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Abstract

Whether one-way functions (OWF) exist is arguably the most important problem in Cryp-
tography, and beyond. While lots of candidate constructions of one-way functions are known,
and recently also problems whose average-case hardness characterize the existence of OWFs have
been demonstrated, the question of whether there exists some worst-case hard problem that char-
acterizes the existence of one-way functions has remained open since their introduction in 1976.

In this work, we present the first “OWF-complete” promise problem—a promise problem
whose worst-case hardness w.r.t. BPP (resp. P/poly) is equivalent to the existence of OWFs
secure against PPT (resp. nuPPT) algorithms. The problem is a variant of the Minimum Time-
bounded Kolmogorov Complexity problem (MKtP[s] with a threshold s), where we condition on
instances having small “computational depth”.

We furthermore show that depending on the choice of the threshold s, this problem charac-
terizes either “standard” (polynomially-hard) OWFs, or quasi polynomially- or subexponentially-
hard OWFs. Additionally, when the threshold is sufficiently small (e.g., 2O(

√
n) or poly log n)

then sublinear hardness of this problem suffices to characterize quasi-polynomial/sub-exponential
OWFs.

While our constructions are black-box, our analysis is non-black box ; we additionally demon-
strate that fully black-box constructions of OWF from the worst-case hardness of this problem
are impossible. We finally show that, under Rudich’s conjecture, and standard derandomization
assumptions, our problem is not inside coAM; as such, it yields the first candidate problem be-
lieved to be outside of AM∩ coAM, or even SZK, whose worst case hardness implies the existence
of OWFs.
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1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently computed (in polynomial
time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse polynomial
probability for infinitely many input lengths n. Whether one-way functions exist is unequivocally
the most important open problem in Cryptography (and arguably the most importantly open prob-
lem in the theory of computation, see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient
for many of the most central cryptographic primitives and protocols (e.g., pseudorandom gener-
ators [BM84, HILL99], pseudorandom functions [GGM84], private-key encryption [GM84], digital
signatures [Rom90], commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to as private-key prim-
itives, or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of a OWF
is equivalent to the existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

Cryptography from Worst-case Hardness and the “coAM Barrier”: A long standing ques-
tion, dating back to the original work by Diffie and Hellman [DH76], is whether OWFs can be
based on the worst-case hardness of some NP problem; ideally, this problem should be NP-complete
which would yield the existence of OWFs based on the assumption that NP 6⊆ BPP (which trivially
is implied by the existence of OWFs). This question is usually referred to as the “holy grail” of
Cryptography, and is still wide open.

Following the breakthrough result of Ajtai in 1996 [Ajt96], there has been an explosion of cryptog-
raphy based on the worst-case hardness of lattice problems (see e.g., [AD97, Reg04]); these problems,
however, are all in AM ∩ coAM [GG00] and are thus unlikely to be NP-complete. Indeed, starting
in the early 1980’s, works by Brassard [Bra83], Bogdanov and Trevisan [BT03] and Akavia, Gol-
dreich, Goldwasser and Moshkovitz [AGGM06] show that such containment in AM ∩ coAM may be
necessary—at least w.r.t. black-box reductions1. The work by Akavia et al, however, explicitly men-
tion the possibility that non-black box techniques, although “uncommon” in complexity theory, may
be useful in overcoming these barriers:

Can OWFs be based on the worst-case hardness of some promise problem Π 6⊆ coAM?

OWF-complete problems More generally, we may ask whether some NP problem can be used
to characterize the existence of OWFs—namely, do “OWF-complete” problems exist?

As we will explain in more detail shortly, the above coAM black-box barriers also extend to
OWF-completeness, and as such, we will here focus on defining a notion of OWF-completeness w.r.t.
non black-box reductions—in fact, for generality, we will allow even non explicit reductions (although
the actual reduction presented in this paper will be explicit).

Define the class OWF of promise problems Π having the property that there exists some polynomial-
time computable function f such that if there exists some “efficient attacker” that can invert f with
probability (say 1/2) for infinitely many n, then Π can be decided on infinitely many input lengths
by some “efficient attacker”. Additionally, we refer to a problem Π as being OWF-hard if it holds
that if Π can be decided (in the worst-case) for infinitely many input lengths by “efficient attackers”,
then all poly-time functions can be inverted with probability 1/2 by “efficient attackers”. Finally, Π
is OWF-complete if Π ∈ OWF and Π is OWF-hard.

1We highlight that these results actually do not manage to fully rule out all black-box reduction; they either apply
to so-called non-adaptive black-box reductions, or only to restricted types of one-way functions.
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To prevent artificial complete problems (e.g., L = SAT if polynomially-secure OWF exists and
empty otherwise2), and to capture intuitions similar to those of black-box reductions (which also
prevent artificial complete problems), we require the above to simultaneously hold any “natural”
class C of “efficient adversaries”.3 For simplicity of notation, we here focus on C = {PPT, nuPPT},
but we our result directly extend also to any uniform (resp. non-uniform) class of adversaries
whose running time is closed under polynomial composition (e.g., poly-time, quasi-polynomial-time or
subexponential-time). With the above concrete choice of “efficient attacker” (i.e., the above class C),
we have that a promise problem Π is OWF-complete if it holds that Π /∈ ioBPP (resp. Π /∈ ioP/poly) if
and only if OWFs secure against PPT (resp. secure against non-uniform polynomial-time algorithms)
exist.

Given this notion of completeness, an natural questions is whether there is some promise problem
that characterizes the existence of OWFs:

Does there exist some promise problem in NP that is OWF complete? That is, Π /∈ ioBPP
(resp. Π /∈ ioP/poly) if and only if OWFs secure against PPT (resp. nuPPT) exist?

Black-box Barriers to OWF-complete problems As alluded to above, the barriers established
by Bogdanov and Trevisan [BT03] and Akavia, Goldreich, Goldwasser and Moshkovitz [AGGM06]
also yield limitations of OWF-complete problem. These works demonstrate that non-adaptive black-
box reductions can only be used to reduce OWFs to the worst-case hardness of languages in AM ∩
coAM, which under standard derandomization assumptions equals NP∩coNP. In other words, under
standard derandomization assumptions, only languages in NP∩ coNP would exist in OWF in case we
only considered Karp, or even non-adaptive black-box, reductions when defining the class OWF. But
it was shown already by Blum-Impagliazzo [BI87] and Rudich [Rud88] in the 1980s that there are no
so-called “fully black-box” constructions of a hard language in NP ∩ coNP based on the existence of
OWFs; in fact, recently, Bitansky, Degwekar and Vaikuntanathan [BDV17] strengthened this result
to show impossibility of fully black-box constructions of a hard problem in NP ∩ coNP from a host
of standard cryptographic primitives, including injective OWFs and indistinguishability obfuscation
[BDV17].

Of course, these results do not show that that obtaining a OWF-complete problem is impossible—
only that it will require using either adaptive black-box techniques, or to use non black-box tech-
niques, but either of these are rare, at least for the analysis of the most basic cryptographic building
blocks.

1.1 Our Results

In this paper, we demonstrate the existence of a OWF-complete problem. Our problem will be
natural variant of the standard time-bounded Kolmogorov complexity problem and will be based
on a recent thread of literature demonstrating the existence of natural problems whose average-case
hardness characterize the existence of OWFs. As we shall see, we will show how to use non-black
box techniques to extend these results to also work in the worst-case regime.

In a bit more detail, we will present a promise version of the time-bounded Kolmogorov com-
plexity problem, parametrized by a threshold s. When the threshold is large, worst-case hardness of
this problem will characterize “plain” OWFs, when it is “intermediate”, it will characterize quasi-
polynomially secure OWFs, and when it is “small”, it will characterize subexponentially secure

2We thank an anonymous reviewer for pointing out this “trivial” complete problem.
3That is, the problem is “uniform” w.r.t. the attack class. This is needed to prevent the “complete” problem from

simply encoding that OWF exists w.r.t. to a specific attack model; uniformity/obliviousness w.r.t. the attack class
ensures that the problem captures the “essence” of the notion of one-wayness.
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OWFs. In other words, we identify not only a OWF-complete problem, but the same problem, with
a different threshold is also complete for quasi-polynomial/subexponential OWFs. Additionally, as
we shall see, in the regime of quasi-polynomial/subexponential OWFs, it will suffice to assume that
the promise problem is (worst-case) hard w.r.t. sublinear time algorithms.

Before turning to the formal statement of our results, let us first review the recent literature
connecting OWFs and Kolmogorov complexity.

On OWFs and Kolmogorov Complexity: The MKtP problem Given a truthtable x ∈ {0, 1}n
of a Boolean function, what is the size of the smallest “program” that computes x? This problem
has fascinated researchers since the 1950 [Tra84, Yab59a, Yab59b], and various variants of it have
been considered depending on how the notion of a program is formalized. For instance, when the
notion of a program is taken to be circuits (e.g., with AND,OR,NOT gates), then it corresponds to
the Minimum Circuit Size problem (MCSP) [KC00, Tra84], and when the notion of a program is
taken to be a time-bounded Turing machine, then it corresponds to the Minimum Time-Bounded
Kolmogorov complexity problem (MKTP) [Kol68, Ko86, Sip83, Har83, All01, ABK+06]. Our focus
here is on the latter scenario. Given a string x describing a truthtable, let Kt(x) denote the t-bounded
Kolmogorov complexity of x—that is, the length of the shortest string Π such that for every i ∈ [n],
U(Π, i) = xi within time t(|Π|), where U is a fixed Universal Turing machine.4

Given a threshold, s(·), and a polynomial time-bound, t(·), let MKtP[s] denote the language
consisting of strings x such that Kt(x) ≤ s(|x|); MKtP[s] is clearly in NP, but it is unknown whether
it is NP-complete—indeed, this is a long-standing open problem. In [LP20], Liu and Pass recently
showed that when the threshold s(·) is “large” (more precisely, when s(n) = n − c log n, for some
constant c), then mild average-case hardness of this language w.r.t., the uniform distribution of
instances is equivalent to the existence of one-way functions (OWF).5

Even more recently, a different work by Liu and Pass [LP21a] demonstrated that when the
threshold is smaller, and if we consider a notion of mild average-case∗ hardness (which roughly
speaking requires average-case hardness conditioned on both YES and NO instances), then this
problem characterizes also quasi-polynomial or sub-exponential one-way functions. In particular,
quasi-polynomially secure and subexponentially-secure OWFs are characterized by mild average-
case∗ hardness of MKtP[s] where the threshold are s(n) = 2O(

√
logn) and s(n) = poly log n re-

spectively. Intriguingly, their result—following a literature on so-called hardness magnification
[OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19, CHO+20] shows that it suffices to as-
sume sublinear hardness of these problems to provide those characterizations (when the threshold
is sublinear). We mention one caveat in these results—whereas the original result of [LP20] charac-
terizing standard OWFs applies both in the uniform and non-uniform regime, the small threshold
characterization (which only require sublinear hardness) only applies in the non-uniform regime (i.e.,
they characterize hardness of MKtP[s] with respect to non-uniform algorithms through OWFs secure
against non-uniform algorithms).

Roughly speaking, our main results will show that if we consider a promise-problem variant of
the MKtP[s] problem, then we can demonstrate the above characterization but in terms of simply

4There are many ways to define time-bounded Kolmogorov complexity. We here consider the “local compression”
version—which corresponds to the above truthtable compression problem—and where the running-time bound is a
function of the length of the program. A different version of (time-bounded) Kolmogorov complexity instead considers
the size of the shortest program that outputs the whole string x. This other notion refers to a “global compression”
notion, but is less appealing from the point of view of truthtable compression, as the running-time of the program can
never be smaller than the length of the truthtable x.

5Strictly speaking, [LP20] considered the “global compression” version of Kolmogorov complexity, but when the
threshold is large, these notion are essentially equivalent, and the result from [LP20] directly applies also the “local
compression” notion of Kolmogorov complexity considered here.
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worst-case hardness of the problem. Additionally, our characterizations simultanously holds in both
the non-uniform and uniform regime, as required by our definition of OWF-completness.6

Computational Depth and “Natural” Instances To state our results, let us first (abuse of
notation) and let MKtP[s] denote the promise problem where:

• YES-instances consist of strings x such that Kt(x) ≤ s(|x|);

• NO-instances consist of string x such that Kt(x) ≥ n− 1;

Note that the only difference between the MKtP[s] language defined above and this promise problem
is we restrict the NO-instances to have very high Kt-complexity (i.e., they are “Kt-random”). Ideally,
we would like to show that worst-case hardness of this standard problem characterizes OWFs. We
will, however, need to consider a somewhat stronger hardness assumption. Roughly speaking, we
will require this problem to be hard even when we restrict the inputs to be of a certain “natural”
form (i.e., we require that every algorithm fails on some natural input), where naturality will be
defined in a precise mathematical way.

Given a promise problem Π = (ΠYES,ΠNO), and an event Q ⊆ {0, 1}∗, we define the “conditioned”

promise problem Π|Q
def
= (ΠYES ∩ Q,ΠNO ∩ Q). To define naturality, we will consider the notion of

computational depth [AFvMV06]. Recall that the computational depth of a string x is defined as
CDt(x) = Kt(x)−K(x). For every function t and constant β, define the following event

Qtβ = {x ∈ {0, 1}∗ : Kt(x)−K(x) ≤ β logK(x)}

That is, the event that the computational depth is “small” relative to K(x). Intuitively, the notion of
computational depth is thought of a measure of “unnaturality” of strings: arguably, only “unnatural”
strings have a large gap between how much they can be efficiently and non efficiently compressed.
Thus, by conditioning on strings with (relatively) small computational depth, it means that we
require the problem to be hard on “natural” inputs. In other words, hardness of a promise problem
conditioned on the event Qtβ requires every algorithm to fail on some “natural” string.

We remark that the event Qtβ is not computable as K(x) is not computable. We mention, however,

that all the result of this paper would still remain valid if replacing K(x) by KEXP(x) = Kt′(x) where
t′(n) = 2poly(n).

The work of Antunes and Fortnow [AF09] We highlight that Antunes and Fortnow [AF09]
elegantly used computational depth to connect worst-case hardness of a problem when restricting
attention to elements with small computational depth and average-case hardness on sampleable
distributions. We will rely on some of the same intuitions, but emphasize a cruicial difference.
[AF09] only connects the notion of errorless average-case hardness (i.e., average-case hardness w.r.t.
algorithms that never make mistake—they either give the right answer or output ⊥) and worst-case
hardness, and their proof techniques are tailored to this notion. And for the particular problem that
we consider (i.e., MKtP[s]), it is already known [Hir18, LP21b], that worst-case hardness directly
(without considering computational depth) implies errorless average-case hardness with respect to
the uniform distribution, so it would seem that computational depth is not helpful. Nevertheless, as
we shall see, we will be able to essentially connect worst-case hardness conditioned on instances with
small computational depth and also two-sided error average-case hardness (and thus be able to rely
on results like [LP20, LP21a]).

We are now ready to state our main theorems.

