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Abstract

We give new upper and lower bounds on the power of several restricted classes of arbitrary-
order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have
received significant attention in the literature on pseudorandomness for space-bounded compu-
tation.

• Regular SOBPs of length n and width ⌊w(n+1)/2⌋ can exactly simulate general SOBPs of
length n and width w, and moreover an n/2− o(n) blow-up in width is necessary for such
a simulation. Our result extends and simplifies prior average-case simulations (Reingold,
Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)),
in particular implying that weighted pseudorandom generators (Braverman, Cohen, and
Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend
to general SOBPs. Furthermore, our simulation also extends to general (even read-many)
oblivious branching programs.

• There exist natural functions computable by regular SOBPs of constant width that are
average-case hard for permutation SOBPs of exponential width. Indeed, we show that
Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of ex-
ponential width.

• There exist functions computable by constant-width arbitrary-order permutation ROBPs
that are worst-case hard for exponential-width SOBPs.

• Read-twice permutation branching programs of subexponential width can simulate polynomial-
width arbitrary-order ROBPs.
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1 Introduction

Read-once branching programs (ROBPs) have been extensively studied over the past four decades,
motivated by the fact that these programs capture how small-space machines use random coins, and
hence optimal and explicit pseudorandom generators for them would imply BPL = L, showing that
every randomized logspace algorithm can be simulated deterministically with only a constant factor
blow-up in space. Thus, there has been several decades of research on constructing pseudorandom
generators for different variants of ROBPs. In this paper, we study how those variants compare
to each other in computational power, through new simulations and separations. To describe our
results, we first define the models we are studying, starting from the most general model of read-
many branching programs.

Definition 1.1. An (oblivious) branching program (BP) B of length m and width w com-
putes a function B : {0, 1}n → {0, 1}. On an input x ∈ {0, 1}n, the branching program computes
as follows. It has m + 1 layers V0, . . . , Vm, each with vertices labeled {1, . . . , w}. It starts at a
fixed start state vst ∈ V0. Then for each step t = 1, . . . ,m, it reads the next symbol xi(t) for some
i(t) ∈ [n], and updates its state according to a transition function Bt : Vt−1×{0, 1} → Vt by taking
vt = Bt[vt−1, xi(t)]. For v ∈ Vs and u ∈ Vt for t > s, we write B[v, y] = u if the program transitions
to state u starting from state v upon reading y = (xi(s+1), . . . , xi(t)). Moreover, there is a set of
accept states Vacc ⊆ Vm. For x ∈ {0, 1}n, we define B(x) = 1 if and only if B[vst, x] ∈ Vacc. That is,
B accepts the inputs x that lead it from the start state vst ∈ V0 in the first layer to an accept state
in the last layer vacc ∈ Vacc ⊆ Vm. We write B(v, x) = 1 if the program transitions to an accept
state from a state v on input x. We call the function i : [m]→ [n] the read order of B.

Definition 1.2. A read-k branching program is a BP where the read order i satisfies |i−1(j)| ≤ k
for every j ∈ [n]. For k = 1 we denote this a read-once branching program (ROBP).

Definition 1.3. A standard-order ROBP (SOBP) is an ROBP whose read order is the identity
function (i.e. i(t) = t for every t ∈ [n]).

Note that we have the inclusions

SOBPs ⊆ ROBPs ⊆ BPs.

To emphasize the distinction between the standard-order model and general ROBPs (which have
i(t) = π(t) for some permutation π), we denote the latter as arbitrary-order ROBPs.

Remark 1.4. Our choice of notation follows the recent surveys of Hatami and Hoza [HH23] and
Hoza [Hoz22]. There have been several (inconsistent) choices of notation in prior papers. In par-
ticular, prior works have referred to standard order ROBPs as simply ROBPs, or “ordered BPs”.
Other works have referred to ROBPs as “unordered ROBPs”.

In 1990, Nisan [Nis92] constructed an explicit pseudorandom generator (PRG) for SOBPs with
seed length O(log n · log(nw/ε)) (c.f. the optimal O(log(nw/ε)) achieved by the probabilistic
method). Despite extensive effort, this result has not been improved when the width of the pro-
grams w is at least 4 and at most 2no(1) . Motivated by this longstanding challenge, researchers have
extensively studied restricted cases of the model, known as regular and permutation SOBPs:

Definition 1.5. A regular BP is a branching program where for all t ∈ [m] and i ∈ [w], there
are exactly two distinct pairs (j1, b1), (j2, b2) such that Bt[j1, b1] = Bt[j2, b2] = i. Equivalently, the
graph of transitions from Vt−1 to Vt is 2-in-regular.
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Definition 1.6. A permutation BP is an branching program where for all t ∈ [m] and σ ∈ {0, 1},
Bt[·, σ] is a permutation on [w].

Note that we have the inclusions

permutation BPs ⊆ regular BPs ⊆ BPs

and the same inclusions hold when restricting BPs to ROBPs or SOBPs.
There has been extensive prior work studying pseudorandomness for regular [INW94,BRRY14,

De11,BHPP22,LPV22,CLTW23] and permutation [KNP11,Ste12,RSV13,CHHL19,HPV21,PV21,
GV22] SOBPs and ROBPs over roughly the last decade.

For regular SOBPs, the PRG of Braverman, Rao, Raz, and Yehudayoff [BRRY14] improves on
Nisan’s (which has seed length O(log2 n) even for w = 4 and ε = 1/3) in the regime where both w
and 1/ε are subpolynomial, i.e. no(1). The later work [BHPP22] obtained better seed length than
O(log2 n) when either w or 1/ε was no(1) (whereas Braverman et al. required both parameters to
be small relative to n), at the cost of obtaining only a hitting set generator (HSG), a weaker object
than pseudorandom generators that is sufficient for most derandomization tasks. For permutation
SOBPs, Pyne and Vadhan [PV21] achieved seed length Õ(log3/2 n) for an object known as a weighted
PRG,1 in the w = n regime motivated by derandomizing logspace.

Despite this extensive prior work, and the status quo where the known pseudorandom objects for
regular and permutation SOBPs are better than those known for generic SOBPs in many regimes,
there was relatively little work investigating the relative power of these models. As an example,
it is well known that SOBPs can be simulated by a one-way two-party communication protocol,
and therefore any program of width less than 2Ω(n) cannot compute the Inner-Product function
IP2n(x) :=

∑n
i=1 xixn+i (mod 2) on average. However, this result does not say anything about the

relative power of general SOBPs versus regular and permutation SOBPs.

1.1 Our Results

We begin a systematic study of the relative power of SOBPs, regular SOBPs, and permutation
SOBPs. We first survey the landscape of known results before stating our results.

General vs. Regular Programs. Perhaps the best known upper bound in this regard is the
work of Reingold, Trevisan, and Vadhan [RTV06] and its recent extension of Bogdanov, Hoza,
Pyne, and Prakriya [BHPP22]. They showed that regular SOBPs of width poly(nw) and length
Õ(n) can approximately simulate general SOBPs of width w and length n. This implies a “transfer
result”: in the width-poly(n) regime, optimal PRGs or HSGs for regular ROBPs imply the equivalent
objects for general ROBPs, and hence for logspace computation. However, these results have a few
limitations. First, the simulation was average-case, and due to this did not imply a transfer result
for weighted PRGs, a pseudorandom object that has seen extensive recent interest [BCG20,CL20,
CDR+21,PV21,Hoz21]. Moreover, both proofs are relatively involved.

