Then, for any j < `, it holds that Label(y∗1) − Label(ỹj) ≤ λ/2;
otherwise,

p` ≥ Label(ỹ`)− λ/4 = Label(y∗1)− λ/4 > Label(ỹj) + λ/2− λ/4 ≥ (pj − λ/4) + λ/4 = pj .

53

This implies that |pj − p∗j | ≤ λ for every j ≤ ` because (i) there are at least ` elements (including
y∗1) whose outcome probability according to Label is at least Label(y∗1) − λ/2; (ii) thus, p∗j ≥
Label(y∗1)− λ/2 for every j ≤ `, and (iii) it holds that, for every j ≤ `,

pj ≥ p` ≥ Label(ỹ`)− λ/4 = Label(y∗1)− λ/4 ≥ Label(y∗j)− λ/4 = p∗j − λ/4 ≥ p∗j − λ

and
pj ≤ Label(ỹj) + λ/4 ≤ Label(y∗1) + λ/4 ≤ p∗j + λ/2 + λ/4 ≤ p∗j + λ.

Next, let `′(> `) be an index such that Label(ỹ`′) = maxj>` Label(ỹj). By the same argument as
above, we can show that |pj − p∗j | ≤ λ for every j ∈ N with ` + 1 ≤ j ≤ `′. We continue this

argument until we run out of elements and obtain |pj − p∗j | ≤ λ for every j ∈ [2b].

Proof of Corollary 9.14 (sketch). Let L′ be the learner in Corollary 9.13. The agnostic learner L
given a sample set X :=

(
(x1, y1), . . . , (xi−1, yi−1), x

)
and a parameter 1〈s,t,2

α,ε−1,δ−1〉 executes

L′(X, 1k; 1〈s,b,Ct,2
α,2ε−1,δ−1,2ε−1〉)

for k = 1 (i.e., top-1 prediction) and some absolute constant C. It it easy to verify that the required
sample complexity is m = O(sbε−5(log ε−1)δ−1) by Corollary 9.13.

For every tD(|z|)-time samplable distribution D = {Dz}, a distribution of m samples drawn
from Dz is (C ·m · tD(|z|))-time samplable by selecting a large enough constant C. Thus, for every
t ≥ m · tD(|z|), the learner L′ is executed validly and satisfies the following with probability at least
1−δ over the choice of i and (x1, y1), . . . , (xi−1, yi−1): with probability 1−ε/2 over the choice of an
example x, the learner L′ finds a label ỹ whose outcome probability is the same as the maximum
one within additive error ε/2. The probability that ỹ corresponds to the actual next label is equal
to the optimal probability (by the most frequent label) within additive error ε/2. Therefore, the
probability that L′ correctly predicts the next label is equal to the optimal probability within
1 · ε/2 + ε/2 · 1 = ε in expectation over the choice of a sample (x, b).

9.4 Universal Likelihood Estimation

In this section, we consider a natural task of estimating the probability that a given label is observed
as the next outcome within an additive error, e.g., the probability of “rainy” in the weather forecast.
We show that this learning task is feasible on average under the non-existence of OWF.

Corollary 9.15 (Universal likelihood estimation). If there is no infinitely-often one-way function,
then there exist a polynomial-time randomized algorithm L and a polynomial mL such that for
every tD(|z|)-time samplable family D = {Dz}z∈{0,1}∗, where each Dz is over binary strings, for all
sufficiently large s ∈ N, all z ∈ {0, 1}s, all a, b, k,m, t, ε−1, δ−1, λ−1 ∈ N with t ≥ tD(s), cdt(z) ≤ α
and m ≥ mL(s, k, ε−1, δ−1, λ−1), and all y1, . . . , yk ∈ {0, 1}b, the following holds with probability at
least 1− δ over the choice of i ∼ [m], x<i ∼ D<iz . With probability at least 1− ε over the choice of

xi ∼ Di,x
<i

z and randomness for L, the learner L satisfies the following:

L(x<i, xi, y1, . . . , yk; 1〈s,t,2
α,ε−1,δ−1,λ−1〉) outputs p1 . . . , pk ∈ [0, 1] satisfying, for each j ∈

[k], ∣∣∣pj − Labelz,x
i

i (yi)
∣∣∣ ≤ λ.

54

Furthermore, mL(s, k, ε−1, δ−1, λ−1) = O(sλ−2ε−3(log ε−1)δ−1 log k).

Proof. The outline of the proof is similar to that for the proof of Corollary 9.13. First, we construct
a cheating learner L?

cheat such that for every b, k, λ−1 ∈ N, every y1, . . . , yk ∈ {0, 1}b, and every
distribution Label over {0, 1}b, the learner LLabel

cheat satisfies the following with probability at least
1− ε/2 over the choice of samples drawn from Label:

LLabel
cheat(y1, . . . , yk, 1

〈λ−1,ε−1〉) outputs p1 . . . , pk ∈ [0, 1] satisfying |pj − Label(yi)| ≤ λ for
each j ∈ [k].

Furthermore, the query complexity of Lcheat is at most q = O(λ−2 log(kε−1)).
Then, by Theorem 9.1, we obtain a learner L′ that simulates Lcheat by UE and construct the

learner L defined as

L(x<i, xi, y1, . . . , yk; 1〈s,t,2
α,ε−1,δ−1,λ−1〉) = L′(x<i, xi, y1, . . . , yk, 1

〈λ−1,ε−1〉; 1〈s,b,t,2
α,4ε−1δ−1,4ε−1〉).

The sample complexity function is

mL(s, k, ε−1, δ−1, λ−1) = O(sqε−1δ−1ε−2) = O(sλ−2ε−3(log ε−1)δ−1 log k)

for every sufficiently large s ≥ d(D). The correctness of L is verified in the same way as Corol-
lary 9.13. Thus, we only present the construction of Lcheat.

The cheating learner Lcheat is constructed according to the standard empirical estimation. On
input y1, . . . , yk and 〈λ−1, ε−1〉, the learner Lcheat obtains q := 2−1λ−2 ln(4kε−1) samples z1, . . . , zq ∈
{0, 1}b from Label and counts mj := |{i ∈ [q] : zi = yj}| for each j ∈ [k]. Then, Lcheat outputs
pj = mj/q for each j ∈ [k].

The correctness of Lcheat is verified as follows. By Hoeffding’s inequality, it holds that mj/q ∈
[Label(yj) ± λ] with probability at least 1 − 2e−2qλ2 ≥ 1 − ε/(2k). By the union bound, it holds
that pj = mj/q ∈ [Label(yj)± λ] for all j ∈ [k] with probability at least 1− ε/2.

10 Agnostic Learning in Pessiland

In this section, we focus on minimizing the expected loss in the online learning framework presented
in Section 9. We show that if the value of the loss function is bounded above by c > 0, then we can
obtain the lower bound of the required number of stages as a function in c instead of the number of
queries. As an application, we obtain a universal agnostic learner having better sample complexity
than Corollary 9.14 obtained from Theorem 9.1.

As in Section 9, we use a ∈ N ∪ {0} and b,m ∈ N to refer to the size of advice string, the size
of each label, and the total number of stages (i.e., sample complexity), respectively. The learning
framework and notations are identical to those presented in Section 9, and the only differences are
the following: (i) a learner is given a past stream x<i and advice information xi and selects an
action αx<i,xi from a set A of actions and (ii) the goal of the learner is to minimize the expected
loss with respect to a loss function l : A× {0, 1}b → R≥0; i.e., the learner attempts to minimize

E
xi,yi

[l(αx<i,xi , y
i)],

where xi ∼ Di,x
<i

z and yi ∼ Labelz,x
i

i .

55

First, we present the meta-theorem for minimizing the expected loss, which yields better sam-
ple complexity when the cheating learner requires polynomially many queries for minimizing the
expected loss with respect to a loss function bounded above by a small value.

Definition 10.1 (Action set and bounded loss function). An action set A = {Aw,b}w∈{0,1}∗,b∈N
is defined as a family of subsets, where Aw,b ⊆ {0, 1}∗. For a function c : {0, 1}∗ × N → R≥0, a
loss function l : {0, 1}∗ × {0, 1}∗ → R≥0 is said to be c-bounded (with respect to A) if for every
w ∈ {0, 1}∗, every b ∈ N, every α ∈ Aw,b, and every y ∈ {0, 1}≤b, it holds that l(α, y) ≤ c(w, b).

Theorem 10.2. Let A = {Aw,b}w∈{0,1}∗,b∈N be an action set, and let l : {0, 1}∗×{0, 1}∗ → R≥0 be
a c-bounded loss function (with respect to A) for a polynomial-time computable function c : {0, 1}∗×
N→ R≥0.

Suppose that UE in Theorem 8.1 exists. Then, for every oracle machine (cheating learner) L?
cheat

that outputs an action in a set Aw,b with polynomial-time computable query complexity q(w) (where
w denotes an input for L?

cheat, and b denotes the length of each label), there exist a polynomial m0

and a randomized algorithm L that outputs an action in the same set Aw,b satisfying the following:
for every tD(|z|)-time samplable family D = {Dz}z∈{0,1}∗, where each Dz is over binary strings,
every s, a, b, t, ε−1, δ−1, α ∈ N with t ≥ max{d(D), tD(s)}, every z ∈ {0, 1}∗ with cdt(z) ≤ α, every
auxiliary input w ∈ {0, 1}∗, and every m ≥ m0(d(D), s, c(w, b), ε−1, δ−1),

Pr
i,x<i

[
E

xi,yi,L

[
l(L(x<i, xi, w; 1〈s,b,t,2

α,ε−1,δ−1〉), yi)
]
≤ E

xi

[
min

α∈Aw,b
E
yi

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + ε

]
≥ 1−δ,

where i ∼ [m], x<i ∼ D<iz , xi ∼ Di,x
<i

z , yi ∼ Labelz,x
i

i , and

∆Lcheat(w, b) := sup
O:distribution over {0,1}≤b

(
E

O,y∼O
[l(LOcheat(w), y)]− min

α∈Aw,b
E
y∼O

[l(α, y)]

)
.

Furthermore, m0(d(D), s, c, ε−1, δ−1) = O((s + d(D)) · c2 · ε−2δ−2), and L halts in polynomial
time in the input length and the running time of Lcheat.

The proof is given in Section 10.1. In Section 10.2, we apply the meta-theorem for the 0-1 loss
function and obtain Theorem 2.3. In Section 10.3, we consider agnostic learning with respect to
general loss functions in the case where the number of labels is polynomially bounded.

10.1 Time-Bounded Universal Prediction

First, we show the following key lemma.

Lemma 10.3. Let b ∈ N. Let A ⊆ {0, 1}∗, and let l : A × {0, 1}≤b → R≥0 be a loss function
satisfying that there exists C > 0 such that l(α, y) ≤ C for every α ∈ A and y ∈ {0, 1}≤b.

For every distribution D on {0, 1}∗ such that D has a tD-time sampler described by d bits, and
for every t, a, b,m ∈ N with t ≥ τdom(d, tD),

E
i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(D, x<ixi)(y)− Nextb(Q
t, x<ixi)(y)

∣∣ ·max
α∈A

l(α, y)

 ≤ C ·√O(d)

m
,

56

and for every oracle machine I? that outputs a string in A,

E
i,x<i,xi

[∣∣∣∣ E
y∼Nextb(Qt,x<ixi)

[l(INextb(D,x
<ixi), y)]− E

y∼Nextb(D,x<ixi)
[l(INextb(D,x

<ixi), y)]

∣∣∣∣] ≤ C ·
√
O(d)

m
,

where i ∼ [m], x<i ∼ D<i, xi ∼ Di,x<i, and the hidden constant in O(d) depends on only the
universal Turing machine.

Proof. The first claim is verified as follows:

E
i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(D, x<ixi)(y)− Nextb(Q
t, x<ixi)(y)

∣∣ ·max
α∈A

l(α, y)


≤ C · E

i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(D, x<ixi)(y)− Nextb(Q
t, x<ixi)(y)

∣∣
= 2C · E

i,x<i,xi

[
L1
(
Nextb(D, x<ixi),Nextb(Qt, x<ixi)

)]
≤ 2C · E

i,x<i,xi

[√
2−1 ·KL (Nextb(D, x<ixi)||Nextb(Qt, x<ixi))

]
≤
√

2C ·
√

E
i,x<i,xi

[KL (Nextb(D, x<ixi)||Nextb(Qt, x<ixi))]

≤
√

2C ·
√
O(d)

m
= C ·

√
O(d)

m
,

where the first inequality holds by l(α, y) ≤ C for every α ∈ A and y ∈ {0, 1}≤b, the second
inequality follows from Pinsker’s inequality (Fact 6.1), the third inequality follows from Jensen’s
inequality, and the last inequality follows from Lemma 9.2 for a trivial 1-query algorithm I that
outputs a sample obtained from the oracle.

The second claim is verified as follows.

E
i,x<i,xi

[∣∣∣∣ E
y∼Nextb(Qt,x<ixi)

[l(INextb(D,x
<ixi), y)]− E

y∼Nextb(D,x<ixi)
[l(INextb(D,x

<ixi), y)]

∣∣∣∣]

= E
i,x<i,xi

∣∣∣∣∣∣
∑

y∈{0,1}≤b
(Nextb(Q

t, x<ixi)(y)− Nextb(D, x<ixi)(y))E[l(INextb(D,x
<ixi), y)]

∣∣∣∣∣∣


≤ E
i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(Qt, x<ixi)(y)− Nextb(D, x<ixi)(y)
∣∣ ·max

α∈A
l(α, y)


≤ C ·

√
O(d)

m
,

where the last inequality follows from the first claim.

Now, we derive Theorem 10.2 from Theorem 8.1 and Lemma 10.3, which is a time-bounded
variant of the theory of universal prediction presented in [MF98].

