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Abstract

We study the relative advantage of classical and quantum distinguishers of bounded query
complexity over n-bit strings, focusing on the case of a single quantum query. A construction of
Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is ε-distinguishable by
a one-query quantum algorithm, but O(εk/

√
n)-indistinguishable by any non-adaptive k-query

classical algorithm.
We show that every pair of distributions that is ε-distinguishable by a one-query quantum al-

gorithm is distinguishable with k classical queries and (1) advantage min{Ω(ε
√
k/n)),Ω(ε2k2/n)}

non-adaptively (i.e., in one round), and (2) advantage Ω(ε2k/
√
n log n) in two rounds.

As part of our analysis we introduce a general method for converting unbiased estimators
into distinguishers.

1 Introduction

A distinguisher is an algorithm for hypothesis testing. Its purpose is to tell whether its input was
sampled from one distribution or from another. In algorithmic contexts including much of cryptog-
raphy, pseudorandomness, and statistical inference, the computational complexity of distinguishers
plays a crucial role.

In this work, we initiate the study of the classical simulation of quantum distinguishers. Quan-
tum algorithms promise algorithmic speedups, but the realization of fully capable quantum com-
puters is still a distant goal. It is thus important to investigate the capabilities of quantum devices
of limited computational power. Our focus here is on devices of bounded query complexity, a
fundamental efficiency measure in complexity theory and cryptographic analysis.

We are interested in the best possible advantage of simulating a quantum distinguisher of
bounded query complexity by a classical distinguisher of bounded but possibly larger query com-
plexity k. We focus on quantum distinguishers that make a single query to an n-bit Boolean-valued
oracle. Although this model appears restrictive, we find it interesting for the following reasons.

First, Aaronson and Ambainis [AA15] showed that in the constant advantage regime, one-query
quantum distinguishers already require Ω(

√
n) non-adaptive classical queries to simulate with the

same advantage. Subsequent works [BS21, SSW21] showed a rapid deterioration as more queries
are added: In general, q classical queries to a Boolean oracle require Ωq(n

1−1/2q) classical queries to
simulate. Beyond one or a handful of quantum queries, the improvement over brute-force classical
simulation becomes marginal. Moreover, addressing the case of one quantum query already brings
up interesting technical challenges and reveals connections to statistical estimation and random
matrix theory.

∗School of EECS, University of Ottawa. abogano@uottawa.ca
†McGill University. tsun.ming.cheung@mail.mcgill.ca
‡Dept. of Computer Science and Engineering, Indian Institute of Technology, Palakkad. kdinesh@iitpkd.ac.in
§Dept. of Computer Science and Engineering, Chinese University of Hong Kong. cslui@cse.cuhk.edu.hk

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 108 (2023)



Second, a one-query quantum algorithm can be viewed as a sensible model of a noise-prone
quantum device. Motivated by the challenges quantum computers pose to cryptography, it is of
interest to study the power of such devices as cryptographic adversaries. In this context, the best
classical simulation of a quantum adversary tells us to what extent our confidence in cryptographic
security of existing constructions carries over to the quantum setting. While quantum security
analyses have been successfully carried out for specific constructions, e.g., [Zha12, Yue14, JST21],
our work provides general black-box “transfer theorems” that yield quantum security directly from
sufficiently strong classical security at a bounded cost in parameters.

Our results

Our starting point is the separation between quantum and classical query complexity of Aaronson
and Ambainis [AA15]. In response to a question of Buhrman et al. [BFNR08], they constructed a
random variable F (for “Forrelation”) over {±1}2n (where n is a power of two) for which

• There exists a one query quantum algorithm that distinguishes F from a uniformly random
input in {±1}2n with constant advantage.

• Every classical algorithm that makes o(
√
n) queries fails to distinguish F from random with

constant advantage.

Moreover, their example is tight [BGGS21, AAB+21]: Every one-query quantum distinguisher with
constant advantage can be simulated by a O(

√
n)-query non-adaptive classical distinguisher with

constant advantage.
Here, as in the rest of the paper, a distinguisher is an algorithm that produces outputs in the

range [−1, 1]. The output of a quantum algorithm is taken to be its probability that it collapses to
an accepting state. The advantage of D on the pair of distributions (A,B) is 1

2 |E[D(A)]−E[D(B)]|.
We are interested in the best possible advantage that a classical distinguisher with k ≪

√
n

queries can attain for a pair of distributions that are ε-distinguishable by a one-query quantum
algorithm. The example of Aaronson and Ambainis yields the following generalization:

Proposition 1. For every ε ∈ (0, 1), k ∈ N, and n = 2m for some m ∈ N, there exists a
{±1}2n-valued random variable Fε that is ε-distinguishable from a uniform random 2n-bit string by
1 quantum query, but O(εk/

√
n)-indistinguishable by any non-adaptive 2k-query classical algorithm.

The random variable Fε is a mixture of Forrelation F and a uniform random variable U . We
believe that the bound O(εk/

√
n) is the best possible gap in the advantage of k-query non-adaptive

classical versus one-query quantum distinguisher. Our first result is the following lower bound on
the classical advantage:

Theorem 2. Let ε ∈ (0, 1), k, n ∈ N. Suppose (A,B) is a pair of random variables over {±1}n that
is ε-distinguishable by a one-query quantum algorithm. There exist 2k-query non-adaptive classical
algorithms P2a and P2b, such that

a. P2a distinguishes (A,B) with advantage Ω(ε
√

k/n),

b. P2b distinguishes (A,B) with advantage Ω(ε2k2/n), assuming k = O(
√
n).
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Assuming ε is constant, distinguisher P2a works better when k is small but does not reach
constant advantage as k approaches

√
n. In contrast, distinguisher P2b has a constant advantage

when k = Θ(
√
n); but for the case of k = 1, the advantage is worse than the upper bound O(ε/

√
n)

as given in Proposition 1 by a factor of 1/
√
n.