We show that this upper bound can be improved and substantially simplified, and in fact, general
and regular programs of the same length m, regardless of being read-once or not, are equivalent up
to a factor of m in the width.

Theorem 1.7 (Informal statement of Theorem 2.1). Let B be an oblivious branching program of
length m and width w ≥ 4. There exists a regular oblivious branching program R of length m and
width mw/2 such that R(x) = B(x) for all x. Moreover, R has the same read order as B.

1A weighted PRG is a tuple of functions (G, ρ) : {0, 1}s → {0, 1}n × R, where the weighted expectation Ex[ρ(x) ·
B(G(x))] is within ε of E[B(Un)] for all B in the class.
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As a consequence, weighted PRGs for regular SOBPs with seed length matching those known
for permutation SOBPs [PV21] would imply an improved derandomization of logspace:2

Corollary 1.8. Suppose there is an explicit weighted PRG for regular SOBPs of length n and width
w with seed length Õ(log n · (log n+

√
log(w/ε)) + log(w/ε)). Then BPL ⊂ L4/3+o(1).

This follows as a corollary of Theorem 1.7 and the argument of Chattopadhyay and Liao [CL20]
that the Saks–Zhou algorithm [SZ99] can be instantiated with a weighted PRG.

As mentioned above, Theorem 1.7 holds even for non-read-once branching programs (as defined
in Definition 1.1), in contrast to the prior results of [RTV06,BHPP22]. As a corollary, we derive
that L can be computed by polynomial width regular branching programs:

Corollary 1.9. Every language in L can be decided by a (read-many) regular branching program of
length and width poly(n), on inputs of size n.

In terms of separation results, some simple observations were known. The AND function, which
can be shown to require width n for permutation (in fact, regular) BPs, has a trivial general BP of
width 2. (See Fact 2.2 for a proof.) We extend this separation to larger widths. This complements
our simulation result (Theorem 1.7) by showing that in the case of ROBPs, the loss of a factor of
n/2 is tight up to an additive term of (w logw)/2.

Proposition 1.10. For every w = 2t, n ∈ N, there is a function f : {0, 1}n → {0, 1} computable
by an general SOBP of width w such that every regular SOBP computing f has width at least
nw
2 − w logw.

It is known that general SOBPs of constant width cannot be approximated by regular SOBPs
of some poly(n) width in the “sandwiching notion” [Baz09]. This can be derived by combining the
results of [BV10,BRRY14]. Brody and Verbin [BV10] showed that there is an instantiation of the
Impagliazzo–Nisan–Wigderson PRG [INW94] that does not fool general SOBPs of width 3, and yet
Braverman et al. [BRRY14] shows that this same PRG fools regular SOBPs of width nc for some
c > 0.

Regular vs. Permutation Programs. For the relationship between permutation and regular
SOBPs, the situation was even less clear. As discussed in the previous section, despite extensive work
on pseudorandomness for permutation and regular SOBPs, prior work has not proven separations
between the two models. In fact, as far as we know, prior work did not exhibit any function
computable by a regular program that was not computable by a permutation program of equal
width.

We develop new lower bounds that separate these models to a near-maximal extent.

Theorem 1.11. There is c > 0 and w0 ∈ N such that for every ε > 0 and n the following holds.
There exists a function f : {0, 1}n → {0, 1} computable by a regular SOBP of width w0 such that
no permutation SOBP of width 2cn/ log(1/ε) agrees with f on a 1/2 + ε fraction of the inputs. In
particular, no permutation SOBP of width 2c

√
n agrees with f on a 1/2 + 2−

√
n fraction of inputs.

The hard function in Theorem 1.11 is the Inner-Product function with a specific variable-
ordering. Our techniques for proving Theorem 1.11 are information-theoretic, and rely on showing
that the entropy of the state over the n+1 layers of a permutation ROBP must be non-decreasing.

Our next result shows that the Inner-Product function is in fact average-case hard for arbitrary-
order permutation ROBPs of exponential width.

2A preprint circulated by the second author claimed this as a consequence of [BHPP22]. However, it does not
follow from the argument in that work.
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Theorem 1.12. Every arbitrary-order permutation ROBP B that computes IP⊕n(x) :=
∑n

i=1 x2i−1x2i
(mod 2) on more than a 3/4 + ε fraction of inputs has width at least 24ε2n. Moreover, IP⊕n can be
computed by a regular SOBP of width 4.

We conjecture that Theorems 1.11 and 1.12 can be strengthened to give optimal average-case
hardness, namely 1/2 + 2−n, but we have not been able to prove such a result.

Conjecture 1.13. There exists a constant c > 0 such that the following holds. Every arbitrary-
order permutation ROBP B that computes IP⊕n(x) :=

∑n
i=1 x2i−1x2i (mod 2) on more than a

1/2 + 2−cn fraction of inputs has width at least 2cn.

Standard-Order vs. Arbitrary-Order Programs. In the past decade, researchers have turned
their attention of constructing PRGs from SOBPs to the more general model of arbitrary-order
ROBPs, as a way to generate new ideas to improve the state-of-the-art PRGs for SOBPs, and to
develop PRGs for several natural subclasses of circuits that are not captured by SOBPs, as circuit
classes are closed under permutation of the input coordinates. This line of research has received
extensive interests [IMZ19,RSV13,SVW17,HLV18,MRT19,FK18,DMR+21], and in particular has
resulted near-optimal PRGs for several well-studied models of computation, including read-once
formulas [BPW11,GMR+12,CSV15,DHH19,DMR+21], constant-width arbitrary-order permutation
ROBPs [RSV13,CHHL19,LPV22], and read-once F2-polynomials [LV20,MRT19,Lee19,DHH20].

While Theorem 1.12 shows that there are regular SOBPs which cannot be approximated by
arbitrary-order permutation ROBPs of exponential width, we show that the opposite direction is
also true, by giving a function that is computable by an arbitrary-order permutation ROBP of
constant width that requires exponential width for (even general) SOBPs.

Proposition 1.14 (Informal statement of Proposition 3.13). For every n, there exists a function
f : {0, 1}n → {0, 1} such that f is computable by an arbitrary-order permutation ROBP of width 6,
and every SOBP computing f has width at least 2n/2.

This result uses a non-Abelian group product and an adversarial argument.

Read Once vs. Read Many. Given our exponential lower bounds (Theorems 1.11 and 1.12)
for permutation ROBPs, it is natural to ask whether any of them extends to read-k programs. We
show that even in the read-2 setting, permutation branching programs already become substantially
more powerful. Specifically, read-twice permutation branching programs of subexponential width
can simulate arbitrary-order ROBPs of polynomial width:

Proposition 1.15. Let f : {0, 1}n → [w] be computable by an arbitrary-order ROBP B of width w.
Then for every k ∈ N, f is computable by a read-(2k) permutation branching program B′ of width
w(k+1)n1/k .

Our simulation in Proposition 1.15 follows directly from Bennett’s work on reversible compu-
tation [Ben73]. We complement Proposition 1.15 by showing that a subexponential blow-up in
the width is necessary for read-twice programs: there is no fixed read order such that read-twice
permutation BPs reading bits in that order can simulate even regular SOBPs of constant width.

