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Abstract
What is the Σ2

3-circuit complexity (depth 3, bottom-fanin 2) of the 2n-bit inner product function?
The complexity is known to be exponential 2αnn for some αn = Ω(1). We show that the limiting
constant α := lim sup αn satisfies

0.847... ≤ α ≤ 0.965... .

Determining α is one of the seemingly-simplest open problems about depth-3 circuits. The question
was recently raised by Golovnev, Kulikov, and Williams (ITCS 2021) and Frankl, Gryaznov, and
Talebanfard (ITCS 2022), who observed that α ∈ [0.5, 1]. To obtain our improved bounds, we
analyse a covering LP that captures the Σ2

3-complexity up to polynomial factors. In particular, our
lower bound is proved by constructing a feasible solution to the dual LP.
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1 Introduction

A Σ3-circuit is an unbounded-fanin depth-3 boolean circuit with an ∨-gate at the top. That
is, the circuit computes an OR of CNFs. A foremost open problem in circuit complexity is
to prove a lower bound of 2ω(

√
n) on the Σ3-circuit complexity of an explicit n-bit boolean

function. Current techniques can prove at best a bound of 2Ω(
√

n) [7, §11].
For the more restricted class of Σk

3-circuits that have fanin k at the bottom (that is, ORs
of k-CNFs), we can hope for improved bounds. For example, the famous satisfiability coding
lemma [14] implies that the n-bit parity function has Σk

3-circuit complexity at least 2n/k

and this is tight up to polynomial factors (for constant k). Even stronger, for k = 2, Paturi,
Saks, and Zane [12] exhibit a function with near-maximal Σ2

3-complexity 2n−o(n). No such
near-maximal lower bounds are currently known for k = 3.

Inner product. A natural function whose Σk
3-complexity remains unknown (up to poly(n)

factors) is the inner product function IPn, defined on 2n-bit inputs (x, y) ∈ ({0, 1}n)2 by

IPn(x, y) := ⟨x, y⟩ mod 2.

Recently, Golovnev, Kulikov, and Williams [2] asked to determine the Σk
3-complexity of IPn

in case k = 3. Curiously enough, Frankl, Gryaznov, and Talebanfard [1] point out that
the problem is nontrivial already in case k = 2, and they obtained partial results towards
resolving it. It has been known that the Σ2

3-complexity of IPn is between 2n/2 and 2n [14, 2].

1.1 Our result
Our main result is to prove improved upper and lower bounds for inner product.
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▶ Theorem 1 (Main result). Write the Σ2
3-complexity of IPn as 2αnn for some αn ≥ 0. Then

α := lim supαn ∈ [0.847..., 0.965...].

It remains an intriguing problem to determine α precisely. It is surprising (for us, at least)
that neither of the previous bounds α ∈ [0.5, 1] were tight, especially because the problem is
seemingly one of the simplest open questions about depth-3 circuits.

Studying exact exponents of Σk
3-circuit complexities is a relatively unexplored research

direction, and we believe it could foster the development of new lower bound techniques.
In particular, a major motivation for this comes from depth reduction results. For ex-
ample, in case k = 16, Golovnev, Kulikov, and Williams [2] have shown that proving near-
maximal 2n−o(n) bounds for Σ16

3 -circuits would already yield new improved lower bounds for
unrestricted (unbounded depth) circuits. Their result extends classical connections discovered
by Valiant [15]; see also the monograph [16, §3].

1.2 Overview of techniques
To obtain our improved bounds on α in Theorem 1—both upper and lower bounds—we
study a fractional covering problem, formulated as a linear program (LP), that captures
the Σ2

3-circuit complexity up to poly(n) factors.
To our knowledge, LPs have not been widely employed in analysing depth-3 circuits. They

are, however, routinely used to prove strong lower bounds in the related area of communication
complexity [9]. Many such LP-based methods are catalogued by Jain and Klauck [6]. Moreover,
Lee and Shraibman [10] give a monograph-length treatment on how to use LP duality to
prove communication lower bounds. In one of the earliest examples, Karchmer, Kushilevitz,
and Nisan [8] characterised nondeterministic communication complexity via a fractional
covering problem. The formulation we use is a straightforward adaptation of this for depth-3
circuits. A similar formulation also appeared in the work of Hirahara [4] that connects
depth-3 complexity with one-sided CNF approximations.