We also show that for constant ε, an advantage of Ω(k/
√
n log n) can be achieved with two

rounds of queries.

Theorem 3. For every ε ∈ (0, 1), n ∈ N, and k ≤
√
n log n/ε, every pair of random variables

over {±1}n that is ε-distinguishable by a one-query quantum algorithm is also Ω(ε2k/
√
n log n)-

distinguishable by a 2k-query two-round adaptive classical algorithm.

Bansal and Sinha [BS21] showed that no k-query adaptive classical algorithm can distinguish
F from random with advantage better than O(εk1/2(log n)1/4/n1/4). Sherstov, Storozhenko, and
Wu [SSW21] proved the same bound with different distributions.

We prove that their bound can be improved to Õ(εk/
√
n) for two-round algorithms, thereby

showing that the simulation in Theorem 3 is optimal in k and n up to log factors.

Theorem 4. For every ε > 0, k ∈ N, and n = 2m for some m ∈ N, there exists a random variable
Fε on {±1}n, such that it is O(εk

√
log n/

√
n)-indistinguishable from random by any two-round

classical algorithm that makes k queries per round.

Up to the factor of
√
log n, Theorem 4 generalizes Proposition 1 to adaptive two-round algo-

rithms. The results are summarized in Table 1.

Type Upper bound Ref. Lower bound Ref.

Non-adaptive O
(
εk/

√
n
)

Proposition 1
Ω(ε
√
k/n) Theorem 2a

Ω(ε2k2/n) Theorem 2b

Two-round O(εk
√
log n/

√
n) Theorem 4

Ω
(
ε2k/

√
n log n

)
Theorem 3

Adaptive O(εk1/2(log n)1/4/n1/4) [BS21, SSW21]

Table 1: Bounds on the best possible advantage of a k-query classical simulation of a one-query
quantum distinguisher with advantage ε for distributions over the n-dimensional Boolean cube.

While it is worth mentioning that the lower bound on advantage in Theorem 3 never exceeds the
upper bound from Proposition 1, it remains open whether adaptivity helps in classical simulations
of one-query quantum distinguishers.

Our techniques

The acceptance probability of a quantum algorithm that makes one query to an n-bit oracle can
be represented by a bounded (n + 1) × (n + 1) bilinear form, that is a function of the form
p(x, y) =

∑
Aijxiyj for some matrix A ∈ R(n+1)×(n+1) with bounded ∞-to-1 norm (see Propo-

sition 6). It suffices to prove our results under the assumption that the two distributions are
distinguishable by such bilinear forms. Aaronson et al. [AAI+16] showed that this representation
fully characterizes one-query quantum algorithms: every bilinear form of bounded ∞-to-1 norm
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represents the acceptance probability of some one-query quantum algorithm up to constant scal-
ing.

The general problem of identifying the optimal distinguisher in a class of algorithm A against
a class of distribution pairs B can be modeled as a zero-sum game between distinguishers in A
and distribution pairs in B whose payoff is the advantage. In this setting, we take A to be the
classical algorithms that make k queries to x and k queries to y, and B to be the distribution pairs
ε-distinguishable by some one-query quantum algorithm.

By Yao’s minimax theorem, a given distinguishing advantage is achievable against any given
pair in B if and only if there exists a mixture of distinguishers that has the same expected advantage
against all pairs in B. Hence it is sufficient (and necessary) to construct a probabilistic distinguisher
that is oblivious to the actual distributions. Such a distinguisher can be obtained from an unbiased
estimator for some multiple of p: if E[D(x, y)] = 1

Z p(x, y) for all inputs x, y then the distinguishing
advantage of D is at most Z times smaller than that of p.

In the proof of Theorem 2a, we construct an unbiased estimator P2a for p/Z with Z = O(
√
n/k)

that is a mixture of 2k-juntas. Each junta is a homogeneous quadratic function on k bits of x-input
and k bits of y-input.

The approximation factor Z is derived based on an additional assumption of boundedness of
the juntas, which we explain in detail in Proposition 6. The proposition states that a one-query
quantum algorithm is fully characterized by a bilinear form with ∞-to-1 norm bounded by 1 (we
say this bilinear form is 1-bounded). It can be shown that Z is the best possible within this class
of unbiased estimators:

Proposition 5. There exists a 1-bounded n× n bilinear form p such that if p/Z is represented as
a mixture of 1-bounded k × k bilinear forms, then Z = Ω(

√
n/k).

In Theorem 2b, we bypass the limitation by truncating a different unbounded unbiased esti-
mator P2b. Corollary 13 lower bounds the advantage of the distinguisher obtained by truncating
a scaled unbiased estimator in terms of its variance. The relevant estimator is obtained from in-
dependently sampled indices i1, . . . , ik, j1, . . . , jk of x and y input coordinates, respectively, where
each coordinate is chosen with probability weighted by Grothendieck’s factorization (see Section 2
for the definition). Proposition 16, which is also implicit in the more general analysis of [BGGS21],
shows that this estimator has variance O(n/k2).

One weakness of estimator P2b is that it samples the bits of the inputs x and y independently
and fails to detect relevant correlations between them. In contrast, the estimator P3 in Theorem 3
computes the distribution on y-queries adaptively depending on the answers to the x-queries. View-
ing the bilinear form p(x, y) as a linear function of the y-inputs, the sample of x-inputs is used to
estimate the coefficient

∑
iAijxi of yj for every j. In the second round, the y-inputs are sampled

with probabilities proportional to these estimates. Using Grothendieck’s factorization and expo-
nential tail bounds, in Proposition 17 we show that this improves the effective variance of P2b by a
factor of Õ(

√
k).