Theorem 1.16. For every read-twice ordering i : [2n] → [n], there exists a function g : {0, 1}n →
{0, 1} computable by a regular ROBP of width O(1), such that every read-twice permutation branch-
ing program P of width 2n

1/8 with read order i computes g correctly on at most 1/2 + 2−Ω(n1/8)

fraction of inputs.
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Permutation vs. Monotone Programs. Several works [MZ09, DMR+21] have studied the
model of monotone branching programs, which correspond to branching programs where the edges
labeled 1 do not cross, and likewise for the edges labeled 0. They are considered to be the “extreme
opposite” of permutation programs [DMR+21]. We provide evidence for this belief by showing that
read-once DNFs, which are computable by constant-width monotone programs, are worst-case hard
for permutation SOBPs of exponential width:

Proposition 1.17. Let f(x1, y1, . . . , xn, yn) =
∨

i(xi∧ yi). Then every permutation SOBP comput-
ing f has width at least 2n.

2 Regular Branching Programs

We show that regular programs can exactly simulate general programs with a moderate blow-up in
width. We emphasize that our simulation is not restricted to the read-once setting.

Theorem 2.1. Let B : {0, 1}n → {0, 1} be a branching program of length m and width w. There is
a regular branching program R : {0, 1}n → {0, 1} of length m and width w′ := max{w, wm

2 + w(1−
logw
2 )} such that R(x) = B(x) for all x ∈ {0, 1}n. Moreover, R has the same variable read order as

B. In particular, for w ≥ 4, we have w′ ≤ wm/2.

Proof. We prove by induction on length m. We show the stronger claim that R exactly computes
the states of B, i.e. that there are maps ϕt : [w

′] → [w] such that ϕi(R[vst, (xi(1), . . . , xi(t))]) =
B[vst, (xi(1), . . . , xi(t))] for every x ∈ {0, 1}n and t ∈ [m].

When m ≤ logw, we can simulate B trivially by storing the bits read in at most 2m ≤ w states.
Now, suppose m ≥ logw + 1. For each state v in the (m− 1)-th layer Bm−1 of B, let Cm−1(v) :=
ϕ−1
m−1(v). By the inductive assumption, we have

∑
v∈Bm−1

|Cm−1(v)| ≤ w(m−1)/2+w(1−log(w)/2).
Now, for each state u in the m-th layer Bm of B, create⌈

1

2

∑
(v,b):B[v,b]=u

|Cm−1(v)|

⌉

states, denoted Cm(u), and define ϕm such that ϕm(Cm(u)) := u.
Finally, for each b ∈ {0, 1} and v ∈ Bm−1 such that B[v, b] = u, we add a b-edge from every

state in Cm−1(v) to some state in Cm(u). There are su :=
∑

(v,b):B[v,b]=u|Cm−1(v)| many such edges,
and hence there are enough states in Cm(u) to accommodate this (with each state having at most
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2 edges). Now, summing over all u ∈ Bm, we have

|Rm| =
∑

u∈Bm

|Cm(u)|

=
∑

u∈Bm

⌈
1

2

∑
(v,b):B[v,b]=u

|Cm−1(v)|

⌉

≤
∑

u∈Bm

(
1

2
+

1

2
·

∑
(v,b):B[v,b]=u

|Cm−1(v)|

)

=
|Bm|
2

+
∑

v∈Vm−1

|Cm−1(v)|

≤ w(m− 1)

2
+ w

(
1− logw

2

)
+

w

2

=
wm

2
+ w

(
1− logw

2

)
.

Let k ≤ w be the number of u such that su is odd. Note that k must be even. For each such u
there is a state in Cm(u) such that it has in-degree one. To preserve regularity, we add k/2 ≤ w/2
of dummy states in Rm−1 that are not reachable from the start state and connect the k outgoing
edges of these states to these u’s.

We now show that for general SOBPs, this loss of a factor of m is tight, and in fact the loss is
even tight in the leading constant.

Proposition 1.10. For every w = 2t, n ∈ N, there is a function f : {0, 1}n → {0, 1} computable
by an general SOBP of width w such that every regular SOBP computing f has width at least
nw
2 − w logw.

We recall the well-known fact that ANDn can be computed by a constant-width SOBP, but
requires width n for regular ROBPs. We provide a proof for completeness.

Fact 2.2. Given n ∈ N, AND := ANDn can be computed by a general SOBP of width 2. However,
every regular SOBP R computing AND must have i+1 distinct states reachable from vst in layer i.

Proof. The fact that AND can be computed by a general SOBP of width 2 is direct. We show the
lower bound by induction. It is clearly true for layer 0 as vst can reach itself. Assuming it holds
for layer i, we note that from correctness, u := R[vst, 1

i+1] ̸= R[vst, 1
i||0] and hence there are two

distinct states reachable in layer i+ 1 from R[vst, 1
i]. Let Ri be the reachable states in layer i that

are not R[vst, 1
i]. We have that there are at least 2|Ri| edges from Ri (and every endpoint of such

an edge is reachable). Moreover, we claim that these edges cannot reach u. Otherwise there would
be τ ̸= 1i+1 such that B[vst, τ ||1n−i−1] = B[vst, 1

n] which contradicts R computing AND. Thus
there are at least |Ri|+ 1 vertices reachable in layer i+ 1 that are not u, so we conclude.

We can then bootstrap this separation to work for larger widths. Essentially, we use a multiplexer
to force the program to remember a large amount of information before computing AND.

Definition 2.3. Given n,w = 2t, let m = n− 2(t− 1). Define f : {0, 1}t−1×{0, 1}m×{0, 1}t−1 →
{0, 1} as f(x, y, z) = ⟨x, z⟩ ⊕ AND(y) =

∑t−1
i=1 xizi + AND(y) (mod 2).

We first argue that f can be computed by a SOBP of width w.
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Claim 2.4. f can be computed by an SOBP of width w.

Proof. We define a program B(x, y, z). In the first t layers, B stores the entire input. For each
state in layer t, B uses 2 states to compute AND(y), and hence at layer m + t − 1 the states are
labeled (x,AND(y)). Then the program reads in z and computes ⟨x, z⟩, such that the states in the
final layer are labeled (⟨x, z⟩,AND(y)) and hence B can return the value of f . It is clear from this
description that B has width 2 · 2t−1 = w.

We then argue that no regular SOBP can do better than remembering the first t− 1 bits, and
moreover must compute AND using essentially disjoint states.

Claim 2.5. For every regular SOBP B computing f , for every x ̸= x′ ∈ {0, 1}t−1 we have B[vst, x] ̸=
B[vst, x

′]. Furthermore, for every k < m the states reachable in layer t− 1 + k from B[vst, x] must
be disjoint from those reachable from B[vst, x

′].

Proof. First assume for contradiction there are x, x′ ∈ {0, 1}t−1 with x′ ̸= x where B[vst, x] =
B[vst, x

′]. Let i be some index where x′i ̸= xi and hence ⟨x, ei⟩ ̸= ⟨x′, ei⟩. Thus, f(x, 0m, ei) ̸=
f(x′, 0m, ei), but

B
[
vst, x||0m||ei

]
= B

[
vst, x

′||0m||ei
]

which is a contradiction. For the second claim, assume for contradiction there are τ, τ ′ ∈ {0, 1}k
(where we do not require τ ̸= τ ′) such that B[vst, x||τ ] = B[vacc, x

′||τ ′]. But then f(x, τ ||0m−k, ei) ̸=
f(x′, τ ′||0m−k, ei) from before, but

B
[
vst, x||τ ||0m−k||ei

]
= B

[
vst, x

′||τ ′||0m−k||ei
]

which is a contradiction.

