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Abstract

Recently, Kumar and Mon reached a significant milestone by constructing

asymptotically good relaxed locally correctable codes (RLCCs) with poly-

logarithmic query complexity. Specifically, they constructed n-bit RLCCs

with O(log69 n) queries. Their construction relies on a clever reduction to

locally testable codes (LTCs), capitalizing on recent breakthrough works in

LTCs. As for lower bounds, Gur and Lachish (SICOMP 2021) proved that

any asymptotically-good RLCC must make Ω̃(
√
log n) queries. Hence emerges

the intriguing question regarding the identity of the least value 1
2
≤ e ≤ 69 for

which asymptotically-good RLCCs with query complexity (log n)e+o(1) exist.

In this work, we make substantial progress in narrowing the gap by devising

asymptotically-good RLCCs with a query complexity of (log n)2+o(1). The

key insight driving our work lies in recognizing that the strong guarantee of

local testability overshoots the requirements for the Kumar-Mon reduction.

In particular, we prove that we can replace the LTCs by “vanilla” expander

codes which indeed have the necessary property: local testability in the code’s

vicinity.
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1 Introduction

Error correcting codes with “local guarantees” play a pivotal role in modern coding the-

ory, and their study is highly motivated by applications to theoretical computer science.

Of particular interest are locally decodable codes (LDCs), introduced by Katz and Tre-

visan [KT00], and locally correctable codes (LCCs) that originated in works on program

checking [BK95, Lip90]. These are codes that admit highly efficient procedures for recov-

ering a single data symbol. LDCs allow one to decode a specific symbol of the message

while querying only a small number of symbols of the received, possibly corrupted, code-

word. On the other hand, LCCs offer a method to recover any desired symbol of the

codeword using only a few queries.

In their influential work, Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [BSGH+06]

introduced a natural relaxation of LDCs dubbed relaxed locally decodable codes (RLDCs).

In essence, RLDCs allow the decoder to abort in the face of corruption, while still being

required to always succeed when provided access to a codeword. The natural counter-

part to LCCs, known as relaxed locally correctable codes (RLCCs), was later introduced

by Gur, Ramnarayan, and Rothblum [GRR20]. For linear codes, RLCCs directly induce

RLDCs, and so in this case it can be easily seen that RLCCs are stronger objects. 1

LDCs, LCCs and their relaxed counterparts have attracted significant attention. The

reader is referred to [GI05, Yek08, DGY11, Efr12, GKS13, KSY14, Mei14, HOW15,

GKO+18, GRR20, DGGW20, GL21, CY21, CY22a, DGL21, BBC+23, Gol23a, Gol23b]

and references therein. RLDC have found applications to PCPs [MR08, RZR20], property

testing [CG18], privacy [GKST02], and probabilistic proof systems [GG21, GR17, GR18],

to name a few.

For simplicity, in this introductory part we focus on binary codes. Formally, a (q, δ, ε)

RLCC is an error correcting code C ⊆ {0, 1}n that is equipped with a randomized “cor-

rection procedure”

Cor : {0, 1}n × [n] → {0, 1} ∪ {⊥}

that makes at most q queries to its n-bit input, and have the following guarantees:

1. For every codeword c ∈ C, Cor(c, i) = ci for every i ∈ [n], with certainty.

2. For every w ∈ {0, 1}n of distance at most δn from some codeword c ∈ C, and for

every i ∈ [n], it holds that Cor(w, i) ∈ {ci,⊥} with probability at least 1− ε.

1For the case of non-linear codes, see [BGT16], Theorem A.6.
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We designate δ as the correction radius of the RLCC, emphasizing that, as a direct

implication, δ serves as a lower bound on the code’s relative-distance. In this paper we

consider asymptotically-good RLCCs, by which we mean RLCCs with a constant rate and

a constant correction radius. The reader may consult [CGS20], and references therein, to

learn more about the constant query regime.

In their work, Gur, Ramnarayan and Rothblum [GRR20] constructed asymptotically-

good RLCCs and RLDCs with query complexity (log n)O(log logn). This offers a significant

saving over the query complexity of the state-of-the-art LCCs and LDCs, q = 2Õ(
√
logn),

obtained by Kopparty, Meir, Ron-Zewi, and Saraf [KMRS17]. Interestingly, the RLCC of

[GRR20] draws inspiration from the ideas presented in the construction of locally testable

codes (LTCs) that appears in [KMRS17], rather than building on the LCC construction

from the same paper. The construction is based on a repeated application of tensoring

and distance amplification.

Continuing along a similar framework, but employing a more rate-efficient ingredient

instead of tensoring, Cohen and Yankovitz [CY22b] obtained asymptotically-good linear

RLCCs, hence also RLDCs, with query complexity (log n)O(log log logn). This somewhat

unnatural looking function, also taking into account the Ω̃(
√
log n) lower bound on the

query complexity of asymptotically-good RLCCs [GL21] 2 gave some hope that a query

complexity of (log n)O(1) is achievable.