57

Proof of Theorem 10.2. Let UE be the universal extrapolation algorithm in Theorem 8.1. Let τ
and τ ′ be the polynomials shown in Lemma 6.15. We consider a tD(|z|)-time samplable distribution
family D = {Dz}z∈N.

As the proof of Theorem 9.1, we construct a learner L that executes Lcheat, where the query
access to Label is simulated by UE. On input x<i, xi, w, 1〈s,b,t,2

α,ε−1,δ−1〉, the learner L executes the

cheating learner L?
cheat(w), where L answers each query to Labelz,x

i

i by

ans← UE(x<ixi; 1〈b,t
′,ε′−1,2α

′ 〉)

for t′ = max{τ(τ ′(t, t)), τ1(t, s, t)}, C := c(w, b), ε′ = ε/(4Cq(w)), and α′ = α log(8Cε−1δ−1) +
2 log t′, where L uses fresh randomness for each query access, and τ1 is a polynomial specified later.
It is easy to verify that L halts in polynomial time in the input length and the running time of
Lcheat. Below, we show the correctness of L. For readability, we omit the parameters for L and UE.

For the correctness, we evaluate the following expectation for i ∼ [m], x<i ∼ D<iz :

E
xi,yi,L

[
l(L(x<i, xi, w), yi)

]
,

where xi ∼ Di,x
<i

z , yi ∼ Labelz,x
i

i .
For every z, i, x<i, we have

E
xi,yi,L

[
l(L(x<i, xi, w), yi)

]
= E

xi,L

 ∑
yi∈{0,1}≤b

Nextb(Dz, x<ixi)(yi) · l(L(x<i, xi, w), yi)


≤ E

xi,L

 ∑
yi∈{0,1}≤b

(Nextb(Q
t, x<ixi)(y) + |Nextb(Dz, x<ixi)(yi)− Nextb(Q

t, x<ixi)(y)|) · l(L(x<i, xi, w), yi)


= S1 + S2,

where

S1 := E
xi,L

 ∑
yi∈{0,1}≤b

Nextb(Q
t, x<ixi)(yi) · l(L(x<i, xi, w), yi)


= E

xi,L

[
E

yi∼Nextb(Qt,x<ixi)
[l(L(x<i, xi, w), yi)]

]

S2 := E
xi,L

 ∑
yi∈{0,1}≤b

|Nextb(Dz, x<ixi)(yi)− Nextb(Q
t, x<ixi)(yi)| · l(L(x<i, xi, w), yi)


≤ E

xi

 ∑
yi∈{0,1}≤b

|Nextb(Dz, x<ixi)(yi)− Nextb(Q
t, x<ixi)(yi)| · max

α∈Aw,b
l(α, yi)

 .

58

First, we show the upper bound on S2. By Lemma 10.3, there exists a polynomial τ1 such that
for every s, t,m, a, b ∈ N, z ∈ {0, 1}s, and w ∈ {0, 1}∗ with t ≥ τ1(d(D), s, tD(s)),

E
i,x<i

[S2] ≤ E
i,x<i,xi

 ∑
yi∈{0,1}≤b

|Nextb(Dz, x<ixi)(yi)− Nextb(Q
t, x<ixi)(yi)| · max

α∈Aw,b
l(α, yi)


≤ C ·

√
c′(s+ d(D))

m
=

√
c′C2(s+ d(D))

m

for some universal constant c′ > 0.
Let m0 := 256c′C2(s+d(D))

ε2δ2
= O(C

2·(s+d(D))
ε2δ2

). Then, for every m ≥ m0, we have

E
i,x<i

[S2] ≤
√
c′C2(s+ d(D))

m
≤

√
c′C2(s+ d(D))

m0
=
εδ

16
.

It is easy to verify that S2 is always non-negative. Thus, by Markov’s inequality,

Pr
i,x<i

[
S2 ≤

ε

4

]
≥ 1− δ

4
. (10)

Note that the above holds for any s, t,m, ε−1, δ−1, a, b ∈ N, any z ∈ {0, 1}s, and any w ∈ {0, 1}∗
satisfying t ≥ τ1(d(D), s, tD(s)) and m ≥ m0.

Next, we show the upper bound on S1. For readability, we omit “, x<ixi” from Nextb(Q
t′ , x<ixi)

and Nextb(D, x<ixi) and write them as Nextb(Q
t′) and Nextb(D), respectively.

For each xi ∈ supp(Di,x
<i

z), we define Exi and S′
1,xi

as follows:

Exi := E
L,yi∼Nextb(Qt′)

[l(L(x<i, xi, w), yi)− l(LNextb(Q
t′)

cheat (w), yi)]

S′1,xi :=

∣∣∣∣∣ E
yi∼Nextb(Qt′)

[l(L
Nextb(Dz)
cheat (w), yi)]− E

yi∼Nextb(Dz)
[l(L

Nextb(Dz)
cheat (w), yi)]

∣∣∣∣∣ .
Then, we have

S1 = E
xi,L,yi∼Nextb(Qt′)

[l(L(x<i, xi, w), yi)]

= E
xi,yi∼Nextb(Qt′)

[l(L
Nextb(Q

t′)
cheat (w), yi)] + E

xi
[Exi]

≤ E
xi

[
min

α∈Aw,b
E

yi∼Nextb(Qt′)
[l(α, yi)]

]
+ ∆Lcheat(w, b) + E

xi
[Exi]

≤ E
xi

[
E

yi∼Nextb(Qt′)
[l(L

Nextb(Dz)
cheat (w), yi)]

]
+ ∆Lcheat(w, b) + E

xi
[Exi]

≤ E
xi

[
S′1,xi

]
+ E
xi

[
E

yi∼Nextb(Dz)
[l(L

Nextb(Dz)
cheat (w), yi)]

]
+ ∆Lcheat(w, b) + E

xi
[Exi]

≤ E
xi

[
S′1,xi

]
+ E
xi

[
min

α∈Aw,b
E

yi∼Nextb(Dz)
[l(α, yi)]

]
+ 2∆Lcheat(w, b) + E

xi
[Exi]

= E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + E

xi

[
S′1,xi

]
+ E
xi

[Exi],

59

where the first and last inequalities follow from the definition of ∆Lcheat(w, b).
For all s,m, t, ε−1, δ−1, a, b ∈ N, i ∈ [m], and w ∈ {0, 1}∗ withm ≥ m0 and t ≥ max{d(D), tD(s)},

we have τ ′(t, t) ≥ τ ′(d(D), tD(s)). By Lemma 6.15,

Pr
x<i∼D<iz ,xi∼Di,x

<i
z

[cdτ(τ ′(t,t))(x<ixi) ≤ cdτ
′(t,t)(z) + log 8Cε−1δ−1 + 2 log τ ′(t, t)] ≥ 1− εδ

8C
.

In this case,

cdt
′
(x<ixi) ≤ cdτ(τ ′(t,t))(x<ixi)

≤ cdτ
′(t,t)(z) + log 8Cε−1δ−1 + 2 log τ ′(t, t)

≤ cdt(z) + log 2δ−1 + 2 log t′

≤ α+ log 8Cε−1δ−1 + 2 log t′ = α′.

Therefore, by Theorem 8.1,

Pr
x<i∼D<iz ,xi∼Di,x

<i
z

[
L1
(
UE(x<ixi; 1〈b,t

′,ε′−1,1α
′ 〉),Nextb(Q

t′ , x<ixi)
)
≤ ε

4Cq(w)

]
≥ 1− εδ

8C
.

By Markov’s inequality,

Pr
z,x<i

[
Pr
xi

[
L1
(
UE(x<ixi),Nextb(Q

t′)
)
≤ ε

4Cq(w)

]
≥ 1− ε

4C

]
≥ 1− δ

2
. (11)

Recall that (i) L simulates the oracle access for executing Lcheat by UE(x<ixi), and (ii) Lcheat
accesses the oracle at most q(w) times. Thus, for every w ∈ {0, 1}∗ and every z, x<i, xi satisfying
the event in inequality (11), it holds that

L1(L(x<i, xi, w), L
Nextb(Q

t′)
cheat (w)) = L1(L

UE(x<ixi)
cheat (w), L

Nextb(Q
t′)

cheat (w)) ≤ q(w) · ε

4Cq(w)
=

ε

4C

and

Exi = E
L,yi∼Nextb(Qt′)

[l(L(x<i, xi, w), yi)− l(LNextb(Q
t′)

cheat (w), yi)]

≤ max
y∈{0,1}≤b

E
L,Nextb(Qt

′)
[l(L(x<i, xi, w), y)− l(LNextb(Q

t′)
cheat (w), y)]

≤ max
y∈{0,1}≤b

∑
α∈Aw,b

(
Pr[L(x<i, xi, w) = α]− Pr[L

Nextb(Q
t′)

cheat (w) = α]

)
· l(α, y)

≤ max
α′∈Aw,b,y∈{0,1}≤b

l(α′, y) ·
∑

α∈Aw,b

(
Pr[L(x<i, xi, w) = α]− Pr[L

Nextb(Q
t′)

cheat (w) = α]

)
≤ C · ε

4C
=
ε

4
.

60

Thus, for every z, x<i satisfying the event in inequality (11), we have

E
xi

[Exi] = E
xi,L,yi∼Nextb(Qt′)

[l(L(x<i, xi, w), yi)− l(LNextb(Q
t′)

cheat (w), yi)]

≤ 1 · ε
4

+
ε

4C
max

α,α′∈Aw,b,y∈{0,1}≤b

(
l(α, y)− l(α′, y)

)
≤ ε

4
+

ε

4C
· C =

ε

2
.

We also evaluate S′
1,xi

in the same way as S2. By Lemma 10.3, for every s, t,m, a, b ∈ N,

z ∈ {0, 1}s, and w ∈ {0, 1}∗ with t ≥ τ1(d(D), s, tD(s)) and m ≥ m0,

E
i,x<i

[E
xi

[S′1,xi]] ≤
√
c′C2(s+ d(D))

m
≤

√
c′C2(s+ d(D))

m0
=
εδ

16
.

Because S′
1,xi

is always non-negative, by Markov’s inequality,

Pr
i,x<i

[
E
xi

[S′1,xi] ≤
ε

4

]
≥ 1− δ

4
. (12)

Because t′ ≥ τ1(t, s, t) ≥ τ1(d(D), s, tD(s)) for t ≥ max{d(D), tD(s)}, by inequalities (10), (11),
and (12) and the union bound, for every w ∈ {0, 1}∗, it holds that (i) Exi [Exi] ≤ ε/2, (ii) Exi [S′1,xi] ≤
ε/4, and (iii) S2 ≤ ε/4 with probability at least 1− δ over the choice of i ∼ [m] and x<i ∼ D<iz . In
this case, we have

E
xi,yi,L

[
l(L(x<i, xi, w), yi)

]
≤ S1 + S2

≤ E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + E

xi

[
S′1,xi

]
+ E
xi

[Exi] + S2

≤ E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) +

ε

2
+
ε

4
+
ε

4

= E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + ε.

Hence, we conclude that

Pr
i,x<i

[
E

xi,yi,L

[
l(L(x<i, xi, w), yi)

]
≤ E

xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + ε

]
≥ 1− δ.

10.2 Universal Agnostic Learning

We introduce the agnostic learning model and show that universal average-case agnostic learning
is feasible under the non-existence of one-way functions.

61

In this section, we define a sampler of example size n as a multi-output circuit that outputs
a pair (x, y) ∈ {0, 1}n × {0, 1}poly(n) (we call x an example and y a label of x). For any sampler
S : {0, 1}` → {0, 1}n × {0, 1}poly(n), we use S(1) (resp. S(2)) to refer to the circuit that produces
the first (resp. second) half element of S, i.e., S(r) = (S(1)(r), S(2)(r)), for each seed r ∈ {0, 1}`.
For convenience, we may identify a sampler S : {0, 1}` → {0, 1}n × {0, 1}poly(n) with a distribution
of S(r), where r ∼ {0, 1}`. For each sampler S, we define an example oracle EXS as the oracle
that returns (x, y) ∼ S for each access. For simplicity, we define the time complexity of sampler
as a function in the example size n instead of the seed length `. For any t, s ∈ N, we say that a
sampler S of example size n is t/s-time computable if there exists a program ΠS ∈ {0, 1}≤s such
that U t(ΠS , r) = S(r[`]) for each seed r ∈ {0, 1}t. Additionally if cdt

′
(ΠS) ≤ α, we say that the

t-time-bounded computational depth of S is at most α.
In the original agnostic learning model presented in [KSS94], a learner for a concept class C is

given access to EXS for an unknown sampler S, and the task is to approximate the best function in
C that approximates the label under S (more generally, the best function in C that minimizes the
expected loss for some loss function) for all samplers S (i.e., in the worst case with regard to S).

Definition 10.4 (Agnostic learning). Let b : N → N be the size of each label. Let C be a concept
class defined as a subset of {f : {0, 1}n → {0, 1}b(n) : n ∈ N}. Let l : {0, 1}∗ × {0, 1}∗ → R≥0 be a
loss function. Let S = {Sn}n∈N be a class of samplers, where each Sn is a subset of samplers over
{0, 1}n × {0, 1}b(n).

We say that a randomized oracle L, which is referred to as an agnostic learner, agnostically
learns C on S for a loss function l if for every sufficiently large n ∈ N, every ε−1, δ−1 ∈ N, and
every (unknown) target sampler S ∈ Sn, the learner L(1n, 1ε

−1
, 1δ
−1

) is given access to EXS and
outputs a circuit h : {0, 1}n → {0, 1}b(n) such that

E
(x,y)∼S

[l(h(x), y)] ≤ optC (S) + ε,

where
optC (S) = min

f∈C
E

(x,y)∼S
[l(f(x), y)]

with probability at least 1− δ over the choice of EXS and randomness for L. We define the sample
complexity m(n, ε, δ) of L as the upper bound on the number of query accesses by L(1n, 1ε

−1
, 1δ
−1

)
for each n, ε−1, δ−1 ∈ N.