We can then prove the result.

Proof of Proposition 1.10. Let f be the function in Definition 2.3 with n,w = 2t. By Claim 2.4, f
can be computed by a general SOBP of width w.

Now let R be an arbitrary regular SOBP computing f . By Claim 2.5, we must have R[vst, x] ̸=
R[vst, x

′] for every x ̸= x′ ∈ {0, 1}t−1. Since R must correctly compute AND(y) (which can be shown
by a similar extension argument), we obtain that for every x, there are at least m states reachable
from R[vst, x] in layer t+m− 1 for every x, and all of these states are disjoint by Claim 2.5. Thus,
it follows from m = n− 2(t− 1) that R has width at least

2t−1 ·m =
w

2
·m =

nw

2
+ w(1− logw).

3 Permutation Read-Once Branching Programs

In this section, we give explicit functions computable by small width regular SOBPs that are average-
case hard against permutation SOBPs and ROBPs of large widths. We will be working with the
Inner-Product functions with their input bits ordered in a certain manner.

Definition 3.1. For integers ℓ,m, define IP⊕m
2ℓ : ({0, 1}2ℓ)m → {0, 1} to be

IP⊕m
2ℓ (x1, y1, . . . , xm, ym) :=

m⊕
i=1

⟨xi, yi⟩,

where ⟨x1, . . . , xℓ, y1, . . . , yℓ⟩ :=
⊕ℓ

j=1 xjyj . We omit the subscript 2ℓ when ℓ = 1.
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We first show that IP⊕m
2ℓ can be computed by a regular SOBP of width 22ℓ+1 via a simple

argument. This follows from the fact that regular SOBPs can compute the XOR of an arbitrary
function on 2ℓ bits using 2ℓ + 1 bits, because we can store all the 2ℓ bits and maintaining the
prefix-XOR with 1 extra bit using a regular program. The program we construct is essentially the
one used in simulating high-degree regular programs by binary regular programs in [BHPP22]:

Lemma 3.2. Let f : {0, 1}k → {0, 1} be an arbitrary function. Then g : ({0, 1}k)n → {0, 1} defined
as

g(x1, . . . , xn) :=
⊕
i∈[n]

f(xi),

where xi ∈ {0, 1}k for each i ∈ [n], can be computed by a regular SOBP of width 2k+1.

Proof. Let B be a program where each state has label (s, b) ∈ {0, 1}k×{0, 1}. On reading xij where
j ∈ [k], the program updates as

(s, b)→

{
(s′, b) if 1 ≤ j ≤ k − 1

(s′, b⊕ f(s)) if j = k.

where s′ is s with the j-th coordinate replaced with the bit xij . The width of this program is 2k · 2,
and the fact that it computes f is direct. Finally, the program is regular as every s′ has a single
b ∈ {0, 1} and two strings s ∈ {0, 1}k for which the replacement of the j-th coordinate of s with b
produces s′.

We recall our average-case lower bound against permutation ROBPs computing inner product.

Theorem 1.12. Every arbitrary-order permutation ROBP B that computes IP⊕n(x) :=
∑n

i=1 x2i−1x2i
(mod 2) on more than a 3/4 + ε fraction of inputs has width at least 24ε2n. Moreover, IP⊕n can be
computed by a regular SOBP of width 4.

For permutation SOBPs, we can strengthen this to a strong average case lower bound:

Theorem 1.11. There is c > 0 and w0 ∈ N such that for every ε > 0 and n the following holds.
There exists a function f : {0, 1}n → {0, 1} computable by a regular SOBP of width w0 such that
no permutation SOBP of width 2cn/ log(1/ε) agrees with f on a 1/2 + ε fraction of the inputs. In
particular, no permutation SOBP of width 2c

√
n agrees with f on a 1/2 + 2−

√
n fraction of inputs.

Our argument relies on the fact that the entropy of the states in each layer of a permutation
ROBP is non-decreasing. Before stating this property formally, we first recall some basic facts in
information theory. We use capital letters to denote random variables, and lower case to denote
specific assignments.

Definition 3.3. Given a joint random variable (X,Y ), let

• H(X) :=
∑

x∈Supp(X) p(x) log2(1/p(x)) be the (binary) entropy of X;

• H(X | Y ) := H(X,Y )−H(Y ) be the conditional entropy of X given Y , and

• I(X;Y ) := H(X)−H(X | Y ) be the mutual information of X and Y .

Moreover, given p ∈ [0, 1], let H(p) := p log2(1/p) + (1 − p) log2(1/(1 − p)) be the entropy of a
p-biased Bernoulli random variable.
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We define the distributions over states of a program.

Definition 3.4. Given a ROBP B of length n, for i ∈ {0, . . . , n}, let Si be the distribution over
the reachable states after reading Xi of a uniformly random X ∼ {0, 1}n.

We then note the most important property of permutation SOBPs from this perspective: given
the state reached after reading xi and the value of xi, one can exactly recover the state after reading
xi−1. More generally, we have the following proposition.

Proposition 3.5. Let (X1, . . . , Xn) ← Un. For every SOBP B and i < j, we have H(Sj |
Si, Xi+1, . . . , Xj) = 0. Moreover, if B is a permutation SOBP then H(Si | Sj , Xi+1, . . . , Xj) = 0.

Proof. The first claim is immediate from the fact that knowing the current state Si and next j − i
bits Xi+1, . . . , Xj to be read determines the state Sj . The second claim is likewise immediate, as
for a permutation SOBP there is exactly one state Si in layer i that reaches the state Sj in layer j
after reading Xi+1, . . . , Xj .

We use this property to show that for permutation SOBPs, the entropy of the state at layer i
must increase by at least the mutual information between the state and the i-th input bit, and use
this to conclude a lower bound on the width.

Lemma 3.6. Let (X1, . . . , Xn) ∼ {0, 1}n be a uniform n-bit input. For a permutation SOBP B
of length n and width w, let i1 < · · · < im be some m layers in B, and Xij := (Xij−1+1, . . . , Xij ),
where i0 := 0. Then

logw ≥
m∑
j=1

I(Xij ;Sij ).

Proof. We first prove that for every j ∈ [m],

H(Sij ) = I(Xij ;Sij ) +H(Sij−1). (1)

Given this, the lemma follows from H(S0) = 0 and

logw = log supp(Sim) ≥ H(Sim) =

m∑
j=1

H(Sij )−H(Sij−1) =

m∑
j=1

I(Xij ;Sij ).

We now prove (1). By Proposition 3.5 we have

H(Sij | Sij−1 , X
ij ) = 0 = H(Sij−1 | Sij−1 , X

ij ).

Applying the chain rule to both sides we obtain

H(Sij−1 , X
ij ) = H(Sij , Sij−1 , X

ij )−H(Sij | Sij−1 , X
ij )

= H(Sij−1 , Sij , X
ij )−H(Sij−1 | Sij , X

ij )

= H(Sij , X
ij ).

