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Abstract

A weighted pseudorandom generator (WPRG) is a generalization of a pseudorandom generator
(PRG) in which, roughly speaking, probabilities are replaced with weights that are permitted
to be positive or negative. We present new explicit constructions of WPRGs that fool certain
classes of standard-order read-once branching programs. In particular, our WPRGs fool width-3
programs, constant-width regular programs, and unbounded-width permutation programs with a
single accepting vertex. In all three cases, the seed length is Õ

(
log n ·

√
log(1/ε) + log(1/ε)

)
,

where n is the length of the program and ε is the error of the WPRG.
For comparison, for all three of these models, the best explicit unweighted PRGs known

have seed length Õ(log n · log(1/ε)) (Meka, Reingold, and Tal STOC 2019; Braverman, Rao,
Raz, and Yehudayoff SICOMP 2014; Hoza, Pyne, and Vadhan ITCS 2021). Our WPRG seed
length is superior when ε is small. For the case of unbounded-width permutation programs,
Pyne and Vadhan previously constructed a WPRG with a seed length that is similar to ours
(CCC 2021), but their seed length has an extra additive log3/2 n term, so our WPRG is superior
when ε≫ 1/n.

Our results are based on a new, general framework for error reduction. Our framework
builds on the remarkable recent work by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford,
and Vadhan (FOCS 2020) that gave a near-logarithmic space algorithm for estimating random
walk probabilities in Eulerian digraphs with high precision. Our framework centers around
the “inverse analysis” of random walks and a key combinatorial structure termed “shortcut
graphs.” Using our new framework and the recent notion of singular value approximation
(Ahmadinejad, Peebles, Pyne, Sidford, and Vadhan arXiv 2023), we also present an alternative,
simpler proof of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s main theorem.
Compared to the original proof, our new proof avoids much of the sophisticated machinery
that was imported from recent work on fast Laplacian solvers.
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1 Introduction

What is the intrinsic relationship between randomness and space as computational resources? The
famous “L = BPL” conjecture says that for every halting randomized decision algorithm using
S ≥ log n bits of space, there is a deterministic algorithm that solves the same problem using O(S)
bits of space: randomization buys at most a constant factor in terms of space complexity. The
challenge of derandomizing efficient algorithms is well-motivated, because high-quality random
bits are not always available easily and without cost.

A traditional approach to derandomization is to try to design sufficiently powerful pseudoran-
dom generators (PRGs).

Definition 1.1 (PRGs). Let n ∈ N, let F be a class of functions f : {0, 1}n → {0, 1}, and let ε > 0. An
ε-PRG for F is a function G : {0, 1}s → {0, 1}n such that for every f ∈ F , we have

|E[ f (G(Us))]−E[ f ]| ≤ ε.

(Above, Us denotes the uniform distribution over {0, 1}s, and E[ f ] is a shorthand for E[ f (Un)].) The
parameter s is called the seed length of the PRG. We also say that G fools F with error ε, or ε-fools F .

For the purpose of derandomizing space-bounded computation, the appropriate class F
consists of polynomial-width standard-order read-once branching programs (ROBPs).

Definition 1.2 (Standard-order ROBPs). Let w, n ∈ N. A width-w length-n standard-order ROBP
is a directed graph B. The vertex set consists of n + 1 layers, V = V(0) ∪ V(1) ∪ · · · ∪ V(n), where
|V(i)| ≤ w for each i. We usually assume without loss of generality that |V(i)| = w. Every vertex v ∈ V(i)

with i < n has two outgoing edges, one labeled 0 and the other labeled 1, leading to V(i+1). There is a
designated start vertex vstart ∈ V(0), and there is a set of designated accepting vertices Vaccept ⊆ V(n).
The program computes a Boolean function B : {0, 1}n → {0, 1} as follows. Given an input x ∈ {0, 1}n,
let vstart = v0, v1, v2, . . . , vn be the unique path such that for each i ∈ [n], there is an edge from vi−1 to vi
with label xi. If vn ∈ Vaccept, then we set B(x) = 1, and otherwise B(x) = 0.

If A is a randomized space-S algorithm, then for each fixed input σ, the function B(x) =
A(σ, x) (where x denotes the random bits used by A) can be computed by a width-w length-n
standard-order ROBP where w = n = 2O(S). Therefore, given an explicit1 ε-PRG G for such
programs, we could deterministically estimate the acceptance probability of A to within ±ε by
computing 2−s ·∑u∈{0,1}s A(σ,G(u)). In particular, explicit PRGs for width-n length-n ROBPs with
seed length O(log n) would imply L = BPL.

Using the probabilistic method, one can show the existence of non-explicit ε-PRGs for width-w
length-n ROBPs with seed length O(log(wn/ε)). Furthermore, several unconditional construc-
tions of explicit PRGs for standard-order ROBPs are known. Most famously, Nisan designed a
PRG that ε-fools width-w length-n ROBPs with seed length O(log(wn/ε) · log n) [Nis92]. Nisan’s
PRG has found numerous applications, but its seed length is too large to resolve the L vs. BPL
problem.

1.1 Weighted PRGs

Nisan’s PRG [Nis92] is more than three decades old. Despite much effort, there is still no known
explicit PRG for standard-order ROBPs of polynomial width (or even width 4) with a better

1For our purposes, a generator G : {0, 1}s → {0, 1}n is explicit if it can be computed in space O(s). The algorithm
for computing G(u) is given the seed u along with parameters (n, ε, etc.) specifying G among a relevant family of
generators.
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seed length. This motivates the search for alternative approaches to proving L = BPL that do
not necessarily require any breakthroughs on the PRG problem.2 Braverman, Cohen, and Garg
introduced one such approach [BCG20], based on the concept of a weighted PRG (WPRG).

Definition 1.3 (WPRGs). Let n ∈ N, let F be a class of functions f : {0, 1}n → {0, 1}, and let ε > 0.
An ε-WPRG for F is a pair (G, µ), where G : {0, 1}s → {0, 1}n and µ : {0, 1}s → R, such that for every
f ∈ F , we have ∣∣Eu∈{0,1}s [ f (G(u)) · µ(u)]−E[ f ]

∣∣ ≤ ε.

The parameter s is called the seed length of the WPRG. We also say that (G, µ) fools F with error ε, or
ε-fools F .

Crucially, the weights µ(u) are allowed to be negative. (Indeed, WPRGs with nonnegative
weights are essentially equivalent to unweighted PRGs [PV21, Appendix C].) Intuitively, this
means that we are considering the expectation of f with respect to a sparse input “distribution”
in which some probabilities are negative. For this reason, WPRGs are also known as pseudorandom
pseudodistribution generators [BCG20].

Because we are allowed to use negative weights, constructing WPRGs is potentially easier
than constructing unweighted PRGs. Indeed, Braverman, Cohen, and Garg [BCG20] constructed
an explicit WPRG that ε-fools width-w length-n standard-order ROBPs with seed length

Õ(log(wn) · log n + log(1/ε)),

which is better than Nisan’s PRG’s seed length when the error parameter ε is very small.
A sequence of followup works developed simpler and better WPRG constructions [CL20;
CDRST21; PV21; Hoz21], in particular improving the seed length to O(log(wn) · log n +
log(1/ε)) [Hoz21]. These examples demonstrate that negative weights open up new avenues
for making progress. Furthermore, for a certain class of branching programs, Pyne and
Vadhan constructed a WPRG [PV21] with a seed length that is provably impossible to achieve via
unweighted PRGs [HPV21], demonstrating the intrinsic power of negative weights. (Jumping
ahead, we improve Pyne and Vadhan’s construction in this work. See Section 1.4.)

Despite the presence of negative weights, explicit WPRGs are still useful for derandomization.
Indeed, an explicit WPRG for width-n length-n standard-order ROBPs with seed length O(log n)
would imply L = BPL, just like an explicit unweighted PRG would. The reason is that given
such a WPRG, we could deterministically estimate the acceptance probability of a randomized
algorithm A by computing 2−s ·∑u∈{0,1}s A(σ,G(u)) · µ(u). Furthermore, WPRGs imply hitting set
generators (HSGs).

Definition 1.4 (HSGs). Let n ∈ N, let F be a class of functions f : {0, 1}n → {0, 1}, and let ε > 0. An
ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that for every f ∈ F , if E[ f ] > ε, then there exists
u ∈ {0, 1}s such that f (G(u)) = 1.

If (G, µ) is an ε-WPRG for F , then G is an ε-HSG for F [BCG20]. HSGs have been
studied for many decades, perhaps starting with the pioneering work of Ajtai, Komlós, and
Szemerédi [AKS87]. It turns out that an explicit HSG for width-n length-n standard-order ROBPs
with optimal seed length O(log n) would already imply L = BPL [CH22; PRZ23], just like a PRG
or a WPRG. However, in the non-optimal regime (which is the most relevant regime given the
present state of knowledge), the known applications of WPRGs exceed the known applications of
HSGs. In particular, the current state-of-the-art unconditional derandomization of space-bounded

2See Hoza’s survey for a discussion of different approaches to proving L = BPL [Hoz22].
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Seed length Type Reference Notes

Õ(log(n/ε)) HSG [GMRTV12]

Õ(log n · log(1/ε)) PRG [MRT19]

Õ
(

log n ·
√

log(1/ε) + log(1/ε)
)

WPRG This work

O(log(n/ε)) PRG Folklore Optimal; non-explicit

Table 1: Pseudorandomness constructions for width-3 standard-order ROBPs. Note that there is
also work on width-3 ROBPs in the more challenging arbitrary-order setting [SVW17; MRT19].

computation says that randomized space-S algorithms can be simulated deterministically in space
O(S3/2/

√
log S) [Hoz21]. This result is a recent slight improvement over Saks and Zhou’s

decades-old O(S3/2) bound [SZ99]. The improvement relies on the recent line of work on
WPRGs [BCG20; CL20; CDRST21; PV21; Hoz21], and it is not clear how to reproduce the result
using HSGs alone.

In summary, it seems that the WPRG concept achieves a “Goldilocks” effect: it is flexible
enough to facilitate constructions, yet structured enough to facilitate applications. The WPRG
approach to derandomization is therefore highly promising. In this work, we present new and
improved constructions of WPRGs for several well-motivated classes of branching programs.

1.2 Width-3 Branching Programs

When w < n, width-w length-n standard-order ROBPs do not correspond to uniform algorithms,
but they are nevertheless a natural nonuniform model of (log w)-space computation. We
emphasize that the transitions may vary from one layer to the next, which can be interpreted
as meaning that the program has access to a “clock,” in addition to its (log w)-bit workspace.

For width-2 programs, explicit PRGs are known with optimal seed length O(log(n/ε)) [SZ95;
BDVY13; HH23]. The width-3 case is at the frontier of current knowledge. Meka, Reingold,
and Tal designed an explicit ε-PRG for width-3 standard-order ROBPs with seed length Õ(log n ·
log(1/ε)) [MRT19]. When the error parameter ε is constant, Meka, Reingold, and Tal’s seed length
is near optimal, but when ε = 1/poly(n), their PRG does not beat Nisan’s O(log2 n) seed length.
To address this issue, we present a WPRG that fools width-3 standard-order ROBPs with error
1/poly(n) and seed length Õ(log3/2 n). More generally, we achieve the following parameters.

Theorem 1.5 (WPRG for width-3 ROBPs). For every n ∈ N and ε > 0, there is an explicit ε-WPRG
with seed length

Õ
(

log n ·
√

log(1/ε) + log(1/ε)

)
that ε-fools width-3 length-n standard-order ROBPs.

Note that near-optimal HSGs for width-3 standard-order ROBPs were already known; see
Table 1.

1.3 Regular Branching Programs

Unfortunately, the state of the art for width-4 standard-order ROBPs is the same as that for the
polynomial-width case. On the bright side, better results are known for narrow ROBPs that also

3



satisfy certain structural restrictions such as regularity.

Definition 1.6 (Regular ROBPs). Let B be a standard-order ROBP with vertex set V = V(0) ∪ · · · ∪V(n).
We say that B is regular if every vertex v ∈ V \V(0) has precisely two incoming edges.

Regular ROBPs have been the subject of intense study [RTV06; BRRY14; De11; RSV13; BHPP22;
LPV22]. One reason to study regular ROBPs is that there is a reduction from the general case to
the regular case. Indeed, Lee, Pyne, and Vadhan recently showed that if a function f : {0, 1}n →
{0, 1} can be computed by a standard-order ROBP of width w, then it can also be computed
by a standard-order regular ROBP of width O(wn) [LPV23]. (This is an improvement over
previous reductions [RTV06; BHPP22].) Consequently, optimal explicit WPRGs for polynomial-
width standard-order regular ROBPs would imply optimal explicit WPRGs for polynomial-width
standard-order non-regular ROBPs.

Braverman, Rao, Raz, and Yehudayoff designed an explicit ε-PRG for width-w length-n
standard-order regular ROBPs with seed length Õ(log(w/ε) · log n) [BRRY14]. (See also De’s
followup work [De11].) When the width parameter w and the error parameter ε are both
constant, Braverman, Rao, Raz, and Yehudayoff’s seed length is near-optimal. However, when
ε = 1/poly(n), their seed length is no better than Nisan’s O(log2 n) seed length, even if we hold
w constant. To address this issue, we present a WPRG that fools constant-width standard-order
regular ROBPs with error 1/poly(n) and seed length Õ(log3/2 n). More generally, our WPRG has
the following parameters.

Theorem 1.7 (WPRG for regular ROBPs). For every n, w ∈ N and ε > 0, there is an explicit ε-WPRG
with seed length

Õ
(

log n ·
(

log w +
√

log(1/ε)

)
+ log(1/ε)

)
that ε-fools width-w length-n standard-order regular ROBPs.

Our seed length matches that of an HSG for the same class that Bogdanov, Hoza, Prakriya,
and Pyne recently constructed [BHPP22] (ignoring log log factors). In turn, their construction is
the best HSG known for this class (again, ignoring log log factors). See Table 2.

1.4 Unbounded-Width Permutation Branching Programs

Definition 1.8 (Permutation ROBPs). Let B be a standard-order ROBP with vertex set V = V(0) ∪ · · · ∪
V(n). We say that B is a permutation ROBP if every vertex v ∈ V \V(0) has precisely two incoming edges,
and those two incoming edges have distinct labels.

In other words, between every two adjacent layers of a permutation ROBP, the edges labeled
0 form a matching, as do the edges labeled 1. Permutation ROBPs are thus a subclass of regular
ROBPs. The first sequence of papers studying permutation ROBPs focused on the constant-width
regime [BV10; De11; KNP11; Ste12; RSV13; CHHL19]. In recent years, there has been another
wave of interest in permutation ROBPs, but this time, the focus is on programs of unbounded width
with only one accepting vertex [HPV21; PV21; PV22; BHPP22; GV22; LPV22]. This intriguing
model cannot be considered a model of “space-bounded” computation anymore; instead, it is a
certain type of “reversible” computation. Still, we hope that studying this model can shed light on
the L vs. BPL problem. Studying unbounded-width models has already been a fruitful approach
for proving new results about standard bounded-width models [PV21; GV22; LPV22]. Indeed, in
general, results for unbounded-width models typically imply corresponding results for standard

4



Seed length Type Reference Notes

Õ(log(w/ε) · log n) PRG [BRRY14]

O(w · log n) for all ε > 0 HSG [BRRY14]

Õ
(

log n ·
(

log w +
√

log(1/ε)
)
+ log(1/ε)

)
HSG [BHPP22]

Õ
(

log n ·
(

log w +
√

log(1/ε)
)
+ log(1/ε)

)
WPRG This work

O(log(wn/ε)) PRG Folklore Optimal; non-explicit

Table 2: Pseudorandomness constructions for width-w length-n standard-order regular ROBPs.
Note that there is also work on the intriguing setting of unbounded-width programs with only
one accepting vertex, as well as the challenging arbitrary-order setting [BHPP22; CLTW23].
Furthermore, Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan gave a near-optimal
non-black-box algorithm for estimating the acceptance probability of a given standard-order
regular ROBP [AKMPSV20]; see Section 1.5.

width-w models, with a factor-of-w loss in the error parameter. Additionally, the unbounded-
width model serves as a valuable “test-bed” for studying different notions of pseudorandomness.

Hoza, Pyne, and Vadhan designed an ε-PRG for these programs with seed length Õ(log n ·
log(1/ε)) [HPV21], building heavily on prior work by Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan [AKMPSV20]. Importantly, Hoza, Pyne, and Vadhan also proved a near-
matching seed length lower bound: every ε-PRG for this model has seed length at least Ω̃(log n ·
log(1/ε)) [HPV21]. In contrast, Pyne and Vadhan designed an ε-WPRG for this model with seed
length Õ(log n ·

√
log(n/ε) + log(1/ε)) [PV21]. In particular, when ε = 1/poly(n), the optimal

seed length for unweighted PRGs is Θ(log2 n), whereas Pyne and Vadhan’s WPRG seed length
is only Õ(log3/2 n). As mentioned previously, these results demonstrate that WPRGs have an
intrinsic advantage over unweighted PRGs in this case.

A weakness of Pyne and Vadhan’s WPRG [PV21] is that the seed length is always at least
log3/2 n. We present a new WPRG that smoothly interpolates between Hoza, Pyne, and Vadhan’s
Õ(log n) seed length in the constant-error regime [HPV21] and Pyne and Vadhan’s Õ(log3/2 n)
seed length in the inverse-polynomial-error regime [PV21].

Theorem 1.9 (WPRG for unbounded-width permutation ROBPs). For every n ∈N and ε > 0, there
is an explicit WPRG with seed length

s = Õ
(

log n ·
√

log(1/ε) + log(1/ε)

)
that ε-fools unbounded-width standard-order permutation ROBPs with a single accept state.

