
Directed Poincaré Inequalities and L
1 Monotonicity Testing of

Lipschitz Functions

Renato Ferreira Pinto Jr.∗

University of Waterloo

r4ferrei@uwaterloo.ca

Abstract

We study the connection between directed isoperimetric inequalities and monotonicity test-
ing. In recent years, this connection has unlocked breakthroughs for testing monotonicity of
functions defined on discrete domains. Inspired the rich history of isoperimetric inequalities in
continuous settings, we propose that studying the relationship between directed isoperimetry
and monotonicity in such settings is essential for understanding the full scope of this connection.

Hence, we ask whether directed isoperimetric inequalities hold for functions f : [0, 1]n → R,
and whether this question has implications for monotonicity testing. We answer both questions
affirmatively. For Lipschitz functions f : [0, 1]n → R, we show the inequality dmono

1
(f) .

E [‖∇−f‖1], which upper bounds the L1 distance to monotonicity of f by a measure of its
“directed gradient”. A key ingredient in our proof is the monotone rearrangement of f , which
generalizes the classical “sorting operator” to continuous settings. We use this inequality to
give an L1 monotonicity tester for Lipschitz functions f : [0, 1]n → R, and this framework also
implies similar results for testing real-valued functions on the hypergrid.

∗Partly funded by an NSERC Canada Graduate Scholarship Doctoral Award.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 101 (2023)

1 Introduction

In property testing, algorithms must make a decision about whether a function f : Ω → R has
some property P, or is far (under some distance metric) from having that property, using a small
number of queries to f . One of the most well-studied problems in property testing is monotonicity
testing, the hallmark case being that of testing monotonicity of Boolean functions on the Boolean
cube, f : {0, 1}n → {0, 1}. We call f monotone if f(x) ≤ f(y) whenever x � y, i.e. xi ≤ yi for
every i ∈ [n].

A striking trend emerging from this topic of research has been the connection between mono-
tonicity testing and isoperimetric inequalities, in particular directed analogues of classical results
such as Poincaré and Talagrand inequalities. We preview that the focus of this work is to further ex-
plore this connection by establishing directed isoperimetric inequalities for functions f : [0, 1]n → R

with continuous domain and range, and as an application obtain monotonicity testers in such set-
tings. Before explaining our results, let us briefly summarize the connection between monotonicity
testing and directed isoperimetry.

For a function f : {0, 1}n → R, let dconst1 (f) denote its L1 distance to any constant function
g : {0, 1}n → R, and for any point x, define its discrete gradient ∇f(x) ∈ R

n by (∇f(x))i :=
f(xi→1)− f(xi→0) for each i ∈ [n], where xi→b denotes the point x with its i-th coordinate set to b.
Then the following inequality1 is usually called the Poincaré inequality on the Boolean cube (see
e.g. [O’D14]): for every f : {0, 1}n → {0, 1},

dconst1 (f) . E [‖∇f‖1] . (1)

(Here and going forward, we write f . g to denote that f ≤ cg for some universal constant c, and
similarly for f & g. We write f ≈ g to denote that f . g and g . f .)

Now, let dmono
1 (f) denote the L1 distance from f to any monotone function g : {0, 1}n → R,

and for each point x let ∇−f(x), which we call the directed gradient of f , be given by ∇−f(x) :=
min{∇f(x), 0}. Then [CS16] were the first to notice that the main ingredient of the work of
[GGL+00], who gave a monotonicity tester for Boolean functions on the Boolean cube with query
complexity O(n/ǫ), was the following “directed analogue” of (1)2: for every f : {0, 1}n → {0, 1},

dmono

1 (f) . E
[
‖∇−f‖1

]
. (2)

The tester of [GGL+00] is the “edge tester”, which samples edges of the Boolean cube uniformly at
random and rejects if any sampled edge violates monotonicity. Inequality (2) shows that, if f is far
from monotone, then many edges are violating, so the tester stands good chance of finding one.

In their breakthrough work, [CS16] gave the first monotonicity tester with o(n) query complex-
ity by showing a directed analogue of Margulis’s inequality. This was improved by [CST14], and
eventually the seminal paper of [KMS18] resolved the problem of (nonadaptive) monotonicity test-
ing of Boolean functions on the Boolean cube, up to polylogarithmic factors, by giving a tester with
query complexity Õ(

√
n/ǫ2). The key ingredient was to show a directed analogue of Talagrand’s

inequality. Talagrand’s inequality gives that, for every f : {0, 1}n → {0, 1},

dconst1 (f) . E [‖∇f‖2] .
1The left-hand side is usually written Var [f] instead; for Boolean functions, the two quantities are equivalent up

to a constant factor, and writing dconst1 (f) is more consistent with the rest of our presentation.
2Typically the left-hand side would be the distance to a Boolean monotone function, rather than any real-valued

monotone function, but the two quantities are equal; this may be seen via a maximum matching of violating pairs of
f , see [FLN+02].

1

Compared to (1), this replaces the ℓ1-norm of the gradient with its ℓ2-norm. [KMS18] showed the
natural directed analogue3 up to polylogarithmic factors, which were later removed by [PRW22]:
for every f : {0, 1}n → {0, 1},

dmono

1 (f) . E
[
‖∇−f‖2

]
.

Since then, directed isoperimetric inequalities have also unlocked results in monotonicity testing
of Boolean functions on the hypergrid [BCS18, BCS22, BKKM22, BCS23] (see also [BCS20, HY22])
and real-valued functions on the Boolean cube [BKR20].

Our discussion so far has focused on isoperimetric (Poincaré-type) inequalities on discrete do-
mains. On the other hand, a rich history in geometry and functional analysis, originated in con-
tinuous settings, has established an array of isoperimetric inequalities for functions defined on
continuous domains, as well as an impressive range of connections to topics such as partial differen-
tial equations [Poi90], Markov diffusion processes [BGL14], probability theory and concentration of
measure [BL97], optimal transport [BS16], polynomial approximation [Ver99], among others. (See
Appendix A for a brief background on Poincaré-type inequalities.)

As a motivating starting point, we note that for suitably smooth (Lipschitz) functions f :
[0, 1]n → R, an L1 Poincaré-type inequality holds [BH97]:

dconst1 (f) . E [‖∇f‖2] . (3)

Thus, understanding the full scope of the connection between classical isoperimetric inequalities,
their directed counterparts, and monotonicity seems to suggest the study of the continuous setting.
In this work, we ask: do directed Poincaré-type inequalities hold for functions f with continuous
domain and range? And if so, do such inequalities have any implications for monotonicity testing?
We answer both questions affirmatively: Lipschitz functions f : [0, 1]n → R admit a directed L1

Poincaré-type inequality (Theorem 1.2), and this inequality implies an upper bound on the query
complexity of testing monotonicity of such functions with respect to the L1 distance (Theorem 1.4).
(We view L1 as the natural distance metric for the continuous setting; see Section 1.3 for a discus-
sion.) This framework also yields results for L1 testing monotonicity of real-valued functions on
the hypergrid f : [m]n → R. Our testers are partial derivative testers, which naturally generalize
the classical edge testers [GGL+00, CS13] to continuous domains.

We now introduce our model, and then summarize our results.

1.1 L
p-testing

Let (Ω,Σ, µ) be a probability space (typically for us, the unit cube or hypergrid with associated
uniform probability distribution). Let R ⊆ R be a range, and P a property of functions g : Ω → R.
Given a function f : Ω → R, we denote the Lp distance of f to property P by dp(f,P) :=

infg∈P dp(f, g), where dp(f, g) := E
x∼µ

[|f(x) − g(x)|p]1/p. For fixed domain Ω, we write dconstp (f) for

the Lp distance of f to the property of constant functions, and dmono
p (f) for the Lp distance of f to

the property of monotone functions. (See Definition 2.2 for a formal definition contemplating e.g.
the required measurability and integrability assumptions.)

Definition 1.1 (Lp-testers). Let p ≥ 1. For probability space (Ω,Σ, µ), range R ⊆ R, property
P ⊆ Lp(Ω, µ) of functions g : Ω → R, and proximity parameter ǫ > 0, we say that randomized
algorithm A is an Lp-tester for P with query complexity q if, given oracle access to an unknown
input function f : Ω → R ∈ Lp(Ω, µ), A makes at most q oracle queries and 1) accepts with
probability at least 2/3 if f ∈ P; 2) rejects with probability at least 2/3 if dp(f,P) > ǫ.

3In fact, they require a robust version of this inequality, but we omit that discussion for simplicity.

2

We say that A has one-sided error if it accepts functions f ∈ P with probability 1, otherwise
we say it has two-sided error. It is nonadaptive if it decides all of its queries in advance (i.e. before
seeing output from the oracle), and otherwise it is adaptive. We consider two types of oracle:

Value oracle: Given point x ∈ Ω, this oracle outputs the value f(x).

Directional derivative oracle: Given point x ∈ Ω and vector v ∈ R
n, this oracle outputs

the derivative of f along v at point x, given by ∂f
∂v (x) = v · ∇f(x), as long as f is differentiable

at x. Otherwise, it outputs a special symbol ⊥.

A directional derivative oracle is weaker than a full first-order oracle, which would return the
entire gradient [BV04], and it seems to us like a reasonable model for the high-dimensional setting;
for example, obtaining the full gradient costs n queries, rather than a single query. This type of
oracle has also been studied in optimization research, e.g. see [CWZ21]. For our applications, only
the sign of the result will matter, in which case we remark that, for sufficiently smooth functions
(say, functions with bounded second derivatives) each directional derivative query may be simulated
using two value queries on sufficiently close together points.

Our definition (with value oracle) coincides with that of [BRY14a] when the range is R = [0, 1].
On the other hand, for general R, we keep the distance metric unmodified, whereas [BRY14a]
normalize it by the magnitude of R. Intuitively, we seek testers that are efficient even when f may
take large values as the dimension n grows; see Section 1.3.3 for more details.

1.2 Results and main ideas

1.2.1 Directed Poincaré-type inequalities

Our first result is a directed Poincaré inequality for Lipschitz functions f : [0, 1]n → R, which may
be seen as the continuous analogue of inequality (2) of [GGL+00].

Theorem 1.2. Let f : [0, 1]n → R be a Lipschitz function with monotone rearrangement f∗. Then

dmono

1 (f) ≈ E [|f − f∗|] . E
[
‖∇−f‖1

]
. (4)

As hinted in the statement, a crucial tool for this result is the monotone rearrangement f∗

of f . We construct f∗ by a sequence of axis-aligned rearrangements R1, . . . , Rn; each Ri is the
non-symmetric monotone rearrangement operator along dimension i, which naturally generalizes
the sorting operator of [GGL+00] to the continuous case. For each coordinate i ∈ [n], the operator
Ri takes f into an equimeasurable function Rif that is monotone in the i-th coordinate, at a
“cost” E [|f −Rif |] that is upper bounded by E

[
|∂−

i f |
]
, where ∂−

i f := (∇−f)i is the directed
partial derivative along the i-th coordinate. We show that each application Ri can only decrease
the “cost” associated with further applications Rj , so that the total cost of obtaining f∗ (i.e. the
LHS of (4)) may be upper bounded, via the triangle inequality, by the sum of all directed partial
derivatives, i.e. the RHS of (4).

A technically simpler version of this argument also yields a directed Poincaré inequality for
real-valued functions on the hypergrid. We also note that Theorems 1.2 and 1.3 are both tight up
to constant factors.

Theorem 1.3. Let f : [m]n → R and let f∗ be its monotone rearrangement. Then

dmono

1 (f) ≈ E [|f − f∗|] . mE
[
‖∇−f‖1

]
.

3

Continuous

{0, 1}n → {0, 1} {0, 1}n → R [0, 1]n → R

dconst1 (f) . E [‖∇f‖1] * [Tal93] * [Tal93] * [BH97]

dmono
1 (f) . E [‖∇−f‖1] [GGL+00] Theorem 1.3 Theorem 1.2

dconst1 (f) . E [‖∇f‖2] * [Tal93] [Tal93] [BH97]

dmono
1 (f) . E [‖∇−f‖2] [KMS18] ? Conjecture 1.8

Discrete

(L1, ℓ1)-Poincaré

(L1, ℓ2)-Poincaré

Inequality

Setting

Table 1: Classical and directed Poincaré-type inequalities on discrete and continuous domains.
Cells marked with * indicate inequalities that follow from another entry in the table.

Table 1 places our results in the context of existing classical and directed inequalities. In that
table and going forward, for any p, q ≥ 1 we call the inequalities

dconstp (f)p . E
[
‖∇f‖pq

]
and dmono

p (f)p . E
[
‖∇−f‖pq

]

a classical and directed (Lp, ℓq)-Poincaré inequality, respectively. Note that the Lp notation refers to
the space in which we take norms, while ℓq refers to the geometry in which we measure gradients.
In this paper, we focus on the L1 inequalities. See also Appendix A for an extended version of
Table 1 including other related hypergrid inequalities shown in recent work.

We also note that we have ignored in our discussion the issues of robust inequalities, which
seem essential for some of the testing applications (see [KMS18]), and the distinction between
inner and outer boundary, whereby some inequalities on Boolean f may be made stronger by
setting ∇f(x) = 0 when f(x) = 0 (see e.g. [Tal93]). We refer the reader to the original works for
the strongest version of each inequality and a detailed treatment of these issues.