Covering LP. The size of a Σ2
3-circuit is determined (up to O(n2) factors) by the fanin of

the top ∨-gate. Suppose a circuit with top-fanin m computes a function f : {0, 1}n → {0, 1}.
We can view the circuit as expressing the set of 1-inputs f−1(1) as a union of m sets,

f−1(1) =
⋃

i∈[m]

ϕ−1
i (1), (1)

where each ϕ−1
i (1) is the set of inputs accepted by a 2-CNF formula ϕi. The least top-fanin

needed to compute f is then captured by the optimal integer solutions to the following
covering LP. In this LP, we assign a fractional weight wϕ ∈ [0, 1] for each 2-CNF ϕ that is
consistent with f , meaning that ϕ(x) ≤ f(x) for every input x ∈ {0, 1}n. We let Φ denote
the set of all 2-CNFs consistent with f .

min
∑

ϕ∈Φ wϕ

subject to
∑

ϕ∈Φ wϕϕ(x) ≥ 1, ∀x ∈ f−1(1)
wϕ ∈ [0, 1], ∀ϕ ∈ Φ

(LP)

A classic result of Lovász [11] says that the integrality gap of a covering LP is small.
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▶ Lemma 2 (Lovász [11]). Let Opt and OptZ denote the value of (LP) optimised over
fractional solutions (wϕ ∈ [0, 1]) and integral solutions (wϕ ∈ {0, 1}), respectively. Then

Opt ≤ OptZ ≤ O(n) · Opt.

Consequently, to determine the Σ2
3-complexity of f = IPn we only need to solve the

fractional (LP). We will use the (LP) in Section 2 to construct circuits for IPn that
witness the upper bound α ≤ 0.965....

Dual LP. A common method to prove a depth-3 lower bound is to estimate the number of
accepting inputs for any consistent CNF, say, by maxϕ∈Φ |ϕ−1(1)| ≤ C, and then conclude
that the top-fanin must be at least |f−1(1)|/C. Such arguments are standard in the top-down
circuit lower bound literature [3, 14, 12, 13, 5].

An important generalisation of this method is to first choose a hard distribution D over
the 1-inputs f−1(1) and then measure the size of ϕ−1(1) relative to D. If we can show
maxϕ∈Φ Prx∼D[ϕ(x) = 1] ≤ p, then the top-fanin must be at least 1/p. Indeed, the following
optimisation problem captures the best lower bound provable with this method.

max 1/p
subject to

∑
x∈f−1(1) D(x)ϕ(x) ≤ p, ∀ϕ ∈ Φ∑
x∈f−1(1) D(x) = 1,

D(x) ∈ [0, 1], ∀x ∈ f−1(1)

(Dual LP)

This program is not written in standard LP format as we are seemingly optimising
a nonlinear function. However, it is equivalent1 to max

∑
x A(x) s.t.

∑
x A(x)ϕ(x) ≤ 1

and A(x) ≥ 0, which is the canonical dual to (LP). Hence, by strong duality, we can always
prove a tight lower bound (up to polynomial factors) on depth-3 complexity by finding the
right hard distribution D.

Hard distribution for IP. What hard distribution D should we choose to prove a strong
lower bound for IPn? If we choose D to be the uniform distribution over IP−1

n (1), then prior
work [1, Thm 28] showed that this only yields the bound α ≥ log 4

3 = 0.415.... If we choose D
by sampling a pair (x, 1n) where x is uniform random in {0, 1}n, then we have effectively
reduced IPn to n-bit parity and we obtain α ≥ 0.5 [2], which is tight for parity.

To get our improved lower bound on α, we analyse a more general distribution.

(Section 3) We consider a distribution where the 2n input bits are iid, that is, D is the
binomial distribution with some parameter p ∈ (0, 1). (Note that while D is not supported
on IP−1

n (1) it does place a constant probability mass on it.) We prove a structure lemma
for consistent 2-CNFs and characterise those that have the highest acceptance probability
under D. Optimising the choice of p, we will obtain α ≥ log 9

5 = 0.847....

1 If D, p is feasible for (Dual LP), then A(x) := D(x)/p is feasible and has the same objective function
value in the other program. In the other direction, set p := 1/

∑
y

A(y) and D(x) := p · A(x).
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1.3 Discussion and open problems

The challenge in proving a better lower bound in Theorem 1 is that our techniques rely
heavily on the hard distribution having independence between the n coordinates. One way
we could try to improve the lower bound is to consider a slightly more general coordinate-wise
iid distribution. That is, we choose a distribution µ over one coordinate pair (xi, yi) ∈ {0, 1}2

and then define a product distribution by D := µn := µ × · · · × µ. We carried out this
approach (using computer-aided calculations) only to find out that we get no improvement
this way: the hardest D is still the bit-wise iid that we consider in Section 3. A candidate for
the absolute hardest distribution (not necessarily coordinate-wise iid) is merely a symmetric
distribution that is invariant under permuting the n coordinates. We leave it as an open
problem to analyse such non-iid distributions.