Thus, our work strengthens the known separation between WPRGs and unweighted PRGs.
Note that our seed length is always at least as good as Hoza, Pyne, and Vadhan’s PRG seed
length [HPV21] (ignoring log log factors). See Table 3 for a summary. We also remark that
as a simple corollary of Theorem 1.9, we obtain an explicit WPRG for width-w standard-order
permutation ROBPs (with an unbounded number of accepting vertices) with seed length

Õ
(

log n ·
√

log(w/ε) + log(w/ε)

)
.
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Seed length Type Reference Notes

O(log(n/ε) · log n) PRG [De11]

Õ(log n · log(1/ε)) PRG [HPV21]

Õ
(

log n ·
√

log(n/ε) + log(1/ε)
)

WPRG [PV21]

Õ
(

log n ·
√

log(1/ε) + log(1/ε)
)

WPRG This work

Ω̃(log n · log(1/ε)) PRG [HPV21] Lower bound

O(log(n/ε)) HSG [HPV21] Optimal; non-explicit

O(log(n/ε)) Det. sampler3 [PV22] Optimal; non-explicit

Table 3: Pseudorandomness constructions for unbounded-width permutation ROBPs with a
single accepting state. Note that there is also work on the more challenging arbitrary-order
setting [BHPP22; LPV22; CLTW23]. Note also that the optimal WPRG seed length for this model
is unclear.

1.5 A Simpler High-Precision Non-Black-Box Derandomization of Regular ROBPs

In addition to WPRGs, we also study non-black-box derandomization algorithms. In this model,
we are given the complete description of an ROBP, and our job is to estimate its acceptance
probability. In a remarkable recent work [AKMPSV20], Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan designed an algorithm for estimating the acceptance probability of a given
regular ROBP within an inverse polynomial error using Õ(log(wn)) bits of space. Formally:

Theorem 1.10 (High-precision non-black-box derandomization of regular ROBPs [AKMPSV20]).
There is a deterministic algorithm that uses Õ(log(wn) · log log(1/ε)) bits of space and outputs a value
that is within±ε of E[B], given a width-w length-n standard-order regular ROBP B and a value ε ∈ (0, 1)
as inputs.

Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s work [AKMPSV20] combines
techniques from the pseudorandomness literature with sophisticated machinery developed in
a sequence of works on faster solvers for Eulerian directed Laplacian systems [CKPPSV16;
CKPPRSV17; CKKPPRS18]. Roughly speaking, it introduced three new ideas to the space-
bounded derandomization community: (1) the applicability of Richardson iteration for error
reduction in the space-bounded setting, (2) the notion of the unit-circle approximation, and (3) a
sophisticated analysis of the INW generator [INW94] via bounding a matrix norm defined by a
recursive application of Schur complement (see [AKMPSV20, Theorem 6.1]).

The first two ideas have led to a flurry of exciting new results in space-bounded derandom-
ization [CDRST21; PV21; Hoz21; HPV21; PP22; CDST22], including much of the prior work on
WPRGs that we described earlier. In contrast, the third idea has found limited applications so far,
despite the fact that it is arguably the core of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford,
and Vadhan’s proof [AKMPSV20]. Only one paper, by Pyne and Vadhan [PV21], has managed to
adapt this technique to a new problem.

3A deterministic ε-sampler for a class F is a deterministic algorithm SAMP that makes queries to an unknown f ∈ F
and outputs a real number Samp f satisfying |Samp f − E[ f ]| ≤ ε. We define the “seed length” of the sampler to be
the log of the query complexity. One can show that WPRGs imply deterministic samplers, and deterministic samplers
imply HSGs [CH22].
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A possible explanation might be that it is not easy to understand the meaning of the constructed
matrix norm [AKMPSV20, Section 6] in the context of derandomizing ROBPs. Moreover,
Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s analysis [AKMPSV20] makes
heavy use of complicated linear algebra facts developed in the Laplacian solver literature, and
it is unclear how to interpret these facts when applied to the matrix constructed from a branching
program.

To remedy this situation, we present a significantly simpler proof of Theorem 1.10. In our
proof, we view the recursive Schur complement construction in the original proof as a natural
combinatorial “shortcut graph;” see Section 3.1.3 for details. We believe that this proof helps to
clarify what exactly the recursive-Schur-complement-matrix-norm really represents in the setting
of branching programs. We hope that our proof enables a fuller appreciation of Ahmadinejad,
Kelner, Murtagh, Peebles, Sidford, and Vadhan’s analysis [AKMPSV20] and thereby facilitates the
development of new ideas.4

Organization. The remainder of this paper is organized as follows. We begin with some
definitions and notation in Section 2. Then, in Section 3, we present an informal overview of
all of our proofs. Next, in Section 4 and Section 5, we present a general framework that underlies
all of our results. In Section 6, we prove Theorem 1.7 (our WPRG for bounded-width regular
ROBPs). In Section 7, we prove Theorem 1.5 (our WPRG for width-3 ROBPs). In Section 8, we
present our simplified proof of Theorem 1.10 (Ahmadinejad, Kelner, Murtagh, Peebles, Sidford,
and Vadhan’s main result [AKMPSV20]). Finally, in Section 9, we prove Theorem 1.9 (our WPRG
for unbounded-width permutation ROBPs).

2 Preliminaries

2.1 Read-Once Branching Programs

Let B be a standard-order ROBP (Definition 1.2) with vertex set V = V(0) ∪ · · · ∪ V(n). Let
vstart ∈ V(0) be the start vertex, and let Vaccept ⊆ V(n) be the set of accepting vertices.

The transition notation B[u, x]. For ℓ ∈ {0, . . . , n}, u ∈ V(ℓ), and x ∈ {0, 1}≤n−ℓ, we let B[u, x]
be the vertex v ∈ V(ℓ+|x|) that is reached from u by traversing the edges with labels specified by x.
Using this notation, for x ∈ {0, 1}n, we have

B(x) = 1 ⇐⇒ B[vstart, x] ∈ Vaccept.

The subprogram notation Bv←u. Let 0 ≤ ℓ ≤ r ≤ n, let u ∈ V(ℓ), and let S ⊆ V(r). We define
BS←u to be the program obtained from B by specifying u as the new start vertex and S as the new
set of accepting vertices. We use the following shorthands:

Bv←u := B{v}←u, Bv← := Bv←vstart , B←u := BVaccept←u.

For convenience, we think of BS←u as a program of length n rather than length r − ℓ. That is, in
BS←u, the first ℓ transitions are trivial identity layers; the next r− ℓ transitions are the same as in

4Indeed, all of our new WPRG constructions are inspired by the insights from our simpler proof of Theorem 1.10.
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B; and the final n− r transitions are trivial identity layers. Thus, we think of BS←u as a Boolean
function on n bits, but it only depends on r− ℓ of those bits:

BS←u(x1, . . . , xn) = 1 ⇐⇒ B[u, (xℓ+1, . . . , xr)] ∈ S.

Nevertheless, we will occasionally abuse notation and write BS←u(xℓ+1, . . . , xr) rather than
BS←u(x1, . . . , xn).

The matrix notation B(x). As explained in Definition 1.2, we identify B with a Boolean function
B : {0, 1}n → {0, 1}. We use boldface B to denote the matrix-valued function B : {0, 1}n →
{0, 1}V(n)×V(0) ∼= {0, 1}w×w given by

B(x)v,u = Bv←u(x).

ROBPs over large alphabets. We occasionally use the standard large-alphabet generalization of
Definition 1.2. A width-w length-n standard-order ROBP over the alphabet Σ is defined just like
Definition 1.2, except that each vertex in V(0) ∪ · · · ∪V(n−1) has |Σ| outgoing edges leading to the
next layer, labeled with the symbols in Σ. Thus, the program computes a function B : Σn → {0, 1}.
We say that the program is regular if each vertex in V(1) ∪ · · · ∪ V(n) has precisely |Σ| incoming
edges, and we say that the program is a permutation program if those |Σ| incoming edges have
distinct labels.

2.2 Linear Algebra

We use boldface to denote matrices. We denote the w× w identity matrix by Iw. We often simply
write I if the dimension w is clear from context. Recall that every positive semidefinite matrix M
induces a vector “norm” ∥ · ∥M:

Definition 2.1 (Vector seminorm induced by a psd matrix). Let M ∈ RN×N be a positive semidefinite
matrix. We define a corresponding function ∥ · ∥M : RN → [0, ∞) by the rule

∥x∥M =
√

xTMx.

For example, if W is a doubly stochastic matrix, then I − WTW is positive semidefinite, and the
corresponding function ∥ · ∥I−WTW is given by

∥x∥2
I−WTW = ∥x∥2

2 − ∥Wx∥2
2.

Observe that we can sometimes have ∥x∥M = 0 even if x ̸= 0. This means that technically,
∥ · ∥M is a seminorm (defined below) rather than a true norm.

Definition 2.2 (Vector seminorm). A seminorm on RN is a function ∥ · ∥ : RN → [0, ∞) satisfying the
following properties:

1. For every x, y ∈ RN , we have ∥x + y∥ ≤ ∥x∥+ ∥y∥.

2. For every x ∈ RN and every λ ∈ R, we have ∥λx∥ = |λ| · ∥x∥.
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It is standard that any vector norm ∥ · ∥ induces a corresponding matrix norm, namely, the
operator norm:

∥M∥ := max
x ̸=0

∥Mx∥
∥x∥ .

What if we start with a vector seminorm ∥ · ∥ rather than a true norm? Unfortunately, in this case,
the definition above can suffer from divison-by-zero issues, i.e., sometimes we have ∥M∥ = ∞.
For this reason, in this case, the matrix “norm” defined by the equation above is technically not a
norm, nor even a seminorm, but rather it is an extended seminorm, defined next.

Definition 2.3 (Extended submultiplicative matrix seminorm). An extended submultiplicative
matrix seminorm on RN×N is a function ∥ · ∥ : RN×N → [0, ∞] satisfying the following conditions.

1. For every A, B ∈ RN×N , if ∥A∥ < ∞ and ∥B∥ < ∞, then ∥A + B∥ ≤ ∥A∥+ ∥B∥.

2. For every A, B ∈ RN×N , if ∥A∥ < ∞ and ∥B∥ < ∞, then ∥A · B∥ ≤ ∥A∥ · ∥B∥.

3. For every M ∈ RN×N and every nonzero λ ∈ R, we have ∥λ ·M∥ = |λ| · ∥M∥.

4. The zero matrix 0 satisfies ∥0∥ = 0.

Definition 2.4 (Extended submultiplicative matrix seminorm induced by a vector seminorm). Let
∥ · ∥ : RN → [0, ∞) be a vector seminorm. We define an extended submultiplicative matrix seminorm
∥ · ∥ : RN×N → [0, ∞] by the rule

∥M∥ = min
{

λ ∈ R∪ {∞} : for every x ∈ RN , ∥M · x∥ ≤ λ · ∥x∥
}

.

3 Technical Overview

3.1 Our Error Reduction Framework

Each of our constructions follows the same high-level approach: We start with a construction
that has moderate error τ ≫ ε, and then we apply an error reduction procedure to decrease the
error down to ε. For example, for regular ROBPs, our WPRG construction (Theorem 1.7) works
by applying an error reduction procedure to the BRRY PRG [BRRY14]. Many recent works on
space-bounded derandomization have developed and applied error reduction procedures [HZ20;
AKMPSV20; CDRST21; PV21; Hoz21; BHPP22; PP22; CDST22]. Like most of this prior work,
our approach for error reduction is based on the “inverse Laplacian” perspective on space-
bounded derandomization, introduced by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan [AKMPSV20]. We review this perspective next.

3.1.1 The Inverse Laplacian Perspective

Let B be a width-w length-n standard-order ROBP. The vertices of B are denoted as V(B) :=
V(0) ∪V(1) ∪ · · · ∪V(n) where V(i) = {i · w + 1, . . . , (i + 1) · w} for each i ∈ {0, 1, . . . , n}. Next, we
define W ∈ R(n+1)·w×(n+1)·w to be the transition matrix of B. Specifically, for every directed edge
(u, v) in B, we set Wv,u = 1

2 (or Wv,u = 1 if both outgoing edges of u go to v). 5 Since B only

5Note that the index order is (v, u). This convention implies that taking a step in B corresponds to left-multiplication
by W.
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contains edges between pairs of adjacent layers, W has the following form:

W =



0 0 0 · · · 0 0
W1 0 0 · · · 0 0
0 W2 0 · · · 0 0
...

. . .
...

0 0 0
. . . 0 0

0 0 0 · · · Wn 0


.

In the equation above, Wi ∈ RV(i)×V(i−1)
denotes the transition matrix from the (i− 1)-th layer of

B to the i-th layer. We define the Laplacian of W as

L := I(n+1)w −W.

Being a unitriangular matrix, L is invertible. Observe that

L−1 =
n

∑
i=0

Wi =



Iw 0 0 · · · 0 0
W1←0 Iw 0 · · · 0 0
W2←0 W2←1 Iw · · · 0 0

...
. . .

...

W(n−1)←0 W(n−1)←1 W(n−1)←2
. . . Iw 0

Wn←0 Wn←1 Wn←2 · · · Wn←(n−1) Iw


, (1)

where we use Wj←i to denote Wj ·Wj−1 · · ·Wi+1. This matrix, L−1, describes the random walks of
all lengths from all starting vertices in B. Looking at (1), we see that Wn←0 is a submatrix of L−1,
and thus the problem of estimating E[B] reduces to approximating L−1.

The inverse Laplacian perspective is easiest to understand in the non-black-box setting: if we
are given the description of the ROBP B, then we can readily compute the Laplacian matrix L, and
it makes sense to try to approximately invert it. It turns out that the perspective is also valuable in
the black-box setting. To construct WPRGs, our approach will be to first reason in terms of matrix
arithmetic, and then “reverse engineer” a WPRG such that all the matrix arithmetic happens in the
analysis of the WPRG rather than its construction. This technique is due to Cohen, Doron, Renard,
Sberlo, and Ta-Shma [CDRST21] and, independently, Pyne and Vadhan [PV21]. For this technical
overview, we primarily focus on the matrix arithmetic itself.

3.1.2 Richardson Iteration

With the inverse Laplacian perspective in mind, our high-level plan for proving our results is
as follows. First, we will construct a matrix L̂−1 that approximates L−1 with moderate error.6

Specifically, we will ensure that ∥I− L̂−1L∥ ≤ δ for a suitable, submultiplicative matrix norm7

∥ · ∥ and some “moderately small” δ < 1. Then, we will apply a powerful, generic error reduction
technique called Richardson iteration: for each m ∈N, define

Am =
m

∑
i=0

(I− L̂−1L)i · L̂−1.

6We use L̂−1 to denote our approximate inverse because our matrix L̂−1 is indeed the exact inverse of another matrix
L̂, and L̂ plays a crucial part in our analysis.

7Technically, in some cases we will use an “extended seminorm” rather than a true norm; see Definition 2.3.
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It turns out that ∥I−AmL∥ ≤ ∥I− L̂−1L∥m+1 ≤ δm+1 (see Lemma 4.12). Finally, we will use this
low-error approximate inverse Am to compute an approximation to E[B] with low additive error.

Given the plan described above, our main task is to explain how to construct the matrix
L̂−1. The upside of this “Richardson iteration” approach is that the matrix L̂−1 only needs to
be a moderate-error approximation. The downside is that L̂−1 must approximate the entire inverse
Laplacian matrix L−1, as stipulated by the requirement ∥I− L̂−1L∥ ≤ δ. This is true despite the
fact that ultimately, we only care about a single w × w block of L−1. To put it another way, to
use Richardson iteration, we must construct a moderate-error collection of estimated acceptance
probabilities for all subprograms of B, even though we are ultimately only interested in E[B].

So, how shall we construct this matrix L̂−1? For each w × w block Wj←i of L−1, we begin
by constructing a matrix W̃j←i that approximates Wj←i with moderate error. For example,
in the case of bounded-width standard-order regular ROBPs, we let W̃j←i consist of the
estimated probabilities of going from vertices in layer i to vertices in layer j based on the BRRY
PRG [BRRY14], which gives us bounds such as ∥W̃j←i −Wj←i∥1 ≤ τ where τ is moderately small.

Given these matrices W̃j←i, a natural approach for constructing L̂−1 would be to simply
arrange them in an (n + 1)× (n + 1) array:

First Attempt: L̂−1 =


I 0 · · · 0

W̃1←0 I · · · 0
W̃2←0 W̃2←1 · · · 0

...
. . .

...
W̃n←0 W̃n←1 · · · I

 . (2)

Indeed, this approach has been used in prior work [CDRST21; Hoz21]. The trouble with this
approach is that if we defined L̂−1 in this way, then the error of the matrix L̂−1 as a whole
would be typically much larger than the error of a single block. For example, the condition
∥W̃j←i −Wj←i∥1 ≤ τ would merely give us ∥I− L̂−1L∥1 ≤ O(n · τ), essentially due to a “union
bound” over the n+ 1 rows/columns. Therefore, if we used this approach, we would have to start
with a very small initial error τ < 1

n to get a nontrivial bound (∥I− L̂−1L∥ < 1). In the settings
we study, we cannot afford to compute W̃j←i with such a low error. For example, notice that all
the explicit PRGs in Table 1, Table 2, and Table 3 have seed length Ω(log n · log(1/τ)) for error τ.
If used these PRGs with an initial error value of τ < 1/n, then our seed lengths would always be
Ω(log2 n). We therefore need a different approach.

3.1.3 Constructing L̂−1 via Shortcutting and Correction Graphs

Our construction of L̂−1 uses ideas from Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan’s algorithm for estimating random walk probabilities in Eulerian digraphs [AKMPSV20].
To briefly summarize their algorithm, they recursively applied Rozenman and Vadhan’s deran-
domized square operation [RV05] to construct a “unit-circle approximation” with a moderate er-
ror τ ≈ 1/ log n, and then they decrease the error using heavy machinery from the literature on
fast Laplacian solvers.