2 Quantum algorithms, bilinear forms, and norms

Notations

We write [n] for the set {1, . . . , n}. We use the standard computer science asymptotic notations,
and the tilde notations hide logarithmic factors. We write N (µ,Σ) for a multivariate Gaussian
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with mean µ and covariance matrix Σ, sd for statistical distance, and kl for KL-divergence.
For A ∈ Rm×n, we use Ai,: to denote the i-th row of A and A:,j for the j-th column of A. We

write ei the i-th standard basis vector, and Idk the k× k identity matrix. For a symmetric matrix
A, we denote the minimum and maximum eigenvalues (which are guaranteed to be real) by λmin(A)
and λmax(A) respectively.

Norms

For a vector, we denote ∥v∥p the p-norm of v. The 1-norm, 2-norm and ∞-norm will be relevant in
this work. We drop the subscript for Euclidean norm (2-norm) of a vector. The Cauchy-Schwarz
inequality says that

∑
i uivi ≤ ∥u∥∥v∥ and in particular ∥v∥1 ≤

√
n∥v∥ for v ∈ Rn.

For A ∈ Rm×n, the spectral norm ∥A∥, Frobenius norm ∥A∥F , and ∞-to-1-norm ∥A∥∞→1 are
defined to be

∥A∥ := max
u∈Rn:∥u∥=1

∥Au∥ = max
u∈Rm,v∈Rn

∥u∥=∥v∥=1

u⊤Av

∥A∥F :=

√√√√ m∑
i=1

n∑
j=1

A2
ij

∥A∥∞→1 := max
x∈{±1}m
y∈{±1}n

x⊤Ay = max
x∈[−1,1]m

y∈[−1,1]n

x⊤Ay = max
x∈Rn:∥x∥∞=1

∥Ax∥1

The relevance of the ∞-to-1 norm stems from the following connection to one-query quantum
algorithms:

Proposition 6 ([AAI+16]). For every quantum algorithm Q making one query to some oracle
in {±1}n, there exists a bilinear form p(x, y) =

∑n+1
i,j=1Aijxiyj, Aij ∈ R, such that for every

x ∈ {±1}n, the probability that Q accepts x equals p((x1, . . . , xn, 1), (x1, . . . , xn, 1)).

We refer to p as the advantage polynomial, and by abuse of notation, we refer ∥p∥# to be ∥A∥#
for any norm ∥·∥#. Clearly, the matrix defining any advantage polynomial must have ∞-to-1 norm
at most 1 (hence every advantage polynomial is 1-bounded). In general, this does not imply a
constant upper bound on the spectral norm. However, the dual form of Grothendieck’s inequality,
also known as the factorization Grothendieck’s inequality [Pis12, P.239], shows that such a bound
holds up to factorization.

Grothendieck’s factorization

Proposition 7 ([Pis12]). There is a universal constant KG such that if A ∈ Rn×n satisfies that
∥A∥∞→1 ≤ 1, then there exists α, β ∈ Rn

≥0 with ∥α∥ = ∥β∥ = 1, such that A can be factored as

Aij = αiÃijβj with ∥Ã∥ ≤ KG.

If the matrix A has no all-zero row or all-zero column, then we can further assume that α and
β are strictly positive, which is an assumption we can make for advantage polynomials.

If p is the advantage polynomial of a one-query quantum algorithm, the stronger conclusion
∥Ã∥ ≤ 1 can be obtained in Proposition 6 without using Grothendieck’s inequality but we will not
rely on this fact (at the expense of constant factors in some proofs). We also remark that this
factorization can be efficiently found by a semidefinite program.
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3 Non-adaptive estimators: Proof of Theorem 2

3.1 Proof of Theorem 2a

Suppose p(x, y) =
∑n

i,j=1Aijxiyj is the advantage polynomial of a quantum algorithm, so in par-
ticular ∥A∥∞→1 ≤ 1. For I, J ⊆ [n], we write AIJ the submatrix of A restricted to rows indexed in
I and columns indexed in J , and

pIJ(x, y) =
∑

i∈I,j∈J
Aijxiyj .

We analyze the following 2k-query classical distinguisher P2a(x, y):

1. Pick a pair of index sets I, J ⊆ [n], |I| = |J | = k, with probability proportional to ∥pIJ∥∞→1.

2. Query all xi with i ∈ I and all yj with j ∈ J .

3. Output pIJ(x, y)/∥pIJ∥∞→1.

As x and y take ±1 values, the step 3 above, always outputs a value D(x, y) ∈ [−1, 1] as required
for a distinguisher. We first show that D(x, y) is an unbiased estimator of p(x, y) up to a scalar.

Claim 8. Z ·D(x, y) is an unbiased estimator of p(x, y), where

Z =
∑

I,J :|I|=|J |=k

∥pIJ∥∞→1/

(
n− 1

k − 1

)2

.

Proof. The probability for choosing the index pair (I, J) in step 1 is given by

∥pIJ∥∞→1∑
I′,J ′:|I′|=|J ′|=k∥pI′J ′∥∞→1

=
∥pIJ∥∞→1

Z
(
n−1
k−1

)2 .

Therefore

E[Z ·D(x, y)] = Z
∑

|I|=|J |=k

∥pIJ∥∞→1

Z
(
n−1
k−1

)2 · pIJ(x, y)

∥pIJ∥∞→1

=
1(

n−1
k−1

)2 ∑
|I|=|J |=k

∑
i∈I,j∈J

Aijxiyj

=
n∑

i=1

n∑
j=1

Aijxiyj

= p(x, y).

The second-to-last line uses the fact that each index i appears in exactly
(
n−1
k−1

)
sets I and likewise

for j and J .