6In fact, it would seem that our techniques could also be applied to the average-case setting and show that the
results in [LP21a] actually also work in the uniform regime.
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Characterizing OWFs Our first result demonstrates the first OWF-complete problem, thus pro-
viding a positive answer to the second question in the introduction:

Theorem 1.1 (Characterizing OWFs). For every polynomial t(n) ≥ 2n, all constant β > 0, δ > 0,
and any threshold function s(·), nδ ≤ s(n) < n− 1, the following are equivalent:

• OWF (resp. non-uniformly secure OWF) exists;

• MKtP[n− 2]|Qtβ 6∈ ioBPP (resp. MKtP[n− 2]|Qtβ 6∈ ioP/poly)

• MKtP[s]|Qtβ 6∈ ioBPP (resp. MKtP[s]|Qtβ 6∈ ioP/poly).

As mentioned above, the above problem is robust in the sense that completeness holds also
when considering more general classes of “efficient adversaries” such as probabilistic/non-uniform
quasi-polynomal, or probabilistic/non-uniform subexponential, attackers.

Computational Depth and Average-case hardness As mentioned above, the work of Antunes
and Fortnow [AF09] demonstrates that worst-case hardness of a language L conditioned on instances
with small computational depth implies errorless average-case hardness on sampleable distributions.

One may, however, wonder whether a similar result can be shown also for two-sided error average-
case hardness—which for the particular MKtP problem has been shown to be equivalent to OWFs
(when considering average-case hardness w.r.t. the uniform distribution) [LP20]. We do not know of
proof of this for general languages L (and thus the proof of Theorem 1.1 relies on a different approach),
but note that as a direct corollary of Theorem 1.1 and the main results of of [LP20], we have that
worst-case hardness of MKtP[n−O(log n)] conditioned on instances with small computational depth
is equivalent to average-case hardness of MKtP[n − O(log n)] w.r.t. the uniform distribution (since
by our results, the former is equivalent to OWFs, and by [LP20] the latter is equivalent to OWFs).
In fact, under standard derandomization assumptions, we can also get average-case hardness under
samplable distributions (as long as t is sufficiently bigger than the running time of the sampler)—this
follows since [LP22a] recently showed (under derandomization assumptions) the equivalence between
OWFs and average-case hardness of MKtP[n − O(log n)] under sampleable distributions (when t is
sufficiently big).

The Complexity of MKtP[n − 2]|Qtβ and going beyond the coAM barrier An interesting

consequence of the Theorem 1.1 is the equivalence of bullet 2 and 3—that is, the hardness of the
problem remains the same when the thresholds is anywhere from nΩ(1) to n − 2; as we shall see
shortly, this will (likely) not be the case when the threshold is significantly smaller (as the same
problem with characterize quasi-polynomial/sub-exponential OWFs).

We additionally remark that under reasonable assumptions—in particular, under Rudich’s as-
sumption [Rud97] regarding the existence of cryptographic PRGs secure against coNP algorithms,
and standard derandomization assumptions (i.e., the same one used to traditionally argue that
MKtP[s] is not inside coAM [ABK+06, Hir18]) —MKtP[s]|Qtβ is not inside coAM when t, β are suf-

ficiently big; as such, Theorem 1.1 yields the first problem believed to be outside of AM ∩ coAM
whose worst-case hardness (even just) implies the existence of OWFs, providing a positive answer
to question 1 in the introduction (under computational assumptions). In more detail, we will show
that the problem (at least in some parameter regime that suffices to characterize OWFs) is not in
io-coNP/poly, which contains coAM.

Theorem 1.2 (informally stated). There exists some β > 0 such that under Rudich’s conjecture
and standard derandomization assumption, it holds that for all sufficiently large polynomials t(n),

MKtP[n− 2]|Qtβ 6∈ io-coNP/poly
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Impossibility of Fully Black-Box Constructions As mentioned above, the proof of our main
theorems rely on non-black box techniques. In particular, in contrast to the construction of OWFs
from the average-case hardness of MKtP[s] of [LP20] which is fully black-box, we make use of the
code of the attacker in analyzing the security of the OWFs. We show that this non-black box usage
is needed, by demonstrating the impossibility of fully black-box constructions of OWF from the
hardness of MKtP[s]|Qtβ when β is sufficiently big. Roughly speaking, we here refer to a reduction

to MKtP as being fully black-box if both the construction and the reduction treats the universal
Turing machine in the definition of Kt in a black-box way, and additionally the reduction only gets
black-box access to the attacker. We note that we here also rule out adaptive black reductions (c.f.
the results of [BT03, AGGM06] that only deal with non-adaptive ones).

Theorem 1.3. For all sufficiently large β > 0, for all polynomials t(n) ≥ 2n, there does not exists
a fully black-box construction of OWFs from MKtP[n− 2]|Qtβ 6∈ ioP/poly.

We highlight that perhaps surprisingly, the proof of the black-box impossibility result heavily
relies on the proof techniques developed to show Theorem 1.1 (i.e., our main characterization).

Characterizing Qpoly/Subexponential OWFs We next show that the MKtP[s]|Qtβ problem

becomes “easier” when the threshold is smaller by showing that its hardness characterizes quasi-
polynomially/sub-exponentially secure OWFs when the threshold is smaller. We here additionally
show that sublinear hardness of the same problem also characterizes the same primitive.

To simplify notation, we state these results for the setting of uniform security, but emphasize that
these results (just as Theorem 1.1 where we did it explicitly) also work in the setting on non-uniform
security. We highlight that this is not immediate since we are employing non-black box techniques.

Theorem 1.4 (Characterizing Quasi-polynomially Secure OWFs). For every polynomial t(n) ≥ 2n,
every constant β > 0, δ > 0, the following are equivalent,

• Quasi-polynomially secure OWFs exist;

• MKtP[2O(
√

logn)]|Qtβ 6∈ ioBPTIME[nδ]

Theorem 1.5 (Characterizing Subexponentially Secure OWFs). For every polynomial t(n) ≥ 2n,
every constant β > 0, δ > 0, the following are equivalent,

• Subexponentially secure OWFs exists;

• MKtP[poly log n]|Qtβ 6∈ ioBPTIME[nδ]

Theorems 1.4 and 1.5 follow from a more general theorem characterizing T -secure OWF through
the worst-case hardness of MKtP[s]|Qtβ where s is polynomially related to T−1 (see Theorem 3.3 in

Section 3).

1.2 Perspective

Taken together, our results demonstrate that worst-case hardness of the same natural problem—
that is, i.e., MKtP[s] conditioned on inputs being “natural” (i.e., of small computational depth)
characterizes all of OWFs, quasi-polynomially secure OWFs and subexponentionally secure OWFs,
depending on how the threshold is set. There are several interesting consequences one can draw from
this:
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• Characterizing the “holy grail”: As mentioned above, the holy grail of Cryptography is
basing OWFs on the assumption that NP 6⊆ BPP (or more precisely NP 6⊆ ioBPP). By our
results, solving this problem is equivalent to showing that our promise problem is NP complete
(perhaps with a non-black box reduction). As far as we know, there are no barriers to this
since as argued above, the problem is unlikely to be inside coAM. There has been lots of recent
progress (see e.g. [Ila20, ILO20, Ila21, Ila22, LP22b, Hir22]) on showing that MKtP[s] may be
NP complete (for various variants of the problems), so there is hope that this can be done.

• Characterizing Hardness Magnification for OWFs: Could it be that plain OWFs imply
quasi-polynomially secure (or even subexponentially secure OWFs)? Our results demonstrate
that this is equivalent to demonstrating a reduction—in the worst-case regime—from the low
threshold case to the high threshold case for our promise problem.

• Towards NP 6= P, or even NP 6⊆ BPTIME(2n
ε
) As far as we know, Theorem 1.4 and 1.5

yield the first problem whose sublinear worst-case hardness implies that NP 6= P (and in fact,
they yield even the stronger consequence that NP cannot be solved in quasi-polynomial or
subexponential time). Worst-case hardness w.r.t. sublinear time algorithms is typically easy
to show for natural problem (e.g., [LP21a] even showed it for a different variant of the MKtP[s]
problem) so there is hope that our results yield a new path toward solving the NP v.s. P
problem.

• Beyond OWFs: Our work introduces a new non black-box technique to analyze protocols
based on the hardness of Kolmogorov complexity problems. We believe these techniques will
be useful also outside the realm of just OWFs. Indeed, a very recent paper [BLMP23] which
follows up on ours, demonstrates how to use these techniques (and in particular how restrict-
ing attention to an appropriate analog of computational depth) can be used to get a charac-
terization of key-exchange agreement [DH76] using the worst-case hardness of a Kolmogorov
complexity-style problem.

Concurrent and Independent Work: A concurrent and independent elegant work by Hirahara
and Nanashima [HN23] also provides a worst-case characterization of OWFs.7 There are some
conceptual similarities: both works consider worst-case hardness of a language/promise problem
conditioned on instances with small computational depth.

There are also some significant differences:

• [HN23] does not actually characterize OWF but rather only so-called infinitely-often OWFs
(which are less relevant for cryptography). Their proof technique seemingly does not extend to
deal with “standard” OWFs. (In contrast, ours directly extends to also characterize infinitely-
often OWFs.)

• For our problem, changing the threshold enables performing “hardness magnification” (i.e.,
characterizing stronger OWFs and enabling using simply sublinear worst-case hardness in the
small threshold case.) Their problem/proof approach is seemingly not amenable to this.

• The actual problem they consider is less standard/more complicated (“estimating the prob-
ability that a random program outputs a certain string”) than the one we consider (i.e., the
standard MKtP problem). Additionally, they also do not rely on the standard notion of com-
putational depth but a variant of it related to the above problem.

7Both papers were submitted to FOCS’23. Theirs was accepted, ours not.
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As a consequence, whereas our problem is (trivially) in NP, theirs is only shown to be in AM
(and even this requires some work).

• The problem in [HN23] is not proven to be OWF-complete according to our notion of complete-
ness as the characterization only holds in the uniform setting (since a non black-box proof is
used, security in the uniform setting does not imply security in the non-uniform setting). In
contrast, we show equivalence in both the uniform and the non-uniform setting. (Conceivably,
however, our new proof technique for dealing with non-uniformity may also be applicable to
their problem.)

• Finally, [HN23] do not show that their problem is not contained coAM; conceivably, however,
our proof technique may be applicable to show that theirs also is not in coAM.

(Of course, [HN23] also contains other intriguing results, but we are here simply comparing the
characterization of OWFs.)

Despite all these differences, the results of [HN23] indicate that a conceptually different type of a
OWF-complete problem may be within reach, and consequently that the class of OWF-complete
promise problems may contain conceptually different types of problem (similar to NP-complete
problems)—we interpret this as exciting evidence of the richness of the OWF class.

1.3 Proof Overview

We here provide a proof overview of Theorem 1.1, 1.4 and 1.5.

The Key Idea In a Nutshell To explain our approach, let us start by a simple but powerful
observation. Let Π denote some decidable promise problem and let KRc denote the event that
K(x) ≥ n − c log n (i.e, x is asymptotically “Kolmogorov Random”). Then, for every c > 1, worst-
case hardness of the conditional promise problem Π|KRc implies mild average-case hardness of Π
with respect to the uniform distribution. To see this, assume for contradiction that some uniform
polynomial-time attacker A manages to solve Π on average with probability 1 − 1/nc

′
for some

sufficiently big c′ > c. In other words, there are at most 3 × 2n/nc
′

instances on which A fails
with probability ≥ 1/3 over its randomness. But then all those instances must have Kolmogorov
complexity bounded by log(2n/nc

′
) + O(log n) (to index the instance among the list of elements

on which A fails with probability ≥ 1/3, plus the additional O(log n) to describe n as well as to
provide the constant-size description of A). But for a sufficiently large c′, this is strictly smaller
than n − c log n, so A can only fail on instances outside of the promise KRc. Note that the above
argument is non-black box: we rely on the fact that we have a short description of the attacker A. In
fact, the above argument seemingly only shows average-case hardness w.r.t uniform algorithms A.
However, by an additional trick we can extend it to work also for non-uniform algorithms (assuming
worst-case hardness of Π|KRc with respect to non-uniform polynomial-time algorithms). Assume for
contradiction that there exists some non-uniform polynomial-time algorithm with size/time bounded
by nd that breaks the average-case hardness of Π. Then, given d (which can be described in O(1)
bits), we can simply enumerate all possible non-uniform attackers of size up to nd and pick the one
who solves the promise problem with the highest probability, and do the rest of the argument with
respect to this attacker (which now can be described using O(1) bits). Note that we here need to
rely on the decidability of the promise problem.

Characterizing OWF through KR: A Warm-Up We note that although the above observation
is simple, it is quite powerful. It can already by used, combined with the results of [LP20], to
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demonstrate that worst-case hardness of MKtP[n− c log n]|KR2c characterizes the existence of OWF
for every sufficiently large c. Roughly speaking, this follows from the fact that [LP20] showed that
mild average-case hardness of MKtP[n − c log n] is equivalent to the existence of OWF (for every
sufficiently large c); in fact, by observing the proof of [LP20], it turns out that for all sufficiently big
c, the equivalence holds w.r.t. MKtP[n − c log n] being 1 − 1/nc+3-average-case hard (i.e., no PPT
attacker can solve the problem with probability better than 1−1/nc+3), which is implied by the worst-
case hardness of MKtP[n− c log n]|KR2c by the above argument (since c is sufficiently big). In other
words, worst-case hardness of MKtP[n − c log n]|KR2c implies the existence of OWFs. Furthermore,
by [LP20], the existence of OWFs imply that MKtP[n − c log n] is mildly hard on average, which
by a standard averaging argument implies worst-case hardness of MKtP[n − c log n]|KR2c since the
probability of KR2c is 1−O(1/n2c).

The reader may wonder why we need to through the result of [LP20] at all here: the “key-
observation” shows that worst-case hardness conditioned on KR2c yields average-case hardness w.r.t.
the uniform distribution. And as noted in the previous sentence, average-case hardness w.r.t. the
uniform distribution implies worst-case hardness conditioned on KR2c, so it would seem that two-
sided error average-case and worst-case hardness conditioned on KR2c are equivalent! (and then we
can just rely [LP20] in a black-box way to get a OWF-complete problem). There is an important
issue with this approach: worst-case hardness conditioned on KR2c only implies and weak form of
average-case hardness, but in the other direction we require a quantititively stronger form of average-
case hardness to get back worst-case hardness conditioned on KR2c. Going through [LP20], and its
cryptographic machinery, enables doing this amplification. (So, at the end of the day, with respect to
the particular MKtP problem, it is the case that two-sided error average-case and worst-case hardness
conditoned on high K-complexity are equivalent, but proving so relies on going through OWFs and
cryptographic machinery).

Characterizing OWFs through CD While the above yields a simple characterization of OWFs,
it requires tightly calibrating the constant c in the definition of KRc to the threshold of the MKtP
problem, so it makes for a somewhat brittle characterization. Furthermore, the simple argument
above only works to considering hardness of MKtP[s] where s = n − O(log n), and as such will not
be helpful when wanting to characterize quasi-polynomially/subexponentially secure OWFs.