Indeed, this hope was realized in an exciting recent work by Kumar and Mon [KM23]

who obtained RLCCs with query complexity O(log69 n). Their proof builds on a reduction

to LTCs, cementing the intuitive connection between RLCCs and LTCs, as hinted in the

work of [GRR20], and building on the recent breakthrough in LTCs construction by Dinur,

Evra, Livne, Lubotzky, and Mozes [DEL+22] 3.

1.1 Our result

The works of Kumar and Mon [KM23] and Gur and Lachish [GL21] leave us with the

fundamental question regarding the identity of the least value 1
2
≤ e ≤ 69 for which

asymptotically-good RLCCs with (log n)e+o(1) queries exist. In this work, we make signif-

icant progress in narrowing the gap by proving that e ≤ 2.

2In the case of non-adaptive RLDCs, a slightly stronger lower bound of Ω(
√
log n) is known [Gol23b].

By combining this result with [Gol23a], the strengthened lower bound of Ω(
√
log n) can be extended to

encompass all linear RLDCs as well.
3Kumar and Mon require LTCs with rate approaching 1, hence they could not use the independently

discovered LTCs by Panteleev and Kalachev [PK22].
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Theorem 1.1 (Main result). For every δ < 1 and for infinitely many n-s there exists an

explicit binary asymptotically-good linear RLCC (hence also RLDC) of block-length n

having correction radius δ, rate 1− δ1−o(1) − on(1), and query complexity

q = (log n)2+o(1).

Although Kumar and Mon did not explicitly focus on optimizing the exponent in

their query complexity, it appears that achieving an exponent as low as 2 is not feasible

using existing LTCs within their framework. We believe that the realization that a more

“economical” primitive, substituting the LTCs employed by Kumar and Mon, can be

employed, plays a pivotal role in achieving such a low query complexity. On the flip side,

we believe that new ideas are required to go below log2 n queries, if at all possible.

The exact asymptotic behavior of the query complexity q which is hidden, by design,

under the on(1)-notation is q = (log n)2+ε(n), where ε(n) = (log log logn)3

log logn
. Similarly, the

precise asymptotic behavior underlying the term δ1−o(1) that appears in the bound on the

rate is δ · 2O((log log 1
δ
)3). These expressions are derived from the parameters of the lossless

expander utilized in our work [CRVW02]. While it is possible that slight improvements

could be achieved by employing newer constructions of randomness extractors in place

of the ingredients used within [CRVW02], we have not made any specific attempts to

optimize the o(1) terms. At any rate, the reader is referred to Theorem 5.2 for the formal

statement.

We emphasize that even from an information theoretic standpoint, the question of

the lowest achievable query complexity for an asymptotically-good RLCC is intriguing.

Explicitness aside, we can obtain a slightly reduced query complexity, q = O(log2 n ·
log log n). Moreover, in such case the rate comes quite close to the Gilbert-Varshamov

bound,

ρ = 1−O

(
δ log

1

δ

)
− o(1).

In fact, we can construct RLCCs with these parameters in quasi-polynomial time, namely,

2(logn)
O(1)

by instantiating our construction with another expander construction that ap-

pears in [CRVW02].
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2 Proof Overview

An LTC (Locally Testable Code) is a type of error correcting code that incorporates

a local tester–an algorithm that performs a limited number of queries on the received

word w ∈ {0, 1}n and rejects it with a probability proportional to its distance from the

code. Importantly, a tester never rejects a valid codeword. LTCs with such a guarantee

are occasionally referred to as strong LTCs in the literature to differentiate them from

an alternative, weaker definition, which only requires the tester to reject words that

are sufficiently distant from the code. It is important to recognize that LTCs must in

particular handle words that are very far from the code, which constitute the vast majority,

“unstructured” portion of {0, 1}n. For a more comprehensive exploration of LTCs, we

recommend referring to Goldreich’s lecture notes [Gol16].

The key insight driving our work lies in recognizing that the strong guarantee of

local testability overshoots the requirements for the Kumar-Mon reduction. Expander

codes, although provably not full-fledged LTCs in general, satisfy the required property,

namely, all expander codes are locally testable in their vicinity. We make this more

precise in Section 2.1 below where we also recall the definition of expander codes. Then,

in Section 2.2, we explain how to obtain our RLCCs by instantiating the Kumar-Mon

reduction with expander codes instead of with LTCs.

The fact that expander codes are locally testable in the vicinity of the code can be

derived as a consequence of the analysis of the sequential decoding algorithm for expander

codes. The reader is referred to Section 2.3.1 in Spielman’s PhD Thesis [Spi95] and to the

discussion in Chapter 5. Interestingly, in his lecture notes, Goldreich [Gol16] discusses

offhand a variant of what we call local testability in the vicinity of the code (see Definition

10 in the notes), remarks that this definition may potentially be useful despite being

highly non-intuitive in the context of PCPs, and refers to the abovementioned discussion

in Spielman’s thesis.4

For the sake of completeness, we provide a simple proof for the testability of expander

codes in their vicinity without relying on a full decoding argument. This streamlined

approach helps clarify the concept and establishes the essential property of local testability

which is necessary for the reduction.

