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Abstract

We give a conversion from non-classical polynomials to MidBit™ cir-
cuits and vice-versa. This conversion, along with previously known results,
shows that torus polynomials, non-classical polynomials and MidBit™ cir-
cuits can all be converted to each other. Therefore lower bounds against
any of these models lead to lower bounds against all three of them. Each
of these three models capture the power of ACC circuits, which are circuits
composed of AND, OR, MOD,, gates for some constant natural number m.
Hence lower bounds against any of these models lead to comparable lower
bounds against ACC.

1 Introduction

Proving that certain Boolean functions cannot be computed by Boolean circuits
of small size, also called proving lower bounds, has been a major quest in com-
plexity theory. A lot of recent work, for example [3, 11, 12, 14, 15, 20, 22, 26, 27]
and references therein, has focused on proving lower bounds for constant-depth
circuits.

Lower bounds against constant-depth circuits consisting of AND, OR, NOT
gates were first proved by Furst, Saxe and Sipser [16] and independently by
Ajtai [1], and subsequently improved upon by Yao [29] and by Hastad [18].
Later, Razborov [23] and Smolensky [24] proved lower bounds against constant-
depth circuits that additionally contain MOD,, gates' where p is constant and
prime. A few years later, Barrington [4] posed the question of proving lower
bounds against ACC circuits, that are constant-depth circuits consisting of
AND, OR,NOT, MOD,,, gates for any constant natural number m.

The class of Boolean functions computable by polynomial size ACC circuits
is called ACC (ACC will refer to the class unless explicitly stated). It has been
conjectured since the 90’s, by Yao [28], that the class of Boolean functions
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computable by polynomial-size constant-depth threshold circuits?, called TC?,
strictly contains ACC. In fact, it is believed that the majority function, which
outputs “true” if and only if more than half of its inputs are “true”, is not con-
tained in ACC. A few approaches have been proposed to resolve this conjecture
but none of them have been successful. Meanwhile, lower bounds against ACC
from uniform classes have been proven.

Williams [27], in a breakthrough result, proved that non-deterministic expo-
nential time is not contained in ACC. The lower bound has subsequently been
improved upon by several works, such as Chen, Oliveira and Santhanam [14],
Murray and Williams [22], Chen [12], and Chen [13].

All these lower bounds use a faster-than-brute-force satisfiability algorithm
for ACC, proved by [27]. The algorithm takes as input an ACC circuit of poly-
nomial size and determines whether there exists an input for which the circuit
outputs “true”. The algorithm runs asymptotically faster than brute-force i.e.
evaluating the circuit on all possible values for the inputs. As the first step,
the algorithm uses a simulation of ACC circuits by another class of depth-2 cir-
cuits. Several such simulation results are known for ACC, which can play a role
in obtaining new lower bounds for ACC. We discuss these simulation results
below.

1.1 Simulation Results for ACC

The faster-than-brute-force satisfiability algorithm for ACC uses a result, first
proved by Beigel and Tarui [5] and subsequently improved upon by Allender
and Gore [2], that ACC is contained in SYM™T. SYM™ is the class of functions
computable by depth-2 circuits of size 20108 %Y where the top gate is a sym-
metric function® and the bottom layer has AND gates of fan-in (logn)°(M). [5]
conjectured that TCY is not contained in SYM™. This will automatically imply
that TC” is not contained in ACC. Green, Kébler and Torén [17] modified this
simulation to obtain a seemingly tighter simulation for ACC, hence leading to a
probably easier approach towards proving ACC lower bounds.

Other simulation results are also known for ACC. Bhrushundi, Hosseini,
Lovett and Rao [10] proved that torus polynomials and non-classical polynomi-
als, defined in Definitions 1.6 and 1.8 respectively, can approximate functions
in ACC efficiently, with appropriately defined notions of efficiency. We discuss
all three simulation results below.

1.1.1 MidBit™"

MidBit™* was studied by [17] where they proved that ACC is contained in MidBit ™.
The formal definition of a MidBit™ circuit follows the definition of the MidBit
function. Note that we use 0 for “false” and 1 for “true” throughout.