It turns out that instead conditioning on strings having small computational depth [AFvMV06,
AF09] enables us to deal with these issues and provides for a clean characterization where we can
simply condition on the same event (namely Qtβ for any β > 0), and consider MKtP[s] with respect
to any threshold s.

The forward direction of our proof, follows similar intuition to the above, but requires going
deeper into the constructions and proofs in [LP20, LP21a], and combining the high-level ideas in
those proofs with intuitions similar to the ones use above. We can then show that for any constant β,
worst-case hardness of MKtP[s]|Qtβ implies OWF or even quasi-polynomially/subexponentially secure

OWF when the threshold is sufficiently small, and additionally, in the small threshold case, it suffices
to just require sublinear time (worst-case) hardness.

For the backward direction, we may again rely on the proofs in [LP20, LP21a] combined the
with the above observation to show that OWFs (resp T -secure OWFs) imply worst-case hardness of
MKtP[s]|Qtβ . While the high-level ideas here are similar to [LP20, LP21a], we are required to provide a

tighter analysis to deal with the fact that we here consider hardness of the promise problem MKtP[s],
where for NO-instances, x, requires Kt(x) ≥ n − 1. As such, the actual technical details here are
somewhat different than those in [LP20, LP21a]. Additionally, [LP21a] (which considered the small
threshold case in the average-case setting) unfortunately only works for non-uniform attackers. To
deal with uniform attacker, we develop a new proof technique (that also ought to work in the average-
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case setting and may be of independent interest). Without getting too deep in the details, the key
obstacle is that [LP21a] relies on the security of a primitive (called an conditionally-secure entropy-
preserving PRF (cond EP-PRF) for which it is (seemingly) hard to check if an attacker manages to
break its security, and non-uniformity was used to provide the input lengths on which the attacker
succeeds. We here show how to also deal with this obstacle without non-uniform advice.

Roughly speaking, the key idea is to leverage the fact that in [LP21a], a cond EP-PRF was
constructed based on the existence of a PRG and a PRF (primitives for which we efficiently check
whether an attacker succeeds) using an explicit (efficient) black-box reduction having the property
that any attacker that breaks the cond EP-PRF on some specific inputs length n can be used to
break the PRG (or the PRF) on some specific (and efficiently computable) input length n′. We can
next use this reduction to efficiently find the input lengths on which the attacker succeeds in breaking
the cond EP-PRF.

2 Preliminaries

For any string x ∈ {0, 1}∗, we let [x]n denote the first n-bit prefix of x. For any functions s(·), we
refer to it as a threshold function if s is time-constructible and strictly increasing.

Sublinear-time Algorithms If an algorithm M runs in time nδ for some δ < 1, we refer to M as
a sublinear-time algorithm. Notice that sublinear-time algorithms cannot read the whole input. In
this work, we assume that a (uniform) sublinear-time algorithm, when running on some input, will
be additionally provided with the length of the input.

2.1 Promise Problems and “Conditioned” Problems

In this work, we focus on promise problems Π = (ΠYES,ΠNO), and algorithms that decides Π on
infinitely many input lengths. We say that an algorithm M decides Π infinitely often if there exists
infinitely many n ∈ N such that (ΠYES ∪ΠNO) ∩ {0, 1}n 6= ∅ and M decides Π on input length n.

We consider the promise variant of standard infinitely often complexity classes. Let ioBPP (resp
ioP/poly, io-coNP/poly) denote the class of promise problems where for any promise problem Π,
Π ∈ ioBPP (resp ioP/poly, io-coNP/poly) if and only if there exists a probabilistic (resp non-uniform,
non-uniform co-non deterministic) polynomial time algorithm M that decides Π.

Let us introduce what it means by “conditioned” promise problems. For any promise problem Π,
and any event Q ⊆ {0, 1}∗, we define the promise problem

Π|Q
def
= (ΠYES ∩Q,ΠNO ∩Q)

Note that for any Q,Q′, Q ⊆ Q′, we have that Π|Q ⊆ Π|Q′ . (And therefore, Π|Q′ is “harder” than
Π|Q. Namely, if Π|Q 6∈ ioBPP, Π|Q′ 6∈ ioBPP.)

2.2 One-way Functions

We recall the standard definitions of one-way functions (with security w.r.t. uniform or non-uniform
attackers).

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be a
(T, ε)-one-way function if for any probabilistic algorithm A of running time T (n), for all sufficiently
large n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < ε(n)

We say that f is non-uniformly secure if the above holds for all non-uniform algorithm A.
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We say that f is T (n)-one-way (or is a T -hard one-way function) if f is (T (n), 1/T (n))-one-way.
We say that f is ε(n)-weak T (n)-one-way if f is (T (n), 1− ε(n))-one-way. If ε(n) is a (monotonically
increasing) polynomial, we say f is weak T (n)-one-way. We say that f is simply one-way if f is
T (n)-one-way for all polynomials T (n). When T (n) is a super-polynomial function, we refer to f as
being subexponentially-secure (resp quasi-polynomially-secure) if there exists a constant c > 0 such
that f is 2n

c
-one-way (resp nc logn-one-way).

We recall the hardness amplification lemma [Yao82] which was originally stated for (polynomially-
hard) OWFs; we here extend it to work for T -one-way functions.

Lemma 2.2 (Hardness Amplification [Yao82]). Assume that there exists a weak T (n)-one-way func-
tion for an arbitrary function T (·). Then, there exists a (T ′(n))-one-way function where T ′(n) =√

T (nΩ(1))

nO(1) − nO(1).

We refer the read to [LP21a] for a proof of the above Lemma.

2.3 The OWF Class

We turn to defining, OWF, the class of promise problems Π whose worst-case hardness imply the
existence of OWFs. Formally, Π ∈ OWF if and only if there exists a efficiently computable function
f such that the following holds: If there exists a PPT (resp. a nuPPT algorithm A such that A
inverts f infinitely often—that is, for infinitely many n ∈ N,

Pr[x← {0, 1}n, y = f(x) : A(1n, y) ∈ f−1(f(x))] ≥ 1

2

then, Π ∈ ioBPP (resp. Π ∈ ioP/poly).
We highlight that containment in OWF requires the problem to be “as hard as” the efficient

function f (is to invert) simultanously w.r.t. uniform PPT as well as non-uniform polynomial-time
algorithm. This uniformity is a “proxy” for the uniformity imposed by standard definitions of black-
box reductions which also provide this guarantee. (One could also extend this uniformity to hold
with respect to attackers with larger, e.g., subexponential running time; while this indeed is the case
for our results, we simply stick to uniform/non-uniform PPT, for simplicity of notation.)

Let us turn to define OWF-hardness. We say that Π is OWF-hard if the following holds: If
Π ∈ ioBPP (resp. ioP/poly), then any efficient function f can be inverted w.p. 1/2 for infinitely
many input length in probabilistic polynomial time (resp. non-uniform polynomial time).

Finally, we say that Π is OWF-complete if Π ∈ OWF and Π is OWF-hard. In other words, Π
being OWF-complete means that Π ∈ ioBPP (resp. Π ∈ ioP/poly) iff all efficient functions can be
inverted for infinitely many input lengths by PPT algorithms (resp. non uniform polynomial-time
algorithms).

2.4 Time-bounded Kolmogorov Complexity

We define the notion of t-time-bounded Kolmogorov complexity that we rely on. We consider some
universal Turing machines U that can emulate any Turing machine M with polynomial overhead.
The universal Turing machine U receives as input a description/program Π ∈ {0, 1}∗ = (M,w) where
M is a Turing machine and w ∈ {0, 1}∗ is an input to M ; we let U(Π(i), 1t(|Π|)) denote the output
of M(w, i) when emulated on U for t(|Π|) steps.

Definition 2.3. Let U be a universal Turing machine and t(·) be a polynomial. Define

Kt(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i), 1t(|Π|)) = xi}.
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We remark that the notion of time-bounded Kolmogorov complexity has been defined in a lot
of different ways [Kol68, Sip83, Tra84, Ko86, ABK+06]; the definition we consider here is the “local
compression” version (see e.g., [ABK+06, LP21a]) where the program Π is required to efficiently
output each individual bit xi of the string x, given i as input.

A basic computational problem regarding t-time-bounded Kolmogorov complexity is the min-
imum Kt-complexity problem MKtP. In this work, we consider its decisional version, which is
parameterized by a threshold s(·), and the goal is to distinguish strings x with small Kt-complexity
(≤ s(|x|)) from those with large Kt-complexity ≥ n− 1.

Definition 2.4 (MKtP). Let MKtP[s] denote the following promise problem:

• YES: x ∈ {0, 1}∗, Kt(x) ≤ s(|x|).

• NO: x ∈ {0, 1}∗, Kt(x) ≥ n− 1.

Computational Depth We will focus our attention on MKtP with instances having small com-
putational depth [AFvMV06]. Roughly speaking, the computational depth of a string x is the
difference between its Kt-complexity and its (time-unbounded) K-complexity. Recall that for any
string x ∈ {0, 1}∗, its (time-unbounded) K-complexity, K(x), is defined to be the length of the
shortest program that produces x. Formally,

K(x) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N, U(Π, 1t) = x}

And we refer to Kt(x) − K(x) as the computational depth of x. Throughout this work, for any
polynomial t, any constant β > 0, we define

Qtβ
def
= {x ∈ {0, 1}∗ : Kt(x)−K(x) ≤ β logK(x)}

be the set of strings with computational depth logarithmic in K(x). (And recall that MKtP|Qtβ is

the promise variant of MKtP where we condition on instances ∈ Qtβ.) As argued in the introduction,

Qtβ is the set of “natural” instances. Observe that for any polynomial t0, t1, t1(n) ≥ t0(n), for any
constant β1 ≥ β0 > 0, we have that

Qt0β0
⊆ Qt1β0

, Qt0β0
⊆ Qt0β1

We recall the following fact about (time-bounded) Kolmogorov complexity (and we refer to [LP21a]
for a short proof).

Fact 2.5. There exists a constant c such that for every polynomial t(n) ≥ (1 + ε)n, ε > 0, the
following holds:

(1) For every x ∈ {0, 1}∗, Kt(x) ≤ |x|+ c;

(2) For every integer n ∈ N, every function 0 < s(n) < n, 2bs(n)c−c ≤ |MKtP[s(n)] ∩ {0, 1}n| ≤
2bs(n)c+1.

2.5 Distributions, Random Variables, and Entropy

Let D be a distribution. We let supp(D) denote the support of D. For any x ∈ supp(D), we let D(x)
denote Pr[D = x].

For a random variable X, let H(X) = E[log 1
Pr[X=x] ] denote the (Shannon) entropy of X. The

following lemma will be useful for us.
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Lemma 2.6 (Implicit in [LP20, IRS22]). Let X be a random variable distributed over S ⊆ {0, 1}n,
E be an set ⊆ S. It holds that

Pr[x← X : x ∈ E] ≤ log |S|+ 1−H(X)

log |S| − log |E|

Proof: Let flag be a binary random variable (jointly distributed with x ∼ X) such that flag = 1 if
x ∈ E, and flag = 0 if x 6∈ E. Let α denote the value of Prx∼X [x ∈ E], and assume for contradiction

that α > log |S|+1−H(X)
log |S|−log |E| . Note that by the chain rule of entropy:

H(X) ≤ H(X, flag) = H(flag) + αH(X|x ∈ E) + (1− α)H(X|x 6∈ E)

Note that on the RHS, H(flag) ≤ 1 since flag is binary. H(X|x ∈ E) ≤ log |E|, and H(X|x 6∈ E) ≤
log |S| (since X is distributed over S). So the RHS is at most

RHS ≤1 + α log |E|+ (1− α) log |S|
=1 + log |S| − α(log |S| − log |E|)

<1 + log |S| − log |S|+ 1−H(X)

log |S| − log |E|
(log |S| − log |E|)

=H(X)

which is a contradiction.

2.6 “Nice” Function Classes

We consider “nice” classes of function families, where the class of functions F is said to be “nice” if

• for every function T ∈ F , T is time-constructible and strictly increasing.

• F is closed under (sublinear) polynomial compositions: for any T ∈ F , for all 0 < ε1, ε2 < 1,
(T (nε1))ε2 ∈ F .

Given a class of functions, let F−1 denote the class of inverse function: F−1 = {f s.t. f−1 ∈ F}.
Several examples of “nice” classes of super-polynomial functions (and their inverse classes) are (a)
Fsubexp = {2cnε}c>0,0<ε<1 and F−1

subexp = {c logβ n}c>0,β>1, (b) Fqpoly = {nc logn}c>0 and F−1
qpoly =

{2c
√

logn}c>0.
The notion of “nice” function classes has the important property that “polynomial-time” re-

ductions “preserve F-hardness”. Roughly speaking, almost all the reductions (considered in this
work) are of form “if A is T (n)-hard, B is (T (nΩ(1))Ω(1)/nO(1) − nO(1))-hard”. When A is a promise
problem, we refer to A as being T (n)-hard if A is hard for T (n)-time algorithms. When A is a cryp-
tographic primitive, we refer to A as being T (n)-hard if A is secure against all T (n)-time attackers.
The following fact shows that such reductions actually prove the following statement: “if there exists
T1 ∈ F such that A is T1(n)-hard, then there exists T2 ∈ F such that B is T2(n)-hard”.

Fact 2.7. Let F be a nice class of super-polynomial functions. For every T ∈ F , for all 0 <
ε1, ε2 < 1, c1, c2 > 1, there exists a function T ′ ∈ F such that for all sufficiently large n, T ′(n) ≤
T (nε1)ε2/nc1 − nc2.

We refer the reader to [LP21a] for a proof of this fact.
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3 Our Results

Our first result is an equivalence between OWFs and the hardness of MKtP[s] on the natural instances,
where the threshold s is moderately large and t is a polynomial.

Theorem 3.1 (Characterizing OWFs). For any threshold function s(·), nε ≤ s(n) < n − 1, ε > 0,
any polynomial t(n) ≥ 2n, any constant β > 0, the following are equivalent:

(a) MKtP[s]|Qtβ 6∈ ioBPP (resp. MKtP[s]|Qtβ 6∈ ioP/poly).

(b) One-way functions (resp. non-uniformly secure one-way functions) exist.

Proof: (b) ⇒ (a) follows from Theorem 4.1 (stated and proved in Section 4) and Lemma 2.2.
The non-uniform version of the implication (a) ⇒ (b) follows from Theorem 5.2, and Lemma 5.4
(stated and proved in Section 5). The uniform version of the implication follows from Theorem 5.2,
Proposition 5.5, and Lemma 5.7 (stated and proved in Section 5).

We remark that Theorem 1.1 (stated in the introduction) follows from Theorem 3.1 by taking
s = nΩ(1) or s = n− 2. In addition, this yields the first OWF-complete problem.

Corollary 3.2. Let s, t, β as in Theorem 3.1. MKtP[s]|Qtβ is OWF-complete.