4A notion similar, though not identical, to codes that are locally testable at their vicinity appears in

[BSV15] and is dubbed semi-LTC. We also remark that the given proof for Proposition 6.2 of [BSV15]

proves that expander codes are locally testable at their vicinity.
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2.1 Expander codes are locally testable in their vicinity

2.1.1 Expander codes

Let us begin by revisiting the notion of expander codes, introduced by Sipser and Spiel-

man [SS96]. Let G = (L,R,E) be a bipartite d-left-regular graph. Denote |L| = n and

|R| = τn. The graph G is said to be a (γ, (1 − ε)d)-lossless expander if for every S ⊆ L

of size |S| ≤ γn, the set of neighbors of S, denoted Γ(S), is of size at least (1 − ε)d|S|.
Additionally, we define Γu(S) as the set of unique neighbors of S which consists of all

vertices v ∈ R such that |Γ(v) ∩ S| = 1. It is easy to prove that

|Γ(S)| ≥ (1− ε)d|S| =⇒ |Γu(S)| ≥ (1− 2ε)d|S|.

Moving forward, we will assume that ε is a small enough constant such that the right-

hand side of the aforementioned equation remains nontrivial. For instance, we can take

ε = 1
4
as one possible choice. Accordingly, we will refer to the graph G satisfying the

condition for this chosen value of ε as a γ-lossless expander for brevity.

By employing the probabilistic method, it is possible to prove the existence of γ-lossless

expanders for every desired sizes |L| = n, |R| = τn, where the left-degree d = O
(
log 1

τ

)
,

and γ = O( τ
d
). For the sake of simplicity and convenience, we shall use such an expander

throughout this informal section. In Section 2.2.4, we will briefly discuss the modifications

in parameters if we choose to work with the explicit expander from the work of [CRVW02].

With the expander G, we associate a binary code EC(G) on block-length n, dubbed

the expander code associated with G as follows. Every vertex v ∈ R is thought of as a

constraint, namely, for x ∈ {0, 1}n to be a codeword, we require that for every v ∈ R, the

parity of the bits {xu | u ∈ Γ(v)} equals 0 (where we identify the set L with the index set

[n]). It readily follows that EC(G) has rate at least 1− τ , and it is not hard to show that

the code has relative-distance at least γ.5

2.1.2 Expander codes are locally testable in their vicinity

We turn to show that EC(G) is locally testable in its vicinity. Let w ∈ {0, 1}n be word of

distance exactly γ′n from EC(G), let c ∈ EC(G) be a word closest to w, and let S ⊆ L be

the set that corresponds to w and c, S = {i | wi ̸= ci}. We assume that γ′ ≤ γ, reflecting

the fact that we are in the vicinity of the code. Our tester will simply sample a right

vertex v at random and rejects if the constraint associated with v is unsatisfied.

5In fact, stronger bounds on the relative-distance are known though they will not be necessary for our

purposes.
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Note that the tester will reject whenever v is sampled from Γu(S). Thus, the proba-

bility of rejection is bounded below by

|Γu(S)|
|R|

≥ d|S|
2τn

=
dγ′

2τ
.

Plugging the parameters of the non-explicit expander above, we get that the rejection

probability is bounded below by Ω(γ
′

γ
). In particular, if w is at the “outskirts” of the

expander code, namely, γ′ ≤ γ yet γ′ = Ω(γ), then the rejection probability is constant.

Of course, the rejection probability can be amplified to 1− 2−t by repeating the process

for O(t) times.

As for the query complexity, for simplicity assume that G is also c-right regular. Then,

the query complexity required for obtaining a constant rejection probability is

c =
d

τ
= O

(
1

τ
log

1

τ

)
.

2.2 RLCCs from expander codes

2.2.1 The construction

The key distinction between RLCCs and LTCs, whether they are full-fledged LTCs or only

guaranteed to work in their vicinity, lies in the fact that RLCCs are also provided with

an index i ∈ [n] indicating the specific bit to be corrected. To bridge this gap, following

Kumar and Mon [KM23], we define our RLCC using a binary tree 6 of expander codes so

as to make sure that any index i participates in expander codes of increasing size. This

allows one to “zoom in” on the i-th bit using expander codes. We elaborate on this next.

Assume for simplicity that n = 2m. We take a sequence of m expander codes

C0, C1, . . . , Cm−1 on block-lengths n, n
2
, n
4
, . . ., respectively 7. All these expander codes

share the same parameters as in Section 2.1, namely, all expanders have the same left and

right degrees d, c, hence the same τ , as well as the same parameter γ.

Our RLCC, denoted C ′, is obtained by intersecting the code C0 on the index set [n]

with the code C1 on both the index set [n
2
] and n

2
+ [n

2
]. Put differently, we impose the

linear constraints of C1 on both the first half and second half of the bits. The linear

6Kumar and Mon work with larger arity. Moreover, their tree does not necessarily induce a sequence

of partitions that are exactly cascaded as in our construction, but this is a mere technicality.
7Technically, we will need to stop before reaching 1-bit block-length though this is a mere technicality

which we ignore for the sake of simplicity in this informal discussion.
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constraints of the code C2 are enforced onto the four blocks [n
4
], n

4
+ [n

4
], n

2
+ [n

4
], and

3n
4
+ [n

4
], and so forth in a binary tree fashion. It is evident that the rate of the resulting

code, C ′, is at least 1−mτ , which implies that we need to select τ < 1
m

= 1
logn

to satisfy

the rate constraint.

