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Abstract
An arithmetic formula is an arithmetic circuit where each gate has fan-out one.
An arithmetic read-once formula (ROF in short) is an arithmetic formula where each
input variable labels at most one leaf. In this paper we present several efficient blackbox
polynomial identity testing (PIT) algorithms for some classes of polynomials related to
read-once formulas. Namely, for polynomial of the form:

o f[=®;-...- Dy, + Uy ... U, where &;, ¥; are ROFs for every i € [m],j € [r].

o [ = + &5 + &5, where each ®; is an ROF and e;-s are arbitrary positive
integers.

Earlier, only a whitebox polynomial-time algorithm was known for the former class
by Mahajan, Rao and Sreenivasaiah (Algorithmica 2016).

In the same paper, they also posed an open problem to come up with an efficient
PIT algorithm for the class of polynomials of the form f = ®7* + &5 +...+ ®*, where
each ®; is an ROF and k is some constant. Our second result answers this partially by
giving a polynomial-time algorithm when k& = 3. More generally, when each ®;, 5, ®3
is a multilinear bounded-read formulae, we also give a quasi-polynomial-time blackbox
PIT algorithm.

Our main technique relies on the hardness of representation approach introduced
in Shpilka and Volkovich (Computational Complexity 2015). Specifically, we show
hardness of representation for the resultant polynomial of two ROF's in our first result.
For our second result, we lift hardness of representation for a sum of three ROFs to
sum of their powers.

1 Introduction

Polynomial Identity Testing (PIT) is a central problem in the area of algebraic complexity
theory. Given a multivariate polynomial in the form of an arithmetic circuit or a formula
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®, one is asked to decide whether & computes the identically zero polynomial, i.e. every
coefficient in the monomial expansion of the polynomial computed by & is zero. There are
two types of PIT algorithms - whitebox and blackbox. In the former, one can look inside
the circuit or formula while in the latter one can only access evaluations of the formula on
field points of their choice.

PIT is one of the important problems in the class BPP (actually in co-RP) for which
a polynomial-time deterministic algorithm is yet to be found. The blackbox randomized
algorithm for PIT is extremely simple: given an input polynomial f € F[xq,xo,...,,] of
degree d, pick any set S C F of size greater than d and evaluate f on a random point sampled
from S™. Declare the polynomial to be an identity if the evaluation is zero and a non-identity
otherwise. If the polynomial was actually zero then this algorithm cannot err, otherwise for
a non-zero input, this random evaluation can be zero with probability at most d/|S| by the
Schwartz-Zippel-Demillo- Lipton Lemma [Sch80, Zip79, DL7S|.

Derandomizing PIT is intimately tied to proving circuit lower bounds. A determin-
istic sub-exponential-time PIT algorithm yields either a super-polynomial Boolean or a
super-polynomial arithmetic circuit lower bound [KI03, HS80, Agr05]. Conversely, a super-
polynomial arithmetic circuit lower bound implies a deterministic sub-exponential time PIT
algorithm [KI03]. We refer the reader to the excellent survey [KS19] for a detailed exposition
on this hardness vs randomness trade-off in the algebraic setting. PIT also finds applica-
tions in the problems of primality testing [AKS04] and finding perfect matchings in graphs
[Lov79].

An arithmetic formula is an arithmetic circuit whose underlying graph is a tree (see
Appendix B for formal definitions of arithmetic circuits and formulae). While derandomizing
PIT for arithmetic formulae is still open, various interesting restricted classes have found
efficient deterministic PIT algorithms. One such natural restriction is to bound the number
of times a variable can appear in a formula. An arithmetic read-once formula (ROF in short)
is a formula where each variable appears at most once. Shpilka and Volkovich considered
the more general class of sum of & ROFs, where k is some constant. They devised a quasi-
polynomial-time deterministic algorithm for this class in [SV15], which was later improved
to polynomial time in [MV18]. An even more generalized model is a read-k formula, where
every variable can appear at most k times, for some constant k. For the class of multilinear
read-k formulas, [AvMV15] give a deterministic quasi-polynomial-time PIT algorithm. Note
that the class of sum of £ ROFs forms a strict subclass of multilinear read-k formulas.

From a single ROF to a sum of ROFs, the next model to consider is sum-of-products of
ROFs. More generally, let C be any natural circuit class like ROF's, then one can define the
class ZW [] € which consists of polynomials of the form f = Zle [I}Z, fij, where each f;;
belongs to the class C. One can also define its sub-class ZW /\ C where each product gate
takes the same input. Namely, the class consists of polynomials of the form f = Zle fi,
where cach f; € C. The work of [RR19] proved lower bounds against the class S°™ [T ROF,
when £ is constant and the product gates have certain fan-in restriction. For PIT, [MRS16]

designed a polynomial-time whiteboz algorithm for the sub-class Z[z] [] ROF. In this work,
we give a polynomial-time blackboxr PIT algorithm for this model. For a constant k, PIT for



the class Z[H /\ ROF was left as an open problem by [MRS16|. Here, we give a polynomial-
time blackbox PIT algorithm for S A C, when k = 3 and C is the class of read-once or
more generally multilinear constant-read formulas.

1.1 Motivations and Related Works

PIT for S J]C. One of the important results in the PIT literature is an efficient deter-

ministic PIT algorithm for the class 2™ [T S, both in blackbox and whitebox setting, where
k is a constant. The first subexponential PIT algorithm was given in [DS07]. The algorithm
was in the whitebox setting and had quasi-polynomial run-time. Later, in [KS07], the result
was improved by presenting a polynomial-time whitebox algorithm. This was followed by a
long line of work [KS08, KS09, SS11, SS12, SS13] which culminated in a polynomial-time
blackbox algorithm.

A SMTT S circuit over a field F computes polynomials of the kind S H?;l l; ;, where
d; € Nforevery i € [k] and ¢, ; € Flxy, 29, ..., x,] are linear polynomials for every i € [k],j €
[d;]. One natural way to extend this result is to replace the linear polynomials ¢; ;’s with
more general arithmetic circuits, for which efficient deterministic PIT algorithms are known.
Some interesting candidates for such circuits are sparse polynomials (or > [ circuits), ROFs,
multilinear bounded-read formulae, etc. Clearly, each of these circuit classes subsume the
class of linear polynomials over F. Polynomial-time deterministic blackbox PIT algorithms
are known for the classes of sparse polynomials [KS01] and ROFs [MV18], and the class of
multilinear bounded-read formulae admits a quasi-polynomial-time blackbox PIT algorithm
[AvMV15].

PIT for the class "M [T S° T is well-studied: Polynomial-time deterministic blackbox
PIT algorithms are known for (syntactically) multilinear S>F TT ST circuits [SV18], for
constant-read ST 32 ] circuits [ASSS16, BSV23], and for the class P T S [T# [PS21];
and a quasi-polynomial-time PIT algorithm for > T 3" 1% was given in [DDS21], where
J is also a constant. A deterministic sub-exponential PIT was given for the class > [[ > ]1]
in the breakthrough result of [LST21] . Note that there is no top fan-in restriction in their
result. However a polynomial-time PIT algorithm continues to be elusive.

In this work, we explore the other route, i.e., in the direction of Z[k] [I ROF, which
consists of circuits of the kind Zle H?;l ®, ;, where every ®;; is an ROF over F. The
class of ROF's has been studied extensively in the Boolean as well as algebraic worlds. The
results in the Boolean world include learning algorithms for Boolean ROFs and some struc-
tural properties of Boolean read-once functions [AHK93, KLN*93, BHH95b, BHH95¢|. In
the arithmetic world, we have the following results for the class of ROFs: A deterministic
polynomial-time blackbox PIT algorithm [SV15, MV18|, efficient reconstruction algorithms
[HH91, BHH95a, BC98, BB98, SV14, MV18], quasi-polynomial-time deterministic black-
box PIT algorithms for the orbit*> of ROFs [MS21, ST21a], a randomized polynomial-time

1[LST21] gave a much more general result, which solves PIT for any bounded-depth arithmetic circuit in
sub-exponential time.
2Let f € Flxy,xo,...,2,] of ROFs. Then, the orbit of f is the set of polynomials f(Ax), where A varies



reconstruction algorithm for orbits of ROFs [GST23], and characterization of read-once poly-
nomials [Vol16]. The investigation of PIT for "™ [T ROF might lead to the discovery of
new ideas and techniques, which may be helpful in approaching PIT for general arithmetic
circuits and formulae.

A polynomial-time deterministic whitebox PIT algorithm for Z[Q] [] ROF was given in
[MRS16]. In this work, we give a polynomial-time deterministic blackbox PIT algorithm
for S T] ROF (see Theorem 1). Our algorithm works over any field satisfying some mild
condition on its size. The blackbox nature makes the problem quite non-trivial and we in-
troduce a new tool for handling this: 0-irreducibility (for more details, see Definition 2.4 and
Observation 2.6). This tool could also be crucial to obtain PIT algorithms for Z[k] II ROF,
where k£ > 3 is a constant and for other interesting circuit classes.

PIT for Z[k] A\ C. The circuit class Z[k] /\C consists of arithmetic circuits of the type
O + - - + @F, where @y,...,P, € C and ey,...,e; € N are arbitrary. Apart from being a
natural and interesting problem in itself, developing efficient PIT algorithm for this class is
also important from the viewpoint of PIT for the class S"™ []C, which subsumes S A C.
Another reason for studying PIT algorithms for ZW A\ C is that it generalizes the PIT for
ZW C, which is comprised of the circuits ®; + - - - + $, where &4,..., P, € C. In this work,
we instantiate C with the classes of ROFs and multilinear bounded-read arithmetic formulae,
and take k to be equal to 3 (see Theorems 2 and 3). For the sake of discussion, let Cj be
the class of read-k arithmetic formulae over a field F. Although, 2[3} /\ ROF is contained in
2[3] A\ Cp, the reason for mentioning them separately is that in the case of ROF's, we obtain
a deterministic polynomial-time blackbox PIT, whereas the time complexity of the blackbox
PIT in the case of multilinear bounded-read formulae is quasi-polynomial.

A deterministic polynomial-time PIT algorithm is known for the class S ROF [SV15,
MV18], which was built over the efficient PIT algorithm for the class of (single) ROFs
[MV18]. This is a non-trivial generalization because the class of ROFs is not closed with
respect to addition of ROFs. Now, the next level of generalization is to allow arbitrary powers
of the ROF's in the sum of k& ROFs. This brings us to the class Z[k] /A ROF. Obtaining
efficient PIT for this class has been mentioned as an open problem in [MRS16]. PIT for
the ‘bounded-depth variant’ of this class has been studied: A polynomial-time blackbox PIT
algorithm is given in [ASSS16] for the class of sum of powers of constantly many bounded-
depth ROFs?. Their algorithm is based on carefully exploiting the Jacobian of such circuits
and the polynomial running time of their PIT crucially depends on the ‘bounded-depth
nature’ of the underlying formulae. The story of S>" A C, is also similar. [ASSS16] gives a
polynomial-time PIT for the ‘bounded-depth’ variant of this class. However, it is not clear
how to extend their techniques to obtain a polynomial-time PIT for the classes S>" A ROF

over all n x n invertible matrices over F.

3In terminology of [ASSS16], such formulae are called as sum of constantly many bounded-depth occur-
once formulae. In fact, a more general result along with other results was given in [ASSS16] - a polynomial-
time deterministic blackbox PIT algorithm for the class of bounded-depth bounded-occur arithmetic formulae.



and " A\ C; in the arbitrary depth setting.

1.2 Our Results

Now we start with our main results. Let f € F[zy,x9,...,2,] be an input polynomial of
degree d. Our results below hold over any field F satisfying |F| > n-d. Otherwise, we assume
to have access to a sufficiently large extension field. We note that the requirement for large
enough field size is intrinsically necessary for any blackbox PIT algorithm.

Our first result is a blackbox PIT algorithm for 2[2} [] ROF. It improves a previous
result of [MRS16], which gave a polynomial-time whitebox PIT for the same model.

Theorem 1 (Blackbox PIT for S [T ROF). Let f € Flay, 2o, ..., 2] be a polynomial of
degree at most d computed as f = ®1--- D, + Uy --- W, where O1,..., D, Vq,..., ¥, are
ROFs. Then there exists a deterministic algorithm that given blackbox access to f decides
whether f is identically zero, in time poly(n,d).

Remark 1.1. The parameters m and r used in the above theorem can be arbitrary natural
numbers as long as the degree of the polynomial computed by &1---- P, + ¥y --- U, is at
most d.

The proof of this theorem is given in Section 4. It is based on the high-level proof overview
given in Section 1.3.