One of our contributions is to isolate and reformulate the key ingredient of their algorithm
that enables them to perform error reduction starting from such a moderate error value (and
avoiding the union bound over n + 1 rows/columns). Surprisingly, this key ingredient is not
the derandomized squaring or the “unit-circle approximation” but the recursive structure itself.
We capture such recursive structure with the following definition of a shortcut graph.
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For simplicity, from now on, we always assume n is a power of 2. The shortcut graph on
n + 1 vertices, denoted as SCn, has vertex set {0, 1, 2 . . . , n} and contains edges (i, i + 2k) for every
k ∈ {0, 1, . . . , log n} and i that is a multiple of 2k. See Figure 1.

0 1 2 3 4 5 6 7 8

Figure 1: The shortcut graph SCn with n = 8.

Construction of L̂−1 based on Shortcut Graph. Recall that for each i < j, we have a matrix
W̃j←i that we think of as a “moderate-error approximation” to Wj←i. Using these matrices W̃j←i,
let us define the matrix L̂−1 ∈ (Rw×w)(n+1)×(n+1) block-by-block. Let 0 ≤ ℓ < r ≤ n, and let
ℓ = i0 → i1 → · · · → ik = r be the (unique) shortest path from ℓ to r in SCn. It is not hard to see
from Figure 1 that the length of this shortest path is at most 2 log n. We define the (r, ℓ)-th block
of L̂−1 by the formula

(L̂−1)r←ℓ := W̃ik←ik−1 · W̃ik−1←ik−2 · · · W̃i2←i1 · W̃i1←i0 .

Intuitively, since each W̃it←it−1 approximates Wit←it−1 , their product should approximate the
product

Wik←ik−1 ·Wik−1←ik−2 · · ·Wi2←i1 ·Wi1←i0 = Wr←ℓ,

which is the (r, ℓ)-th block of the exact inverse Laplacian L−1. To complete the definition of L̂−1,
we set (L̂−1)ℓ←ℓ = Iw for every ℓ ∈ {0, 1, . . . , n}, and (L̂−1)r←ℓ = 0 for every ℓ > r. For example,
the case n = 4 is shown below.

L̂−1 =


I 0 0 0 0

W̃1←0 I 0 0 0
W̃2←0 W̃2←1 I 0 0

W̃3←2 · W̃2←0 W̃3←2 · W̃2←1 W̃3←2 I 0
W̃4←0 W̃4←2 · W̃2←1 W̃4←2 W̃4←3 I

 . (3)

Comparisons. Our construction of L̂−1 based on the shortcut graph corresponds to Ahmadine-
jad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s recursive usage of the Schur complement
operation [AKMPSV20, Theorem 6.1].

Let us compare our definition of L̂−1 above to the straightforward approach given in (2).
The straightforward approach uses “unrelated” approximations for all Θ(n2) blocks of L−1.
Instead, we first approximate O(n) many (carefully selected) “essential” blocks Wj←i, and then
we approximate each remaining block by multiplying approximations of essential blocks. The
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“price” we pay for this additional structure is low, because each product involves only O(log n)
many essential blocks.

Analyzing L̂−1: Inverse analysis of random walks. Having defined L̂−1, our job is to bound
∥I− L̂−1L∥, i.e., our job is to show that L̂−1 approximately describes random walks in the given
branching program B in a certain sense. At an intuitive level, our approach is as follows. We
admit that L̂−1 doesn’t perfectly describe random walks in B; we only aim to show that it is an
approximation. However, L̂−1 does perfectly describe random walks in some other graph B̂! This
graph B̂ is not a true ROBP (it is not layered, and its edges have positive and negative weights),
but still, our construction of L̂−1 ensures that B̂ has considerable combinatorial structure. We use
this structure to show that B̂ ≈ B in some sense, which enables us to bound the error ∥I− L̂−1L∥.
The process of going from L̂−1 to B̂ (i.e., starting with a description of the behavior of random
walks, and reconstructing an underlying graph that is consistent with that description) is what we
refer to as the “inverse analysis of random walks.” 8

The matrix L̂ and the correction graph. To implement the plan described above, let L̂ denote the
inverse of L̂−1; this exists because L̂−1 is lower-triangular. We emphasize that we first construct
an approximate inverse to L (which we denote by L̂−1), and then we take the exact inverse of that
matrix to get L̂. Then I− L̂−1L = L̂−1 · (L̂− L), so our job is to bound ∥L̂−1 · (L̂− L)∥. Actually,
we will show that it suffices to bound ∥L−1 · (L̂− L)∥:

Suppose ∥L−1 · (L̂− L)∥ ≤ δ. Then ∥L̂−1 · (L̂− L)∥ ≤ δ/(1− δ). (Corollary 4.11)

We will therefore focus on bounding ∥L−1(L̂− L)∥ instead.
It turns out that this matrix L̂ is highly structured. For example, it is relatively sparse: we

show that the block L̂j←i (where i < j) is nonzero only if (i, j) ∈ E(SCn). Furthermore, we give
an exact formula for L̂. Assume for simplicity that all length-1 approximations are exact, i.e.,
W̃i+1←i = Wi+1←i. We show (Lemma 4.5) that

L̂ = I− (W + ∆W),

where ∆W = ∑
log n
t=1 ∆W(t) and

(∆W(t))j←i =

{
W̃j←i − W̃j← i+j

2
W̃ i+j

2 ←i if (i, j) ∈ E(SCn) and j = i + 2t

0 otherwise.

For example, the inverse of the n = 4 example from (3) is given below:

L̂ =


I 0 0 0 0

−W̃1←0 I 0 0 0
−(W̃2←0 − W̃2←1W̃1←0) −W̃2←1 I 0 0

0 0 −W̃3←2 I 0
−(W̃4←0 − W̃4←2W̃2←0) 0 −(W̃4←2 − W̃4←3W̃3←2) −W̃4←3 I

 .

Since L̂ = I− (W + ∆W), the matrix L̂ can be interpreted as the “Laplacian” of a weighted graph
with transition matrix W+∆W. We refer to the subgraph corresponding to ∆W as the “Correction
Graph,” because adding ∆W to L̂ yields the original Laplacian L.

8One caveat is that because of the positive and negative edge weights in B̂, technically we ought to speak of
“weighted walks” rather than “random walks;” we will ignore this distinction for simplicity.
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Overall, we have

∥L−1 · (L̂− L)∥ = ∥L−1∆W∥ ≤
log n

∑
t=1
∥L−1∆W(t)∥,

and so our job reduces to bounding ∥L−1∆W(t)∥ for a fixed t ∈ [log n].
In summary, for a standard-order ROBP B, we have the following recipe for estimating E[B] to

within low error.

1. Design an initial algorithm for constructing the approximation matrices W̃j←i. These
matrices W̃j←i induce a correction graph transition matrix ∆W.

2. Pick a submultiplicative matrix norm (or “extended seminorm”) ∥ · ∥. In this paper, the
function ∥ · ∥ is always induced by a vector seminorm (see Definition 2.4).

3. Use properties of the branching program B (e.g., regularity) to prove that ∥L−1∆W(t)∥ ≤ δ
for each t ∈ [log n], where L is the Laplacian matrix of B and δ is “moderately small.”

4. Apply our error reduction framework (the construction of L̂−1, the correction graph lemma,
Richardson iteration, etc.) to obtain a matrix Am that has very low error, in the sense that
∥I−AmL∥ is very small.

5. Use Am to compute an approximation to E[B], and use properties of the “norm function”
∥ · ∥ to conclude that this approximation has very small additive error.

The details of how we carry out this recipe to prove our main results vary from one result to the
next. In the remainder of this technical overview, we give an overview of each of the arguments.

3.2 Our WPRG for Bounded-Width Regular ROBPs

In this section, we explain how we carry out each step of the recipe to construct a WPRG that
ε-fools bounded-width regular ROBPs (Theorem 1.7). For ease of exposition, we will focus on the
case ε = 1/n in this proof overview, and we will assume that the width of the program is O(1).

We construct the approximation matrices W̃j←i by using the BRRY PRG [BRRY14]. We set

the error parameter of the PRG to τ = 2−
√

log n, so the BRRY PRG has seed length Õ(log n ·
log(1/τ)) = Õ(log3/2 n). We use the standard ℓ∞ matrix norm, i.e.,

∥M∥ = max
v ∑

u
|Mv,u|.

Our main job is to bound ∥L−1∆W(t)∥. For simplicity, let us focus on the case t = 1. Working
through the definitions, each nonzero block of L−1∆W(1) has the form

Wj←ℓ+2 · (W̃ℓ+2←ℓ −Wℓ+2←ℓ).

We analyze the matrix above using the weight measure introduced by Braverman, Rao, Raz,
and Yehudayoff [BRRY14]. Using techniques similar to Braverman, Rao, Raz, and Yehudayoff’s
arguments [BRRY14], one can show (Lemma 6.6) that for any vertex u in layer ℓ and any vertex v
in layer j, we have

|(Wj←ℓ+2 · (W̃ℓ+2←ℓ −Wℓ+2←ℓ))v,u| ≤ O(τ ·Weight(Bv←, ℓ, ℓ+ 2)),
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where Weight(Bv←, ℓ, ℓ+ 2) is the sum, over all edges (u, u′) between layer ℓ and layer ℓ+ 2, of
|E[Bv←u]−E[Bv←u′ ]|. Therefore, summing over all ℓ, we get

∑
u
|(L−1∆W(1))v,u| ≤ O(τ ·Weight(Bv←, 0, n)).

Braverman, Rao, Raz, and Yehudayoff showed that because B is regular, we have Weight(Bv←, 0, n) =
O(1), and hence ∥L−1∆W(1)∥ ≤ O(τ).

A similar argument bounds ∥L−1∆W(t)∥ when t > 1. From here, our error reduction
framework provides a matrix Am such that ∥I − AmL∥ ≤ Θ(1/n). By reverse-engineering the
definition of Am, we construct a WPRG that fools B with error 1/n as desired. However, the
seed length of this WPRG is too large, because each seed includes several independent seeds
for the BRRY PRG. We therefore decrease the seed length by using the Impagliazzo-Nisan-
Wigderson (INW) PRG [INW94] to generate correlated seeds for the BRRY PRG, similar to prior
work [CDRST21; PV21]. See Section 6 for details.

3.3 Our WPRG for Width-3 ROBPs

Next, we give an overview of our WPRG for width-3 ROBPs (Theorem 1.5). Recall that Meka,
Reingold, and Tal designed a PRG for width-3 length-n standard-order ROBPs with seed length
Õ(log n · log(1/ε)) [MRT19]. We do not apply our error reduction framework to this PRG in a
black-box way. Instead, to construct our WPRG, we revisit Meka, Reingold, and Tal’s specific
construction and analysis [MRT19].

To construct their PRG, Meka, Reingold, and Tal showed how to sample a pseudorandom
restriction ρ ∈ {0, 1, ⋆}n using Õ(log(n/ε)) truly random bits such that the following two
properties hold for any width-3 length-n standard-order ROBP B.

1. The restriction ρ preserves the expectation of B, i.e., |Eρ,U [B|ρ(U )] − E[B]| ≤ ε, where U is
independent of ρ and uniform random.

2. The program B simplifies under ρ with high probability. Indeed, it “almost” becomes a
permutation ROBP.

In more detail, with probability 1− ε, the restricted program B|ρ is approximated by a program B̃
that satisfies the permutation condition (Definition 1.8) in all but a few layers. In this case, Meka,
Reingold, and Tal argue that the BRRY PRG [BRRY14] fools B|ρ [MRT19]. Therefore, to fool the
original program B, they apply the pseudorandom restriction ρ and then fill in the stars using
the BRRY PRG. The overall seed length is dominated by the Õ(log n · log(1/ε)) seed length of the
BRRY PRG.

Our WPRG for width-3 ROBPs follows the same high-level plan, except that in the final
step, instead of applying the BRRY PRG, we apply our own WPRG for regular ROBPs. That
way, instead of paying Õ(log n · log(1/ε)) truly random bits in the final step, we only pay
Õ
(

log n ·
√

log(1/ε) + log(1/ε)
)

truly random bits. Implementing this plan requires improving
Meka, Reingold, and Tal’s “simplification” arguments in multiple ways, two of which we describe
below.

A quantitative improvement: Fewer colliding layers. In Meka, Reingold, and Tal’s analysis, the
number of “colliding layers” in B̃ (i.e., layers that violate the permutation condition) is bounded by
poly(1/ε) · log log n [MRT19]. We are most interested in the regime ε = 1/poly(n), in which their
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bound is trivial. To address this issue, we show that with probability 1− ε, the restricted program
B|ρ is in fact approximated by a program with only polylog(1/ε) · log log n many colliding layers
(see Claim 7.35).

A qualitative improvement: Bounding the weight of the restricted program. Building on
our analysis of colliding layers, we show that with high probability, the restricted function B|ρ
can be computed by a program with bounded weight (as defined by Braverman, Rao, Raz, and
Yehudayoff [BRRY14]). Specifically, with probability 1− ε, the weight is at most polylog(n/ε); see
Theorem 7.2.

We consider this “simplification” statement in terms of weight to be cleaner and easier to
understand, compared to Meka, Reingold, and Tal’s analysis [MRT19]. Furthermore, it turns out to
be a crucial step in our WPRG analysis. To explain why, let X be a pseudorandom string sampled
by the BRRY PRG [BRRY14]. As mentioned previously, Meka, Reingold, and Tal prove that X
fools the restricted program B|ρ [MRT19]. Let us recall their argument in more detail, so that we
can see where it breaks down when we try to use our WPRG in place of X .

The first step of the argument is to show that X fools programs with few colliding layers such
as B̃ [MRT19]. Then, to bridge the gap between B̃ and B|ρ, the second step is to design an “error
indicator” function E with the following properties:

1. For every x such that B̃(x) ̸= B|ρ(x), we have E(x) = 1.

2. E[E] ≤ ε and E[E(X )] ≤ ε.

Because such an E exists, Meka, Reingold, and Tal are able to reason that∣∣∣E[B|ρ]−E
[

B̃
]∣∣∣ ≤ E[E] ≤ ε

and
∣∣∣E[B|ρ(X )]−E

[
B̃(X )

]∣∣∣ ≤ E[E(X )] ≤ ε, (4)

and consequently E[B|ρ(X )] ≈ E
[

B̃(X )
]
≈ E

[
B̃
]
≈ E[B|ρ]. (This argument can be interpreted

as a type of “sandwiching argument.”)
The preceding argument breaks down when we replace the BRRY PRG with our WPRG (G, µ).

To understand the issue, let Serr be the set of seeds x such that B̃(G(x)) ̸= B|ρ(G(x)), and let SE be
the set of seeds x such that E(G(x)) = 1. Then Serr ⊆ SE, but we might nevertheless have∣∣∣∣∣ ∑

x∈Serr

µ(x)

∣∣∣∣∣≫
∣∣∣∣∣ ∑

x∈SE

µ(x)

∣∣∣∣∣
due to cancellations in the right-hand sum. Therefore, (4) no longer works after we introduce
negative weights. (In general, WPRGs do not seem to be “compatible” with sandwiching
arguments.)

We circumvent this issue by eliminating the error indicator function altogether. In a nutshell,
this is possible due to the following facts: (i) The program B̃ is a “suffix” of the restricted program
B|ρ, i.e., it consists of layers i, i + 1, . . . , n of B|ρ for some i. (ii) The error indicator function E(x)
essentially checks whether all paths that start in layer i of B|ρ collide under the input x. (iii) If
these paths collide with high probability (under a uniformly random input x), then the weights in
B|ρ before layer i are negligible. (iv) Since B̃ has few colliding layers, the total weight of the edges
in B|ρ after layer i are also bounded. Thus, we are able to bound the total weight of B|ρ.
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In the analysis of our WPRG for regular ROBPs, the only place we use regularity is to bound
the weight of the program (and its subprograms9). Therefore, since we show that B|ρ can be
computed by a program with low weight, it follows that our WPRG fools B|ρ. By combining with
the pseudorandom restriction ρ, we get a WPRG that fools B itself. See Section 7 for details.

3.4 Our Simplified Derandomization of Polynomial-Width Regular ROBPs

We now present an overview of our simplified proof of Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan’s main result [AKMPSV20] (Theorem 1.10). That is, given the description
of a regular width-w length-n standard-order ROBP B, we will explain how to estimate E[B] to
within a small additive error in near-logarithmic space. The most important case to keep in mind
is w = poly(n).

Our proof is largely inspired by Braverman, Rao, Raz, and Yehudayoff’s work [BRRY14]. To
explain the intuition, let us begin by revisiting the analysis of constant-width regular ROBPs that
we summarized in Section 3.2, so we can understand more deeply why it works. Afterward, we
will explain how to adapt the intuition to the polynomial-width case.

3.4.1 Reflections on Braverman, Rao, Raz, and Yehudayoff’s Techniques [BRRY14]

Let V(0), . . . , V(n) be the layers of a constant-width regular program B. Fix some target vertex v,
say v ∈ V(j). To show that ∥L−1∆W(1)∥∞ ≤ O(τ), where τ is the error of each block W̃r←ℓ, the
main steps that we discussed in Section 3.2 are as follows.

1. First, we bound the “local” error in terms of weight. Let u ∈ V(ℓ) where ℓ ≤ j− 2. We show

|(Wj←ℓ+2 · (W̃ℓ+2←ℓ −Wℓ+2←ℓ))v,u| ≤ O(τ ·Weight(Bv←, ℓ, ℓ+ 2)).