Another chain rule to both sides gives

H(Xij | Sij ) +H(Sij ) = H(Xij | Sij−1) +H(Sij−1).

9



Thus,

H(Sij ) = H(Xij | Sij−1) +H(Sij−1)−H(Xji | Sji)

= H(Sij−1) +
(
H(Xij )−H(Xij | Sij )

)
−
(
H(Xij )−H(Xij | Sij−1)

)
= H(Sij−1) + I(Sij ;X

ij )− I(Sij−1 ;X
ij )

= H(Sij−1) + I(Sij ;X
ij ),

where the final step follows from the fact that Xij is independent of all prior bits, and thus the
state at layer ij .

We are now prepared to prove the lower bounds. In both cases, we require Fano’s inequality.
For the inner product bound, we use a simple formulation due to Regev [Reg13]:

Lemma 3.7 (Claim 2.1 [Reg13]). Let X be uniformly distributed over {0, 1}. Let S be a random
variable such that there exists f such that PrX,S [f(S) ̸= X] =: p ≤ 1/2. Then I(X;S) ≥ 1−H(p).

3.1 Mild Average-Case Lower Bounds for Arbitrary-Order Programs

We now prove the lower bound in Theorem 1.12: To illustrate the idea, consider a permutation
SOBP B that reads its input x in the order of x1, . . . , x2n. We will show that when X is uniform
over {0, 1}2n, for every i ∈ [n], given the state S2i−1 reached by B after reading X1, . . . , X2i−1,
we can use B to predict the value of X2i−1 better than random guessing, showing that there is
non-trivial amount of mutual information between S2i−1 and X2i−1. To see this, note that for every
x ∈ {0, 1}n,

x2i−1 = IP⊕2n(x1, . . . , x2i−1, 0, x2i+1, . . . , x2n)⊕ IP⊕2n(x1, . . . , x2i−1, 1, x2i+1, . . . , x2n).

Moreover, given a state Si+1, we can simulate the remaining program on the two inputs (x2i =
0, X2i+1, . . . , X2n) and (x2i = 1, X2i+1, . . . , X2n), for a uniform X2i+1, . . . , X2n, to compute the
right hand side, which by a union bound, is correct and thus equals X2i−1 with probability at least
1/2 + 2ε.

Proof of Theorem 1.12. Let X = (X1, . . . , X2n) := (X1, Y1, . . . , Xn, Yn) be a uniform random input.
Fix an arbitrary-order permutation ROBP B that reads x in the order of xσ(1), . . . , xσ(2n) for some
permutation σ. By assumption we have Pr[B(X) ̸= f(X)] ≤ 1/4− ε.

For every i ∈ [n], let ri := min{σ−1(2i − 1), σ−1(2i)} be the layer reached by B after reading
the first bit of x2i−1 and x2i. Let L ⊂ [2n] be the indices of the variables of X read up to this point
(i.e., L = {σ(1), . . . , σ(ri)} and let R := [2n] \ L = {σ(ri + 1), . . . , σ(2n)}.

We now show that I(Xri ;Sri) ≥ 1−H(1/2−2ε), which suffices to prove the result by Lemma 3.6.
To do so, given the state sri in layer ri, we let our guess of xri be

g(sri) = B
[
v, y0

]
⊕B

[
v, y1

]
,

where y ← UR is a random suffix and yb is y with its (ti := max{σ−1(2i − 1), σ−1(2i)})-th bit
replaced with b ∈ {0, 1}. Observe that B[Sri , Y

b∗] is identical to f(X) conditioned on Xti = b. We
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have

Pr
X

[
g(Sri) ̸= Xri

]
= Pr

X

[
B
[
Sri , Y

0∗]⊕B
[
Sri , Y

1∗] ̸= Xri

]
≤ Pr

X

[
B
[
Sri , Y

0∗] ̸= f(X)
]
+ Pr

X

[
B
[
Sri , Y

1∗] ̸= f(X)
]

≤ Pr
X

[
B(X) ̸= f(X) | Xti = 0

]
+ Pr

[
B(X) ̸= f(X) | Xti = 1

]
= 2Pr

[
B(X) ̸= f(X)

]
≤ 1/2− 2ε.

By Lemma 3.7 we have I(Xri ;Sri) ≥ 1−H(1/2− 2ε) ≥ 4ε2. Therefore by Lemma 3.6 we have

logw ≥
n∑

i=1

I(Xri ;Sri) ≥ 4ε2n,

and hence w ≥ 24ε
2n. The “moreover” claim follows from Lemma 3.2.

3.2 Moderate Average-Case Lower Bounds

Before proving our strong average-case lower bound (Theorem 1.11), we have to extend Theorem 1.12
to improve the correlation bound from 3/4 + ε to 1/2 + ε0 for an arbitrary constant ε0.

Theorem 3.8. Let ℓ ≥ 8 log(1/ε). If B is a permutation SOBP of width w and length 2ℓm that
agrees with IP⊕m

2ℓ on a 1/2 + ε fraction of inputs, then w ≥ 2εmℓ/4.

The high-level idea is to combine the idea in the previous subsection with Goldreich–Levin list-
decoding. Instead of predicting 1 bit, we will divide the input into blocks and show that we can
predict the whole block of Xi given the state Si reached by B upon reading Xi. To do so, we first
show that with probability at least ε/2 over all-but-the-Y i-part of the input, we have the following
property: Given the state Si, we can predict ⟨Xi, Y i⟩ for a random sample Y i ∼ {0, 1}ℓ correctly
with probability 1/2+ε. Then by the Goldreich–Levin theorem, we can use this predictor to narrow
Xi down to a list of size 1/ε2, showing that there is a non-trivial amount of mutual information
between Xi and Si.

Our argument only requires the following bound on the “list size,” which follows from Parseval’s
identity.

Claim 3.9. For every Boolean function f : {0, 1}ℓ → {0, 1}, there are at most 1/ε2 many a ∈ {0, 1}ℓ
such that Pr[f(U) = ⟨a, x⟩] ≥ 1/2 + ε/2.

Proof. This is equivalent to f̂(a) ≥ ε, where f̂(a) := Ex[f(x)(−1)⟨a,x⟩]. Let L be the number of
such a’s. Then by Parseval’s identity, we have Lε2 ≤

∑
a∈{0,1}ℓ f̂(a)

2 = E[f(x)2] ≤ 1. Rearranging
gives L ≤ 1/ε2.

Proof of Theorem 3.8. Let (X1, . . . , Y m) be a uniformly random input of IP⊕m
2ℓ . Let B be a

width-w permutation SOBP that agrees with IP⊕m
2ℓ with probability 1/2 + ε. Our goal is to show

that w ≥ 2εℓm/4. For i ∈ [m], let Si denote the state B reaches after reading Xi. We will show that
I(Si;X

i) ≥ εℓ/4, from which the theorem follows from Lemma 3.6.
To proceed, fix an i ∈ [m]. Given an input (x1, y1, . . . , xm, ym) of B, let z ∈ ({0, 1}ℓ)2m−1 denote

all but the yi-th block of y, that is, z = (x1, . . . , yi−1, xi, xi+1, . . . , ym). We will use the shorthand
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B(z, yi) to denote B(x1, y1, . . . , xm, ym). Given z ∈ ({0, 1}ℓ)2m−1 and an auxiliary bit a ∈ {0, 1},
consider the function Bz,a : {0, 1}ℓ → {0, 1} defined by

Bz,a(y
i) := B(z, yi)⊕

⊕
j>i

⟨xi, yi⟩ ⊕ a. (2)

(One should think of a as a guess of the bit
⊕

j<i⟨xj , yj⟩.) Let si be the state reached by B

upon reading the prefix (x1, y1 . . . , xi) ∈ ({0, 1}ℓ)2i−1. Observe that we can compute Bz,a(y
i) by

simulating B starting from state si on the remaining inputs (yi, xi+1, . . . , ym) and then XORing its
output with a.