To complete the analysis we use the following inequality.
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Proposition 9. There is a constant C so that for any n× n matrix A,

1(
n
k

)2 ∑
|I|=|J |=k

∥AIJ∥∞→1 ≤ C
(k
n

)3/2
∥A∥∞→1. (1)

Proof of Theorem 2a. Let p be the advantage polynomial of the one-query quantum algorithm with
advantage ε on (A,B), and A be the matrix defining p. Without loss of generality, we assume

E[p(A)]− E[p(B)] ≥ ε.

From Claim 8, we obtain

E[D(A)]− E[D(B)] =
1

Z
(E[p(A)]− E[p(B)]) ≥ ε

Z
.

It remains to upper bound the value of Z. Using Proposition 9 we get

Z =

(
n
k

)2(
n−1
k−1

)2 · 1(
n
k

)2 ∑
|I|=|J |=k

∥AIJ∥∞→1 ≤
n2

k2
· C
(k
n

)3/2
∥A∥∞→1 ≤ C

√
n

k
.

This concludes the desired advantage bound of Ω(ε
√
k/n).

It follows from Proposition 5 that our analysis of D is tight up to constant factor.
Proposition 9 is similar to the following inequality proved by Rudelson and Vershynin [RV06,

Equation (4.1)] who showed that for subsets Iρ and Jρ sampled by including each index indepen-
dently with probability ρ = k/n,

E[∥AIρJρ∥∞→1] ≤ C ′ρ3/2
(
∥A∥row + ∥A∥col

)
+ C ′ρ2∥A∥∞→1, (2)

for some constant C ′. Here, ∥A∥row =
∑

i∥Ai,:∥ and ∥A∥col =
∑

j∥A:,j∥ denote the sum of the
2-norms of its rows and columns, respectively. For completeness, we present the derivation Propo-
sition 9 from (2) using Poissonization [Tro08b] (see also [Tro08a]).

Proof of Proposition 9. Tropp [Tro08b] showed that

1(
n
k

)2 ∑
|I|=|J |=k

∥AIJ∥# ≤ 4E[∥AIρJρ∥#],

for every matrix norm ∥·∥# that satisfies ∥A′∥# ≤ ∥A∥# for every submatrix A′ of A. This is in
particular true for the ∞-to-1 norm: if ∥A′∥∞→1 = x′⊤A′y′ for x′, y′ ∈ [−1, 1]m, then ∥A∥∞→1 ≥
x⊤Ay = x′⊤A′y′ where x and y are extended from x′ and y′ with zeros padded in the remaining
entries. It remains to prove that ∥A∥row, ∥A∥col ≤ KG∥A∥∞→1.

Claim 10. For any M ∈ Rm×n, ∥M i,:∥ ≤ ∥M∥ and ∥M :,j∥ ≤ ∥M∥ for any i ∈ [m], j ∈ [n].

Proof. We prove the case of ∥M i,:∥ and the other case follows the same proof:

∥M i,:∥2 = e⊤i M(M i,:) ≤ ∥M∥ · ∥M i,:∥ =⇒ ∥M i,:∥ ≤ ∥M∥.

Claim 11. ∥A∥row ≤ KG∥A∥∞→1.
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Proof. By re-scaling, we assume ∥A∥∞→1 = 1 without loss of generality. Let Aij = αiÃijβjbe the
Grothendieck’s factorization of A (Proposition 7), by Cauchy-Schwarz inequality,

∥A∥row =
∑
i

√∑
j

A2
ij =

∑
i

αi ·
√∑

j

β2
j Ã

2
ij ≤

√∑
i

α2
i

√∑
ij

β2
j Ã

2
ij =

√∑
j

β2
j ∥Ã:,j∥2.

By Claim 10 and the bound ∥Ã∥ ≤ KG, we conclude that ∥A∥row ≤
√∑

j β
2
j ·K2

G = KG.

3.2 The bias of truncated unbiased estimators

In preparation for the proof of Theorem 2b, we prove a general bound of the bias arising from
truncating an unbiased estimator of low variance. Denote trunc: R → [−1, 1] the truncation
function

trunc(t) =

{
t, if |t| ≤ 1,

sign(t), if |t| > 1.

Proposition 12. Assume ∥f∥∞ = 1, Z ≥ 1, and Fr is a random function such that E[Fr(x)] = f(x)
for all x (here r denotes the randomness). The distinguisher Dr(x) = trunc(Fr(x)/Z) has advantage
at least

ε

Z
− 2max

x

∫ ∞

1−1/Z
Prr
(
|Fr(x)− f(x)| ≥ Zt

)
dt.

for any pair of random variables that are ε-distinguishable by f .

Corollary 13. Under the assumptions of Proposition 12, D has advantage at least

ε

Z
− 2

Z(Z − 1)
·max

x
VarFr(x).

Proof. Using Chebyshev’s inequality, the integrand appearing in Proposition 12 is at most (VarFr(x))/Z
2t2

and so the integral is at most (VarFr(x))/Z(Z − 1).

The proposition is derived from the following claim:

Claim 14. Let Y be a random variable with |E[Y ]| ≤ 1, then∣∣E[trunc(Y )]− E[Y ]
∣∣ ≤ ∫ ∞

1−|E[Y ]|
Pr(|Y − µ| ≥ t)dt.

Proof of Proposition 12. We apply Claim 14 to the random variable Fr(x)/Z to obtain

|E[Dr(x)]− f(x)/Z| ≤
∫ ∞

1−|f(x)/Z|
Prr
(
|Fr(x)/Z − f(x)/Z| ≥ t

)
dt

≤
∫ ∞

1−1/Z
Prr
(
|Fr(x)− f(x)| ≥ Zt

)
dt.

Suppose (A,B) is ε-distinguishable by f . By the triangle inequality, |E[Dr(A)]− E[f(A)]/Z| is at
most the maximum of the integral over x, and the same bound holds for replacing A by B. Now
the bound on advantage follows from triangle inequality.
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In the proof of Claim 14 we use the following fact:

Fact 15. |trunc(t)− t| = max{0, |t| − 1}.