2. Then, we bound the total weight of the program. Braverman, Rao, Raz, and Yehudayoff showed
that Weight(Bv←, 0, n) ≤ O(1) [BRRY14]. Consequently, the total error is O(τ).

To gain more insight, let us open up the two proofs above and look inside.

The BRRY potential argument. Let S be the set of vertices q ∈ V(ℓ+2) that are reachable from u.
(See Figure 2.) Define

Spread(u) :=
(

max
q∈S

E[Bv←q]

)
−
(

min
q∈S

E[Bv←q]

)
,

and consider two extreme cases:

1. (The error-free case.) Suppose Spread(u) = 0, i.e., E[Bv←q] is the same for every q ∈
S. In this case, the two bits that we read immediately after visiting u “do not matter.”
Consequently, there is no error: |(Wj←ℓ+2 · (W̃ℓ+2←ℓ −Wℓ+2←ℓ))v,u| = 0. In general, one
can show that the error |(Wj←ℓ+2 · (W̃ℓ+2←ℓ −Wℓ+2←ℓ))v,u| is bounded by O(τ · Spread(u)).

2. (The mixing case.) Suppose Spread(u) ≫ 0. In this case, it is helpful to think about
the reversed random walk, in which we reverse all the directions of the edges in B. The
assumption Spread(u) ≫ 0 means that there are two vertices in V(ℓ+2) that have very

9Because of this technicality, we must argue that not only does B|ρ have low weight, but also all of its subprograms
have low weight. See Theorem 7.2.
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V(ℓ) V(ℓ+2) V(j)

u q

v

· · ·

S

V(ℓ+1)

Figure 2: The setup for the analysis of constant-width regular ROBPs.

different probabilities of being reached from v, and u is reachable from both of them.
Intuitively, because B is regular, this should mean that in the reversed random walk, the
distribution over states becomes more uniform (mixed) when we walk from V(ℓ+2) to V(ℓ).

The ideas above enable us to carry out a potential argument. Define a potential function by the
formula

Φi := ∑
a,a′∈V(i)

|E[Bv←a]−E[Bv←a′ ]|,

which quantifies how far the reversed random walk is from uniform (“fully mixed”) when it
reaches V(i) [BRRY14]. For each u ∈ V(ℓ), one can use the concept of “weight” to prove

Φℓ+2 ≥ Φℓ + Ω (Spread(u)) .

Therefore, whenever there is any error, there is a corresponding increase in the potential function
Φi. Meanwhile, the potential function’s total growth is bounded, i.e., Φn ≤ O(1). Therefore, the
sum of errors over all vertices u (which corresponds to ∥L−1∆W(1)∥∞) must be bounded by O(τ).

Linear-algebraic interpretation. We can interpret the quantity Spread(u) in linear-algebraic
terms as follows. Let D = 4 be the number of paths from u to V(ℓ+2). If the i-th path from u
leads to q ∈ V(r), then define

y(u)i = E[Bv←q].

Thus, y(u) is a vector in RD. Decompose y(u) = y(u)∥ + y(u)⊥ , where y(u)∥ is parallel to the all-ones

vector and y(u)⊥ is perpendicular to the all-ones vector. Intuitively, the component y(u)∥ corresponds

to the “error-free” case, and y(u)⊥ corresponds to the “mixing” case. Furthermore,

∥y(u)⊥ ∥∞ ≤ Spread(u) ≤ 2 · ∥y(u)⊥ ∥∞.

Thus, by looking at Spread(u), we are effectively using the ℓ∞ norm of y(u)⊥ to tell us whether we
are in Case 1 (“error-free”) or Case 2 (“mixing”).
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Key new idea: Using the ℓ2 norm. Why do we use the ℓ∞ norm to measure y(u)⊥ ? Intuitively, the
underlying reason is that we are working with an ℓ∞-type guarantee regarding the approximation
matrices W̃j←i. To get the best WPRG seed length, we construct W̃j←i using the BRRY
PRG [BRRY14] (as discussed in Section 3.2), but the correctness proof works in the more general
setting where W̃j←i is constructed using an arbitrary PRG that fools constant-width regular ROBPs
with moderate error. In such a general setting, using the ℓ∞ norm seems necessary, because it
captures the “worst possible error” for a pseudorandom walk starting from u.

To make progress in the polynomial-width case, we take a less “generic” approach. We
construct the approximation matrices W̃j←i by recursively applying (a version of) Rozenman
and Vadhan’s derandomized squaring operation [RV05] (similar to what Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan did [AKMPSV20]). This operation uses a spectral expander
graph to recycle randomness. Let H be the expander’s transition matrix, and let J be the transition
matrix of a complete graph with self-loops. The quality of H is measured by the quantity
λ(H) = ∥H− J∥2, i.e., we measure error using the ℓ2 norm. This raises the following question:

In the case that the matrices W̃j←i are constructed using the derandomized square, can

we get a tighter analysis of L−1∆W by looking at the ℓ2 norm ∥y(u)⊥ ∥2 instead of the ℓ∞
norm?

Although seemingly naı̈ve, this idea is the core motivation for our simplified proof of Ahmadine-
jad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s main result [AKMPSV20]. We believe it is
the “real magic” behind their work.

3.4.2 The Error-Free Case: Singular-Value Approximation

Let B be a regular width-w length-n standard-order ROBP, where w = poly(n). As discussed
above, our approach for analyzing L−1∆W is to use the ℓ2 norm to distinguish between an “error-
free” case and a “mixing” case. We begin by discussing the error-free case.

For simplicity, we continue to focus on ∆W(1) for this proof overview. Therefore, fix a length-2
edge (ℓ, ℓ + 2) ∈ E(SCn). The approximation matrix W̃ℓ+2←ℓ is defined by using an expander
graph to recycle randomness. Let H ∈ Rd×d be the transition matrix of this expander, and let
J ∈ Rd×d be the transition matrix of the complete graph with self-loops. The definition of λ(H)
implies, for all α, β ∈ Rd,∣∣∣βT · (H− J) · α

∣∣∣ ≤ λ(H) · ∥α∥2 · ∥β∥2 ≤
λ(H)

2
· (∥α∥2

2 + ∥β∥2
2). (5)

Now let x ∈ RV(ℓ)
and y ∈ RV(ℓ+2)

be vectors. For each vertex u ∈ V(ℓ), let y(u) be the subvector
of y that is reachable from u. That is, if the i-th path from u leads to v, then we define y(u)i = yv.
Similarly, for each vertex v ∈ V(ℓ+2), let x(v) be the subvector of x from which v is reachable. By
regularity, x(v) and y(u) are both vectors in RD where D = 22 = 4. Using (5), one can show that∣∣∣yT ·

(
W̃ℓ+2←ℓ −Wℓ+2←ℓ

)
· x
∣∣∣ ≤ λ(H)

2D
·
(

∑
v∈V(ℓ+2)

∥x(v)⊥ ∥
2
2 + ∑

u∈V(ℓ)

∥y(u)⊥ ∥
2
2

)
. (6)

(See Lemma A.15 and the proof of Corollary A.16.) When x and y are chosen appropriately, the
left-hand side of (6) measures the amount of error that occurs in layers ℓ through ℓ+ 2. Therefore,
provided that all of the ℓ2 norms ∥x(v)⊥ ∥2 and ∥y(u)⊥ ∥2 are close to zero, (6) says that we are in an
“error-free” case, as desired.
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The sums on the right-hand side of (6) can be conveniently simplified as follows. Observe
that ∥x(v)⊥ ∥2

2 = ∥x(v)∥2
2 − ∥x

(v)
∥ ∥

2
2. Intuitively, x(v)∥ corresponds to the v-th coordinate of Wℓ+2←ℓ · x.

Using this idea, one can show that

1
D
· ∑

v∈V(r)

∥x(v)⊥ ∥
2
2 = ∥x∥2

2 − ∥Wℓ+2←ℓ · x∥2
2 = ∥x∥2

I−WT
ℓ+2←ℓWℓ+2←ℓ

,

and similarly,

1
D
· ∑

u∈V(ℓ)

∥y(u)⊥ ∥
2
2 = ∥y∥2

2 − ∥WT
ℓ+2←ℓ · y∥2

2 = ∥y∥2
I−Wℓ+2←ℓWT

ℓ+2←ℓ
.

Thus, (6) is equivalent to the statement that W̃ℓ+2←ℓ is a good singular-value approximation of
Wℓ+2←ℓ, as defined by Ahmadinejad, Peebles, Pyne, Sidford, and Vadhan [APPSV23]:

Definition 3.1 (Singular-value approximation [APPSV23]). Let W̃, W ∈ Rw×w be doubly stochastic
matrices. We say W̃ τ-singular-value approximates W, denoted as W̃

sv≈ τ W, if for every x, y ∈ Rw,∣∣∣yT
(

W̃−W
)

x
∣∣∣ ≤ τ

4
·
(
∥x∥2

I−WTW + ∥y∥2
I−WWT

)
.

In this proof overview, we are focusing on the length-two edges in SCn, which correspond
to a single application of the derandomized squaring operation. In the actual proof, we show
that more generally, W̃r←ℓ is a good singular-value approximation of Wr←ℓ for every edge
(ℓ, r) ∈ E(SCn). (See Theorem 8.1.) We would like to clarify that it was already known that
recursive derandomized squaring produces a good singular-value approximation. Indeed, this
fact readily follows from the analysis in Ahmadinejad, Peebles, Pyne, Sidford, and Vadhan’s recent
work [APPSV23]. For this reason, we defer our alternative proof of this fact to Appendix A.

3.4.3 The Mixing Case: Potential Dynamics

To summarize the discussion so far, our simplified proof of Ahmadinejad, Kelner, Murtagh,
Peebles, Sidford, and Vadhan’s main theorem [AKMPSV20] can be divided into two main parts.

1. First, we show that the approximation matrices W̃j←i constructed via a version of the deran-
domized squaring operation [RV05] are singular-value approximations of the corresponding
exact matrices Wj←i. (See Theorem 8.1.)

2. Second, we show that ∥L−1∆W∥ is moderately small, where ∥ · ∥ is a suitably chosen matrix
“norm.”10 (See Lemma 8.5.)

Bounding ∥L−1∆W∥ enables us to apply our error reduction framework, which ultimately leads
to a low-error approximation to E[B]. (See Theorem 8.3.)

We now present an overview of our proof that ∥L−1∆W∥ is moderately small. For this proof,
the only feature of the approximation matrices W̃j←i that we use is the fact that W̃j←i

sv≈ τ0 Wj←i
for a suitable τ0 = 1/polylog(n).

10Technically, the “norm” we use is not a true norm, but rather an extended submultiplicative matrix seminorm. See
Definition 2.3.
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The test vector and the error vectors. Like before, we decompose ∆W = ∑
log n
t=1 ∆W(t). For

simplicity, in this technical overview, we continue to focus on the case t = 1, i.e., we focus on
the challenge of bounding ∥L−1∆W(1)∥.

Our matrix “norm” ∥ · ∥ is induced by a suitable vector “norm” (technically a seminorm),
which we will specify later. Therefore, fix some arbitrary “test vector” x ∈ R(n+1)·w, and let
z = L−1∆W(1)x. Our job is to show that ∥z∥ ≤ δ∥x∥ for some moderately small δ.

Write x as a block vector x = (x[0], . . . , x[n]), where x[j] ∈ RV(j) ∼= Rw. Similarly, write
z = (z[0], . . . , z[n]). Observe that we have the following recursive formula for z[j]: for every
j ∈ {0, 2, 4, . . . , n− 2}, we have

z[j+2] = Wj+2←j · z[j] + ∆W(1)
j+2←j · x

[j].

For convenience, define z[n+2] to be the zero vector, and define Wn+2←n and ∆W(1)
n+2←n to be the

zero matrix, so the equation above holds even for j = n. We denote the two terms above by
z̃[j+2] := Wj+2←j · z[j] and s[j+2] := ∆W(1)

j+2←j · x[j], so that

z[j+2] = z̃[j+2] + s[j+2].

Intuitively, z[j+2] is the “cumulative” error vector at layer j + 2, while s[j+2] is the “local” error
vector.

The potential function. Analogous to the discussion in Section 3.4.1, our approach for bounding
∥z∥ is to use a potential argument. Our potential function Φ : Rw → R is given by

Φ(y) = ∥y∥2
2.

Observe that if y is a probability vector, then Φ(y) is a measure of how far y is from the uniform
distribution. In this respect, Φ(·) is similar to the potential function Φi discussed in Section 3.4.1;
however, compared to Φi, our function Φ(·) is more compatible with spectral analysis.

As discussed previously, we wish to argue that in each step, we fall into one of two cases: the
error-free case, and the mixing case. To implement this plan, let us think of |Φ(z[j+2])−Φ(z̃[j+2])|
as the amount of error in step j. (Intuitively, if we pretend that z[j] is a probability vector, then the
quantity |Φ(z[j+2]) − Φ(z̃[j+2])| measures the extent to which ∆W(1)

j+2←j “damages mixed-ness,”

since Φ(·) is our measure of mixing.) Using the fact that W̃j+2←j
sv≈ τ0 Wj+2←j, we prove that

∣∣∣Φ(z[j+2])−Φ(z̃[j+2])
∣∣∣︸ ︷︷ ︸

amount of error in step j

≤ O(τ0) ·

Φ(z[j])−Φ(Wj+2←j · z[j])︸ ︷︷ ︸
mixing in z

+Φ(x[j])−Φ(Wj+2←j · x[j])︸ ︷︷ ︸
mixing in x

 . (7)

Thus, if the amount of error |Φ(z[j+2]) − Φ(z̃[j+2])| is large, then there must be a corresponding
change in the potential function: either Φ(Wj+2←j · z[j]) ≪ Φ(z[j]), or else Φ(Wj+2←j · x[j]) ≪
Φ(x[j]). The first case describes mixing that occurs “on the z side,” i.e., after multiplying by
L−1∆W(1). The second case describes mixing that occurs “on the x side,” i.e., the mixing was
already present in the test vector x to begin with. Either way, we see that error at step j implies
mixing at step j.
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The F1-seminorm. In light of (7), it is natural to define our “norm function” ∥ · ∥ : R(n+1)·w → R

by the formula
∥y∥2 = ∑

j∈{0,2,4,...,n}

(
Φ(y[j])−Φ(Wj+2←j · y[j])

)
,

where y = (y[0], . . . , y[n]). This quantity ∥y∥2 measures the total potential drops when we apply
each matrix Wj+2←j to the appropriate block of y. One can verify that this function ∥ · ∥ truly is a
(semi)norm; we refer to it as the “F1-seminorm.” Summing up (7) gives

∑
j∈{0,2,4,...,n}

∣∣∣Φ(z[j+2])−Φ(z̃[j+2])
∣∣∣︸ ︷︷ ︸

amount of error in step j

≤ O(τ) · (∥z∥2 + ∥x∥2). (8)

The left-hand side above is a measure of the total amount of error. However, our job is to bound
∥z∥, which is, conceptually, a different way of measuring the total amount of error. To connect
these two quantities, it might be helpful to visualize a dynamic process generating z[0], z̃[2], z[2], . . .
as in Figure 3.

z[0]

z̃[2]

z[2]

z̃[4]

z[4]
W2←0×

+s[2]

W4←2×

+s[4]

Φ

Figure 3: An illustration of the dynamics of the potential function.

The value ∥z∥2 is the sum of the heights of the dashed arrows in Figure 3. Meanwhile, the
error measure on the left-hand side of (8) is the sum of the heights of the solid arrows in Figure 3.
The key observation is that in this process, the initial point z[0] is equal to the final point z[n+2] (both
are the zero vector), so the two types of arrows must perfectly balance. Symbolically, we have

∥z∥2 = ∑
j∈{0,2,...,n}

Φ(z[j])−Φ(z̃[j+2])︸ ︷︷ ︸
drop in potential


= Φ(z[0])−Φ(z[n+2]) + ∑

j∈{0,2,...,n}

(
Φ(z[j+2])−Φ(z̃[j+2])

)
≤ Φ(z[0])−Φ(z[n+2]) + ∑

j∈{0,2,...,n}

∣∣∣Φ(z[j+2])−Φ(z̃[j+2])
∣∣∣︸ ︷︷ ︸

amount of error in step j

= 0− 0 + O(τ) · (∥z∥2 + ∥x∥2)

by (8). By choosing τ to be sufficiently small, we conclude that ∥z∥ ≤ O(
√

τ · ∥x∥) as desired.
In the actual proof, to account for ∆W(t) where t > 1, we use a somewhat more complicated

seminorm called the “F-seminorm.” Intuitively, the F-seminorm measures the total potential
drops across all edges (i, j) ∈ E(SCn), whereas the F1-seminorm only looks at edges of length
2. See Section 8 for details.
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3.5 Our WPRG for Unbounded-Width Permutation ROBPs

We conclude this technical overview by briefly discussing our improved WPRG for unbounded-
width permutation ROBPs (Theorem 1.9). This WPRG corresponds closely to our simplified proof
of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s main theorem [AKMPSV20].
We construct our WPRG by reverse-engineering the (non-black-box) algorithm for derandomizing
regular ROBPs. In order to carry out this reverse-engineering process, we assume that the program
we are fooling is a permutation program, because under this assumption, Rozenman and Vadhan’s
derandomized squaring operation [RV05] has a “black-box interpretation,” namely, it is equivalent
to the Impagliazzo-Nisan-Wigderson (INW) PRG [INW94]. The WPRG that we construct in this
way has a seed length that is greater than what we can afford, because each seed includes several
independent seeds for the INW PRG. We therefore decrease the seed length by using Hoza, Pyne,
and Vadhan’s PRG [HPV21] to generate correlated seeds for the INW PRG.