In the following two theorems we give blackbox PIT algorithms for the classes Z[g] A\ ROF
and P A €., where Cy, is the class of multilinear read-k arithmetic formulae (Definition
3.13). Although ROFs are subsumed by multilinear bounded-read formulae, we are stating
different results for them since we obtain a polynomial-time PIT for 2[3] /\ ROF, whereas
the runtime for the PIT algorithm for 2[3} A\ Ci is quasi-polynomial. An interesting com-
mon thread in these results is that the time complexity of the blackbox PIT algorithm
for Y A ROF (similarly, % A Cp) is same as the blackbox PIT algorithm for S ROF
(respectively, S ¢,), which is strictly weaker than S°F A ROF (respectively, SF A Cp).

Theorem 2 (Blackbox PIT for 3>/ A ROF). Let f € Fla1, 2a, ..., %] be a polynomial of
degree at most d computed as f = PT'+P+D5° where @y, Py, P35 are ROFs and ey, 5, e5 € N.
Then there exists a deterministic algorithm that given blackbox access to f decides whether
f is identically zero, in time poly(n,d).

Theorem 3 (Blackbox PIT for 2[3] NCk). Letk € N be a constant and let f € Flxy, xo, ..., )
be a polynomial of degree at most d computed as f = O + O + O, where Oy, Py, P35 are
multilinear read-k arithmetic formulae and ey, ez, e3 € N. Then there exists a determinis-

tic algorithm that given blackbox access to f decides whether f is identically zero, in time
(TL 3 d)O(logn)‘



The proofs of these two theorems are given in Subsection 5.3 of Section 5. In fact, we
prove a more general result in Section 5 (see Theorem 5.9), which subsumes Theorems 2 and
3. For simplicity of exposition, we give a high-level proof overview of Theorem 2 in Section
1.3.2. The proof overview of Theorem 3 is exactly on the same line as that of Theorem 2.

1.3 Proof Overview and Techniques

In this section, we give the high level overviews of the proofs of Theorems 1, 2, and 3.
The underlying theme of these proofs is the hardness of representation approach, which
was first introduced in [SV15], where PIT algorithms for sums of constantly many ROFs
were given. In its initial avatar, hardness of representation was given for sum of constantly
many 0-justified (see Definition 2.1) ROPs, which was the following result: Suppose F is an

arbitrary field, Ay, ..., Ay € Flay, 2o, .. ., x,] are O-justified ROPs and A £ A, +-- -+ Ay, £ 0.
If n > 3k then the monomial z; ---x, does not divide A. However, it is not difficult to
show that this statement is equivalent to the following: Suppose F is an arbitrary field,
Ay, .. A, € Flay, o, ..., x,] are 0-justified ROPs, and A 2 A;+---+ A,. Either A=0
or if n > 3k then for every subset J C [n] of size 3k, the monomial [[;.;z; does not divide
A. Hardness of representation also sits at the core of the PIT algorithm for the class of
multilinear bounded-read arithmetic formulae given in [AvMV15]. In this paper, we work
with the second formulation of the hardness of representation approach. See Definition 2.35
and Fact 2.37 in this regard.

There is also an alternate way to view hardness of representation, which is popularly
called low-support concentration in literature [ASS13, FS13, FSS14, Forl5, GKST15, GKS16,
ST21b]. The idea is to choose a ‘nice’ point (ai,...,a,) € F" for an input polynomial
f € Flxy,x9,...,2,] such that the shifted polynomial f(zq + aq,...,2, + a,) has a non-
zero monomial of low support-size (number of variables appearing in the monomial). For a
polynomial with such a low-support monomial, efficient blackbox PIT is known (Fact 2.32).
In this work, we shift by a justifying assignment or an irreducibility-preserving assignment
(see Definitions 2.1, 2.4) in order to achieve hardness of representation, which in turn proves
existence of a low-support monomial (see Fact 2.37).

1.3.1 Proof Overview of Theorem 1

In Theorem 1, we give a polynomial-time blackbox PIT for Z[z] [] ROF, which consists of
polynomials of the kind f = A;--- A, + By -+ B,, where every Ay, By € Flxy,...,z,] are
read-once polynomials (ROPs), i.e., the polynomials computed by ROFs (Definition 3.1).
We are given blackbox access to such an f = A;--- A, + By -+ B,, where deg(f) < d and
we want to determine whether f = 0 or not. To accomplish this, we design a generator
(Definition 2.27), that is a polynomial map G = (G',...,G") : F* — F" which preserves
non-zeroness, formally f(zi,...,z,) = 0 if and only if f(G',...,G") = 0, where w is a
constant and max{deg(G’) : i € [n]} < §. Then, f(G) becomes a w-variate polynomial,
which has degree at most d - 4. Since w is a constant, it is easy to test the zeroness of f(G)



in time poly(n,d, ) (see Fact 2.28 in this regard). The map G in our case is the generator
G4 given in Definition 2.30, with w = 8.

Now, let us see why G, 4 is a correct generator for the class 2[2] [] ROF. Recall f =
Ay A+ By B,.. As every Ay, B; are ROPs, we can assume without loss of generality
that they are irreducible (see Fact 3.2). We now apply the standard trick of simplifying the
polynomial. Formally, let ¢ 2 ged(Ay -+ Ay, By -+ B,) and f’ 2 %. Then, we can write
f=g-f, where g is called the simple part of f. Since g is a product of non-zero ROPs (see
Fact 3.2), it follows from a result of [MV18] (see Fact 3.11) and the multiplicative property
of a generator (see Observation 2.29) that f(G,4) = 0 if and only if f'(G,4) = 0. So, we
can assume without loss of generality that f' = f = A;--- A,, + By --- B,. Then, there are
two possibilities: Either f € F or for every ¢ € [m],t € [r], A, and B; are co-prime. The first
case is trivial. Now, we talk about the second case.

Fix A = A, and B = B, arbitrarily. Since A, B are co-prime, if x is an arbitrary variable
of A then the resultant of A and B with respect to x, denoted Res,(A, B), is a non-zero
polynomial (see Definition 2.12 and Fact 2.13). As A, B are ROPs, they are multilinear, and
can be written as A = Ajz+ Aj and B = Bjx+ B, where A}, Aj,, B}, B, € F[x\{z}]. Then,
it follows from Definition 2.12 that

Res, (A, B) = A\ By — AyB.

Since A and B are co-prime, Res,(A,B) # 0. If we have a generator G that hits this
resultant, then we are done as A(G) will be co-prime to every B(G), which certifies that
f(G) # 0. This approach has been utilized earlier also and is formally stated in Fact 2.34. In
order to argue that f(Gp4) # 0, it suffices to show that G, 3 hits the resultant Res,(A, B),
i.e. (Res,(4, B))(G,3) #Z0.

Now, we argue that (Res,(A, B))(G,3) #Z 0. For this, we introduce the notion of zero-
irreducibility. We say that a polynomial g € Flxy, ..., xz,] is 0-irreducible, if for every proper
subset I C [n], the restricted polynomial g|x,—o, is irreducible and g(0) # 0 (Definition
2.4). Let us first see why O-irreducible ROPs are interesting in this scenario. Let A and
B be two O-irreducible ROPs and z € var(A). We show that there exists a monomial in
Res, (A, B), which has at most two variables (see Corollary 4.3). This along with Fact 2.32
implies that (Resy(A, B))(Gn2) % 0. To show that a monomial of support at most two
exists in Res, (ﬁ, B ), we prove a hardness of representation theorem for the resultant of two
O-irreducible ROPs. In particular, we show that if }L B are O-irreducible ROPs then there do
not exist three distinct variables z1, xq, x3 such that zyzoz3 divides Res, (A, B) (see Lemma
4.2). This result is the heart of the proof of Theorem 1.

Now let us see how to transform the original irreducible ROPs A, B to 0-irreducible ROPs

g, B. We show that there exists an assignment a in the image of G, ; such that A2 A(x+a)
and B 2 B (x + a) are O-irreducible ROPs. For this, we need a tool called the commutator
of a polynomial g € F[xy, 29, ..., x,] (Definition 2.19), denoted A, ;g, where i, j € [n]. Since

A, B are irreducible multilinear polynomials, all the commutators of A and B are non-zero
(Corollary 2.21). We show that if we have an a € F" such that A(a) # 0, B(a) # 0 and
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for every i,7 € [n],i # j,(AijA)(a) # 0,(A;;B)(a) # 0, then A(x + a) and B(x + a) are
O-irreducible ROPs. The nice structure of a commutator of an ROP given in Corollary 3.7
turns out to be extremely helpful in showing that the desired tuple a is in the image of G, 1
(see Claim 3.12).

Once putting the things together, we get that (Res,(4, B))(Gna + Gn1) #Z 0. Since
Gns = Gpa+ Gy (see Fact 2.31), we have Res, (A, B)(G,3) # 0.

1.3.2 Proof Overview of Theorems 2 and 3

In Section 5, we prove a result (see Theorem 5.9) which captures both Theorems 2 and 3.
However, for the sake of keeping the discussion simple and yet deliver the main ideas, we
restrict ourselves to ROF's. In particular, we give a high-level proof overview of Theorem 2.

We are given blackbox access to a polynomial f computed by a circuit in 2[3] /\ ROF
and we want to determine whether f is zero or not. Then, there exist three ROPs A, B, R €
Flxy, 29, ..., x,] and ey, ea, e3 € N such that

f =A%+ B 4+ R,

We prove that f = 0 if and only if f(G,10) = 0, where G, 1 is given in Definition 2.30. The
main crux of this result is the hardness of representation for f. We show that if an assignment
a € F" is a common justifying assignment (Definition 2.1) of A, B, R then f(x+ a) is either

zero or for every set J C [n] of size 10, f’ 2 (x 4+ a) is not divisible by the monomial
IT jes Tj- This hardness of representation then implies existence of a monomial of support-
size at most 9 in f’ and therefore G, o hits f’ (see Fact 2.37). Formally, f' = 0 if and only
if f'(Gno) = 0. We know from [SV15] that such an a is in the image of G, (see Fact
3.3). Since G0 = Gpo + Gn1 (see Fact 2.31), we get that Gy, 10 is a generator for f. Now,
Fact 2.28 implies that given blackbox access to f, we can test whether f is zero or not in
poly(n, d)-time, where d is the degree of f.

The hardness of representation theorem mentioned above crucially uses the fact that f is
a sum of powers of three ROFs. The proof proceeds by analyzing various cases originating
from the comparison of the parameters e, ey, and e3 mentioned above. Here, we assume
without loss of generality that e; > es > e3. If e; > ey then it is easy to show the required
hardness of representation result. A major chunk of the proof is devoted to analyze the case
when e; = e; = e. In this part, the following factorization becomes pivotal.

A= B = [[(A-w'B),

LE]e]

where w is a primitive e-th root of unity (Definition 2.14). It may seem from here that our
result only holds over fields that contain w. However, it is not the case. We show that it is
possible to “massage” e in such a way that a primitive e-th root of unity is always present in
the underlying field (or an appropriate extension). Our proof crucially exploits the following
two properties of ROFs: 1) the class of ROFs is closed under product of variable disjoint
ROFs, 2) the hardness of representation result for the sum of any three 0O-justified ROFs
given in [SV15] (see Fact 3.8).



1.4 Organization

We give a set of useful notations and preliminary results in Section 2. Then, we formally
define read-once arithmetic formulae and multilinear bounded-read arithmetic formulae, and
give some useful properties of these formulae in Section 3. Section 4 is devoted to the proof
of Theorem 1 and the proofs of Theorems 2 and 3 are given in Section 5. In fact, we prove
a more general result in Section 5, which subsumes these two theorems. We conclude with
some open questions in Section 6.

2 Preliminaries

For a field F, its algebraic closure is denoted as F. N represents the set of natural numbers.

We use the 2 symbol for defining. For a natural number n, [n] = {1,...,n}. Unless otherwise
specified, we use the shorthand x for {z1,...,x,}. We denote the sets of variables by x,y, z;
polynomials over a field F by f, g, h,u,v, A, B, F, R; elements of F by «, 3, a, b; vectors over
F by a, b; circuit classes by upper case calligraphic letters like C; and sets by I, .J, K, L. For
a polynomial f € F[x|, we denote a monomial z{*---x¢ in f by x® and for some i € [n],
deg,,(f) denotes the degree of variable z; in f when it is viewed as a polynomial in x; over
the polynomial ring F[x \ {z;}]. The individual degree of f is defined as max;cp, {deg, (f)}.
A polynomial f is called multilinear if its individual degree is at most one. We define support
of a monomial by supp(x®) 2 {i € [n] | e; > 0} and denote support-size by |supp(x®)|.