Our second result demonstrates that the hardness of the same problem, MKtP[s]|Qtβ , with re-

spect to polynomial time (or even sublinear-time) algorithms, will characterize quasi-polynomially
or subexponentially secure OWF when the threshold s is small. We rely on the notion of “nice”
classes of functions, which captures classes of “polynomially-related” functions. We refer the reader
to Section 2.6 for more on “nice” classes and we here proceed to our theorem statement.

Theorem 3.3 (Characterizing T -hard OWFs). Let F be a “nice” class of super-polynomial functions.
For any polynomial t(n) ≥ 2n, any constant β > 0, δ > 0, the following are equivalent:

(a) There exists a function T ∈ F such that T -hard (resp. non-uniformly T -hard) one-way func-
tions exist.

(b) There exists a function s ∈ F−1 such that MKtP[s]|Qtβ 6∈ ioBPTIME[nδ] (resp. MKtP[s]|Qtβ 6∈
ioSIZE[nδ]).

Proof: (b) ⇒ (a) follows from Theorem 4.2 (stated and proved in Section 4) and Lemma 2.2.
The non-uniform version of the implication (a) ⇒ (b) follows from Theorem 5.2, and Lemma 5.3
(stated and proved in Section 5). Its uniform version follows from Theorem 5.2, Proposition 5.5, and
Lemma 5.6 (stated and proved in Section 5).

Taking F = {nc logn}c>0 to be the class of quasi-polynomial functions, we obtain Theorem 1.4
(stated in the introduction), and taking F = {2cnε}c>0,0<ε<1 to be the class of subexponential
functions, we obtain Theorem 1.5 (stated in the introduction). Furthermore, we can take F to be
any nice class of super-polynomial functions (such as F = {nc log logn}c>0) and we obtain equivalence
between F-hard OWFs and the hardness of MKtP[F−1] on natural instances.

4 OWFs from Worst-case Hardness of MKtP|Q
We start by proving that if there exist a polynomial t and a constant β > 0 such that MKtP|Qtβ is

hard, then standard (weak) OWFs exist.
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Theorem 4.1. If there exist a constant β > 0, a threshold function s, 0 < s(n) < n − 1, and
a polynomial t such that MKtP[s]|Qtβ 6∈ ioBPP (resp. ioP/poly), then weak one-way (resp. weak

non-uniformly secure one-way) functions exist.

Proof: Consider the function f : {0, 1}n+dlog(n)e → {0, 1}∗, which given an input `||Π′ where
|`| = dlog(n)e and |Π′| = n, outputs

`||U(Π(1), 1t(`))||U(Π(2), 1t(`))|| . . . ||U(Π(n− 1), 1t(`))||U(Π(n), 1t(`))

where Π is the `-bit prefix of Π′. Note that U only has polynomial overhead, so f can be computed
in polynomial time.

This function is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is weak one-way (over
the restricted input lengths), then f ′ will be weak one-way (over all input lengths): f ′(x′) simply
truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of length
n′ = n+ dlog(n)e for some n and outputs f(x).

Assume for contradiction that f is not 1
q(n) -weak one-way (resp non-uniformly 1

q(n) -weak one-way)

where q(n) = nβ+4. There exists a polynomial p(·) and a p-time attacker A such that the attacker
A inverts the function f with probability at least 1

q(n) for infinitely many n. We can assume without

loss of generality that there exists a constant γ such that for all sufficiently large n, A (on input
length n) can be described using γ bits given n: If A is a uniform attacker, we can let γ be the length
of the code of A; if A = {An}n∈N is a non-uniform attacker, on input length n, we can consider An
as being the lexicographically smallest p(n)-time non-uniform attacker such that An inverts f with
probability at least 1

q(n) . (If there is no such attacker on input length n, we let An be simply an

outputting ⊥ attacker.) Note that An can be described using the code of f , the polynomial p(·), and
the polynomial q(·), so the attacker A can be described in constant bits. Fix some n such that A
succeeds with probability at least 1

q(n) on input length n.

We turn to constructing a polynomial-time uniform (resp non-uniform) algorithm M to decide
MKtP[s] on inputs z ∈ {0, 1}n ∩ Qtβ. Our algorithm M , on input z, runs A(i||z) for every i ∈ [n]
where i is represented as a dlog(n)e-bit string, and outputs 1 if and only if the length of the shortest
program Π output by A, which produces each bit in the string z within t(|Π|) steps, is at most s(n).
Since A runs in polynomial time, our algorithm will also terminate in polynomial time.

We next show that our algorithm will output 1 with probability at least 2/3 on input z if
Kt(z) ≤ s(n) and z ∈ Qtβ. Assume for contradiction that M outputs 1 with probability < 2/3. Let

w = Kt(z). Consider any string y such that Kt(y) = w, and Lw be the set of “bad” strings such
that

Lw
def
= {y ∈ {0, 1}n : Kt(y) = w,Pr[M(y) = 1] < 2/3}

It follows that z ∈ Lw. We rely on the following claim on the Kolmogorov complexity of strings in
Lw.

Claim 1. For all y ∈ Lw, K(y) < w − β log n.

Proof: We first argue that
|Lw| ≤ 3 · 2w−(β+3) logn

Consider any y ∈ Lw. Note that Kt(y) = w, there must exist a program Π of size w such that Π
outputs each bit of y in time t(|Π|). And (w,Π) will be sampled with probability

1

n
2w
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in the one-way function experiment. However, since Pr[M(y) = 1] < 2/3, A must fail to invert f
on input (w||y) with probability at least 1/3. So A will fail to invert f in the one-way function
experiment with probability at least

1/3|Lw|
1

n
2w

which is at most 1
q(n) = 1

nβ+4 since A is a good inverter. We conclude that

|Lw| ≤ 3 · 2w+log(n)−(β+4) logn ≤ 3 · 2w−(β+3) logn.

We turn to showing how to obtain a short description for each string ∈ Lw. For any y ∈ Lw,
consider the following program with n, w, t, the code of M (which as shown before, is of constant
length), and the location of y (in Lw) hardwired in it. The program first generate the set Lw
by enumerating all strings in {0, 1}n, and writing down the string if its Kt-complexity is w and the
probability that M(z) = 1 is < 2/3. The program can be described using 2 logn+O(log log n)+log |L|
bits. So it follows that for any y ∈ Lw,

K(y) ≤ 2 log n+O(log log n) + w − (β + 3) log n+O(1) < w − β log n.

Therefore, K(z) < w − β log n. However, recall that Kt(z) = w and z ∈ Qtβ, it holds that K(z) ≥
w − β logK(z) > w − β log n, which is a contradiction.

We finally prove that if Kt(z) > n− 1, M(z) will never output 1. Note that M(z) will output 1
only when it finds a Kt-witness of length no more than s, and there is no such witness if Kt(z) > n−1.
It follows that M(z) will never output 1.

We turn to showing that the smaller the threshold in Theorem 4.1 is, the stronger the OWF we
deduce. And we only require sublinear-time hardness.

Theorem 4.2. Let F be a nice class of super-polynomial functions. Assume that there exist a
function s ∈ F−1, constants β, δ > 0, and a polynomial t > 0 such that MKtP[s]|Qtβ 6∈ ioBPTIME[nδ]

(resp ioSIZE[nδ]). Then, there exist T ∈ F and a weak T -one-way (resp weak non-uniform T -one-
way) function.

Proof: Consider the function f : {0, 1}n+dlog(n)e → {0, 1}∗, which given an input `||Π′ where
|`| = dlog(n)e and |Π′| = n, outputs

`||U(Π(1), 1t(`))||U(Π(2), 1t(`))|| . . . ||U(Π(2n− 1), 1t(`))||U(Π(2n), 1t(`))

where Π is the `-bit prefix of Π′. Note that U only has polynomial overhead, so f can be computed
in polynomial time.

This function is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is weak T -one-way (over
the restricted input lengths, for some function T ∈ F), then f ′ will be weak T ′-one-way (over all
input lengths, for some function T ′ ∈ F): f ′(x′) simply truncates its input x′ (as little as possible)
so that the (truncated) input x now becomes of length n′ = n + dlog(n)e for some n and outputs
f(x). (We can pick any function T ′ ∈ F such that T ′(|x′|) ≤ T (n), guaranteed to exist by Fact 2.7.)

We will show that f is (T, 1
q(n))-one-way (resp non-uniformly (T, 1

q(n))-one-way), over input lengths

on which f is well defined, where q(n) = nβ+4, and T is picked as follows. Recall that s is a function
∈ F−1 such that by our assumption, MKtP[s]|Qtβ is hard. Let d(·) be a polynomial such that f runs
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in time d(n). Pick any function T ∈ F such that T (n) ≤ (s−1(n))δ/n− d(n) (guaranteed to exist by
Fact 2.7).

Assume for contradiction that there exist a T (n)-time attacker A such that the attacker A inverts
the function f with probability at least 1

q(n) for infinitely many n. We can assume without loss of
generality that there exists a constant γ such that for all n ∈ N, A on input length n can be
described using γ bits given n: If A is a uniform attacker, we can let γ be the description length of
A; if A = {An}n∈N is a non-uniform attacker, on input length n, we can consider An as being the
lexicographically smallest T (n)-time non-uniform attacker such that An inverts f with probability
at least 1

q(n) . (If there is no such attacker on input length n, we let An be simply an outputting ⊥
attacker.) Note that An can be described using the code of f , the function T (·), and the polynomial
q(·), so the attacker A can be described in constant bits (given n).

We turn to constructing a mδ-time uniform (resp non-uniform) algorithm M to decide MKtP[s]
on inputs z ∈ {0, 1}m∩Qtβ. Our algorithm M(z) computes n = s(m), and truncates z to its (2n)-bit
prefix y. M then runs A(i||y) for every i ∈ [n] where i is represented as a dlog(n)e-bit string, and
outputs 1 if and only if the length of the shortest program Π output by A, which produces each bit
in the string y within t(|Π|) steps, is at most s(m). Since A runs in time T (n), our algorithm will
also terminate in time n(T (n) + d(n)) ≤ n((s−1(n))δ/n− d(n) + d(n)) = (s−1(n))δ ≤ mδ.

Fix some n such that A succeeds with probability at least 1
q(n) on input length n. We will show

that M succeeds on input length m where m is the smallest m ∈ N such that bs(m)c = n. Since A
succeeds on infinitely many n, it follows that M succeeds on infinitely many m.

We next show that our algorithm will output 1 with probability at least 2/3 on input z if
Kt(z) ≤ s(m) and z ∈ Qtβ. Assume for contradiction that M outputs 1 with probability < 2/3. Let

w = Kt(z). Consider any string y such that Kt(y) = w, and Lw be the set of “bad” strings such
that

Lw
def
= {y ∈ {0, 1}m : Kt(y) = w,Pr[M(y) = 1] < 2/3}

It follows that y ∈ Lw. We rely on the following claim on the Kolmogorov complexity of strings in
Lw.

Claim 2. For all z ∈ Lw, K(y) < w − β log n.

Proof: We first argue that
|Lw| ≤ 3 · 2w−(β+3) logn

Consider any y ∈ Lw. Note that Kt(y) = w, there must exist a program Π of size w such that Π
outputs each bit of y in time t(|Π|). It follows that the program Π will also output each bit of the
(2n)-bit prefix of z in time t(|Π|). In addition, (w,Π) will be sampled with probability

1

n
2w

in the one-way function experiment. However, since Pr[M(z) = 1] < 2/3, A must fail to invert f on
input (w||z′) (where z′ denotes the (2n)-bit prefix of z) with probability at least 1/3. So A will fail
to invert f in the one-way function experiment with probability at least

1/3|Lw|
1

n
2w

which is at most 1
q(n) = 1

nβ+4 since A is a good inverter. We conclude that

|Lw| ≤ 3 · 2w+log(n)−(β+4) logn ≤ 3 · 2w−(β+3) logn
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We turn to showing how to obtain a short description for each string ∈ Lw. For any y ∈ Lw,
consider the following program with n, w, t, s, the code of M (which as shown before, is of constant
length), and the location of y (in Lw) hardwired in it. The program computes m to be the smallest
integer such that n = bs(m)c and generates the set Lw by enumerating all strings in {0, 1}m, and
writing down the string if its Kt-complexity is w and the probability that M(z) = 1 is < 2/3. The
program can be described using 2 log n+O(log log n)+ log |L| bits. So it follows that for any y ∈ Lw,

K(y) ≤ 2 log n+O(log log n) + w − (β + 3) log n+O(1) < w − β log n.

Therefore, K(z) < w − β log n. However, recall that Kt(z) = w ≤ n and z ∈ Qtβ, it holds that
K(z) ≥ w − β logK(z) > w − β log n, which is a contradiction.

We finally prove that if Kt(z) > m − 1, M(z) will never output 1. Note that M(z) will output
1 only when it finds a Kt-witness of length no more than n for the first (2n)-bit prefix y. If such
witness exists, we can compress z by using this witness to compute the first 2n bits and hardwiring
the last m− 2n bits of z, which will conclude that Kt(z) ≤ m− n+ O(log n). But Kt(z) > m− 1.
It follows that M(z) will never output 1.

5 Worst-case Hardness of MKtP|Q from OWFs

In this section, we prove that the existence of OWFs implies worst-case hardness of MKtP|Q. To
simplifcy the presentation, we first prove this in the non-uniform setting where the reduction has
access to some non-uniform advice. We will later remove the non-uniform advice and prove it in the
uniform setting.

5.1 Conditionally-Secure Entropy-Preserving Pseudorandom Functions

We start by recalling the notion of a non-uniform conditionally-secure entropy-preserving pseudo-
random function [LP21a], which will be an important tool in our proof.

Definition 5.1. An efficiently computable function f : {0, 1}n × {0, 1}k(n) → {0, 1} is a non-
uniform (T (·), ε(·))-conditionally-secure α-entropy-preserving pseudorandom function ((T, ε)-cond
α-EP-PRF) if there exist a sequence of events = {En}n∈N such that the following conditions hold:

• (pseudorandomness): For every non-uniform T (n)-time attacker A and sufficiently large
n ∈ N,

|Pr[s← {0, 1}n;Af(s,·)(1n) = 1|En]− Pr[f ′ ← F ;Af ′(·)(1n) = 1]| < ε(n), (1)

where F = {f ′ : {0, 1}k(n) → {0, 1}}.

• (entropy-preserving): For all sufficiently large n ∈ N, H(ttn(f(Un|En, ·))) ≥ n − α log n,
where ttn(·) denote the n-bit prefix of the truthtable of the function.

We refer to the constant α as the entropy-loss constant. We say that f is a cond EP-PRF (without
mentioning “non-uniform”) if the pseudorandomness condition holds just w.r.t. all probabilistic
T -time attackers. We refer to f as a (non-uniform) ε-cond α-EP-PRF if f is secure w.r.t. all
(non-uniform) PPT attackers.
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We say that f : {0, 1}n × {0, 1}k(n) → {0, 1} has rate-1 efficiency if for all n ∈ N, x ∈ {0, 1}n, i ∈
{0, 1}k(n), f(x, i) runs in n + O(nε) time for some constant ε < 1. Recall that a rate-1 efficient
cond EP-PRF can be constructed from OWFs [LP21a]. We notice that if the OWF we start with
is T -hard, then we obtain a T -hard cond EP-PRF. If the OWF is of (plain) polynomial security, we
obtain a cond EP-PRF that is polynomially secure.