1.2.2 Testing monotonicity on the unit cube and hypergrid

Equipped with the results above, we give a monotonicity tester for Lipschitz functions f : [0, 1]n →
R, and the same technique yields a tester for functions on the hypergrid as well. The testers are
parameterized by an upper bound L on the best Lipschitz constant of f in ℓ1 geometry, which we
denote Lip1(f) (see Definition 2.1 for a formal definition).

Both of our testers are partial derivative testers. These are algorithms which only have access to
a directional derivative oracle and, moreover, their queries are promised to be axis-aligned vectors.
In the discrete case, these are usually called edge testers [GGL+00, CS13].

Theorem 1.4. There is a nonadaptive partial derivative L1 monotonicity tester for Lipschitz func-
tions f : [0, 1]n → R satisfying Lip1(f) ≤ L with query complexity O

(
nL
ǫ

)
and one-sided error.

Similarly, there is a nonadaptive partial derivative L1 monotonicity tester for functions f : [m]n

satisfying Lip1(f) ≤ L with query complexity O
(
nmL
ǫ

)
and one-sided error.

The testers work by sampling points x and coordinates i ∈ [n] uniformly at random, and using
directional derivative queries to reject if ∂−

i f(x) < 0. Their correctness is shown using Theorems 1.2
and 1.3, which imply that, when f is ǫ-far from monotone in L1-distance, the total magnitude of
its negative partial derivatives must be large—and since each partial derivative is at most L by
assumption, the values ∂−

i f(x) must be strictly negative in a set of large measure, which the tester
stands good chance of hitting with the given query complexity.

4

1.2.3 Testing monotonicity on the line

The results above, linking a Poincaré-type inequality with a monotonicity tester that uses partial
derivative queries and has linear dependence on n, seem to suggest a close parallel with the case of
the edge tester on the Boolean cube [GGL+00, CS13]. On the other hand, we also show a strong
separation between Hamming and L1 testing. Focusing on the simpler problem of monotonicity
testing on the line, we show that the tight query complexity of L1 monotonicity testing Lipschitz
functions grows with the square root of the size of the (continuous or discrete) domain:

Theorem 1.5. There exist nonadaptive L1 monotonicity testers for Lipschitz functions f : [0,m] →
R and f : [m] → R satisfying Lip1(f) ≤ L with query complexity Õ

(√
mL/ǫ

)
. The testers use

value queries and have one-sided error.

This result (along with the near-tight lower bounds in Section 1.2.4) is in contrast with the
case of Hamming testing functions f : [m] → R, which has sample complexity Θ(logm) [EKK+98,
Fis04, BRY14b, Bel18]. Intuitively, this difference arises because a Lipschitz function may violate
monotonicity with rate of change L, so the area under the curve may grow quadratically on violating
regions. The proof is in fact a reduction to the Hamming case, using the Lipschitz assumption to
establish a connection between the L1 and Hamming distances to monotonicity.

1.2.4 Lower bounds

We give two types of lower bounds: under no assumptions about the tester and for constant n, we
show that the dependence of Theorem 1.4 on L/ǫ is close to optimal4. We give stronger bounds
for the special case of partial derivative testers (such as the ones from Theorem 1.4), essentially
showing that our analysis of the partial derivative tester is tight.

Theorem 1.6. Let n be a constant. Any L1 monotonicity tester (with two-sided error, and adaptive
value and directional derivative queries) for Lipschitz functions f : [0, 1]n → R satisfying Lip1(f) ≤
L requires at least Ω

(
(L/ǫ)

n
n+1

)
queries.

Similarly, any L1 monotonicity tester (with two-sided error and adaptive queries) for functions

f : [m]n → R satisfying Lip1(f) ≤ L requires at least Ω
(

min
{

(mL/ǫ)
n

n+1 ,mn
})

queries.

Notice that the bounds above cannot be improved beyond logarithmic factors, due to the upper
bounds for the line in Theorem 1.5. It also follows that adaptivity (essentially) does not help with L1

monotonicity testing on the line, matching the situation for Hamming testing [Fis04, CS14, Bel18].
Theorem 1.6 is obtained via a “hole” construction, which hides a non-monotone region of f

inside an ℓ1-ball B of radius r. We choose r such the violations of monotonicity inside B are large
enough to make f ǫ-far from monotone, but at the same time, the ball B is hard to find using few
queries. However, this construction has poor dependence on n.

To lower bound the query complexity of partial derivative testers with better dependence on n,
we employ a simpler “step” construction, which essentially chooses a coordinate i and hides a small
negative-slope region on every line along coordinate i. These functions are far from monotone,
but a partial derivative tester must correctly guess both i and the negative-slope region to detect
them. We conclude that Theorem 1.4 is optimal for partial derivative testers on the unit cube, and
optimal for edge testers on the hypergrid for constant ǫ and L:

4Note that one may always multiply the input values by 1/L to reduce the problem to the case with Lipschitz
constant 1 and proximity parameter ǫ/L, so this is the right ratio to look at.

5

Domain

Õ
(
n2L
ǫ

)
(*) [BRY14a] O

(
nL
ǫ

)
p.d.t.

—

Hamming testing

f : Ω → R

L1-testing (prior works)
f : Ω → R, Lip1(f) ≤ L

L1-testing (this work)
f : Ω → R, Lip1(f) ≤ L

Ω = [0, 1]n Infeasible Ω
((

L
ǫ

) n
n+1

)
const. n

Ω
(
nL
ǫ

)
p.d.t.

Ω = [m]n

O
(
n logm

ǫ

)
[CS13] Õ

(
n2mL

ǫ

)
(*) [BRY14a] O

(
nmL
ǫ

)
p.d.t.

Ω
(
n log(m)−log(1/ǫ)

ǫ

)
[CS14]

Ω̃
(
L
ǫ

)
n.a. 1-s. [BRY14a]

Ω(n logm) n.a. [BRY14b]

Ω
((

mL
ǫ

) n
n+1

)
const. n

Ω(nm) p.d.t.

Table 2: Query complexity bounds for testing monotonicity on the unit cube and hypergrid. Upper
bounds are for nonadaptive (n.a.) algorithms with one-sided error (1-s.), and lower bounds are for
adaptive algorithms with two-sided error, unless stated otherwise. For L1-testing, the upper bounds
derived from prior works (*) are specialized to the Lipschitz case by us; see the text for details.
Our lower bounds hold either for constant (const.) n, or for partial derivative testers (p.d.t.).

Theorem 1.7. Any partial derivative L1 monotonicity tester for Lipschitz functions f : [0, 1]n → R

satisfying Lip1(f) ≤ L (with two-sided error and adaptive queries) requires at least Ω(nL/ǫ) queries.
For sufficiently small constant ǫ and constant L, any partial derivative L1 monotonicity tester

for functions f : [m]n → R satisfying Lip1(f) ≤ L (with two-sided error and adaptive queries)
requires at least Ω(nm) queries.

Table 2 summarizes our upper and lower bounds for testing monotonicity on the unit cube and
hypergrid, along with the analogous Hamming testing results for intuition and bounds for L1 testing
from prior works. See Section 1.3.3 and Appendices B and C for a discussion and details of how
prior works imply the results in that table, since to our knowledge the problem of L1 monotonicity
testing parameterized by the Lipschitz constant has not been explicitly studied before. See also
Section 7 for a broader overview of prior works on a spectrum of monotonicity testing models.

1.3 Discussion and open questions

1.3.1 Stronger directed Poincaré inequalities?

Classical Poincaré inequalities are usually of the ℓ2 form, which seems natural e.g. due to basis
independence. On the other hand, in the directed setting, the weaker ℓ1 inequalities (as in [GGL+00]
and Theorems 1.2 and 1.3) have more straightforward proofs than ℓ2 counterparts such as [KMS18].
A perhaps related observation is that monotonicity is not a basis-independent concept, since it is
defined in terms of the standard basis. It is not obvious whether directed ℓ2 inequalities ought to
hold in every (real-valued, continuous) setting. Nevertheless, in light of the parallels and context
established thus far, we are hopeful that such an equality does hold. Otherwise, we believe that
the reason should be illuminating. For now, we conjecture:

Conjecture 1.8. For every Lipschitz function f : [0, 1]n → R, it holds that

dmono

1 (f) . E
[
‖∇−f‖2

]
.

6

Accordingly, we also ask whether an L1 tester with O(
√
n) complexity exists, presumably with

a dependence on the Lip2(f) constant rather than Lip1(f) since ℓ2 is the relevant geometry above.

1.3.2 Query complexity bounds

Our lower bounds either have weak dependence on n, or only apply to a specific family of algorithms
(partial derivative testers). Previous works have established tester-independent lower bounds with
strong dependence on n by using reductions from communication complexity [BBM12, BRY14b],
whose translation to the continuous setting is not obvious5, by reduction to comparison-based
testers [CS14], whose connection to L1 testing setting seems less immediate, or directly via a
careful construction [Bel18]. We believe that finding strong tester-independent lower bounds for
L1 testing Lipschitz functions on the unit cube is an interesting direction for further study.

We also remark that even a tight lower bound matching Theorem 1.4 may not rule out testers
with better dependence on n if, for example, such a tester were parameterized by Lip2(f), which
can be a factor of

√
n larger than Lip1(f). We view the possibility of better testers on the unit

cube, or otherwise a conceptual separation with [KMS18], as an exciting direction for future work.

1.3.3 Relation to prior work on Lp-testing

[BRY14a] initiated the systematic study of Lp-testing and, most relevant to the present work,
established the first (and, to our knowledge, only) results on Lp testing of the monotonicity property,
on the hypergrid and on the discrete line. While our models are broadly compatible, a subtle but
crucial distinction must be explained.

[BRY14a] focused their exposition on the case of functions f : Ω → [0, 1], and in this regime, L1

testing can only be easier than Hamming testing, which they show via a reduction based on Boolean
threshold functions. On the other hand, for functions with other ranges, say f : Ω → [a, b], their
definition normalizes the notion of distance by a factor of 1

b−a . In our terminology, letting r := b−a
and g := f/r, it follows that d1(g) = d1(f)/r, so testing f with proximity parameter ǫ reduces to
testing g with proximity parameter ǫ/r. For Hamming testers with query complexity that depends
linearly on 1/ǫ, this amounts to paying a factor of r in the reduction to the Boolean case6. This loss
is indeed necessary, because by the same reasoning, testing g with proximity parameter ǫ reduces
to testing f with proximity parameter rǫ. Therefore the problems of testing f with proximity
parameter ǫ and testing f/r with proximity parameter ǫ/r have the same query complexity.

In this work, we do not normalize the distance metric by r; we would like to handle functions f
that may take large values as the dimension n grows, as long as f satisfies a Lipschitz assumption,
and our goal is to beat the query complexity afforded by the reduction to the Boolean case. We
derive these benchmarks by assuming that the input f is Lipschitz, and inferring an upper bound
on r based on the Lipschitz constant and the size of the domain. Combined with the hypergrid
tester of [BRY14a] and a discretization argument for the unit cube inspired by [BCS20, HY22], we
establish benchmarks for our testing problem. See Appendix B for details.

With the discussion above in mind, it is instructive to return to Table 2. We note that our upper
bounds have polynomially smaller dependence on n than the benchmarks, suggesting that our use

5Note that there is no obvious reduction from testing on the hypergrid to testing on the unit cube—one idea is to
simulate the unit cube tester on a multilinear interpolation of the function defined on the hypergrid, but the challenge
is that simulating each query to the unit cube naively requires an exponential number of queries to the hypergrid.

6This factor can also be tracked explicitly in the characterization of the L1 distance to monotonicity of [BRY14a]:
it arises in Lemmas 2.1 and 2.2, where an integral from 0 to 1 must be changed to an integral from a to b, so the
best threshold function is only guaranteed to be ǫ/r-far from monotone.

7

of the Lipschitz assumption—via the directed Poincaré inequalities in Theorems 1.2 and 1.3—
exploits useful structure underlying the monotonicity testing problem (whereas the benchmark
testers must work for every function with bounded range, not only the Lipschitz ones). Our
lower bounds introduce an almost-linear dependence on the hypergrid length m; intuitively, this
dependence is not implied by the previous bounds in [BRY14a, BRY14b] because those construct
the violations of monotonicity via Boolean functions, whereas our constructions exploit the fact
that a Lipschitz function can “keep growing” along a given direction, which exacerbates the L1

distance to monotonicity in the region where that happens. Our lower bounds for partial derivative
testers show that the analysis of our algorithms is essentially tight, so new (upper or lower bound)
ideas are required to establish the optimal query complexity for arbitrary testers.

On the choice of L1 distance and Lipschitz assumption. We briefly motivate our choice
of distance metric and Lipschitz assumption. For continuous range and domain, well-known coun-
terexamples rule out testing with respect to Hamming distance: given any tester with finite query
complexity, a monotone function may be made far from monotone by arbitrarily small, hard to
detect perturbations. Testing against L1 distance is then a natural choice, since this metric takes
into account the magnitude of the change required to make a function monotone ([BRY14a] also
discuss connections with learning and approximation theory). However, an arbitrarily small region
of the input may still have disproportionate effect on the L1 distance if the function is arbitrary,
so again testing is infeasible. Lipschitz continuity seems like a natural enough assumption which,
combined with the choice of L1 distance, makes the problem tractable. Another benefit is that
Lipschitz functions are differentiable almost everywhere by Rademacher’s theorem, so the gradient
is well-defined almost everywhere, which enables the connection with Poincaré-type inequalities.