We say that two polynomials f, g € F[x] are similar, denoted f ~ g, if there exists a non-
zero o € F such that f = a-g. For a polynomial f € F[x] and a vector a = (ay,...,a,) € F",

the shifted polynomial is f(x + a) 2 f(z1 +aq,...,x, + a,). We say that f € F[x] depends
on z; if there exist a = (ay,...,a,) € F" and b € F such that

flay,...,aqi-1,a5, i1, ..o an) # flar, ... ai-1,0,041, ..., Gp).

Further, var(f) = {i € [n] : f depends on z;}. Let f € F[x|,/ C [n], and a € F". Then,
flx;=a; is the polynomial obtained by substituting x; = a; in f for every i € I. Clearly,
var(fx,—a;) € var(f) \ I. Observe that this containment can be strict. For example, let
[ =maz+ 1l,a=(0,0), and I = {1}. Then, var(f|x,—a,) € var(f) \ {1} as after setting
x1 = 0in f, it no longer depends on z5. We are interested in those assignments where such
undesirable losses do not happen. Such assignments, known as justifying assignments, have
been earlier considered in [HH91, BHH95a, SV15]. Consider the following definition, which
has been obtained by adding Property 2 to the definition of a justifying assignment given in
[SV15, SV14]. This modification has been made to suit our purpose.

Definition 2.1 (Justifying assignment). Let f € Flxy,zo,...,2,] and a € F*. Then, a is
called a justifying assignment of f (equivalently, f is said to be a-justified) if the following
properties are satisfied:

1. For every I C var(f),var(f|x,=a,) = var(f) \ I.



2. f(a) #0.

Remark 2.2. By convention, the identically zero polynomial is always a-justified for every
tuple a € F™.

For example, let f = z129 + 1 € F[x|, where char(F) # 2. Let a = (0,0), and b =
(1,1). Then, f is b-justified but not a-justified. The following nice property of a justifying
assignment is implied by Proposition 2.3 of [SV15].

Fact 2.3. An assignment a € F" is a justifying assignment of a polynomial f € Flxy, za, ..., x,]
if and only if the condition given in Property 1 of Definition 2.1 holds for every I C var(f)

of size |var(f)| — 1 and f(a) # 0.

Recall that a non-constant polynomial f € F[x] is irreducible if it can not be written as a
product of two non-constant polynomials in F[x]. Otherwise, f is reducible. By convention,
every element of F is reducible.

Definition 2.4 (Irreducibility preserving assignment). Let f € Flzy,zo, ..., x,] and a € F™.
Then, a is called an irreducibility preserving assignment of f if for every proper subset
I C var(f), the restricted polynomial f|x,—a, is irreducible and f(a) # 0. Equivalently, we
say that f is a-irreducible.

For example, let f = x1 + x5 + 23 and a = (0,0,1). Then, f is a-irreducible over every
field. Observe that if f € Flxy, zo, ..., x,] is a-irreducible for any a € F” then f is irreducible
over F. Claim 2.5 below shows that irreducibility preserving assignments capture justifying
assignments of irreducible polynomials. Note that the converse of this claim is not true. For
example, let f = (x;+1)(z2+1) 423 and a = (0,0,0). Then, f is irreducible, a-justified but
is not a-irreducible. Thus, for irreducible polynomials, the notion of irreducible preserving
assignment is strictly stronger than that of justifying assignment.

Claim 2.5. Let f € Flxy, 29, ...,2,] and a € F". If f is a-irreducible then [ is a-justified.

Proof. Suppose for the sake of contradiction that f is not a-justified. Then, Fact 2.3 implies
that either f(a) = 0 or there exists an I C var(f), |I| = |var(f)| — 1 such that var(f|x,—a,;)
var(f)\ I. If the former case holds then a can not be an irreducibility preserving assignment
of f. In the latter case, note that f|x,—a, € F. Since every element of F is reducible, f|x,—a,
is also reducible. As I is a proper subset of var(f), we get that f is not a-irreducible, which

is a contradiction. Hence, f is a-justified. O

The following easy to prove observation allows us to convert an a-irreducible polynomial
to a O-irreducible polynomial by shifting x with a.

Observation 2.6. Let f € Flzy,x9,...,2,] and a € F*. Then, f is a-irreducible if and only
if f(x+a) is 0-irreducible.

10



2.1 Basic Mathematical Facts

We start this section with the following useful result by Gauss.

Fact 2.7 (Gauss Lemma). Let F be a field, f # 0 € F[x,y], and g € F[x|. Suppose
fly=gx) = 0. Then, y — g(x) is an irreducible factor of f.

2.1.1 Ideals
Definition 2.8. Let (R,+,.) be an arbitrary ring. A subset T is called a left ideal of R if

1. (Z,+) is a subgroup of (R,+),
2. For everya € R and everyx € L, a-x € L.

Similarly a right ideal is defined when the condition a - x € I is replaced with x -a € Z. A
two sided ideal is a left ideal which is also a right ideal and will simply be called the ideal in
this work.

We will work over the ring of polynomials R = Flzy,zo,...,2,] and the monomial

ideal T, 2 (x1m9 - - - 24) for some ¢ < n. The observation below follows from the fact that
Flxy,xo, ..., x,] is a unique factorization domain.

Observation 2.9. Let g € Flxq,x9,...,2,] and e, € N such that g¢ € Z,. Then, g € Zy.
Consider the following useful definition.

Definition 2.10 (polynomial-hat). For any polynomial f and Z,, we can write f as f =
f+ f, where f € T, and f = [ (mod I;) is the unique polynomial obtained from f after
going modulo Zy.

Remark 2.11. Note that the polynomial ]? may not be unique for general ideals but here for
the monomual ideal Ly, we define it uniquely by removing all the monomials in f which are
divisible by x1 - - - xy.

2.1.2 Resultant

The polynomial ring F[zy, ..., x,] is a unique factorization domain (UFD) and therefore the
gcd of two polynomials is well defined. One can also define gcd w.r.t. a single variable, say
x;, by viewing the polynomials as univariates in z;, with coefficients in F[x \ {z;}]. Then,
ged,, (f, g) is well defined up to multiplication by a rational function in F(x \ {2;}). In this
case, we work with the normalized gcd. For example, let f = 23y + xy® and g = 292, then
ged(f, g) = wy and ged, (f, g) = y. The former is ged in Flz, y], while the latter is normalized
ged in F(z)[y]. See [GGI9] for details.

11



Let f,g € Flxy,...,2,,y] be two non-zero polynomials of y-degree d and e, respectively.
Suppose f(y) = 3¢ a; -y and g(y) = > i_obj -y, where each a;,b; € Flxy, xy,. .., x,).
The Sylvester matriz M is the following (d + e) x (d + e) matrix

ag Aaq—1 e aq Qo
Qg ag—1 ... ay Qo
a, aq— ... a1 a
M = d d—1 1 0
be be—r ... b1 by
be be—l bl bO
I be bet ... b by

Definition 2.12 (Resultant). For polynomials f,g € Fly, z1,. .., x,], the resultant Res,(f, g) €

Flxq, xg, ..., 2, is defined as determinant of the Sylvester matriz. That is, Res,(f,g) =
det(M).

In literature, Sylvester matrix is sometimes also defined as MT but it does not affect the
definition of resultant. We use the following properties of the Resultant:

Fact 2.13 (See [GCL92, GG99, CLO15]). Let f,g € Fly,x1,...,2,|. Then,

1. ged, (f,g) # 1 if and only if Res,(f,g) = 0. That is, f and g have a non-trivial factor
that depends on the variable y (i.e., deg,(ged(f, g)) > 0) if and only if the y-resultant
of f,qg is the identically zero polynomial.

2. Leta € F". Ifdeg,(f) = deg,(f|x=a) and deg,(g) = deg, (glx=a), then Res,(f, g)lx=a =
Resy(f|x:37 g|X:a)'

2.1.3 Primitive Roots of Unity in a Field

Definition 2.14 (Primitive root of unity). Let F be a field and r € N. An element w € F
is called an r-th primitive root of unity if w™ = 1 and for every natural number 1 <t <r:
wt # 1.

For example, —1 is a second primitive root of unity in R and ¢ is a fourth primitive root
of unity in C. The fact below gives a necessary and sufficient condition on the existence of

an r-th primitive root of unity in the algebraic closure of a field. See Theorem 8.2 of [Neu07]
for a proof of this fact.

Fact 2.15. Let F be the algebraic closure of a field F and v € N. Then F contains an r-th
primitive root of unity if and only if r ) char(F).

It is easy to prove the following observation, which would be used in Section 5.

Observation 2.16. Let e € N, F be a field containing an e-th primitive root of unity w, and
x,y be two variables. Then,
¢ —y° = H(m —why).

L€]e]
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2.2 Partial Derivatives

The following definition of discrete partial derivatives is taken from [SV15].

Definition 2.17 (Discrete Partial Derivative). Let f € Flzy, 20, ..., 2,) andx € {z1,...,z,}.
Then, the discrete partial derivative of f with respect to x is defined as:

of a
% - f|x:1 - f|x:0-

Further, let I = {i1,...,i,.} C [n] be a non-empty set of size. Then, the iterated partial
derivative of f with respect to I is defined as

O0f a0 (0 (O
@xil . -8xir n 81‘2‘1 8@»2 axi,, '

The following fact relates partial derivatives and justifying assignments of multilinear
polynomials. A polynomial f € Flxy, zo,...,x,] is multilinear if the individual degree of
every variable in f is at most one.

Fact 2.18. (Lemmas 2.6 [SV15]) Let f € Flxy, xo,...,x,] be a multilinear polynomial and
a € F". Then, a is a justifying assignment of f if and only if f(a) # 0 and for every
x; € var(f) we have that %(a) # 0.

2.3 Commutator

This section is devoted to commutators of polynomials. This tool was defined in [SV10],
where it was used in the context of polynomial factorization. It also played a crucial role in
the deterministic reconstruction algorithm for read-once formulas (Definition 3.1) given in
[SV14]. The following definition of a commutator of a polynomial is taken from [SV14].

Definition 2.19 (Commutator). Let f € Flzy,29,...,2,] and i # j € [n]. Then, the
commutator of f with respect to x; and x;, denoted A;;f, is defined as

Ai,jf = f

r;=1lz;=1" f 2;=0,2;=0 — f x;=1,2;=0 " f z;=0,x;=1-

We note that this definition of a commutator of a polynomial is different from the defini-
tion given in [SV10]. However, it is not difficult to show that both these definitions have same
properties for multilinear polynomials. We now note some useful properties of commutators
of multilinear polynomials.

Fact 2.20. (Lemma 4.6 of [SV10]) Let f € Flxy,xa,...,2,] be a non-constant multilinear
polynomial and i # j € [n]. There exist g,h € F[x] where i ¢ var(h) and j ¢ var(g) such
that f =g - h if and only if A; ;f = 0.

The fact above implies the following result.

13



Corollary 2.21. Let f € Flxy, 2, ..., x,] be a multilinear polynomial, where n > 2. Then,
f is reducible if and only if there exist i,j € var(f) such that A, ;f = 0.

The following property of a commutator immediately follows from Definition 2.19.

Observation 2.22. Let f € Flxy,xs,...,2,] be a multilinear polynomial, a € F"i # j €
var(f), and I Cvar(f)\ {i,j}. Then,

Ai,j(f|X1=aI) = (Ai,jf)|x]=a1-

The following useful claim relates commutators and irreducibility preserving assignments,
which would play an important role in Section 3.1.4.

Claim 2.23 (Commutators and irreducibility preserving assignments). Let f € Flxy, o, ..., z,]
be a multilinear polynomial and a € F™ s.t. f(a) # 0. Suppose that for everyi # j € var(f) :
(A;;f)(@) #0. Then, f is a-irreducible.

Proof. Suppose f is not a-irreducible. Then, either f(a) = 0 or there exists a proper
subset I C var(f) such that f|x,—a, is reducible. In the former case, we immediately get
a contradiction. Now, suppose the latter holds. Then, there exist non-constant multilinear
polynomials g, h € F[x] such that
flxi=a; =g h.

Let i € var(g) and j € var(h). As f|x,—a, is multilinear, g and h are variable disjoint. Then,
it follows from Corollary 2.21 that A, ;(f|x,=a;) = 0, which implies (A; ;(f|x,=a,))(a) = 0.
Observation 2.22 implies that (A; ;(f|x,=a,))(@) = (A;;f)(a). Since (A;;(flx,=a,))(@) =0,
we get (A;;f)(a) =0, which is a contradiction. Hence, f is a-irreducible. ]

The next observation follows from Definition 2.19.

Observation 2.24. Let f € Flxy,z9,...,2,] be a multilinear polynomial and i,j € [n].
Then, f can be written as f = f; jx;x;+ fiwi + fiz; + fo, where fi;, fi, fj, fo € F[x\ {z;, z;}].
Then A;j = fij - fo— fi- [j-

Using this, we can easily prove the following observation, which would be used in Section 3.