2A threshold circuit consists of threshold gates. A threshold gate outputs “true” if and
only if a linear combination of its inputs is more than a threshold.

3A function is symmetric if it is invariant under every permutation of its variables on all
its inputs.



Definition 1.1 (MidBit). Define the function bin : NxN — {0,1} as bin(z,i) =
b;, where b; is the i bit in the binary expansion of x and by is the least signifi-
cant bit. The function MidBit : {0,1}™ — {0, 1} is defined as MidBit(z1, ..., x,) =
bin(Y i, @i, [£/2]) where £ = |logy(n)] + 1.

Definition 1.2 (MidBit™). A Boolean circuit is called a MidBit™ circuit if it
has the following form:

1. The circuit has depth 2.
2. Inputs are fed into AND gates, which comprise the first layer of the circuit.
3. The output gate is the MidBit function.

A function f : {0,1}" — {0,1} belongs to the class MidBit"™ if it can be
computed by a MidBit"™ circuit with fan-in of AND gates bounded by logo(l)(n)
and fan-in of the output gate bounded by 210g°(n) - MidBitt will denote the
class unless explicitly stated.

[17] proved the following.

Claim 1.3 ([17]). Let f:{0,1}"™ — {0,1} belong ACC. Then f also belongs to
MidBit™. In other words, ACC C MidBit™.

Compared to SYM™ circuits, MidBit™ circuits are simpler as the top gate is
a fixed function rather than any symmetric function. Proving that a function
does not belong to MidBit™ implies that it does not belong to ACC either. Hence
proving lower bounds for MidBit" is an approach towards proving ACC lower
bounds.

Without loss of generality we assume that, each variable is fed into each
AND gate at most once, and an AND gate has variables feeding into it if and
only if it neither 0 nor 1 is feeding into it. We define some additional terms for
a MidBit™ circuit.

Definition 1.4. Let C be a MidBit™ circuit computing a function f : {0,1}" —
{0,1}. Let the set of AND gates be Ay,...,As. Let the number of times A;
appears in the circuit be c;. We define the following terms for C.

e The multiplicity of C is ged(ca, ..., cs). The circuits we consider and con-
struct will always have multiplicity of the form 22¢ for some non-negative
integer L.

o Let the circuit have multiplicity m = 22¢ for all subsequent definitions. Let
B(x) denote the number of AND gates that turn “true” on a given input
x. If B(z) = f(2)2F 26 4 B(2)28142¢ mod 2FH1420 ) with E(x) > 0, for
all x € {0,1}™, then the non-classical depth of the circuit is defined to be
k and the error of the circuit is defined to be max ¢ 1y~ E(x).



o Let the gate A; use the set of variables S; C [n]. Let j denote the highest
power of 2 that divides c;/2%°. Then the non-classical degree of A;, denoted
by deg(A;), is defined to be |S;| + k — j. The non-classical degree of C
is defined to be max;.g, +o(deg(A;)) (note that only non-constant gates are
being considered).

Note that the degree of the monomial obtained by multiplying the inputs
of A; is |Si|. The additional term k — j is introduced so that when a non-
classical monomial (defined in Definition 1.8) is constructed from A;, it
has the same degree as the non-classical degree of A;.

Tracking these additional parameters will allow us to state our result as an
equivalence.

1.1.2 Torus Polynomials

Another approach for ACC lower bounds was developed by [10] where they
defined torus polynomials and showed that ACC can be well approximated using
torus polynomials of low degree. We define the torus and torus polynomials
below.

Definition 1.5 (Torus). Let T = R/Z denote the torus. For a number r € T,
let  mod 1 denote its representative in the interval [—1/2,1/2).

Definition 1.6 (Torus Polynomial). A real polynomial P : {0,1}" — R is a
torus polynomial approzimating a Boolean function f :{0,1}" — {0,1} within
error € if

Vo € {0,1}", |P(x) — mod 1| < e

f(x)
2
The minimum degree d required to approximate a function f by a torus
polynomial within error ¢ will be denoted by deg_(f).