Organization. Section 2 introduces definitions and conventions that will be used throughout the
paper. In Section 3 we prove our directed Poincaré inequalities on the unit cube and hypergrid, and
in Section 4 we give our L1 monotonicity testers for these domains. Section 5 gives the upper bound
for testing functions on the line, and in Section 6 we prove our lower bounds. Finally, in Section 7
we give a broader overview of prior works on monotonicity testing for the reader’s convenience.

2 Preliminaries

In this paper, N denotes the set of strictly positive integers {1, 2, . . . }. For m ∈ N, we write [m] to
denote the set {i ∈ N : i ≤ m}. For any c ∈ R, we write c+ for max{0, c} and c− for −min{0, c}.
We denote the closure of an open set B ⊂ R

n by B.
For a (continuous or discrete) measure space (Ω,Σ, ν) and measurable function f : Ω → R, we

write
∫
Ω f dν for the Lebesgue integral of f over this space. Then for p ≥ 1, the space Lp(Ω, ν)

is the set of measurable functions f such that |f |p is Lebesgue integrable, i.e.
∫
Ω|f |p dν < ∞, and

we write the Lp norm of such functions as ‖f‖Lp = ‖f‖Lp(ν) =
(∫

Ω|f |p dν
)1/p

. We will write ν to
denote the Lebesgue measure when Ω ⊂ R

n is a continuous domain (in which case we will simply
write Lp(Ω) for Lp(Ω, ν)) and the counting measure when Ω ⊂ Z

n is a discrete domain, and reserve
µ for the special case of probability measures.

2.1 Lipschitz functions and L
p distance

We first define Lipschitz functions with respect to a choice of ℓp geometry.

8

Definition 2.1. Let p ≥ 1. We say that f : Ω → R is (ℓp, L)-Lipschitz if, for every x, y ∈ Ω,
|f(x) − f(y)| ≤ L‖x− y‖p. We say that f is Lipschitz if it is (ℓp, L)-Lipschitz for any L (in which
case this also holds for any other choice of ℓq), and in this case we denote by Lipp(f) the best
possible Lipschitz constant:

Lipp(f) := inf
L

{f is (ℓp, L)-Lipschitz} .

It follows that Lipp(f) ≤ Lipq(f) for p ≤ q.

We now formally define Lp distances, completing the definition of Lp-testers from Section 1.1.

Definition 2.2 (Lp-distance). Let p ≥ 1, let R ⊆ R, and let (Ω,Σ, µ) be a probability space. For
a property P ⊆ Lp(Ω, µ) of functions g : Ω → R and function f : Ω → R ∈ Lp(Ω, µ), we define the
distance from f to P as dp(f,P) := infg∈P dp(f, g), where

dp(f, g) := ‖f − g‖Lp(µ) = E
x∼µ

[|f(x) − g(x)|p]1/p .

For p = 0, we slightly abuse notation and, taking 00 = 0, write d0(f, g) for the Hamming distance
between f and g weighted by µ (and P may be any set of measurable functions on (Ω,Σ, µ)).

In our applications, we will always take µ to be the uniform distribution over Ω7. As a shorthand,
when (Ω,Σ, µ) is understood from the context and R = R, we will write

1. dconstp (f) := dp(f,Pconst) where Pconst := {f : Ω → R ∈ Lp(Ω, µ) : f = c, c ∈ R}; and

2. dmono
p (f) := dp(f,Pmono) where Pmono := {f : Ω → R ∈ Lp(Ω, µ) : f is monotone}.

Going forward, we will also use the shorthand dp(f) := dmono
p (f).

2.2 Directed partial derivatives and gradients

We first consider functions on continuous domains. Let B be an open subset of R
n, and let

f : B → R be Lipschitz. Then by Rademacher’s theorem f is differentiable almost everywhere
in B. For each x ∈ B where f is differentiable, let ∇f(x) = (∂1f(x), . . . , ∂nf(x)) denote its
gradient, where ∂if(x) is the partial derivative of f along the i-th coordinate at x. Then, let
∂−
i := min{0, ∂i}, i.e. for every x where f is differentiable we have ∂−

i f(x) = − (∂if(x))−. We
call ∂−

i the directed partial derivative operator in direction i. Then we define the directed gradient
operator by ∇− := (∂−

1 , . . . , ∂
−
n), again defined on every point x where f is differentiable.

Now considering the hypergrid domains, let f : [m]n → R. Fix x ∈ [m]n and i ∈ [n], and write ei
for the i-th basis vector, i.e. ei takes value 1 in its i-th component and 0 elsewhere. We then define
the (discrete) partial derivative of f along the i-th coordinate at x by ∂if(x) := f(x + ei) − f(x)
if xi < m, and ∂if(x) := 0 if xi = m. We then define its discrete gradient by ∇ := (∂1, . . . , ∂n).
Their directed counterparts are defined as above: ∂−

i := min{0, ∂i} and ∇− := (∂−
1 , . . . , ∂

−
n).

Note that this definition for the discrete discrete gradient on the hypergrid is slightly different
from how we introduced the discrete gradient on the Boolean cube in the opening (c. f. inequality (1))
and its use in Table 1, where we allowed each edge (x, y) to “contribute” to both ∂if(x) and ∂if(y).
In contrast, the definition above (which we will use going forward) only allows the “contribution”
to ∂if(x), since on domain [m]n with m = 2, the point y falls under the case yi = m, so ∂if(y) := 0.

7More precisely: when Ω = [0, 1]n, µ will be the Lebesgue measure on Ω (with associated σ-algebra Σ), and when
Ω = [m]n, µ will be the uniform distribution over Ω (with the power set of Ω as the σ-algebra Σ).

9

The definition we choose seems more natural for the hypergrid settings, but we also remark that for
ℓ1 inequalities, the choice does not matter up to constant factors (i.e. each edge is counted once or
twice). For ℓ2 inequalities, this choice is related to the issues of inner/outer boundaries and robust
inequalities [Tal93, KMS18].

3 Directed Poincaré inequalities for Lipschitz functions

In this section, we establish Theorems 1.2 and 1.3. We start with the one-dimensional case, i.e.
functions on the line, and then generalize to higher dimensions. In each subsection, we will focus
our presentation on the setting where the domain is continuous (corresponding to our results for
the unit cube), and then show how the same proof strategy (more easily) yields analogous results
for discrete domains (corresponding to our results for the hypergrid).

3.1 One-dimensional case

Let m > 0, let I := (0,m), and let f : I → R be a measurable function. We wish to show that
‖f − f∗‖L1 . m ‖∂−f‖L1 , where f∗ is the monotone rearrangement of f . We first introduce the
monotone rearrangement, and then show this inequality using an elementary calculus argument.

3.1.1 Monotone rearrangement

Here, we introduce the (non-symmetric, non-decreasing) monotone rearrangement of a one-dimensional
function. We follow the definition of [Kaw85], with the slight modification that we are interested in
the non-decreasing rearrangement, whereas most of the literature usually favours the non-increasing
rearrangement. The difference is purely syntactic, and our choice more conveniently matches the
convention in the monotonicity testing literature. Up to this choice, our definition also agrees with
that of [BS88, Chapter 2], and we refer the reader to these two texts for a comprehensive treatment.

We define the (lower) level sets of f : I → R as the sets

Ic :=
{
x ∈ I : f(x) ≤ c

}

for all c ∈ R. For nonempty measurable S ⊂ R of finite measure, the rearrangement of S is the set

S∗ := [0, ν(S)]

(recall that ν stands for the Lebesgue measure here), and we define ∅∗ := ∅. For a level set Ic, we
write I

∗
c to mean

(
Ic
)∗

.

Definition 3.1. The monotone rearrangement of f is the function f∗ : I → R given by

f∗(x) := inf
{
c ∈ R : x ∈ I

∗
c

}
. (5)

Note that f∗ is always a non-decreasing function.
We note two well-known properties of the monotone rearrangement: equimeasurability and

order preservation. Two functions f, g are called equimeasurable if ν{f ≥ c} = ν{g ≥ c} for
every c ∈ R. A mapping u 7→ u∗ is called order preserving if f(x) ≤ g(x) for all x ∈ I implies
f∗(x) ≤ g∗(x) for all x ∈ I. See [BS88, Chapter 2, Proposition 1.7] for a proof of the following:

Fact 3.2. Let f : I → R be a measurable function. Then f and f∗ are equimeasurable.

Fact 3.3. The mapping f 7→ f∗ is order preserving.

10

3.1.2 Absolutely continuous functions and the one-dimensional Poincaré inequality

Let f : I → R be absolutely continuous. It follows that f has a derivative ∂f almost everywhere
(i.e. outside a set of measure zero), ∂f ∈ L1(I) (i.e. its derivative is Lebesgue integrable), and

f(x) = f(0) +

∫ x

0
∂f(t) dt

for all x ∈ I. It also follows that ∂−f ∈ L1(I).
We may now show our one-dimensional inequality:

Lemma 3.4. Let f : I → R be absolutely continuous. Then ‖f − f∗‖L1 ≤ 2m ‖∂−f‖L1.

Proof. Let S :=
{
x ∈ I : f∗(x) > f(x)

}
, and note that S is a measurable set because f, f∗ are

measurable functions (the latter by Fact 3.2). Moreover, since f and f∗ are equimeasurable (by
the same result), we have

∫
f dν =

∫
f∗ dν and therefore

‖f − f∗‖L1 =

∫

I
|f − f∗| dν =

∫

S
(f∗ − f) dν +

∫

I\S
(f − f∗) dν

=

∫

S
(f∗ − f) dν +

(∫

I
(f − f∗) dν −

∫

S
(f − f∗) dν

)
= 2

∫

S
(f∗ − f) dν .

Hence our goal is to show that

∫

S
(f∗ − f) dν ≤ m

∥∥∂−f
∥∥
L1 .

Let x ∈ I. We claim that there exists x′ ∈ [0, x] such that f(x′) ≥ f∗(x). Suppose this is not the
case. Then since f is continuous on [0, x], by the extreme value theorem it attains its maximum
and therefore there exists c < f∗(x) such that f(y) ≤ c for all y ∈ [0, x]. Thus [0, x] ⊆ Ic, so
ν
(
Ic
)
≥ x and hence x ∈ I

∗
c . Then, by Definition 3.1, f∗(x) ≤ c < f∗(x), a contradiction. Thus

the claim is proved.
Now, let x ∈ S and fix some x′ ∈ [0, x] such that f(x′) ≥ f∗(x). Since f is absolutely continuous,

we have

f∗(x) − f(x) ≤ f(x′) − f(x) = −
∫ x

x′

∂f(t) dt ≤ −
∫ m

0
∂−f(t) dt =

∥∥∂−f
∥∥
L1 .

The result follows by applying this estimate to all x:

∫

S
(f∗ − f) dν ≤

∫

S

∥∥∂−f
∥∥
L1 dν = ν(S)

∥∥∂−f
∥∥
L1 ≤ m

∥∥∂−f
∥∥
L1 .

3.1.3 Discrete case

Let m ∈ N and let I := [m]. We may define the monotone rearrangement f∗ : I → R of f : I → R

as in Definition 3.1 by identifying I with I and writing S∗ := [|S|] for each finite S ⊂ N. More
directly, f∗ is the function such that f∗(1) ≤ f∗(2) ≤ · · · ≤ f∗(m) is the sorted sequence of the
values f(1), f(2), . . . , f(m). It is easy to show that the directed version of Lemma 3.4 holds, and
in fact one may simply repeat the proof of that lemma.

Lemma 3.5. Let f : [m] → R. Then ‖f − f∗‖L1 ≤ 2m ‖∂−f‖L1.

11

3.2 Multidimensional case

In the continuous case, we ultimately only require an inequality on the unit cube [0, 1]n. However,
we will first work in slightly more generality and consider functions defined on a box in R

n, defined
below. This approach makes some of the steps more transparent, and also gives intuition for the
discrete case of the hypergrid.

Definition 3.6. Let a ∈ R
n
>0. The box of size a is the closure B ⊂ R

n of B = (0, a1)×· · ·× (0, an).

Going forward, B ⊂ R
n will always denote such a box.

Notation. For x ∈ R
n, y ∈ R and i ∈ [n], we will use the notation x−i to denote the vector in

R
[n]\{i} obtained by removing the i-th coordinate from x (note that the indexing is not changed),

and we will write (x−i, y) as a shorthand for the vector (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ R
n. We will

also write x−i directly to denote any vector in R
[n]\{i}. For function f : B → R and x−i ∈ R

[n]\{i},
we will write fx−i for the function given by fx−i(y) = f(x−i, y) for all (x−i, y) ∈ B. For any set
D ∈ R

n, we will denote by D−i the projection {x−i : x ∈ D}, and extend this notation in the
natural way to more indices, e.g. D−i−j .