Observation 2.25. Let f € Flxy,xo,...,x,] be a multilinear polynomial and i # j € [n]

such that 8:?‘28’; = 0. Then,
10T

_of o
&’ti 8553"

Ai,jf =

2.4 Generators

The problem of blackbox PIT asks for a hitting set, which is defined as:

Definition 2.26. Given a circuit class C of n-variate polynomials, we say that H C F" is a
hitting set for C, if for every non-zero polynomial f € C, there exists some a € H such that

f(a) # 0.

14



A blackbox PIT algorithm is efficient when H is of polynomial size w.r.t the size s and
the degree d of the input circuit (i.e. |H| = poly(n,d,s)) and can also be constructed in
polynomial time. For polynomials over finite fields, by convention, we either assume that
size of the field is larger than the size of the hitting set or we assume that we have blackbox
access to a large enough extension field. For blackbox PIT, there is also the notion of hitting
set generators or simply generators in short. Hitting set generators are equivalent in power
to hitting sets and are often easier to work with. We refer the reader to the survey of [SY10]
for a detailed exposition.

Definition 2.27 (Generator). Let C be some class of n-variate polynomials. Consider G =
(G, G%...,G") : F* — F", an n-tuple of t-variate polynomials where for each i € [n],
G' € Flyi,vyo,...,y:]. For a polynomial f € Flxy,xo,...,2,], we define action of G on
polynomial f by f(G) = f(G',...,G") € Flyx,...,yx). We call G a t-seeded generator for

class C if for every non-zero f € C, f(G) # 0. Degree of generator G is defined as deg(G) 2
A =t
=g(F).

A generator G for class C acts as a variable reduction map that reduces the number of
variables from n to ¢t while preserving non-zeroness. A generator also contains a hitting set

for C in its image. That is, for every nonzero f € C, there exists a € Im(G) such that
f(a) #0.

Fact 2.28 (Generator = hitting-set, [SV15]). Let G = (G',...,G") : F* — F"™ be a
generator for a circuit class C such that deg(G) 25 Let W C F be any set of size ndd.

Then, H 2 G(W*) is a hitting set, of size |H| < (ndd)t, for polynomials f € C of individual
degrees less than d.

max{deg(G*)}",. Image of generator G is defined as Im(G)

In other words, when the seed-length ¢ and the degree  of the generator is constant, we
get a polynomial-time blackbox PIT algorithm. The following observation holds since the
ring of polynomials forms an integral domain.

Observation 2.29. Let G be a generator for a class C and let f = fi--- f. be an arbitrary
product of non-zero polynomials such that for each i € [r]: f; € C. Then f(G) Z 0.

2.4.1 The Generator G,  of [SV15]

The generator G, was defined in [SV15] for the class of ROFs. It has been a crucial ingre-
dient in PIT algorithms of various other interesting classes also [KMSV13, FSS14, AvMV15,
MV18]. We will also be using this generator in our results. We borrow the definition and
properties of this generator as presented in [AvMV15, Voll5].

Definition 2.30. Let ay,...,a, € F be n distinct elements and for i € [n], let L;(x) 2
H]G[n]\{z} j—a denote the correspondmg Lagrange interpolant. For every k € [n], let Gy

F?* — F" be defined as

k k
Gn,k(yla"'aykazlw"a (ZLI y] Z] Z yj Z]a"'?ZLn(yj)Zj)
j=1
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Let (G, 1); denote the i'" component of Gn i and we call o; as the Lagrange constant associ-
ated with this i component. We can also define Gy, to be the class of generators {Gy x }nen
for all output lengths.

For two generators Gy, Gy with the same output length, we define their sum G; + G, as
their component-wise addition, where the seed variables of both generators are implicitly
relabelled so as to be disjoint. With this terminology, we can note various useful properties
of the generator G, from its definition.

Fact 2.31 ([SV15, KMSV13, Vol15]). Let k, k' be positive integers.
1. Gily,0) = 0.

2. Gui(Y1s- Uk, 21, - 20) lypmas = Grp—1(Y1s -, Yb—1, 21, - - - 2k—1) + 2k - €;, where € is
the 0-1 vector with a single 1 in coordinate i and o; the i" Lagrange constant and
A
Gno=0.

3. Gn,k(yb ey Yy R1, - ;Zk) + Gn,k'(ka, ey Yktk RR+1y - - 7Zk+k’)
- Gn,k+k’(y17 vy Yktk y Z1y - - 7Zk+k/)'

4. For every b € F" with at most k non-zero components, b € Im(G,, ).

It follows from the definition, that G, ; hits any polynomial containing a low-support
monomial.

Fact 2.32 ([SV15, FSS14]). Let f € Flxy, xq,...,x,] be a polynomial that contains a non-
zero monomial of support-size at most k, for some k € N. Then f(G, ) # 0.

The next property follows from Definition 2.30 and Fact 2.31 and states that G, ;, forms
a chain.

Observation 2.33. Let f € F[zy,...,x,] be a non-zero polynomial and k € N such that
f(Gnx) #0. Then, for every >k, f(G,) #Z 0.

Let C be a circuit class over a field F. Then we define the class,
Res(C) 2 {Res,,; (A, B) | A, B € C are irreducible and i € var(A) Uvar(B) }.

We note that C C Res(C) as for any polynomial f € C, we can write f as f = Res,(P,Q),
where P 2 (f+1)-y+1and Q 2 y+ 1 and y ¢ var(P).* The following fact is implicit in
[Vol15] and [BV22]. However, for the sake of completeness, we provide its proof in Section
A.1 of the appendix.

Fact 2.34 (Generator for 2[2} [1 C). Let C be a class of arithmetic circuits over a field F
and G be a generator for the class Res(C). Then, H = G + G1 is a generator for the class

SETT c.

4We are assuming that both the polynomials (f + 1) -y + 1 and y + 1 are also in C, which is true for all
natural classes of polynomials.
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2.5 Hardness of Representation

We start with the following definition.

Definition 2.35. Let k,n,m € N and let Ay..., Ay € Flay, 9, ..., 2,] be polynomials.

Define A 2 Ay + -+ Ax. We say that the set { Ay, ..., Ax} is m-hard, if and only if either

A =0 or for every set J C [n] of size |J| = m, the monomial [] x; does not divide A.
jeJ

Remark 2.36. It follows from the definition that if n < m then any set {Ay, ..., Ax} is
m-hard.

The following fact has been used in many works like [SV15, AvMV15] etc. We provide a
proof of this fact in Section A.2 of the appendix.

Fact 2.37 (Hardness of representation implies PIT). Let m,n,k € N and Ay,..., Ay €

Flxy, za, ..., x,] such that A 2 Ay + -+ Ap £ 0. Suppose further that for every subset I C
[n], the set of restricted polynomials {A1lx;=0,, - - -, Aklx,=0,} is m-hard. Then A contains a
non-zero monomial of support-size at most (m — 1) and in particular A(Gpm—1) Z 0. Here
Grm—1 15 the generator given in Definition 2.30.

3 ROFs and Multilinear Bounded-Read Arithmetic For-
mulae

3.1 ROFs and ROPs

We start this section with the following definition of a read-once formula.

Definition 3.1 (Read-once formulas, [SV15]). Let F be a field and x = {z1,...,z,}. A
read-once formula (in short, ROF) ® over F in x-variables is a binary tree whose leaves are
labelled with variables in x and non-leaf nodes are labelled with + and x. FEvery variable
in x labels at most one leaf of ® and every node of ® is associated with a pair (o, ) € F2.
The computation in ® proceeds as follows: A leaf node of ® labelled with x € x and («, 5)
computes ax + . A node v labelled with o € {4, x} and («, ), and having children v, and
ve computes a(P,, o D,,) + 5, where ®,, is the sub-formula of ® rooted at v;.

We say that a polynomial A € F[x| is a read-once polynomial (in short, ROP) if it is
computed by an ROF. Note that every ROP is multilinear.

3.1.1 Some Useful Properties of ROFs and ROPs

The following fact shows that the class of read-once formulas is closed under factorization
and partial derivatives.
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Fact 3.2. (Lemmas 3.6 and 3.12 of [SV15]) Let A € F|xy, xo,...,x,] be an ROP, i € [n],I C
[n], and a € F™. Then, the substituted polynomial Al|x,—a,, the partial derivative g—fi, and
factors of A are ROPs.

Below fact shows that we can make ROPs 0-justified by shifting.

Fact 3.3 ([SV15, MV18]). Let n,k € N|F be a field, and Ay, ..., Ay € Flxy,z9,...,2,] be
ROPs. Then, we there exists an a € Im(G,1) in such that for every t € [k], Ay(x + a) is
0-justified.

The fact below follows from Theorem 3.10 of [SV14].

Fact 3.4. Let A € F[x] be a 0-justified ROP. Then, every partial derivative of A is also a
0-justified ROP.

The next observation follows from Definition 3.1.

Observation 3.5. Let F be a field and A, B € F[x] be two variable disjoint ROPs. Then,
A - B is also an ROP.
3.1.2 Commutator of an ROP

Fact 3.6. (Lemma 3.14 of [SV14]) Let A € Flzy,2o,...,2,] be an ROP and i # j € [n]
such that ag;j % 0. Then, there ezist variable disjoint ROPs B(x), R(x,y) such that

ox;
A = R(x,B(x)) and
0?A
axif?.%j ’

Ai’jA = R(X, 0) .

Facts 3.2, Observation 2.25, and Fact 3.6 imply the following useful result.

Corollary 3.7 (Structure of a commutator of an ROP). Let A € Flxy,z9,...,x,] be an
ROP and i # j € [n]. Then, A; ;A is a product of ROPs in Flxy,xa, ..., 2,].

3.1.3 The Hardness of Representation Theorem for Sum of ROPs

Now, we list results related to the hardness of representation for sum of constantly many
0-justified ROPs. These would be used in Sections 4 and 5. Recall Definition 2.1.

Fact 3.8 (Hardness of representation for sum of £ 0-justified ROPs, Theorem 6.1 of [SV15]).
Let n,k € N and Aq,..., Ay € Flxy,z9,...,2,] be O-justified ROPs. Suppose n > 3k.
Then, for every collection of sets Jyi,...,Jr C [n] and every collection of field elements
ay,...,ap €F, the set {ay - A1|XJ1:0J1, e,y Ak|x‘]k:0Jk} is 3k-hard.

When k = 2, we can, in fact, show that the polynomials are 3-hard rather than 6-hard.
Although a minor improvement, we present it formally in the following fact as it would be
used in Section 4. We provide a proof of this fact in Section A.3 of the appendix.
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Fact 3.9 (Hardness of representation for sum of two O-justified ROPs). Let F be a field and
A, B € Flxy, 29, ...,2,] be two 0-justified ROPs. Then the set {A, B} is 3-hard.

Using this fact, we give the following useful result used in Section 4.

Claim 3.10. Let n > 3 be a natural number and A, B € Flxy,z, ..., x,] be two 0-justified
ROPs. Suppose there exists a J C [n],|J| = 3 such that for every j € J, Aly,—0 = aj - Bls;=0
for some o € F. Then, A~ B.

Proof. Let j,k € J be distinct. As A, B are 0-justified, it follows from Definition 2.1 that
A|xj:07xk:0 = Oy - B|z]-:0,zk:0 5—'5 07

A|:vj:0,:vk:0 = 0 B|wj:0,wk:0 ?‘é 0.
These two equations immediately imply that there exists a non-zero @ € F such that for
every j € J,a; = a. Hence, for every j € J, Al,;—0 = a- B|s,—0. Now, suppose A—a-B # 0.
As for every j € J, Aly;—0 — @ - Bly;—0 = 0, Fact 2.7 implies that for every j € J,x; divides
A—a-B. Since B is a 0-justified ROP, o+ B is also a 0-justified ROP. Hence, Hjej x; divides
A — « - B, which can not happen because of Fact 3.9. Thus, A = « - B. Hence proved. [

3.1.4 Obtaining 0-Irreducible ROPs

In this section, we give a procedure to convert an irreducible ROP to a 0-irreducible ROP
(Definition 2.4). In particular, if A € F[x] is an irreducible n-variate ROP then we compute
an assignment a € F" such that A is a-irreducible. Observation 2.6 implies that A(x + a) is
a 0-irreducible ROP.

It follows from Claim 2.23 that if all the commutators of a multilinear polynomial f € F[x]
are non-zero and if we can efficiently hit all these commutators, i.e., we can efficiently
compute an a € " such that for every i # j € var(f), (A;;f)(a) # 0, then using Observation
2.6, we transform f to a O-irreducible polynomial. It follows from Corollary 2.21 that for
every i # j € var(f),A;;f # 0 if and only if f is irreducible. Thus, only irreducible
multilinear polynomials are eligible to be transformed into 0-irreducible polynomials. The
following fact from [MV18] would be used in Claim 3.12.