Another open problem that could be amenable to an LP-based attack is to determine
the Σk

3-circuit complexity of inner product in case k = 3, as was originally asked by Golovnev,
Kulikov, and Williams [2]. The best lower bound known is 2n/3 [14], and one could hope
to show an improved lower bound even relative to an iid distribution. Here the obvious
challenge is that 3-CNFs are notoriously much more difficult (even NP-hard) to analyse than
2-CNFs. Our overall approach in this paper is still applicable even for k > 2. Namely, one
needs to “merely” prove an analogue of our structure lemma (Lemma 7) for k-CNFs.

2 Upper bound

In this section, we prove the upper bound α ≤ 0.965... as claimed in Theorem 1. The circuit
will be constructed in two parts. To explain this, we denote, for an input (x, y) ∈ {0, 1}2n

and a 2-bit pattern s ∈ {0, 1}2, the fraction of occurrences of this pattern by

ps(x, y) := 1
n |{i ∈ [n] : (xi, yi) = s}| .

We use one Σ2
3-circuit to accept every input (x, y) ∈ IP−1

n (1) with p11(x, y) ≤ p where p is a
carefully chosen threshold, and another Σ2

3-circuit to accept those inputs with p11(x, y) ≥ p.
The following two lemmas (proved in Sections 2.1 and 2.2) record the two types of circuits

we will construct. To state these lemmas, recall that a circuit C is consistent with IPn

if C(x, y) ≤ IPn(x, y) for all inputs (x, y). We let H(p) := −p log p− (1 − p) log(1 − p) denote
the binary entropy function. Moreover, we let H(X) denote the usual Shannon entropy of a
random variable X. Finally, for p ∈ [0, 1], we define a random variable Xp ∈ {0, 1}2 such
that Pr[Xp = 11] = p and Pr[Xp = s] = (1 − p)/3 for s ∈ {00, 01, 10}.

▶ Lemma 3. For every p ∈ [0, 1
2 ] there exists a Σ2

3-circuit of size 2nH(p)+o(n) that is consistent
with IPn and that accepts all (x, y) ∈ IP−1(1) with p11(x, y) ≤ p.

▶ Lemma 4. For every p ∈ [ 1
4 , 1] there exists a Σ2

3-circuit of size 2 1
2 nH(Xp)+o(n) that is

consistent with IPn and that accepts all (x, y) ∈ IP−1(1) with p11(x, y) ≥ p.

The final Σ2
3-circuit for IPn is the OR of the two Σ2

3-circuits above. It is easy to see that
using any constant p ∈ ( 1

4 ,
1
2 ) we get a circuit of size 2βn with β < 1. We can further optimise

the choice of p by equating the two circuit size expressions, solving for p numerically (using
any numerical computation software), which comes to p := 0.3909..., and then plugging this
value of p into the size expressions to get a circuit of size 20.965...·n+o(n), as desired.

It remains to prove Lemmas 3 and 4, which we do in the rest of this section.
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2.1 Proof of Lemma 3
In this lemma we focus on finding efficient Σ2

3-circuits accepting inputs (x, y) ∈ IP−1(1) with
a small value of p11(x, y) ≤ p ≤ 1/2. Given a subset I ⊆ [n], define the brute-force CNF by

ϕ
(I)
BF :=

∧
i∈I

(xi ∧ yi) ∧
∧

i∈[n]\I

(¬xi ∨ ¬yi).

Note that ϕ(I)
BF accepts an input (x, y) iff I equals the set of all i such that (xi, yi) = (1, 1).

Hence, to accept every input with p11(x, y) ≤ p, our Σ2
3-circuit will consider all suitable I:

C :=
∨

I⊆[n]
|I|≤pn
|I| odd

ϕ
(I)
BF . (2)

The size of C is at most
(

n
≤pn

)
·O(n) where

(
n

≤pn

)
:=

∑pn
i=0

(
n
i

)
can be estimated from above

via Stirling’s approximation by 2nH(p)+o(n) for all p ≤ 1/2. Finally, it is clear from the
construction that C is consistent with IPn. This concludes the proof of Lemma 3. ◀

2.2 Proof of Lemma 4
In this lemma we focus on finding efficient Σ2

3-circuits accepting inputs (x, y) ∈ IP−1
n (1) with

a large value of p11(x, y) ≥ p ≥ 1/4. To illustrate our idea, we first construct a circuit for a
simpler related function, and then explain how to modify it to get circuits for IPn.

Simple warm-up circuit. We first describe a circuit that computes the following partial
function (which is consistent with ¬IPn, but we will address this later):

fn(x, y) :=


0 if n · p11(x, y) is odd,
1 if n · ps(x, y) is even for all s ∈ {0, 1}2, and p11(x, y) ≥ p,

∗ otherwise.