Definition 3.7 (Rearrangement in direction i). Let f : B → R be a measurable function and let
i ∈ [n]. The rearrangement of f in direction i is the function Rif : B → R given by

(Rif)x−i := (fx−i)∗ (6)

for all x−i ∈
(
B
)−i

. We call each Ri the rearrangement operator in direction i.

We may put (6) in words as follows: on each line in direction i determined by point x−i, the
restriction of Rif to that line is the monotone rearrangement of the restriction of f to that line.

Proposition 3.8. Let B be the box of size a ∈ R
n, and let f : B → R be Lipschitz continuous.

Then for each i ∈ [n],
‖f −Rif‖L1 ≤ 2ai

∥∥∂−
i f

∥∥
L1 .

Proof. Since f is Lipschitz continuous, each fx−i : [0, ai] → R is Lipschitz continuous and a fortiori
absolutely continuous. The result follows from Lemma 3.4, using Tonelli’s theorem to choose the
order of integration.

A key ingredient in our multi-dimensional argument is that the rearrangement operator pre-
serves Lipschitz continuity:

Lemma 3.9 ([Kaw85, Lemma 2.12]). If f : B → R is Lipschitz continuous (with Lipschitz constant
L), then Rif is Lipschitz continuous (with Lipschitz constant 2L).

We are now ready to define the (multidimensional) monotone rearrangement f∗:

Definition 3.10. Let f : B → R be a measurable function. The monotone rearrangement of f is
the function

f∗ := RnRn−1 · · ·R1f .

We first show that f∗ is indeed a monotone function:

12

Proposition 3.11. Let f : B → R be Lipschitz continuous. Then f∗ is monotone.

Proof. Say that g : B → R is monotone in direction i if gx−i is non-decreasing for all x−i ∈
(
B
)−i

.
Then g is monotone if and only if it is monotone in direction i for every i ∈ [n]. Note that Rif is
monotone in direction i by definition of monotone rearrangement. Therefore, it suffices to prove
that if f is monotone in direction j, then Rif is also monotone in direction j.

Suppose f is monotone in direction j, and suppose i < j without loss of generality. Let a ∈ R
n

be the size of B. Let x−j ∈
(
B
)−j

and 0 ≤ y1 < y2 ≤ aj , so that (x−j , y1), (x
−j , y2) ∈ B. We need

to show that (Rif)(x−j , y1) ≤ (Rif)(x−j , y2). Let Ii := [0, ai]. For each k ∈ {1, 2}, let gk : I i → R

be given by
gk(z) := f(x1, . . . , xi−1, z, xi+1, . . . , xj−1, yk, xj+1, . . . , xn) .

Note that
g∗k(z) = (Rif)(x1, . . . , xi−1, z, xi+1, . . . , xj−1, yk, xj+1, . . . , xn)

for every z ∈ Ii, and therefore our goal is to show that g∗1(xi) ≤ g∗2(xi). But f being monotone in
direction j means that g1(z) ≤ g2(z) for all z ∈ Ii, so by the order preserving property (Fact 3.3)
of the monotone rearrangement we get that g∗1(xi) ≤ g∗2(xi), concluding the proof.

It is well-known that the monotone rearrangement is a non-expansive operator. Actually a
stronger fact holds, as we note below.

Proposition 3.12 ([CT80]). Let m > 0 and let f, g ∈ L1[0,m]. Then f∗, g∗ satisfy

∫

[0,m]
(f∗ − g∗)− dν ≤

∫

[0,m]
(f − g)− dν

and ∫

[0,m]
|f∗ − g∗| dν ≤

∫

[0,m]
|f − g| dν .

The result above is stated for functions on the interval. Taking the integral over the box B
and repeating for each operator Ri yields the non-expansiveness of our monotone rearrangement
operator, as also noted by [Kaw85]:

Corollary 3.13. Let f, g ∈ L1(B). Then ‖f∗ − g∗‖L1 ≤ ‖f − g‖L1.

We show that the rearrangement operator can only make the norm of the directed partial
derivatives smaller, i.e. decrease the violations of monotonicity, which is the key step in this proof.

Proposition 3.14. Let f : B → R be Lipschitz continuous and let i, j ∈ [n]. Then
∥∥∥∂−

j (Rif)
∥∥∥
L1

≤
∥∥∥∂−

j f
∥∥∥
L1
.

Proof. We may assume that i 6= j, since otherwise the LHS is zero. We will use the following
convention for variables names: w ∈ R

n will denote points in B; z ∈ R
[n]\{i,j} will denote points

in B−i−j ; x ∈ R will denote points in (0, ai) (indexing the i-th dimension); and y ∈ R will denote
points in (0, aj) (indexing the j-th dimension). For each i ∈ [n], let ei denote the i-th basis vector.

Since f is Lipschitz, so is Rif by Lemma 3.9. By Rademacher’s theorem, these functions are
differentiable almost everywhere. Therefore, let D ⊆ B be a measurable set such that f and Rif

13

are differentiable in D and ν(D) = ν(B). We have

∥∥∥∂−
j (Rif)

∥∥∥
L1

=

∫

D

∣∣∣∂−
j (Rif)

∣∣∣ dν

=

∫

D

[
lim
h→0

(
(Rif)(w + hej) − (Rif)(w)

h

)−
]

dν(w)

(BC1)
= lim

h→0

∫

D

(
(Rif)(w + hej) − (Rif)(w)

h

)−

dν(w)

(D1)
= lim

h→0

∫

B

(
(Rif)(w + hej) − (Rif)(w)

h

)−

dν(w)

(T1)
= lim

h→0

∫

B−i−j

∫

(0,aj)

∫

(0,ai)

(
(Rif)(z, y + h, x) − (Rif)(z, y, x)

h

)−

dν(x) dν(y) dν(z)

≤ lim
h→0

∫

B−i−j

∫

(0,aj)

∫

(0,ai)

(
f(z, y + h, x) − f(z, y, x)

h

)−

dν(x) dν(y) dν(z)

(T2)
= lim

h→0

∫

B

(
f(w + hej) − f(w)

h

)−

dν(w)

(D2)
= lim

h→0

∫

D

(
f(w + hej) − f(w)

h

)−

dν(w)

(BC2)
=

∫

D

[
lim
h→0

(
f(w + hej) − f(w)

h

)−
]

dν(w)

=

∫

D

∣∣∣∂−
j f

∣∣∣ dν

=
∥∥∥∂−

j f
∥∥∥
L1

.

Equalities (BC1) and (BC2) hold by the bounded convergence theorem, which applies because the
difference quotients are uniformly bounded by the Lipschitz constants of Rif and f (respectively),
and because Rif and f are differentiable in D (which gives pointwise convergence of the limits).
Equalities (D1) and (D2) hold again by the uniform boundedness of the difference quotients, along
with the fact that ν(B \ D) = 0. Equalities (T1) and (T2) hold by Tonelli’s theorem. Finally,
the inequality holds by Proposition 3.12, since (Rif)(z, y + h, ·) is the monotone rearrangement of
f(z, y + h, ·) and (Rif)(z, y, ·) is the monotone rearrangement of f(z, y, ·).

We are now ready to prove our directed (L1, ℓ1)-Poincaré inequality.

Theorem 3.15. Let B be the box of size a ∈ R
n and let f : B → R be Lipschitz continuous. Then

‖f − f∗‖L1 ≤ 2
n∑

i=1

ai
∥∥∂−

i f
∥∥
L1 .

14

Proof. We have

‖f − f∗‖L1 ≤
n∑

i=1

‖Ri−1 · · ·R1f −Ri · · ·R1f‖L1 (Triangle inequality)

≤ 2
n∑

i=1

ai
∥∥∂−

i (Ri−1 · · ·R1f)
∥∥
L1 (Lemma 3.9 and Proposition 3.8)

≤ 2
n∑

i=1

ai
∥∥∂−

i f
∥∥
L1 (Lemma 3.9 and Proposition 3.14) .

Setting B = (0, 1)n yields the inequality portion of Theorem 1.2:

Corollary 3.16. Let B = (0, 1)n and let f : B → R be Lipschitz continuous. Then

E [|f − f∗|] = ‖f − f∗‖L1 ≤ 2

∫

B
‖∇−f‖1 dν = 2E

[
‖∇−f‖1

]
.

To complete the proof of Theorem 1.2, we need to show that d1(f) ≈ E [|f − f∗|], i.e. that
the monotone rearrangement is “essentially optimal” as a target monotone function for f . The
inequality d1(f) ≤ E [|f − f∗|] is clear from the fact that f∗ is monotone. The inequality in the
other direction follows from the non-expansiveness of the rearrangement operator, with essentially
the same proof as that of [KMS18] for the Boolean cube:

Proposition 3.17. Let f : [0, 1]n → R be Lipschitz continuous. Then E [|f − f∗|] ≤ 2d1(f).

Proof. Let g ∈ L1([0, 1]n) be any monotone function. It follows that g∗ = g. By Corollary 3.13, we
have that ‖f∗ − g∗‖L1 ≤ ‖f − g‖L1 . Using the triangle inequality, we obtain

‖f − f∗‖L1 ≤ ‖f − g‖L1 + ‖g − f∗‖L1 = ‖f − g‖L1 + ‖f∗ − g∗‖L1 ≤ 2 ‖f − g‖L1 .

The claim follows by taking the infimum over the choice of g.

Tightness of the inequality. To check that Corollary 3.16 is tight up to constant factors, it
suffices to take the linear function f : [0, 1]n → R given by f(x) = 1 − x1 for all x ∈ [0, 1]n. Then
f∗ is given by f∗(x) = x1, so E [f − f∗] = 1/2 while E [‖∇−f‖1] = 1, as needed.

3.2.1 Discrete case

The proof above carries over to the case of the hypergrid almost unmodified, as we now outline. We
now consider functions f : [m]n → R, so the box B is replaced with [m]n and its dimensions ai are
all replaced with the length m of the hypergrid. We define the rearrangement in direction i, Rif ,
as in Definition 3.7 by sorting the restrictions of f to each line along direction i. We also define f∗

as in Definition 3.10 by subsequent applications of each operator Ri. Then Proposition 3.8 carries
over by applying the one-dimensional Lemma 3.5, and the proof of Proposition 3.11 carries over
unmodified.

The non-expansiveness properties Proposition 3.12 and Corollary 3.13 also carry over unmodi-
fied, and the key Proposition 3.14 carries over with a more immediate proof: the use of Proposition 3.12

15

remains the same, but rather than expanding the definition of derivative and reasoning about the
limit, the discrete argument boils down to showing the inequality

∫

[m]n
((Rif)(w + ej) − (Rif)(w))− dν(w) ≤

∫

[m]n
(f(w + ej) − f(w))− dν(w) ,

which follows immediately from the discrete version of Proposition 3.12 by summing over all lines
in direction i. Then, the hypergrid version of Theorem 3.15 follows by the same application of the
triangle inequality, and we conclude the inequality portion of Theorem 1.3:

Theorem 3.18. Let f : [m]n → R. Then E [|f − f∗|] ≤ 2mE [‖∇−f‖1].

The discrete version of Proposition 3.17 follows identically, and we state it here for convenience:

Proposition 3.19. Let f : [m]n → R. Then E [|f − f∗|] ≤ 2d1(f).

Finally, the tightness of Theorem 3.18 is mostly easily verified for the following step function:
letting m be even for simplicity, define f : [m]n → R by

f(x) =

{
1 if x1 ≤ m/2 ,

0 if x1 > m/2 .

Then f∗ is obtained by flipping this function along the first coordinate, or equivalently swapping
the values 1 and 0 in the definition above. Thus E [|f − f∗|] = 1. On the other hand, ‖∇−f‖1
takes value 1 on exactly one point in each line along the first coordinate, and 0 elsewhere. Hence
E [‖∇−f‖1] = 1/m, as needed.

4 Applications to monotonicity testing

In this section, we use the directed Poincaré inequalities on the unit cube and hypergrid to show that
the natural partial derivative tester (or edge tester) attains the upper bounds from Theorem 1.4.

Let Ω denote either [0, 1]n or [m]n, and let q(Ω, L, ǫ) denote the query complexity of testers for
(ℓ1, L)-Lipschitz functions on these domains, as follows:

q([0, 1]n, L, ǫ) := Θ

(
nL

ǫ

)
and q([m]n, L, ǫ) := Θ

(
nmL

ǫ

)
.

The tester is given in Algorithm 1. It is clear that this algorithm is a nonadaptive partial
derivative tester, and that it always accepts monotone functions. It suffices to show that it rejects
with good probability when d1(f) > ǫ.

16

Algorithm 1 L1 monotonicity tester for Lipschitz functions using partial derivative queries

Input: Partial derivative oracle access to Lipschitz function f : Ω → R.
Output: Accept if f is monotone, reject if d1(f) > ǫ.
Requirement: Lip1(f) ≤ L.

procedure PartialDerivativeTester(f,Ω, L, ǫ)
repeat q(Ω, L, ǫ) times

Sample x ∈ Ω uniformly at random.
Sample i ∈ [n] uniformly at random.
Reject if ∂if(x) < 0.

end repeat

Accept.