2.2.2 The tester and its analysis

Our claim is that C ′ is an RLCC with correction radius γ
2
= Ω( 1

logn·log logn) using the

corrector we describe and analyze next. In Section 2.2.3 we explain how to modify the

construction slightly so as to obtain any desired correction radius. Before we begin, we

remark that it is readily seen that the corrector described below never aborts and always

outputs the correct bit given oracle access to a codeword of C ′. Therefore, we focus on

the scenario where a word w ∈ {0, 1}n \C ′ is given, with a distance at most γ
2
·n from the

code C ′. In this case, our objective is to either abort or output the i-th bit of the unique

codeword closest to w. Indeed, as C ′ ⊆ C0, and since C0 has relative-distance at least γ,

there exists a unique codeword c ∈ C ′ that is of distance at most γ
2
· n from w.

With this in mind, let us consider a specific index i ∈ [n], and let B be either [n
2
] or

n
2
+ [n

2
], depending on which of these blocks contains i. We define ε such that ε · n

2
is the

distance between wB and cB - the projections of w, c onto block B, respectively. We know

that ε ≤ γ as in the worst case all γ
2
·n = γ · |B| errors could fall into B. We consider the

two possible cases based on whether the ratio of errors deteriorates or not when moving

to block B, i.e., whether ε ≤ γ
2
or not.

Assume that ε > γ
2
. As we also know that ε ≤ γ, namely, wB is in the vicinity of the

code C1, we may invoke C1-s tester, and by making

O

(
t · 1

τ
log

1

τ

)
= O(t · log n · log log n)

queries to wB, reject with probability 1− 2−t. Hence, if the tester ended up not aborting,

we may assume that we are in the case ε ≤ γ
2
, and our assumption will be wrong with

probability at most 2−t. Thus, unless the tester aborted, we can safely recurse to B. In

more detail, since wB is of distance at most γ
2
· |B| from cB, and since C1 is a code with

relative-distance γ on the index set B that participates in the intersection defining C ′, we

know that cB is the unique codeword of C1 that is γ
2
· |B|-close to wB. This is precisely

the same guarantee we started with and, importantly, we maintain the invariant that the

projection of c to the block is the closest codeword to w’s projection to that block, with

respect to the suitable code. Hence, if and when the time comes to return the i-th bit,
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it will be that bit of c that is returned rather than the bit of another codeword. This

invariant allows us to recurse to B.

If in any of the m = log n levels of recursion the tester aborts, the corrector succeeds.

Otherwise, the code Cm is invoked and returns the correct bit except in case where the

corrector should have aborted. By a union bound over the m levels, this event occurs

with probability at most 2−tm. Setting t = O(logm) = O(log log n), the total number of

queries made is

O (mt · log n · log log n) = O
(
(log n · log log n)2

)
.

We remark that the factor of t = O(log log n) can be removed as the union bound can be

avoided with some care.

2.2.3 Improving the correction radius

To achieve any desired correction radius δ0 < 1, we can easily modify the construction.

Simply take the expander code C0 to have relative-distance γ0 = 2δ0 and rate

1− τ0 = 1−O

(
δ0 log

1

δ0

)
,

while keeping the parameters of the remaining codes C1, . . . , Cm unchanged. The rate of

the resulting code, denoted C ′′, is given by 1− (τ0 + (m− 1)τ) , point being that we can

afford taking C0 to be a high-rate code as we only “pay” τ0 once rather than m times.

In the modified construction, the corrector remains unchanged with the exception of

an initial phase. In this initial phase, we invoke C0-s tester (which, as the perceptive

reader may have noted, has not been used in Section 2.2.2) to check whether the number

of errors is less than γ
2
· |B|. The probability to catch an unsatisfied constraint is no longer

constant as before; instead, it becomes

Ω

(
γ

γ0

)
= Ω

(
1

log n · log log n

)
.

To ensure a constant rejection probability, we need to sample not just one but Θ
(

γ0
γ

)
right vertices and query their neighbors. If we denote the right-degree of the expander

underlying C0 by c0, this will result in a total number of

O

(
γ0
γ

· c0
)

= O

(
1

γ

)
= O (log n · log log n)

queries. Note that we have used the fact that in the probabilistic construction, c0γ0 =

O(1).
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If C0-s corrector does not reject, we maintain the same guarantee we had before

regarding the number of errors in B, and we can proceed with the same strategy as

previously described. Hence, with the same query complexity of O(log2 n · log log n), it is
possible to obtain any distance δ0 and rate 1−O(δ0 log

1
δ0
)− o(1).

A remark regarding the bi-regularity assumption. We wish to draw attention to

an issue that might be easily overlooked regarding the initial phase discussed above in the

absence of bi-regularity. Throughout this informal proof overview, we are working under

the premise that the expander that is underlying the expander code is bi-regular. This

can be assumed to be the case for the probabilistic construction though not necessarily

for the expander that we are using for our RLCC construction [CRVW02].