We also introduce the average-case variant of agnostic learning. We define a distribution on
samplers as a family D = {Dn}n∈N of distributions, where Dn is a distribution on descriptions of
a sampler of example size n. For every distribution D on samplers and every n ∈ N, we use the
notation Dn to refer to the n-th distribution in D, i.e., the distribution on descriptions of samplers
of example size n. Then, we formally define the average-case variant of agnostic learning as follows.

Definition 10.5 (Agnostic learning on average). Let b : N→ N be the size of each label. Let C be
a concept class defined as a subset of {f : {0, 1}n → {0, 1}b(n) : n ∈ N} and D be a distribution on
samplers S over {0, 1}n×{0, 1}b(n) for the example size n. Let l : {0, 1}∗×{0, 1}∗ → R≥0 be a loss
function.

We say that a randomized oracle L, which is referred to as an agnostic learner, agnostically
learns C on average under D for a loss function l if for every sufficiently large n ∈ N and every

62

ε−1, δ−1 ∈ N, the learner L(1n, 1ε
−1
, 1δ
−1

) is given access to EXS, where S is an unknown target
sampler selected according to Dn, and outputs a circuit h : {0, 1}n → {0, 1}b(n) such that

E
(x,y)∼S

[l(h(x), y)] ≤ optC (S) + ε

with probability at least 1 − δ over the choice of S ∼ Dn, EXS, and randomness for L. We
define the sample complexity m(n, ε, δ) of L as the upper bound on the number of query accesses by
L(1n, 1ε

−1
, 1δ
−1

) for each n, ε−1, δ−1 ∈ N.
Let D be a class of distributions on samplers. We say that C is agnostic learnable in polynomial

time on average under D for a loss function l if there exists a polynomial-time agnostic learner
that agnostically learns C on average under D for every (unknown) D ∈ D .

If we do not specify the loss function, we always assume the 0-1 loss function l defined as

l(ỹ, y) =

{
1 if ỹ 6= y

0 if ỹ = y.

In this case, the requirement for the hypothesis h in Definition 10.5 is simply expressed as follows:

Pr
(x,y)∼S

[h(x) 6= y] ≤ optC (S) + ε = min
f∈C

Pr
(x,y)∼S

[f(x) 6= y] + ε.

Now, we show the feasibility of universal agnostic learning from Theorem 10.2, which is a formal
statement of Theorem 2.3. Note that Item 4 of Theorem 2.4 corresponds to Item 2.

Theorem 10.6. The following are equivalent:

1. There is no infinitely-often one-way function.

2. For all polynomials b(n), s(n), t(n), and t′(n), the class F = {f : {0, 1}n → {0, 1}b(n) : n ∈ N}
is agnostically learnable in polynomial time on average under (unknown) t′(n)-time samplable
distributions over t(n)/s(n)-time computable samplers with sample complexity m(n, ε, δ) =
O(s(n)ε−2 log δ−1).

3. There exists a polynomial-time randomized algorithm L that is given input 1n, 1ε
−1
, 1δ
−1

and
an additional meta-parameter 1〈b,s,t,t

′,2α〉 such that for all functions b(n), s(n), t(n), t′(n), α(n),

the algorithm L(1n, 1ε
−1
, 1δ
−1

; 1〈b(n),s(n),t(n),t′(n),2α(n)〉) agnostically learns F = {f : {0, 1}n →
{0, 1}b(n) : n ∈ N} on t(n)/s(n)-time computable samplers whose t′(n)-time-bounded com-
putational depth is at most α(n) in polynomial time in n, ε−1, δ−1, b(n), s(n), t(n), t′(n), 2α(n)

with sample complexity m(n, ε, δ) = O(s(n)ε−2 log δ−1).

The sample complexity above is optimal when δ is constant, as discussed in Appendix A.

Proof. The implication item 2 ⇒ item 1 follows from [GGM86; HILL99] and the observation
in [Val84]. The implication item 3 ⇒ item 2 follows from Lemma 6.14 and a basic probabilis-
tic argument based on the union bound. Thus, we only show the implication item 1 ⇒ item 3.

Suppose that there is no infinitely-often one-way function (item 1). Then, there exists the
universal extrapolation algorithm UE in Theorem 8.1.

First, we construct an agnostic learner as a cheating learner L?
cheat as follows: On input 1ε

−1
, 1b

(where ε−1, b ∈ N) and given access to distribution Label over {0, 1}≤b, the learner L?
cheat obtains

63

q := (96)2(b + 1)ε−2 ln(192ε−1) samples y1, . . . , yq from Label and outputs the most frequently

sampled label ỹ ∈ {0, 1}≤b, i.e., ỹ = yĩ for ĩ = arg maxi∈[q] |{j ∈ [q] : yi = yj}|. Trivially, L?
cheat

halts in poly(ε−1, b) time.
We apply Theorem 10.2 for L?

cheat to obtain the learner L′ that simulates L?
cheat. We can show

that L′ satisfies the following property:

Claim 10.7. There exists a polynomial m0(n, ε−1, δ−1) = O(s(n)ε−2δ−2) such that for every
t(n)/s(n)-time computable sampler whose t′(n)-time-bounded computational depth is at most α(n),
every sufficiently large n ∈ N, and every ε−1, δ−1 ∈ N,

Pr
i,(x1,y1),...,(xi−1,yi−1)

[
Pr

(x,y)∼S,L′
[L′(x<i, x, 1ε

−1
, 1b(n); 1〈s(n),b(n),τ,2α(n),16ε−1,δ−1〉) 6= y] ≤ optF (S) +

ε

8

]
≥ 1−δ,

where m = m0(n, ε−1, δ−1), i ∼ [m], (x1, y1), . . . , (xi−1, yi−1) ∼ S, x<i = x1y1 · · ·xi−1yi−1, and
τ = O(t′(n) + t(n)m).

First, we assume Claim 10.7 and show Theorem 10.6.
We construct an agnostic learner L for a fixed confidence error δ = 1/4 with sample complexity

O(s(n)ε−2). To reduce the confidence error 1/4 to the arbitrary δ ∈ (0, 1] given as a parameter, it
suffices to repeat L O(log δ−1) times with the accuracy error ε/2 and output the best hypothesis
by empirically estimating the accuracy error for each hypothesis within the approximation error
±ε/2 (see [HKLW88]). The time and sample complexity is affected only by the multiplicative factor
O(log δ−1) (note that the empirical estimation only requires additional O(ε−2 log δ−1) samples).

The construction of L is as follows: On input 1n, 1ε
−1

, a meta-parameter 1〈b(n),s(n),t(n),t′(n),2α(n)〉,
and given access to EXS , where S is an unknown t(n)/s(n)-time computable sampler whose example
size is n and t′(n)-time-bounded computational depth is at most α(n), the learner L selects i ∼ [m],
where m = m0(n, ε−1, 8) and m0 is the polynomial in Claim 10.7, and obtains i − 1 samples
(x1, y1), . . . , (xi−1, yi−1) from EXS . Then, L selects a sufficiently long random string r and outputs
a circuit (i.e., hypothesis) hr that is taken x ∈ {0, 1}n as input and outputs

y = L′(x1y1 · · ·xi−1yi−1, x, 〈1ε−1
, 1b(n)〉; 1〈s(n),b(n),τ,2α(n),16ε−1,8〉; r),

where τ = O(t′(n) + t(n)m) as indicated in Claim 10.7.
It is not hard to verify that L halts in poly(n, ε−1, s(n), b(n), t(n), t′(n), 2α(n)) time. In addition,

the sample complexity is m0(n, ε−1, 8) = O(s(n)ε−2). We also verify the correctness of L as follows.
By Claim 10.7, with probability at least 7/8 over the choice of i, (x1, y1), . . . , (xi−1, yi−1), it holds
that

0 ≤ Pr
(x,y)∼S,r

[hr(x) 6= y]− optF (S) ≤ ε/8,

where the non-negativity follows from the definition of optF (S). Thus, by Markov’s inequality,

Pr
r

[
Pr

(x,y)∼S
[hr(x) 6= y]− optF (S) ≤ ε

]
≥ 7/8.

By the union bound, with probability at least 1- 1/8 -1/8= 3/4 over the choice of randomness for
L and samples drawn from EXS , the learner L outputs a hypothesis hr that satisfies

Pr
(x,y)∼S

[hr(x) 6= y] ≤ optF (S) + ε.

In the remainder, we show Claim 10.7.

64

Proof of Claim 10.7. First, we analyze the performance of the cheating learner L?
cheat. Let Label

be an arbitrary distribution over {0, 1}≤b. Let y∗ be the label mostly generated according to
Label, i.e., y∗ := arg maxy∈{0,1}≤b Label(y) (breaking ties arbitrarily). Recall that LLabel

cheat collects

q := (96)2(b+ 1)ε−2 ln(192ε−1) samples y1, . . . , yq. By Hoeffding’s inequality, for each y ∈ {0, 1}≤b,
the estimated outcome probability p̃y = |{i ∈ [q] : yi = y}|/q satisfies Label(y) − ε/96 ≤ p̃y ≤
Label(y) + ε/96 with probability at least 1− 2e2q(ε/96)2 ≥ 1− (ε/96) · 2−(b+1). By the union bound,
Label(y)− ε/96 ≤ p̃y ≤ Label(y) + ε/96 holds for all y ∈ {0, 1}≤b with probability at least 1− ε/96.
Under this event, the probability that the output ỹ of LLabel

cheat corresponds to y ∼ Label is at least

Label(ỹ) ≥ p̃ỹ − ε/96 ≥ p̃y∗ − ε/96 ≥ Label(y∗)− ε/48.

In this case, we have

Pr
Label,y∼Label

[LLabel
cheat(1

ε, 1b) 6= y|∀p̃y ∈ Label(y)± ε/96] ≤ Pr
y∼Label

[y 6= y∗] + ε/48

= min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ] + ε/48.

Therefore, for every ε−1, b ∈ N and every Label over {0, 1}≤b,

Pr
Label,y∼Label

[LLabel
cheat(1

ε, 1b) 6= y] = min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ]+ε/48+ε/96 ≤ min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ]+ε/32.

Thus, for every ε−1, b ∈ N,

∆Lcheat(〈1
ε, 1b〉, b) := sup

Label

(
Pr

Label,y∼Label
[LLabel
cheat(1

ε, 1b) 6= y]− min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ]

)
≤ ε/32.

Now, we analyze the performance of L′. Let D be an arbitrary t(n)/s(n)-time computable
sampler described by a program ΠS whose t′(n)-time-bounded computational depth is at most
α(n). Let m0 be the polynomial in Theorem 10.2.

We define a distribution family Et = {Et,z}z∈{0,1}∗ , where Et,z is a distribution of an infinitely
long string x1x2x3 · · · . Here, for each i ∈ N, xi ∼ U t(s, ri) for a uniformly random seed ri ∼
{0, 1}t (note that if s is a description of a t-time-computable sampler, each xi corresponds to a
sample). Then, for every n, ε−1, δ−1 ∈ N and m0 := m0(C log t, s(n), 1, 16ε−1, δ−1), where C > 0 is
a universal constant, the prefix x1 · · ·xm0 of Dt(n),ΠS is samplable in O(m0 · t(n)) time. Therefore,
by Theorem 10.2, for every sufficiently large n ∈ N and every ε−1, δ−1 (note that we select a = n
and b = b(n)) and for sufficiently large τ = max{t′(n), O(m0 · t(n))},

Pr
i,{(xj ,yj)}i−1

j=1

 Pr
(x,y)∼S,L′

[
L′(x<i, x, 1ε, 1b(n); 1N) 6= y

]
≤ E

x∼S(1)

min
y∗

Pr
y∼S(2)

|x

[y∗ = y]

+ 2∆Lcheat +
ε

16

 ≥ 1−δ,

where i ∼ [m0]; (x1, y1), . . . , (xi−1, yi−1) ∼ S; N = 〈n, s(n), b(n), τ, 16ε−1, δ−1〉; x<i = x1y1 · · ·xi−1yi−1;

S
(2)
|x is a conditional distribution of S(2) given x ∼ S(1), and ∆Lcheat = ∆Lcheat(〈1ε, 1b〉, b) ≤ ε/32.

It is easy to verify that

E
x∼S(1)

 min
y∗∈{0,1}<b(n)

Pr
y∼S(2)

|x

[y∗ = y]

 = optF (S).

65

Thus, we conclude that

Pr
S,i,{(xj ,yj)}i−1

j=1

[
Pr

(x,y)∼S,L′

[
L′(x<i, x, 1ε, 1b(n); 1N) 6= y

]
≤ optF (S) + ε/8

]
≥ 1− δ.

The sample complexity m0 is bounded above by

m0(C log t(n), s(n), 1, 16ε−1, δ−1) = O((s(n) + log t(n))ε−2δ−2) = O(s(n)ε−2δ−2),

where we assume that log t(n) ≤ s(n); otherwise, a learner can try all possible t(n)/s(n)-time
computable samplers in t(n) · 2O(s(n)) ≤ poly(t(n)) time and output the best hypothesis through
the standard empirical estimation of the accuracy error. �

10.3 Universal Agnostic Learning for General Loss

In this section, we consider agnostic learning for general polynomial-time computable loss functions.