Theorem 5.2 (Cond EP-PRF from OWFs [LP21a]). The following statement holds.

• (T -hard cond EP-PRF) Let F be a nice class of super-polynomial functions. Assume that
there exists T ∈ F and a T -hard (resp non-uniform T -hard) OWF. Then, for any constant
α > 0, δ ≥ 1, there exist T1 ∈ F and a rate-1 efficient (T δ1 , 0.1)-cond α-EP-PRF (resp non-
uniformly secure cond EP-PRF) f : {0, 1}n × [T1(n)]→ {0, 1}.

• (Polynomially hard cond EP-PRF) Assume that there exists a OWF (resp non-uniform OWF).
Then, for any constant α > 0 and any polynomial d(n) ≥ n, there exists a rate-1 efficient
0.1-cond α-EP PRF (resp non-uniformly secure cond EP-PRF) f : {0, 1}n × [d(n)]→ {0, 1}.

[LP21a] only proved a weaker version of the above theorem (in which they showed the existence
of a cond α-EP-PRF for some constant α). A standard padding argument will be needed to prove
the stronger version stated above, and we include a proof for Theorem 5.2 in the Appendix A (see
Theorem A.5).

5.2 (Non-uniform) Worst-case Hardness of MKtP|Q from (Non-uniform) OWFs

We turn to showing that the existence of cond EP-PRFs implies hardness of MKtP, even when
conditioned on the event Qtβ. We will first present the proof in the non-uniform setting.

Lemma 5.3 (Hardness of MKtP[T−1] from T -hard Cond EP-PRF). Let F be a nice class of super-
polynomial functions, δ > 1, β > 0 be some constants. Assume that there exist T1 ∈ F and a
non-uniformly secure rate-1 efficient (T δ1 , 0.1)-cond (β/10)-EP-PRF h : {0, 1}n × [T1(n)] → {0, 1}.
Then, for every constant ε′ > 0, 0 < δ′ < δ, every polynomial t(n) ≥ 2n, every T2 ∈ F satisfying
T2(n) ≤ T1(n/2), MKtP[T−1

2 ]|Qtβ 6∈ ioSIZE[nδ
′
].

Proof: Consider any polynomial t(n) ≥ 2n, and any constant 0 < δ′ < δ. Let ε = 0.1. We will
show that for any T2 ∈ F , T2(n) ≤ T1(n/2), MKtP[T−1

2 ]|Qtβ 6∈ ioSIZE[nδ
′
].

Note that the truthtable of the PRF h is of length T1(n) (for seeds of length n). For any function
T2 ∈ F satisfying T2(n) ≤ T1(n/2), we will truncate the cond EP-PRF h to another cond EP-PRF
f that is easier to work with (so that the truthtable of f is of length roughly T2(n)). Note that both
h and T2 can be computed by uniform algorithms, let γ be a (sufficiently large) constant such that
h together with T2 can be described within γ/4 bits. Let f : {0, 1}n × [T2(n + γ)] → {0, 1} be the
function obtained by truncating h to the first T2(n+γ) entries. Note that T2(n+γ) < T2(2n) ≤ T1(n)
(due to our choice of T2 and that T2 is strictly increasing), so the truncation is always possible. Also
notice that f is still a rate-1 efficient (T δ1 , ε)-cond (β/10)-EP-PRF (as h is). In addition, the code of
f can be described in γ/2 bits.

We assume for contradiction that there exists some mδ′-time non-uniform algorithm that decides
each instance of MKtP[T−1

2 ] in Qtβ with probability 2
3 . By a Chernoff-type argument, we can show

that there exists an algorithm M that succeeds with probability 0.99 and runs in O(mδ′) time (by
using constant-fold parallel repetition and taking a majority vote). We will use the algorithm M to
build a non-uniform attacker A(1n) that breaks the cond EP-PRF f .

Note that f is a function that given a seed of length n, maps an integer ∈ [T2(n + γ)] to either
‘0’ or ‘1’. For any fixed seed x ∈ {0, 1}n, let ttm(f(x, ·)) denote the first m bits of the truth table
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of f(x, ·). Consider any integer m ≤ T2(n + γ). Note that for any x ∈ {0, 1}n, ttm(f(x, ·)) has low
Kt-complexity (with probability 1):

Kt(ttm(f(x, ·))) ≤ n+ γ − 1

since a Turing machine that contains the code of f (of length γ/2, as argued above) and the seed
x (of length n) can output each bit i on the truth table in t(n) time (since f is rate-1 efficient).
However, a random string of length m has high Kt-complexity with high probability:

Pr
y∈{0,1}m

[Kt(y) ≥ m− 1] ≥ 1− 1

2
,

since there are at most 2m−1 Turing machines with description length no longer than m − 2, and
each of them can produce at most a single truth table of length m.

With the above observations, we are ready to construct A (which breaks f). On input length n,
let m be an integer such that m ∈ [T2(n + γ − 1), T2(n + γ) − 1] and the algorithm M succeeds in
deciding MKtP[T−1

2 ]|Qtβ on input length m. We will provide our attacker A with the integer m as

non-uniform advice. (Since M only succeeds infinite often, A simply aborts if such m doesn’t exist.)
With the advice m, the attacker (denoted by Am) proceeds as follows. Given black-box access to a
function f ′ : [T2(n+γ)]→ {0, 1}, Am(1n) first queries f ′ on every input i ∈ [m] and obtains the first
m bits of the truth table of f ′, ttm(f ′). Then Am(1n) feeds ttm(f ′) to the algorithm M and outputs
M(ttm(f ′)). Note that the attacker Am(1n) runs in time O(m) +mδ′ < T1(n)δ.

Since M decides MKtP[T−1
2 ] on each instances ∈ Qtβ with probability 0.99 on infinitely many

input lengths m, we will show that the attacker A succeeds in distinguishing the cond EP-PRF f
from random functions on infinitely many input lengths (which is a contradiction). Fix some input
length m on which M succeeds. Let n be the integer such that

T2(n+ γ − 1) ≤ m < T2(n+ γ)

(guaranteed to exist since T2 is strictly increasing). The following two claims will show that Am will
distinguish f from random with probability at least 2ε, which conclude the proof.

Claim 3. Am(1n) will output 0 with probability at least 1
2 − 0.02 when given access to fr, where fr

is uniformly sampled from F = {fr : [T2(n+ γ)]→ {0, 1}}.

Proof: Note that for a random fr, the probability that Kt(ttm(fr)) ≥ m − 1 is at least 1
2 . Note

that K(ttm(fr)) is at least m − β logm with probability 0.01, so it follows that ttm(fr) ∈ Qtβ if

Kt(ttm(fr)) ≥ m− 1. Since M decides MKtP[T−1
2 ]|Qtβ with probability 0.99 on input length m, by a

Union bound, Am(1n) will output 0 with probability 1
2 − 0.02.

Claim 4. Am(1n) will output 0 with probability at most 0.2 + 0.01 when given access to f ←
f(Un|En, ·), where En is the event associated with f .

Proof: Recall that M decides each instance of MKtP[T−1
2 ] in Qtβ with probability 0.99 on input

length m. Let s = bT−1
2 (m)c and notice that

s = n+ γ − 1

(by the choice of n). Let
X = ttm(f(Un|En, ·))
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be the random variable of the first m bits of the truth table of f . Recall that any string x in the
support of X will have Kt-complexity at most n + γ − 1 = s. Since f is entropy preserving, the
entropy of X is at least

H(X) ≥ n− 0.1β log n

Let
S = supp(X)

be the set of pseudorandom truth tables. It follows that 2H(X) ≤ |S| ≤ 2n. Let

Z = {z ∈ S : z 6∈ Qtβ}

be the set of pseudorandom truth tables that are outside of Qtβ. Recall that the algorithm M is only

guaranteed to work if the input is in Qtβ, so we can think of Z as the set of “bad” strings. For any

z ∈ Z, since z ∈ S and z 6∈ Qtβ, it holds that K(z) < Kt(z)−β logK(z) ≤ s−β log s. By a standard

counting argument w.r.t. K-complexity, it follows that |Z| ≤ 2s−β log s+1. Recall that X is a random
variable distributed over S, and Z ⊆ S. By Lemma 2.6, it follows that the probability that X ∈ Z
is at most

Pr[X ∈ Z] ≤ log |S|+ 1−H(X)

log |S| − log |Z|
≤ n+ 1− (n− 0.1β log n)

n− 0.1β log n− (s− β log s)
≤ 0.2

when n is sufficiently large. Therefore, the probability that M(X) outputs 0 is at most

Pr[M(X) = 0] = Pr[X ∈ Z] Pr[M(X) = 0|X ∈ Z] + Pr[X 6∈ Z] Pr[M(X) = 0|X 6∈ Z]

≤Pr[X ∈ Z] + Pr[M(X) = 0|X 6∈ Z]

≤0.2 + Pr[M(X) = 0|X ∈ Qtβ]

≤0.2 + 0.01

where the last step follows from the correctness of M .

While in the above theorems, we assume super polynomial hardness, the reduction runs in poly-
nomial time. So the statement will also hold in the polynomial hardness region.

Lemma 5.4 (Hardness of MKtP[nΩ(1)] from poly-hard Cond EP-PRF). Let s(·) be a threshold func-
tion, nε ≤ s(n) ≤ n− 2, ε > 0. Let d(·) be a polynomial such that s−1(n) ≤ d(n/2), and β > 0 be a
constant. Assume that there exists a rate-1 efficient non-uniformly secure (poly, 0.1)-cond (β/10)-EP-
PRF f : {0, 1}n× [d(n)]→ {0, 1}. Then, for every constant ε′ > 0, every polynomial t(n) ≥ (1+ε′)n,
MKtP[s]|Qtβ 6∈ ioP/poly.

Proof: This lemma follows from the proof of Lemma 5.3 by considering T1 being d and T2 being
s−1.

5.3 Eliminating the Non-uniform Advice

The key observation we rely on in this section is that the security of our cond EP-PRF is established
through black-box reductions to standard cryptographic primitives. Let us introduce the notion of
black-box reductions we rely on.

We say that a (T, ε)-cond EP-PRF f has a polynomial-time black-box security reduction to a
(Tprg, εprg)-PRG fprg and a (Tprf , εprf)-PRF fprf if there exist functions lprg, lprf (referred to as input
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length functions) 8 , polynomials pprg, pprf (referred to as security loss functions), and oracle machines
Rprg, Rprf (referred to as reductions) such that the following are satisfied:

• lprg, lprf are time-constructible and increasing.

• For any T -time probabilistic adversary A, and any input length n (for f), let nprg (resp nprf)
be the input length for PRG (resp PRF) such that

lprg(nprg) ≤ n < lprg(nprg + 1), lprf(nprf) ≤ n < lprf(nprf + 1)

(Note that such nprg, nprf always exist since lprg, lprf are increasing.) If A(1n) distinguishes the
cond EP-PRF f from random functions on input length n with advantage ε(n), then

(a) eitherRAprg(1nprg) distinguishes fprg from random with advantage 1
pprg(nprg,1/ε(n)) ≥ 4εprg(nprg)

on input length nprg in time Tprg(nprg);

(b) or RAprf(1
nprf ) distinguishes fprf from random functions with advantage 1

pprf(nprf ,1/ε(n)) ≥
4εprf(nprf) on input length nprf in time Tprf(nprf).

In other words, if A breaks f on input length n, either we break fprg on input length nprg, or
we break fprf on input length nprf .

If such a black-box reduction exists, we can prove that f is indeed a (T, ε)-cond EP-PRF if fprg is a
(Tprg, εprg)-PRG and fprf a (Tprf , εprf)-PRF. Note that the security parameters Tprg, εprg (and Tprf , εprf)
for the PRG (and the PRF) will usually be implicit in (but can be inferred from) the reduction itself,
and we sometimes simply omit them if they will be clear from the reduction.

As mentioned before, we observe that the cond EP-PRF we obtain in Theorem 5.2 has a black-box
security reduction.

Proposition 5.5. Let f be the cond EP-PRF in Theorem 5.2. f has a black-box security reduction
to a PRG and a PRF.

(In Appendix A, we will formally state and prove that f indeed has a black-box reduction. See
Theorem A.5.)

We proceed to proving the uniform version of Lemma 5.3.

Lemma 5.6. Let F be a nice class of super-polynomial functions, δ > 2, β > 0 be any con-
stants. Assume that there exist T1 ∈ F and a rate-1 efficient (T δ1 , 0.1)-cond (β/10)-EP-PRF h :
{0, 1}n× [T1(n)]→ {0, 1} with a poly-time black-box security reduction to a (Tprg, εprg)-PRG fprg and
a (Tprf , εprf)-PRF fprf . Then, for every constant 0 < δ′ < δ − 1, every polynomial t(n) ≥ 2n, every
T2 ∈ F satisfying T2(n) ≤ T1(n/2), MKtP[T−1

2 ]|Qtβ 6∈ ioBPP.

Proof: This proof relies heavily on the proof of Lemma 5.3, which we refer the reader to for notations
used in this proof. In the proof of Lemma 5.3, we showed that the attacker Am will break the cond
EP-PRF f on input length n if m ∈ [T2(n + γ − 1), T2(n + γ) − 1] and the algorithm M succeeds
in deciding MKtP[T−1

2 ]|Qtβ on input length m. The issue in the proof of Lemma 5.3 is that we do

not know which m is “good” and we provide the attacker a good m using non-uniform advice. In
this proof, we show that the attacker can compute the value of m on its own by appealing to the
black-box security reduction. We now explain how to compute the value m.

8Note that we consider reductions that establish almost-everywhere security, so it is important for the reduction to
specify on which input lengths it works.
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On input length n, our uniform attacker A′ emulates all m ∈ [T2(n + γ − 1), T2(n + γ) − 1]. It
needs to decide if Am is a good attacker for the cond EP-PRF f . Since f has a black-box security
reduction to fprg and fprf , the attacker A′ will use Am together with the reductions to try breaking
fprg and fprf . Let us first focus on breaking fprg and let lprg, pprg, Rprg be the input length function,
security loss function, and the reduction associated with the black-box reduction to the PRG. We
first compute nprg (to be the input length of fprg) such that

lprg(nprg) ≤ n < lprg(nprg + 1)

Then the attacker A′ will empirically estimate the distinguishing advantage of RAmprg on input length
nprg in the distinguishing game for fprg. This can be done by sampling from the fprg distribution (or
the uniform distribution) for sufficiently many times, simulating RAmprg on the outcome of the sampler,
and finally taking the average over all results. Let us denote

• the distinguishing advantage of RAmprg by vprg,m;

• the empirical estimation of the advantage by wprg,m.