We claim that with probability at least ε/2 over (Z,A) ∼ ({0, 1}ℓ)2m−1 × {0, 1}, we have

Pr
Y i∼{0,1}n

[
BZ,A(Y

i) = ⟨Xi, Y i⟩
]
≥ 1/2 + ε/2. (3)

To see this, note that A is a correct guess of the bit
⊕

j<i⟨xj , yj⟩ with probability 1/2, i.e.
PrA∼{0,1}[

⊕
j<i⟨xj , yj⟩ = A] = 1/2. Conditioned on A being the correct guess, it follows by an

averaging argument that with probability at least ε/2 over Z ∼ ({0, 1}ℓ)2m−1 we have

Pr
Y i∼{0,1}ℓ

[
BZ,A(Y

i) = ⟨Xi, Y i⟩
]
= Pr

Y i∼{0,1}ℓ

[
B(Z, Y i) = ⟨Xi, Y i⟩+

⊕
j>i

⟨Xj , Y j⟩+
⊕
j<i

⟨Xj , Y j⟩
]

= Pr
Y i∼{0,1}ℓ

[
B(Z, Y i) = IP⊕k(Z, Y i)

]
≥ 1/2 + ε/2.

Let us call the pair (z, a) good if it satisfies Equation (3). Note that for a good (z, a), by
Claim 3.9, there are at most 1/ε2 many choices of r ∈ {0, 1}ℓ such that

Pr
Y i∼{0,1}ℓ

[
Bz,b(Y

i) = ⟨r, Y i⟩
]
≥ 1/2 + ε/2,

and xi is one of them, and thus we have the following claim.

Claim 3.10. H(Xi | Si, (Z,A) is good) ≤ log(1/ε2).

We will use the following fact behind the proof of Fano’s inequality.

Claim 3.11 (Fano’s inequality). Let X,Y,G be three random variables such that H(G | X,Y ) = 0.
Then

H(X | Y ) = H(G | Y ) +H(X | G, Y ).

For a uniform (X1, . . . , Y m) ∼ ({0, 1}ℓ)2m, let G := G(Z,A) be the indicator random variable
of whether (Z,A) is good. Let Z>i denote (Xi+1, . . . , Y m). Since Xi is independent of Z>i and A,

H(Xi | Si) = H(Xi | Si, Z>i, A).

Now, given Si, Z>i, A, and Xi, we can compute BZ,A and determine if (Z,A) is good, and thus
we have H(G | Si, X

i, Z>i, A) = 0. So by Claim 3.11,

H(Xi | Si, Z>i, A) = H(G | Si, Z>i, A) +H(Xi | G,Si, Z>i, A). (4)
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We can bound the first term H(G | Si, Z>i, A) by H(G). For the second term, we apply Claim 3.10
as follows:

H(Xi | Si, Z>i, A,G) = Pr[G] ·H(Xi | Si, Z>i, A,G = 1) + (1− Pr[G]) ·H(Xi | Si, Z>i, A,G = 0)

≤ Pr[G] · log(1/ε2) + (1− Pr[G]) ·H(Xi).

Applying both bounds to the right hand side of Equation (4) gives

H(Xi | Si, Z>i, A) ≤ H(G) + Pr[G] · log(1/ε2) + (1− Pr[G]) ·H(Xi).

As Pr[G] ≥ ε/2, we have H(G) ≤ 2Pr[G] log(1/Pr[G]) ≤ 2Pr[G] log(2/ε). Therefore,

I(Xi;Si) = H(Xi)−H(Xi | Si)

= H(Xi)−H(Xi | Si, Z>i, A)

≥ Pr[G] ·
(
H(Xi)− log(1/ε2)

)
−H(G)

≥ Pr[G] ·
(
H(Xi)− 4 log(1/ε)

)
≥ (ε/2) ·

(
ℓ− 4 log(1/ε)

)
,

which is at least ε · ℓ/4 for ℓ ≥ 8 log(1/ε). It follows from Lemma 3.6 that

logw ≥
m∑
i=1

I(Si;X
i) ≥ εmℓ/4.

3.3 Strong Average-Case Lower Bounds

We now prove Theorem 1.11. Assadi and N. [AN21] proved the following XOR Lemma for multi-
pass streaming algorithms.3 In the case of one pass this is essentially the same as SOBPs. Moreover,
we observe that their argument also applies to permutation SOBPs.

Lemma 3.12 ([AN21]). There exists an absolute constant ε0 > 0 such that the following holds. Let
f : {0, 1}m → {0, 1} be any function and let f⊕ℓ be the XOR of ℓ copies of f on disjoint (sequential)
blocks. Suppose Pr[P (U) = f(U)] ≤ 1/2 + ε for some ε ≤ ε0 for every permutation SOBP P of
width w. Then Pr[P (U) = f⊕ℓ(U)] ≤ 1/2 + εℓ/7 for every permutation SOBP P of width w.

Proof of Theorem 1.11. By Theorem 3.8, for every constant ε0 > 0, there exists a constant ℓ such
that the function IP⊕m

2ℓ on 2ℓm bits is (1/2+ ε0)-hard for permutation SOBPs of width 2ε0mℓ/8. By
Lemma 3.12, the function IP⊕mk

2ℓ on 2ℓmk bits is (1/2+ε
k/7
0 )-hard for permutation SOBPs of width

2ε0mℓ/8. Choosing ε0 to be a sufficiently small constant, k = 7 logε0(1/ε), and letting n := 2ℓmk

gives us a hard function on n bits that is (1/2+ε)-hard for permutation SOBPs of width 2cn/ log(1/ε)

for a universal constant c.

3.4 Worst Case Lower Bounds Against Monotone Functions

Next, we show there are monotone functions (in fact, read-once DNFs) that are worst-case hard for
permutation SOBPs of exponential width.

Proposition 1.17. Let f(x1, y1, . . . , xn, yn) =
∨

i(xi∧ yi). Then every permutation SOBP comput-
ing f has width at least 2n.

3There is a mistake in the publicly available versions which has been corrected by the authors [AN22].
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Proof. Let B be a permutation SOBP computing f . We will show that in layer 2i (the state after
reading both variables in the ith term), there are 2i states reachable by strings that have not yet
satisfied a term. This holds vacuously for i = 0. Now suppose this holds for term i and let Ti be
the set of such states, and for b ∈ {0, 1} define

Ti[b] := {v ∈ V2i+1 : ∃u ∈ Ti s.t. B[u, b] = v}.