Fact 3.11 (Theorem 4.2 of [MV18]). Let A € Flzy, zo,...,x,] be a non-zero ROP and G,
be the generator given in Definition 2.30. Then, A(G,1) # 0.

Claim 3.12 (Converting a set of irreducible ROPs to O-irreducible ROPs). Let n,m € N
and Ay, ..., Ay € Flay, z9, ..., x,] be irreducible ROPs. Then, there exists an assignment
a € F" in the image of Gy 1 (see Definition 2.30) such that A;(x+a) is a 0-irreducible ROP
for every { € [m].

Proof. As Ay, ..., A,, are irreducible, Corollary 2.21 implies that for every ¢ € [m|,i # j €
var(Ay), A; jA; # 0. It follows from Claim 2.23 that it is sufficient to show that G, ; hits
Ag, A ;A for every £ € [m],i # j € var(Ay). Let

ox)= [[4 [ auae

ee[m] i:jevar(AE)vi#j
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As every Ay is irreducible, it is non-zero (recall that every element of F is reducible). Then,
it follows from Corollary 3.7 that ®(x) is a product of non-zero ROPs in F[x]|. Now, Fact
3.11 and Observation 2.29 together imply that ®(G, 1) # 0. Hence, it follows from Fact
2.28 that there exists an a in the image of G,,; such that ®(a) # 0. Now, Claim 2.23 and
Observation 2.6 imply that A,(x + a) is a O-irreducible ROP for every ¢ € [m]. O

3.2 Multilinear Bounded-Read Arithmetic Formulae

Definition 3.13 (Read-k formula). Let F be a field and k € N. A read-k arithmetic formula
F is a tree where every leaf node is labelled either by a variable or an element of F; every
other node (or internal node) is labelled by either + or X ; every edge is labelled by an element
of F; and every variable labels at most k leaves of F'. Every leaf node of F' computes its label.
Suppose v is an internal node of F' labelled by o € {+, x} such thatvy,. .., v, are the children
of v, for every i € [m], v; computes F,, € F[x] and the edge between v and v; is labelled by
a; € F. Then, v computes the following polynomial
Fvém'FmO"'OOém'F

Um *

Further, if every node of F' computes a multilinear polynomial then F is called a multilinear
read-k arithmetic formula.

An ROF is a special case of a multilinear bounded-read formula. One of the reasons for study-
ing multilinear bounded-read arithmetic formulae is that developing deep understanding of
such formulae might give us good insights about the class of multilinear formulae, which is
an important class of arithmetic circuits. Deterministic algorithms for blackbox and white-
box PIT for multilinear bounded-read arithmetic formulae were given in [AvMV15]. For the
rest of this section, let £ € N be a fixed constant and C, be the class of multilinear read-%
formulae over a field F. The following result would be used in the proof of Theorem 3.

Observation 3.14. Let k € N, F be a field, and A, B € Ci. be two variable disjoint polyno-
mials over F. Then, A- B € Cj.

The following fact would play a crucial role in the proof of Theorem 3.
Fact 3.15 (Implicit in [AVMV15]). Let k € N, m 2 (8k - (k + 1))*, and A, B,R € Cj,
compute n-variate polynomials over a field F. Let ¢ 2 m+ 3k [logn]. Then, there exists
an assignment a € Im(G, ) such that the polynomials A 2 g(x +a),B 2 E(x + a), and
R2 E(X + a) satisfy Properties 1, 2, and 3 given in Theorem 5.0.

4 PIT for P T] ROF

This section is devoted to the proof of Theorem 1, which is based on the proof overview
given in Section 1.3.1. We first present some results related to the resultant of two co-prime
and O-irreducible ROPs in Section 4.1. These results are required for proving Theorem 4.5.
Then, using Theorem 4.5, we give a proof of Theorem 1 in Section 4.2.
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4.1 Properties of the Resultant of two 0-Irreducible ROPs

In this section, we note some important results related to the resultant of two n-variate,
co-prime, and O-irreducible ROPs A, B (Definition 2.4). The most important result that we
prove is a hardness of representation theorem for Res,(A, B) (Lemma 4.2). A key conse-
quence of this result is that there exists a monomial of support (at most) two in Res, (A4, B)
(Corollary 4.3). Using this, we show in Lemma 4.4 that Res, (A4, B)(G,3) # 0, where A, B
are any co-prime ROPs (not necessarily 0-irreducible). We start with the following claim.

Claim 4.1. Let f,g € Flxy, 2o, ..., x,] be multilinear polynomials, where f is O-irreducible
and i # j € [n] such that var(f) \ {i,j} # 0. Suppose x; divides Res,,(f,g). Then, fls,—o
divides g|.;—o.

Proof. As f,g are multilinear, there exist multilinear f;, fo, i, g0 € F[x \ {2;}] such that
f=/fi-xi+ foand g = g; - x; + go. Then,

fle;—o = file;=0 - Ti + folz;=0-

We first claim that fy|,,— is non-constant and fi|,,—o # 0. Since f is O-irreducible,
and var(f) \ {i,j} # 0, by Definition 2.4, f;,_o,—o is irreducible. As fy is xs-free, note
that f|z,—0.2,—0 = folz;=0, which implies fy|,,—0 is a non-constant polynomial. Now, suppose
file;=0 = 0. Then, clearly f|.,—o does not depend on w;. This can not happen as f is
0-justified, which follows from Claim 2.5. Now, we claim that f;|,,—o and fy|,;—o are co-
prime. Suppose not. Let h € F[x] be a non-constant polynomial that divides f;|,,— and
folz;=0. Then, there exist vy, v; € F[x] such that f|,,—o = v; - h and fo|s;—0 = vo - h. Then,

flz;=0 = filz;=0 - Ti + folz;=0 = h(viz; + vo).

Thus, f|.,—o is reducible, which contradicts that f is O-irreducible. Hence, f;|.,—0 and fole;—0
are co-prime polynomials. As f = f; - x; + fo, it follows from Definition 2.12 that

Res,,(f,9) = fi- 90 — gi - fo-

Since z; divides Res,(f, g), we get Res,,(f, 9)|z;—0 = 0. Then, the above equation implies

fi|mj=o : go|zj:0 = gz‘\szo : fo\zjzo- (1)

Since both fo|s,—0 and f;],,—o are non-zero, the above equation implies that go|,,—0 = 0 if
and only if g;|,,—o = 0. If this happens then g|,,—o = 0 and in this case, f|,,—o obviously
divides g|,,—o. Now, suppose g|,,—o # 0, which implies go|,;—o and g;|»;—0 are non-zero.
As filz,—0 and fo|s;—o are co-prime and fy|,,—o is a non-constant polynomial, Equation (1)
implies that there exists a non-zero polynomial v € F[x] such that

gi|m]-:0 = fz'|r]:0 v and golszo = fo|zj:0 .

As fla,=0 = file;—0 - i + fole,—0 and gs;—0 = Gile;—0 - Ti + go|z,—0, the equation above implies
that gls;—0 = v+ fls,=0. [
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The following lemma lies at the heart of the proof of Theorem 1. We show that the
resultant of two O-irreducible ROPs is 3-hard (see Definition 2.35).

Lemma 4.2 (Hardness of representation for the resultant of two 0-irreducible ROPs). Let
n > 3 be a natural number and A, B € Flzy,xq,...,x,] be 0-irreducible ROPs. Let i € [n]
be such that Res,, (A, B) # 0. Then Res,, (A, B) is 3-hard.

Proof. Suppose for contradiction that Res,,(A, B) is not 3-hard, that is, Res,, (A, B) # 0
and there exists a J C [n],|J| = 3 such that for every j € J,z; divides Res,, (A4, B). We
claim that this implies either J C var(A) or J C var(B). As x; divides Res,, (4, B) for every
J € J, we get that j € var(A) Uvar(B). Observe that this implies either |var(A)N.J| > 2 or
|var(B) N J| > 2. Suppose the former is true and j # k € var(A) N J. As A is O-irreducible,
it follows from Claim 4.1 that A, o divides B|,,—o and Al,,—o divides B|;,—o. This implies
that j,k € var(B). Let ¢ € J\ {j,k}. Since ¢ € var(A) U var(B), we get that either
J Cvar(A) or J C var(B).

By using the fact that B is also 0-irreducible and by using a similar argument as above,
it follows that J C var(A)Nvar(B). This implies that for every j € J, there exists a non-zero
a; € F such that Al,,—o = a; - Bly;—0. Since B is O-irreducible, |var(B)| > 3, and a; # 0
we get that a; - Bl,;—o #Z 0. Since A and B are 0-irreducible ROPs, Claim 2.5 implies that
these are also O-justified. Then, it follows from Claim 3.10 that there exists an @ # 0 €
such that A = o - B. But this means that A, B are not co-prime, thus Fact 2.13 implies that
Res,, (A, B) = 0, which is a contradiction. Hence, Res,,(A, B) is 3-hard. O

Using Lemma 4.2, we can now show that Res,, (A, B) has a monomial of support-size at
most 2 and hence we can hit Res,,(A, B) using G, 2. Note that Res,,(A, B) by definition
does not depend on x; but we can still consider it as a polynomial in F[zq, ..., z,]. In this
case, when we apply any generator G : Ft — F”, it will not substitute anything for variable
x;. Henceforth, we follow this convention for any (n — 1)-variate polynomial.

Corollary 4.3. Let A, B € Flzy,x, ..., x,] be 0-irreducible ROPs such that Res,, (A, B) #Z 0
for some i € [n]. Then, Res,, (A, B) contains a monomial of support-size at most 2. In
particular, (Res,, (A, B))(G,2) #Z 0.

Proof. Let R 2 Res,, (A, B) # 0. Let J be any subset of var(R). Note that ¢ ¢ J. Since
A, B are 0-irreducible and multilinear, we have that deg, (P) = deg, (P|x,—0,) = 1 for both
P = A, B. Then by Fact 2.13,

R|XJ:0J = Resl‘i(Aa B)|XJ:0J = Resxi(A|XJ:0J’B|XJ:0J)' (2)

Since A, B are O-irreducible, both Alx,—o,, B|x,=0, are also O-irreducible by definition. Then
by Lemma 4.2 we deduce that R|x,—o, is also 3-hard for any J C var(R). Now, we can use
Fact 2.37 to show that R has a monomial of support-size at most 2 and thus R(G,,2) #0. O

In Corollary 4.3 we showed how to hit the resultant of two 0-irreducible ROPs. In the
lemma below, we show how to hit resultant of two general ROPs. Recall the definition of
the class Res(C) and Fact 2.34 from Section 2.
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Lemma 4.4. G3 is a generator for the class Res(ROF).

Proof. Let A, B be two irreducible ROPs in F[zy, xa, . .., z,]. We show that for every i € [n]
s.t. Resy, (A, B) # 0 we have that (Res,, (4, B))(G,3) # 0. Since, Res,,(A, B) # 0, Fact
2.13 implies that A and B are co-prime with respect to x;. By Claim 3.12, there exists
an a € Im(G,, ;) such that A 2 A(x +a) and B 2B (x + a) are O-irreducible polynomials.
Moreover they are co-prime with respect to x;, since A, B are. From Corollary 4.3, we deduce
that (Res,, (A, B))(Gnz2) # 0.

Let A = A;(x)-z;+ Ap(x) and B = B;(x)-x; + By(x), where A;, Ay, B;, By do not depend
on x;. Then, we get that

A

Ai(x+a)(x; + a;) + Ao(x + a)
= Ai(x+a) -z, + a;A;(x+a)+ Ag(x+a)
B=Bi(x+a)-1z; + a;Bi(x+a)+ By(x+ a).

On computing the resultant, we get Res,, ~(121, B) = (Res,, (A, B))(x + a). Thus, we deduce
that (Res,, (A, B))(Gpz2 +a) = (Res;, (A, B))(Gp2) # 0. Since a € Im(G,, 1), it follows that

(Resy, (A, B))(Gpaz + Gny) = (Resy, (A, B))(Gps) 0. 0

4.2 Proof of Theorem 1: PIT for > [ ROF

In Section 1.3, we outlined why it suffices to hit the resultants of two ROFs in order to hit
the class 2[2} [] ROF. For a general class C, it is implicitly shown in previous works like
[Vol15, BV22] that it suffices to hit the class Res(C), which we formally stated in Fact 2.34
and proved in Appendix A.1. In Lemma 4.4, we have shown that G5 is a generator for the
class Res(ROF). As a consequence, we get that G4 = G, 3 + G, is a generator for any

n-variate polynomial in the class 321 [] ROF.