Lemma 4.1. Let Ω be one of [0, 1]n or [m]n, and let f : Ω → R be a Lipschitz function satisfying
Lip1(f) ≤ L. Suppose d1(f) > ǫ. Then Algorithm 1 rejects with probability at least 2/3.

Proof. Continuous case. Suppose Ω = [0, 1]n. Let D ⊆ [0, 1]n be a measurable set such that f
is differentiable on D and µ(D) = 1, which exists by Rademacher’s theorem. For each i ∈ [n], let
Si := {x ∈ D : ∂if(x) < 0}. A standard argument gives that each Si ⊂ R

n is a measurable set. We
claim that

n∑

i=1

µ(Si) >
ǫ

2L
.

Suppose this is not the case. By the Lipschitz continuity of f , we have that |∂if(x)| ≤ L for every
x ∈ D and i ∈ [n], and therefore

2

n∑

i=1

E
[∣∣∂−

i f
∣∣] ≤ 2L

n∑

i=1

µ(Si) ≤ ǫ .

On the other hand, the assumption that d1(f) > ǫ and Corollary 3.16 yield

ǫ < E [|f − f∗|] ≤ 2E
[
‖∇−f‖1

]
= 2

n∑

i=1

E
[∣∣∂−

i f
∣∣] ,

a contradiction. Therefore the claim holds.
Now, the probability that one iteration of the tester rejects is the probability that x ∈ Si when

x and i are sampled uniformly at random. This probability is

P [Iteration rejects] =
n∑

j=1

P
i

[i = j]P
x

[x ∈ Sj] =
n∑

j=1

1

n
· µ(Sj) >

ǫ

2nL
.

Thus Θ
(
nL
ǫ

)
iterations suffice to reject with high constant probability.

Discrete case. Suppose Ω = [m]n. The proof proceeds the same way, but we give it explicitly
for convenience. For each i ∈ [n], let Si := {x ∈ [m]n : ∂if(x) < 0}. We then claim that

n∑

i=1

µ(Si) >
ǫ

2mL
.

Indeed, if this is not the case, then since |∂if(x)| ≤ L for every i and x, we get that

2
n∑

i=1

E
[∣∣∂−

i f
∣∣] ≤ 2L

n∑

i=1

µ(Si) ≤
ǫ

m
.

17

On the other hand, the assumption that d1(f) > ǫ and Theorem 3.18 yield

ǫ

m
<

1

m
· E [|f − f∗|] ≤ 1

m
· 2mE

[
‖∇−f‖1

]
= 2

n∑

i=1

E
[∣∣∂−

i f
∣∣] ,

a contradiction. Thus the claim holds, and the probability that one iteration of the tester rejects is

P [Iteration rejects] =
n∑

j=1

P
i

[i = j]P
x

[x ∈ Sj] =
n∑

j=1

1

n
· µ(Sj) >

ǫ

2nmL
.

Thus Θ
(
nmL
ǫ

)
iterations suffice to reject with high constant probability.

5 L
1-testing monotonicity on the line

In this section, we show the upper bounds for L1 monotonicity testing on the line from Theorem 1.5.
The main idea is to reduce from L1 testing to Hamming testing by using the Lipschitz constant to
show that, if the L1 distance to monotonicity is large, then the Hamming distance to monotonicity
must be somewhat large as well; combined with the Hamming testers of [EKK+98, Bel18], this
yields an L1 tester for the discrete line [m].

To obtain a tester for the continuous line [0,m], we furthermore apply a discretization strategy
inspired by the domain reduction and downsampling ideas from [BCS20, HY22]. The idea is that,
given ǫ and L, we may impose a fine enough grid on [0,m] such that the function defined on that
grid preserves the L1 distance to monotonicity compared to the continuous function; again, the
Lipschitz assumption is essential for this step.

In this section, we will follow the convention of denoting functions on continuous domains by
f, g, and those on discrete domains by f, g. Depending on the context, it will be clear whether
f is an arbitrary function or one obtained by discretizing a particular function f . We will also
write “f is L-Lipschitz” without specifying the ℓp geometry, since all choices are equivalent in one
dimension.

Lemma 5.1 (Discretization preserves distance to monotonicity). Let m,L, ǫ > 0 and let f :
[0,m] → R be an L-Lipschitz function. Let the discretized function f : [m′] → R, for suitable
choice of m′ = Θ (mL/ǫ), be given by f(i) = f(δi) for each i ∈ [m′], where δ := m/m′. Then if
d1(f) > ǫ, we have d1(f) > ǫ/4.

Proof. Let m′ ∈ [cmL/ǫ, 2cmL/ǫ] be an integer, where c is a sufficiently large universal constant.8

Let f : [m′] → R be the function given in the statement, and suppose d1(f) > ǫ.
Let g : [m′] → R be the monotone rearrangement of f . It is easy to check that g is Lipschitz

with at most the Lipschitz constant of f . Let g : [0,m] → R be the following piecewise linear
function whose discretization is g: for each i ∈ [m′] we set g(δi) = g(i), and g is the linear spline
induced by these points elsewhere (and constant in the segment [0, δ]). Then clearly g is monotone,
and thus d1(f, g) > ǫ. Moreover, g is L-Lipschitz, since its steepest slope is the same as that of g

8We may assume that mL/ǫ > 1, otherwise the problem is trivial: the maximum L1 distance from monotonicity
attainable by an L-Lipschitz function is 1

m
·

m·mL
2

= mL/2. Therefore the given interval does contain an integer.

18

up to the coordinate changes.9 Hence, we have

ǫ < d1(f, g) =
1

m

∫ m

0
|f(x) − g(x)| dx =

1

m

m′∑

i=1

∫ iδ

(i−1)δ
|f(x) − g(x)| dx

=
1

m

m′∑

i=1

∫ iδ

(i−1)δ
|(f(iδ) ± Lδ) − (g(iδ) ± Lδ)| dx (Lipschitz property)

≤ 1

m

m′∑

i=1

∫ iδ

(i−1)δ

[∣∣f(i) − g(i)
∣∣ + 2Lδ

]
dx

=
1

m

[
2m′Lδ2 + δ

m′∑

i=1

∣∣f(i) − g(i)
∣∣
]

=
2mL

m′
+

1

m′

m′∑

i=1

∣∣f(i) − g(i)
∣∣ ≤ 2ǫ

c
+ d1(f, g) ,

where we used the notation a± b to denote any number in the interval [a− b, a + b].
We may set c ≥ 4 so that 2ǫ/c ≤ ǫ/2. Therefore, we obtain d1(f, g) > ǫ/2. Since g is the

monotone rearrangement of f , Proposition 3.19 implies that d1(f, g) ≤ 2d1(f). We conclude that
d1(f) > ǫ/4, as desired.

Observation 5.2. The function f defined in Lemma 5.1 is ǫ-Lipschitz: since m′ ≥ mL/ǫ, we have

∣∣f(i) − f(i + 1)
∣∣ = |f(δi) − f (δ(i + 1))| ≤ Lδ = Lm/m′ ≤ ǫ .

Lemma 5.3 (Far in L1 distance imples far in Hamming distance). Let f : [m′] → R be an L′-

Lipschitz function. Then d0(f) ≥
√

d1(f)
m′L′ .

Proof. Let S ⊆ [m′] be a set such that 1) |S| = d0(f)m′ and 2) it suffices to change f on inputs in
S to obtain a monotone function; note that S exists by definition of Hamming distance. Write S
as the union of maximal, pairwise disjoint contiguous intervals, S = I1 ∪ · · · ∪ Ik.

We define a monotone function g : [m′] → R as follows. For each i ∈ S, set i∗ ∈ [m′] \ S as
follows: if there exists j ∈ [m′] \ S such that j > i, pick the smallest such j; otherwise, pick the
largest j ∈ [m′]\S. In other words, i∗ is obtained by picking a direction (right if possible, otherwise
left) and choosing the first point outside the interval Ik that contains i. Now, define g by

g(i) =

{
f(i) if i 6∈ S

f(i∗) if i ∈ S .

We first claim that g is monotone. Indeed the sequence of values (f(i))i∈[m′]\S (taken in order
of increasing i) is monotone by our first assumption on S, and since g is obtained by extending
some of these values into flat regions, the resulting function is also monotone. Therefore we can

9Formally, if f is L-Lipschitz, then f is L′-Lipschitz for L′ = Lm/m′, hence so is its monotone rearrangement g.
Then since the steepest slope of g must come from two vertices of the spline, g is Lipschitz with Lipschitz constant
L′m′/m = L.

19

upper bound the L1 distance of f to monotonicity by

d1(f) ≤ d1(f, g) =
1

m′

m′∑

i=1

∣∣f(i) − g(i)
∣∣ =

1

m′

k∑

j=1

∑

i∈Ij

∣∣f(i) − f(i∗)
∣∣

=
1

m′

k∑

j=1

∑

i∈Ij

∣∣(f(i∗) ± L′|i− i∗|
)
− f(i∗)

∣∣ (Lipschitz property)

≤ L′

m′

k∑

j=1

∑

i∈Ij

|i− i∗| ≤ L′

m′

k∑

j=1

∑

i∈Ij

|Ij | =
L′

m′

k∑

j=1

|Ij |2

≤ L′

m′
· |S|2 (Since |I1| + · · · + |Ik| = |S|)

= L′d0(f)2m′ .

The claim follows.

Combining the two lemmas with the classical Hamming monotonicity tester of [EKK+98], the
following theorem establishes Theorem 1.5 for the continuous domain [0,m]:

Theorem 5.4. There exists a nonadaptive one-sided L1 monotonicity tester for L-Lipschitz func-

tions f : [0,m] → R with query complexity O

(√
mL
ǫ log

(
mL
ǫ

))
.

Proof. The tester works as follows. It first fixes m′ = Θ (mL/ǫ) as given by Lemma 5.1. Let
f : [m′] → R be the discretization defined therein (f is not explicitly computed upfront, but
will rather be queried as needed). The algorithm then simulates the (nonadaptive, one-sided)
monotonicity tester of [EKK+98] on the function f with proximity parameter ǫ′ = Θ

(√
ǫ

mL

)
(the

constant may easily be made explicit), producing f(δi) = f(im/m′) whenever the simulation queries
f(i). The algorithm returns the result produced by the simulated tester. The query complexity
claim follows from the fact that the tester of [EKK+98] has query complexity O

(
1
ǫ′ logm′

)
.

We now show correctness. When f is monotone, so is f , so the algorithm will accept since the
tester of [EKK+98] has one-sided error. Now, suppose d1(f) > ǫ. Then d1(f) > ǫ/4 by Lemma 5.1.
Moreover, since f is ǫ-Lipschitz by Observation 5.2, Lemma 5.3 implies that

d0(f) ≥

√
d1(f)

m′ǫ
>

√
1

4m′
= Ω

(√
ǫ

mL

)
.

Since this is the proximity parameter ǫ′ used to instantiate the [EKK+98] tester, the algorithm will
reject with high constant probability, as needed.

Lemma 5.3 itself also implies Theorem 1.5 for the discrete domain [m]. This time, we use the
Hamming tester of [Bel18] to obtain a slightly more precise query complexity bound10.

Theorem 5.5. There exists a nonadaptive one-sided L1 monotonicity tester for L-Lipschitz func-

tions f : [m] → R with query complexity O

(√
mL
ǫ log

(
mǫ
L

))
when ǫ/L ≥ 4/m, and O(m) other-

wise.

10One may check that this refinement would have no effect in Theorem 5.4

20

Proof. The tester sets ǫ′ :=
√

ǫ
mL , and then runs the (nonadaptive, one-sided) Hamming mono-

tonicity tester of [Bel18] on the line [m] with proximity parameter ǫ′. That tester has query
complexity O

(
1
ǫ′ log(ǫ′m)

)
when ǫ′ ≥ 2/m and (trivially) O(m) otherwise, which gives the claimed

upper bounds. It remains to show correctness.
When f is monotone, the algorithm will accept since the tester of [Bel18] has one-sided error.

Now, suppose d1(f) > ǫ. Then Lemma 5.3 yields

d0(f) >

√
ǫ

mL
= ǫ′ ,

so the tester of [Bel18] will reject with high constant probability.

6 Lower bounds

In this section, we prove our lower bounds for testing monotonicity on the unit cube and on the
hypergrid. We first show our general lower bounds based on a “hole” construction, which hides a
monotonicity violating region inside a randomly placed ℓ1-ball; these bounds imply near tightness
of our upper bounds for testing on the line from Section 5. Then we give our lower bounds for
partial derivative testers, which show that the analysis of our tester in Section 4 is tight.

Definition 6.1 (ℓ1-ball). Let Ω be one of Rn or Zn, let x ∈ Ω and let r > 0 be a real number. The
ℓ1-ball of radius r centered at x is the set Bn

1 (r, x) := {y ∈ Ω : ‖x − y‖1 ≤ r}. We will also write
Bn

1 (r) := Bn
1 (r, 0).

It will be clear from the context whether the domain should be taken to be continuous or
discrete, i.e. whether Bn

1 (r, c) should be understood under Ω = R
n or Ω = Z

n.
We give the following simple bounds on the volume of continuous and discrete ℓ1-balls. Since

we do not require particularly tight bounds, we opt for a simple formulation and elementary proof.