Theorem 10.8. The following are equivalent:

1. There is no infinitely-often one-way function.

2. For every b(n) = O(log n), every polynomials s(n), t(n), t′(n), and c(n), and every polynomial-
time computable loss function l with l(ỹ, y) ≤ c(n) for each n ∈ N and each ỹ, y ∈ {0, 1}≤b(n),
the class F = {f : {0, 1}n → {0, 1}b(n) : n ∈ N} is agnostically learnable for the loss func-
tion l in polynomial time on average under (unknown) t′(n)-time samplable distributions over
t(n)/s(n)-time computable samplers with sample complexity m(n, ε, δ) = O(s(n)c(n)2ε−2 log δ−1).

3. For every b(n) = O(log n), every polynomial c(n), and every polynomial-time computable
loss function l with l(ỹ, y) ≤ c(n) for each n ∈ N and each ỹ, y ∈ {0, 1}≤b(n), there ex-
ists a polynomial-time randomized algorithm L that is given input 1n, 1ε

−1
, 1δ
−1

and an addi-
tional meta-parameter 1〈s,t,t

′,2α〉 such that for all functions s(n), t(n), t′(n), α(n), the algorithm

L(1n, 1ε
−1
, 1δ
−1

; 1〈s(n),t(n),t′(n),2α(n)〉) agnostically learns F = {f : {0, 1}n → {0, 1}b(n) : n ∈ N}
for the loss function l on t(n)/s(n)-time computable samplers whose t′(n)-time-bounded com-
putational depth is at most α(n) in polynomial time in n, ε−1, δ−1, b(n), s(n), t(n), t′(n), 2α(n)

with sample complexity m(n, ε, δ) = O(s(n)c(n)2ε−2 log δ−1).

Proof. The implication item 2 ⇒ item 1 follows from [GGM86; HILL99] and the observation
in [Val84]. The implication item 3 ⇒ item 2 follows from Lemma 6.14 and a basic probabilis-
tic argument based on the union bound. Thus, we only show the implication item 1 ⇒ item 2.

The outline of the proof is similar to that for Theorem 10.6. The only difference is the con-
struction of the cheating learner L?

cheat.
Let l : {0, 1}∗ × {0, 1}∗ → R≥0 be an arbitrary polynomial-time computable loss function such

that l(ỹ, y) ≤ c(n) for each n ∈ N and each ỹ, y ∈ {0, 1}≤b(n), where b(n) = O(log n) and c(n) =
poly(n). We construct a cheating learner L?

cheat for minimizing the expected loss with respect to l
with additive error ε/32 for all distributions Label over {0, 1}≤b(n).

On input 1n, 1ε
−1

and given access to a distribution Label over {0, 1}≤b(n), the learner Lcheat ob-
tains q := (64c(n)2b(n)+1)2(b(n) + 1)ε−2 ln(128ε−1c(n)) samples y1, . . . yq from Label and computes

66

p̃y = |{j ∈ [q] : yj = y}|/q for each y ∈ {0, 1}≤b(n) (note that it takes only O(q2b(n)) = poly(n, ε−1)
times). These estimated probabilities determine an estimated distribution Ỹ over {0, 1}≤b(n),
where each y is drawn from Ỹ with probability p̃y. The learner Lcheat minimizes the expected
loss under Ỹ , i.e., Lcheat computes l̃α = Ey∼Ỹ [l(α, y)] for each α ∈ {0, 1}≤b(n) and outputs

α̃ = arg minα∈{0,1}≤b(n) l̃α (note that it takes only O(2b(n)) = poly(n) times).

We show that for every n, ε−1 ∈ N and every distribution Label over {0, 1}≤b(n),

E
Label,y∼Label

[l(LLabel
cheat(1

n, 1ε
−1

), y)] ≤ min
α∈{0,1}≤b

E
y∼Label

[l(α, y)] + ε/32. (13)

This implies Theorem 10.8 by the same argument as Theorem 10.6; i.e., we apply Theorem 10.2
for Lcheat to obtain the learner L′ that simulates Lcheat, and then we construct an agnostic learner
L (with fixed confidence error δ = 1/4) that selects i ∼ [m] and randomness r, where m =
O(s(n)c(n)2ε−2) indicated in Theorem 10.2, collects i − 1 samples (x1, y1), . . . , (xi−1, yi−1) from
EXS , and outputs hr that takes x ∈ {0, 1}n as input and outputs

y = L′(x1y1 · · ·xi−1yi−1, x, 1n, 1ε
−1

; 1〈n,s(n),b(n),τ,32ε−1,8〉; r),

for τ = O(t′(n) + t(n)m). The correctness of L holds in the same way as Theorem 10.6 if inequal-
ity (13) holds.

We verify inequality (13). Let α∗ = arg minα∈{0,1}≤b(n) Ey∼Label[l(α, y)]. Recall that LLabel
cheat

collects q := (64c(n)2b(n)+1)2(b(n) + 1)ε−2 ln(128ε−1c(n)) samples y1, . . . , yq. By Hoeffding’s in-
equality, for each y ∈ {0, 1}≤b(n), the estimated outcome probability p̃y = |{i ∈ [q] : yi = y}|/q
satisfies Label(y)−ε/(64c(n)2b(n)+1) ≤ p̃y ≤ Label(y)+ε/(64c(n)2b(n)+1) with probability at least 1−
2e2q(ε/64c(n)2b(n)+1)2 ≥ 1−(ε/64c(n))·2−(b(n)+1). By the union bound, Label(y)−ε/(64c(n)2b(n)+1) ≤
p̃y ≤ Label(y)+ ε/(64c(n)2b(n)+1) holds for all y ∈ {0, 1}≤b(n) with probability at least 1− ε/64c(n).
Under this event, the output α̃ ∈ {0, 1}≤b(n) of LLabel

cheat satisfies

E
y∼Ỹ

[l(α̃, y)] ≤ E
y∼Ỹ

[l(α∗, y)] =
∑

y∈{0,1}≤b(n)
p̃y · l(α∗, y)

≤
∑

y∈{0,1}≤b(n)
(Label(y) +

ε

64c(n)2b(n)+1
) · l(α∗, y)

≤
∑

y∈{0,1}≤b(n)
Label(y)l(α∗, y) +

ε · |{0, 1}≤b(n)|
64c(n)2b(n)+1

· max
y∈{0,1}≤b(n)

l(α∗, y)

≤ E
y∼Label

[l(α∗, y)] +
ε

64

= min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

64
.

Let B be the event that there exists y ∈ {0, 1}≤b(n) such that Label(y)− ε/(64c(n)2b(n)+1) ≤ p̃y ≤

67

Label(y) + ε/(64c(n)2b(n)+1) does not hold. Then, we have

E
Label,y∼Label

[l(LLabel
cheat(1

n, 1ε
−1

), y)] ≤ Pr[¬B] ·
(

min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

64

)
+ Pr[B] · max

α,y∈{0,1}≤b(n)
l(α, y)

≤ 1 ·
(

min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

64

)
+

ε

64c(n)
· c(n)

= min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

32
.

References

[ABX08] Benny Applebaum, Boaz Barak, and David Xiao. “On Basing Lower-Bounds for
Learning on Worst-Case Assumptions”. In: Proceedings of the Symposium on Foun-
dations of Computer Science (FOCS). 2008, pp. 211–220. doi: 10.1109/FOCS.

2008.35.

[AC15] Dana Angluin and Dongqu Chen. “Learning a Random DFA from Uniform Strings
and State Information”. In: Algorithmic Learning Theory - 26th International Con-
ference, ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings. Ed. by
Kamalika Chaudhuri, Claudio Gentile, and Sandra Zilles. Vol. 9355. Lecture Notes
in Computer Science. Springer, 2015, pp. 119–133. doi: 10.1007/978-3-319-
24486-0_8. url: https://doi.org/10.1007/978-3-319-24486-0%5C_8.

[ACMTV21] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. “One-Way Functions and a Conditional Variant of MKTP”. In: Proceed-
ings of the Foundations of Software Technology and Theoretical Computer Science
(FSTTCS). 2021, 7:1–7:19. doi: 10.4230/LIPIcs.FSTTCS.2021.7.

[AF09] Luis Filipe Coelho Antunes and Lance Fortnow. “Worst-Case Running Times for
Average-Case Algorithms”. In: Proceedings of the Conference on Computational
Complexity (CCC). 2009, pp. 298–303. doi: 10.1109/CCC.2009.12.

[AFMV06] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchandran.
“Computational depth: Concept and applications”. In: Theor. Comput. Sci. 354.3
(2006), pp. 391–404. doi: 10.1016/j.tcs.2005.11.033.

[AFPS12] Luis Filipe Coelho Antunes, Lance Fortnow, Alexandre Pinto, and Andre Souto.
“Low-Depth Witnesses are Easy to Find”. In: Comput. Complex. 21.3 (2012),
pp. 479–497. doi: 10.1007/s00037-011-0025-1.

[AGMMM18] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and
Andrew Morgan. “Minimum Circuit Size, Graph Isomorphism, and Related Prob-
lems”. In: SIAM J. Comput. 47.4 (2018), pp. 1339–1372. doi: 10.1137/17M1157970.

[AK95] Dana Angluin and Michael Kharitonov. “When Won’t Membership Queries Help?”
In: J. Comput. Syst. Sci. 50.2 (1995), pp. 336–355. doi: 10.1006/jcss.1995.1026.

68

https://doi.org/10.1109/FOCS.2008.35
https://doi.org/10.1109/FOCS.2008.35
https://doi.org/10.1007/978-3-319-24486-0_8
https://doi.org/10.1007/978-3-319-24486-0_8
https://doi.org/10.1007/978-3-319-24486-0%5C_8
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://doi.org/10.1109/CCC.2009.12
https://doi.org/10.1016/j.tcs.2005.11.033
https://doi.org/10.1007/s00037-011-0025-1
https://doi.org/10.1137/17M1157970
https://doi.org/10.1006/jcss.1995.1026

[BCKRS22] Eric Binnendyk, Marco Carmosino, Antonina Kolokolova, Ramyaa Ramyaa, and
Manuel Sabin. “Learning with distributional inverters”. In: The 33rd International
Conference of Algorithmic Learning Theory (ALT2022). Proceedings of Machine
Learning Research. PMLR, 2022.

[Ben88] C. H. Bennett. “Logical Depth and Physical Complexity”. In: The universal Turing
machine, a half century survey (1988), pp. 227–257.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. “Crypto-
graphic Primitives Based on Hard Learning Problems”. In: Proceedings of the Inter-
national Cryptology Conference (CRYPTO). 1993, pp. 278–291. doi: 10.1007/3-
540-48329-2_24.

[BT06] Andrej Bogdanov and Luca Trevisan. “On Worst-Case to Average-Case Reductions
for NP Problems”. In: SIAM J. Comput. 36.4 (2006), pp. 1119–1159. doi: 10.1137/
S0097539705446974.

[CFGMW78] Larry Carter, Robert W. Floyd, John Gill, George Markowsky, and Mark N. Weg-
man. “Exact and Approximate Membership Testers”. In: Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego, Cal-
ifornia, USA. Ed. by Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch,
Emily P. Friedman, and Alfred V. Aho. ACM, 1978, pp. 59–65. doi: 10.1145/
800133.804332. url: https://doi.org/10.1145/800133.804332.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
“Learning Algorithms from Natural Proofs”. In: Proceedings of the Conference on
Computational Complexity (CCC). 2016, 10:1–10:24. doi: 10.4230/LIPIcs.CCC.
2016.10.

[CIKK17] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
“Agnostic Learning from Tolerant Natural Proofs”. In: Proceedings of the Approxi-
mation, Randomization, and Combinatorial Optimization (APPROX/RANDOM).
2017, 35:1–35:19. doi: 10.4230/LIPIcs.APPROX-RANDOM.2017.35.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.)
Wiley, 2006. isbn: 978-0-471-24195-9.

[DP12] Ivan Damg̊ard and Sunoo Park. “Is Public-Key Encryption Based on LPN Practi-
cal?” In: IACR Cryptol. ePrint Arch. (2012), p. 699. url: http://eprint.iacr.
org/2012/699.

[DV21] Amit Daniely and Gal Vardi. “From Local Pseudorandom Generators to Hardness
of Learning”. In: Conference on Learning Theory, COLT 2021, 15-19 August 2021,
Boulder, Colorado, USA. 2021, pp. 1358–1394.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random
functions”. In: J. ACM 33.4 (1986), pp. 792–807. doi: 10.1145/6490.6503.

[GKK08] Parikshit Gopalan, Adam Tauman Kalai, and Adam R. Klivans. “Agnostically
learning decision trees”. In: Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008. Ed.
by Cynthia Dwork. ACM, 2008, pp. 527–536. doi: 10.1145/1374376.1374451.
url: https://doi.org/10.1145/1374376.1374451.

69

https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1145/800133.804332
https://doi.org/10.1145/800133.804332
https://doi.org/10.1145/800133.804332
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.35
http://eprint.iacr.org/2012/699
http://eprint.iacr.org/2012/699
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/1374376.1374451
https://doi.org/10.1145/1374376.1374451

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor Carboni Oliveira.
“Probabilistic Kolmogorov Complexity with Applications to Average-Case Com-
plexity”. In: 37th Computational Complexity Conference, CCC 2022, July 20-23,
2022, Philadelphia, PA, USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 16:1–16:60. doi: 10.4230/LIPIcs.
CCC.2022.16. url: https://doi.org/10.4230/LIPIcs.CCC.2022.16.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001. isbn: 0-521-79172-3. doi: 10.1017/CBO9780511546891.

[GS86] Shafi Goldwasser and Michael Sipser. “Private Coins versus Public Coins in Inter-
active Proof Systems”. In: Proceedings of the Symposium on Theory of Computing
(STOC). 1986, pp. 59–68. doi: 10.1145/12130.12137.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A Pseudo-
random Generator from any One-way Function”. In: SIAM J. Comput. 28.4 (1999),
pp. 1364–1396. doi: 10.1137/S0097539793244708.