As argued in the proof of Lemma 5.3, if m is “good”, Am will succeed in distinguishing f from random
functions with advantage > 0.1. Since the reduction is also good, it follows that the distinguishing
advantage vprg,m is at least

δprg =
1

pprg(nprg, 1/ε)

Therefore, to obtain an accurate empirical estimation (with high probability), the sampling experi-
ment will be repeated for poly(δ−1

prgn) times. After computing the empirical estimations wprg,m for all
m, let m∗prg be such that the empricial estimated distinguishing advantage wprg,m∗prg is maximized. If

wprg,m∗prg ≥
1
2δprg, our uniform attacker attacker A′ will output what Am∗prg outputs. Otherwise, the

attacker A′ will redo the above steps to attack the PRF fprf using the black-box reduction. If the
attacker doesn’t succeed either, it will simply abort. This concludes the construction of our attacker
A′.

To reach a contradiction, we will show that either RA
′

prg will break fprg, or RA
′

prf will break fprf ,

on infinitely many input lengths. Since M succeeds (in deciding MKtP[T−1
2 ] conditioned on Qtβ) on

infinitely many input lengths m, fix some such m and let n be the input length for f such that
m ∈ [T2(n+γ−1), T2(n+γ)−1]. It follows that Am will be a good attacker for f on input length n.
We turn to showing that A′ will pick some input length that is “as good as” m. For each input length
m′ that A′(1n) enumerates, since the sampling experiment (to estimate the distinguishing advantage
vprg,m′) is repeated for poly(δ−1

prgn) times, by a standard Chernoff-type argument, with probability at
least 1− 2−n, it holds that

|vprg,m′ − wprg,m′ | ≤
δprg
4

(And the same also holds for experiments w.r.t the PRF.) We refer to an estimation as being “good”
if the above holds. By a union bound, with probability at least 1− 2 · T2(n+ γ) · 2−n, all empirical
estimations done by A′ are good, and we denote the event for which this happens by E. Conditioned
on E, either RAmprg will break fprg on input length nprg, or RAmprf will break fprf on input length nprf .

It follows that either m∗prg is a good input length and R
Am∗prg
prg has distinguishing advantage at least

vprg,m∗prg ≥ wprg,m∗prg −
δprg
4
≥ wprg,m −

δprg
4
≥ vprg,m −

δprg
2
≥ δprg

2
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in the PRG game, or m∗prf is a good input length and R
Am∗

prf

prf has distinguishing advantage at least

vprf,m∗prf ≥ wprf,m∗prf
−
δprf
4
≥ wprf,m −

δprf
4
≥ vprf,m −

δprf
2
≥
δprf
2

in the PRF game. Recall that A′ in the end will accept Am∗prg (resp Am∗prf ) as the attacker if

vprg,m∗prg ≥
δprg
2 (resp vprf,m∗prf ≥

δprf
2 ), by a union bound (taking into account that E may not happen),

either RA
′

prg will break fprg with advantage
δprg
2 − 2 · T2(n+ γ) · 2−n ≥ δprg

4 ≥ εprg(nprg) on input length

nprg, or RA
′

prf will break fprf with advantage
δprf
2 − 2 ·T2(n+ γ) · 2−n ≥ δprf

4 ≥ εprf(nprf) on input length
nprf , which is a contradiction.

Finally, we analyze the running time of A′. Recall that A′ tries all possible m ∈ [T2(n + γ −
1), T2(n+ γ)− 1], and for each m, it runs the PRG and the PRF (of running time poly(n)) and the
reduction RAmprg and RAmprf (of running time poly(n) ·mδ′) for poly(δ−1

prgn+ δ−1
prf n) = poly(n) times. So

A′(1n) runs in time poly(n)m1+δ′ ≤ poly(n)T1(n)1+δ′ < T1(n)δ (since T1 is super polynomial and
δ′ + 1 < δ).

We notice that Lemma 5.6 also holds w.r.t. polynomial hardness (since the reduction runs in
polynomial time).

Lemma 5.7. Let s(·) be a threshold function, nε ≤ s(n) ≤ n − 2, ε > 0. Let d(·) be a polynomial
such that s−1(n) ≤ d(n/2), and β > 0 be a constant. Assume that there exists a rate-1 efficient
(poly, 0.1)-cond (β/10)-EP-PRF f : {0, 1}n× [d(n)]→ {0, 1} with a black-box security reduction to a
(poly, εprg)-PRG fprg and a (poly, εprf)-PRF fprf . Then, for every constant ε′ > 0, every polynomial
t(n) ≥ (1 + ε′)n, MKtP[s]|Qtβ 6∈ ioBPP.

6 Rudich’s Conjecture and Non-containemnt in coAM

In this section, we show that the promise problem that characterized OWFs is unlikely to be in coAM.
As such, it yields the first example of problem outside of AM∩coAM whose worst-case hardness even
just implies the existence of OWFs.

We will rely on Rudich’s conjecture as well as standard derandomization assumptions. Rudich [Rud97]
conjectured the existence of a pseudorandom generator secure against (co-)non deterministic attack-
ers. Let us recall the definition of such PRGs.

Definition 6.1 ([Rud97]). Let g : {0, 1}n → {0, 1}n+1 be an efficiently computable function. We say
that g is a pseudorandom generator with non-deterministic hardness if for all poly-time non-uniform
non-deterministic machine A, there exists a negligible function µ such that for all n ∈ N,

Pr[A(1n,Un+1) = 1]− Pr[A(1n, g(Un)) = 1] ≤ µ(n)

In other words, no non-uniform attacker can prove random strings are “random” with higher
probability than pseudorandom strings. Notice that the order of the probabilities is important –
there exists a trivial attacker (by just guesing the seed) if the order is switched.

We are now ready to state the Rudich’s conjecture that we rely on.

Conjecture 6.2 (Implied by [Rud97, Conjecture 4]). There exists a PRG g : {0, 1}n → {0, 1}n+1

with non-deterministic hardness.

We rely on the following Coding Theorem for our local compression variant of time-bounded
Kolmogorov complexity.
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Lemma 6.3 (Coding Theorem for the local compression version ofKt, implicit in [LOZ22, GKLO22]).
Assume that E 6⊆ ioNSIZE[2Ω(n)]. There exists a polynomial pc(·) such that the following holds. For
any polynomial q(·), any distribution D over {0, 1}n. If D can be sampled by an algorithm MD within
time q(n), then for every x ∈ supp(D), D(x) ≤ 2−n/2, it holds that

Kt(x|MD) ≤ log
1

D(x)
+ log(t(n))

where t is a polynomial such that t(n) = pc(q(2n)).

Proof: [LOZ22, GKLO22] proved that there exists a polynomial pc, such that for any q, D, MD,
any x ∈ supp(D), t′(n) = pc(q(n)), there exists a program Π of length ≤ log 1

D(x) + log(t′(n)) such

that Π(MD) prints the whole string x with in time t′(n). Π can be easily made into a program
that outputs each bit of x in time roughly t′(n). However, in our local compression variant of Kt-
complexity, the running time is measured with respect to |Π| (rather than n). If Π is too short,
the running time of Π will no longer be polynomial in its length (but still polynomial in n). In this
lemma, we only consider x such that D(x) ≤ 2−n/2, and t(n) = pc(q(2n)). It follows that we can pad
any Π until it is of length ≥ n/2, and Π runs in time t′(n) = pc(q(n)) ≤ t(|Π|). Thus, Π will be a
valid witness of (the local compression version of) Kt-complexity for x, which completes the proof.

We proceed to proving that under Rudich’s conjecture (and assuming an appropriate derandom-
ization assumption), the promise problem we consider is not contained in coAM. (In more detail, we
will show that it is not in io-coNP/poly, which contains coAM.)

Theorem 6.4. Assume that Conjecture 6.2 holds and E 6⊆ ioNSIZE[2Ω(n)]. Then, there exists a
constant β > 0, a polynomial t1(n), such that for all polynomials t(n) ≥ t1(n), MKtP[n − 2]|Qtβ 6∈
io-coNP/poly.

Proof: Let g be the PRG assumed to exist in Conjecture 6.2. Let γ be a sufficiently large constant
that we will fix later. Using a standard hybrid argument, we can construct a PRG g′ : {0, 1}n →
{0, 1}n+γ with γ-bit stretch and non-deterministic hardness from g. By a padding argument, there
exists a rate-1 efficient PRG g′′ : {0, 1}n → {0, 1}n+γ (with non-deterministic hardness). For any
n ∈ N, consider the function Gn : {0, 1}n−γ → {0, 1}n defined to be

Gn(x) = x0||g′′(x1)

where x = x0||x1, |x0| = n/2, |x1| = n/2 − γ. Note that Gn is also rate-1 efficient PRG (since g′′

is). Let Dn = Gn(Un−γ) be the pseudorandom distribution Gn defines; it follows that Dn can be
sampled using Gn in time O(n) (since Gn is rate-1 efficient). Observe that for any y ∈ supp(Dn),
Dn(y) ≤ 2−n/2 since Gn is copying the first half of the seed to the output. Thus, by the Coding
Theorem for our local notion of Kt, it follows that there exists a polynomial t1(n) such that for all
n, for all y ∈ supp(Dn),

Kt1(y|Gn) ≤ log
1

Dn(y)
+ log t1(n)

Since Gn can be described using ≤ 2 log n bits, it follows that Kt1(y) ≤ log 1
Dn(y) +log t1(n)+2 log n.

On the other hand, by [HIL+23, Lemma 9], with probability at least 1− 1
n over y ← Dn, it holds

that K(y) ≥ log 1
Dn(y) − log n ≥ n/2 − log n. Pick β be a constant such that β log(n/2 − log n) ≥

log t1(n) + 3 log n. Then, with probability at least 1− 1
n over y ← Dn, the computational depth of y

is at most
Kt1(y)−K(y) ≤ log t1(n) + 3 log n ≤ β log(n/2− log n) ≤ β logK(y) (2)
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and thus y ∈ Qt1β .

We move on to showing the hardness of MKtP[n−2]|Qtβ for any polynomial t(n) ≥ t1(n). Suppose

for contradiction that there exist a polynomial T and a T -time non-uniform co-non deterministic
algorithm M that decides MKtP[n−2]|Qtβ for infinitely many n ∈ N. Fix some sufficiently large n ∈ N.

We will show that M as an attacker will break the PRG Gn. For any y ← Dn, we argue that the Kt-
complexity of y is at most n− 2. (Recall we have shown that Kt(y) ≤ Kt1(y) ≤ log 1

Dn(y) +O(log n),

but this bound falls short here.) Let x be the seed of y. Consider the program with x (of length
n − γ), the constant γ, and the code of g′′ hardwired. It first reads the constant γ and the string
x, and computes the length of x. It lets n = |x|+ γ, and after this it can compute Gn(x) using the
code of g′′. This program can be described using ≤ n − 2 bits if γ is sufficiently large. Since Gn is
rate-1 efficient and t(n) ≥ t1(n), this program witnesses that Kt(y) ≤ n − 2. So y is also a YES
instance of MKtP[n − 2]. Recall that by Equation 2, with probability 1 − 1

n , y ∈ Qt1β ⊆ Qtβ (since
t(n) ≥ t1(n)) and thus M(y) will output 0 (since M is a co-non deterministic algorithm). We turn
to considering y ← Un. By a standard counting argument, with probability ≥ 1/2, Kt(y) ≥ n − 1,
and with probability ≥ 1 − O( 1

n) ≥ 0.9, K(y) ≥ n − log n. When both events hold, M(y) will
output 1. Combining the above two arguments, we conclude that M breaks the PRG Gn, which is
a contradiction since M runs in time T and T is a polynomial.

7 Impossibility of Fully Black-box Constructions

In this section, we will show that there is no fully black-box construction of OWFs from hardness
of MKtP|Q. In a fully black-box construction, the construction “treats” Kolmogorov complexity in
a black box fashion: When considering Kolmogorov complexity, we usually fix a universal Turing
machine. In this section, we also consider “black-box” universal Turing machines and Kolmogorov
complexity defined w.r.t. these machines. For any function U : {0, 1}∗ × 1N → {0, 1}∗ ∪ ⊥, we say
that U is a black-box universal Turing machine (black-box UTM) if

• (Universality) Informally, this requires that U simulates “valid programs” correctly: There
exists a standard universal Turing machine U0 such that for any (M, 1t), if M is a valid
description of a Turing machine (w.r.t U0), U(M, 1t) outputs what M outputs after t steps.

• (Any “program” has a unique output) For any M ∈ {0, 1}∗, t1, t2 ∈ N, t1 ≤ t2, if U(M, 1t1) 6= ⊥,
U(M, 1t2) = U(M, 1t1).

We remark that the above definition is black-box in the following two ways: (1) U is defined to be
a function; (2) U is allowed to assign the output of invalid “programs” with an arbitrary string.

For any black-box UTM U , we can define Kolmogorov complexity with respect to U . Formally,
for any black-box universal Turing machine U , any string x ∈ {0, 1}∗, let

KU (x) = min
Π∈{0,1}∗

{|Π||∃t ∈ N, U(Π, 1t) = x}

In addition, we can define Kt
U , MKt

UP, and event QtU,β in an analogous way. (Also notice that Fact 2.5
holds no matter which U we pick.)

We turn to introducing the notion of fully black-box construction. Roughly speaking, the con-
struction is a efficient function that takes U as an oracle, and it should be one-way if MKt

UP[s]|Qtβ is

hard. The later is captured by having a black-box reduction R such that if any oracle O breaks the
construction, RO,U decides MKt

UP[s]|Qtβ .
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Definition 7.1 (Fully Black-box Constructions). For any polynomial t, any constant β > 0, and any
threshold function s(·), a fully black-box construction of one-way function from the assumption that
MKtP[s]|Qtβ 6∈ ioP/poly consists of a deterministic poly-time oracle machine f and a non-uniform

poly-time oracle machine R such that the following holds:

• For any black-box UTM U , and any oracle O that inverts fU almost-everywhere, namely, for
all n ∈ N

Pr[x← {0, 1}n : O(1n, fU (x)) ∈ (fU )−1(fU (x))] ≥ 1

2
,

it holds that RO,U decides MKt
UP[s]|QtU,β on infinitely many input lengths.

Notice that our definition considers non-uniform reductions that work with almost-everywhere
inverters and decide the problem only on infinitely many input lengths. Ruling out such reduc-
tions will also rule out probabilistic reductions, and reductions that either work with infinitely-often
inverters or succeed almost-everywhere.

We move on to stating the main theorem we aim to prove in this section.

Theorem 7.2 (No Fully Black-box Constructions). For any δ > 0, any threshold nδ ≤ s(n) < n−1,
there exists a constant β > 0 such that for any polynomials t(n) ≥ 2n, no fully black-box construction
of OWFs from MKtP[s]|Qtβ 6∈ ioP/poly exists.

Proof Overview. Before jumping into the formal proof, let us first sketch the high level ideas
behind our proof. Assume for contradiction that there exists a fully black-box construction; let f be
the construction, and R the reduction. We will consider the black-box universal Turing machine U
that has a random oracle hardwired in it: U simulates any “normal” machines in a standard way,
and any oracle machines with the random oracle. We will design an oracle O such that O inverts fU

but the problem MKt
UP[s]|Q will be hard for RO,U .