The interesting case here is when n is even, as otherwise fn(x, y) ∈ {0, ∗} for all (x, y). Let
M ⊆

([n]
2

)
:= {e ⊆ [n] : |e| = 2} be a perfect matching of [n] (that is, partition of [n] into

pairs). We define the collision CNF associated with M by

ϕ
(M)
Coll :=

∧
{i,j}∈M

(xi ↔ xj) ∧ (yi ↔ yj).

This is a 2-CNF since we can write an equivalence as a ↔ b ≡ (a ∨ ¬b) ∧ (¬a ∨ b). Note that
a collision CNF accepts iff for every pair {i, j} ∈ M we have (xi, yi) = (xj , yj). Hence it only
accepts inputs where n · ps(x, y) is even for all s ∈ {0, 1}2. Thus ϕ(M)

Coll is consistent with fn.
To construct a Σ2

3-circuit for fn, it is enough, as discussed in Section 1.2, to design a
feasible solution to the (LP) associated with fn. (We note that the (LP) formulation works
equally well for partial functions.) To this end, we calculate in the following claim (proved in
Section 2.3) the probability that a random collision CNF accepts a fixed 1-input of fn.

▷ Claim 5. Let (x, y) ∈ f−1
n (1). For a uniformly chosen perfect matching M ⊆

([n]
2

)
,

Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
≥ 2− 1

2 nH(Xp)−o(n) =: L(p).
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We now construct a feasible solution to (LP) for fn. Let ΦColl denote the set of all collision
CNFs, one for each perfect matching of [n]. Consider the weight assignment corresponding
to the uniform distribution over ΦColl; namely, set wϕ := 1/|ΦColl| for every ϕ ∈ ΦColl
and wϕ := 0 for all the rest. Note that the objective function value is

∑
ϕ wϕ = 1. However,

the assignment may not be feasible: for a covering constraint indexed by (x, y) ∈ f−1
n (1), we

are only guaranteed a weak lower bound (much smaller than 1):∑
ϕ wϕϕ(x, y) = PrM

[
ϕ

(M)
Coll(x, y) = 1

]
≥ L(p).

We can, however, transform this weight assignment into a feasible one by scaling all the
weights up by a factor of 1/L(p) (and truncating any resulting weight > 1 to 1). In the scaled
assignment, the objective function value is at most 1/L(p). We conclude (using Lemma 2)
that fn has a circuit of size O(n)/L(p) = 2 1

2 nH(Xp)+o(n).
It remains to explain how a circuit of this size can also be constructed for IPn.

Actual circuit for IP. To prove Lemma 4, we would like to use the Σ2
3-circuit we constructed

above for fn to design a circuit for the partial function

IP(p)
n (x, y) :=


0 if n · p11(x, y) is even,
1 if n · p11(x, y) is odd, and p11(x, y) ≥ p,

∗ otherwise.

Consider the following nondeterministic algorithm for IP(p)
n . On input (x, y) ∈ {0, 1}2n:

1. Nondeterministically guess a subset S ⊆ {0, 1}2 where 11 ∈ S. The intention is that
patterns in S should appear in (x, y) an odd number of times.

2. For each s ∈ S, guess a coordinate i(s) ∈ [n].
3. For each s ∈ S, check that (xi(s), yi(s)) = s. If not, reject.
4. Output the same as the function fn−|S| on input (xi, yi)i∈[n]\i(S).

It is straightforward to check that this computes IP(p)
n correctly. (A minor technical

detail is that when computing fn−|S|, the p11 value may slightly drop because we remove one
occurrence of the 11-pattern. However, this is not really a problem since the slight drop will not
affect the asymptotics of the circuit size.) The question remains: How can it be implemented
as a Σ2

3-circuit? We do it as follows. Consider any guess outcome O := (S, (i(s))s∈S). We
can modify the circuit C for fn−|S| (applied to the input bits (xi, yi)i∈[n]\i(S)) to perform the
check in Item 3 by adding to each 2-CNF in C the singleton terms (xi(s) = s1) and (yi(s) = s2)
for all s = (s1, s2) ∈ S. Call the resulting circuit CO. Our final Σ2

3-circuit computes the OR
of all circuits CO. Since there are only O(n4) many different guess outcomes, the resulting
circuit is only a factor O(n4) larger than our circuit for fn. This concludes the proof of
Lemma 4. ◀

2.3 Proof of Claim 5
Write n!! :=

∏⌊n/2⌋
i=0 (n− 2i) for the double factorial. The number of perfect matchings on [n]

is well-known to be given by (n− 1)!! when n is even. Therefore, (nps − 1)!! gives the number
of ways to match the coordinates with pattern s. We have

Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
=

∏
s∈{0,1}2(nps − 1)!!