Proposition 6.2. There exist functions c1, c2 : N → R>0 satisfying the following. Let n ∈ N. Let
Ω be one of Rn or Z

n. Let r ∈ R satisfy r > 0 if Ω = R
n, and r ≥ 1 if Ω = Z

n. Then

c1(n)rn ≤ ν (Bn
1 (r)) ≤ c2(n)rn .

Proof. First suppose Ω = R
n. Then we have the following formula for the area of the ℓ1-ball of

radius r (see e.g. [Wan05]):

ν (Bn
1 (r)) =

(2r)n

n!
.

The result follows by letting c1(n) ≤ 2n/n! and c2(n) ≥ 2n/n!.
Now, suppose Ω = Z

n, and suppose r is an integer without loss of generality (because since
r ≥ 1, there exist integers within a factor of 2 above and below r). We proceed by an inductive
argument. For n = 1, the volume is

ν
(
B1

1

)
= 1 + 2

r∑

d=1

1 = 1 + 2r ,

21

so the claim holds by letting c1(1) ≤ 2 and c2(n) ≥ 3. Assuming the claim for some n ∈ N, we have

ν
(
Bn+1

1 (r)
)

= |{x = (x1, . . . , xn, xn+1) : ‖x‖1 ≤ r}| =
r∑

y=−r

∣∣{x′ = (x′1, . . . , x
′
n) : ‖x′‖1 ≤ r − |y|

}∣∣

= ν (Bn
1 (r)) + 2

r∑

d=1

ν (Bn
1 (r − d)) .

Since the last expression is at most 3r · ν (Bn
1 (r)), using the inductive hypothesis we conclude

ν
(
Bn+1

1 (r)
)
≤ 3r · c2(n)rn = 3c2(n)rn+1 ≤ c2(n + 1)rn+1 ,

the last inequality as long as c2(n + 1) ≥ 3c2(n).
For the lower bound, we consider two cases. Note that r − d ≥ r/2 for at least ⌊r/2⌋ values of

d. When r ≥ 4, we have ⌊r/2⌋ ≥ r/3, and then

ν
(
Bn+1

1 (r)
)
≥ c1(n)rn + 2

r∑

d=1

c1(n)(r − d)n >
2r

3
· c1(n)

(r
2

)n
≥ c1(n + 1)rn+1 ,

the last inequality as long as c1(n + 1) ≤ 2
3 · 2−n · c1(n). On the other hand, if r < 4, the bound

follows easily for small enough c1(n + 1), since

ν
(
Bn+1

1 (r)
)
≥ c1(n)rn + 2

r∑

d=1

c1(n)(r − d)n >
c1(n)rn+1

r
>

c1(n)

4
rn+1 .

Remark 6.3. Note that the constants c1(n) and c2(n) in Proposition 6.2 have poor dependence
on n, and in particular this is tight in the continuous case. This fact is essentially the reason why
this construction is only efficient for constant dimension n.

We now prove our tester-independent lower bounds. Note that there exists a tester for (ℓ1, L)-
Lipschitz functions with proximity parameter ǫ if and only if there exists a tester for (ℓ1, 1)-Lipschitz
functions with proximity parameter ǫ/L (the reduction consists of simply rescaling the input values).
Therefore it suffices to prove the theorems for the case L = 1. The following two theorems establish
the continuous and discrete cases of Theorem 1.6.

Theorem 6.4 (Lower bound for constant n on the unit cube). Let n ∈ N be a constant. Any L1

monotonicity tester (with two-sided error, and adaptive value and directional derivative queries)

for Lipschitz functions f : [0, 1]n → R satisfying Lip1(f) ≤ 1 requires at least Ω
(

(1/ǫ)
n

n+1

)
queries.

Proof. We construct a family of functions that are ǫ-far from monotone in L1 distance such that
any deterministic algorithm cannot reliably distinguish between a function chosen uniformly at
random from this family and the constant-0 function with fewer than the announced number of
queries; then, the claim will follow from Yao’s principle.

Each such function f is constructed as follows. Let c ∈ [0, 1]n be a point such that the ball
Bn

1 (r, c) is completely inside [0, 1]n, for radius r to be chosen below. Then f takes value 0 everywhere
outside Bn

1 (r, c), and inside this ball, it takes value

f(x) = −r + ‖x− c‖1

22

for each x ∈ Bn
1 (r, c). Then Lip1(f) = 1. We now lower bound d1(f), its distance to monotonicity.

Fix any x′ ∈ [0, 1]n−1 and consider the line of points (y, x′) for y ∈ [0, 1], i.e. the line along the first
coordinate with remaining coordinates set to x′. Suppose this line intersects Bn

1 (r, c). Then this
intersection occurs on some interval [a, b] of y-values, and on this interval, f first decreases from
f(a, x′) = 0 to f

(
a+b
2 , x′

)
= − b−a

2 at rate 1, and then increases at rate 1 back to f(b, x′) = 0. Any
monotone function g is in particular monotone over this line, and it is easy to see that this requires
total change to f proportional to the area under this curve:

∫ 1

0

∣∣f(y, x′) − g(y, x′)
∣∣ dy &

∫ 1

0

∣∣f(y, x′)
∣∣ dy .

Now, since this holds for any line intersecting Bn
1 (r, c), and the collection of such lines gives a

partition of Bn
1 (r, c), the total distance between f and any monotone function g is lower bounded

(up to a constant) by the L1-norm of f :

∫

[0,1]n
|f − g| dν &

∫

[0,1]n
|f | dν ,

and since this holds for any choice of g, we conclude that

d1(f) &

∫

[0,1]n
|f | dν .

We now note that this last expression is half the volume of an ℓ1-ball in dimension n + 1: for each
point x ∈ Bn

1 (r, c), the contribution to the integrand is |f(x)| = r− ‖x− c‖1, corresponding to the
measure of points (x, z′) for all 0 ≤ z′ ≤ z where z = r − ‖x− c‖1, so that the point (x, z) ∈ R

n+1

satisfies ‖(x, z) − (c, 0)‖1 = r. In other words, the points (x, z′) are the points of Bn+1
1 (r, (c, 0))

with nonnegative last coordinate. Conversely, all such points contribute to the integral above.
Therefore, since n is a constant, using Proposition 6.2 and writing νn+1 for the Lebesgue measure
on R

n+1, we have

d1(f) &

∫

[0,1]n
|f | dν & νn+1

(
Bn+1

1 (r)
)
& rn+1 .

We wish this last quantity to be at least Ω(ǫ), so (recalling n is a constant) it suffices to set

r ≈ ǫ
1

n+1 .

We have established that each function f , for this choice of r and any choice of c, is ǫ-far from
monotone as desired. Our family of functions from which f will be drawn will be given by choices
of c such that the balls Bn

1 (r, c) are disjoint, so that each query may only rule out one such choice
(because queries outside Bn

1 (r, c) take value 0). How many disjoint balls Bn
1 (r, c) can we fit inside

[0, 1]n? It suffices to divide [0, 1]n into a grid of n-dimensional cells of side 2r, each of which can
contain one ball. The number of such cells is at least (up to a constant factor)

(1/r)n & (1/ǫ)
n

n+1 .

Therefore to distinguish some f uniformly drawn from this family from the constant-0 function with

constant probability, any deterministic algorithm must have query complexity at least Ω
(

(1/ǫ)
n

n+1

)
.

23

Theorem 6.5 (Lower bound for constant n on the hypergrid). Let n ∈ N be a constant. Any
L1 monotonicity tester (with two-sided error and adaptive queries) for functions f : [m]n → R

satisfying Lip1(f) ≤ 1 requires at least Ω
(

min
{

(m/ǫ)
n

n+1 ,mn
})

queries.

Proof. We proceed similarly to Theorem 6.4, with small changes for the discrete setting (essentially
corresponding to the requirement that r ≥ 1 in the discrete case of Proposition 6.2).

We will again construct functions f based on balls Bn
1 (r, c) for suitable choices of r and c. For

fixed r and c, f takes value 0 outside the ball and, for each x ∈ Bn
1 (r, c),

f(x) = −r + ‖x− c‖1 ,

so that Lip1(f) = 1. Again by a line restriction argument, for any monotone function g we have

∫

[m]n
|f − g| dν &

∫

[m]n
|f | dν ,

and thus

d1(f) &
1

mn

∫

[m]n
|f | dν , (7)

the normalizing factor due to Definition 2.2.
When ǫ ≤ 1/mn, this construction boils down to setting f(x) = −1 at a single point x, which

requires Ω(mn) queries to identify. Now, assume ǫ > 1/mn.
Again we may identify the integrand of (7) with points on half of Bn+1

1 (r, (c, 0)). As long as
r ≥ 1 and since n is a constant, Proposition 6.2 implies that

d1(f) &
rn+1

mn
.

Thus to have d1(f) ≥ ǫ, it suffices (since n is a constant) to set

r ≈ m
n

n+1 ǫ
1

n+1 ,

and indeed this gives r ≥ 1 since ǫ > 1/mn. Then, our functions f are given by choices of c placed
on the hypergrid [m]n inside disjoint cells of side 2r, of which there are at least (up to a constant
factor) (m

r

)n
&

(m
ǫ

) n
n+1

,

and thus any deterministic algorithm requires Ω
(

(m/ǫ)
n

n+1

)
queries to distinguish a uniformly

chosen f from this family from the constant-0 function.

The construction for the partial derivative tester lower bounds is simpler: we start with a “step”
one-dimensional construction which is flat everywhere except for a small region of negative slope,
and then copy this function onto every line along a randomly chosen coordinate i. Then a partial
derivative tester must correctly guess both i and the negative-slope region to detect such functions.
The following two theorems establish the continuous and discrete cases of Theorem 1.7.

Theorem 6.6 (Lower bound for partial derivative testers on the unit cube). Any partial derivative
L1 monotonicity tester for Lipschitz functions f : [0, 1]n → R satisfying Lip1(f) ≤ 1 (with two-sided
error and adaptive queries) requires at least Ω(n/ǫ) queries.

24

Proof. Let ǫ ≤ 1/6. For any z ∈
[
1
3 ,

2
3 − ǫ

]
, let gz : [0, 1] → R be the function given by

g(x) =





ǫ if x < z ,

ǫ− (x− z) if z ≤ x ≤ z + ǫ ,

0 if x > z + ǫ .

Note that gz is Lipschitz with Lip1(g) = 1. Moreover, we claim that d1(gz) & ǫ. Indeed, for
any x ∈ [0, 1/3], we have that gz(x) = ǫ and gz(2/3 + x) = 0. On the other hand, for any
monotone function h : [0, 1] → R we must have h(x) ≤ h(2/3 + x). Thus, for any such h we have
|gz(x) − h(x)| + |gz(2/3 + x) − h(2/3 + x)| ≥ ǫ. Since this holds for all x ∈ [0, 1/3], we conclude
that for any such h we must have E [|gz − h|] ≥ ǫ/3, proving the claim.

Now, for any i ∈ [n] and z ∈
[
1
3 ,

2
3 − ǫ

]
, let fi,z : [0, 1]n → R be given by copying gz onto

f along every line in direction i, i.e. setting fi,z(x) = gz(xi) for every x ∈ [0, 1]n. Note that
Lip1(f) = 1 (since its partial derivatives are 0 along non-i coordinates), and d1(f) & ǫ (since the
lines in direction i partition the domain).

We construct a set of Ω(n/ǫ) functions fi,z as follows. First, i can be any of the coordinates
in [n]. Then let z1, . . . , zk be given by zj = 1

3 + kǫ for k = Ω(1/ǫ), such that for each j we have
zj ∈

[
1
3 ,

2
3 − ǫ

]
and, moreover, for distinct j, ℓ ∈ [k], the regions where fi,zj and fi,zℓ take non-zero

slope are disjoint. It follows that each partial derivative query may only rule out one such fi,z,
so any partial derivative tester that distinguishes an fi,z chosen uniformly at random from the
constant-0 function must make at least Ω(n/ǫ) queries.

The argument for the hypergrid is similar, except that the construction cannot be made to
occupy an arbitrarily small region of the domain when the domain is discrete. We opt to keep the
argument simple and give a proof for constant parameter ǫ.

Theorem 6.7 (Lower bound for edge testers on the hypergrid). For sufficiently small constant ǫ,
any partial derivative L1 monotonicity tester for functions f : [m]n → R satisfying Lip1(f) ≤ 1
(with two-sided error and adaptive queries) requires at least Ω(nm) queries.

Proof. Let m be a multiple of 3 for simplicity. For each z ∈
{
m
3 + 1, . . . , 2m3

}
, define gz : [m] → R

by

gz(x) =

{
1 if x < z ,

0 if z ≥ z .

Then Lip1(gz) = 1 and, as before, we have d1(gz) = Ω(1). Then for each i ∈ [n] and z ∈
[
m
3 + 1, 2m3

]
,

we let fi,z : [m]n → R be given by fi,z(x) = gz(xi) for each x ∈ [m]n; it follows that Lip1(f) = 1 and
d1(f) = Ω(1). Note that there are Ω(nm) such functions. Moreover, each partial derivative query
may only rule out one such fi,z, and therefore any edge tester that distinguishes an fi,z chosen
uniformly at random from the constant-0 function must make at least Ω(nm) queries.