The following can be obtained using Corollary 2.11 of [10].

Claim 1.7 (Corollary 2.1 of [10]). Let f : {0,1}" — {0,1} be a Boolean function
belonging to ACC. Then deg - (f) < 10g(n)0(1),

In addition to the approximation result for ACC, [10] also proved that the
majority function requires ﬁ(\/ﬁ) degree to approximate within 55— error using
torus polynomials that are symmetric as real polynomials*. They also conjec-
tured that a similar lower bound holds even without the torus polynomial being
symmetric which, if true, will imply majority is not contained in ACC.

The upper bound result mentioned above leads to another approach for
ACC lower bounds. Let there be a Boolean function f : {0,1}" — {0,1} and
€ = —gm such that deg_, _(f) = log(n)*™). Then clearly f ¢ ACC. In

nO(1)

particular, finding such a f € TCY will resolve the long-standing conjecture
ACC ¢ TC".

4A polynomial is symmetric if it is invariant under every permutation of variables.




1.1.3 Non-classical Polynomials

Non-classsical polynomials were introduced by Tao and Ziegler [25] in the con-
text of higher-order Fourier analysis (see the survey by Hatami, Hatami and
Lovett [19] for applications of higher-order Fourier analysis in theoretical com-
puter science). Non-classical polynomials were studied by Bhowmick and Lovett [7],
and Bhrushundi, Harsha and Srinivasan [9] in the context of approximating
Boolean functions, see also [8]. Following is a definition of non-classical polyno-
mials over F5. The definition we give is commonly known as the global definition

of non-classical polynomials in the literature.

Definition 1.8 (Non-classical Polynomial). A function P : {0,1}" — T is a
non-classical polynomial (over Fa) of degree at most d and depth at most k if it
can be written as

CS,‘
P(r)=a+ Z 2j+31H$i mod 1
PCSCn];0<5<k €S
[S|+5<d

where ¢g j € {0,1} and a € [0,1).

FEach term, except for the constant term, appearing in the expression is called
a non-classical monomial.

A non-classical polynomial P approzimates a Boolean funcion f : {0,1}" —

{0,1} within error ¢ if for all x € {0,1}", |P(x) — @ mod 1| < e. The
minimum degree d required to approzimate a Boolean function f by a non-
classical polynomial within error e will be denoted by deg.(f).

[10] proved that torus polynomials can be converted to non-classical poly-
nomials and vice-versa. The following result is essentially proved in Claim 1.8
of [10].

Claim 1.9 (Claim 1.8 of [10]). Let f : {0,1}" — {0,1} be a Boolean function.

Then deg.(f) < d implies dego . (f) < O(dlog(n) + log(1/e)).

Hence proving lower bounds for non-classical polynomials is equivalent to
proving lower bounds for torus polynomials, providing two equivalent approaches
for proving ACC lower bounds.

1.2 Our Contribution

[10], as mentioned earlier, showed how to convert torus polynomials to non-
classical polynomials and vice-versa. This conversion can increase the error
bound when used to convert torus polynomials to non-classical polynomials.
They also showed how to convert MidBit™ circuits to torus polynomials. Kr-
ishan [21] recently showed a partial converse of this result by showing how to
convert torus polynomials to MidBit" circuits. Note that their conversion can
also increase the error i.e. if a torus polynomial is first converted to its corre-
sponding MidBit™ circuit and then back to a torus polynomial, the error of this
new torus polynomial can be higher than the original.



We consider a different approach by proving conversions between non-classical
polynomials and MidBit" circuits. We show how to convert a non-classical
polynomial with certain parameters to a MidBit™ circuit with same values for
corresponding parameters. This conversion can be reversed to obtain a non-
classical polynomial with the same parameters and error bound as the original
non-classical polynomial.

The formal statement of our conversion result is as follows.