We first observe that |Ti[1]| = |Ti[0]| = |Ti| ≥ 2i and Ti[1] ∩ Ti[0] = ∅. The first follows since B
is a permutation SOBP (and hence all states in Ti[1] can have a single in-1-edge and likewise for
Ti[0]) and the second follows via an extension argument, since otherwise B fails to compute f . This
implies |Ti[10]∪ Ti[00]| ≥ 2|Ti| again using that B is a permutation SOBP. Finally, we observe that
Ti+1 ⊇ Ti[10] ∪ Ti[00] and hence |Ti+1| ≥ 2i+1 as claimed, which completes the induction.

The “moreover” claim follows from inspection.

3.5 Separating General SOBPs From Permutation ROBPs

We now give a function f that is computable by an arbitrary-order permutation ROBP of constant
width but is hard for any SOBP of exponential width.

Proposition 3.13. Let D3 be the Dihedral group of order 6 with identity element e and fix two
reflections r, s such that r2 = s2 = e and rs ̸= sr. Let S = {r, s, sr}. Consider f : {0, 1}2n → {0, 1}
defined by

f(x, y) := 1

(
rx1sy1 · · · rxnsyn ∈ S

)
.

Then every general SOBP computing f has width at least 2n. Moreover, f can be computed by a
arbitrary-order permutation ROBP of width 6.

Proof. The “moreover” claim follows from the fact that any group product can be simulated by a
permutation ROBP of width equal to the group’s order. We now claim that for every x ̸= x′ ∈
{0, 1}n, there is a y ∈ {0, 1}n such that f(x, y) ̸= f(x′, y), and therefore any SOBP must use 2n

states to remember x after reading it.
First, consider the case where the Hamming weights of x and x′ have different parities. Then

by taking y to be the all-zero string 0n and using r2 = e, we have f(x, y) = rb and f(x′, y) = r1−b

for some b ∈ {0, 1}.
Now, suppose their parities are the same. Let i ∈ [n] be the first position where x and x′ differ,

and without loss of generality assume xi = 1 (and so x′i = 0). Let y = ei. Then f(x, y) = rsrb

and f(x′, y) = sr1−b for some b ∈ {0, 1}, but s, sr ∈ S and rsr, rs ̸∈ S. So in either case we have
f(x, y) ̸= f(x′, y).

4 Read-Twice Permutation Branching Programs

We first show that read-twice permutation branching programs can compute polynomial width
arbitrary-order ROBPs in subexponential width. This follows from Bennett’s simulation in re-
versible computation [Ben73], but here we have to take into account the number of reads of the
program. We remark that the proof of this result implicitly uses permutation branching programs
where the bound on the number of accept states is much smaller than the width bound [HPV21].

Proposition 1.15. Let f : {0, 1}n → [w] be computable by an arbitrary-order ROBP B of width w.
Then for every k ∈ N, f is computable by a read-(2k) permutation branching program B′ of width
w(k+1)n1/k .
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Proof. As both programs can read inputs in arbitrary order, by permuting the indices of x we can
without loss of generality assume B is a SOBP. Given a SOBP O of width w, we first how to
simulate it using a permutation read-2 BP P of width wm for some m ≤

√
2n, in which every state

is represented by an m-tuple in [w]m. We will show that every step in P is reversible, that is, for
every state spt−1 ∈ [w]m in P , not only can we compute spt := Bt(s

p
t−1, xi(t)) given spt−1, but we can

also compute spt−1 given spt and xi(t), where i(t) ∈ [n] is the coordinate of x read by P at the t-th
step. One can verify that this is equivalent to the condition that P is a permutation program.

We construct P as follows. At each step, P remembers the at most m out of the n states
reached by O. Let si ∈ [w] be the state reached by O after reading x1, . . . , xi. The program P
first reads x1, . . . , xm to compute and store the m states (s1, . . . , sm) ∈ [w]m reached by O in the
first m steps. Knowing sm−2, we can read xm−1 again to erase sm−1 from the memory, reaching
the state (s1, . . . , sm−2, 0, sm). Knowing sm−3, we can read xm−2 again to erase sm−2, reaching
(s1, . . . , sm−3, 0, 0, sm). More generally, after reading xm−2, . . . , x1 the second time 4, we can erase
sm−1, . . . , s1 from memory and we are left with

(0, . . . , 0, sm).

Now, given sm, we read the next m−1 bits xm+1, . . . , x2m−1 to compute and store (sm+1, . . . , s2m−1, sm).
Using a similar strategy, we can read x2m−2, . . . , xm+1 again to erase s2m−2, . . . , sm+1 from memory,
giving us

(0, . . . , 0, s2m−1, sm).

Continuing, we can compute (s∑m
i=1 i

, s∑m
i=2 i

, . . . , s2m−1, sm) reversibly with wm states. Thus we
can compute sn as long as

m∑
i=1

i =
m(m+ 1)

2
≥ n.

which holds when m =
√
2n.

We just showed how to compute the m-tuple of states (s∑m
i=1 i

, s∑m
i=2 i

, . . . , s2m−1, sm) reversibly
by reading the input twice. By reading the input another two times, from (s∑m

i=1 i
, s∑m

i=2 i
, . . . , s2m−1, sm)

we can erase everything but s∑m
i=1 i

=: sf(m) to compute (sf(m), 0, . . . , 0) reversibly. We now repeat
the above strategy recursively to compute (s∑m

i=1 f(i)
, s∑m

i=2 f(i)
, . . . , s2f(m)−1, sf(m)) with a read-4

permutation program of width
∑m

i=1 f(i).
By an inductive argument, we can compute the state sn of the read-once branching program

reversibly with a read-(2k) permutation program of width wm, whenever

n ≤
m∑

ik=1

ik∑
ik−1=1

· · ·
i2∑

i1=1

i1 =

(
m+ k

k + 1

)
.

Choosing m ≥ (k + 1)n1/(k+1) completes the proof.

4.1 Hardness for Read-Twice Permutation Programs

We now show that an exponential blow-up in the width in Proposition 1.15 is necessary. We first
restate the theorem.

4Note that the order of how the bits are read matters. For example, without knowing sm−2 we cannot compute
sm−1 using xm−1.
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Theorem 1.16. For every read-twice ordering i : [2n] → [n], there exists a function g : {0, 1}n →
{0, 1} computable by a regular ROBP of width O(1), such that every read-twice permutation branch-
ing program P of width 2n

1/8 with read order i computes g correctly on at most 1/2 + 2−Ω(n1/8)

fraction of inputs.

A 2-pass BP is a read-2 BP where the first read of all its n-bit input come before the second
read of any bit. We first prove an average-case lower bound against 2-pass permutation programs of
width 2

√
n, where the second pass of the n-bit input is read in the same or the reverse order as the

first pass. We show that given any read-twice ordering of the input bits, either
√
n of the bits can

be read in a read-once manner, or n1/4 of the bits can be read in the 2-pass manner described above.
In either case, we can define our hard function on at least n1/4 bits and apply our average-case lower
bounds. As both programs in the theorem can read input bits in arbitrary order, by permuting the
indices of the input we can assume the indices in the first pass of the read are in increasing order.

From 2-pass lower bound to read-once lower bound. We obtain our 2-pass lower bound
by a reduction to our read-once lower bound (Theorem 1.11) based on an idea by David, Papakon-
stantinou, and Sidiropoulos [DPS11].