7 Overview of prior works on monotonicity testing

We first summarize results on testing monotonicity with respect to the Hamming distance.

Boolean-valued functions. Among the early works on this problem, [GGL+00] gave testers for
functions on the hypergrid [m]n with query complexities O(n log(m)/ǫ) and O((n/ǫ)2); note that
the latter bound is independent of m, and the query complexity of testers with this property was

25

subsequently improved to O((n/ǫ) log2(n/ǫ)) by [DGL+99] and to O((n/ǫ) log(n/ǫ)) by [BRY14a].
For functions on the Boolean cube {0, 1}n, [CS16] gave the first o(n) tester, subsequently improved
by [CST14], culminating in the Õ(

√
n/ǫ2) tester of [KMS18], which essentially resolved the question

for nonadaptive testers. Whether adaptivity helps in monotonicity testing is still an open question;
see the lower bounds below, and also [CS19].

Returning to hypergrid domains [m]n, [BCS18, BCS20] established first testers with o(n) query
complexity and, via a domain reduction technique, also obtained o(n) testers for product dis-
tributions on R

n (and the alternative proof of [HY22] improves the number of samples drawn
by the tester when the distribution is unknown). Subsequent works [BCS22, BKKM22] attained
the optimal dependence on n at the cost of a dependence on m, with upper bounds of the form
Õ(

√
npoly(m)). Most recently, [BCS23] gave a tester with query complexity O(n1/2+o(1)/ǫ2), which

is almost optimal for nonadaptive algorithms, and again extends to product measures on R
n.

Real-valued functions. [EKK+98] gave a tester with query complexity O(log(m)/ǫ) for real-
valued functions on the line [m]; the tight query complexity of this problem was more recently shown
to be Θ(log(ǫm)/ǫ) [Bel18]. As for functions on the hypergrid [m]n, [GGL+00, DGL+99] also gave
testers for larger ranges, but the query complexity depends on the size of the range. Then, [CS13]
gave a nonadaptive tester with one-sided error and (optimal) query complexity O(n log(m)/ǫ).
On the Boolean cube, [BKR20] gave a tester with query complexity Õ

(
min

{
r
√
n/ǫ2, n/ǫ

})
for

real-valued functions f with image size r, and showed that this is optimal (for constant ǫ) for
nonadaptive testers with one-sided error.

Lower bounds. We briefly summarize the known lower bounds for these problems; all lower
bounds listed are for testers with two-sided error unless noted otherwise. For Boolean functions
on the Boolean cube {0, 1}n, there is a near-optimal lower bound of Ω̃(

√
n) for nonadaptive testers

[CWX17], which improves on prior results of [FLN+02, CST14, CDST15]. For adaptive testers,
[BB16] gave the first polynomial lower bound of Ω̃(n1/4), since improved to Ω̃(n1/3) by [CWX17].

Turning to real-valued functions, [Fis04] combined Ramsey theory arguments with a result of
[EKK+98] to show a Ω(logm) lower bound for adaptive testers on the line [m]. On the Boolean
cube, [BCGM12] gave a Ω(n/ǫ) nonadaptive one-sided lower bound, and [BBM12] gave an adaptive
lower bound of Ω(n). On the hypergrid, [BRY14b] gave a nonadaptive lower bound of Ω(n logm) by
communication complexity arguments, [CS14] showed the optimal lower bound of Ω(n log(m)/ǫ−
log(1/ǫ)/ǫ) for adaptive testers using Ramsey theory (which involves functions with large range),
and [Bel18] gave an alternative proof of this bound that does not use Ramsey theory.

Lp-testing. Finally, moving from Hamming testers to Lp testers, and assuming functions with
range [0, 1], [BRY14a] (who formally introduced this model) gave nonadaptive Lp monotonicity
testers with one-sided error on the hypergrid [m]n with query complexity O((n/ǫp) log(n/ǫp))—
note this is independent of m, bypassing the Hamming testing lower bound—and a lower bound
of Ω((1/ǫp) log(1/ǫp)) for nonadaptive testers with one-sided error; on the line, they showed there
is an O(1/ǫp) nonadaptive tester with one-sided error and a matching lower bound for adaptive
testers with two-sided error. They also gave a reduction from Lp monotonicity testing to Hamming
testing of Boolean functions for nonadaptive one-sided testers, so in particular L1 testing functions
with range [0, 1] is no harder than Hamming testing functions with Boolean range.

We also remark that our problem, which is parameterized by the upper bound L on the Lipschitz
constant of input functions, lies under the umbrella of parameterized property testing, and refer to
[PRV17] for an introduction to, and results on this type of tester.

26

Acknowledgments. We thank Eric Blais for helpful discussions throughout the course of this
project, and for comments and suggestions on preliminary versions of this paper.

References

[AD04] Gabriel Acosta and Ricardo Durán. An optimal poincaré inequality in L1 for convex
domains. Proceedings of the American Mathematical Society, 132(1):195–202, 2004.

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
page 1021–1032. ACM, Jun 2016.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via com-
munication complexity. computational complexity, 21:311–358, 2012.

[BCGM12] Jop Briët, Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Monotonic-
ity testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[BCS18] Hadley Black, Deeparnab Chakrabarty, and Comandur Seshadhri. A o(d) · polylogn
monotonicity tester for boolean functions over the hypergrid [n]d. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2133–
2151. SIAM, 2018.

[BCS20] Hadley Black, Deeparnab Chakrabarty, and Comandur Seshadhri. Domain reduction
for monotonicity testing: A o(d) tester for boolean functions in d-dimensions. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1975–1994. SIAM, 2020.

[BCS22] Hadley Black, Deeparnab Chakrabarty, and C Seshadhri. Directed isoperimetric theo-
rems for boolean functions on the hypergrid and an Õ(n

√
d) monotonicity tester. arXiv

preprint arXiv:2211.05281, 2022.

[BCS23] Hadley Black, Deeparnab Chakrabarty, and C Seshadhri. A d1/2+o(1) mono-
tonicity tester for boolean functions on d-dimensional hypergrids. arXiv preprint
arXiv:2304.01416, 2023.

[Beb03] Mario Bebendorf. A note on the poincaré inequality for convex domains. Zeitschrift
für Analysis und ihre Anwendungen, 22(4):751–756, 2003.

[Bel18] Aleksandrs Belovs. Adaptive lower bound for testing monotonicity on the line.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2018.

[BGL14] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov
diffusion operators, volume 103. Springer, 2014.

[BH97] Sergey G Bobkov and Christian Houdré. Isoperimetric constants for product probability
measures. The Annals of Probability, pages 184–205, 1997.

[BKKM22] Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved monotonic-
ity testers via hypercube embeddings. arXiv preprint arXiv:2211.09229, 2022.

27

[BKR20] Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. Isoperimetric inequalities
for real-valued functions with applications to monotonicity testing. arXiv preprint
arXiv:2011.09441, 2020.

[BL96] Dominique Bakry and Michel Ledoux. Lévy–gromov’s isoperimetric inequality for an
infinite dimensional diffusion generator. Inventiones mathematicae, 123(2):259–281,
1996.

[BL97] Sergey Bobkov and Michel Ledoux. Poincaré’s inequalities and talagrand’s concen-
tration phenomenon for the exponential distribution. Probability Theory and Related
Fields, 107:383–400, 1997.

[Bob97] Sergey G Bobkov. An isoperimetric inequality on the discrete cube, and an elemen-
tary proof of the isoperimetric inequality in gauss space. The Annals of Probability,
25(1):206–214, 1997.

[Bor75] Christer Borell. The brunn-minkowski inequality in gauss space. Inventiones mathe-
maticae, 30(2):207–216, 1975.

[BRY14a] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceed-
ings of the forty-sixth annual ACM symposium on Theory of computing, pages 164–173,
2014.

[BRY14b] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing
properties of functions over hypergrid domains. In 2014 IEEE 29th Conference on
Computational Complexity (CCC), pages 309–320. IEEE, 2014.

[BS88] Colin Bennett and Robert C Sharpley. Interpolation of operators. Academic press,
1988.

[BS16] Lorenzo Brasco and Filippo Santambrogio. A note on some poincaré inequalities on
convex sets by optimal transport methods. In Geometric Properties for Parabolic and
Elliptic PDE’s: GPPEPDEs, Palinuro, Italy, May 2015 4, pages 49–63. Springer, 2016.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function mono-
tonicity testing requires (almost) n1/2 non-adaptive queries. In Proceedings of the forty-
seventh annual ACM symposium on Theory of Computing, page 519–528. ACM, Jun
2015.

[CS13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lip-
schitz testing over hypercubes and hypergrids. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 419–428, 2013.

[CS14] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity
testing over hypergrids. Theory Of Computing, 10(17):453–464, 2014.

[CS16] D. Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions
over the hypercube. SIAM Journal on Computing, 45(2):461–472, Jan 2016.

28

[CS19] D Chakrabarty and C Seshadhri. Adaptive boolean monotonicity testing in total in-
fluence time. Innovations in Theoretical Computer Science (ITCS), 2019.

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds
for monotonicity testing. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, page 286–295, Oct 2014.

[CT80] Michael G Crandall and Luc Tartar. Some relations between nonexpansive and order
preserving mappings. Proceedings of the American Mathematical Society, 78(3):385–
390, 1980.

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new lower
bounds for testing monotonicity and unateness. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 523–536, 2017.

[CWZ21] Shuyu Cheng, Guoqiang Wu, and Jun Zhu. On the convergence of prior-guided zeroth-
order optimization algorithms. Advances in Neural Information Processing Systems,
34:14620–14631, 2021.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. Improved testing algorithms for monotonicity. In RAN-
DOM/APPROX, pages 97–108. Springer, 1999.

[EKK+98] Funda Ergün, Sampath Kannan, S Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 259–268, 1998.

[EKLM22] Ronen Eldan, Guy Kindler, Noam Lifshitz, and Dor Minzer. Isoperimetric inequalities
made simpler. arXiv preprint arXiv:2204.06686, 2022.

[Fis04] Eldar Fischer. On the strength of comparisons in property testing. Information and
Computation, 189(1):107–116, 2004.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. Monotonicity testing over general poset domains. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
474–483, 2002.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 3(20):301–337, 2000.

[Gro75] Leonard Gross. Logarithmic sobolev inequalities. American Journal of Mathematics,
97(4):1061–1083, 1975.

[HY22] Nathaniel Harms and Yuichi Yoshida. Downsampling for testing and learning in prod-
uct distributions. In 49th International Colloquium on Automata, Languages, and
Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[Kaw85] Bernhard Kawohl. Rearrangements and convexity of level sets in PDE, volume 1150 of
Lecture Notes in Mathematics. Springer-Verlag Berlin, Heidelberg, 1985.

[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean
isoperimetric-type theorems. SIAM Journal on Computing, 47(6):2238–2276, 2018.

29

[KN15] Nikolay Kuznetsov and Alexander Nazarov. Sharp constants in the poincaré, steklov
and related inequalities (a survey). Mathematika, 61(2):328–344, 2015.

[Lat03] Rafa l Lata la. On some inequalities for gaussian measures. arXiv preprint
math/0304343, 2003.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[Poi90] Henri Poincaré. Sur les équations aux dérivées partielles de la physique mathématique.
American Journal of Mathematics, pages 211–294, 1890.

[PRV17] Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized
property testing of functions. ACM Transactions on Computation Theory (TOCT),
9(4):1–19, 2017.

[PRW22] Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approxi-
mating the distance to monotonicity of boolean functions. Random Structures & Algo-
rithms, 60(2):233–260, 2022.

[PW57] LE Payne and HF Weinberger. Lower bounds for vibration frequencies of elastically
supported membranes and plates. Journal of the Society for Industrial and Applied
Mathematics, 5(4):171–182, 1957.

[ST78] Vladimir N Sudakov and Boris S Tsirel’son. Extremal properties of half-spaces for
spherically invariant measures. Journal of Soviet Mathematics, 9(1):9–18, 1978.

[Tal93] Michel Talagrand. Isoperimetry, logarithmic sobolev inequalities on the discrete cube,
and margulis’ graph connectivity theorem. Geometric & Functional Analysis GAFA,
3(3):295–314, 1993.

[Ver99] Rüdiger Verfürth. A note on polynomial approximation in sobolev spaces. ESAIM:
Mathematical Modelling and Numerical Analysis, 33(4):715–719, 1999.

[Wan05] Xianfu Wang. Volumes of generalized unit balls. Mathematics Magazine, 78(5):390–395,
2005.

A Background on isoperimetric inequalities

Let us trace an extremely brief history of developments that are most relevant to our study of
isoperimetric inequalities. We start with the original work of Poincaré [Poi90], which yields in-
equalities of the type ‖f −E [f] ‖p ≤ C(Ω)‖∇f‖p for sufficiently smooth domains Ω and sufficiently
integrable functions f11. The optimal constant C(Ω), also called the Poincaré constant of Ω, de-
pends on properties of this domain12, and often the goal is to establish the sharp constant for
families of domains Ω. [PW57] and [AD04] (see also [Beb03]) showed that, for convex domains,
C(Ω) is essentially upper bounded by the diameter of Ω, and this bound is tight in general. However,
for specific structured domains such as the product domain [0, 1]n, the diameter characterization

11More precisely, for f in the appropriate Sobolev space.
12For example, it is characterized by the first nontrivial eigenvalue of the Laplacian operator on smooth bounded

Ω. There are additional considerations relating the assumptions made of f on the boundary ∂Ω and the (Dirichlet
or Neumann) boundary conditions associated with the Laplacian; see [KN15] for a survey.