Proof of Claim 14. Let µ = E[Y ].

|E[trunc(Y )]− E[Y ]| ≤ E[|trunc(Y )− Y |]

=

∫ ∞

0
Pr(|trunc(Y )− Y | ≥ t)dt

=

∫ ∞

0
Pr(|Y | − 1 ≥ t)dt (Fact 15)

=

∫ ∞

0
Pr(|Y | ≥ t+ 1)dt

≤
∫ ∞

0
Pr(|Y − µ| ≥ t+ 1− |µ|)dt (triangle inequality)

=

∫ ∞

1−|µ|
Pr(|Y − µ| ≥ t)dt (change of variables)

3.3 Proof of Theorem 2b

Let p(x, y) =
∑

ij Aijxiyj be the advantage polynomial so that ∥A∥∞→1 = 1. We let Aij = αiÃijβj
to be the Grothendieck’s factorization of A. We analyze the following 2k-query estimator:

1. Sample a sequence I = (I(1), . . . , I(k)) of k i.i.d indices by picking each i ∈ [n] with probability
pi := αi/∥α∥1. Query the inputs xI(u) for u ∈ [k].

2. Sample a sequence J = (J(1), . . . , J(k)) of k i.i.d indices by picking each j ∈ [n] with proba-
bility qj := βj/∥β∥1. Query the inputs yJ(v) for v ∈ [k].

3. Output the empirical average

P (x, y) = Ei∼I,j∼J

[
Aij

xiyj
piqj

]
.

Clearly this estimator makes at most 2k queries. Now we show that this is an unbiased estimator
of bounded variance.

Proposition 16. P (x, y) is an unbiased estimator of p(x, y) of variance at most O(n/k2).

Proof. Unbiasedness follows from linearity of expectation:

E[P (x, y)] = E

[
E
[
Aij

xiyj
piqj

∣∣∣ I, J]] = E

[
Aij

xiyj
piqj

]
=
∑
i,j

Aij
xiyj
piqj

· piqj = p(x, y).

In preparation for calculating the variance, let Buv = AI(u)J(v)/pI(u)qJ(v). By independence and

9



the fact that x2i = y2j = 1,

Cov
(
Buv, Bu′v′

)
=



E

[
A2

ij

p2i q
2
j

]
− p(x, y)2, if u = u′ and v = v′

E
[
AijAij′yjyj′

p2i qjqj′

]
− p(x, y)2, if u = u′ and v ̸= v′

E

[
AijAi′jxixi′

pipi′q
2
j

]
− p(x, y)2, if u ̸= u′ and v = v′

0, otherwise.

Here i, i′ and j, j′ denote random indices chosen independently. Decomposing Var[P (x, y)] as an
average of covariances, we obtain

Var[P (x, y)] =
1

k4

∑
u,v,u′,v′

Cov
(
Buv, Bu′v′

)
≤ 1

k2
E

[
A2

ij

p2i q
2
j

]
+

k − 1

k2

(
E

[
AijAij′yjyj′

p2i qjqj′

]
+ E

[
AijAi′jxixi′

pipi′q
2
j

])
. (3)

We bound the three types of terms using Grothendieck’s factorization of A.

E

[
A2

ij

p2i q
2
j

]
=
∑
i,j

A2
ij

piqj

= ∥α∥1 · ∥β∥1 ·
∑
i,j

αiβjÃ
2
ij (Grothendieck’s factorization)

≤ ∥α∥1 · ∥β∥1 ·
√∑

i,j

α2
i Ã

2
ij ·
√∑

i,j

β2
j Ã

2
ij (Cauchy-Schwarz inequality)

= ∥α∥1 · ∥β∥1 ·
√∑

i

α2
i ∥Ãi,:∥2 ·

√∑
j

β2
j ∥Ã:,j∥2

≤ ∥α∥1 · ∥β∥1 · ∥Ã∥ · ∥Ã∥ (Claim 10)

≤ n ·K2
G. (Cauchy-Schwarz inequality)

E

[
AijAij′yjyj′

p2i qjqj′

]
=
∑
i,j,j′

AijAij′yjyj′

pi

=
∑
i

1

pi

(∑
j

Aijyj

)2

≤ ∥α∥1
∑
i

αi

(∑
j

Ãijyjβj

)2

(Grothendieck’s factorization)

≤ ∥α∥1
∑
i

(Ãβy)2i (Define (βy)j := yjβj ; and αi ∈ [0, 1])

= ∥α∥1∥Ãβy∥2

≤ ∥α∥1∥Ã∥2 (∥βy∥ = ∥β∥ = 1)

≤
√
n ·K2

G. (Cauchy-Schwarz inequality)

10



By symmetry the third term is also at most
√
nK2

G. Plugging into (3), we obtain

Var[P (x, y)] = O(n/k2 +
√
n/k) = O(n/k2).

Proof of Theorem 2b. Unbiasedness follows from linearity of expectation. Let V be the variance
bound from Proposition 16. We instantiate Corollary 13 with this P and Z = 1+ 4V/ε. This is at
most 1 provided k2 = o(n). The resulting distinguishing advantage is Ω(ε2/V ).

The advantage of any distinguisher with the same distribution over samples cannot be better
than εk2/n. Therefore our analysis is optimal in terms of k and n. To see this, consider the
distribution in which the bit-pairs (xi, yi) are unbiased, ε-correlated, and mutually independent.
The resultant bilinear form (

∑
xiyi)/n is 1-bounded, which corresponds to a one-query quantum

distinguisher; and it distinguishes this distribution from random with advantage ε. In contrast, the
advantage of a classical distinguisher is at most ε times the expected number of collisions i = j
with i ∈ I and j ∈ J , which is at most εk2/n.