Proposition 4.1. Let P be a 2-pass permutation BP of width w that reads its first pass of the
input in the standard order, and its second pass in the same or reverse order as the first pass. If
Pr[P (U) = f(U)] ≥ 1/2 + ε for some f : {0, 1}n → {0, 1}, then there exists a permutation SOBP
permutation program P ′ of width w2 such that Pr[P ′(U) = f(U)] ≥ 1/2 + ε/w.

Corollary 4.2. There exists a function f : {0, 1}n → {0, 1} computable by a regular SOBP of
constant width that is (1/2 + 2−

√
n)-hard against 2-pass permutation BPs of width 2c

√
n that reads

its second pass of the input in the same or reverse order as the first pass for a universal constant c.

Proof. Let f be the function in Theorem 1.11 with ε = 2−(1+c)
√
n, which is hard against permutation

SOBPs of width 2(c
′/(1+c))

√
n for some universal constant c. Suppose f is not (1/2 + 2−

√
n)-hard

against a 2-pass permutation SOBP of width w = 2c
√
n. Then by Proposition 4.1, f is not (1/2 +

2−(1+c)
√
n)-hard against a permutation SOBP of width 22c

√
n. Choosing c such that 2c < c′/(1+ c),

we get a contradiction.

Proof of Proposition 4.1. We first handle the case where the second pass is in the same order as the
first pass. Suppose

Pr[P (U) = f(U)]− Pr[P (U) ̸= f(U)] > ε.

Let Vn be the layer P reaches after making its first pass on x. By an averaging argument, there
must be a state v∗ ∈ Vn such that

Pr
[(
P (U) = f(U)

)
∧ P→v∗(U)

]
− Pr

[(
P (U) ̸= f(U)

)
∧ P→v∗(U)

]
≥ 1

|Vn|
∑
v∈Vn

(
Pr
[(
P (U) = f(U)

)
∧ P→v(U)

]
− Pr

[(
P (U) ̸= f(U)

)
∧ P→v(U)

])
≥ 1

|Vn|

(
Pr
[
P (U) = f(U)

]
− Pr

[
P (U) ̸= f(U)

])
≥ ε

|Vn|
.

For b ∈ {0, 1}, consider the new function P ′
b that outputs P (x) if Pv∗(x) = 1 and outputs b otherwise.

Note that adv(P ′
b, f) ≥ ε/|Vn| for one of the b ∈ {0, 1}. Assume b = 0 without loss of generality.
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We now show that the function P ′
0 can be computed by a permutation SOBP of width w2 as

follows. Its i-th layer V ′
i is Vi×Vn+i. Its start state is (v0, v∗). Its accept states are V ′

acc := {(v1, v2) :
(v1 = v∗ ∧ v2 ∈ Vacc)}.

To handle the case where the second pass is in the reverse order, we use a similar idea. Suppose

Pr[P (U) = f(U)]− Pr[P (U) ̸= f(U)] > ε.

Let Vacc ⊆ V2n be the set of accept states in the final layer. By an averaging argument, there must
be a state v∗ ∈ Vacc such that

Pr
[
P→v∗(U) = f(U)

]
− Pr

[
P→v∗(U) ̸= f(U)

]
≥ ε

|Vacc|
.

We now show that the function P→v∗ can be computed by a permutation SOBP program of width
w2. Here we use the fact that P is a permutation BP, where we can reverse the transitions in the
program as follows. Define the reversed transition P−1

r : Vr×{0, 1} → Vr−1 to be P−1
r [vr, xr] := vr−1,

where vr−1 is the unique state v ∈ Vr−1 such that Pr[vr−1, xr] = vr.
To implement P→v∗ , its i-th layer V ′

i is Vi × V2n−i. Its start state is (v0, v
∗) ∈ V0 × V2n.

Its transition P ′
i : V

′
i−1 → V ′

i is P ′
i ((v1, v2), xi) = (Pi(v1, xi), P

−1
n−i+1(v2, xi)). Its accept states are

V ′
acc := {(v1, v2) : v1, v2 ∈ Vn : v1 = v2)}.

From 2-pass lower bound to read-2 lower bound. We follow a similar idea that is used
in [GV20]. Given a read-2 sequence, by permuting the indices of the input bits, we may as-
sume the first pass is in increasing order. We will show that it contains a subsequence of the
form i1i1i2i2 · · · i√ni

√
n, in which case we can define the hard function on xi1 , . . . , xi√n

and ap-
plying our read-once lower bound on

√
n bits, or it contains a 2-pass subsequence of the form

i1 · · · i√niσ(1) · · · iσ(√n) for some permutation σ : [
√
n]→ [

√
n], in which case by the Erdős–Szekeres

theorem (Theorem 4.3 below), the sequence iσ(1) · · · iσ(√n) must contain a monotone subsequence
ij1 · · · ijn1/4−1

of length n1/4 − 1, and so the read-2 sequence contains a 2-pass sequence on n1/4 − 1

bits where the second pass is in the same or reverse order as the first pass. So we can apply our
2-pass lower bound.

Before proving Theorem 1.16, we first state the Erdős–Szekeres theorem, which will be used in
our proof.

Theorem 4.3 (Erdős–Szekeres [ES35]). For any integers s and r, any sequence of distinct real
numbers of length sr + 1 contains a monotonically increasing subsequence of length s + 1 or a
monotonically decreasing subsequence of length r + 1.

Proof of Theorem 1.16. Let s ∈ [n]2n be a read-2 sequence. For i ∈ [n], let pos1(i) and pos2(i) be
the locations of the first and second occurrence of i, respectively. Partition the 2n indices of the
sequence into

√
n blocks Bk : k ∈ [

√
n], where Bk := [pos1((k − 1)

√
n + 1) : pos1(k

√
n) − 1]. We

consider two cases.
Suppose each block contains both occurrences of some element. That is, for each block Bk : k ∈

[
√
n], we have pos1(ik), pos

2(ik) ∈ Bk for some ik ∈ [n]. Then s contains the subsequence

i1i1 · · · i√ni
√
n.

We define g(x) := f(xi1 , . . . , xi√n
), where f is the hard function defined in Theorem 1.11 (but on

√
n bits). Let P be a read-2 permutation BP of width 2n1/8 ≤ 2n

1/4 which reads its input in the
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order given by s. By Theorem 1.11, we have that Pr[P (U) = g(U)] ≤ 1/2 + 2−Ω(n1/4) and g is
computable by a regular ROBP of constant width.

Otherwise, some block does not contain both occurrences of any element. In other words, there
exists a block Bk such that none of pos2((k − 1)

√
n + 1), . . . , pos2(k

√
n) lies in Bk. In this case, s

contains the 2-pass subsequence(
(k − 1)

√
n+ 1

)
· · ·
(
k
√
n
)
· σ
(
(k − 1)

√
n+ 1

)
· · ·σ

(
k
√
n
)

for some permutation σ on the
√
n elements in the subsequence. Applying the Erdős–Szekeres

theorem to the second half of the subsequence, we obtain a 2-pass subsequence on n1/4−1 elements
from s where the second pass in the same or reverse order as the first pass. As in the previous case,
by defining g to be the hard function f in Theorem 1.11 on these n1/4 − 1 bits, we conclude that
Pr[P (U) = g(U)] ≤ 1/2 + 2−Ω(n1/8) for any read-twice permutation program reading its input in
the order given by s, and g is computable by a regular ROBP of constant width.
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