In the absence of bi-regularity, one can proceed by defining the tester as follows:

When sampling a right vertex, query its neighbors only if its degree is at most κc, where

κ serves as a cutoff parameter and c now stands for the average right degree. That is,

if the degree exceeds this threshold, the vertex is ignored for the purpose of testing. As

a result, the “heavy” constraints are embedded in the code’s definition, yet they are not

utilized by the tester. This seemingly minor technicality has a rather surprising impact on

the parameters: the query complexity of the tester in the initial phase alone now becomes

(log n)2+o(1). However, this increase is affordable, given that it applies only to the initial

phase. As we progress through the remaining log n levels, the query complexity for each

level remains at (log n)1+o(1).

2.2.4 Explicitness

Capalbo, Reingold, Vadhan and Wigderson [CRVW02] constructed explicit γ-lossless ex-

panders with near-optimal parameters. 8 Quantitatively, following the notation in Sec-

tion 2.1.1, their construction has degree

d = 2
O
(
(log log 1

τ )
3
)
=

(
1

τ

)o(1)

,

which should be compared with d = O(log 1
τ
) obtained using the probabilistic construc-

tion, while maintaining γ = O
(
τ
d

)
. As before, the probability of the expander code’s tester

8A lot of work has been done, much of it very recently, on simplifying the [CRVW02] construction

and on obtaining different variants of lossless expanders such as unique neighbor expanders, however,

none of these works seem to be sufficient for our needs. The reader may consult [AD23, CRTS23, Gol23c,

HMMP23] and references therein.
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to reject a word from the outskirts of the code is constant. Hence, the query complexity

is, again, the right degree, whose average is

c =
d

τ
=

1

τ
· 2O

(
(log log 1

τ )
3
)
=

(
1

τ

)1+o(1)

.

Recall that, due to rate considerations, τ is taken to be 1
logn

, thus the query complexity

of the expander code’s tester is (log n)1+o(1). The overall query complexity of the resulted

RLCC’s corrector is then m · (log n)1+o(1) = (log n)2+o(1), where the handling of the non-

bi-regularity is as described in the previous paragraph (see the proof for Theorem 5.2 at

the technical part).

3 Preliminaries

3.1 Notations and conventions

Unless stated otherwise, all logarithms in this paper are taken to the base 2. The set of

natural numbers is N = {0, 1, 2, . . .}. For n ∈ N, n ≥ 1, we use [n] to denote the set

{1, . . . , n}. For q ∈ N, q ≥ 2, we use Hq to denote the q-ary entropy function, and H = H2

to denote the binary entropy function.

For a finite set N , we refer to a function v ∈ FN as a vector and we say that it is

indexed by N . For a vector v ∈ FN and i ∈ N we use vi as a shorthand for v(i). For

a vector v ∈ FN and a set N ′ ⊆ N we denote by vN ′ the vector v′ ∈ FN ′
such that

v′i = vi for every i ∈ N ′. For two vectors u, v ∈ FN , their (absolute) hamming distance is

|{i ∈ N | ui ̸= vi}|, which we denote by Dist(u, v), and their relative hamming distance is
Dist(u,v)

|N | , which we denote by RelDist(u, v).

3.2 Error correcting codes

We start by recalling the definition of an error correcting code. In this work we only

consider linear codes. The definition below is standard, however, for our purposes we find

it convenient to work with an arbitrary index set rather than the usual set [n], and so the

reader may benefit from glancing over the definition.

Definition 3.1. For a finite set N of size |N | = n and a field F, a code is a linear

subspace C ⊆ FN . We say that the code C is indexed by N and that it is over F. The

length of the code is n. The dimension of the code, usually denoted by k, is the dimension
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of C over F. The (non-local) distance of the code, denoted by d, is minc,c′∈C,c̸=c′ Dist(c, c
′).

The rate of the code, typically denoted by ρ, is k
n
. The (non-local) relative-distance of the

code is defined to be d
n
. The elements of C are called codewords.

3.3 Relaxed locally correctable codes

We turn to recall the definition of relaxed locally correctable codes as put forth by Gur,

Ramnarayan and Rothblum [GRR20].

Definition 3.2. A code C ⊆ FN is called a (q, δ, ε)-RLCC (relaxed locally correctable

code, abbreviated) if there exists a randomized procedure Cor : FN × N → F ∪ {⊥} with

the following guarantees:

• For every i ∈ N , c ∈ C and w ∈ FN , satisfying RelDist(w, c) ≤ δ, Cor(w, i) ∈ {ci,⊥}
with probability at least 1− ε.

• Cor(c, i) = ci with probability one on any c ∈ C and i ∈ N .

• Cor(w, i) always makes at most q queries to w.

We refer to Cor as the local corrector (or the corrector). The parameter δ is called the

correction radius, and the parameter q is called the query complexity.

The error parameter of an RLCC can be easily amplified at low cost to the query

complexity, as stated in the following claim (for a simple proof see, e.g., [CY22b]).