(n− 1)!! . (3)
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Taking logarithms and using Stirling’s approximation (logn!! = 1
2n logn− 1

2n± o(n)) we get

log Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
= 1

2
∑

s nps log(nps) − 1
2n logn± o(n)

= 1
2n ·

∑
s ps log ps ± o(n)

= − 1
2n · H(P ) ± o(n).

Here P ∈ {0, 1}2 is the random variable defined by Pr[P = s] = ps. We ask: which random
variable X ∈ {0, 1}2 maximises the entropy H(X) subject to the constraint Pr[X = 11] = p∗?
By the concavity of H and symmetry (we can relabel outcomes without affecting the entropy),
it is the random variable Xp∗ such that

Pr[Xp∗ = 11] = p∗, Pr[Xp∗ = 00] = Pr[Xp∗ = 10] = Pr[Xp∗ = 01] = (1 − p∗)/3.

The univariate map p∗ 7→ H(Xp∗) is also concave. It is maximised at p∗ = 1/4 (when Xp∗

is uniform), and decreasing for p∗ > 1/4. This means that, since 1/4 ≤ p ≤ p11, we have
that H(Xp) ≥ H(Xp11) ≥ H(P ). Hence we obtain the claimed lower bound:

log Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
≥ − 1

2n · H(Xp) − o(n). ◀

3 Lower bound

In this section, we prove the lower bound α ≥ log 9
5 = 0.847... as claimed in Theorem 1. We

will follow the Dual LP strategy discussed in Section 1.2. Namely, we will choose a hard
distribution over IP−1

n (1) and then bound the acceptance probability of any 2-CNF consistent
with IPn. In fact, it is convenient to prove a slightly stronger statement and bound the
acceptance probability of any 2-CNF consistent with IPn or ¬IPn. Indeed, we let Φn denote
the set of 2-CNFs consistent with IPn or ¬IPn.

Hard distribution. As the hard distribution, we consider the binomial distribution Dp with
parameter p ∈ (0, 1), whose choice we will optimise later. That is, (X,Y ) ∼ Dp is such that all
bits are iid: they are independent and have identical distribution, Pr[Xi = 1] = Pr[Yi = 1] = p.
Note that Dp is not in fact supported on IP−1

n (1), but it still places Ω(1) probability mass on
this set. Consequently, any Σ2

3-circuit will have to cover Ω(1) fraction of Dp with its CNFs,
so we can still use Dp for proving a lower bound.

Max-probability formulas. Our goal will be to argue that any ϕ ∈ Φn has an acceptance
probability dominated by one of two “maximum probability formulas” (max-formulas, for
short). Namely, our first max-formula is the collision CNF (used in our upper bound
in Section 2.2 and specialised here for one matching) and our second formula has a NAND
constraint for each coordinate.

1st max-formula: ϕ
(n)
Coll :=

∧
i∈[n/2]

(x2i−1 ↔ x2i) ∧ (y2i−1 ↔ y2i) where n is even,

2nd max-formula: ϕ
(n)
Nand :=

∧
i∈[n]

(¬xi ∨ ¬yi).

Writing PrD[ϕ] := Pr(X,Y )∼D[ϕ(X,Y ) = 1] for short, it is straightforward to see that

Pr
Dp

[ϕ(n)
Coll] = (p2 + (1 − p)2)n and Pr

Dp

[ϕ(n)
Nand] = (1 − p2)n. (4)
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Equating these probabilities and solving for p yields our optimal choice p = p∗ := 2/3. The
following lemma states that these formulas have, for p = p∗, higher acceptance probabilities
than any 2-CNF consistent with IPn (or ¬IPn).

▶ Lemma 6. PrDp∗ [ϕ] ≤ M
(n)
p∗ := max

{
PrDp∗ [ϕ(n)

Coll], PrDp∗ [ϕ(n)
Nand]

}
for any ϕ ∈ Φn.

Using Lemma 6 it is easy to complete our proof. We get for any ϕ ∈ Φn,

Pr
Dp∗

[ϕ] ≤ M
(n)
2/3 = (1 − (2/3)2)n = 2− log(9/5)·n = 2−0.847...·n.

As per Dual LP, the reciprocal of this probability yields the claimed circuit lower bound.
It remains to prove Lemma 6, which we do in the rest of this section.

3.1 Proof of Lemma 6
To help us analyse acceptance probabilities, we first prove a structure lemma for any consistent
2-CNF formula ϕ. This lemma will find some “structured” formula ϕ′ that is (semantically)
implied by ϕ, denoted ϕ |= ϕ′ (that is, ϕ−1(1) ⊆ ϕ′−1(1)). The formula ϕ′ comes from a set of
structured formulas Sn, which we will carefully define in Section 3.2. For now, it suffices for
us to know that each structured formula ϕ(k) ∈ Sn only mentions variables among (xi, yi)i∈I

for some subset I ⊆ [n] of size |I| = k (possibly k ≪ n).