Theorem 4.5 (G4 hits S [ ROF). Let f € Flz1, xs, . .., 2] be a polynomial in the class
2[2] [1 ROF and let G, 4 be the generator given in Definition 2.30. Then, f =0 if and only
if f(Gna) =0

Proof. In Lemma 4.4, we showed that G3 is a generator for the class Res(ROF). Then by
Fact 2.34, G4 = G5+ (G is a generator for the class Z[Q] I] ROF, that is, given an n-variate
polynomial f € Z[Q] [T ROF, f =0 if and only if f(G,4) = 0. O

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We are given an n-variate polynomial f € 2[2] [T ROF such that
deg(f) < d. Then, Theorem 4.5 implies that f(G, 4) =0 if and only if f = 0. Since f(G,.4)
is an eight-variate polynomial and has degree at most n - d, it follows from Fact 2.28 that the
zeroness of f(G, 4) can be tested in poly(n,d) time. This completes the proof of Theorem 1.
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5 PIT for YU AC

This section is devoted to the proofs of Theorems 2 and 3. Here, we prove a more general
result in Section 5.2, which subsumes these two theorems (see Theorem 5.9). Its proof goes
via a hardness of representation result given in Theorem 5.6. Before coming to this theorem,
we discuss some useful results in the next section.

5.1 Some Useful Results

In this section, we give a set of results required in the proof of Theorem 5.6, which lies at
the core of the proofs of Theorems 2 and 3. Recall definition of a m-hard set of polynomials
(Definition 2.35). The following result generalizes Claim 3.10.

Claim 5.1. Let n,m € N, n > m > 2 and A, B € Flzy,xs,...,2,] be two 0-justified
polynomials such that for every B € F, the set {A, - B} is m-hard. Suppose there exists
a set J C [n],|J| = m such that for every j € J, there exists an o; € F satisfying Al,,—o =
;- Bly;—o. Then, A~ B

Proof. Since A, B are 0-justified polynomials, it follows from Definition 2.1 that for every
Jj€J, Alg;—0 #Z 0 and Bl,,—o # 0 and therefore a; # 0. Let 7, j € J be arbitrary distinct
indices. As m > 2, such indices exist. As o; # 0 and o # 0, we get

A

r;=0,2;=0 — Q; * B z;=0,2;=0 — Qj * B 2;=0,2;=0"

Since A, B are O-justified, Al;;—02,—0 #Z 0 and Bl;,—0,2,=0 # 0 and therefore o; = ;. Then,
the above equation implies that there exists an o € F\ {0} such that for every j € J,a; = a.
We claim that A = o - B. Suppose not. As for every j € J, Al;;—0 = a - Bl;,—0, Fact 2.7
implies that x; divides A — « - B. Thus, the monomial [] jes&j divides A — aB. Since
|J| = m and A — « - B # 0, this contradicts our assumption that the set {A, —a - B} is
m-hard. Hence, A = a - B. n

Claim 5.2. Let F be a field, n,e,d € N, such that e > 2,char(F) does not divide e, and
d<e. Let f,g € Flzy,29,...,2,], and a« € F\ {0}. Suppose f¢ —g° = . Then f,g € F.

Proof. As char(FF) does not divide e, Fact 2.15 implies that there exists an e-th primitive
root of unity w € F. Then, it follows from Fact 2.16 that

e | R (3)

L€]e]

As e > 2 and o # 0, we get from the above equation that for every ¢; # {5 € [e], there exist
non-zero o, s € IF such that

f—wlg=o0q and f—w"g=as.
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These two equations can be expressed as follows.

b =)

As w is a primitive root of unity, the 2 x 2 matrix, say M, in the L.H.S. of the above equation
is invertible over F. On multiplying the above equation with M !, we get that f,g € F. O

The following two claims would be used to handle two important cases in the proof of
Theorem 5.6. Recall Definition 2.14 and Fact 2.15.

Claim 5.3. Let F be a field, n,e,d € N, such that 2 < d < e and char(F) does not divide e.
Let f,g,h € Flzy, 29, . .., x,] be multilinear polynomials such that h is non-constant. Suppose
f¢ — g° = he. Then, we get the following.

1. Ifd>2 thend=e and f ~ g ~ h.

2. Ifd=1 then e = 2.

Proof. As char(F) does not divide e, Fact 2.15 implies that there exists an e-th primitive
root of unity w € F. Then, it follows from Fact 2.16 that

fe—go =11 —w'g) =n" (4)
LE]e]

1. Suppose d > 2. Let v be an irreducible factor of h. As d > 2 and f, g are multilinear
polynomials, the above equation along with uniqueness of factorization property of
Flxy1, 2, ..., x,] implies that there exist distinct ¢;, ¢ € [e] and two non-zero polyno-
mials uy, uy € Flxy, s, ..., x,] such that

f—whig=u-v and f—wg=uy-v.

These two equations can be expressed as follows.

1 —wh S |wmv

1 —w?2| |g|  |uz-vl|’
Recall from the proof of Claim 5.2 that we called the 2 x 2 matrix in the L.H.S. of
the above equation as M and argued that it is invertible. On multiplying the above

equation with M1, we get that v divides both f and ¢g. Then, it follows from Equation
(4) that ve divides h¢, which along with the assumption that e > d implies d = e. Thus,

fe_ge:he'

As v is an arbitrary irreducible factor of h, we get that h divides both f and g. Since
f¢— ¢g¢ = h®, by using a similar argument, we get g divides f and h. Hence, g ~ h.
Then, there exists an o € [ such that

fe:a'ge'

This implies that f, g, h are similar polynomials.
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2. Suppose d = 1. Then, Equation (4) implies

fo=gt =110 —w'9) =h

L€e]

Let ¢1 # (5 € [e]. For t € [2], let Iy 2 f—whg. Then, hy and hy are factors of
h. Now, using a similar matrix based argument as above, it is not difficult to show
that var(f), var(g) C var(hy)Uvar(hy). Since h is multilinear, all it factors are variable
disjoint. Note that we can not have e > 2 since it would violate the variable disjointness
of factors of h. Thus, e = 2. O

Let n,r € N,;r <n, P, be the monomial z; ...x,, and Z, 2 (P,) be the monomial ideal in
Flx1, 2, ..., x,]. For the lemma below, recall Definition 2.10. Here we consider a polynomial

f w.r.t. ideal Z, and write f = f + f, where f = f (mod Z,.).

Lemma 5.4. Let f € Flxy,x9,...,2,] be a non-constant 0-justified multilinear polynomial
such that f = g-h+v-P,., where 3 < r <n and v,g,h € Flxy,z9,...,2,] are arbitrary
polynomials (possibly non-multilinear). Then g and h are variable disjoint.

Proof. Since g = G+ gand h =h + h, where G, h € T,, there exists a v/ € F[x] such that f
can be rewritten as

f=G-h+v-P,. (5)

For the sake of contradiction, suppose q and h depend on a common variable, say .
Write g = gdlxg + -+ 4 gixy + go and h = hd2 + hlxg + ho, where di,dy > 1,
9a, Z 0, hd2 # 0 and foreach 0 <i < d;, 0 <5 < dg, gi,hj € F[x \ {z/}]. Then, we can
rewrite Equation (5) as

F=D Giai+a | | D hyal+ho|+v- P, (6)

i€[d1] j€lda]

Note that the leading term on R.H.S. is g, - hd2 d1+d2, where d; + dy > 2. Since f is
multilinear, this term must get cancelled by some term in vP, and hence it belongs to the
ideal Z,.. First assume that x, appears in the monomial P,. Then, we get that 7;—; must

divide the product gg, -ﬁdQ. First, suppose 7;—; divides gg,. As dy > 1, we get that P, divides

IR lel. In other words, g contains a monomial divisible by P, but this contradicts the fact

that ¢ = ¢ (mod Z,.) must not have any term divisible by P,. Similarly, the case when 7;—;

divides EdQ leads to a contradiction. Thus, we come to the case when 7;—; divides the product
Jd, ~ﬁd2 but neither of them alone. Since 7:—; does not divide gy,, there exists a variable z;,
where ¢t € [r] \ {¢} such that z; does not divide gy,. But since %f divides (G, - hay), ¢

must divide /fde. Similarly, as 7;—; does not divide ﬁdz, there exists another variable x, where
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s € [r]\ {¢, ¢} such that z, does not divide hg, but z, divides gy,. Since r > 3, we indeed
have sufficiently many variables for this to happen. Observe that

Ffloo = Glozo - Plomo (7)

f|$t:0 = (/g\d1|l‘t:0 : xgl +.. +§0|9€t:0) : (h’d2|-77t:0 : x?Q +...+ h0|$t:0)'

Since f is O0-justified, f|;,—0 # 0. Although we know that x; divides ﬁdQ, we note that x;
does not divide h, otherwise R.H.S. in Equation (7) becomes 0, while L.H.S. is non-zero.
Then from Equation (7), we deduce that deg,, (9ls,—o -/ﬁ|mt:0) > dy > 1. This implies that
rg € var(f) but since f is multilinear, deg, (f|.,—0) = 1 and hence d; = 1. Arguing similarly
for the variable x5, we get that dy = 1. Thus, we can rewrite Equation (6) as:

fZ(§1'$é+§0)'@1'$z+/f;o)+vl-73r. (8)

Now consider the polynomial f|;,—¢..—0. Since dy = dy = 1, z; and z; divide 71\1 and g,
respectively. We observe that

f‘wt=0,xs=0 = go‘xtzo,xszo : hO‘zt:O,xSZO-

Note that since f is O-justified, L.H.S. depends on z, while R.H.S. does not, as §0,ﬁo
were x-free. This is a contradiction.

The case when z, does not appear in the monomial P, is proved similarly. There, instead
of 7)’“ , we get that P, divides the product gy, - hd2 but does not divide g4, or hd2 Then there

ex1st distinct ¢, s € [r] such that x; does not divide gz but divides th and x, does not divide
hg, but divides gy,. Rest of the argument is exactly the same. Thus, we show that g and h
cannot depend on any common variable and are therefore variable disjoint. O

We shall now use Lemma 5.4 to prove the following claim that will be used inside the
proof of Theorem 5.6. In this claim, for a polynomial f, we work with the ideal Z,,,; and
express f as f = f + f, where f = f (mod Z,,41)-

Claim 5.5. Let n > 3 be a natural number and let A, B, R € Flxy,xs, ..., x,] be multilinear
polynomials that satisfy properties 1, 2 in Theorem 5.6. Let Hy 24— B, Hy 2 A+ B and

F:Hl'HQ—R:U‘Pm+1.

For each i € {1,2}, let J; = var(?[l-) and I; = [n|\ J;. Then JyNJy = ¢, Hy ~ R\xhzol1 and
H2 ~ R|x122012 .

Proof. Similar to (5), we can also write
ﬁl'ﬁg—R:U,'Pm+1. (9)

Then from Lemma 5.4, we get that f]l,flg are variable disjoint. Therefore, J; N Jy = ¢.
Then note that Jy C I;. Consider the substitution x;, = 07, in (9). We get

o ﬁfl - R|x11=011 =" P, (10)
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for some v” € F[x], where a = I/:72|,q1 —0;, € F and v” may or may not be zero. For example,
if [m + 1] N I; # ¢, then v = 0.
Note that if a = 0, then

Z
—R|x11:011 = 'Pm_|_1 — R|x11:011 E:Zm+1.

But R is O-justified (property 1 in Theorem 5.6), thus Rl|x, —o,, & Zn+1, which gives a

contr@diction. Hence, a # 0. Now add « - ﬁl on both sides of (10). Since H; = f{l + I/-]'l
and Hy € Z,,,,1, we get

7 ] Vi
O('H1+06'H1—R’xh:011 :Oé'H1+U 'Perl
"
o H1 — R’xh:o]l =v - Pm+1

n
a-A—a-B- Rl o, =V" P,

for some v € F[x]. By our hypothesis (property 2 in Theorem 5.6), we know that the set
{a+ A, —a - B,—R|x, =0, } is m-hard (also (m + 1)-hard). Therefore, from the equation
above, we deduce that v = 0. Hence, a - Hy = R|x, —o,,, or equivalently H; ~ R|y, o,
Similarly, we also get Hy ~ Rlx, —o,, - O

5.2 The Hardness of Representation Theorem and PIT

The theorem below is the main technical result of this section. Instead of talking about a
particular class like ROF, we state it more generally for possible future use. The theorem
below essentially lifts hardness of representation for a set of three polynomials to the set of
their (arbitrary) powers. Recall Definition 2.35 for a m-hard set of polynomials.