The approach outlined above is essentially identical to the approach that Pyne and Vadhan
use to construct their WPRG for permutation ROBPs [PV21]. The reason we get an improved
bottom-line seed length is that Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s
algorithm [AKMPSV20] involves a “cycle lift” at some points. These cycle lifts are inherited by
Pyne and Vadhan [PV21], and they effectively cost a factor of n in the error parameter. In terms
of seed length, this means that O(log n ·

√
log(1/ε)) becomes O(log3/2 n + log n ·

√
log(1/ε)). In

contrast, we never use any cycle lifts, hence we do not pay the extra log3/2 n term.

4 Our Error Reduction Framework: Inverse Analysis of Random Walks
and Shortcutting

In this section, we rigorously describe our general error reduction framework for space-bounded
derandomization. All of our results rely on this framework.

4.1 When Our Framework Is Applicable

We follow the same notation as in Section 3. Let B be a width-w length-n standard-order ROBP.
The vertex set of B is V(B) := V(0) ∪ V(1) ∪ · · · ∪ V(n) where |V(i)| = w for each i ∈ [n]. The
matrices W and L := I(n+1)w −W are also defined as in Section 3.

We are interested in deterministically approximating the matrix L−1. Our error-reduction
framework is a method for converting an appropriate “moderate-error” approximation into a
“low-error” approximation. We begin by explaining exactly what type of “moderate-error” initial
approximation our framework requires.

4.1.1 Shortcutting and Approximation Ensembles

We assume that we start with an ensemble of moderate-error approximation matrices – one for
each edge in the “shortcut graph,” which we introduced in Section 3 (see Figure 1) and which we
formally define next.

Definition 4.1 (Shortcut Graph). Let n ≥ 1 be a power of two. The shortcut graph SCn (or SC when n
is clear from the context) of size n is a directed graph with n + 1 vertices V(SCn) = {0, 1, . . . , n} and the
following set of edges. For each t ∈ {0, 1, . . . , log n}, denote

Ut = {j · 2t : j ∈ Z∩ [0, n/2t]} = {0, 2t, 2 · 2t, 3 · 2t, . . . , n}.
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Then, E(SCn) contains one directed edge (j, j + 2t) for every adjacent pair {j, j + 2t} ⊆ Ut. Note that
|E(SCn)| = 2n− 1.

Recall that Wj←i = Wj ·Wj−1 · · ·Wi+1, so each entry of Wj←i describes the probability that a
length-(j− i) random walk from a particular vertex in V(i) arrives at a particular vertex in V(j).
To use our error reduction framework, we must start with a moderate-error approximation matrix
W̃j←i for each edge (i, j) ∈ E(SCn).

Definition 4.2 (Approximation Ensemble). A (w, n) approximation ensemble is a collection of
matrices W̃ = {W̃j←i : (i, j) ∈ E(SCn)} where W̃j←i ∈ Rw×w. We omit the parameters (w, n) when they
are clear from context.

Looking ahead, we will obtain this ensemble in different ways depending on our goal.

• When constructing WPRGs, for each (i, j) ∈ E(SC), we evaluate a given PRG G : {0, 1}s →
{0, 1}n on the subprogram from the i-th layer to the j-th layer. As the subprogram only
reads (j− i) bits, we only need to use the first j− i pseudorandom output bits. The details
are given in Section 5.

• For estimating random walks (i.e., non-black-box derandomization), we will use the
derandomized square operation by Rozenman and Vadhan [RV05]. The details can be found
in Appendix A.

4.1.2 The Correction Graph and the Appropriate Initial Error Bound

Our error reduction framework assumes that the initial approximation ensemble W̃ already has a
“moderately small error.” The specific “error” measure is defined in terms of the correction graph,
defined next.

Definition 4.3 (Correction Graph). Let W̃ = {W̃j←i : (i, j) ∈ E(SCn)} be an approximation
ensemble. To define the corresponding correction graph transition matrix ∆W ∈ (Rw×w)(n+1)×(n+1),
let ℓ, r ∈ {0, . . . , n}. The (r, ℓ)-th block of ∆W is defined as follows.

• If (ℓ, r) ∈ E(SCn), then

(∆W)r←ℓ =

{
W̃r←ℓ −Wr←ℓ if r = ℓ+ 1,
W̃r←ℓ − W̃r← ℓ+r

2
W̃ ℓ+r

2 ←ℓ otherwise.

• If (ℓ, r) /∈ E(SCn), then (∆W)r←ℓ = 0.

The correction graph is a weighted digraph on the vertex set V(B) with the edge weights described by ∆W.

Our error measure for W̃ is ∥L−1∆W∥, where ∥ · ∥ is an arbitrary submultiplicative
matrix norm, or more generally, an arbitrary extended submultiplicative matrix seminorm (see
Definition 2.3). Our error reduction procedure is applicable provided that ∥L−1∆W∥ is moderately
small. Under this assumption, we will show how to construct a matrix Am such that ∥I−AmL∥ is
extremely small. In this sense, Am will be a low-error approximation to L−1.

Looking ahead, to establish the initial moderate bound on ∥L−1∆W∥, we will frequently
decompose ∆W into

∆W =
log n

∑
t=0

∆W(t) (9)
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where for each t, we define ∆W(t) as

(∆W)
(t)
r←ℓ =

{
(∆W)r←ℓ if r = ℓ+ 2t

0 otherwise.

That is, ∆W(t) contains all those blocks that correspond to “level-t” edges in SCn. Then, we will
reason about each term ∥L−1∆W(t)∥ separately. Furthermore, for convenience, we will usually
ensure that W̃ℓ+1←ℓ = Wℓ+1←ℓ for each ℓ ∈ {0, 1, . . . , n− 1}, so (∆W)(0) = 0.

4.2 The Error Reduction Construction

4.2.1 Moderate-Error Inverse Laplacian L̂−1: Shortcutting

Let W̃ be an approximation ensemble. The first step of the error reduction process is to construct
a matrix L̂−1, intended to be a moderate-error approximate inverse to the Laplacian matrix L.
The construction is as follows. We view L̂−1 as block matrix from (Rw×w)(n+1)×(n+1), and we use
(L̂−1)j←i to denote the (j, i) block (a w× w matrix).

For each ℓ < r, let ℓ = i0 → i1 → · · · → ik = r be the shortest path from ℓ to r in SC. (There is
indeed a unique shortest path; see Corollary 4.8.) We construct the (r, ℓ)-th block of L̂−1 as

(L̂−1)r←ℓ := W̃ik←ik−1 · W̃ik−1←ik−2 · · · W̃i2←i1 · W̃i1←i0 . (10)

We also set (L̂−1)ℓ←ℓ = Iw for every ℓ ∈ [0, n], and (L̂−1)r←ℓ = 0 for every ℓ > r. This completes
the construction of L̂−1.

4.2.2 Low-Error Inverse Laplacian Am: Richardson Iteration

The final step of our error reduction framework is that we apply Richardson iteration to L̂−1. That
is, for each m ∈N, define

Am =
m

∑
i=0

(I− L̂−1L)iL̂−1.

The main theorem of this section says that Am is a low-error approximate inverse to the Laplacian
matrix L:

Theorem 4.4 (General Error Reduction Framework). Let B be a width-w length-n standard-order
ROBP with transition matrix W and Laplacian matrix L = I−W. Let W̃ = {W̃j←i : (i, j) ∈ SCn} be
an approximation ensemble, let m ∈ N, and let ∆W and Am be the corresponding matrices defined above.
Let ∥ · ∥ be an extended submultiplicative matrix seminorm, and let 0 < δ ≤ 1/2. If ∥L−1∆W∥ ≤ δ, then
∥I−Am · L∥ ≤ (2δ)m+1.

The rest of Section 4 is devoted to proving Theorem 4.4.

4.3 Correction Graph Lemma: Inverse Analysis of Random Walks

Since L̂−1 is a unitriangular matrix, it is invertible. We define L̂ as the inverse of L̂−1. The core of
the proof of Theorem 4.4 is the following lemma, which gives an exact formula for L̂. This process
of going from L̂−1 to L̂ is what we refer to as the “inverse analysis of random walks.”
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Lemma 4.5 (Correction Graph Lemma). Let B be a width-w length-n standard-order ROBP with
transition matrix W and Laplacian matrix L = I −W. Let W̃ = {W̃j←i : (i, j) ∈ SCn} be
an approximation ensemble, and let ∆W and L̂ be the corresponding matrices defined above. Define
Ŵ = W + ∆W. Then

L̂ = I− Ŵ.

Intuitively, Lemma 4.5 says that L̂ can be interpreted as the “Laplacian” of a weighted graph
with transition matrix Ŵ = W + ∆W. This is the justification for the term “correction graph:” by
subtracting the correction graph from L̂, we get the original Laplacian L.

The first step in the proof of Lemma 4.5 is to give a formula for each block of (I − Ŵ)−1.
Intuitively, because I − Ŵ is a directed Laplacian matrix, a block (I − Ŵ)−1

r←ℓ should describe
random walks starting from layer ℓ and ending at layer r. This “random walk” interpretation
is slightly inaccurate because Ŵ is not a stochastic matrix, but otherwise it is correct:

Claim 4.6. The matrix I− Ŵ is invertible, and for each ℓ, r ∈ {0, . . . , n}, the (ℓ, r)-th block of (I− Ŵ)−1

is given by

(I− Ŵ)−1
r←ℓ =

r−ℓ
∑
t=0

∑
ℓ=i0<i1<···<it=r

(i0,...,it) is a path in SC

Ŵit←it−1 · Ŵit−1←it−2 · · · Ŵi1←i0 . (11)

Proof. Since I− Ŵ is unitriangular, it is indeed invertible, and its inverse is given by

(I− Ŵ)−1 =
∞

∑
t=0

Ŵt.

Therefore, the (ℓ, r)-th block of (I− Ŵ)−1 is given by

(I− Ŵ)−1
r←ℓ =

∞

∑
t=0

(Ŵt)r←ℓ =
∞

∑
t=0

∑
ℓ=i0,i1,...,it=r

Ŵit←it−1 · Ŵit−1←it−2 · · · Ŵi1←i0 .

The block Ŵj←i is zero whenever (i, j) /∈ E(SCn), and hence the sum above is equivalent to
(11).

We would like to simplify the formula in (11). We will do so using the following two structural
properties of the shortcut graph SCn.

Lemma 4.7 (Intermediate Value Lemma). Suppose (i, j) ∈ E(SC). Further, suppose a path π in SC
starts at i and visits two vertices a, b where i < a < j ≤ b. Then, the path also visits j.

Proof. Without loss of generality, we may assume that (a, b) ∈ E(SC). Under this assumption, we
will show that b = j. By the fact that (a, b) is an edge, we know that a, b are two adjacent multiples
of 2q for some q ∈ [log n]. Similarly, by the fact that (i, j) is an edge, we know that i, j are two
adjacent multiples of 2q′ for some q′ ∈ [log n]. Since i < a < j, the value a cannot be a multiple of
2q′ , and since a is a multiple of 2q, we get q < q′. But then both j and a are multiples of 2q. Since
a < b are two adjacent multiplies of 2q, it must be the case that b ≤ j. So we conclude b = j.

As a corollary of the Intermediate Value Lemma, we have the following characterization of
shortest paths in SC.

Corollary 4.8 (Characterization of shortest paths). Let ℓ, r, m ∈ {0, 1, . . . , n}. Suppose the shortest
path from ℓ to r in SC visits m. Then, every path from ℓ to r in SC visits m.
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Proof. Let π and π′ be two paths from ℓ to r, and suppose that π visits m but π′ does not visit m.
We will show that π is not the shortest path from ℓ to r.

Let f be the first vertex that π visits but π′ does not visit. Let a be the preceding vertex in
π, i.e., π traverses an edge (a, f ) ∈ E(SC). By the Intermediate Value Lemma on the edge (a, f ),
π′ goes from a directly to some b > f (otherwise it could not avoid visiting f ). Then, we apply
the Intermediate Value Lemma again on the edge (a, b). We know π must visit b at some point.
Therefore, π cannot be the shortest path, because we could go from a directly to b instead of taking
a pit stop at f .

Observe that Corollary 4.8 also implies that the shortest path from ℓ to r is unique.
Now we are ready to simplify (11). In (11), we sum over all paths from ℓ to r in SC. We now

give an equivalent formula that only considers the shortest path from ℓ to r.

Claim 4.9. Let 0 ≤ ℓ < r ≤ n, and let ℓ = i0 → i1 → · · · → it = r be the shortest path from ℓ to r in
SC. The (ℓ, r)-th block of (I− Ŵ)−1 is given by

(I− Ŵ)−1
r←ℓ = W̃it←it−1 · W̃it−1 · · · W̃i1←i0 . (12)

Proof. First, suppose that t = 1, i.e., (ℓ, r) ∈ E(SCn). Then the difference |r− ℓ| must be a power
of two, say r = ℓ+ 2q. We proceed by induction on q. If q = 0, then there is exactly one path from
ℓ to r in SC, so the right-hand-side of (11) simplifies to Ŵr←ℓ = W̃r←ℓ, completing the proof in this
case. Suppose now that q > 0.

Let m = ℓ+ 2q−1 (the midpoint). Every path from ℓ to r of length greater than 1 must visit m.
(Indeed, either the first step is from ℓ to m, or else we can apply the Intermediate Value Lemma.)
Therefore, by Claim 4.6, we have

(I− Ŵ)−1
r←ℓ = Ŵr←ℓ + (I− Ŵ)−1

r←m · (I− Ŵ)−1
m←ℓ

= Ŵr←ℓ + W̃r←m · W̃m←ℓ (Induction)

= W̃r←ℓ (By the definition of Ŵ.)

That completes the proof of the case t = 1, which is the base case of induction on t. For the
inductive step, suppose t > 1. Note that the shortest path from ℓ to i1 is a single step, and the
shortest path from i1 to r is i1 → i2 → · · · → ik−1 → r. By Corollary 4.8, every path from ℓ to r
visits i1, so by Claim 4.6,

(I− Ŵ)−1
r←ℓ = (I− Ŵ)−1

r←i1
· (I− Ŵ)−1

i1←ℓ

= (W̃r←ik−1 · · · W̃i2←i1) · W̃i1←ℓ

by induction.

Proof of Lemma 4.5. Claim 4.9 shows that when ℓ < r, the (ℓ, r)-th block of (I− Ŵ)−1 is equal to
the corresponding block of L̂−1. Looking at Claim 4.6, we see that the same holds when ℓ < r (the
right-hand side of (11) is an empty sum, i.e., the zero matrix) and when ℓ = r (the right-hand side
of (11) is an empty product, i.e., the identity matrix). Therefore, (I− Ŵ)−1 = L̂−1. Since matrix
inverses are unique, it follows that L̂ = I− Ŵ.
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4.4 Using the Correction Graph Lemma to Complete the Error Reduction Proof

Recall that we are working on proving our general error reduction theorem (Theorem 4.4). The
assumption in Theorem 4.4 says that ∥L−1∆W∥ is moderately small. The Correction Graph Lemma
(Lemma 4.5) says that ∆W = ∆L := L− L̂, so now we know that ∥L−1∆L∥ is moderately small.
Our next goal is to show that it follows that ∥I− L̂−1L∥ is moderately small. This is a consequence
of the following natural lemma.

Lemma 4.10 (Inverse of approximate identity also approximates identity). Let ∥ · ∥ be an extended
submultiplicative matrix seminorm, let R ∈ RN×N be a unitriangular matrix, and let δ ∈ [0, 1) be a real
number. If ∥R− I∥ ≤ δ, then ∥R−1 − I∥ ≤ δ/(1− δ).

Proof. Let E = I− R. Since R is unitriangular, EN = 0. Therefore, if we let S = ∑N−1
i=1 Ei, then

E · S = S− E. Rearranging, we get

S = (I− E)−1 · E = R−1 · (I−R) = R−1 − I.

Therefore,

∥R−1 − I∥ = ∥S∥ ≤
N−1

∑
i=1

δi ≤
∞

∑
i=1

δi =
δ

1− δ
.

Corollary 4.11. Let L and L̂ be lower unitriangular matrices of the same dimension, let δ ∈ [0, 1),
and let ∥ · ∥ be an extended submultiplicative matrix seminorm. Suppose ∥L−1(L̂ − L)∥ ≤ δ. Then
∥L̂−1(L̂− L)∥ ≤ δ/(1− δ).

Proof. Take R = L−1 · L̂ in the previous lemma. This works, because R is unitriangular,
L−1(L̂− L) = R− I, and L̂−1(L̂− L) = I−R−1.

Note that L̂−1(L̂− L) = I− L̂−1L. Given that ∥I− L̂−1L∥ is moderately small, the standard
analysis of Richardson iteration shows that ∥I−AmL∥ is very small:

Lemma 4.12 (Richardson Iteration). Let L and L̂−1 be square matrices of the same dimension and let
Am = ∑m

i=0(I− L̂−1L)iL̂−1. Let ∥ · ∥ be an extended submultiplicative matrix seminorm, and assume
∥I− L̂−1L∥ < ∞. Then

∥I−AmL∥ ≤ ∥I− L̂−1L∥m+1.

Proof.

I−AmL = I−
m

∑
i=0

(I− L̂−1L)i · L̂−1L

= (I− L̂−1L)−
m

∑
i=1

(I− L̂−1L)i · L̂−1L (Taking out the i = 0 term)

= (I− L̂−1L)2 −
m

∑
i=2

(I− L̂−1L)i · L̂−1L (Taking out the i = 1 term)

...

= (I− L̂−1L)m+1.