▶ Lemma 7 (Structure lemma). Let ϕ ∈ Φn be a 2-CNF consistent with IPn or ¬IPn. Then
there is some structured 2-CNF formula ϕ(k) ∈ Sn such that ϕ |= ϕ(k).

We can now formulate a “localised” version of Lemma 6 for structured formulas. It
allows us to locally compare the acceptance probability of ϕ(k) with our max-formulas ϕ(k)

Coll
and ϕ

(k)
Nand, now defined naturally over k many coordinates. Our original definition of ϕ(n)

Coll
was actually assuming n is even. For technical convenience, for odd n, we define ϕ(n)

Coll :=
ϕ

(n−1)
Coll ∧ (xn ↔ yn). The bounds in (4) continue to hold for this extended definition.

▶ Lemma 8. PrDp∗ [ϕ(k)] ≤ M
(k)
p∗ := max

{
PrDp∗ [ϕ(k)

Coll], PrDp∗ [ϕ(k)
Nand]

}
for any ϕ(k) ∈ Sn.

Using Lemmas 7 and 8 (proved below) it is now easy to prove Lemma 6:

Proof of Lemma 6. We prove this by induction on n. The base case n = 0 is vacuously
true under the convention that Pr[ϕ⊥] = M

(0)
p∗ = 1 for the empty formula ϕ⊥. For the

inductive case n ≥ 1, let ϕ ∈ Φn be arbitrary. Apply the structure lemma (Lemma 7) to find
some ϕ(k) ∈ Sn such that ϕ |= ϕ(k). Suppose for notational convenience ϕ(k) involves the
first k ≤ n coordinates. Let D(k)

p∗ denote our binomial distribution over {0, 1}2k. Then

Pr
D(n)

p∗

[ϕ] ≤
∑

a,b∈{0,1}k

ϕ(k)(a,b)=1

Pr
D(k)

p∗

[(a, b)] · Pr
D(n−k)

p∗

[ϕ|a,b],

where ϕ|a,b is obtained from ϕ by restricting the first k coordinates to values (a, b). We note
that restricting values in a formula consistent with IPn might yield a formula consistent
with ¬IPn−k (and vice versa). We now apply Lemma 6 inductively for ϕ|a,b to conclude

Pr
D(n)

p∗

[ϕ] ≤ M
(n−k)
p∗ ·

∑
a,b

Pr
D(k)

p∗

[(a, b)] = M
(n−k)
p∗ · Pr

D(k)
p∗

[ϕ(k)] ≤ M
(n−k)
p∗ M

(k)
p∗ = M

(n)
p∗ ,

where the last inequality is Lemma 8 and the final equality follows from (4). ◀

The rest of this section is organised as follows. We first define our family of structured
formulas Sn in Section 3.2. Then we will prove Lemmas 7 and 8 in Sections 3.3 and 3.4.
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3.2 Structured formulas in Sn

We now proceed to define our family of structured formulas Sn. The family will be closed
under symmetries of IPn, as we now explain. The value of inner product IPn remains
unchanged if we permute its n coordinates (e.g., swap (xi, yi) with (xj , yj)) or transpose
two variables inside a single coordinate (i.e., swap (xi, yi) with (yi, xi)). These permutations
generate the group of symmetries of IPn. We say that two CNFs ϕ and ϕ′ are isomorphic if
there is some symmetry π of IPn that, when applied to ϕ to yield ϕπ, makes the two formulas
equivalent, ϕπ ≡ ϕ′, that is, to accept the same set of inputs.

Structured family Sn. To define Sn, we list below its various members. Each formula
is defined over some k ≤ n pairs of literals Lk := {x̃1, ỹ1, . . . , x̃k, ỹk} where x̃i ∈ {xi,¬xi}
and ỹi ∈ {yi,¬yi}. Each item defines a type of 2-CNF with the understanding that each of
its isomorphic copies is included in Sn. See Figure 1 for illustrations. We start with two
cases corresponding to our max-formulas.

1. Nand is ϕ(1)
Nand = (¬x1 ∨ ¬y1). This is case n = 1 of our second max-formula.

2. Matching is defined relative to a perfect matching M ⊆
(

Lk

2
)

by

ϕ
(k)
Match =

∧
{ℓ,ℓ′}∈M (ℓ ↔ ℓ′).

Note that this is a generalisation of our first max-formula (where the literals are positive
and the perfect matching is more structured).

The final type of formula will be an extension of the following “ladder” formula

ψ(k) =
∧k−1

i=1 (ỹi ↔ x̃i+1) where k ≥ 2.