4 An adaptive estimator: Proof of Theorem 3

We modify the estimator of Section 3.3 so that the values {xi : i ∈ I} adaptively affect the prob-
abilities for index sampling of J . Again we assume ∥A∥∞→1 = 1 and let Aij = αiÃijβj to be the
Grothendieck’s factorization of A.

1. Choose a sample I of k i.i.d indices by picking each i ∈ [n] with probability pi = αi/∥α∥1.
Query the inputs xi for i ∈ I. Let axI ∈ Rn be defined by [axI ]j := Ei∼I [Aijxi/pi].

2. Choose a sample J of k i.i.d indices by picking each j ∈ [n] with probability qj = |[axI ]j |/∥axI∥1.
Query the inputs yj for j ∈ J .

3. Output the empirical average P (x, y) = Ej∼J [[a
x
I ]jyj/qj ].

This estimator is unbiased by linearity of expectation. The main technical result of this section
is the following deviation bound:

Proposition 17. There is a constant C such that for all x, y, ε > 0, and t > 0,

Pr

(
|P (x, y)− p(x, y)| ≥ C

√
n log n

k

t

ε

)
≤ k√

n log n

(ε
t

)2
+ 2n−(t/ε)2 .

Proof of Theorem 3. With a (possible) change in the constant factor in the lower bound, we may
assume that ε ≤ ε0 for a sufficiently small constant ε0 and Z := C

√
n log n/kε ≥ 2. We ap-

11



ply Proposition 17 to bound the integral in Proposition 12 by∫ ∞

1−1/Z
Pr
(
|P (x, y)− p(x, y)| ≥ Zt

)
≤ C√

log n
· ε

Z

∫ ∞

1−1/Z

dt

t2
+ 2

∫ ∞

1−1/Z
n−(t/ε)2dt

=
C√
log n

· ε

Z
· 1

1− 1/Z
+

√
4πε2

log n
· Pr
(
N (0, ε2/2 log n) ≥ 1− 1/Z

)
≤ 2C√

log n
· ε

Z
+

√
4πε2

log n
· Pr
(
N (0, 1) ≥

√
log n/2ε2

)
≤ 2C√

log n
· ε

Z
+

√
4πε2

log n
· n−1/ε2

≤ ε

6Z
+

ε

6Z
.

The second to last inequality is the Gaussian tail bound. The last inequality holds for sufficiently
large n using the assumption that ε ≤ ε0. By Proposition 12, D has advantage at least ε/3Z.

To prove Proposition 17, we split the difference between P and p via the “hybrid” P ′(x, y) =
(axI )

⊤y =
∑

j [a
x
I ]jyj . Claims 18 show that P ′ has small variance and is therefore close to P .

Claim 19 shows that P ′ is typically close to P .

Claim 18. Var[P ′(x, y)] ≤ K2
G

√
n/k.

Claim 19. Pr[|P (x, y)− P ′(x, y)| ≥ t ·KG
√
n/k | I] ≤ 2 exp(−t2/2) for every t > 0.

Proof of Proposition 17. By Claim 18 and Chebyshev’s inequality, for every t1 > 0,

Pr
[
|P ′(x, y)− p(x, y)| ≥ t1 ·KG(

√
n/k)1/2

]
≤ 1

t21
.

Using Claim 19 together with a union bound and the triangle inequality, it follows that

Pr
[
|P (x, y)− p(x, y)| ≥ t1 ·KG(

√
n/k)1/2 + t2 ·KG

√
n/k

]
≤ 1

t21
+ 2 exp(−t22/2)

for every t1 > 0 and t2 > 0. Plugging in t1 = (t/ε) · (
√
n log n/k)1/2 and t2 = (t/ε) · (2 log n)1/2

gives the desired inequality.

Proof of Claim 18. As the samples in I are independent,

Var[P ′(x, y)] =
1

k
Vari

∑
j

Aijxiyj
pi

 =
1

k
Vari

∑
j

Aijyj
pi



12



because x2i = 1. As i is sampled with probability pi = αi/∥α∥1, we get

Var

∑
j

Aijyj
pi

 ≤
∑
i

pi

(∑
j

Aijyj
pi

)2

≤ ∥α∥1
∑
i

αi

(∑
j

Ãijyjβj

)2

(Grothendieck’s factorization)

≤ ∥α∥1
∑
i

(Ãβy)2i (Define (βy)j := yjβj ; and αi ∈ [0, 1])

≤ ∥α∥1 · ∥Ã∥2 (∥βy∥ = ∥β∥ = 1)

≤
√
n ·K2

G. (Cauchy-Schwarz inequality)

Proof of Claim 19. Since [axI ]jyj/qj = ∥axI∥1yj , conditioned on I, P (x, y) is an average of k inde-
pendent random variables taking values either −∥axI∥1 or ∥axI∥1 with mean P ′(x, y). Applying the
Chernoff-Hoeffding bound to kP/∥axI∥1, we obtain

Pr
[
|P (x, y)− P ′(x, y)| ≥ t∥axI∥1/

√
k
∣∣ I] ≤ 2 exp(−t2/2).

It remains to show that ∥axI∥1 ≤ KG

√
n/k for every choice of I:

∥axI∥1 =
∑
j

∣∣∣∣1k∑
i∈I

xiAij

pi

∣∣∣∣
=

∥α∥1
k

∑
j

βj

∣∣∣∣∣∑
i∈I

xiÃij

∣∣∣∣∣ (Grothendieck’s factorization)

≤ ∥α∥1
k

√√√√∑
j

(∑
i∈I

xiÃij

)2

(Cauchy-Schwarz inequality)

=
∥α∥1
k

√∑
j

(x⊤I Ã)2j (Define (xI)i := xi · 1(i ∈ I))

=
∥α∥1
k

∥x⊤I Ã∥

≤ ∥α∥1 · ∥xI∥ · ∥Ã∥
k

≤
√
n ·

√
k ·KG

k
. (Cauchy-Schwarz inequality)

As mentioned, Theorem 4 shows that the distinguisher in Theorem 3 is best possible up to a
factor of log n.