Proof of Theorem 4.4. By the Correction Graph Lemma (Lemma 4.5), we have ∥L−1(L̂− L)∥ ≤ δ.
The matrices L and L̂ are both lower unitriangular. By Corollary 4.11, it follows that ∥I− L̂−1L∥ ≤
δ/(1− δ) ≤ 2δ. By Lemma 4.12, it follows that ∥I−AmL∥ ≤ (2δ)m+1.
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5 The Black-Box Version of Our Error Reduction Framework: Low-
Error WPRGs

In the previous section, we described our error reduction framework in its most general form:
given a moderate-error initial approximation ensemble W̃ , we showed how to construct a low-
error approximation matrix Am. In this section, we “translate” our error reduction framework into
the black-box setting. That is, we consider the case that W̃ is induced by a moderate-error PRG G.
In this case, we will show that the low-error approximation matrix Am can be “implemented” by
a WPRG. Thus, we can convert a moderate-error PRG into a low-error WPRG.

Looking ahead, the error reduction procedure that we describe in this section will be the first of
two stages in our constructions of low-error WPRGs for bounded-width regular ROBPs (Section 6)
and for unbounded-width permutation ROBPs (Section 9). The WPRG that we construct in this
first stage will have low error, but it will also have a relatively large seed length, because the seed of
the WPRG will include (among other things) several independent seeds of G. In the second stage,
we will decrease the seed length by using the INW PRG [INW94] to select correlated seeds of G.
This second stage is the same as in prior work [CDRST21; PV21]; the novelty of our construction
is how we perform the first stage, where we use the machinery developed in the previous section.

5.1 The Low-Error WPRG Construction

To describe the WPRG construction formally, we will work with the pseudodistribution formalism
described by Hoza [Hoz21].

Definition 5.1 (Pseudodistributions). Let n ∈ N. A pseudodistribution over {0, 1}n is a formal real
linear combination X of n-bit strings, i.e., X = ∑R

i=1 λi · x(i) where λi ∈ R and x(i) ∈ {0, 1}n. If every λi
is nonnegative and ∑R

i=1 λi = 1, then X can be interpreted as a true probability distribution. For example,

Un = ∑
x∈{0,1}n

2−n · x.

A linear combination of pseudodistributions is another pseudodistribution defined in the natural way. That
is, if X and Y are both pseudodistributions over {0, 1}n, say X = ∑R

i=1 λi · x(i) and Y = ∑K
i=1 νi · y(i),

and c ∈ R, then X + cY = ∑R+K
i=1 ηi · z(i), where

ηi = λi and z(i) = x(i) if i ≤ R

ηi = c · νi−R and z(i) = y(i−R) if i > R.

The tensor product of two pseudodistributions is defined by(
R

∑
i=1

λi · x(i)
)
⊗
(

K

∑
j=1

νj · y(j)

)
=

R

∑
i=1

K

∑
j=1

(λiνj) · (x(i) ◦ y(j)),

where x ◦ y denotes the concatenation of x with y. Thus, if X is a pseudodistribution over {0, 1}n1 and Y is
a pseudodistribution over {0, 1}n2 , then the tensor product X ⊗Y is a pseudodistribution over {0, 1}n1+n2 .

A pseudodistribution with R terms corresponds to a WPRG with seed length log R.
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Converting a moderate-error PRG into a low-error pseudodistribution. Fix G : {0, 1}s →
{0, 1}n, which we think of as an initial “moderate-error” PRG. We identify the PRG G : {0, 1}s →
{0, 1}n with the pseudorandom distribution that it samples, viewed as a pseudodistribution over
{0, 1}n:

G = ∑
x∈{0,1}s

2−s · G(x).

For each 1 ≤ i ≤ j ≤ n, let Gi→j denote11 the pseudodistribution over {0, 1}d obtained by taking
the (j− i)-bit prefix of a sample from G, i.e.,

Gi→j = ∑
x∈{0,1}s

2−s · (G(x)1, . . . ,G(x)j−i).

Furthermore, for any indices 0 ≤ i < j ≤ n, let i = i0 → i1 → · · · → it = j be the shortest path
from i to j through SC, and define

GSCi→j = Gi0→i1 ⊗ Gi1→i2 ⊗ · · · ⊗ Git−1→it . (13)

(The definition of GSCi→j above is where our construction deviates from previous WPRG construc-
tions [CDRST21; PV21; Hoz21].) Furthermore, define GSCi→i = 1 · (empty string), a trivial pseu-
dodistribution over “{0, 1}0.”

Note that so far, we have only considered true probability distributions. Now, however, it is
time to introduce minus signs into the picture. For indices 0 ≤ i < j ≤ n, define

Ei→j = U1 ⊗ GSCi+1→j − GSCi→j.

Finally, for each m ∈N, define

X (m) =
m

∑
ℓ=0

∑
i0,...,iℓ∈N

0≤i0<···<iℓ=n

GSC0→i0 ⊗ Ei0→i1 ⊗ Ei1→i2 ⊗ · · · ⊗ Eiℓ−1→iℓ .

This concludes the construction of our low-error pseudodistribution X (m). In the next
subsection, we will show that this construction “implements” the error-reduction framework that
we described in Section 4.

5.2 Correspondence Between Our Pseudodistributions and Matrices

Let B be a width-w length-n ROBP that we seek to fool, with vertex set V = V(0) ∪ · · · ∪ V(n).
We will interchangeably use V(0) ∪ · · · ∪ V(n) and [(n + 1)w]. Both of them refer to the set of
vertices of B. Recall that B : {0, 1}n → {0, 1}V(n)×V(0)

is the matrix-valued function computed by
B, i.e., B(x)v,u = Bv←u(x). Let Wn←0 ∈ RV(n)×V(0)

be the transition matrix of B with truly random
input, namely Wn←0 = E[B]. Let W̃n←0 be the transition matrix of B with pseudorandom input
generated by G, namely W̃n←0 = E[B(G)].

More generally, for 0 ≤ ℓ < r ≤ n, we define Br←ℓ to be the subprogram of B starting at the
ℓ-th layer and ending at the r-th layer. We use Br←ℓ to denote the corresponding function mapping
{0, 1}r−ℓ → {0, 1}w×w, and we let Wr←ℓ = E[Br←ℓ] and W̃r←ℓ = E[Br←ℓ(Gℓ→r)].

11Different from the index for matrices, we use forward arrow i → j to index G, because the string concatenation
operation is applied from left to right.
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Thus, the PRG G induces an approximation ensemble W̃ = {W̃r←ℓ : (ℓ, r) ∈ E(SC)}. Using
this ensemble W̃ , we define L̂−1 and Am as in Section 4. Our goal for this section is to show that
the matrix Am describes the effect of the pseudodistribution X (m) on the program B. As a first
step, let us analyze the effect of the distribution GSCℓ→r on the subprogram Br←ℓ.

Lemma 5.2. Let 0 ≤ ℓ < r ≤ n, and let ℓ = i0 → i1 → · · · → it = r be the shortest path from ℓ to r in
SC. Then

E
[
Br←ℓ(GSCℓ→r)

]
= W̃it←it−1 · W̃it−1←it−2 · · · W̃i1←i0 = L̂−1

r←ℓ.

Proof. For each fixed x ∈ {0, 1}n, we have

Br←ℓ(xℓ→r) = Bit←it−1(xit−1→it) · Bit−1←it−2(xit−2→it−1) · · ·Bi1←i0(xi0→i1),

where xi→j = (xi+1, xi+2, . . . , xj) and · is matrix multiplication. Furthermore, GSCℓ→r is a product
distribution Gi0→i1 ⊗ · · · ⊗ Git−1→it . The expected value of a product of independent random
variables is the product of expectations, so

E
[
Br←ℓ(GSCℓ→r)

]
= E

[
Bit←it−1(Git−1→it)

]
·E
[
Bit−1←it−2(Git−2→it−1)

]
· · ·E [Bi1←i0(Gi0→i1)]

= W̃it←it−1 · W̃it−1←it−2 · · · W̃i1←i0 .

Next, let us analyze the effect of the pseudodistribution Eℓ→r on the subprogram Br←ℓ. To be
more precise, we will give a formula for the pseudoexpectation of the subprogram, defined next.

Definition 5.3 (Pseudoexpectation). Let w, n ∈N, let F : {0, 1}n → Rw×w be a function, and let X be
a pseudodistribution over {0, 1}n, say X = ∑R

i=1 λi · x(i). We define the pseudoexpectation of F under
X by the formula

Ẽ[F(X )] =
R

∑
i=1

λi · F(x(i)) ∈ Rw×w.

One can show that pseudoexpectation satisfies the following two properties, analogous to
familiar facts about the standard expectation operator.

Lemma 5.4 (Pseudoexpectation under mixture equals mixture of pseudoexpectations). Let w, n ∈
N, let F : {0, 1}n → Rw×w be a function, let X ,Y be pseudodistributions over {0, 1}n, and let c ∈ R.
Then

Ẽ[F(X + cY)] = Ẽ[F(X )] + c · Ẽ[F(Y)].

Lemma 5.5 (Pseudoexpectation of product equals product of pseudoexpectations, assuming
“independence”). Let w, n0, n1 ∈ N, let Fb : {0, 1}nb → Rw×w be a function for each b ∈ {0, 1}, let
F(x, y) = F0(x) · F1(y), and let X and Y be pseudodistributions over {0, 1}n0 and {0, 1}n1 respectively.
Then

Ẽ[F(X ⊗Y)] = Ẽ[F0(X )] · Ẽ[F1(Y)].

The effect of Eℓ→r on Br←ℓ is given by the following lemma.

Lemma 5.6. The matrix Ẽ [Br←ℓ(Eℓ→r)] ∈ Rw×w is equal to the (r, ℓ)-th block of I − L̂−1L ∈
R(n+1)w×(n+1)w.
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Proof. By Lemma 5.4, Lemma 5.5, and the definition of Eℓ→r, we have

Ẽ [Br←ℓ(Eℓ→r)] = E
[
Br←ℓ+1(GSCℓ+1→r)

]
·E [Bℓ+1←ℓ]−E

[
Br←ℓ(GSCℓ→r)

]
= L̂−1

r,ℓ+1 ·Wℓ+1,ℓ − L̂−1
r,ℓ

by Lemma 5.2. The (k, ℓ)-th block of W is zero whenever k ̸= ℓ+ 1, so the expression above is the
(r, ℓ)-th block of L̂−1 ·W− L̂−1. Furthermore, since ℓ < r, it can equally well be considered to be
the (r, ℓ)-th block of I + L̂−1 ·W− L̂−1. Finally,

I + L̂−1 ·W− L̂−1 = I + L̂−1(W− I) = I− L̂−1L.

The matrix I − L̂−1L that appears in Lemma 5.6 is the same error matrix that appears in
Richardson iteration. Recall that we defined the matrix Am in Section 4 by performing m rounds
of Richardson iteration:

Am =
m

∑
i=0

(I− L̂−1L)i · L̂−1.

The matrix Am “corresponds to” the pseudodistribution X (m) in the following sense.

Claim 5.7 (Pseudodistribution-matrix correspondence). The matrix Ẽ
[
B(X (m))

]
is equal to the

(n, 0) block of Am ∈ R(n+1)w×(n+1)w.

Proof. By Lemma 5.4, Lemma 5.5, Lemma 5.2, Lemma 5.6, and the definition of X (m), we have

Ẽ
[
B(X (m))

]
=

m

∑
ℓ=0

∑
i0,...,iℓ∈N

0≤i0<···<iℓ=n

(I− L̂−1L)iℓ,iℓ−1 · · · (I− L̂−1L)i1,i0 · L̂
−1
i0,0.

This is precisely the (n, 0) block of Am, because L̂−1 and L are lower triangular with I in the
diagonal blocks.

5.3 Template for Constructing WPRGs

We conclude Section 5 by giving a brief outline of how we will use our framework in future
sections to construct low-error WPRGs. Fix a class B of ROBPs that we want to fool.

Identifying an appropriate moderate-error PRG. To construct a low-error WPRG for B, we will
begin by identifying a PRG G : {0, 1}s → {0, 1}n. Then, we will show that for every B ∈ B, we
have

∥L−1∆W∥ ≤ δ, (14)

where L is the Laplacian matrix of B, ∆W is the correction graph transition matrix induced by
B and G, ∥ · ∥ is an appropriately-chosen extended submultiplicative matrix seminorm, and δ is
“moderately small.”
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Decreasing the error via our error reduction framework. The bound (14) implies that our error
reduction framework is applicable. As explained earlier in this section, we convert G into a
pseudodistribution X (m). This pseudodistribution which corresponds to the matrix Am from
Section 4. As explained in Section 4, the matrix Am has low error, in the sense that

∥I−AmL∥ ≤ (2δ)(m+1).

Using properties of the specific extended seminorm ∥ · ∥, we will show as a consequence that X (m)

actually fools the Boolean function B with low error. (This corresponds to analyzing Am − L−1

rather than I−AmL.)

Derandomizing X (m) with correlated seeds. At this point, we will have a WPRG that fools B
with low error. However, looking again at the pseudodistribution X (m), it is a sum of M = nO(m)

signed terms, each of which is a tensor product of up to O(m log n) copies of G (and up to m
copies of U1). Sampling even one such term would cost O(m · s · log n) truly random bits, which
we cannot afford.

The final step of the WPRG constructions will be to modifyX (m) by using correlated seeds across
the different copies of G. This step is known already from previous work [CDRST21; PV21]. Since
the arguments differ slightly between the case of bounded-width regular ROBPs and the case of
unbounded-width permutation ROBPs, we present the details in future sections.

6 WPRG for Regular ROBPs

In this section, we present our WPRG for regular ROBPs (Theorem 1.7). Actually, we will prove a
theorem that is stronger than Theorem 1.7 in two respects. First, we will consider a more general
class of branching programs. We construct a WPRG that fools any standard-order ROBP in which
all subprograms have low weight as defined by Braverman, Rao, Raz, and Yehudayoff [BRRY14].

Definition 6.1 (Weight of an ROBP [BRRY14]). Let B be a standard-order ROBP. The weight of an
edge e = (u, v) is defined by Weight(e) = |E[B←u]−E[B←v]|, i.e., Weight(e) is the absolute difference
between the acceptance probabilities when we start at u and when we start at v. The weight of the program,
denoted Weight(B), is the sum of the weights of all edges.

Second, we will prove that our WPRG has the following boundedness property, introduced
by Chattopadhyay and Liao [CL20] (modifying a prior definition by Braverman, Cohen, and
Garg [BCG20]).

Definition 6.2 (K-bounded WPRG [CL20]). Let (G, µ) be a WPRG and let K > 0. We say that (G, µ)
is K-bounded if |µ(u)| ≤ K for every seed u.

Theorem 6.3 (WPRG for ROBPs in which all subprograms have low weight). For all n, w, W ∈ N

and ε > 0, there is an explicit ε-WPRG with seed length

Õ
(

log n ·
(

log(W · w) +
√

log(1/ε)

)
+ log(1/ε)

)
that ε-fools every width-w length-n standard-order ROBP B that satisfies the following property: For
every vertex v, we have Weight(Bv←) ≤ W. Furthermore, the WPRG is K-bounded for a value

K = nO
(√

log(1/ε)
)
.
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Theorem 6.3 implies Theorem 1.7, because Braverman, Rao, Raz, and Yehudayoff showed
that for every width-w length-n standard-order regular ROBP B and every vertex v, we have
Weight(Bv←) ≤ O(w) [BRRY14]. The greater generality of Theorem 6.3 will be essential for our
treatment of width-3 ROBPs in Section 7.

Proof outline. The proof of Theorem 6.3 is based on the error-reduction procedure from
Section 5. Denote by B the class of ROBPs satisfying the property stated in Theorem 6.3. Let
G : {0, 1}s → {0, 1}n be a PRG that τ-fools every program B ∈ B, where

ε < τ <
1

poly(W, w, log n)
.

We will show how to convert G into an ε-WPRG with seed length

Õ
(

s +
log(w/ε) · log n

log(1/τ)
+ log(w/ε)

)
.

To conclude, we will choose τ ≈ 2−
√

log(1/ε) and take G to be the BRRY PRG [BRRY14]. It might

be helpful to keep in mind the case w = O(1), W = O(1), ε = 1/n, and τ = 2−
√

log n.
To construct the low-error WPRG, we will follow the framework presented in Section 5. In

Section 6.1, we show that the matrix L−1∆W has a moderately small norm, as required by our
error reduction framework. In Section 6.2, we construct a WPRG with a low error but with a
relatively large seed. Finally, in Section 6.3, we replace independent seeds with correlated seeds
to get a WPRG with a low error and a low seed length. (This last step is the same as in prior
works [CDRST21; PV21].)

6.1 Bounding ∥L−1∆W∥
For convenience, assume that the first output bit of the PRG G is perfectly uniform. (If this
property does not hold, G can be modified to have this property while increasing the seed length
by only one bit.) Our goal in this subsection is to prove the following lemma.

Lemma 6.4 (Moderate-error bound when all subprograms have low weight). Let B ∈ B. Let L be
the Laplacian matrix of B, and let ∆W be the correction graph transition matrix induced by B and G as
explained in Section 4 and Section 5. Then

∥L−1∆W∥∞ ≤ 1.5 · τ ·W · w2 · log n.

In Lemma 6.4, the notation ∥ · ∥∞ denotes the matrix norm induced by the vector ℓ∞ norm,
defined as

∥M∥∞ = max
z:∥z∥∞=1

{∥Mz∥∞} = max
i: row of M

{
∑

j: column of M

∣∣Mi,j
∣∣} .

This matrix norm is submultiplicative, so as explained in Section 4 and Section 5, bounding
∥L−1∆W∥∞ will enable us to use our error reduction framework.