We also define two types of “terminal” constraints (where ℓ, ℓ′ ∈ Lk),

Back-edge: ψleft
B = (x̃1 ↔ ℓ), ψright

B = (ỹk ↔ ℓ′) where ℓ ̸= x̃1 and ℓ′ ̸= ỹk,

Positive: ψleft
P = (y1 → x1), ψright

P = (xk → yk).

3. Ladder is given by choosing terminal types (L,R) ∈ {B,P}2 and defining

ϕ
(k)
LR = ψ(k) ∧ ψleft

L ∧ ψright
R .

▶ Remark 9. It can be shown that this list is irredundant in that, for each type, there is a
formula ϕ(k) ∈ Sn of that type and ϕ ∈ Φn such that ϕ |= ϕ(k) but ϕ ̸|= ϕ′ for every ϕ′ ∈ Sn

of type different than ϕ(k). This means that we need all three types for our structure lemma.

3.3 Proof of Structure lemma (Lemma 7)
In the proof of Lemma 7, we use the standard notion of an implication graph of a 2-CNF.

Implication graphs. Given a 2-CNF ϕ over k variables {x1, y1, . . . , xk, yk}, its implication
graph Gϕ = (V,E) is the directed graph given by

V := {x1,¬x1, y1,¬y1, . . . , xk,¬xk, yk,¬yk},
E := {(u, v) ∈ V 2 : u ̸= v and ϕ |= (u → v)}.

We note that implication graphs are sometimes defined more syntactically: For each
clause (u ∨ v) of ϕ, include the edges (¬u, v) and (¬v, u) in Gϕ, and moreover, for each
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ϕ
(4)
Match ϕ

(5)
Match

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3x̃1

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3

ỹ5

x̃5x̃1

ψ(4) ϕ
(5)
BB

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3x̃1

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3

ỹ5

x̃5x̃1

Figure 1 Examples of Matching and Ladder CNFs.

singleton clause (u) of ϕ, include the edges (v, u) in Gϕ for all v. Taking the transitive closure
(add edge (u, v) if there is a directed path from u to v) of this graph yields the graph in our
(semantic) definition above.

We call a strongly connected component of Gϕ a strong-component for short. We say that
a variable xi is fixed by ϕ if there is some b ∈ {0, 1} such that for every (x, y) ∈ ϕ−1(1) we
have xi = b. The following lemma will be used several times.

▶ Lemma 10. Let ϕ ∈ Φn and suppose y1 lies in a strong-component of size 1 in Gϕ. Then
we have ϕ |= x1 → ỹ1 for some ỹ1 ∈ {y1,¬y1}.

Proof. We may assume that y1 is not fixed by ϕ, as otherwise the lemma is trivially true. We
assume that ϕ ̸|= x1 → ¬y1 and hope to show ϕ |= x1 → y1. Thus, there is some satisfying
assignment (x′, y′) ∈ ϕ−1(1) such that (x′

1, y
′
1) = (1, 1). Denote by Nin ⊆ V the in-neighbours

of y1, that is, all the literals from which there exists an edge (equivalently, directed path,
as Gϕ is transitively closed) to y1. Note that {ℓ,¬ℓ} ̸⊆ Nin for every literal ℓ, as otherwise
one of ℓ or ¬ℓ would always be set to 1, forcing y1 to always be 1, contradicting that y1 is
not fixed. Modify (x′, y′) by setting literals in Nin to 0. By the properties listed above, it
follows that the new assignment, call it (x′′, y′′), still satisfies ϕ. Moreover, (x′′, y′′) has the
property that we may flip the value of all the literals in the strong-component of y1—which
is just y1 itself—and still remain a satisfying assignment. Since we can flip y1 in isolation,
we must have that x′′

1 = 0 (otherwise we would change the parity of the 11 pattern, which
contradicts ϕ ∈ Φn). But since x′

1 = 1 we must have that x1 ∈ Nin, meaning that (x1, y1) is
an edge, and hence ϕ |= x1 → y1, as desired. ◀

We now proceed to prove Lemma 7 in two cases by considering Gϕ for ϕ ∈ Φn.

Case 1: Every strong-component is of size 1. Applying Lemma 10 twice, the second
time with roles of x1 and y1 swapped, we learn that ϕ |= x1 → ỹ1 and ϕ |= y1 → x̃1. If
ϕ |= x1 → ¬y1 or ϕ |= y1 → ¬x1 holds then we have ϕ |= ϕ

(1)
Nand, as desired. In the remaining

case, both ϕ |= x1 → y1 and ϕ |= y1 → x1 hold, which implies ϕ |= ϕ
(1)
Match.
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Case 2: There exists a strong-component of size at least 2. Suppose by symmetry that y1
lies in a strong-component of size at least 2. If y1 is bidirectionally connected to x̃1, that
is, ϕ |= (y1 ↔ x̃1), then this means that ϕ |= ϕ

(1)
Match and we are done.