To achieve this, we let O select a random “slice” of the random oracle, parameterized by an prefix
wn, and block any query to this slice: O will invert fU (x) as long as none of the queries fU (x) makes
to the random oracle have wn as a prefix. We choose the length of wn to be at least poly log(n) so
that the slice parameterized by wn is relatively “thin”, and thus O will still invert fU (x) with high
probability (since the prefix wn is hit with negligible probability).

We turn to arguing that RO,U cannot decide MKt
UP[s]|Q. Although the random oracle is no

longer random in the eyes of RO,U (since O depends on it), observe that the slice (in which O does
not help do anything) still remains random. The key idea is to use the random oracle (given by the
slice) to construct a OWF (since random functions are one-way [Imp96]), and next use the OWF
to get a cond EP-PRF (as in Section 5.1) and finally conclude (as in Section 5.2) the hardness of
MKt

UP[s]|Q.
There is seemingly a contradiction here since as we mentioned above, O is supposed to invert

all OWFs. The point, however, is that to specify the OWF, we need to know the prefix wn—that
is, we only get a so-called auxiliary-input OWFs. Furthermore, through the proof of [Imp96], the
auxiliary-input OWF that we get is also non-uniformly secure; as a consequence, we can use still use
the proof in Section 5.1 to get a auxiliary-input cond EP-PRF.

To show that the existence of such a auxiliary-input cond EP-PRF implies hardness of MKt
UP[s]|Q

requires a bit more care. We assume for contradiction thatRO,U decides MKt
UP[s]|Q, and our goal is to

break the cond EP-PRF using RO,U . Recall that the truth table of the cond EP-PRF can be described
using the seed x together with the index wn, so the Kt

U -complexity of it is at most |x|+ |wn|+O(1).
In addition, it is also entropy-preserving and has entropy |x|−O(log n), and thus the KU -complexity
of it is at least |x| − O(log n) with high probability. However, this is not enough for us since the
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computational depth of the truth table could be roughly |wn| + O(log n) = poly log(n) > O(log n),
and the truth table will not necessarily fall into the promise QtU,β. Our solution is to consider wn
concatenated with the truth table of cond EP-PRF. It is not hard to see that the concatenation
should still have Kt

U -complexity ≤ |wn| + |x| + O(1). On the other hand, it has entropy at least
|wn|+|x|−O(log n) since wn is random and the cond EP-PRF is entropy-preserving even conditioned
on wn, and we can then rely on a similar proof to that in Section 5.2 to conclude hardness of
MKt

UP[s]|Q. We observe that the above proof approach does not generically show that any auxiliary
input cond EP-PRF implies hardness of MKt

UP[s]|Q; rather, we here rely on the fact that the auxiliary
input is Kolmogorov random. (Rafael’s Note: can we show it generically for aux input cond EPRF
when the aux input is K-random?)

Defining U and O. We proceed to introducing the black-box UTM we construct in our impos-
sibility result. We will consider an oracle universal Turing machine Uoracle such that for any oracle
O, UOoracle simulates any oracle machine Π with O. In addition, if Π does not make oracle query,
Uoracle will also simulate the execution of Π. We will also need a random function F . F is selected
as follows. F = (F1, F2, . . .) consists of a random function Fn : {0, 1}n → {0, 1}n for each n ∈ N. Or
alternatively,

Fn ← {f : {0, 1}n → {0, 1}n}

Our black-box UTM U is defined as follows. For any Π ∈ {0, 1}∗, t ∈ N, let

U(Π, 1t) = UForacle(Π, 1
t)

Observe that U is a valid black-box UTM (since it behaves just like a UTM if Π does not make any
oracle query, and each oracle machine has a unique output).

Suppose there exists a fully black-box construction, and let f be the polynomial-time black-box
construction (of a OWF) and R be the black-box reduction. We will construct an inverting oracle O
such that O inverts fU but the Kolmogorov complexity problem we consider is still intractable under
O. Let k(n) = log6(n) be a fixed function. k(n) will be a length parameter in our construction. We
will also need a (secret) index sequence W = (w1, w2, . . .) where |wm| = k(m) for each m ∈ N in O.
Roughly speaking, the inverting oracle O on input (1n, y) will truthfully reveal a pre-image of y, x,
only if fU (x) does not make oracle query on any x′ to F (via U) with x′ having w|x′| as a prefix.
The index sequence W will be also picked randomly. For any m ∈ N, we let

wm ← {0, 1}k(m)

We are now ready to construct our inverting oracle O. The oracle O, on input (1n, y), will enumerate
all x ∈ {0, 1}n and simulate fU (x). For each oracle query (Π, 1t) that fU (x) makes to U , O will
simulate ΠF , and censor oracle queries ΠF made to F . For each oracle query z by ΠF , let m = |z|:

• If mlogm < n (that is, z is a string that is too short), O will provide F (z) as the answer.

• (censoring) If mlogm ≥ n, roughly speaking, O will block the query if z has a prefix of length
k(m) that is identical to wm: O will ouput ⊥ if [z]k(m) = wm. Otherwise, it will return F (z).

The simulation of fU (x) will output ⊥ if it queries some (Π, 1t) to U and the simulation of ΠF

returns ⊥. Note that fU (x) runs in polynomial time, so when simulating fU (x), O will only look
up polynomially many points in F . Finally, if there exists x ∈ {0, 1}n such that the simulation of
fU (x) succeeds and outputs y, O(1n, y) will successfully invert f on y (and outputs x). Otherwise
it outputs ⊥.
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O is a good inverter. We first show that for a random choice of F and W , O will be a good
inverting oracle (with high probability). The intuition behind this is that O will only refuse answering
queries that start with certain prefix, and such queries are rare. We will define what it means by
wm being “good” and will show that (1) for all m ∈ N, with high probability, wm will be good
(formally stated and proved in Lemma 7.3) and (2) if for all m ∈ N, wm is good, then O will be a
good inverting oracle (formally stated and proved in Lemma 7.4). We refer to wm as being “good”
if for all n ≤ mlogm,

Pr[x← {0, 1}n : fU (x) makes a query to F on z, |z| = m, [z]k(m) = wm] ≤ 2log5m

2k(m)
(3)

where we say that fU makes a query to F on z, we mean fU does so through making a query to U :
fU makes a query to U on (Π, 1t) and the machine Π makes an query to F on z. If [z]k(m) = wm,

O will block its answer to this query, and the simulate of fU (x) will fail. Thus, wm is good if for all
n ≤ mlogm, the probability over random x that O receives a query that starts with the prefix wm is
small.

Lemma 7.3. For any choice of F , any m ∈ N, with probability at least 1− 1
m over the choice of wm,

wm is good.

Proof: Consider any fixed function F and any fixed n ≤ mlogm. Since f runs in polynomial time,
let r(n) be a polynomial such that f runs in time r(n). We first claim that with probability at

most 1/2log5m/2, a random choice of wm will be “bad” with respect to input length n. For each
x ∈ {0, 1}n, fU (x) makes at most r(n) oracle queries. Therefore, over a random choice of wm, fU (x)
makes a query to F on some z, |z| = m, [z]k(m) = wm with probability at most

r(n)

2k(m)
≤ 2log4m

2k(m)

Thus, there are in expectation at most a 2log4 m

2k(m) fraction of x on which fU makes such a query. (We
refer to such string x as being “bad”.) It follows from the Markov bound that, with probability at
most

2log4m

2k(m)
/

2log5 m

2k(m)
≤ 1

2log5 m/2
,

over a random wm, the fraction of bad x of length n is more than 2log5 m

2k(m) . Finally, by taking a union

bound (over all input lengths n ≤ mlogm), we conclude that the probability that wm is bad is at
most

1

mlog5m/2
·mlogm ≤ 1

m

Lemma 7.4. For any choice of F , if for m ∈ N, wm is good, then O inverts fU . Namely, O satisfies
the condition in Definition 7.1.

Proof: Consider any n ∈ N. We will show that O(1n, fU (x)) will invert fU (x) with probability at
least 1

2 over random x ← {0, 1}n. For any x ∈ {0, 1}n, we refer to x as being “censored” if when
fU (x) being simulated by O, fU (x) will output ⊥. Note that this happens if fU (x) makes a query
to F on some z, m = |z| satisfying that n ≤ mlogm, and [z]k(m) = wm. Let r be the polynomial

such that f runs in time r(n). Notice that fU (x) can make queries to U (and thus to F ) of length
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at most r(n), wm is good for all m ∈ N. By a union bound over all m ≤ r(n) such that mlogm > n,
the probability that x← {0, 1}n is censored is at most

r(n)∑
m=2

√
logn

2log5 m

2k(m)
≤

r(n)∑
m=2

√
logn

1

2log6 m/2
≤

r(n)∑
m=2

√
logn

1

2log3 n/2
≤ r(n)

2log3 n/2
<

1

2
.

Note that if x is not censored, O(1n, fU (x)) will succeed in inverting fU (x), and therefore O will
succeed with probability at least 1

2 , which concludes that O is a good inverting oracle.

MKt
UP[s]|Q is still hard. We turn to proving that MKt

UP[s]|Q is still (non-uniformly) hard even in
the presence of O. We rely on the fact that (exponentially hard) OWFs exist relative to a random
oracle [Imp96]. For any oracle function f and any oracle O′, we say that fO

′
is a OWF relative to

O′ if fO
′

is a OWF when the attacker also has oracle access to O′. (We can define this analogously
for any other crypto primitives, like PRGs, PRFs.) In the rest of this section, we are interested
in functions that are only defined on a particular input length. We refer to such functions as being
a OWF (or PRG, PRF, etc) if they are one-way (or pseudorandom) on the input length they are
defined, and in the security game we will consider non-uniform attackers.

Theorem 7.5 ([Imp96]). Let F be the random oracle defined as above. For any oracle O′, there exist
a constant b > 0 and a polynomial time oracle algorithm g such that for all n ∈ N, all Ω(log n) ≤
` ≤ n, with probability 1−2−b` over Fn, gFn(1`) : {0, 1}` → {0, 1}` is a non-uniformly 2b`-hard OWF
(only defined on input length `) relative to Fn,O′ .

We cannot use this result directly since Fn is no longer a random function given O. Notice
that when being restricted to the inputs starting with wn, Fn behaves just like a random function
even in the presence of O (since they are independent). Combining this observation together with
Theorem 7.5 and the cond EP-PRF construction from OWF (see Section 5), we will obtain the
following theorem.

Lemma 7.6. Let F,U,O be as above. For any 0 < δ < 1, there exists a rate-1 efficient oracle
algorithm h such that for all sufficiently large n ∈ N, all nδ ≤ ` ≤ n − k(n), with probability 1 − 1

n
over Fn, hFn(`, n, wn) : {0, 1}` × [n − k(n)] → {0, 1} is a non-uniformly secure (nlogn, 0.01)-cond
0.01-EP-PRF (defined only over input length `) relative to U and O.

Proof: Consider any 0 < δ < 1. For any sufficiently large n ∈ N, let Fn|wn denote the random
oracle Fn after being restricted to inputs starting with wn. Let N = nlogn, and consider the oracle
ON that refuses to answer any oracle query of length ≥ N . It follows from our construction of O
and nlogn ≤ N that ON will not reveal information in Fn|wn, so Fn|wn is still a random oracle given
ON .

We are now ready to construct our cond EP-PRF. Our construction proceeds as follows.

• (Getting a OWF.) Let g be the oracle algorithm, b be the constant as in Theorem 7.5. By
Theorem 7.5, for any nδ ≤ ` ≤ n − k(n), with probability at least 1 − 2−b`, gFn|wn(1`) is a
non-uniformly 2b`-hard OWF (defined on input length `) relative to U , ON , and Fn|wn. (Note
that gFn|wn(1`) has hardness exponential in its input length.)

• (Obtaining a cond EP-PRF.) Given this exponential hard OWF, by Theorem 5.2, there exists
a rate-1 efficient oracle algorithm h0, such that for any nδ ≤ ` ≤ n − k(n), with probability

1− 2−b` over Fn, h
Fn|wn
0 (1`) : {0, 1}` × [`1/δ] is a non-uniformly secure (nlogn, 0.01)-cond 0.01-

EP-PRF relative to U and ON . (Notice that this PRF has only quasi-poly hardness and its
truth table is of length polynomial in its seed.)
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• (Post processing.) Note that `1/δ ≥ (nδ)1/δ ≥ n, by truncating the function h
Fn|wn
0 (1`) properly

and simulating oracle access to Fn|wn by using Fn and wn, we obtain that there exists h such
that hFn(`, n, wn) : {0, 1}` × [n − k(n)] → {0, 1} is a non-uniformly secure (nlogn, 0.01)-cond
0.01-EP-PRF (defined only on input length `) relative to U and ON .

Finally, notice that no nlogn-time attacker can distinguish ON from O (since nlogn-time attacker can
only make queries of length ≤ nlogn ≤ N), so we can switch ON to O which concludes the proof.

We now use the existence of a cond EP-PRF relative to U and O to deduce the hardness of
MKt

UP w.r.t attackers having access to U and O. Technically, the cond EP-PRF we use is only an
auxiliary-input cond EP-PRF (which is only secure when the construction gets additionally wn as
input), but we will show that such a cond EP-PRF suffices to deduce the hardness of MKt

UP.

Lemma 7.7. For any constant δ > 0, any threshold function nδ ≤ s(n) < n − 1, there exists
a constant β > 0 such that for any polynomial t(n) ≥ 2n, for all sufficiently large n ∈ N, with
probability 0.05 over Fn and wn, MKt

UP[s]|QtU,β ∩ {0, 1}
n 6∈ SIZE[n0.1 logn]U,O where U,O, F are as

above.

Proof: Consider any δ, s as in the lemma statement. Let β = 8/δ be a constant. Consider any
polynomial t(n) ≥ 2n. Let h be the oracle (nlogn, 0.01)-cond 0.01-EP-PRF construction guaranteed
to exist by Lemma 7.6 (by taking δ in Lemma 7.6 to be δ/2). Consider any sufficiently large n ∈ N.

Assume for contradiction that there exists a non-uniform deterministic n0.1 logn-time algorithm M
that, given oracle access to U and O, decides MKt

UP[s]|QtU,β on input length n. Let ` = s(n)−k(n)−
2 log n, and let s = s(n), k = k(n). We consider the following function f : {0, 1}` × [n− k]→ {0, 1}
defined as

f
def
= hFn(`, n, wn)

(Notice that f has a fixed seed length, `.) Since ` = s − k − 2 log n ≥ nδ − k − 2 log n ≥ nδ/2, by
Lemma 7.6, f is a non-uniformly secure (nlogn, 0.01)-cond 0.01-EP-PRF (with probability at least
1 − 1

n over Fn). Fix some such good choice of Fn (which happens with probability 1 − 1
n). Let E`

be the event associated with the cond EP-PRF f . We will next use the MKt
UP algorithm M to

construct a distinguisher D and break the cond EP-PRF f .
Our distinguisher D, given access to a function f ′ : [n− k]→ {0, 1} where f ′ is either a random

function or a pseudorandom function, proceeds as follows. D picks wn (of length k) as non-uniform
advice, and then D queries all entries of f ′ to obtain the truth table tt(f ′). Finally, D feeds wn||tt(f ′)
(of length k + n − k = n) to M and simply outputs M(wn||tt(f ′)). Note that D runs in time
O(n0.1 logn) + |k| ≤ nlogn.