Theorem 5.6 (Hardness of representation for At — B> — R3). Letn,m € N;m > 2 and F
be a field. Suppose A, B, R € F|xy,xa,...,x,] are multilinear polynomials which satisfy the
following properties:

1. A, B, and R are 0-justified.

2. For every Jy, Ja, J3 C [n] and a1, oz, a3 € F, the set of polynomials {a - Alx, =0, , a2
Blx,,=0,,, @3- Rlx,,=0,,} is m-hard.

3. For any disjoint sets Jy,Jo C [n| and for every a,B € F, the set of polynomials
{a - Rlx; =o,, * Rlx;,=0,,, 8+ R} is m-hard, where I = [n] \ Ji and Iy = [n] \ Js.

Let ey, e,e3 € N such that ey > ey > e3. Then, the set {A®, —B® —R%} is (m + 1)-hard.

Proof. Let F' 2 A9 — Be2 — R To prove that {A®, —B® —R*} is (m + 1)-hard, either
we have to show that F' = 0 or for every subset J C [n],|J| = m + 1, the monomial
HjeJ x; does not divide F'. If F' = 0, there is nothing to prove. If n < m + 1 then F' = 0.

Therefore, we can assume without loss of generality that n > m + 1 and F' # 0. Assume
for the sake of contradiction that there exists a set J C [n],|J| = m + 1 such that [[;_; z;
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divides F. Without loss of generality, let J = [m + 1], which implies that the monomial

Pt 2 x1- -+ Tmar divides F. In other words, F' € 7,1, where Z,,,; is the ideal in

Flxy, za, ..., x,] generated by P,,41. For this proof, we can assume without loss of generality

that F = F. This is so because if the monomial P, divides F' over the field F then it also

divides it over F. As F' € Z,,,,1, there exists a non-zero v € Flzy, z, ..., x,] such that
F:'U'Pm+1. (11)

If A,B,R € F then we immediately get a contradiction. So, we assume without loss of
generality that A is non-constant (otherwise, B and R are also constants). Now, we analyze
the situation in the following cases.

e Case 1. e; > ey: Let j € [m + 1] be such that var(A) \ {j} # 0. Since m +1 > 2,
such a j always exists. Then, Equation (11) implies that

F’%:O - (A|ffj=0)el - (B|-Tj:0)e2 - (R‘xj:O)eS

As A is O-justified, non-constant, and var(A) \ {j} # 0, we get that Al,,— is a
non-constant polynomial. Since Al;,—o, B|s;,—0, R|s;—0 are multilinear, Al,,—o is non-
constant, and e; > ey, F|;,—9 # 0 . This means that F' is not divisible by z;, which
contradicts the assumption that F' € Z,,,14.

0.

e Case 2. ¢y = ey > e3: Fix e =e,d = e3. Then,

F=A°—B°— R (12)

For the further discussion, we need an e-th primitive root of unity w in the field ' (see

Definition 2.14). As F is algebraically closed, Fact 2.15 tells us that if p 2 char(FF)
does not divide e then w is always present in F. If p = 0 then w exists. Suppose p is
a prime number and p divides e. Then, there exists an ¢/ € N such that e = ¢’ - p. As
p = char(F), Equations (11) and (12) imply that

(A = BY —RY =0 - P, (13)

First, suppose that R is non-constant. Clearly, there exists a j € [m + 1] such that
var(R) \ {j} # 0. Tt follows from Equation (13) that

((Ala;=0)" = (Blz;=0)* )" = (Rlz;=0)".
As var(R) \ {j} # 0, R|s,—0 is a non-constant multilinear polynomial. Then, the
equation above implies that p divides d.

Now, suppose that R € F. As F is algebraically closed, we know that « 2 Ry s
present in F. Then, B¢ = («)?P. In this case, without loss of generality, we can replace
R with «. This is so because observe that Properties 1, 2, and 3 of A, B, R remain
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intact if R is constant and we replace it with any other constant. This implies that
{A¢, —B¢, —R%} is (m + 1)-hard if and only if {A¢, — B¢, —a®?} is (m + 1)-hard.
Thus, in both the cases discussed above i.e., R € F and R is non-constant, there exists
a d € N such that d = d' - p. Then, again using the fact that p = char(FF), it follows
from Equation (11) that

F=(F)Y=v-Ppi.

As F € T,,,1, Observation 2.9 implies that F' € Z,,,1. Thus, we can work with F”
instead of F'. This argument allows us to assume without loss of generality that p does
not divide e. Hence, by Fact 2.15, we get that an e-th primitive root of unity w is
present in F. Then, on substituting z = A and y = B in 2° — y° in Observation 2.16,
we get the following useful factorization of A€ — B°.

A =B =[[(A-w'B). (14)
Le(e]
This factorization would be immensely helpful for further analysis. We first assume
that e = 1. As d < e = 1, Equation (12) implies that ' = A — B — SR, where
g € {0,1}. It follows from Property 2 that the set {A, —B, —SR} is m-hard. Then
Definition 2.35 implies that F' can not be divisible by any multilinear monomial having
support m. This contradicts our assumption that F' € Z,,,11.

Henceforth, we assume that e > 2. Now, we analyse this case in the following sub-cases.

Sub-case 2.a. R is a field constant: Suppose R = 0. It follows from Equations (12)
and (14) that for every j € [n], there exists an ¢; € [e] such that Al,,—o = w" B, .
As A is O-justified and n > m + 1, there exists a J C [n],|JJ| = m such that for every
Jj € JAlgj—o # 0. Since m > 2, Claim 5.1 implies A ~ B. Thus, there exists an
a € F such that FF = a - A°. Now, it follows from Observation 2.9 that A € Z,,.1.
Asn > m+ 1, we get from Definition 2.35 that {A} is not (m + 1)-hard. On the
other hand, as {A} is m-hard by assumption (see Property 2), observe that it is also
(m 4+ 1)-hard. This is a contradiction.

Now, suppose R € F\ {0}. Let j € [m + 1] be such that var(A) \ {j} # 0. It follows
from Equations (11) and (12) that
(Als;=0)® = (Bla;=0)* = (Rla,—0)".

Since R € F\ {0}, Claim 5.2 implies that A|,,—o, B|,,—0 € F. But this can not happen
as var(A) \ {j} # 0, A is non-constant and O-justified. Thus, F|,,—¢ # 0, which means
that z; does not divide F' and hence F'is not in Z,, ;. This is a contradiction.

Sub-case 2.b. d > 2: Let J C [m + 1] such that |J| = m and for every j €
Jyvar(R) \ {j} # 0. Let j € J be arbitrary. Since R is 0-justified and non-constant,
the restricted polynomial R|,,—o is non-constant. Then, Equations (11) and (12) imply

(Ale,=0)° = (Bla,=0)" = (Rla,=0)"-
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It follows from Point 1 of Claim 5.3 that d = e and for every j € J, Al,,—o ~ Bls;—0 ~
R|z;=0. Since |J| = m > 2, it is not difficult to see from Claim 5.1 that A ~ B ~ R.
Thus, there exists an o € F such that F' = « - A°. Since, by assumption, F' € 7,1,
Observation 2.9 implies that A € Z,,,1. But this can not happen as A is m-hard, which
implies that A can not be divisible by any multilinear monomial of support m. Thus,
we get a contradiction.

e Sub-case 2.c. d = 1: From Claim 5.3, point 2, we deduce that e = 2. Then from
Equations (11), (12), and (14), we have the following scenario:

F=(A-B)(A+B)—=R=1Ppi.

Let Hy = A— B and Hy, = A+ B. Then, we can write R = Hy - Hy + 0" - Py,
where v/ = —v. Since n > m + 1 > 3, by Lemma 5.4, H,, Hy are variable disjoint.
Moreover Claim 5.5 shows that for disjoint sets Jy = var(H;), Jo = var(Hs), we have
H, ~ R|X11:011 and Hy ~ R|xl2:012, where I1 = [n] \ J; and Iy = [n] \ Jo. By Point
3 in our hypothesis, we deduce that the set {H;Hs, —R} is m-hard and hence also
(m 4+ 1)-hard. This contradicts our assumption that F' = H1Hy — R € Z,,,41. O

In Theorem 5.6, it was convenient to work with the set {A°', —B®2 —R®} as we could
exploit the factorization of A°— B¢ in Equation (14). But as shown below, we can also drop
the — signs and prove that the set {4, B>, R} is m-hard provided A, B, R satisfy the
hypothesis of Theorem 5.6.

Corollary 5.7 (Hardness of representation for A°* + B® + R®). Let A, B, and R be the
multilinear polynomials given in Theorem 5.6 and m be the parameter mentioned in Theorem
5.6. Let ey, eq,e3 € N such that ey > ey > e3”. Then, the set {A®, B2, R®} is (m+ 1)-hard.

Proof. Let F 2 A% 4 B2 4+ Res, As argued in the proof of Theorem 5.6, we can assume
without loss of generality that F = F. Let o, 8 € F be roots of the univariate polynomials
Yy + 1,y + 1 € Fly| respectively. Observe that

F=A"—(a- B — (8- R)*.

Since A, B, and R satisfy Properties 1,2, and 3 given in Theorem 5.6, it is easy to see that
these properties are also satisfied by A, « - B, - R. Now it follows from Theorem 5.6 that
the set {A°, —(a- B)®, — (5 - R)*} is (m + 1)-hard. O

Using the hardness of representation proved above, we can now hit any polynomial of
the form A® 4+ B¢ 4+ R, provided that A, B, R satisfy the hypothesis of Theorem 5.6.

5We have this condition because we require only R to satisfy Property 3 in Theorem 5.6. If A, B also
satisfy this property then we can drop the restriction e; > es > e3, which is indeed the case for ROF's and Cy,
as shown in Section 5.3. More generally, given the structures of ROF's and C, our hardness of representation
result actually extends to any sum of three powers of ROFs and Cy.
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Corollary 5.8 (Generator for A + B2 + R®). Let A, B, R € Flxy,x,...,2,] be the poly-
nomaials given in Theorem 5.6 and m be the parameter mentioned in Theorem 5.6. Suppose
F 2 Ao 4 Be + R where ey,e5,e3 € Nyey > ey > e3. Then, FF = 0 if and only if
F(Gnm) =0, where G, is described in Definition 2.30.

This corollary immediately follows from Corollary 5.7 and Fact 2.37. We can apply Fact
2.37 here because of the following reason: For Fact 2.37, we need to argue that for ev-
ery subset I C [n], the set of restricted polynomials {(Al|x,—0,)%", (Blx,=0,)%*, (R|x;=0,)%}
is (m + 1)-hard. To show this, we invoke Corollary 5.7 by replacing A, B, and R with
Alx,=o0;, Blx;=0,, and R|x,—o, respectively. Observe that these restricted polynomials also
satisfy Properties 1, 2, and 3. Thus, Corollary 5.7 implies that the set of restricted polyno-
mials {<A|X1=01)617 <B|X1=01)627 (R|X1=01>e3} is (m + 1)—hard.

Now, we are ready to prove the following result, which generalizes Theorems 2 and 3.

Theorem 5.9. Let n € N and let A, B,R € Flxy, 29, ..., x,] be multilinear polynomials.
Suppose F 2 Aer 4 Bee 4 ]5;63, where ey, eq,e3 € Nyey > ey > e3. Let m be the param-
eter mentioned in Theorem 5.6. Let H : F* — F™ be a generator such that there exist
an assignment a € Im(H) for which the polynomials A 2 A(x +a),B 2 B(x + a), and

R2 ﬁ(x + a) satisfy Properties 1, 2, and 3 given in Theorem 5.6. Then, F =0 if and only
if F(H + Gpm) =0, where Gy, is described in Definition 2.50.

Proof. Suppose F' is non-zero. Let F' = A®* + B + R®. Since F' = F(x + a), we also
have I’ #£ 0. Since A, B, R satisfy Properties 1, 2, and 3 in Theorem 5.6, we deduce that
F'(Gpm) # 0 from Corollary 5.8. As the assignment a € Im(H), F'(G,,,»,) # 0 implies that
F(H +Gpm) #0. O

5.3 Proofs of Theorem 2 and 3: PIT for P A ROF and P A ¢,

Now, we are ready to prove our main results. Let us see them one by one.

Proof of Theorem 2. In this theorem, we give a blackbox PIT for the class S A ROF.
Let f € 2[3] /\ ROF be a polynomial of degree at most d. Then, there exist three ROPs
A, B, R and ey, e, e3 € N such that

f=A“ 4 B+ R,

It follows from Fact 3.3 that there exists an assignment a € Im(G,,1) (see Definition 2.30)
such that A 2 A(x+a),B 2 B(x +a), R 2 R(x + a) are O-justified polynomials. This,
along with Fact 3.8 and Observation 3.5 imply that A, B, and R satisfy Properties 1, 2, and
3 of Theorem 5.6 with m = 9. Note that since the class of ROF's is closed with respect to
the product of variable disjoint formulae, (see Observation 3.5) we get that each of the three
polynomials A, B, R satisfy Property 3. Thus, we can assume without loss of generality that
e1 > ey > e3. Now, it follows from Theorem 5.9 and Fact 2.28 that we can determine in
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poly(n,d) time whether f is zero or not.