Claim 3.3. Let C ⊆ FN be a (q, δ, ε)-RLCC. Then, for any h ∈ N, C is also an (hq, δ, εh)-

RLCC.

3.4 Expanders and expander codes

We set some standard notation. Let G = (V,E) be an undirected graph. For v ∈ V we

define Γ(v) as the set of neighbors of v in G, and let deg(v) be the degree of v. For a set

of vertices S ⊆ V , we let Γ(S) = ∪v∈SΓ(v), and define

Γu(S) = {v ∈ V | v is adjacent to exactly one u ∈ S}.

Definition 3.4 (Unique-neighbor expanders). A left-d-regular bipartite graph G = (L,R,E)

is a (γ, α)-unique-neighbor expander if for every S ⊆ U such that |S| ≤ γ|L|, it holds
that |Γu(S)| ≥ αd|S|.
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The following theorem readily follows by the construction of lossless conductors as

given by Theorem 7.3 in [CRVW02].

Theorem 3.5 ([CRVW02]). There exist universal constants c0 ≥ 1 and β ≤ 1 such that

the following holds. For every n and m ≤ n, there exists an explicit (γ, α)-unique-neighbor

expander G = (L,R,E) with |L| = 2n, |R| = 2m, having left degree

d ≤ 2c0·log
3(n−m),

where α = Ω(1), and γ = β · 2m−n

d
.

Definition 3.6 (Expander codes). Let G = (L,R,E) be a bipartite graph and let F be a

field. The expander code associated with G is defined by

ECF(G) =

w ∈ FL
∣∣ ∀v ∈ R

∑
u∈Γ(v)

wu = 0

 .

We usually omit the subscript F when the field is clear from context.

It is easy to see that the rate of ECF(G) is at least 1− |R|
|L| .

4 Vicinity Locally Testable Codes

In this section we give the formal definition of local testability in the vicinity of the code

and prove that expander codes have this property.

Definition 4.1 (VLTCs). A code C ⊆ FN is called a (q, δ, κ, σ)-VLTC (vicinity locally

testable code, abbreviated) if there exists a randomized procedure

Tes : FN → {◦,⊥}

with the following guarantees:

• For every c ∈ C and w ∈ FN , satisfying RelDist(w, c) ≤ δ,

Pr[Tes(w) =⊥] ≥ κ · RelDist(w, c)− σ;

• Tes(c) = ◦ with probability one on any c ∈ C.

• Tes(w) always makes at most q queries to w.

12



We call Tes a local tester (or tester for short). The parameter q is referred to as the

query complexity.

We move to show that expander codes constructed from unique-neighbor expanders

are VLTCs.

Lemma 4.2. Let G = (L,R,E) be a d-left-regular (γ, α)-unique-neighbor expander with

average right-degree c̄. Then, for every b > 1, EC(G) is a
(
bc̄, γ, αc̄, 1

b

)
-VLTC.

Proof. Define

R′ = {v ∈ R | deg(v) ≤ bc̄} .

By an averaging argument, |R′| ≥ (1 − 1
b
)|R|. The tester for EC(G), given oracle access

to w ∈ FL, proceeds as follows:

1. Sample v ∈ R′ uniformly at random.

2. Query w on Γ(v).

3. Output ◦ if
∑

u∈Γ(v) wu = 0; and ⊥ otherwise.

As the sampled vertex v is in R′, the query complexity of the tester is indeed bounded

above by bc̄. Further, when w ∈ EC(G), the tester outputs ◦ with certainty.

Consider then a word w ∈ FL such that RelDist(w, c) ≤ γ for some codeword c ∈
EC(G). Let

S = {v ∈ L | wv ̸= cv}.

As |S| ≤ γ|L| we have that |Γu(S)| ≥ αd|S|. Notice that if the vertex v that is sampled

in Step 1 lies in Γu(S) then the tester outputs ⊥. Therefore, the probability of the tester

to output ⊥ is at least

|Γu(S)| − |R \R′|
|R|

≥ αd|S|
|R|

− 1

b

= α · d|L|
|R|

· |S|
|L|

− 1

b

= αc̄ · RelDist(w, c)− 1

b
,

which concludes the proof.

We will use the following easy claim.
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Claim 4.3. Let C ⊆ FN be a (q, δ, κ, σ)-VLTC with a tester Tes, and further let c ∈ C

and w ∈ FN be such that α ≤ RelDist(w, c) ≤ δ. Assume that we run Tes(w) for g times,

independently. Then, the probability that one of the simulations outputted ⊥ is at least

1− e−βg, where β = κα− σ.

Proof. The probability that a single simulation of Tes(w) outputs ⊥ is at least

κ · RelDist(w, c)− σ ≥ κα− σ = β.

The probability that all the simulations output ◦ is thus (1− β)g ≤ e−βg.

5 RLCCs from VLTCs

Following a similar argument to the one underlying the Kumar-Mon reduction, the fol-

lowing proposition states that a sequence of VLTCs can be used to construct an RLCC.