[HILNO23] Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor Carboni
Oliveira. “A Duality Between One-Way Functions and Average-Case Symmetry of
Information”. In: Proceedings of the Symposium on Theory of Computing (STOC).
2023.

[Hir21] Shuichi Hirahara. “Average-case hardness of NP from exponential worst-case hard-
ness assumptions”. In: Proceedings of the Symposium on Theory of Computing
(STOC). 2021, pp. 292–302. doi: 10.1145/3406325.3451065.

[Hir22] Shuichi Hirahara. “NP-Hardness of Learning Programs and Partial MCSP”. In:
63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS. 2022.

[Hir23] Shuichi Hirahara. “Capturing One-Way Functions via NP-Hardness of Meta-Complexity”.
In: 55th Annual ACM Symposium on Theory of Computing, STOC. 2023.

[HKLM22] Max Hopkins, Daniel M. Kane, Shachar Lovett, and Gaurav Mahajan. “Realiz-
able Learning is All You Need”. In: Conference on Learning Theory, 2-5 July
2022, London, UK. Ed. by Po-Ling Loh and Maxim Raginsky. Vol. 178. Proceed-
ings of Machine Learning Research. PMLR, 2022, pp. 3015–3069. url: https:

//proceedings.mlr.press/v178/hopkins22a.html.

[HKLW88] David Haussler, Michael J. Kearns, Nick Littlestone, and Manfred K. Warmuth.
“Equivalence of Models for Polynomial Learnability”. In: Proceedings of the First
Annual Workshop on Computational Learning Theory, COLT ’88, Cambridge, MA,
USA, August 3-5, 1988. Ed. by David Haussler and Leonard Pitt. ACM/MIT, 1988,
pp. 42–55. url: http://dl.acm.org/citation.cfm?id=93040.

[HN21] Shuichi Hirahara and Mikito Nanashima. “On Worst-Case Learning in Relativized
Heuristica”. In: Proceedings of the Symposium on Foundations of Computer Science
(FOCS). 2021, pp. 751–758. doi: 10.1109/FOCS52979.2021.00078.

70

https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1145/12130.12137
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1145/3406325.3451065
https://proceedings.mlr.press/v178/hopkins22a.html
https://proceedings.mlr.press/v178/hopkins22a.html
http://dl.acm.org/citation.cfm?id=93040
https://doi.org/10.1109/FOCS52979.2021.00078

[HN22] Shuichi Hirahara and Mikito Nanashima. “Finding Errorless Pessiland in Error-
Prone Heuristica”. In: 37th Computational Complexity Conference, CCC 2022, July
20-23, 2022, Philadelphia, PA, USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 25:1–25:28. doi: 10.4230/
LIPIcs.CCC.2022.25. url: https://doi.org/10.4230/LIPIcs.CCC.2022.25.

[Hut05] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on Al-
gorithmic Probability. Berlin: Springer, 2005, 300 pages. isbn: 3-540-22139-5. doi:
10.1007/b138233. url: http://www.hutter1.net/ai/uaibook.htm.

[IL89] Russell Impagliazzo and Michael Luby. “One-way Functions are Essential for Com-
plexity Based Cryptography (Extended Abstract)”. In: Proceedings of the Sym-
posium on Foundations of Computer Science (FOCS). 1989, pp. 230–235. doi:
10.1109/SFCS.1989.63483.

[IL90] Russell Impagliazzo and Leonid A. Levin. “No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random”. In: Proceedings of the Symposium
on Foundations of Computer Science (FOCS). 1990, pp. 812–821. doi: 10.1109/
FSCS.1990.89604.

[Imp92] Russell Impagliazzo. “Pseudo-random generators for cryptography and for random-
ized algorithms”. PhD thesis. University of California, Berkeley, 1992.

[Imp95] Russell Impagliazzo. “A Personal View of Average-Case Complexity”. In: Proceed-
ings of the Structure in Complexity Theory Conference. 1995, pp. 134–147. doi:
10.1109/SCT.1995.514853.

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. “Hardness on any Samplable Dis-
tribution Suffices: New Characterizations of One-Way Functions by Meta-Complexity”.
In: Electron. Colloquium Comput. Complex. 28 (2021), p. 82.

[IRS22] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. “Robustness of average-case
meta-complexity via pseudorandomness”. In: STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022. Ed. by Ste-
fano Leonardi and Anupam Gupta. ACM, 2022, pp. 1575–1583. doi: 10.1145/

3519935.3520051. url: https://doi.org/10.1145/3519935.3520051.

[Jac97] Jeffrey C. Jackson. “An Efficient Membership-Query Algorithm for Learning DNF
with Respect to the Uniform Distribution”. In: J. Comput. Syst. Sci. 55.3 (1997),
pp. 414–440. doi: 10.1006/jcss.1997.1533.

[JLSW11] Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. “Learning
random monotone DNF”. In: Discret. Appl. Math. 159.5 (2011), pp. 259–271. doi:
10.1016/j.dam.2010.08.022. url: https://doi.org/10.1016/j.dam.2010.08.
022.

[JS05] Jeffrey C. Jackson and Rocco A. Servedio. “Learning Random Log-Depth Decision
Trees under Uniform Distribution”. In: SIAM J. Comput. 34.5 (2005), pp. 1107–
1128. doi: 10.1137/S0097539704444555. url: https://doi.org/10.1137/

S0097539704444555.

71

https://doi.org/10.4230/LIPIcs.CCC.2022.25
https://doi.org/10.4230/LIPIcs.CCC.2022.25
https://doi.org/10.4230/LIPIcs.CCC.2022.25
https://doi.org/10.1007/b138233
http://www.hutter1.net/ai/uaibook.htm
https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1006/jcss.1997.1533
https://doi.org/10.1016/j.dam.2010.08.022
https://doi.org/10.1016/j.dam.2010.08.022
https://doi.org/10.1016/j.dam.2010.08.022
https://doi.org/10.1137/S0097539704444555
https://doi.org/10.1137/S0097539704444555
https://doi.org/10.1137/S0097539704444555

[Kha93] Michael Kharitonov. “Cryptographic hardness of distribution-specific learning”. In:
Proceedings of the Symposium on Theory of Computing (STOC). 1993, pp. 372–381.
doi: 10.1145/167088.167197.

[KK09] Adam Kalai and Varun Kanade. “Potential-Based Agnostic Boosting”. In: Advances
in Neural Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009. Proceedings of a meeting held 7-10 December
2009, Vancouver, British Columbia, Canada. Ed. by Yoshua Bengio, Dale Schuur-
mans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta. Curran
Associates, Inc., 2009, pp. 880–888. url: https://proceedings.neurips.cc/
paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html.

[KKMS08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
“Agnostically Learning Halfspaces”. In: SIAM J. Comput. 37.6 (2008), pp. 1777–
1805. doi: 10.1137/060649057. url: https://doi.org/10.1137/060649057.

[KLW10] Adam R. Klivans, Homin K. Lee, and Andrew Wan. “Mansour’s Conjecture is True
for Random DNF Formulas”. In: COLT 2010 - The 23rd Conference on Learning
Theory, Haifa, Israel, June 27-29, 2010. Ed. by Adam Tauman Kalai and Mehryar
Mohri. Omnipress, 2010, pp. 368–380. url: http://colt2010.haifa.il.ibm.
com/papers/COLT2010proceedings.pdf%5C#page=376.

[KM93] Eyal Kushilevitz and Yishay Mansour. “Learning Decision Trees Using the Fourier
Spectrum”. In: SIAM J. Comput. 22.6 (1993), pp. 1331–1348. doi: 10 . 1137 /

0222080. url: https://doi.org/10.1137/0222080.

[KMRRSS94] Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire,
and Linda Sellie. “On the learnability of discrete distributions”. In: Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada. Ed. by Frank Thomson Leighton and Michael T.
Goodrich. ACM, 1994, pp. 273–282. doi: 10.1145/195058.195155. url: https:
//doi.org/10.1145/195058.195155.

[Ko91] Ker-I Ko. “On the Complexity of Learning Minimum Time-Bounded Turing Ma-
chines”. In: SIAM J. Comput. 20.5 (1991), pp. 962–986. doi: 10.1137/0220059.

[KS09] Adam R. Klivans and Alexander A. Sherstov. “Cryptographic hardness for learning
intersections of halfspaces”. In: J. Comput. Syst. Sci. 75.1 (2009), pp. 2–12. doi:
10.1016/j.jcss.2008.07.008. url: https://doi.org/10.1016/j.jcss.2008.
07.008.

[KSS94] Michael J. Kearns, Robert E. Schapire, and Linda Sellie. “Toward Efficient Agnostic
Learning”. In: Mach. Learn. 17.2-3 (1994), pp. 115–141. doi: 10.1007/BF00993468.
url: https://doi.org/10.1007/BF00993468.

[KV94] Michael J. Kearns and Leslie G. Valiant. “Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata”. In: J. ACM 41.1 (1994), pp. 67–95. doi:
10.1145/174644.174647.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. “Constant Depth Circuits, Fourier
Transform, and Learnability”. In: J. ACM 40.3 (1993), pp. 607–620. doi: 10.1145/
174130.174138.

72

https://doi.org/10.1145/167088.167197
https://proceedings.neurips.cc/paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html
https://doi.org/10.1137/060649057
https://doi.org/10.1137/060649057
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=376
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=376
https://doi.org/10.1137/0222080
https://doi.org/10.1137/0222080
https://doi.org/10.1137/0222080
https://doi.org/10.1145/195058.195155
https://doi.org/10.1145/195058.195155
https://doi.org/10.1145/195058.195155
https://doi.org/10.1137/0220059
https://doi.org/10.1016/j.jcss.2008.07.008
https://doi.org/10.1016/j.jcss.2008.07.008
https://doi.org/10.1016/j.jcss.2008.07.008
https://doi.org/10.1007/BF00993468
https://doi.org/10.1007/BF00993468
https://doi.org/10.1145/174644.174647
https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/174130.174138

[LO22] Zhenjian Lu and Igor Carboni Oliveira. “Theory and Applications of Probabilistic
Kolmogorov Complexity”. In: Bull. EATCS 137 (2022). url: http://bulletin.
eatcs.org/index.php/beatcs/article/view/700.

[LOZ22] Zhenjian Lu, Igor Carboni Oliveira, and Marius Zimand. “Optimal Coding The-
orems in Time-Bounded Kolmogorov Complexity”. In: Proceedings of the Inter-
national Colloquium on Automata, Languages, and Programming (ICALP). 2022,
92:1–92:14. doi: 10.4230/LIPIcs.ICALP.2022.92.

[LP20] Yanyi Liu and Rafael Pass. “On One-way Functions and Kolmogorov Complexity”.
In: Proceedings of the Symposium on Foundations of Computer Science (FOCS).
2020, pp. 1243–1254.

[LP21a] Yanyi Liu and Rafael Pass. “A Note on One-way Functions and Sparse Languages”.
In: Electron. Colloquium Comput. Complex. (2021), p. 92.

[LP21b] Yanyi Liu and Rafael Pass. “Cryptography from sublinear-time average-case hard-
ness of time-bounded Kolmogorov complexity”. In: STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021. Ed. by Samir Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 722–
735. doi: 10.1145/3406325.3451121. url: https://doi.org/10.1145/3406325.
3451121.

[LP21c] Yanyi Liu and Rafael Pass. “On the Possibility of Basing Cryptography on EXP 6=
BPP”. In: Proceedings of the International Cryptology Conference (CRYPTO).
2021, pp. 11–40. doi: 10.1007/978-3-030-84242-0_2.

[LP22] Yanyi Liu and Rafael Pass. “On One-Way Functions from NP-Complete Prob-
lems”. In: 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022,
Philadelphia, PA, USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, 36:1–36:24. doi: 10.4230/LIPIcs.CCC.
2022.36. url: https://doi.org/10.4230/LIPIcs.CCC.2022.36.

[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and
Its Applications, 4th Edition. Texts in Computer Science. Springer, 2019. isbn:
978-3-030-11297-4. doi: 10.1007/978-3-030-11298-1.

[LV89] Ming Li and Paul M. B. Vitányi. “A Theory of Learning Simple Concepts Under
Simple Distributions and Average Case Complexity for the Universal Distribution
(Extended Abstract)”. In: Proceedings of the Symposium on Foundations of Com-
puter Science (FOCS). 1989, pp. 34–39. doi: 10.1109/SFCS.1989.63452.

[MF98] Neri Merhav and Meir Feder. “Universal Prediction”. In: IEEE Trans. Inf. Theory
44.6 (1998), pp. 2124–2147. doi: 10.1109/18.720534. url: https://doi.org/10.
1109/18.720534.

[Nan20] Mikito Nanashima. “Extending Learnability to Auxiliary-Input Cryptographic Prim-
itives and Meta-PAC Learning”. In: Conference on Learning Theory, COLT 2020,
9-12 July 2020, Virtual Event [Graz, Austria]. 2020, pp. 2998–3029.

73

http://bulletin.eatcs.org/index.php/beatcs/article/view/700
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://doi.org/10.1145/3406325.3451121
https://doi.org/10.1145/3406325.3451121
https://doi.org/10.1145/3406325.3451121
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1109/SFCS.1989.63452
https://doi.org/10.1109/18.720534
https://doi.org/10.1109/18.720534
https://doi.org/10.1109/18.720534

[Nan21a] Mikito Nanashima. “A Theory of Heuristic Learnability”. In: Conference on Learn-
ing Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA. Ed. by
Mikhail Belkin and Samory Kpotufe. Vol. 134. Proceedings of Machine Learning
Research. PMLR, 2021, pp. 3483–3525. url: http://proceedings.mlr.press/
v134/nanashima21a.html.