Proof of Theorem 3. In this theorem, we give a blackbox PIT for the class S A C,.
Recall that Cy is the class of multilinear read-k arithmetic formulae. Let f € Z[ ] A\ Ci be a

polynomial of degree at most d. Then, there exist three polynomials A B R computed by
multilinear read-k arithmetic formulae and eq, €5, e3 € N such that

f=A" 4 B2 4 R,
Fact 3.15 implies that there exists an a € Im(G, ), where ¢ = m + 3k[logn] and m =
(8k - (k + 1))*, such that A 2 A(x + a), B 2 B(x +a),R 2 R(x + a) satisfy Properties
1, 2, and 3. Since Cy is closed with respect to the product of variable disjoint formulae,
(see Observation 3.14) we get that each of the three polynomials A, B, R satisfy Property 3.

Thus, we can assume without loss of generality that e; > ey > e3. Now, Theorem 5.9 and
Fact 2.28 imply that we can determine in (nd)?(°¢™ time whether f = 0 or not.

6 Discussion and Future Work

In this work, we give a polynomial-time blackbox PIT algorithm for the class Z[Z] I] ROF.
We improve upon a result of [MRS16], which gave a whitebox PIT algorithm for the same
class. We also took a step forward in solving an open question in [MRS16]. An efficient
deterministic PIT algorithm for the class z[k} /\ ROF was listed as an open problem in
[MRS16]. We give a polynomial-time deterministic blackbox PIT algorithm for 2[3] /\ ROF.
In addition to these two results, we also give a quasi-polynomial-time deterministic blackbox
PIT for 2[3} N\ Ci, where Cy, is the class of multilinear read-k arithmetic formulae over a field
F. All our results work over any field. The common thread between these three results is
the hardness of representation approach (see Section 2.5). Now we list some open questions.

e PIT for ¥ T] ROF: Our PIT algorithm for > J] ROF crucially depends on the
fact that the fan-in of the topmost + gate in the circuits of this class is exactly two.
In particular, the resultant based approach used in our algorithm only works in the
top fan-in equal to two regime. It is not clear how to lift the resultant-based ap-
proach to 2[3} [] ROF. Can we come up with some technique that not only yields
efficient PIT algorithm for S>¥/ ] ROF, but also has the potential to extend to PIT
for [T ROF, where k is a constant?

o PIT for Z[k] /\ ROF: An efficient PIT algorithm for this class would solve an open

question given in [MRS16]. Our PIT algorithm for S A ROF is based on a hardness
of representation theorem, which we prove for this class. Can we prove the hardness
of representation for Z[k] /\ ROF? In this direction, we note the following conjecture.

Conjecture 6.1. Let k,n € N, and Ay, ..., Ay € Flxy, 29, ..., 2,] be 0-justified ROPs.
Then, there exists a monotone function ¢ : N — N such that for any ey, ..., e € N,
the set {AT', ..., A¥} is ¢(k)-hard (see Definition 2.35).
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We remark that this conjecture is true when every e; = 1. In particular, [SV15] showed
that for any constant k, the set {A;,..., Ax} is 3k-hard (see Fact 3.8). In addition,
for the special case when the A;-s are products of linear forms over the reals, it was
shown in [SV15], based on a result of [SS11], that set {A',..., A¥} is Rg(k)-hard (for
arbitrary e;-s) where Rg(k) is the so-called “Rank Bound over the reals”. Finally, in
[KS09] it was shown that Rg(k) = k°*) and improved to Rg(k) = O(k?) in [SS13].

PIT for Zm [[Ck: The approach used in the proof of Theorem 1 would immediately
solve this problem, provided we are able to efficiently compute a common irreducibility
preserving assignment (see Definition 2.4) of a set of multilinear read-k arithmetic
formulae. We know that if we could efficiently hit all the commutators of these formulae
then such an assignment can be computed efficiently (see Claim 2.23 in this regard).
In case of ROFs, it turns out that a commutator of an ROF is a product of ROF (see
Corollary 3.7). What can we say about the structure of commutators of multilinear
bounded-read arithmetic formulae?
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A Missing proofs from Sections 2 and 3

For a generator, we can keep a variable untouched while applying the map on rest of the
variables. This is formally called reviving a variable and is defined formally below. This
operation will be needed for Section A.1.

Definition A.1 (Reviving, [Voll5]). Let f € Flxy,zo,...,2,] be a polynomial and G :
F* — F" be a polynomial map such that G = (G'(w),...,G"(w)). Let k < n. Define

H,,:F*? > TF" as H, 2 G(w) 4+ Gn1(y, 2). Leti € [n]. By Fact 2.31,

f(Hn71)|y=ai,Z=I¢*gi = f(gl(w)7 s 7gi—1(w)7 i, gH—l(W)’ R 7gn(w))>
where oy is the i Lagrange constant.

The following fact from [SV15] gives the complete description of the structure of an ROP.
This will be useful in Section A.3.

Fact A.2. (Lemma 3.3 of [SV15]) Let A € F[x] be an ROP such that |var(A)| > 2. Then,
there exist non-constant variable disjoint ROPs Ay, Ay € F[x| such that exactly one of the
following s true.

1. A:A1+A2
2. A=Ay Ay + «a, where a € F.

A.1 Proof of Fact 2.34

We are given a non-zero f = A;---A,, + By---B,. Then, we have two cases: either
Ay Ap~By---B.or Ay--- A, o4 By - - B,.. In the former case, f = a-A; - -- B,, for some
a € F. Then, clearly f(G) = 0 if and only if f = 0. Now, suppose A; -+ A, o By --- B,. We
can assume that f is simple, that is, there is no common factor among any two polynomials
A;, By, j € Im],k € [r]. Otherwise we can simply take out the ged, which can be hit by G
as it is a product of polynomials from C (Observation 2.29). Now consider the irreducible
factorization of LHS and RHS. Without loss of generality, there exist an irreducible factor
u of some A;, j € [m] such that u does not divide any By, k € [r]. Let z; be any variable in
var(u). Then Res,,(u, By) # 0 for all k£ € [r]. Since G : F* — F™ hits Res(C), we deduce that
Res,, (u, Br)(G_;) # 0, where G_; = (G',...,G"1 G G"). Using definition of resultant,
one can then show that Res,,(u(x;,G_;), Bk(xz, —i)) Z 0. We need to show this for every
i € [n], which would imply that u does not share a ged with any By even after applying
the generator map. This then proves that Ay --- A,, ¢ By --- B, after the map, which shows
that f remains non-zero after applying the map. To iterate over every variable z;, ¢ € [n] in
a blackbox way, we do this additional step of composing G with G,,1. Let H,,; = G + G, 1.
Then from Definition A.1, we deduce that for every i € [n], w(H,1)|y—a;2ma;,—gi = w(xi, G_;)
and By(Hn1)|y=a; 2=z:—gi = Br(ri,G-;). Hence, f(Hy1) # 0. O
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A.2 Proof of Fact 2.37

Let M be a minimal support monomial in A, i.e., for every monomial M’ of A, |supp(M)| <
|supp(M")|. We claim that [supp(M)| < m. Suppose this is not true. Let J := [n]\supp(M).
Then, it is not difficult to see that Alx,—o, is non-zero. Since A = A; + - -+ + Ay, we get

A|XJ:0J = AI‘XJZOJ ..t Ak’XJZOJ Z 0,

and Alx,—o, is divisible by the support at least m monomial [] jesupp(M) Li- On the other
hand, by assumption, the set {Ai|x,=0,, -, Ak|x,—0,} is m-hard. Since Alx,—o, Z 0, it
follows from Definition 2.35 that A|x,—¢, can not be divisible by any monomial of support
m. This is a contradiction. Thus, |[supp(M)| < m. As A has a monomial of support less
than m, it follows from Fact 2.32 and Observation 2.33 that A(G,, ,,—1) #Z 0. O

A.3 Proof of Fact 3.9

For the sake of contradiction, suppose the set {A, B} is not 3-hard. Then A + B # 0 and
there exists a set J C [n],|J| = 3 such that A + B is divisible by the monomial [, ; ;.
Without loss of generality, let J = {1,2,3}. Since A+ B is multilinear, there exists a non-zero
R € F[x \ {z1, z2, z3}] such that

A+B == R'l‘lﬂ/’gl‘g. (].5)

We get the above equation for restrictions of A, B. For the sake of simplicity, we still
call these restricted polynomials A, B which are now 0-justified polynomials in Flxy, x5, x3].
First, suppose there exist i,j € [3], i # 7 such that A = (), Then from Equation (15),

8£Ei(91'j
32B . T1T2T3
(91:1-(9%- T .

Note that 8f?£ - % 0 as R.H.S. is non-zero. Moreover, it follows from Fact 3.4 that 63283:'
1 J g J
is 0-justified since B is O-justified. Since we have 3 variables, pick z, such that ¢ ¢ {i,j}

and fix z; to 0. Then R.H.S. of the above equation is 0 but L.H.S. is non-zero, which is a

contradiction. Similarly the case, where afifﬂ - = ( leads to a contradiction.
i0T;
Now, we are in the case where for every i, j € [3], i # j, we have a:?jaé - % 0 and 8§j£ - £ 0.

In this case, every gate in the ROFs of A and B is a multiplication gate. This is because if
there was an addition gate in A (similarly, B), it would be the first common gate for some

pair of z;,x; variables, which implies 8?%5; - = 0 (respectively, B — 0). Therefore, by
105

Ox;0x
Fact A.2, we can write A+ B as g1 - hy + g2 - ho + ¢, where g1, hy arje variable disjoint and

g2, hy are variable disjoint and ¢ € F. Then, without loss of generality, we can write (15) as

g1 -hi+c=gs-ha+ R-z12073. (16)

Since g1, hy are variable disjoint, pick some i € var(g;) \ var(hy) and j € var(hy) \ var(g).
First note that i,j € var(gs - hy). To see this, substitute x, to 0 for some ¢ ¢ {i,j}. Since
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A was 0O-justified, L.H.S. depends on z;,z;. Hence g, - hy must also depend on z;, z;. Since
g2, ho are variable disjoint, without loss of generality, we can assume ¢ € var(gs) \ var(hs)
and j € var(hg) \ var(g2). Now apply the commutator A;; on Equation (16). It follows from
Definition 2.19 that

T1T2T3

dg1 Oy
- —_— pr— Ti= 'h .= '_R' .
Or; Ox; ¢ = Geloizo * haley=o Tix;

Substitute z, to 0 above. Then R.H.S. is 0 but since A was 0-justified, L.H.S. is non-zero.
This implies ¢ = 0. But this is a contradiction, as now without the substitution L.H.S. above
is zero while R.H.S. is a non-zero polynomial. This is because gs|,,—o #Z 0 and haly,—o #Z 0
as B was 0-justified. Hence A 4+ B is not divisible by any monomial of length 3. O]

B Arithmetic circuits and formulas

In this section, we give a brief overview of the various algebraic models of computation
discussed in this work. For a detailed exposition, we refer the reader to the excellent survey
of [SY10].

An arithmetic circuit is defined as a directed acyclic graph, where input variables or field
constants label the leaf nodes, while intermediate nodes are labelled with either 4+ or x. A
‘+’ node adds all the polynomials on its incoming edges, while a x node multiplies. We have
a single output node at the top and the circuit computes from bottom to top. The edges
can also be labeled with field constants which get multiplied. An unlabelled edge can be
thought to be labelled with the constant 1. The in-degree of a node is called it fan-in and
out-degree is called fan-out. An arithmetic circuit has two important resource parameters:
size and depth. Size of the circuit is size of the underlying graph, given by the number
of edges and nodes. Depth of the circuit is the length of the longest path from some leaf
node to the output node. Degree of the circuit is the maximum degree of a polynomial
computed at any node in the circuit. VP is defined as the class of poly(n)-sized and poly(n)-
degree arithmetic circuits. Without loss of generality, an arithmetic circuit is assumed to
be an alternating layered graph, which alternates between a layer of addition and a layer of
multiplication nodes. The class of depth-2 ¥11 circuits computes sparse polynomials. Depth-
3 YIIX circuits compute polynomials of the form f = Zle H;"zl l;;, where [;;’s are linear

polynomials. Depth-4 YIIXII circuits compute polynomials of the form f = Zle HTzl fis»
where f;;’s are sparse polynomials.

An arithmetic formula or simply formula in short is defined as an arithmetic circuit where
every node has at most one outgoing edge. The underlying graph for a formula has a tree
structure.
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