Proposition 5.1. Let C1 ⊆ FN1 , . . . , Cm ⊆ FNm be codes with rates ρ1, . . . , ρm, respec-

tively, such that for every i ∈ [m−1], Ci is a (q′, δ′, κ′, σ′)-VLTC, and Cm is a (q, δ, κ, σ)-

VLTC. Further assume that |N1| ≤ 1
δ′
, |Nm| = n, and for every 1 < i ≤ m, |Ni| = 2|Ni−1|.

Then, for every g ∈ N, there exists an ((m− 1)q′ + gq + 1, δ, ε)-RLCC C ⊆ F[n] with rate

ρ ≥ 1−
m∑
i=1

(1− ρi),

where

ε ≤ 1−min

{
κ′δ′

2
− σ′, eg(σ−

κδ′
2

)

}
.

Moreover, if the codes C1, . . . , Cm are explicit, then so is the resulting code C.

Proof. We start by describing how the code C is constructed.

The code construction. Let P1, . . . , Pm be an arbitrary fixed sequence of partitions of

[n], satisfying that for every i ∈ [m], Pi has 2
m−i equal-size parts denoted {Bi

1, . . . , B
i
2m−i},

and that for every 1 < i ≤ m, Pi−1 is a sub-partition of Pi (that is, for every B ∈ Pi−1,

there exists B′ ∈ Pi such that B ⊆ B′). For every i ∈ [m] and B ∈ Pi let fi,B : B → Ni

be an arbitrary bijection, and define

Ci,B = {c ◦ fi,B | c ∈ Ci}.
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Finally, define the code

C =
{
w ∈ F[n] | ∀i ∈ [m], B ∈ Pi : wB ∈ Ci,B

}
.

The moreover part of the proof readily follows. The efficiency of the corrector will be self

evident as well once the corrector is presented.

Rate analysis. For every i ∈ [m] and B ∈ Pi, the number of linear constraints required

to impose so that wB ∈ Ci,B is at most (1 − ρi)|Ni|. Therefore, the total number of

constraints in the definition of the code C is bounded above by

m∑
i=1

|Pi|(1− ρi)|Ni| =
m∑
i=1

n(1− ρi),

which establishes the lower bound on the rate of C.

The corrector. We turn to describe a corrector Cor : F[n] × [n] → F ∪ {⊥} for C. As

for every i ∈ [m], Ci is a VLTC, it is immediate that so is Ci,B for every B ∈ Pi, with the

same parameters as Ci. The local tester for Ci,B that is induced in the natural way from

the local tester for Ci is denoted

Tesi,B : FB → {◦,⊥}.

Let w ∈ F[n] and j ∈ [n]. Let r1 = r1(j), . . . , rm = rm(j) be the indices of blocks

within the corresponding partitions P1, . . . , Pm such that j ∈ B1
r1

⊆ · · · ⊆ Bm
rm . The

corrector Cor(w, j) proceeds as follows:

1. For i = 1, . . . ,m− 1, simulate Tesi,Bi
ri
(wBi

ri
).

2. Simulate Tesm,Bm
rm
(wBm

rm
) for g times.

3. If any of the simulations outputted ⊥, output ⊥; otherwise, output wj.

Query analysis. As Cor simulates m− 1 testers with query complexity q′, and invokes

g simulations of one tester with query complexity q, the overall query complexity is

(m− 1)q′ + gq + 1, accounting also for querying wj.

15



Correctness. Clearly, if w is a codeword of C then wBi
ri
∈ Ci,Bi

ri
for every i ∈ [m], and

so Tesi,Bi
ri
(wBi

ri
) = ◦ with certainty. Therefore, Cor(w, j) = wj with certainty, as required.

Assume that w ∈ F[n] is such that Dist(w, c) ≤ δn for c ∈ C. Since Cor(w, j) always either

outputs ⊥ or wj, it suffices to show that if wj ̸= cj then the corrector outputs ⊥ with

probability at least 1− ε. Towards this end, assume wj ̸= cj, and hence wB1
r1
̸= cB1

r1
, and

further note that wBm
rm

= w and cBm
rm

= c. For every i ∈ [m − 1] define δi = δ′, and let

δm = δ. Since, per our assumption, |N1| ≤ 1
δ′
, we have that

RelDist
(
wB1

r1
, cB1

r1

)
≥ δ′ = δ1,

whereas

RelDist
(
wBm

rm
, cBm

rm

)
≤ δ = δm.

Let ι ∈ {2, 3, . . . ,m} be any index satisfying that

RelDist
(
wBι−1

rι−1
, cBι−1

rι−1

)
≥ δι−1

RelDist
(
wBι

rι
, cBι

rι

)
≤ δι.

By the above account, ι is well-defined. Since Bι−1
rι−1

⊆ Bι
rι and |Bι−1

rι−1
| = 1

2
|Bι

rι |, we have

that
δι−1

2
≤ RelDist

(
wBι

rι
, cBι

rι

)
≤ δι.

If ι < m, as Tesι,Bι
rι

is a local tester for the (q′, δι, κ
′, σ′)-VLTC Ci,Bι

rι
and since cBι

rι
∈

Cι,Bι
rι
, it holds that Tesι,Bι

rι
(wBι

rι
) outputs ⊥ with probability at least

κ′δι−1

2
− σ′ =

κ′δ′

2
− σ′.