[Nan21b] Mikito Nanashima. “On Basing Auxiliary-Input Cryptography on NP-Hardness via
Nonadaptive Black-Box Reductions”. In: Proceedings of the Innovations in The-
oretical Computer Science Conference (ITCS). 2021, 29:1–29:15. doi: 10.4230/
LIPIcs.ITCS.2021.29.

[NR06] Moni Naor and Guy N. Rothblum. “Learning to impersonate”. In: Machine Learn-
ing, Proceedings of the Twenty-Third International Conference (ICML 2006), Pitts-
burgh, Pennsylvania, USA, June 25-29, 2006. Ed. by William W. Cohen and An-
drew W. Moore. Vol. 148. ACM International Conference Proceeding Series. ACM,
2006, pp. 649–656. doi: 10.1145/1143844.1143926. url: https://doi.org/10.
1145/1143844.1143926.

[NR09] Moni Naor and Guy N. Rothblum. “The complexity of online memory checking”.
In: J. ACM 56.1 (2009), 2:1–2:46. doi: 10.1145/1462153.1462155.

[NY19] Moni Naor and Eylon Yogev. “Bloom Filters in Adversarial Environments”. In:
ACM Trans. Algorithms 15.3 (2019), 35:1–35:30. doi: 10.1145/3306193. url:
https://doi.org/10.1145/3306193.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. “Conspiracies Between Learning Al-
gorithms, Circuit Lower Bounds, and Pseudorandomness”. In: Proceedings of the
Computational Complexity Conference (CCC). 2017, 18:1–18:49. doi: 10.4230/

LIPIcs.CCC.2017.18.

[Ost91] Rafail Ostrovsky. “One-Way Functions, Hard on Average Problems, and Statistical
Zero-Knowledge Proofs”. In: Proceedings of the Structure in Complexity Theory
Conference. 1991, pp. 133–138. doi: 10.1109/SCT.1991.160253.

[OW93] Rafail Ostrovsky and Avi Wigderson. “One-Way Fuctions are Essential for Non-
Trivial Zero-Knowledge”. In: Proceedings of the Symposium on Theory of Computing
(STOC). 1993, pp. 3–17. doi: 10.1109/ISTCS.1993.253489.

[PV88] Leonard Pitt and Leslie G. Valiant. “Computational limitations on learning from
examples”. In: J. ACM 35.4 (1988), pp. 965–984. doi: 10.1145/48014.63140.

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-
raphy”. In: J. ACM 56.6 (2009), 34:1–34:40. doi: 10.1145/1568318.1568324.

[RS21] Hanlin Ren and Rahul Santhanam. “Hardness of KT Characterizes Parallel Cryp-
tography”. In: Proceedings of the Computational Complexity Conference (CCC).
2021, 35:1–35:58. doi: 10.4230/LIPIcs.CCC.2021.35.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From
Theory to Algorithms. Cambridge University Press, 2014. isbn: 978-1-10-705713-5.
url: http://www.cambridge.org/de/academic/subjects/computer-science/
pattern - recognition - and - machine - learning / understanding - machine -

learning-theory-algorithms.

74

http://proceedings.mlr.press/v134/nanashima21a.html
http://proceedings.mlr.press/v134/nanashima21a.html
https://doi.org/10.4230/LIPIcs.ITCS.2021.29
https://doi.org/10.4230/LIPIcs.ITCS.2021.29
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1145/1143844.1143926
https://doi.org/10.1145/1462153.1462155
https://doi.org/10.1145/3306193
https://doi.org/10.1145/3306193
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1109/SCT.1991.160253
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1145/48014.63140
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.4230/LIPIcs.CCC.2021.35
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms

[Sch90] Robert E. Schapire. “The Strength of Weak Learnability”. In: Mach. Learn. 5
(1990), pp. 197–227. doi: 10.1007/BF00116037.

[Sel08] Linda Sellie. “Learning Random Monotone DNF Under the Uniform Distribution”.
In: 21st Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland,
July 9-12, 2008. Ed. by Rocco A. Servedio and Tong Zhang. Omnipress, 2008,
pp. 181–192. url: http://colt2008.cs.helsinki.fi/papers/76-Sellie.pdf.

[Sel09] Linda Sellie. “Exact learning of random DNF over the uniform distribution”. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009. Ed. by Michael Mitzenmacher.
ACM, 2009, pp. 45–54. doi: 10.1145/1536414.1536424. url: https://doi.org/
10.1145/1536414.1536424.

[Sol64a] Ray J. Solomonoff. “A Formal Theory of Inductive Inference. Part I”. In: Inf. Con-
trol. 7.1 (1964), pp. 1–22. doi: 10.1016/S0019-9958(64)90223-2.

[Sol64b] Ray J. Solomonoff. “A Formal Theory of Inductive Inference. Part II”. In: Inf.
Control. 7.2 (1964), pp. 224–254. doi: 10.1016/S0019-9958(64)90131-7.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies
and a new pseudorandom generator”. In: J. ACM 52.2 (2005), pp. 172–216. doi:
10.1145/1059513.1059516.

[Val84] Leslie G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (1984),
pp. 1134–1142. doi: 10.1145/1968.1972.

[VZ12] Salil P. Vadhan and Colin Jia Zheng. “Characterizing pseudoentropy and simplify-
ing pseudorandom generator constructions”. In: Proceedings of the Symposium on
Theory of Computing (STOC). 2012, pp. 817–836. doi: 10.1145/2213977.2214051.

[VZ13] Salil P. Vadhan and Colin Jia Zheng. “A Uniform Min-Max Theorem with Applica-
tions in Cryptography”. In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I. 2013, pp. 93–110. doi: 10.1007/978-3-642-40041-4_6.

[Xia10] David Xiao. “Learning to Create is as Hard as Learning to Appreciate”. In: COLT
2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010.
Ed. by Adam Tauman Kalai and Mehryar Mohri. Omnipress, 2010, pp. 516–528.
url: http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%
5C#page=524.

[Yao82] Andrew Chi-Chih Yao. “Theory and Applications of Trapdoor Functions (Extended
Abstract)”. In: Proceedings of the Symposium on Foundations of Computer Science
(FOCS). 1982, pp. 80–91. doi: 10.1109/SFCS.1982.45.

[ZL70] Alexander K Zvonkin and Leonid A Levin. “The complexity of finite objects and
the development of the concepts of information and randomness by means of the
theory of algorithms”. In: Russian Mathematical Surveys 25.6 (1970), pp. 83–124.

75

https://doi.org/10.1007/BF00116037
http://colt2008.cs.helsinki.fi/papers/76-Sellie.pdf
https://doi.org/10.1145/1536414.1536424
https://doi.org/10.1145/1536414.1536424
https://doi.org/10.1145/1536414.1536424
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1016/S0019-9958(64)90131-7
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/2213977.2214051
https://doi.org/10.1007/978-3-642-40041-4_6
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=524
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=524
https://doi.org/10.1109/SFCS.1982.45

A Lower Bound on Sample Complexity in Agnostic Learning on
Average

In this section, we show that the dependence of s and ε−1 on the sample complexity of our agnostic
learner (in Theorems 2.3 and 10.6) is optimal, particularly for learning parities on average with noise
over unit vectors. The proof is essentially same as that of the fundamental theorem of statistical
learning (cf. [SB14, Sections 6 and 28]), except that we consider a natural average-case analogue of
shattered sets.

We review the problem of learning parities with noise (LPN). For every α ∈ {0, 1}n, let
χα : {0, 1}n → {0, 1} denote a parity function defined as χα(x) = 〈x, α〉F2 , where 〈,〉F2 represents
the inner product on F2. For each n ∈ N, α ∈ {0, 1}n, γ ∈ [0, 1/2], and S ⊆ {0, 1}n, we define a
distribution LPNSα,γ over samples in {0, 1}n × {0, 1} as the distribution of (x, χα(x)⊕ ξ) for x ∼ S
and ξ ∼ Ber(1/2 − γ), where Ber(1/2 − γ) represents the Bernoulli distribution with parameter
1/2− γ, i.e., ξ = 1 (resp. ξ = 0) with probability 1/2− γ (resp. 1/2 + γ). It is easily verified that,
for every γ ∈ [0, 1/2] and every S ⊆ {0, 1}n,

optF (LPNSα,γ) = min
f : {0,1}n→{0,1}

Pr
(x,b)∼LPNSα,γ

[f(x) 6= b] =
1

2
− γ.

We mainly focus on the specific subset Sen = {e1, . . . , ebn/2c} ⊆ {0, 1}n, where each ej ∈ {0, 1}n is

the j-th unit vector, i.e., eji = 1 iff i = j. For every c ∈ N, the distribution LPN
Se|α|
α,2−c is samplable

in time O(|α| · c) when α is given as advice.
We show the following matching lower bound on sample complexity for LPN over Sen.

Theorem A.1. Suppose that a (possibly not efficient) agnostic learner L satisfies that for every
sufficiently large n ∈ N, every ε−1 ∈ N, and every c ∈ N with c ≤ log2 n,

Pr
α∼{0,1}n,LPNS

e
n
α,2−c

LLPN
Sen
α,2−c (1n, 1ε

−1
) outputs h s.t. Pr

(x,b)∼LPNS
e
n
α,2−c

[h(x) 6= b] ≤
(

1

2
− 2−c

)
+ ε

 ≥ 7

8
.

Then, the sample complexity mL of L must satisfy mL(n, ε) = Ω(nε−2) (note that the secret infor-
mation is represented by s := |α| = n bits).

Theorem A.1 is obtained in the same way as the fundamental theorem of statistical learning,
where we use the simple observation that parity functions shatter Sen on average over the choice of
parity functions (instead of the argument of the VC dimension). Here, we only present the proof
outline. For the detailed argument, we refer the reader to the proof in [SB14, Section 28.2.2].

Proof sketch. Suppose that the sample complexity mL(n, ε) satisfies mL(n, ε) < 8bn/2cε−2. Below,
we derive a contradiction to show mL(n, ε) ≥ 8bn/2cε−2 = Ω(nε−2). For readability, we omit the

superscript Sen from LPN
Sen
α,ρ/2 in this proof.

Fix sufficiently large n ∈ N and k ∈ N with k ∈ (log 8
√

2, log2 n+ 2) arbitrarily. Let m = bn/2c.
Let ε = 2−k and ρ = 8ε (note that ρ < 1/

√
2). Let c = − log ρ = k − 3. Since c + 1 ≤ log2 n, the

learner L satisfies

Pr
α∼{0,1}n,LPNα,ρ/2

[
LLPNα,ρ/2(1n, 1ε

−1
) outputs h s.t. Pr

(x,b)∼LPNα,ρ/2
[h(x) 6= b] ≤ (1 + ρ)/2 + ε

]
≥ 7

8
,

76

and L(1n, 1ε
−1

) makes only at most 8mε−2 queries. Without loss of generality, we assume that
L(1n, 1ε

−1
) makes exactly M := 8mε−2 queries, and M samples Sα := {(xi, χα(xi) ⊕ ξi)}Mi=1 are

given as auxiliary input, where α ∼ {0, 1}n, xi ∼ Sen, and ξi ∼ Ber((1 + ρ)/2) for each i.
For each α ∈ {0, 1}n, let optα := optF (LPNα,ρ/2) = (1− ρ)/2. For each hypothesis h : {0, 1}n →

{0, 1}, let `α(h) be the error probability of h, i.e.,

`α(h) := Pr
(x,b)∼LPNα,ρ/2

[h(x) 6= b] =
1 + ρ

2
· |{i ∈ [m] : h(ei) 6= αi}|

m
+

1− ρ
2
· |{i ∈ [m] : h(ei) = αi}|

m
.

Therefore,

`α(h)− optα = ρ · |{i ∈ [m] : h(ei) 6= αi}|
m

. (14)

Let L(Sα) denote the hypothesis produced by L(1n, 1ε
−1

) given a sample set Sα. Then, we have

Pr
α,Sα

[`α(L(Sα))− optα > ε] ≤ 1/8.

Now, we consider another learning algorithm L∗ that is given Sα and produces a hypothesis
L∗(Sα) : Sen → {0, 1} such that, for each ei ∈ Sen, the value of L∗(Sα)(ei) is the majority among
the labels of ei in the sample set Sα (breaking ties arbitrarily). Then, L∗ is the optimal learner
(cf. [SB14, Lemma 28.1]), i.e.,

Pr
α,Sα

[`α(L∗(Sα))− optα > ε] ≤ Pr
α,Sα

[`α(L(Sα))− optα > ε] ≤ 1/8. (15)

Furthermore,

E
α,Sα

[`α(L∗(Sα))− optα] =
ρ

m
E
α,Sα

[
|{i ∈ [m] : L∗(Sα)(ei) 6= αi}|

]
=

ρ

m

m∑
i=1

Pr
α,Sα

[L∗(Sα)(ei) 6= αi].

By Slud’s inequality and careful calculations (see [SB14, Section 28.2.2]), the right-hand side is
bounded below as

ρ

m

m∑
i=1

Pr
α,Sα

[L∗(Sα)(ei) 6= αi] ≥
ρ

2

(
1−

√
2ρ2M/m

)
,

where we use the fact that ρ < 1/
√

2.
Since M < 8mε−2 = m/(8ρ2),

E
α,Sα

[`α(L∗(Sα))− optα] ≥ ρ

2

(
1−

√
2ρ2M/m

)
>
ρ

2

(
1− ρ

2

)
=
ρ

2
− ρ2

4
≥ ρ

4
= 2ε.

By equation (14), it holds that `α(L∗(Sα))− optα ≤ ρ for every α and Sα. Therefore, we have

Pr
α,Sα

[`α(L∗(Sα))− optα > ε] >
1

8
; (16)

otherwise,

E
α,Sα

[`α(L∗(Sα))− optα] ≤ ε · 1 +
1

8
· ρ = 2ε.