Theorem 1.1 (Main Result). Let f : {0,1}" — {0,1} be a Boolean function
and let € < 1/20. Then the following statements are equivalent:

1. There exists a non-classical polynomial P of degree at most d and depth
at most k that approximates [ within error e.

2. There exists an &' € [0,¢) and a MidBit™ circuit with non-classical degree
at most d, non-classical depth at most k and multiplicity 22 for some
£, and the following. Let the number of AND gates that turn “true” on
x €{0,1}™ be B(x). Then

B(z) = f(2)2"% 4 E(2)2" 20 mod 2FH1 2
where 2" < E(x) < 2(e' +¢).

Lower bounds for either torus polynomials or non-classical polynomials lead
are already known to yield qualitatively equivalent ACC lower bounds. Our
conversion result shows that lower bounds for non-classical polynomials and
MidBit* lead to quantitavely equivalent ACC lower bounds, provided that the
lower bound keeps track of all the parameters (including the ones that we have
defined for MidBit™ circuits). Therefore lower bounds for each of these three
models lead to comparable ACC lower bounds.

Paper Organization We present our conversion result and some consequences
in Section 2. We close with some open questions in Section 3.

2 Equivalence of Non-classical Polynomials and
MidBit" circuits
We prove our main result first.

Theorem 1.1 (Main Result). Let f : {0,1}" — {0,1} be a Boolean function
and let € < 1/20. Then the following statements are equivalent:

1. There exists a non-classical polynomial P of degree at most d and depth
at most k that approximates [ within error €.



2. There exists an ' € [0,¢) and a MidBit™ circuit with non-classical degree
at most d, non-classical depth at most k and multiplicity 22 for some
£, and the following. Let the number of AND gates that turn “true” on
x € {0,1}™ be B(z). Then

B(.T) _ f(x)2k+22 + E(x)2k+1+2€ mod 2k+1+2€
where 2¢' < E(z) < 2(¢' + ¢).

Proof. 1 = 2 Let the non-classical polynomial be

Cs,j
P)=a+ Z oi+1 1L1%i
0£5CIn)j © €S
0<j<k
[S|+i<d

that has degree at most d, depth at most k, and approximates f : {0,1}" —
{0, 1} within error e.

Note that P(0) = a. Hence |a — f(0)/2 mod 1] <e. Let o = f(0)/2+ 4
without loss of generality where § € [—¢,e]. We consider two cases.

P.1 First we consider the case when P(z) — f(x)/2 +¢ mod 1 = 0 for all
x € {0,1}". In this case P(z) —J mod 1 = f(x)/2. Define Pepget(x) =
P(z) — 4. Then P.yget(x) mod 1 = f(x)/2 for all x € {0,1}". Define
Pii(z) = 2891P. et (7). Then Pi(z) = 28 f(x) mod 28! and all its
coefficients are integers. We will construct a MidBit™ circuit from Pj,,; as
follows.

Let P (w) = 28 £(0) + 2 0£5Cn] csx¥. For each monomial #° create an
AND gate, the inputs to this gate being the variables appearing in the
monomial. Create cg many copies of this AND gate. Do this for each
monomial appearing in Pj,;. Create 2*f(0) many copies of an AND gate
which takes 1 as its input. Feed all of these into a MidBit gate. This is
the first stage of creating the circuit.

Before describing the next steps, we consider the other case.
P.2 Now let there be some z € {0,1}" such that P(x) # f(x)/2 + 0.

Claim 2.1. 1/2%+2 <¢

Proof. Consider two cases as following

e |6] > 1/2¥+2, In this case ¢ > |P(0) — f(0)/2| = 6 > 1/2F+2,

e || < 1/2%*2. In this case consider any x € {0,1}" such that P(z) #
f(z)/2 + 9. Then P(z) — f(z)/2 — 9 mod 1 # 0. The minimum
non-zero value for |P(x) — f(x)/2 — & mod 1] is 1/2*+1. Hence & >
1/2k+1 — 5] > 1/2k+2,



As the first step we replace o by ¢/2%*! such that ¢ is the smallest nat-
ural number with ¢/2¥*1 > a + . Note that ¢/28F! —a — e < 1/2F+L.
Define ¢/ = (q/2**! — a — ¢)/2. Then &' < 1/2¥+2 < e. Consider the
polynomial P,gtionai(z) = q/2"71 4+ P(z). Then Prationa(z) — f(2)/2
mod 1 € [2¢/,2(¢’ + ¢)]. Moreover all the coefficients of Prutiona; are ra-
tional numbers with denominator a power of 2 such that the maximum
power of 2 that appears in the denominator is at most k + 1.