If otherwise ι = m then we set

β =
κδm−1

2
− σ =

κδ′

2
− σ

and then by Claim 4.3 one of the g simulations of Tesm,Bm
rm
((wBm

rm
)) with probability at

least 1−e−βg. Thus, Cor(w, j) outputs ⊥ with probability at least min{κ′δ′

2
−σ′, 1−e−βg},

as required.

We are now ready to prove our main theorem.

Theorem 5.2. For every finite field F, n which is a power of 2, and δ > 0, there exists

an explicit (q, δ, 1
3
)-RLCC C ⊆ F[n] with query complexity

q = (log n)2+o(1),

and rate

ρ = 1− δ · 2O
(
(log log 1

δ )
3
)
− o(1).
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Proof. Write n = 2r, and let

ℓ = r log r = log n · log log n.

Due to the claimed tradeoff between the rate and the correction radius, we may as well

assume that δ ≥ 1
2⌈log ℓ⌉ . We proceed to describe the sequence of expander codes that we

will use, which consists of s = r− ⌈log ℓ⌉+ 1 codes. For every i ∈ [s], the block-length of

the i-th code is

ni = 2⌈log ℓ⌉+i−1.

Note that, in particular, ns = n. Further, the number of linear constraints defining the

i-th code is mi = 2i−1 for i ∈ [s− 1], whereas the for the s-th code,

ms = 2r−⌊log 1
δ
+log β−c0 log

3(log 1
δ
)⌋,

where β is the constant from Theorem 3.5.

Invoking Theorem 3.5, for every i ∈ [s] let Gi = (Li, Ri, Ei) be a di-left-regular

bipartite graph with |Li| = ni and |Ri| = mi which is a (δi, α)-unique-neighbor expander

for α = Ω(1), such that for i ∈ [s− 1],

di ≤ 2c0 log
3(⌈log ℓ⌉) ≜ d,

δi ≥
β

d · 2⌈log ℓ⌉
≜ δ′,

and

ds ≤ 2c0 log
3(log 1

δ
),

δs ≥
β

ds · 2⌊log(1/δ)+log(β)−c0 log
3(log(1/δ))⌋

≥ δ.

The sequence of codes is defined by setting, for every i ∈ [s], Ci = EC(Gi).

We turn to address the VLTC-ness of C1, . . . , Cs. Set b = 4
αβ

and bs = 4ms

αδ′dsns
. By

Lemma 4.2, for every i ∈ [s− 1], Ci is a(
bdini

mi

≤ bd2⌈log ℓ⌉, δ′, αd2⌈log ℓ⌉,
1

b

)
-VLTC,

and Cs is a (
bsdsns

ms

, δ, α
dsns

ms

,
1

bs

)
-VLTC.
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We further set g = 4ms

αδ′dsns
. We can now invoke Proposition 5.1 (indeed, the propo-

sition’s prerequisites are met, i.e., n1 = 2⌈log ℓ⌉ < 1
δ′
, ni = 2ni−1, and ns = n) with our

choice of g to obtain a code C ⊆ F[n] which is an(
(s− 1)bd2⌈log ℓ⌉ + g

bsdsns

ms

+ 1 = O(sbdℓ+ δ/(δ′)2), δ, ε

)
-RLCC,

where

ε ≤ 1−min

{
1

2
αd2⌈log ℓ⌉δ′ − 1

b
, (1/e)g(αdsnsδ′/(2ms)−1/bs) = (1/e)gαdsnsδ′/(4ms) = 1/e

}
.

As

1

2
αd2⌈log ℓ⌉δ′ − 1

b
=

αβ

2
− 1

b

=
αβ

2
− αβ

4

=
αβ

4
,

we see that ε ≤ 1 − min{αβ
4
, 1/e}. To decrease the error to 1

3
, we apply Claim 3.3 with

h = O(1), and get that C is also a (q, δ, 1
3
)-RLCC for

q = O
(
sbdℓ+ δ/(δ′)2

)
= O

(
sd2ℓ+ δd2ℓ2

)
.

Recall that s ≤ log n,

d = 2O((log log r)3) = 2O((log log logn)3)

and ℓ = O(log n · log log n). Therefore,

q = O
(
sd2ℓ+ d2ℓ2

)
= O

(
d2ℓ2

)
= log2 n · 2O((log log logn)3) = (log n)2+o(1).

Lastly, as the rate ρi of every code Ci in the sequence is at least 1− mi

ni
, Proposition 5.1

implies that the rate ρ of C is lower bounded by

ρ ≥ 1−
s∑

i=1

(
mi

ni

)
= 1− (s− 1)

1

2⌈log ℓ⌉
− 1

2⌊log
1
δ
+log β−c0 log

3(log 1
δ
)⌋

= 1−O
(s
ℓ

)
− δ · 2O(log3(log 1

δ
))

= 1−O
(r
ℓ

)
− δ · 2O(log3(log 1

δ
))

= 1− δ · 2O(log3(log 1
δ
)) − o(1).

This concludes the proof.
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