Inequality (16) contradicts inequality (15).

77

B Universal Distribution and Probabilistic Kolmogorov Complex-
ity

In this section, we show that qt (in Definition 2.5) is equivalent to the time-bounded probabilistic
Kolmogorov complexity pKt up to an additive logarithmic factor and a polynomial overhead of
the time-bound. The latter notion was recently studied by Goldberg, Kabanets, Lu, and Oliveira
[GKLO22] in the context of meta-complexity. Further background on probabilistic Kolmogorov
complexity can be found in [LO22].

For future work, we consider a general case in which an auxiliary advice string is given. First,
we extend the definition of qt to such a case.

Definition B.1 (implicit in [IL90]). For every t ∈ N and every z ∈ {0, 1}∗, we define the t-time-
bounded universal distribution Qt

z given z as the distribution of U t(r; z) for r ∼ {0, 1}t, where the
universal Turing machine U is given query access to each bit of z.

For every t ∈ N and every x, z ∈ {0, 1}∗, we define qt(x|z) as

qt(x|z) = − log Qt
z(x).

(If Qt
z(x) = 0, then we regard qt(x|z) as ∞.)

Note that qt(x|ε) is equal to qt(x) in Definition 2.5.
The time-bounded probabilistic Kolmogorov complexity pKt is defined as follows.

Definition B.2 (Probabilistic Kolmogorov complexity [GKLO22]). For every t ∈ N and every
x, z ∈ {0, 1}∗, we define the t-time-bounded Kolmogorov complexity of x given z as

pKt(x|z) = min

{
k ∈ N : Pr

r∼{0,1}t

[
∃π ∈ {0, 1}k s.t. U t(π, r; z) = x

]
≥ 2/3

}
,

where the universal Turing machine U is given query access to each bit of z. (If there is no such
p ∈ {0, 1}∗, then we regard pKt(x|z) as ∞ for convenience.)

Below, we only consider the case in which qt(x|z) <∞ and pKt(x|z) <∞.
The equivalence between qt and pKt is stated as follows. Note that the second statement follows

from the optimal coding theorem for pKt proved by Lu, Oliveira, and Zimand [LOZ22].

Proposition B.3. For every t ∈ N and every x, z ∈ {0, 1}∗,

qO(t)(x|z) ≤ pKt(x|z) +O(log t).

Theorem B.4 ([LOZ22]). For every t ∈ N and every x, z ∈ {0, 1}∗,

pKp(t)(x|z) ≤ qt(x|z) + log p(t),

where p is a universal polynomial that depends on only U .

Proof of Proposition B.3. By the definition of pKt(x|z), there exist at least (2/3) · 2t random seeds
r ∈ {0, 1}t that have a program πr ∈ {0, 1}pKt(x|z) such that U t(πr, r; z) = x. Without loss
of generality, we can assume that pKt(x|z) ≤ t. By selecting sufficiently large t′ = O(t), the
probability that the prefix of a random seed r′ ∼ {0, 1}t′ corresponds to the program 〈πr, r〉 is at
least 2−pKt(x|z)−O(log t)−t (by the standard encoding). Therefore, we obtain Qt′

z (x) ≥ (2/3) · 2t ·
2−pKt(x|z)−O(log t)−t = 2−pKt(x|z)−O(log t) and qt

′
(x|z) = − log Qt′

z (x) ≤ pKt(x|z) +O(log t).

Theorem B.4 follows from the observation that the proof of the optimal coding theorem for pKt

in [LOZ22, Theorem 5] holds even with additional access to z.

78

C MINLT under Separated Distributions in Pessiland

In this section, we show that the search version of MINLT is efficiently solvable on average in
the restricted setting studied in [BFKL93] under the non-existence of OWF and the standard
derandomization assumption (see Theorem C.7).

First, we review the problem MINLT. We introduce additional notions. In this section, we
may call a distribution over {0, 1}n × {0, 1} a sampler. For any m ∈ N and any distribution
family D = {Dn}n∈N, where each Dn is a distribution on samplers over {0, 1}n × {0, 1}, we let
Dm = {Dmn }n∈N denote a distribution family over sample sets such that each Dmn is the distribution
of a sample set {(x1, b1), . . . , (xm, bm)}, where (xi, bi) ∼ S for each i ∈ [m] and S ∼ Dn (note
that the sampler S is selected only once). We also use the notation (x, b) ∼ Dmn to indicate that
x = (x1, . . . , xm) and b = (b1, . . . , bm) for {(x1, b1), . . . , (xm, bm)} ∼ Dmn .

We define LT-complexity of sample sets.

Definition C.1 (LT-complexity [Ko91]). Let X = {(x1, b1), . . . , (xm, bm)} be a sample set, where
xi ∈ {0, 1}∗ and bi ∈ {0, 1} for each i ∈ [m]. For every t ∈ N, the t-time-bounded LT-complexity of
X is denoted by LTt(X) and defined as

LTt(X) := min{|Π| : Π ∈ {0, 1}∗such that U t(Π, xi) = bi for all i ∈ [m]}.

Now, we define MINLT as a problem that asks LT-complexity of a given sample set.

Definition C.2 (MINLT [Ko91]). For every t ∈ N, we define the language MINLT[t] as follows:

MINLT[t] =
{

(X, 1s) : n,m ∈ N, X ∈ ({0, 1}n × {0, 1})m,LTt(X) ≤ s
}
.

We define the search version of MINLT[t] as a problem that asks, for a given X = {(x1, b1), . . . , (xm, bm)},
where xi ∈ {0, 1}n and bi ∈ {0, 1} for each i ∈ [m], to find Π ∈ {0, 1}∗ such that |Π| = LTt(X) and
U t(Π, xi) = bi for all i ∈ [m].

First, we present a meta-theorem. Roughly speaking, the meta-theorem shows that if there ex-
ists no infinitely-often one-way function, then we can construct an algorithm that solves MINLT[τ]
on average under any samplable distribution on samplers that satisfies a time-bounded LT-complexity
analogue of the coding theorem.

Lemma C.3. If there exists no infinitely-often one-way function, then for every constant C > 0,
there exists a randomized algorithm L such that for every polynomials t(n), σ(n), every (unknown)
t(n)-samplable distribution D = {Dn}n∈N on samplers, every sufficiently large n ∈ N, and every
m, δ−1, τ ∈ N, the algorithm L(-; 1〈n,m,δ

−1,t(n),σ(n),τ〉) solves the search version of MINLT[τ] on
average under Dm with error probability at most δ as long as D satisfies the following: for all
γ−1 ∈ N,

Pr
X=(x,b)∼Dmn

[
LTτ (X) ≤ min{− logDmn (b|x) + C(log τ + log γ−1), σ(n)}

]
≥ 1− γ,

where Dmn (b|x) = Pr(x′,b′)∼Dmn [b′ = b|x′ = x].

Proof. Let tU (n) be a simulation overhead function of the universal Turing machine U ; i.e., for
every t ∈ N, every Turing machine M , and every input x ∈ {0, 1}∗, if M(x) halts in t time, then
U tU (t)(M,x) = M(x).

79

We define a polynomial-time-computable family f = {fn : {0, 1}poly(n) → {0, 1}poly(n)} as

f〈n,m,t,σ,τ〉(i, j,Πf ,Πe, s
0, s1, . . . , sm) = (i, x1, U τ ((Πf)[i], x

1), . . . , xm, U τ ((Πf)[i], x
m)),

where i ∈ [σ], j ∈ [n], Πf ,Πe ∈ {0, 1}n, s0, s1, . . . , sm ∈ {0, 1}tU (t), and x1, . . . xm are determined
as follows: for each k ∈ [m],

S = U tU (t)((Πe)[j], 〈1n, s0〉)

xk =

{
CircEval(S, sk) if S is a description of a circuit of output length n

0n otherwise,

where CircEval is the standard circuit evaluation algorithm that runs in polynomial time. Without
loss of generality, we assume that the circuit size of S above is at most tU (t) because its description
is printed in tU (t) time.

Since we execute U in polynomial time in above, f is a polynomial-time-computable family.
We assume that the input to fn is given as a concatenated string. For each n,m, t, σ, τ ∈ N, let
r(n,m, t, σ, τ) be the input size of f〈n,m,t,σ,τ〉, i.e., r(n,m, t, σ, τ) = dlog σe+dlog ne+2n+tU (t)(m+
1).

By Proposition 7.4 and the assumption that there exists no infinitely-often one-way function,
there exists a randomized polynomial-time algorithm A such that for every n,m, t, σ, τ ∈ N and
every δ−1 ∈ N,

Pr
[
A(f〈n,m,t,σ,τ〉(Ur(n,m,t,σ,τ)); 1〈n,m,t,σ,τ〉, 1δ

−1
) /∈ f−1

〈n,m,t,σ,τ〉(f〈n,m,t,σ,τ〉(Ur(n,m,t,σ,τ)))
]
≤ δ.

We construct a randomized algorithm L in the theorem fromA. For given parameters n,m, δ−1, t, σ, τ ∈
N and a sample set X = {(xi, bi)}mi=1, the algorithm L executes

A(i, x1, b1, . . . , xm, bm; 1〈n,m,t,σ,τ〉, 1δ
′−1

)

for each i ∈ [σ] and for δ′ defined as

δ′ =
1

2
· (δ/2)C

n2στC
δ

2
,

where C > 0 is the constant in the theorem. For each i, if A returns some inverse element
Xi = (i, ji,Πi

f ,Π
i
e, s

i,0, si,1, . . . , si,m), then L checks whether f(Xi) = (i, x1, b1, . . . , xm, bm). Let
i∗ ∈ [σ] be the minimum integer i for which A succeeds in inverting (if not, A returns ⊥ and
halts). Then, L outputs (Πi∗

f)[i∗] as a hypothesis. It is not hard to verify that L halts in time

poly(n,m, δ−1, t, σ, τ).
To show the correctness of L, we first prove the following claim.

Claim C.4. For any polynomials t(n), σ(n), any t(n)-samplable distribution D = {Dn}n∈N on
samplers, any sufficiently large n ∈ N, and any m, τ ∈ N, if D satisfies that for all γ−1 ∈ N,

Pr
X=(x,b)∼Dmn

[
LTτ (X) ≤ min{− logDmn (b|x) + C(log τ + log γ−1), σ(n)}

]
≥ 1− γ,

then it holds that, for every γ−1 ∈ N,

Pr
X={(xi,bi)}mi=1∼Dmn

[
Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ γC

n2σ(n)τC
· Dmn (X)

]
≥ 1− γ,

where r := r(n,m, t(n), σ(n), τ).

80

Proof. We define a t(n)-samplable distribution D′ = {D′n}n∈N such that each D′n is a distribution of
the first half of S ∼ Dn (i.e., the sub-circuit that produces examples). Let M be the deterministic
t(n)-time sampling algorithm for D′, and let d = |M |.

We only consider a sufficiently large n ∈ N so that n ≥ 2d. Then, with probability n−1·2−d ≥ n−2

over the choice of j ∈ [n] and Πe ∈ {0, 1}n, the program (Πe)[j] (in the input of f) corresponds
to the description of M . Under this condition, the distribution of S in the computation of f is
statistically identical to D′n, and for each m ∈ N and (x, b) ∈ supp(Dmn), the probability that x is
sampled according to Dmn (we denote this probability by Dmn (x)) is equivalent to the conditional
probability that x = (x1, . . . , xm) holds for (i, x1, b1, . . . , xm, bm) ∼ f(Ur). Thus, for each m ∈ N
and each (x, b) ∈ supp(Dmn),

Pr
Ur

[
x = (x1, . . . , xm) for f(Ur) = (i, x1, b1, . . . , xm, bm)

]
≥ D

m
n (x)

n2
.

Fix γ−1 ∈ N and X = (x, b) ∈ supp(Dmn) satisfying the following condition arbitrarily:

LTτ (X) ≤ min{− logDmn (b|x) + C(log τ + log γ−1), σ(n)} (17)

Over the choice of i ∈ [σ(n)] (in the input of f), the event that i = LTτ (X) (≤ σ(n)) occurs
with probability σ(n)−1. We consider the event Ex that i = LTτ (X) and x = (x1, . . . , xm) holds
for f(Ur) = (i, x1, b1, . . . , xm, bm). Then, we have

Pr
f(Ur)

[Ex] ≥ D
m
n (x)

n2σ(n)
.

Under the condition that Ex occurs, the probability that (Πf)[i] (note that i = LTτ (X)) corresponds
to the program Π∗X satisfying |Π∗X | = LTτ (X) and bi = U τ (Π∗X , x

i) for each i ∈ [m] is

Pr
Πf

[
(Πf)[i] = Π∗X

]
= 2−LTτ (X)

≥ 2logDmn (b|x)−C(log τ+log γ−1)

=
γC · Dmn (b|x)

τC
,

where the inequality follows from (17).
Thus, for each X = (x, b) ∈ supp(Dmn) (let x = (x1, . . . , xm) and b = (b1, . . . , bm)), if (x, b)

satisfies (17), then we have

Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ Pr

Πf

[
(Πf)[LTτ (X)] = Π∗X

]
· Pr
f(Ur)

[Ex]

≥ γC · Dmn (b|x)

τC
· D

m
n (x)

n2σ(n)

=
γC

n2σ(n)τC
· Dmn (X).

Since Pr(x,b)∼Dmn [(x, b) satisfies (17)] ≥ 1− γ follows from the assumption, the claim holds.

81

Now, we show the correctness of L(-; 1〈n,m,δ
−1,t(n),σ(n),τ〉). Suppose that the error probability of

L is grater than δ. Then, we derive a contradiction. For readability, we omit the parameters of L
below.