30

Continuous

{0, 1}n → {0, 1} {0, 1}n → R [0, 1]n → R

dconst1 (f) . E [‖∇f‖1] * [Tal93] * [Tal93] * [BH97]

dmono
1 (f) . E [‖∇−f‖1] [GGL+00] Theorem 1.3 Theorem 1.2

dconst1 (f) . E [‖∇f‖2] * [Tal93] [Tal93] [BH97]

dmono
1 (f) . E [‖∇−f‖2] [KMS18] ? Conjecture 1.8

dconst0 (f) . E [‖φf‖2]
dmono
0 (f) . E [‖φ−f‖2]

dmono
0 (f) . E [‖φ−f‖2]

Discrete

(L1, ℓ1)-Poincaré

(L1, ℓ2)-Poincaré

Related
inequalities

For f : {0, 1}n → R [BKR20]

For f : [m]n → {0, 1} [BCS22, BKKM22]

Inequality

Setting

Table 3: Classical and directed functional inequalities on discrete and continuous domains. Cells
marked with * indicate inequalities that follow from another entry in the table. For simplicity,
logarithmic factors in the inequalities are ignored.

falls short of yielding a dimension-free inequality (see also the literature on logarithmic Sobolev
inequalities [Gro75]).

Making progress on this front in the discrete setting, the landmark work of Talagrand [Tal93]
established inequalities like the above for domain Ω = {0, 1}n, with C = C(Ω) independent of
n, and established connections with earlier works of Margulis on graph connectivity and Pisier
on probability in Banach spaces. (More recently, Fourier-analytic proofs of Talagrand’s inequality
have also been given [EKLM22].) In continuous settings, similar results were first established
for the Gaussian measure in connection with the Gaussian isoperimetric inequality [Bob97, BL96,
ST78, Bor75, Lat03]. Tying back to our present settings of interest, Bobkov and Houdré [BH97]
showed that a dimension-independent Poincaré-type inequality also holds for product measures in
R
n, including the uniform measure on [0, 1]n, as shown in (3).

As introduced in the opening, it is these dimension-free Poincaré inequalities for discrete
and continuous product measures whose directed analogues have implications for the structure
of monotone functions and therefore for property testing [GGL+00, CS16, KMS18]. To enrich
the summary laid out in Table 1, we present additional related inequalities recently shown by
[BKR20, BCS22, BKKM22] in Table 3, and briefly explain them here. These inequalities have
unlocked algorithmic results for testing monotonicity of real-valued functions on the Boolean cube,
and Boolean-valued functions on the hypergrid, as summarized in Section 7.

Define the vector-valued operators φ and φ− on functions f : [m]n → R as follows: for each
x ∈ [m]n and i ∈ [n],

(φf(x))i := 1 [∃y : (x �i y or y �i x) and f(x) 6= f(y)] ,

(φ−f(x))i := 1 [(∃y : x �i y, f(x) > f(y)) or (∃y : y �i x, f(y) > f(x))] ,

where we write x �i y if xj = yj for every j 6= i, and xi ≤ yi. Compared to the gradient,
these operators 1) are only sensitive to the order relation between function values (which suits the
setting of Hamming testing); and 2) capture “long range” violations of monotonicity (accordingly,
the corresponding hypergrid testers are not edge testers). See Section 1.2.1 for a remark on the
nuances of inner/outer boundaries and robust inequalities.

31

B Upper bounds from [BRY14a] applied to Lipschitz functions

In this section, we show how the L1 monotonicity testing upper bounds from [BRY14a] imply testers

with query complexity Õ
(
n2L
ǫ

)
on the unit cube and Õ

(
n2mL

ǫ

)
on the hypergrid for functions f

satisfying Lip1(f) ≤ L. We start with the case of the hypergrid, and first state the upper bound
of [BRY14a] for functions with arbitrary range of size r, which without loss of generality (by
translation invariance) we denote [0, r]:

Theorem B.1 ([BRY14a]). There exists an L1 monotonicity tester for functions f : [m]n → [0, r]
that uses O

(
rn
ǫ log rn

ǫ

)
value queries. The tester is nonadaptive and has one-sided error.

As explained in Section 1.3.3, the extra factor of r compared to the bounds stated in [BRY14a]
accounts for the conversion between range [0, r] and range [0, 1], which affects the proximity pa-
rameter ǫ by a factor of r: testing functions with range [0, r] for proximity parameter ǫ is equivalent
to testing functions with range [0, 1] for proximity parameter ǫ/r.

We thus obtain the following L1 monotonicity tester for Lipschitz functions on the hypergrid:

Corollary B.2. There is an L1 monotonicity tester for functions f : [m]n → R satisfying Lip1(f) ≤
L that uses O

(
n2mL

ǫ log
(
nmL
ǫ

))
value queries. The tester is nonadaptive and has one-sided error.

Proof. The algorithm simulates the tester from Theorem B.1 with parameters r = Lmn and ǫ,
which gives the announced query complexity. As for correctness, note that since Lip1(f) ≤ L, for
any x, y ∈ [m]n we have |f(x) − f(y)| ≤ L‖x− y‖1 ≤ Lmn. Thus f has range of size at most Lmn,
so the reduction to the tester from Theorem B.1 is correct.

We outline how this result implies a tester for Lipschitz functions on the unit cube as well, via
the domain reduction or downsampling principle of [BCS20, HY22]. Even though the tester above
has query complexity that depends on m, the main observation is that, given an (ℓ1, L)-Lipschitz
function on [0, 1]n, we may discretize it into an (ℓ1, L/m)-Lipschitz function on an arbitrarily fine
hypergrid [m]n. Then the term m(L/m) = L remains fixed for any choice of m, so the complexity
of the tester above does not depend on m in this reduction. Finally, by setting m large enough, we
may upper bound the error introduced by the discretization.

Corollary B.3. There is an L1 monotonicity tester for functions f : [0, 1]n → R satisfying

Lip1(f) ≤ L that uses O
(
n2L
ǫ log

(
nL
ǫ

))
value queries. The tester is nonadaptive and has one-

sided error.

Proof sketch. For sufficiently large m to be chosen below, the algorithm imposes a hypergrid [m]n

uniformly on [0, 1]n. More precisely, we define a function f ′ : [m]n → R via f ′(x) = f(x/m) for all
x ∈ [m]n. Note that Lip1(f

′) ≤ L/m. Then, the algorithm simulates the tester from Corollary B.2
on f ′ with proximity parameter Ω(ǫ), and returns its result. Note that the query complexity is as
desired, so it remains to show correctness. If f is monotone so is f ′, in which case the algorithm
accepts. Now assume that d1(f) > ǫ, and we need to show that d1(f

′) & ǫ.
Let g′ : [m]n → R be any monotone function. We obtain a monotone function g : [0, 1]n → R

as follows: for each x ∈ [0, 1]n, let x be obtained by rounding up each coordinate xi to a positive
integral multiple of 1/m. Then x′ := mx ∈ [m]n, and we set g(x) := g′(x′). It follows that g is

32

monotone, and by the triangle inequality,

E [f − g] ≤ E
[
f ′ − g′

]
+ max

x∈[0,1]n
|f(x) − f(x)| ≤ E

[
f ′ − g′

]
+

Ln

m
.

In the first inequality, we separately account for the cost of turning each value of f into the value at
its corresponding “rounded up” point (accounted for by the second summand), and then the cost
of turning each equal-sized, constant-valued cell into the value of g on that cell, and these values
agree with f ′ and g′ (accounted for by the first summand). In the second inequality, we use the
fact that any point x satisfies ‖x− x‖1 ≤ 1

m · n, along with the Lipschitz assumption on f .
Therefore, by setting m > 10Ln

ǫ , we obtain Ln
m < ǫ

10 , and since the inequality above holds for
every monotone function g′, we conclude that d1(f

′) ≥ d1(f) − ǫ/10 > 9ǫ/10, as desired.

Remark B.4. One may wonder whether the reductions above could yield more efficient testers if
combined with Hamming testers for Boolean functions on the hypergrid with better dependence on n
(via the reduction from L1 testing to Hamming testing of [BRY14a], which is behind Theorem B.1),
since e.g. the tester of [BCS23] has query complexity Õ(n1/2+o(1)/ǫ2). However, it seems like this is
not the case, i.e. Corollary B.2 has the best query complexity of any reduction that upper bounds
the size of the range of f by Lmn. The reason is as follows: [KMS18] showed that any nonadaptive,
one-sided pair tester for the Boolean cube with query complexity O(nα/ǫβ) must satisfy α+ β

2 ≥ 3
2 ,

so hypergrid testers must also satisfy this as well as β ≥ 1, assuming query complexity independent
of m. Then, given a hypergrid tester for Boolean functions with query complexity Õ(nα/ǫβ), our
reduction via the inferred range size r = Lnm gives an L1 tester with asymptotic query complexity

at least nα

(ǫ/r)β
= nα+β/2nβ/2(mL)β

ǫβ
≥ n2mL

ǫ .

C Lower bound from [BRY14b] applied to L
1 testing

We briefly explain how the Ω(n logm) nonadaptive lower bound of [BRY14b] for Hamming testing
monotonicity of functions f : [m]n → R (with sufficiently small constant ǫ) also applies to L1-testing
functions satisfying Lip1(f) ≤ O(1). The construction of [BRY14b] relies on two main ingredients:
step functions and Walsh functions.

Let m = 2ℓ for simplicity. For each i ∈ {0, . . . ,m} the i-th step function si : [2ℓ] → [2ℓ−i] is
given by

si(x) =

⌊
x− 1

2i

⌋
+ 1 .

In words, si(x) increases by 1 after every 2i consecutive elements (called a block of size 2i).
The Walsh functions are defined as follows. For each i ∈ [ℓ], the function wi : [2ℓ] → {±1} is

given by
wi(x) = (−1)biti(x−1) ,

where the operator biti extracts the i-th bit of its input (indexed from least to most significant).
Then for each S ⊆ [ℓ], the function wS : [2ℓ] → {±1} is given by

wS(x) =
∏

i∈S

wi(x) .

These two types of functions are defined on the line, and they are extended into a multidi-
mensional construction on the hypergrid as follows. Given a vector i ∈ [ℓ]n, the step function

33

si : [2ℓ]n → [n2ℓ] is given by

si(x1, . . . , xn) =
n∑

j=1

sij (xj) ,

and given a vector S = (S1, . . . ,Sn) of subsets of [ℓ], the Walsh function wS : [2ℓ]n → {±1} is
given by

wS(x1, . . . , xn) =
n∏

j=1

wSj (xj) .

Then, [BRY14b] use a communication complexity argument (namely a reduction from the Aug-

mentIndex problem) to show that (nonadaptive) Hamming testing monotonicity of functions
hi,S : [2ℓ]n → N of the form

hi,S(x) = 2si(x) + wS(x) ,

for appropriate choices of i and S, requires at least Ω(n logm) queries. Therefore, to show that
(nonadaptive) L1 testing monotonicity of (ℓ1, O(1))-Lipschitz functions also requires at least this
number of queries, it suffices to show that every such function h = hi,S satisfies

1. Lip1(h) ≤ O(1); and

2. If d0(h) ≥ ǫ, then d1(h) & ǫ.

The first property follows from the definitions of the step and Walsh functions: let x, y ∈ [2ℓ]n

be such that ‖x− y‖1 = 1. Then let j ∈ [ℓ] be the coordinate such that |xj − yj | = 1 and xk = yk
for k 6= j. Then

|hi,S(x) − hi,S(y)| ≤ 2
∣∣sij (xj) − sij (yj)

∣∣ + |wS(x) − wS(y)| ≤ 2 + 2 = 4 ,

the first inequality because x and y agree on every coordinate except for j, and the second inequality
because the step function sij changes by at most 1 on adjacent inputs, and the Walsh functions
only take values ±1. Thus Lip1(hi,S) ≤ 4, as desired.

As for the second property, note that if d0(h) ≥ ǫ, then there exists a matching of the form
(xi, yi)i where for each i we have xi � yi and h(xi) > h(yi) (i.e. xi, yi form a violating pair), such
that at least an ǫ-fraction of the points [m]n belong to this matching (see [FLN+02]). Now, for each
such violating pair xi, yi, it follows that h(xi)−h(yi) ≥ 1, since h is integer-valued. Therefore for any
monotone function h′ : [m]n → R, it must be the case that

∣∣h(xi) − h′(xi)
∣∣ +

∣∣h(yi) − h′(yi)
∣∣ ≥ 1.

Since this is true for disjoint pairs xi, yi covering an ǫ-fraction of the domain, it follows that
d1(h, h

′) ≥ ǫ/2 for any monotone function h′. Hence d1(h) ≥ ǫ/2, and we are done.

34
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