Now consider Pj,¢(7) = 25" Pryionai(z). Then Py (z) = f(z)2F +
E(z)2¥+1 mod 2F*+! where E(x) € [2¢/,2(¢' +¢)]. The polynomial P;,; is
now a polynomial with integer coefficients. We will construct a MidBit™
circuit from P;,; as follows.

Let Pint(z) = g+ 3 g 25 csz®. For each monomial 2% create an AND
gate, the inputs to this gate being the variables appearing in the monomial.
Create c¢g many copies of this AND gate. Do this for each monomial
appearing in P;,;. Create ¢ many copies of an AND gate which takes 1 as
its input. Feed all of these into a MidBit gate. This is the first stage of
creating the circuit.

After the first stage of creating the circuit in either case, consider the fan-in
of the MidBit gate in the circuit constructed so far. There are two cases to
consider:

C.1 Consider the case when the fan-in is at most 22**! — 1. Add dummy
AND gates that take 0 as their input, if required, to ensure that the fan-in
of the MidBit gate becomes exactly 22¥*t1 — 1. Then the output of the
circuit will be bin(Pj,¢(x), k), which is exactly the same as f(x). Hence
the constructed MidBit™ circuit computes f.

C.2 Now consider the case when the fan-in is at least 22%*1. In this case the
MidBit gate outputs bin( Py, (x), k') for some k&’ > k while bin(P;,.(x), k) =
f(z). Consider duplicating each AND gate 22¢ times for ¢ = k' — k. Then
the MidBit gate in this new circuit outputs bin(P;,.(z),2k" — k) while
bin(2% Py (), 2k" — k) = f(z). Hence for some £ > 0, the MidBit™ cir-
cuit, constructed after duplication, computes f.

To see that the constructed circuit has non-classical depth at most k, note
that the polynomial P;,;, constructed in either Case P.1 or Case P.2, evaluates
to Pini(z) = f(2)2F + E(2)2¥*! mod 28! with E(x) > 0. For the circuit
constructed in Case C.1, if B(z) denotes the number of AND gates that turn
“true” on a given input = € {0,1}", then B(z) = 2¥P;,,;(z) mod 2**!. Hence
the depth of the circuit is at most k. For the circuit constructed in Case C.2,
B(x) = 28+2¢p, (z) mod 2FT1*+2¢ hence even in this case the depth is at most
k.

For the non-classical degree of the constructed circuit, note that if P contains
a non-classical monomial with its input set being S and denominator 271, then
the degree of P will be at least |S| 4+ j. Corresponding to this monomial in



P, a monomial will appear in P;,; such that the power of 2 that can divide its
coefficient will be £ — j. When this monomial in P;,; gets converted into an
AND gate A in the final circuit in Case C.1, the power of 2 that divides the
fan-in of A will be k — j. Therefore the non-classical degree of A will be |S|+ 7,
which implies that the non-classical degree of the constructed circuit will be at
least |S| + j. Note that the value of |S| + j for any non-classical monomial in
P is bounded by d, therefore the non-classical degree of the circuit will also be
bounded by d. For the circuit in Case C.2, note that the degree is not affected
by multiplication of 22, hence the same argument holds.

2 = 1 Let there be a MidBit™ circuit with parameters as per Item 2
computing a function f : {0,1}™ — {0,1}. Start with an empty polynomial. For
each AND gate with a variable feeding into it, create a monomial by multiplying
each variable that is feeding into it and add it to the polynomial. Ignore all AND
gates with a 0 feeding into them. For each AND gate with a 1 feeding into it,
add 1 to the polynomial. Let this polynomial be P;,;.