Assume henceforth that y1 is bidirectionally connected to some literal other than x̃1, say
by symmetry y1 ↔ x̃2. Consider y2: is it bidirectionally connected to a literal in coordinate
greater than 2? If yes, say by symmetry y2 ↔ x̃3. Consider y3, etc. By this “unravelling”
process, we are exposing the bidirectional edges of a ladder formula ψ(k). This process must
eventually end at step k ≤ n in one of the following two cases.

Subcase 2-1: yk is bidirectionally connected to some literal ℓ′ in coordinate ≤ k. Here
we have ϕ |= (yk ↔ ℓ′) = ψright

B .
Subcase 2-2: yk lies in a singleton strong-component. In this case, we apply Lemma 10
to learn that ϕ |= xk → ỹk. If |= xk → ¬yk, then we would have found a copy of ϕ(1)

Nand in
coordinate k and we are done. Otherwise ϕ |= xk → yk, which means ϕ |= ψright

P .

That is, in both cases (if we did not outright prove the lemma) we found either ϕ |= ψright
B

or ϕ |= ψright
P . By a similar argument, we can start unravelling edges starting at x1 to find

either ϕ |= ψleft
B or ϕ |= ψleft

P . This will allow us to terminate the left side of the ladder, which
completes the proof that ϕ |= ϕ

(k)
LR.

3.4 Proof of Lemma 8
We show the inequalities for every ϕ ∈ Sn.

ϕ
(1)
Nand: This is true by definition of M (1)

p .
ϕ

(k)
Match: First note that the structure of the perfect matching for ϕ(k)

Match will not change
the acceptance probability because all input bits are iid. Moreover, when both ℓ and ℓ′ are
positive, Pr[ℓ ↔ ℓ′] = p2 +(1−p)2; otherwise, Pr[ℓ ↔ ℓ′] = max{2p(1−p), p2 +(1−p)2} ≤
p2 + (1 − p)2 for all p ∈ [0, 1]. Therefore, we have that PrDp

[ϕ(k)
Match] ≤ PrDp

[ϕ(k)
Coll].

ϕ
(k)
BB: We show in the above that Pr[ℓ ↔ ℓ′] ≤ p2 + (1 − p)2 for any literals ℓ and ℓ′; we

can similarly show that, for any literals ℓ, ℓ′ and ℓ′′, Pr[ℓ ↔ ℓ′, ℓ ↔ ℓ′′] ≤ p3 + (1 − p)3.
Replacing all literals in ϕ

(k)
BB by their positive analogues to get a new CNF ϕ, we have

that PrDp
[ϕ(k)

BB] ≤ PrDp
[ϕ]. Let M be the perfect matching associated with ϕ. Define

M ′ := M ∪ {(x1, yk)}. Observe that M ′ is a perfect matching for all 2k literals. Let ϕ′ be
the matching CNF constructed from M ′. Let P be the acceptance probability of ϕ. We
know that PrDp

[ϕ′] = P · [(1−p)2+p2]3

[(1−p)3+p3]2 ≥ P since [(1−p)2+p2]3

[(1−p)3+p3]2 ≥ 1 for p ∈ [0, 1].

ϕ
(k)
P P : Similarly, we can replace all literals in ϕ

(k)
P P with their positive analogues and get

ϕ. Let M be the perfect matching associated with ϕ. Define M ′ := M ∪ {(x1, yk)}.
Observe that M ′ is a perfect matching for all 2k literals. Let ϕ′ be the matching CNF
constructed from M ′. Let P be the acceptance probability of ϕ. If k = 2 then we have
that P = (1 − p)2 + p4 = [(1 − p)2 + p2]2 = PrDp [ϕ′] for p = 2

3 . If k > 2, we know that
PrDp

[ϕ′] = P · ((1−p)2+p2)3

((1−p)2+p3)2 > P since ((1−p)2+p2)3

((1−p)2+p3)2 > 1 for p = 2
3 .

ϕ
(k)
BP : As we have seen before, we can replace all literals in ϕ(k)

BP with their positive analogues
and get ϕ. Let M be the perfect matching associated with ϕ. Define M ′ := M ∪ {(x1, yk)}.
Observe that M ′ is a perfect matching for all 2k literals. Let ϕ′ be the matching CNF
constructed from M ′. Let P be the acceptance probability of ϕ. If k = 2 then we have
that P = (1 − p)3 + p4 < [(1 − p)2 + p2]2 = PrDp [ϕ′] for p = 2

3 . If k > 2, we know that
PrDp [ϕ′] = P · ((1−p)2+p2)3

((1−p)2+p3)[(1−p)3+p3] > P since ((1−p)2+p2)3

((1−p)2+p3)[(1−p)3+p3] > 1 for p = 2
3 .
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