5 Classical advantage upper bounds: Proofs of Proposition 1 and The-
orem 4

To start this section, we first present the proof for the classical advantage upper bound of non-
adaptive algorithms.

13



Proof of Proposition 1. Aaronson and Ambainis [AA15] show that F is Ω(1)-distinguishable from
the uniform random U by one quantum query. The random variable F is obtained by rounding
a pair of n-dimensional Gaussians (X,Y ) where X is standard Gaussian and Y is obtained by
applying the Hadamard matrix to X. So the non-adaptive classical 2k-query advantage is upper
bounded by the maximum statistical distance between the projections (XI , YJ) over all sets I, J
with |I|+ |J | = 2k and a standard 2k-dimensional Gaussian.

In general, the statistical distance between centered multivariate Gaussians with covariance
matrices Σ1 and Σ2 is Θ(1)min{1, ∥Σ−1

2 Σ1 − I∥F } [DMR20]. As Σ2 is the identity and all non-
diagonal entries of Σ1 are ±1/

√
n, it follows that ∥Σ−1

2 Σ1 − Id∥F = O(k/
√
n).

Setting Fε as εF + (1 − ε)U , the advantage of any distinguisher, classical or quantum, scales
precisely by ε.

As for the classical advantage upper bound of two-round algorithms, the proof of Theorem 4
bounds the statistical distance between the distinguisher’s views on the two distributions via their
KL-divergence. We need the following explicit formula for KL-divergence of multivariate Gaussians:

Fact 20. kl(N (µ,Σ),N (0, Idk)) =
1
2(∥µ∥

2 + tr(Σ− Idk)− log detΣ).

The following consequence of this formula is implicit in [DMR20]:

Claim 21. Assuming λmin(Σ) ≥ 1/3, kl((N (µ,Σ),N (0, Idk)) ≤ 1
2(∥µ∥

2 + ∥Σ− Idk∥2F ).

Proof. Let η1, . . . , ηk be the eigenvalues of Σ− Idk. By assumption η1, . . . , ηk ≥ −2/3. Then

tr(Σ− Idk)− log detΣ =
k∑

i=1

(ηi − log(1 + ηi)) ≤
k∑

i=1

η2i = ∥Σ− Idk∥2F ,

where the inequality uses the fact that η − log(1 + η) ≤ η2 for all η ≥ −2/3.

The requirement λmin(Σ) ≥ 1/3 is satisfied by matrices that are close to the identity in the
following sense:

Fact 22. If A ∈ Rk×k is a symmetric matrix with |Aij | ≤ ε for all i, j ∈ [k], then λmin(Idk +A) ≥
1− kε and λmax(Idk +A) ≤ 1 + kε.

In particular, as long as Σ is 2/3k-close to the identity in (entrywise) infinity-norm, the bound
in Claim 21 applies.

Another tool we need is the chain rule for KL-divergence:

Fact 23 (Chain rule for KL-divergence). kl((U, V ), (U ′, V ′)) = kl(U,U ′) + kl(V |U, V ′|U ′), where
kl(V |U, V ′|U ′) = Eu∼Ukl(V |U = u, V ′|U ′ = u).

In our application of Fact 23, (U, V ) = (U1, . . . , Uk, V1, . . . , Vk) is a multivariate Gaussian.
This class of distributions is closed under conditioning. To calculate the effect of conditioning on
the parameters, we identify the zero-mean (assumed without loss of generality) random variables
U1, . . . , Uk, V1, . . . , Vk with vectors in Hilbert space endowed with the inner product E[A · B]. The
conditional means and conditional covariances of V |U are given by

E[Vj |U ] = V
∥
j (4)

Cov[Vj , Vj′ |U ] = E[V ⊥
j · V ⊥

j′ ], (5)
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where Vj = V
∥
j +V ⊥

j is the orthogonal decomposition of Vj into a parallel component V
∥
j ∈ Span(U)

and a perpendicular component V ⊥
j ∈ Span(U)⊥. As V

∥
j is in Span(U), its value is determined by

U1, . . . , Uk. And as V ⊥
j and V ⊥

j′ are in Span(U)⊥, their values are independent of U1, . . . , Uk.
Lastly we will use the following fact:

Fact 24. If M is the maximum of n standard Gaussian random variables, then E
[
M2] ≤ 4 log(

√
2n).

Proof of Fact 24. By Jensen’s inequality, for every t ∈ (0, 1/2),

exp(tE[M2]) ≤ E[exp(tM2)] ≤ E[n exp(tN (0, 1)2)] =
n√

1− 2t
.

Here, the last equality follows from the formula of the moment-generating function of a squared
Gaussian. We obtain the desired formula by setting t = 1/4 and taking logarithms.

Proof of Theorem 4. The random variable F = (signX, signY ) is the same as in Proposition 1. As
in the previous proof, we first reduce to the case when ε is constant and use the same notations in
that proof.

Aaronson and Ambainis showed that E[sign(X)(H/n) sign(Y )] = Ω(1), where H is the n × n
Hadamard matrix. As ∥H/n∥∞→1 ≤ ∥H∥ ≤ 1, this justifies the quantum advantage.

For the classical case, as taking signs can only decrease advantage, we upper bound the ad-
vantage of distinguishing Z = (X,Y ) from N (0, Id2n). The only relevant property of Z is that
E[Zi] = 1 and |E[ZiZj ]| ≤ 1/

√
n for all pairs i ̸= j. Without loss of generality, we assume that

k ≤
√
n/4.