The value of ¢ is the highest power of 4 that divides all the coefficients of P;,,;.
The value of k can be obtained by as | (|logy(M)| 4+ 1)/2] — 2¢ where M is the
fan-in of the MidBit gate. Divide P;,; by 2¥t1+2¢ to get the polynomial Prqtionai-
The value of £’ is the minimum value attained by |Prqtiona () — f(2)/2 mod 1|
over © € {0,1}"™. Subtract 2¢’ + € from P,qtiona to get the final polynomial.
This will be a non-classical polynomial with exactly the desired error bound.

It is now easy to see, by reversing the argument for the degree and depth
bound in the first implication, that the degree and depth of the constructed
non-classical polynomial are as they are claimed to be. O

2.1 Consequences

Consider the exact majority function, that outputs “true” if and only if exactly
half of its inputs are “true”®. Denote the exact majority function on n inputs
by EMAJ,,. The following result can be obtained as a consequence of Lemma
4.1 of [10].

Lemma 2.2 (Lemma 4.1 of [10]). EMAJ,, has a torus polynomial of degree
logo(l)(n) approximating it within error € for any constant €.

Invoking the previous Lemma for a small enough ¢, and combining it with
Claim 1.9 and Theorem 1.1, we obtain the following corollary.

Corollary 1. EMAJ, € MidBit™.
The following result is essentially proved in Theorem 3.5 of [17].

Lemma 2.3 (Theorem 3.5 of [17]). MidBit™ o ACC € MidBit™, where o denotes
function composition.

As a consequence of the previous Theorem and Corollary 1, we observe the
following containment.

Claim 2.4. EMAJ o ACC € MidBit™.

5Note that it always evaluates to “false” if the number of inputs is odd.




3 Open Questions

We state some open questions which we believe will help further the under-
standing of the three computation models we have studied in this work.

3.1 Non-explicit Parameters in Theorem 1.1

In the statement of Theorem 1.1, we do not give an explicit value for £ and &’
when constructing a MidBit™ circuit from a non-classical polynomial. The main
hurdle to determine the value of ¢ is to understand the fan-in of the output
gate of the constructed MidBit" circuit, for which we were not able to find an
explicit and clean expression. For ¢, the main hurdle is to get an expression
which works with case P.1 and P.2. We leave it open to find a parameter of
non-classical polynomials that can be used to calculate £. We considered P(x)
evaluated on z = 1™ as a possibility but were unable to figure out the exact
value for ¢ using this parameter along with the others.

3.2 Lossy Conversions

The conversion between non-classical polynomials and MidBit™" circuits we have
proved, in Theorem 1.1, is lossless. That is it proves that the two models with
their parameters are equivalent. This is not true for conversions between torus
polynomials to non-classical polynomials described by [10]. Neither is this true
for the procedure to convert torus polynomials to MidBit™ circuits described
by [21].

Recall the definition of non-classical degree of a gate A; in a MidBit™ circuit
from Definition 1.4. Its degree can be defined as the number of variables that are
fed into A;. The degree of the circuit can be defined as the maximum degree over
all its gates. The procedure to convert torus polynomials to MidBit™ circuits,
described in [21], preserves the degree but increases the error. This procedure,
when reversed, results in a torus polynomial with increased error. We conjecture
that this increase in error is unavoidable. We believe this is due to the fact that
torus polynomials can use real coefficients while fan-in of the gates in a MidBit™
circuits are discrete. Approximating real coefficients by discrete fan-ins will
introduce an error for each coefficient and these errors may not cancel out.

Conjecture 1. There exists a Boolean function f : {0,1}"™ — {0,1} and an
error function € : N — R such that deg.,)(f) = d(n) but the degree of any

MidBit™ circuit that computes f within error (n) must be more than d(n).

3.3 A Result of Beigel, Tarui and Toda [6]

Beigel, Tarui and Toda [6] proved that the class of functions computable by
probabilistic EMAJ o ACC circuits of polynomial size is contained in SYM™. We
conjecture that it is in fact contained in MidBit™.

10



Conjecture 2. Let f be computable by a probabilistic EMAJ o ACC circuit of
polynomial size. Then f € MidBit™.
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