The first step in the proof of Lemma 6.4 is to show (roughly speaking) that the PRG G fools
subprograms with error significantly less than τ when we have a very low weight bound (much
less than 1). To be more precise, we use the following notation.
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Definition 6.5 (Weight of a region in the ROBP). Let B be a standard-order ROBP with layers
V(0), . . . , V(n). For i ∈ [n], let E(i) be the set of incoming edges to vertices in V(i), i.e., E(i) =
E(B) ∩ (V(i−1) × V(i)). Let 0 ≤ i ≤ j ≤ n. We define Weight(B, i, j) to be the weight of all edges
between V(i) and V(j), i.e.,

Weight(B, i, j) = ∑
e∈E(i+1)∪···∪E(j)

Weight(e).

Lemma 6.6. Let B be a standard-order ROBP on vertices V(0) ∪ · · · ∪ V(n). Let 0 ≤ ℓ < r ≤ j ≤ n,
let u ∈ V(ℓ), let q ∈ V(j), and let Y and U be independent random variables, where Y ∈ {0, 1}r−ℓ

and U is distributed uniformly over {0, 1}j−r. Assume that for every v ∈ V(r), the distribution
Y fools the subprogram Bv←u with error α. Then the concatenation (Y ,U ) fools Bq←u with error
α · w ·Weight(Bq←u, ℓ, r)/2.

Proof. Let S be the set of vertices v ∈ V(r) that are reachable from u. Braverman, Rao, Raz, and
Yehudayoff showed [BRRY14, Proof of Proposition 5] that for every v, v′ ∈ S, we have

|E[Bq←v]−E[Bq←v′ ]| ≤ Weight(Bq←u, ℓ, r).

Therefore, there is a value η such that for every vertex v ∈ S, we have

|E[Bq←v]− η| ≤ 1
2
Weight(Bq←u, ℓ, r).

Define δv = E[Bq←v]− η. Then

|E[Bq←u(0ℓ,Y ,U , 0n−j)]−E[Bq←u]|

=

∣∣∣∣∣∑v∈S
(E[Bv←u(Y)]−E[Bv←u]) · (η + δv)

∣∣∣∣∣
≤ η ·

∣∣∣∣∣∑v∈S
E[Bv←u(Y)]− ∑

v∈S
E[Bv←u]

∣∣∣∣∣+ ∑
v∈S
|E[Bv←u(Y)]−E[Bv←u]| · |δv|

= η · |1− 1|+ ∑
v∈S
|E[Bv←u(Y)]−E[Bv←u]| ·Weight(Bq←u, ℓ, r)/2

≤ α · w ·Weight(Bq←u, ℓ, r)/2.

With Lemma 6.6 in hand, we now turn to analyzing the matrix L−1∆W. As suggested in
Section 4, we decompose ∆W as ∆W = ∆W(0) + · · ·+ ∆W(log n), where ∆W(t)

j→i is nonzero only for
edges (i, j) ∈ E(SC) where j = i + 2t. Because the first bit of the output of G is perfectly uniform,
we have ∆W(0) = 0, so our decomposition becomes ∆W = ∆W(1) + · · ·+ ∆W(log n). For a fixed
t ∈ [log n], let us bound each individual entry of the matrix L−1∆W(t).

Claim 6.7 (Bound on one entry of L−1∆W(t)). Let B ∈ B, let L be the Laplacian matrix of B, and let
∆W be the correction graph transition matrix induced by B and G. Let t ∈ [log n], and define ∆W(t) as
above. Let 0 ≤ ℓ < r ≤ j ≤ n, where ℓ ∈ Ut and r = ℓ+ 2t. Let u ∈ V(ℓ) and q ∈ V(j). Then∣∣∣∣(L−1∆W(t)

)
q,u

∣∣∣∣ ≤ 1.5 · τ · w ·Weight(Bq←u, ℓ, r).

Note that the claim above assumes that ℓ ∈ Ut. (Recall from Definition 4.1 that Ut is the set of
multiples of 2t between 0 and n.) If ℓ /∈ Ut, then it is easy to see that

(
L−1∆W(t)

)
q,u

= 0.
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Proof. Working through the definitions, we have(
L−1∆W(t)

)
q,u

=
(

Wj←r ·
(

W̃r←ℓ − W̃r← ℓ+r
2
· W̃ ℓ+r

2 ←ℓ

))
q,u

= E[Bq←u(Y ,U )]−E[Bq←u(Y ′,Y ′′,U )],

where Y is distributed as the first 2t bits of a sample from G; each of Y ′ and Y ′′ is distributed as
the first 2t−1 bits of a sample from G; the variable U is uniformly distributed over {0, 1}j−r; and Y ,
Y ′, Y ′′, and U are independent. By Lemma 6.6 with α = τ, we have

|E[Bq←u(Y ,U )]−E[Bq←u]| ≤ 0.5 · τ · w ·Weight(Bq←u, ℓ, r).

Similarly, one can show that the concatenation (Y ′,Y ′′) fools subprograms Bv←u with error 2τ, so
we may apply Lemma 6.6 again, this time with α = 2τ, to get

|E[Bq←u(Y ′,Y ′′,U )]−E[Bq←u]| ≤ τ · w ·Weight(Bq←u, ℓ, r).

The triangle inequality completes the proof.

Summing everything up completes the analysis of L−1∆W:

Proof of Lemma 6.4. For each fixed t ∈ [log n], by Claim 6.7 we have∥∥∥L−1∆W(t)
∥∥∥

∞
≤ max

q ∑
u

∣∣∣∣(L−1∆W(t)
)

q,u

∣∣∣∣ ≤ max
q ∑

ℓ∈Ut

∑
u∈V(ℓ)

1.5 · τ · w ·Weight(Bq←u, ℓ, ℓ+ 2t).

The value Weight(Bq←u, ℓ, ℓ+ 2t) does not depend on the start vertex u ∈ V(ℓ). Therefore,∥∥∥L−1∆W(t)
∥∥∥

∞
≤ max

q
1.5 · τ · w2 · ∑

ℓ∈Ut

Weight(Bq←, ℓ, ℓ+ 2t) = max
q

1.5 · τ · w2 ·Weight(Bq←)

≤ 1.5 · τ · w2 ·W.

Finally, summing over all t, we have

∥L−1∆W∥∞ ≤
log n

∑
t=1

∥∥∥L−1∆W(t)
∥∥∥

∞
≤ 1.5 · τ · w2 ·W · log n.

6.2 Low-Error High-Seed-Length WPRG: Independent Seeds

In the previous subsection, we showed a bound on ∥L−1∆W∥. By the results in Section 4 and Sec-
tion 5, this implies that our error reduction framework works, and hence the pseudodistribution
X (m) fools B with low error. In particular, we get the following.

Claim 6.8 (X (m) fools B with low error). Suppose τ ≤ 1
9w4·W2·log2 n

. Then for every B ∈ B and m ∈N,∣∣∣Ẽ [B(X (m))
]
−E[B]

∣∣∣ ≤ τ(m+1)/2 · w.

Proof. By Lemma 6.4 and Theorem 4.4, we have

∥I−AmL∥∞ ≤ (3τ · w2 ·W · log n)m+1 ≤ τ(m+1)/2.
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Therefore, for each basis vector eu, we have

∥Ameu − L−1eu∥∞ ≤ ∥AmLL−1eu − L−1eu∥∞ ≤ τ(m+1)/2 · ∥L−1eu∥∞ ≤ τ(m+1)/2,

since each entry of L−1eu is a probability. Consequently, each entry of Am differs from the
corresponding entry of L−1 by at most τ(m+1)/2. By Claim 5.7, it follows that for each vertex
v ∈ V(n), we have ∣∣∣Ẽ [Bv←(X (m))

]
−E[Bv←]

∣∣∣ ≤ τ(m+1)/2.

Summing over at most w accepting vertices completes the proof.

6.3 Final WPRG Construction: Correlated Seeds

At this point, we have shown that the pseudodistribution X (m) fools B with low error. However,
as we mentioned in Section 5.3, sampling X (m) directly requires a larger seed length than we
can afford. In this subsection, following prior work [CDRST21; PV21], we show how to reduce
the seed length by using the Impagliazzo-Nisan-Wigderson (INW) PRG [INW94] to generate a
sequence of correlated seeds to G.

The final WPRG construction. Recall from Section 5 that X (m) is defined by the formula

X (m) =
m

∑
ℓ=0

∑
i0,...,iℓ∈N

0≤i0<···<iℓ=n

GSC0→i0 ⊗ Ei0→i1 ⊗ Ei1→i2 ⊗ · · · ⊗ Eiℓ−1→iℓ ,

where Ei→j is given by
Ei→j = U1 ⊗ GSCi+1→j − GSCi→j

and GSCℓ→r is the tensor product of Gi→j over all edges (i, j) in the shortest path from ℓ to r through
SCn. This path has length O(log n). The PRG G has seed length s, and a seed of length s is also
trivially sufficient for sampling a single uniform random bit (U1). Therefore, by expanding each
Ei→j and each GSCℓ→r, we can write X (m) in the form

X (m) =
K

∑
i=1

σi · ∑
y(1),...,y(r)∈{0,1}s

2−sr · Gi,1(y(1)) ◦ · · · ◦ Gi,r(y(r)),

where K = nO(m), r = O(m log n), σi ∈ {−1,+1}, Gi,j is a function Gi,j : {0, 1}s → {0, 1}ni,j for
some 0 ≤ ni,j ≤ n, and ◦ denotes string concatenation. For convenience, we will assume that K is
a power of two; this can be accomplished by adding dummy terms with σi = 0.

Let Y be a distribution over ({0, 1}s)r that γ-fools width-w standard-order ROBPs over the
alphabet {0, 1}s, where γ = ε

2K . Using the INW PRG [INW94], we can explicitly sample Y using a
seed of length q = O(s + log(wr/γ) · log r). Write Y using pseudodistribution notation as

Y = ∑
z∈{0,1}q

2−q · y(1)z ◦ · · · ◦ y(r)z

where y(j)
z ∈ {0, 1}s for each j ∈ [r]. Our final pseudodistribution Z over {0, 1}n is given by the

formula

Z =
K

∑
i=1

σi · ∑
z∈{0,1}q

2−q · Gi,1(y
(1)
z ) ◦ · · · ◦ Gi,r(y

(r)
z ).
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This pseudodistribution Z corresponds to the WPRG (G ′, µ), where G ′ : [K]× {0, 1}q → {0, 1}n is
given by

G ′(i, z) = Gi,1(y
(1)
z ) ◦ · · · ◦ Gi,r(y

(r)
z )

and µ : [K]× {0, 1}q → R is given by µ(i, z) = K · σi.

Error and seed length. The following claim shows that using correlated seeds only increases the
error by ε/2 compared to independent seeds.

Claim 6.9. For every B ∈ B, ∣∣∣Ẽ [B(Z)]− Ẽ
[

B(X (m))
]∣∣∣ ≤ ε

2
.

Proof. For each i ∈ [K], define fi : ({0, 1}s)r → {0, 1} by

fi(y(1), . . . , y(r)) = B(Gi,1(y(1)) ◦ · · · ◦ Gi,r(y(r))).

Then ∣∣∣Ẽ [B(Z)]− Ẽ
[

B(X (m))
]∣∣∣ = ∣∣∣∣∣ K

∑
i=1

σi · (E[ fi(Usr)]−E[ fi(Y)])
∣∣∣∣∣

≤
K

∑
i=1
|E[ fi(Usr)]−E[ fi(Y)]|

≤ K · γ = ε/2,

where the last inequality holds because fi can be computed by a width-w standard-order ROBP
over the alphabet {0, 1}s.

We choose m = Θ( log(w/ε)
log(1/τ)

). That way, by Claim 6.8, X (m) fools B with error ε/2, and hence by
Claim 6.9, our final WPRG (G ′, µ) fools B with error ε. The final WPRG’s seed length is

log K + q = O(s + log K + log(wr/γ) · log r)

= Õ(s + m log n + log(w/ε))

= Õ
(

s +
log(w/ε) · log n

log(1/τ)
+ log(w/ε)

)
.

We take G to be the BRRY PRG [BRRY14], so s = Õ(log n · log(W ·w/τ)). Furthermore, we choose

τ = min

{
2−
√

log(1/ε),
1

9w4 ·W2 · log2 n

}
.

Therefore, the overall seed length becomes

Õ
(

log n ·
(

log(W · w) +
√

log(1/ε)

)
+ log(1/ε)

)
.

Finally, observe that (G ′, µ) is clearly K-bounded, and recall that K = nO(m) and

m = Θ
(

log w
log(1/τ)

+
log(1/ε)

log(1/τ)

)
≤ O

(
log w
log w

+
log(1/ε)√

log(1/ε)

)
= O

(√
log(1/ε)

)
,

completing the proof of Theorem 6.3.
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7 WPRG for General Width-3 ROBP

In this section, we revisit the work of Meka, Reingold, and Tal [MRT19] for general width-3
standard-order ROBPs and improve it in several ways. Meka, Reingold, and Tal’s work is based
on studying the effect of pseudorandom restrictions on width-3 ROBPs [MRT19].

Definition 7.1 (Restrictions). A restriction is a string ρ ∈ {0, 1, ⋆}n. If ρ, ρ′ ∈ {0, 1, ⋆}n, then the
composition ρ ◦ ρ′ ∈ {0, 1, ⋆}n is defined as follows:

(ρ ◦ ρ′)i =

{
ρi if ρ′i = ⋆

ρ′i if ρ′i ∈ {0, 1}.

In particular, if ρ ∈ {0, 1, ⋆}n and x ∈ {0, 1}n, then x ◦ ρ is defined by using x to fill in the ⋆ positions of
ρ. If B is a function on {0, 1}n and ρ ∈ {0, 1, ⋆}n, then the restricted function B|ρ is another function on
{0, 1}n defined by B|ρ(x) = B(x ◦ ρ).12

Our main technical result in this section, which will imply our WPRG for width-3 standard-
order ROBPs (Theorem 1.5), is the following.

Theorem 7.2 (Pseudorandom restrictions for width-3 ROBPs). For every n ∈ N and ε > 0, there is
an explicit restriction generator R : {0, 1}s → {0, 1, ⋆}n with seed length s = Õ(log(n/ε)) such that for
every width-3 standard-order ROBP B, if we sample ρ = R(Us), then

1. The restriction ρ preserves the expectation of B up to error ε. That is,

|Eρ,U [B|ρ(U )]−E[B]| ≤ ε,

where U ∈ {0, 1}n is sampled uniformly at random and independently of ρ.

2. With probability at least 1− ε over ρ, the restricted function B|ρ : {0, 1}n → {0, 1} can be computed
by a width-3 standard-order ROBP B with the property that for every vertex v, we have

Weight(Bv←) ≤ polylog(n/ε).

Before proving Theorem 7.2, we first show that the combination of Theorem 7.2 and
Theorem 6.3 implies Theorem 1.5, which is restated next.

Theorem 7.3 (Theorem 1.5, restated). For every n ∈N and δ > 0, there is an explicit WPRG with seed
length

Õ
(

log n ·
√

log(1/δ) + log(1/δ)

)
that δ-fools width-3 length-n standard-order ROBPs.

Proof, assuming Theorem 7.2. Let (G, µ) be the WPRG from Theorem 6.3 with a parameter W to be
specified later and with error δ/3. Theorem 6.3 guarantees that this WPRG is K-bounded for some

value K = nO(
√

log(1/δ)). LetR be the restriction generator from Theorem 7.2 with ε = δ
3·(K+1) . Our

WPRG (G ′, µ′) applies R and then applies (G, µ). That is, we define G ′(x, y) = G(y) ◦ R(x) and
µ′(x, y) = µ(y). Let B be a width-3 length-n standard-order ROBP. Our definition ensures that

Ex,y[B(G ′(x, y)) · µ′(x, y)] = Ex,y[B|R(x)(G(y)) · µ(y)].

Let ρ = R(x) for a uniform random x. We consider the contribution to the error from two cases:
12Here, we only define B|ρ as a function. Later, we will refine the definition by specifying a particular standard-order

ROBP computing B|ρ, in the case that B is itself a standard-order ROBP. See Section 7.1.
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• Case 1: All subprograms of the restricted program have low weight. Theorem 7.2 ensures that with
probability 1 − ε over ρ, the function B|ρ can be computed by a program B such that for
every vertex v, Weight(Bv←) ≤ W where W = polylog(n/ε) (this is the value W that we use
when invoking Theorem 6.3). In such a case, Theorem 6.3 guarantees that (G, µ) fools B|ρ
with error at most δ/3.

• Case 2: Not all subprograms of the restricted program have low weight. With probability at most ε,
we have no low-weight guarantee. In such a case, the error from the WPRG (G, µ) could be
larger than 1! However, the error is at most K + 1, because

|Ey[B|ρ(G(y)) · µ(y)]−E[Bρ]| ≤ max
y
|B|ρ(G(y))| · |µ(y)|+ E[B|ρ] ≤ K + 1.

Therefore, the contribution to the error from this case is at most ε · (K + 1) = δ/3.

Since |E[B]−Eρ,U [B|ρ(U )]| ≤ ε < δ/3 and since (G, µ) adds at most δ/3 + δ/3 error, the overall
error is at most δ.

The seed length for the restriction generatorR is

Õ(log(n/ε)) = Õ(log(Kn/δ)) = Õ
(

log n ·
√

log(1/δ) + log(1/δ)

)
.

The seed length for the WPRG (G, µ) is

Õ
(

log n ·
(

log(W · 3) +
√

log(1/δ)

)
+ log(1/δ)

)
= Õ

(
log n ·

√
log(1/δ) + log(1/δ)

)
,

because log W = O(log log(n/ε)) = O(log log(n/δ)).

The rest of this section is devoted to proving Theorem 7.2.