We turn to showing that D will distinguish the cond EP-PRF from random functions. We rely
on the following claims.

Claim 5. With probability 0.2 over the choice of wn, KU (wn||tt(f ′)) ≥ n− 1 holds with probability
≥ 0.2 over f ′ when f ′ is a random function f ′ : [n− k]→ {0, 1}.

Proof: By a standard counting argument, it follows that over a random choice of wn and f ′,
KU (wn||tt(f ′)) ≥ n − 1 holds with probability 0.5. By an averaging argument, for a 0.2 fraction of
wn, the probability that KU (wn||tt(f ′)) ≥ n− 1 is at least 0.2 over random choice of f ′.

Claim 6. Kt
U (wn||tt(f ′)) ≤ s holds with probability 1 over f ′ when f ′ ← f(U`|E`).

Proof: Consider any f ′ ← f(U`|E`) and let x be its seed. (Recall that f(·) = hFn(`, n, wn)(·), so
f ′ = f(x).) We will construct a program ΠF that produces the string wn||tt(f ′). Π will hardwire
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the string wn (of length k), the seed x (of length ` = s − k − 2 log n), together with the integer n,
the descriptions of k(·), s(·), and the code of h (using no more than 2 log n bits). ΠF will first get
n from its description, compute k = k(n) and ` = s(n) − k(n) − 2 log n. It will further read wn of
length k and x of length ` from its tape. It will then simulate f(x) = hFn(`, n, wn)(x) and answer
oracle query made by f(x) using F . Since each bit in f ′ (given the seed x and wn as inputs) can be
printed in time t(`) (since f is rate-1 efficient) and Π can trivially output each bit in wn, it follows
that Kt

U (wn||tt(f ′)) ≤ k + s− k − 2 log n+ 2 log n ≤ s.

Claim 7. With probability 0.9 over the choice of wn, wn||tt(f ′) ∈ QtU,β holds with probability 0.9
over f ′ when f ′ ← f(U`|E`).

Proof: Let X = Wn||tt(f(U`|E`)) where Wn is the random variable of wn and tt(f(U`|E`)) is the
random variable of the truth table of f ′. We first show that X will have relatively high (time-
unbounded) KU -complexity. Note that f is 0.01-entropy-preserving, we have that

H(tt(f(U`|E`)) | Wn) ≥ `− 0.01 log `.

Therefore, the random variable X has entropy at least

H(Wn) +H(tt(f(U`|E`)) | Wn) ≥ `+ k − 0.01 log `.

Let
S = {z ∈ {0, 1}n : z ∈ X}

be the support of X. Since H(X) ≥ ` + k − 0.01 log `, it follows that 2`+k−0.01 log ` ≤ |S|. On the
other hand, it holds that |S| ≤ |supp(Wn)| × |supp(U`)| ≤ 2`+k. Let

Z = {z ∈ S : KU (z) ≤ `+ k − 2 log `}

be the set of strings in the support but having small KU -complexity. By a standard counting
argument w.r.t. KU -complexity, we have that |Z| ≤ 2`+k−2 log `+1. By Lemma 2.6, it follows the
probability that X ∈ Z is at most

Pr[X ∈ Z] ≤ log |S|+ 1−H(X)

log |S| − log |Z|
≤ 0.01

In other words, with probability at least 0.99 over choice of f ′ and wn, it holds that

KU (wn||tt(f ′)) ≥ `+ k − 2 log ` ≥ s− 2 log n− 2 log ` ≥ s− 4/δ log s. (4)

If the above inequality holds, it follows that

Kt
U (wn||tt(f ′))−KU (wn||tt(f ′)) ≤ s−KU (wn||tt(f ′)) ≤ 4/δ log s ≤ β logKU (tt(f ′)||wn).

where the first inequality follows from Claim 6, and the last inequality follows from our choice of β.
Thus, we have that if Equation 4 holds, then wn||tt(f ′) ∈ QtU,β . Finally, by an averaging argument,
it holds that with probability at least 0.9 over choice of wn, Equation 4 holds with probability at
least 0.9 over randomness of tt(f ′), which completes the proof for this claim.

Conditioned on some wn that satisfies all the above three claims (which by a union bound happens
with probability at least 0.2−0.1 ≥ 0.1), by claim 5, the distinguisher D will output 1 with probability
at most 1− 0.2 when f ′ is a random function. By claim 6 and 7, D will output 1 with probability at
least 0.9 when f ′ is a pseudorandom function. So D distinguishes the cond EP-PRF f from random
functions with advantage 0.1 > 0.01, which is a contradiction.

Finally, we notice that for this proof to work, the choice of Fn we need will be sampled with
probability 1 − 1

n , and the choice of wn we need will be sampled with probability 0.1. By a union
bound, the statement will hold with probability at least 0.05 over the choice of Fn and wn.
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Return to the proof of Theorem 7.2. In the end of the section, we return to the proof of
Theorem 7.2.
Proof: For any t, s as in the theorem statement, let β be the constant as in Lemma 7.7. Suppose
that there exists a fully black-box construction (f,R), let U,F,O be as above.

For each n ∈ N, by a union bound, a random choice of Fn and wn will satisfies the conditions in
Lemma 7.3 and Lemma 7.7 with probability ≥ 0.01. Fix some such Fn and wn for each n ∈ N. It
follows from Lemma 7.4 that O is a good inverting oracle, and therefore the reduction R with oracle
access to U and O should decide MKt

UP[s]|QtU,β , which contradicts to Lemma 7.7.
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A Cond EP-PRF from OWFs

We will show how to construct a cond EP-PRF from a OWF, and the cond EP-PRF we obtain will
have a polynomial-time black-box security reduction from a PRG and a PRF. We recall the notion
of a cond EP-PRG [LP20].

Definition A.1. An efficiently computable function g : {0, 1}n → {0, 1}n+nξ where 0 < ξ < 1 is a
(T (n), ε(n))-conditionally-secure α-entropy-preserving pseudorandom generator ((T, ε)-cond α-EP-
PRG) if there exists a sequence of events = {En}n∈N such that the following conditions hold:
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• (pseudorandomness): For every probabilistic T (n)-time attacker A and sufficiently large
n ∈ N, {g(Un|En)}n∈N and {Un+nξ}n∈N are (T (n), ε(n))-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈ N, H([g(Un|En)]n) ≥ n− α log n.

We refer to the constant α as the entropy-loss constant. We say that g is non-uniformly secure if
the pseudorandomness condition holds w.r.t. all non-uniform T -time attackers. We refer to g as a
ε-cond α-EP-PRG if g is secure w.r.t. all PPT attackers.

Note that we can define a polynomial-time black-box security reduction for a cond EP-PRG to
any PRG in the same way as we define this for a cond EP-PRF in section 5.3.

In [LP21a], they showed that a cond EP-PRG can be constructed from a PRG whose security is
based on a poly-time black-box reduction.

Lemma A.2 ([LP21a]). Let ε = 0.1, F be a nice class of super-polynomial functions. Assume
that there exists T1 ∈ F such that T1-one-way functions exist. Then there exist T2 ∈ F , T2 ≤ T1,
constants α > 0, ξ < 1, and a (T2(m), ε/4)-cond α-EP-PRG G : {0, 1}m → {0, 1}m+mξ with a
poly-time black-box security reduction to a PRG g.

In addition, this lemma also holds in the non-uniform setting.

Notice that Lemma A.2 also holds in the polynomial hardness setting.

Lemma A.3 ([LP21a]). Let ε = 0.1. Assume that OWFs exist. Then, there exist constants 0 <

ξ < 1, α > 0 and a (poly, ε/4)-cond α-EP-PRG G : {0, 1}n → {0, 1}n+nξ with a poly-time black-box
security reduction to a PRG g.

In addition, this lemma also holds in the non-uniform setting.

We next construct a desired cond EP-PRF from a cond EP-PRG (together with some padding
arguments that are needed). Our security reduction is black-box.

Lemma A.4. Let ε = 0.1. Assume there exist a constant α > 0, a (T1(n), ε/4)-cond α-EP-PRG

g : {0, 1}n → {0, 1}n+nξ , 0 < ξ < 1, with a poly-time black-box security reduction to a (Tprg, εprg)-PRG
fprg and a (T1(n), ε/4)-PRF h : {0, 1}n × [T2(n)]→ {0, 1}. Then, for any constant 0 < β < α, there
exist a constant 0 < θ < 1 and a rate-1 efficient (T1(nθ), ε)-cond β-EP-PRF f : {0, 1}n× [T2(nθ)]→
{0, 1} with a poly-time black-box security reduction to the PRG fprg and the PRF h.

In addition, this lemma also holds in the non-uniform setting.

Proof: Let g0(·), g1(·) denote the n-bit prefix and the nξ-bit suffix of g respectively, i.e., g(·) =
g0(·)||g1(·) and |g0(x)| = n, |g1(x)| = nξ for all x ∈ {0, 1}n. Roughly speaking, to construct a cond
EP-PRF, we first apply a cond EP-PRG on the seed x. Then we leave the first part (g0(x)) as it is
to keep the entropy, and apply a (standard) PRF on the second part (g1(x)). We will use a padding
trick to make our construction both rate-1 efficient and of small entropy loss. We will need a constant
c1 (defined as follows) to parameterize the padding argument. Note that both g and h are efficient,
so let c1 be a constant such that g, h run in time nc1 . Notice that we want to construct a β-EP-PRF
from the α-EP-PRG g (α > β), the padding trick will also be parameterized by α and β.

Now we proceed to a formal construction. Let θ = ξ/(2c1) · β/α be the padding parameter. Let
m = n2c1α/β = nξ/θ. Consider the function f : {0, 1}m × [T2(nξ)]→ {0, 1} defined as the following:

f(x, i) =


g0([x]n)i, if i ≤ n
xi, if n < i ≤ m
h(g1([x]n), i), if i > m
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where g0([x]n)i (resp xi) denotes the i-th bit on the string g0([x]n) (resp x). In other words, on
input a seed x of length m, f uses the first n = m1/(2c1α/β) bits as the input of g(·). For the rest of
the bits in the input, f pastes them into the truth table directly. (This is where the padding trick
is.) Then f outputs the first n bits of g([x]n) directly to keep the entropy, and f applies a PRF

h : {0, 1}nξ × [T2(nξ)] → {0, 1} on the rest nξ bits of g([x]n). Note that T2(nξ) = T2(mξ/(2c1α/β)) =
T2(mθ). Thus, f indeed maps {0, 1}m × [T2(mθ)] to {0, 1}.

We first show that f is entropy-preserving with entropy loss β. Let Em denote the event {x ∈
{0, 1}m : [x]n ∈ E′n} where E′n is the event associated with g (over input length n). It is sufficient
to show that the first m bits (in the truth table of f) contain high enough entropy, which is indeed
the case since the first m bits are of the form g0(xpre)||xsuf where x = xpre||xsuf , and note that
g0(·) = [g(·)]n is entropy preserving. Formally,

H([tt(f(Um|Em, ·))]m) = H(g0(Un|E′n)) +m− n =

H([g(Un|E′n)]n) +m− n ≥ m− α log(n) = m− αθ logm ≥ m− β logm,

where α is the entropy-loss constant of g.
We then show that f is pseudorandom by a standard hybrid argument. For any T1(mθ)-time

adversary A and all sufficiently large m, let Real denote the quantity Pr[x← {0, 1}m;Af(x,·)(1m) =
1|Em], and let Ideal denote the quantity Pr[f ′ ← F ;Af ′(·)(1m) = 1] where F is the family of random
functions. Define

f ′′(x, y, i) =

{
xi, if i ≤ m
h(y, i), if i > m

where |x| = m, |y| = n. Let Hybrid denote the quantity Pr[x← {0, 1}m, y ← {0, 1}n;Af ′′(x,y,·)(1m) =
1]. The following two claims show that |Real− Ideal| < ε and thus f satisfies the pseudorandomness
property.

Claim 8. |Real− Hybrid| < ε/4.

Proof: This claim follows from the fact that g is pseudorandom w.r.t. all T1(n)-time attackers.
Note that by our choice of parameters, A runs in time T1(mθ) ≤ T1(n).

Claim 9. |Hybrid− Ideal| < ε/4.

Proof: This claim follows immediately from the fact that h is a (T1(`), ε/4)-pseudorandom function
(where ` is the input length of h) and note that by our choice of parameters, ` = nξ. Note that A
runs in time T1(mθ) = T1(`).

We turn to showing that f has running time m+ O(logm) which (together with the above two
proofs) shows that f is a rate-1 efficient cond EP-PRF. Recall that both g and h run in time O(nc1),
and the running time of f depends on i: If i ≤ n, f runs in time O(nc1) ≤ O(

√
m). If n < i ≤ m, f

will output the i-th in the seed, which takes time m+ O(logm). If i > m, the running time of f is
bounded by O(nc1) +O(nξc1) ≤ O(

√
m). Thus, f runs in time m+O(logm).

We finally notice that this reduction is a polynomial-time black-box security reduction to g and h.
The specs (the input length function, security loss function, and reduction) needed in the black-box
reduction can be found in the above proof. Since g has a poly-time black-box security reduction to
the PRG fprg, we conclude that f has a poly-time black-box reduction to fprg and h. We also observe
that the above proof also works in the non-uniform setting.

Now we are ready to show the cond EP-PRF construction with black-box security reductions to
OWFs.
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Theorem A.5. The following statements hold.

• Let F be a nice class of super-polynomial functions. Assume that there exist T ∈ F , and a
T -hard OWF. Then, for any constant δ > 1, β > 0, there exist a function T1 ∈ F and a rate-1
efficient (T δ1 , 0.1)-cond β-EP-PRF f : {0, 1}n × [T1(n)] → {0, 1} with a poly-time black-box
security reduction to a PRG and a PRF.

• Assume that OWFs exist. Then, for any constant β > 0, any polynomial d(·), there exists
a rate-1 efficient 0.1-cond β-EP-PRF f : {0, 1}n × [d(n)] → {0, 1} with a poly-time black-box
security reduction to a PRG and a PRF.

In addition, the above statements also hold in the non-uniform setting.

Proof: (a): This statement follows from Lemma A.4, Lemma A.2, and the fact that we can get a
F-hard PRF from a F-hard OWF [GGM84]. Also note that all the these results still hold in the
non-uniform setting.

(b): By [GGM84], for any polynomial d′(·), there exists a PRF h : {0, 1}n× [d′(n)]→ {0, 1}. This
statement then follows from Lemma A.4 by considering T1 being any sufficiently large polynomial
and T2 being any arbitrary polynomial. Also note that all the results needed in this proof still hold
in the non-uniform setting.
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