The distinguisher’s strategy is specified by the query sets I and J with |I| = |J | = k, issued in
the first and second round, respectively. For the sake of upper bound, we can assume without loss
of generality that J is a deterministic function of the coordinates ZI = (Zi)i∈I observed in the first
round. The distinguisher’s advantage is at most

εC = max
I,J

sd((ZI , ZJ),N (0, Id2k))

≤

√
1

2
max
I,J

kl((ZI , ZJ),N (0, Id2k)) (Pinsker’s inequality)

=

√
1

2

(
max

I
kl(ZI ,N (0, Idk)) + max

I
max
J

EZI
kl(ZJ |ZI ,N (0, Idk))

)
(Fact 23)

≤
√

1

2

(
max

I
kl(ZI ,N (0, Idk)) + max

I
EZI

max
J

kl(ZJ |ZI ,N (0, Idk))
)

(convexity of max)

As k ≤ 2
3

√
n, the covariance matrix ΣI of ZI is 2/3k-close to the identity in infinity norm, so

using Claim 21, for every I one has

kl(ZI ,N (0, Idk)) ≤
1

2
∥ΣI − Idk∥F ≤ k2

2n
. (6)

For the second KL-divergence, let µJ |I and ΣJ |I denote the vector of conditional means (E[Zj |ZI ])j∈J
and covariances Cov[Zj , Zj′ |ZI ] for j, j′ ∈ J , respectively. We will prove that for all choices of I
and J , ΣJ |I is 2/3k-close to Idk and apply Claim 21 to bound it by

EZI
max
J

kl(ZJ |ZI ,N (0, Idk)) ≤
1

2
max
J

E
[
∥µJ |I∥2

]
+

1

2
max
J

E
[
∥ΣJ |I∥2F

]
. (7)
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To bound the first term in (7), we analyze the projections Z
∥
j of Zj onto Span{Zi : i ∈ I} for every

j ̸∈ I. Fix a basis for the vector space spanned by Z1, . . . , Z2n and let zi be the representation of

Zi under this basis. Let B be the k × n matrix whose rows are zi for i ∈ I. The projection z
∥
j of

zj onto the row-span of B is given by the formula

z
∥
j = B⊤(BB⊤)−1Bzj .

The norm of this projection is at most

∥z∥j ∥ ≤ λmax(BB⊤)1/2 · λmin(BB⊤)−1 · ∥Bzj∥ ≤
(
1 +

k√
n

)1/2(
1− k√

n

)−1

·
√

k

n
≤ 2

√
k

n
.

The second inequality follows from Fact 22 as BB⊤ is 1/
√
n-close to the identity and the entries

of Bzj are all bounded by 1/
√
n. The third inequality follows from the assumption k ≤

√
n/3.

By (4), for every j, E[Zj |ZI ] is a Gaussian random variable of mean zero and standard deviation
at most 2

√
k/n. Letting µJ |I denote the vector of conditional means (E[Zj |ZI ])j∈J , by Fact 24, for

any fixed I,

max
J

E
[
∥µJ |I∥2

]
≤ kE max

j∈[n]\I
E[Zj |ZI ]

2 ≤ k

(
2

√
k

n

)2

· 4 log(
√
2n) =

16k2 log(
√
2n)

n
. (8)

For the second term in (7), we apply (5) to obtain

Cov[Zj , Zj′ |ZI ] = E[Z⊥
j · Z⊥

j′ ] = E[Zj · Zj′ ]− E[Z
∥
j · Z∥

j′ ]

by orthogonality, from which we have∣∣Cov[Zj , Zj′ |ZI ]− E[Zj · Zj′ ]
∣∣ ≤ ∥z∥j ∥ · ∥z

∥
j′∥ ≤ 4k

n
≤ 1√

n
. (9)

As E[Zj · Zj′ ] is 1/
√
n close to the identity, we conclude that ΣJ |I is 2/

√
n ≤ 2/3k-close to the

identity. Therefore Claim 21 applies. Plugging (8) and (9) into (7) we obtain

EZI
max
J

kl(ZJ |ZI ,N (0, Idk)) ≤
1

2
· 16k

2 log(
√
2n)

n
+

1

2
· k2 · 4

n
= O

(k2 log n
n

)
.

Together with (6), this gives εC = O(k
√
log n/

√
n) as desired.

6 Optimality of local unbiased estimators: Proof of Proposition 5

Proof of Proposition 5. With a (possible) change in the constant factor in the lower bound, we may
assume each form in the mixture depends on k bits of x and k bits of y. Let p(x, y) =

∑
Aijxiyj ,

and let BIJ be a matrix supported on I, J ⊆ [n] with |I| = |J | = k:

[BIJ ]ij =

{
bij if i ∈ I, j ∈ J

0 otherwise
.
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Suppose ∥A∥∞→1 = 1 and A = EI,J [BIJ ], where the expectation is over an arbitrary distribution
over pairs I, J . It is sufficient to show that ∥BIJ∥∞→1 = Ω(

√
n/k) for at least one choice of the

index sets (I, J).
We prove the contrapositive. Suppose ∥BIJ∥∞→1 ≤ ε for all BIJ . By Claim 11, ∥BIJ∥row ≤

KG · ε, so
∑

i∈I,j∈J |[BIJ ]ij | ≤ KG · ε
√
k. Therefore∑

i,j

|Aij | =
∑
i,j

|EI,J [[BIJ ]ij ]| ≤ E
∑

i∈I,j∈J
|[BIJ ]ij | ≤ KG · ε

√
k.

For n being a power of two, let A be the n × n Hadamard matrix scaled by 1/n, such that
∥A∥∞→1 = n. Then |Aij | = n−3/2 for all i and j, thus KG · ε

√
k ≥

√
n and hence ε = Ω(

√
n/k)

as desired. If n is not a power of two, we plant the largest possible Hadamard matrix and zero out
the remaining entries, the same argument still applies.
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