By the assumption on D in the theorem and Claim C.4, we have

Pr
X={(xi,bi)}mi=1∼Dmn

[
Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ (δ/2)C

n2σ(n)τC
· Dmn (X)

]
≥ 1− δ/2.

Let GoodSamp ⊆ supp(Dmn) be the set of samples X ∈ supp(Dmn) satisfying the event in the
probability above, i.e., PrX∼Dmn [X ∈ GoodSamp] ≥ 1 − δ/2, and for each X = {(xi, bi)}mi=1 ∈
GoodSamp,

Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ (δ/2)C

n2σ(n)τC
· Dmn (X).

For each X = {(xi, bi)}mi=1 ∈ supp(Dmn), we let FX denote the event that L(X) fails in finding
a program Π ∈ {0, 1}∗ such that |Π| = LTτ (X) and bi = U τ (Π, xi) for each i ∈ [m]. Note that FX
occurs only if A(LTτ (X), x1, b1, . . . , xm, bm) fails in finding an inverse element.

Under the assumption that the error probability of L is greater than δ, we have

Pr
X∼Dmn ,L

[FX ∧X ∈ GoodSamp] ≥ Pr
X∼Dmn ,L

[FX]− Pr
X∼Dmn

[X /∈ GoodSamp]

≥ δ − δ/2 = δ/2.

Furthermore, we obtain

δ/2 ≤ Pr
X∼Dmn ,L

[FX ∧X ∈ GoodSamp]

=
∑

X∈GoodSamp

Dmn (X) · Pr
L

[FX]

≤
∑

X={(xi,bi)}mi=1∈GoodSamp

Dmn (X) · Pr
A

[A(LTτ (X), x1, b1, . . . , xm, bm) fails in inverting]

≤
∑

X={(xi,bi)}mi=1∈GoodSamp

n2σ(n)τC

(δ/2)C
Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
· Pr
A

[A(LTτ (X), x1, b1, . . . , xm, bm) fails in inverting]

=
n2σ(n)τC

(δ/2)C
Pr
A,Ur

[A(f(Ur)) fails in inverting ∧ ∃X = {(xi, bi)}mi=1 ∈ GoodSamp

s.t. f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)]

≤ n2σ(n)τC

(δ/2)C
Pr
A,Ur

[A(f(Ur)) fails in inverting].

Therefore, the failure probability of A is at least

δ

2
· (δ/2)C

n2σ(n)τC
= 2δ′.

This is a contradiction because the failure probability of A is at most δ′ by the choice of the
parameter for A in L.

82

Next, we show that the coding theorem in Lemma C.3 holds if a distribution on samplers is
separated into two distributions E and F over examples and a target function (as the model studied
in [BFKL93]) under the following derandomization assumption for nondeterministic circuits.

Hypothesis C.5 (Pseudorandom generator against nondeterministic circuits). There exists a con-
stant C0 > 0 such that for every polynomial m, there exists a poly(m(n))-time computable pseu-
dorandom generator G = {Gn}n∈N, where Gn : {0, 1}C0 logm(n) → {0, 1}m(n) that 1/m(n)-fools
m(n)-size nondeterministic circuits, i.e., for every m(n)-size nondeterministic circuit C and every
n ∈ N; ∣∣∣∣∣ Pr

z∼{0,1}C0 logm(n)
[C(G(z)) = 1]− Pr

w∼{0,1}m(n)
[C(w) = 1]

∣∣∣∣∣ ≤ 1

m(n)
.

For example, Hypothesis C.5 holds if E requires exponential-size (single-valued) nondetermin-
istic circuits almost everywhere [SU05].

For all distribution families E = {En}n∈N and F = {Fn}n∈N, where each En is over {0, 1}n and
each Fn is over (binary representations of) functions in a concept class Cn ⊆ {f : {0, 1}n → {0, 1}},
we use the notation DE,F to refer to the following distribution of samplers: for each n ∈ N, (i)
select f ∼ Fn, and (ii) output a sampler SE,f that generates (x, f(x)) for x ∼ En.

Lemma C.6. If Hypothesis C.5 holds, then for every polynomial-time evaluatable concept class
C = {Cn}n∈N, where Cn ⊆ {f : {0, 1}n → {0, 1}}, there exist a polynomial τ0 and a constant C > 0
such that for every polynomial t(n), every t(n)-time samplable distribution E over examples, every
t(n)-time samplable distribution F over C , every sufficiently large n ∈ N, every m, τ ∈ N with
τ ≥ τ0(n,m, t(n)), and every X = (x, b) ∈ supp((DE,F)mn), it holds that

LTτ (X) ≤ − log(DE,F)mn (b|x) + C log τ.

Particularly, DE,F satisfies the condition in Theorem C.3 for every τ ≥ τ0(n,m, t(n)) when σ(n)
in Theorem C.3 is the upper bound on the length of binary representation for class Cn.

Proof. The proof essentially appeared in [AGMMM18; Hir21]; the only difference is that we consider
the time-bounded LT-complexity.

For readability, we omit the subscript E ,F of DE,F . Let F be the t(n)-time sampling algorithm
for F .

Fix X = (x, b) ∼ Dmn arbitrarily. Let x = (x1, . . . , xm), b = (b1, . . . , bm), and p = Dmn (b|x).
Then, we have

p = Dmn (b|x) = Pr
f∼Fn

[f(xi) = bi for each i ∈ [m]]

= Pr
r∼{0,1}t(n)

[f = F (1n, r) and f(xi) = bi for each i ∈ [m]].

Let R ⊆ {0, 1}t(n) be a set of random strings r ∈ {0, 1}t(n) such that f = F (1n, r) and f(xi) = bi

for each i ∈ [m]. Then, we have p = |R| · 2−t(n).
Let s = d− log pe and ` = t(n) − s − 2. We consider the pairwise-independent hash family

H = {hU,v : {0, 1}t(n) → {0, 1}`}(U,v), where U ∈ F`×t(n)
2 , v ∈ F`2, and hU,v(r) = U · r + v (where we

identify {0, 1} with F2).
By Chebyshev’s inequality, with probability at least 1/4 over the choice of (U, v), there ex-

ists an element rU,v ∈ R ∩ h−1
U,v(0

`), and |h−1
U,v(0

`)| ≤ 2s+3 holds (cf. [AGMMM18, Claim 4.2.1]).

83

Furthermore, through Gaussian elimination, any r ∈ h−1
U,v(0

`) is reconstructed from (U, v) and

log |h−1
U,v(0

`)| ≤ s + 3 additional bits of information (i.e., index in h−1
U,v(0

`)) in poly(t(n)) time

(cf. [AGMMM18, Claim 4.2.2]). Particularly, rU,v ∈ R ∩ h−1
U,v(0

`) is also reconstructed from (U, v)

and some wU,v ∈ {0, 1}≤s+3.
Now, we consider the following nondeterministic algorithm A. On input z ∈ {0, 1}`(t(n)+1)

and auxiliary advice x = (x1, . . . , xm) and b = (b1, . . . , bm), the algorithm A regards z as a tuple

(U, v), where U ∈ F`×t(n)
2 and v ∈ F`2, and nondeterministically guesses wz ∈ {0, 1}≤s+3 such that

the reconstruction algorithm specified above generates a function f : {0, 1}n → {0, 1} for which
f(xi) = bi holds for each i ∈ [m]. If there exists such a wz, then A accepts z. By the argument
above, the following holds:

Pr
z∼{0,1}`(t(n)+1)

[A(z;x, b) = 1] ≥ 1/4.

By the standard way to translate a Turing machine into a circuit, we obtain a nondeterminis-
tic circuit Ã of size τ(n,m, t(n)) that corresponds to A, where τ is a polynomial determined by
the time complexity for evaluating C (because A executes the evaluation algorithm for C). Let
G : {0, 1}C0 log τ(n,m,t(n)) → {0, 1}τ(n,m,t(n)) be the pseudorandom generator in Hypothesis C.5 for
circuit size τ(n,m, t(n)). Then, there must exist a string z′ ∈ {0, 1}C0 log τ(n,m,t(n)) such that
Ã(G(z′)) = 1; otherwise,

Pr
z∼{0,1}τ(n,m,t(n))

[Ã(z) = 1]− Pr
z′∼{0,1}C0 log τ(n,m,t(n))

[Ã(G(z′)) = 1] ≥ 1/4− 0 = 1/4,

which contradicts the fact that G is a pseudorandom generator.
Since Ã(G(z′)) = 1, there exists a witness w ∈ {0, 1}≤s+3 such that the reconstruction algorithm

above generates f : {0, 1}n → {0, 1} satisfying that f(xi) = bi holds for each i ∈ [m] from G(z′)
(regarded as a seed for the hash function) and index w. We remark that this consistent function f
is uniformly constructed from G, z′, w in τ ′(n,m, t(n)) time, where τ ′ is a polynomial determined
by the time-complexity of evaluating C and computing G.

Thus, there exists a polynomial τ ′′ (determined by the time-complexity of evaluating C and
computing G, and simulation overhead for U) such that

LTτ ′′(n,m,t(n))(X) ≤ |G|+ |z′|+ |w|+O(1)

≤ s+O(log τ ′′(n,m, t(n)))

≤ − logDmn (b|x) + C1 log τ ′′(n,m, t(n))

for some absolute constant C1 > 0.

Lemmas C.3 and C.6 immediately imply the following learnability result.

Theorem C.7. Let C = {Cn}n∈N be a polynomial-time evaluatable class, where Cn ⊆ {f : {0, 1}n →
{0, 1}}, such that the length of binary representation for Cn is at most `(n) for some polynomial `.

Under the non-existence of infinitely-often one-way functions and Hypothesis C.5, there exist
a polynomial-time randomized algorithm L and a polynomial τ0 such that for every polynomial
t(n), every unknown t(n)-time samplable distribution E over examples, every unknown t(n)-time
samplable distribution F over C , every sufficiently large n ∈ N, and every m, δ−1, τ ∈ N with
τ ≥ τ0(n,m, t(n)), the algorithm L(-; 1〈n,m,δ

−1,t(n),`(n),τ〉) solves the search version of MINLT[τ] on
average under DmE,F with error probability at most δ.

84

D Usage of Pre-Knowledge

In this section, we discuss that the time-complexity of our learner can be improved when pre-
knowledge is available, where we consider the pre-knowledge given as z = M1, . . . ,Mκ for an
absolute constant κ and descriptions M1, . . . ,Mκ of samplers that select secret information.

We introduce some notions. For any t ∈ N and any z ∈ {0, 1}∗, we define the t-time bounded
distribution given z, denoted by Qt

z, as the distribution of U t(r, z) for r ∼ {0, 1}t. We use the
notation Qt

z to refer to the probability that x is sampled from Qt
z. We also define the conditional

variants of qt and computational depth as qt(x|z) = − log Qt
z(x) and cdt(x|z) := qt(x|z)−K(x|z).

For every fixed advice z, we can use cdt(x|z) instead of cdt(x) in universal extrapolation.

Theorem D.1 (Universal Extrapolation with Fixed Advice). If there exists no infinitely-often one-
way function, then for every advice string z ∈ {0, 1}∗, there exists a randomized polynomial-time
algorithm UEz such that for all k, t, ε−1, α, d ∈ N and all x ∈ {0, 1}∗ with cdt(x|z) ≤ α,

L1
(
UEz(x; 1〈k,t,ε

−1,2α〉),Nextk(Q
t
z, x)

)
≤ ε.

Proof. The proof is the same as that of Theorem 8.1, except we always invoke U t(-, z) instead of
U t.

For every fixed advice z, we can use Qt
z instead of Qt in Lemma 9.2.

Lemma D.2. For every advice z ∈ {0, 1}∗ and every distribution D over binary strings such that
D has a tD-time sampler described by d bits, and for every a ∈ N ∪ {0}, every t, q, b,m ∈ N
with t ≥ τdom(d, tD), and every q-query (possibility not efficiently computable) randomized oracle
machine I,

E
i∼[m],x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qtz ,x<ixi)
)]
≤ q · O(d)

m
,

where the hidden constant in O(d) depends on only the universal Turing machine.

Proof. In the same way as the proof of Lemma 9.2, we obtain

E
[
KL
(
INextb(D,x

<ixi)||INextb(Q
t
z ,x

<ixi)
)]
≤ q

m

∑
x∈supp(D)

D(x) log
D(x)

Qt
z(x)

.

The above implies the lemma because the domination property Qt
z(x) ≥ 2−O(d(D))D(x) holds by

considering the case where the prefix of the random seed for U t corresponds to the sampler of
D.

By combining Theorem D.1 with Lemma D.2 as in Section 9.2, we obtain the following learner
for ACDs with better time complexity under the pre-knowledge.

Theorem D.3. Let s(n) be a polynomial and S be a finite subset of pairs (G, D), where D is a
polynomial-time samplable ACD of s(n)-bit initial state and G is samplable distribution over s(n)-bit
initial states. If there exists no infinitely-often one-way function, then there exists a learning algo-
rithm LS such that for every (G, D) ∈ S, the learner LS learns D under G in poly(n, |S|, ε−1, δ−1)
time with sample complexity O(s(n) · ε−2δ−1).

85

Proof. For sufficiently large t and for every (G, D) ∈ S,

Qt
S(G, D) ≥ 2−O(log |S|)

because there exists a program that has an index i ∈ [|S|] and outputs the indicated i-th distribution
in S. Therefore, qt(G, D|S) ≤ O(log |S|).

Based on the same proof as that of Theorem 9.7, the theorem follows from Theorem D.1,
Lemma D.2, and the fact that for sufficiently large t and for every (G, D) ∈ S,

cdt(G, D|S) < qt(G, D|S) ≤ O(log |S|).

86

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