7.1 Syntactic Restrictions

To prove Theorem 7.2, we will heavily rely on the work of Forbes and Kelley [FK18]. They showed
how to sample pseudorandom restrictions that assign values to a constant fraction of the variables,
while preserving the expectation of any constant-width ROBP up to error ε, using a seed length of
Õ(log(n/ε)). Given their work, the nontrivial part of the proof of Theorem 7.2 is establishing the
second conclusion: we will show that after O(log log(n/ε)) rounds of Forbes-Kelley restrictions,
with high probability, all subprograms Bv← have low weight, where B ≡ B|ρ.

Roughly speaking, our approach will be to first show that B|ρ itself has low weight with high
probability, and then take a union bound over all target vertices v. Let us highlight one subtle
aspect of this “union bound” argument. Essentially, the argument will show that (Bv←)|ρ (the
restriction of a subprogram) has low weight. However, we would like to bound the weight of
(B|ρ)v← (a subprogram of the restricted program). Could the two be different?

We carefully set up our definitions to ensure that (Bv←)|ρ and (B|ρ)v← are the same program.
The key is to work with “syntactic” restrictions rather than “semantic” restrictions. That is, in
the remainder of this section, we will be relatively fastidious about distinguishing between an
ROBP and the function it computes; we will think of restrictions as acting on ROBPs rather than
on functions. The restriction of an ROBP is another ROBP defined as follows.
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Figure 4: An example of (a) a width-3 ROBP B and (b) the syntactically-restricted program B|ρ
where ρ = (0, ⋆, 1).

Definition 7.4 (Syntactic restriction of an ROBP). Let B be a width-w length-n standard-order ROBP
with vertex set V(B) = V(0) ∪ · · · ∪V(n). Let ρ ∈ {0, 1, ⋆}n be a restriction. The syntactically-restricted
program B|ρ is a width-w length-n ROBP on the same vertex set, V(B|ρ) = V(0) ∪ · · · ∪V(n), with edges
defined as follows. Let i ∈ [n].

• If ρi = ⋆, then each vertex u ∈ V(i−1) has the same outgoing edges in B|ρ as it does in B.

• If ρi = b ∈ {0, 1}, then for each vertex u ∈ V(i−1), both outgoing edges in B|ρ lead to the same
vertex v ∈ V(i), namely, the vertex v such that (u, v) is an edge in B with label b.

No additional simplifications are performed. (See Figure 4.)

As suggested previously, Definition 7.4 satisfies the following two basic properties:

Fact 7.5 (Syntactic restrictions are compatible with semantic restrictions). Let B be a length-n
standard-order ROBP, let ρ ∈ {0, 1, ⋆}n, and let x ∈ {0, 1}n. Then B|ρ(x) = B(x ◦ ρ).

Fact 7.5 shows that Definition 7.4 is compatible with (and refines) the standard “semantic”
definition of the restriction of a function (Definition 7.1).

Fact 7.6 (Subprogram of restriction equals restriction of subprogram). Let B be a standard-order
ROBP, let ρ ∈ {0, 1, ⋆}n, and let v be a vertex. Then (Bv←)|ρ and (B|ρ)v← are precisely the same program.

Remark 7.7. The conclusions of Theorem 7.2 only say something about the function computed by
B|ρ. Therefore, when reading and using the statement of Theorem 7.2, the expression B|ρ can safely be
interpreted as a semantic restriction or a syntactic restriction. The statement is equivalent either way. It is
only in the proof of Theorem 7.2 that we rely on the notion of a syntactic restriction.
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7.2 Deleting Unreachable Vertices

Working with syntactic restrictions allows us to ignore the issue of subprograms and focus on
bounding the weight of B|ρ. Unfortunately, it is not possible to literally show Weight(B|ρ) =
polylog(n/ε) (see Figure 5). Instead, we bound the weight of the closely related program
DelUnreach(B|ρ), defined below.

Definition 7.8 (Reachability). Let B be a standard-order ROBP. We say that a vertex v is reachable if
there is a path from the start vertex to v. Otherwise, we say that v is unreachable.

Definition 7.9 (Deleting unreachable vertices). Let B be a standard-order ROBP. We define DelUnreach(B)
by deleting all unreachable vertices along with their outgoing edges.13

We will prove the following.

Theorem 7.10 (Syntactic pseudorandom restrictions for width-3 ROBPs). For every n ∈ N and
ε > 0, there is an explicit restriction generatorR : {0, 1}s → {0, 1, ⋆}n with seed length s = Õ(log(n/ε))
such that for every width-3 standard-order ROBP B, if we sample ρ = R(Us), then

1. The restriction ρ preserves the expectation of B up to error ε. That is,

|Eρ,U [B|ρ(U )]−E[B]| ≤ ε,

where U is sampled uniformly at random and independently of ρ.

2. With probability at least 1− ε over ρ, we have Weight(DelUnreach(B|ρ)) ≤ polylog(n/ε), where
B|ρ is the syntactic restriction of B (see Definition 7.4).

Remark 7.11. In general, Weight(DelUnreach(B)) depends on both the start vertex of B and the accepting
vertices. In contrast, Weight(B) does not depend on the start vertex of B, although it does depend on
the accepting vertices. The syntactically-restricted program B|ρ has the same start vertex and the same
accepting vertices as the original program B.

Before proving Theorem 7.10, let us see how Theorem 7.2 will follow from it.

Proof of Theorem 7.2, assuming Theorem 7.10. Apply Theorem 7.10 with error ε/(3n), and let B =
DelUnreach(B|ρ).14 By the union bound, with probability 1− ε, for every vertex v, we have

Weight(DelUnreach(Bv←|ρ)) ≤ polylog(n/ε).

Assume that this occurs. Because of our syntactic notion of restriction (Definition 7.4), the
programs (Bv←)|ρ and (B|ρ)v← are identical (Fact 7.6). Furthermore, for every vertex v in B, the
definition of DelUnreach implies that the programs DelUnreach((B|ρ)v←) and DelUnreach(B|ρ)v←

are identical. Therefore,

Weight(Bv←) = Weight(DelUnreach((B|ρ)v←)) = Weight(DelUnreach(Bv←|ρ)) ≤ polylog(n/ε).

The remainder of Section 7 consists of the proof of Theorem 7.10.

13Note that in this section, we consider programs where the width of a layer, |V(i)|, might vary from one layer to the
next. In contrast, in the rest of the paper, we assume without loss of generality that |V(i)| = w for every i.

14The reader might be concerned by the fact that in B, different layers have different widths, whereas in Section 6, we
assume that every layer has width precisely w. The two models are equivalent, because we can add dummy vertices.
As long as the two outgoing edges of each dummy vertex point to the same vertex in the next layer, these new dummy
edges have zero weight. Equivalently, to define B, instead of deleting the unreachable vertices in B|ρ, we can redirect
the outgoing 1-edge of each unreachable vertex to go to the same vertex that the 0-edge goes to.
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Figure 5: An example showing the necessity of deleting unreachable vertices. For the branching
program B depicted above, we have Weight(B|ρ) = |ρ−1(⋆)| for every restriction ρ. In particular,
in the “mild restriction” regime |ρ−1(⋆)| = n1−o(1), the syntactically-restricted program has high
weight – but only because of unreachable edges.

7.3 Restrictions Eliminate Colliding Layers

Following Meka, Reingold, and Tal [MRT19], our proof of Theorem 7.10 centers on the concept of
a colliding layer.

Definition 7.12 (Colliding layer). Let B be a standard-order ROBP on vertex set V = V(0) ∪ · · · ∪V(n)

and let i ∈ [n]. We say that layer i is colliding if there are two distinct edges that have the same label and
that lead to the same vertex v ∈ V(i).

A program with no colliding layers (a permutation program) is regular, and hence it has
bounded weight by the results of Braverman, Rao, Raz, and Yehudayoff [BRRY14]. Roughly
speaking, our plan is to argue that pseudorandom restrictions reduce the number of colliding
layers in the program (similar to the arguments of Meka, Reingold, and Tal [MRT19]). We will
mainly be focused on counting the number of colliding layers between width-2 layers. (Again, this
is similar to the arguments of Meka, Reingold, and Tal [MRT19]). More precisely, we use the
following definition, which refines Meka, Reingold, and Tal’s notion of a (w, ℓ, m)-ROBP.

Definition 7.13 ((w, i, ℓ, m, r) program). Let B be a width-w length-n standard-order ROBP, and let
i, ℓ, m, r ∈ N. We say that B is a (w, i, ℓ, m, r) program if there are indices i = i0 < i1 < · · · < ik = n
such that the following hold.

• Layer ij has width at most 2 for each j ∈ {0, . . . , k}.

• The intervals (i0, i1], . . . , (ik−1, ik] can be partitioned into two categories, “ordinary” and “unruly,”
such that the following hold.

– There are at most m ordinary intervals, and there are at most ℓ colliding layers in each ordinary
interval.

– There are at most r colliding layers in total among all the unruly15 intervals.

Note that Definition 7.13 says nothing about layers 1, 2, . . . , i − 1. Indeed, later we will treat
layers i, i + 1, . . . , n as an “approximation” for the entire program, similar to Meka, Reingold, and
Tal [MRT19].

15The term “unruly” is borrowed from a similar concept in work by Doron, Meka, Reingold, Tal, and Vadhan [DM-
RTV21].
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7.3.1 Initial Restriction: Bringing ℓ Down to O(log n)

Following Meka, Reingold, and Tal [MRT19], we view the parameter “ℓ” as our primary measure
of the complexity of the program. Initially, we can trivially take ℓ = n. Meka, Reingold, and
Tal observed [MRT19] that it is fairly straightforward to design a pseudorandom restriction that
brings the parameter ℓ down to O(log n). For example, it suffices for the restriction to be k-wise
δ-close to a truly random restriction, as defined below.

Definition 7.14 (Truly random restriction). LetRp denote the distribution over ρ ∈ {0, 1, ⋆}p in which
the coordinates are independent and

ρi =


⋆ with probability p
0 with probability (1− p)/2
1 with probability (1− p)/2.

Definition 7.15 (k-wise δ-close). Let ρ, ρ′ be two random variables distributed over {0, 1, ⋆}n. We say
that ρ is k-wise δ-close to ρ′ if, for every set S ⊆ [n] of size at most k, the substrings ρS and ρ′S are δ-close
in total variation distance.

To convert some width-3 layers into width-2 layers, we will apply a pseudorandom restriction
and then delete unreachable vertices:

Claim 7.16 (ℓ → O(log n)). Let B be a standard-order width-3 length-n ROBP, let p ∈ (0, 1/2], and let
δ > 0. Assume that the first and last layers of B have width at most 2. There is a value ℓ = O(log(n/δ))
such that if ρ ∈ {0, 1, ⋆}n is a random variable that is ℓ-wise ( δ

2n )-close to Rp, then with probability at
least 1− δ, the program DelUnreach(B|ρ) is a (3, 0, ℓ, n, 0) program.

Proof. Let I ⊆ [n] be the set of colliding layers of B. For each i ∈ I , there is some bi ∈ {0, 1} such
that there are two edges in V(i−1) ×V(i) that are both labeled bi and that point to the same vertex.
Observe that if ρi = bi for some i ∈ I , then layer i has width at most 2 in DelUnreach(B|ρ).

We say that i ∈ I is bad if there is some j such that |I ∩ [i, j]| ≥ ℓ, and for every i′ ∈ I ∩ [i, j],
we have ρi′ ̸= bi′ . The probability that i is bad is at most (1/2 + p/2)ℓ + δ/(2n), which is at most
δ/n for a suitable choice of ℓ = O(log(n/δ)). By the union bound, we may assume that there is no
bad i. In this case, DelUnreach(B|ρ) is a (3, 0, ℓ, n, 0) program, because if some layer i is colliding in
DelUnreach(B|ρ), then layer i was already colliding in B, i.e., i ∈ I .

Claim 7.16 shows that after applying a pseudorandom restriction and deleting unreachable
vertices, with high probability, we have ℓ = O(log n). However, we will need to show something
stronger, which is that ℓ is likely to be low after we apply a pseudorandom restriction, delete
unreachable vertices, and then merge equivalent vertices.

Definition 7.17 (Locally equivalent vertices [MRT19] and equivalent vertices). Let B be a standard-
order ROBP with layers V(0), . . . , V(n). Let u, v ∈ V(i) where i ∈ {0, . . . , n− 1}. We say that u and v are
locally equivalent if B[u, 0] = B[v, 0] and B[u, 1] = B[v, 1].16

Now let u, v ∈ V(i) where i ∈ {0, . . . , n}. We say that u and v are equivalent if for every x, we have
B←u(x) = B←v(x).17 We say that B has no duplicate vertices if there are no two distinct vertices that
are equivalent.

Observe that any locally-equivalent vertices are also equivalent.

16Recall that B[u, x] is the vertex reached from u by reading the string x.
17Recall that B←u(x) is the Boolean output value of the program given input x from start vertex u.
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Figure 6: An example showing that MergeEquiv(·) can create new colliding layers. In this example,
B has two colliding layers, but MergeEquiv(B) has three colliding layers.

Definition 7.18 (The MergeEquiv operation). Let B be a length-n standard-order ROBP. We define
MergeEquiv(B), another length-n standard-order ROBP, by merging equivalent vertices until we get a
program with no duplicate vertices.

We emphasize that the MergeEquiv(·) operation merges equivalent vertices within a single
layer, but it never contracts layers. The number of layers in MergeEquiv(B) is the same as the
number of layers in B.

The MergeEquiv(·) operation can sometimes introduce new colliding layers (see Figure 6), but
we’ll show that it doesn’t increase the parameter ℓ. The following claim will help us to reason
about these newly-created colliding layers. Essentially, the claim says that if layer i is a newly-
created colliding layer, then some vertices in layer i got merged, but no vertices in layer i− 1 got
merged.

Claim 7.19 (Describing newly-colliding layers). Let B be a width-3 standard-order ROBP. Suppose that
layer i is not colliding in B, but it is colliding in MergeEquiv(B). Then the width of layer i is smaller in
MergeEquiv(B) than it is in B, whereas the width of layer i− 1 is the same in MergeEquiv(B) as it is in B.

Proof. Since layer i is colliding in MergeEquiv(B), there are two edges e = (u, v) and e′ = (u′, v) in
the layer, both with the same label b ∈ {0, 1}, where u ̸= u′. Since layer i was not colliding in B,
the vertex v must be the result of merging two vertices v′, v′′ in layer i of B. This shows that the
width of layer i is smaller in MergeEquiv(B) than it is in B.

Now let us analyze layer i− 1. Since u ̸= u′, layer i− 1 has width at least two in MergeEquiv(B).
Suppose there was a third vertex in layer i− 1 of B, say u′′. The b-edge leaving u′′ in B must not
have pointed at v′ or v′′, because layer i is not colliding in B. Therefore, the b-edge leaving u′′ must
have pointed at a third vertex, v′′′. This vertex v′′′ cannot have merged with v′ and v′′, because
if it had, then layer i would be width-1 in MergeEquiv(B), implying that all previous layers are
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width-1, contradicting the fact that u ̸= u′. Therefore, v′′′ is still present in MergeEquiv(B), and
hence u′′ was not merged with either of the other vertices in layer i− 1. Thus, the width of layer
i− 1 is the same in MergeEquiv(B) as it is in B.

Using Claim 7.19, we can show that the conclusion of Claim 7.16 remains true even after
applying the MergeEquiv(·) operator.

Claim 7.20. Let B be a (3, 0, ℓ, m, 0) program. Then MergeEquiv(B) is a (3, 0, ℓ, m′, 0) program for some
m′.

Proof. Let i < j, and suppose that in MergeEquiv(B), layers i and j have width at most two, whereas
layers i + 1, i + 2, . . . , j− 1 all have width 3. Let j′ > i be the first layer that has width at most two
in B. Since the MergeEquiv(·) operator can never increase the width of a layer, we must have j′ ≥ j.

Since B is a (3, 0, ℓ, m, 0) program, at most ℓ of the layers in the interval (i, j′] are colliding in
B. By Claim 7.19, every layer in the interval (i, j) that is colliding in MergeEquiv(B) must have
already been colliding in B. Furthermore, layer j′ must have been colliding in B, simply because
layer j′ has width at most two and layer j′ − 1 has width three.18 Consequently, at most ℓ− 1 of
the layers in the interval (i, j) are colliding in MergeEquiv(B), and therefore at most ℓ of the layers
in the interval (i, j] are colliding in MergeEquiv(B).

7.3.2 Subsequent Restrictions: Bringing ℓ Down to ℓ/2

Claim 7.16 and Claim 7.20 show that after applying one pseudorandom restriction and the
DelUnreach(·) and MergeEquiv(·) operators, with high probability, we have ℓ = O(log n). Now we
would like to argue that applying additional pseudorandom restrictions decreases ℓ even further,
even after we merge equivalent vertices.

After the first couple of rounds of restrictions, we will have a (3, i, ℓ, m, r) program where r > 0.
We must therefore analyze the effect of MergeEquiv(·) on unruly intervals. The following claim will
help us to do so.

Claim 7.21 (Merging =⇒ locally equivalent vertices). Let B be a standard-order ROBP and let
i ∈ {0, . . . , n − 1}. Suppose that the width of layer i is smaller in MergeEquiv(B) than it is in B, but
the width of layer i + 1 is the same in MergeEquiv(B) as it is in B. Then there are two distinct locally
equivalent vertices in layer i of B.

Proof. Let V(0), . . . , V(n) be the layers of B. Since the width of layer i is smaller in MergeEquiv(B)
than it is in B, there are two distinct but equivalent vertices u, v ∈ V(i). Let b ∈ {0, 1}, and let
(u, u′) and (v, v′) be the outgoing edges of u and v with label b. Since u and v are equivalent,
u′ and v′ must be equivalent. Since the width of layer i + 1 is the same in MergeEquiv(B) as it
is in B, layer i + 1 does not contain any pair of distinct, equivalent vertices. Therefore, u′ = v′.
Consequently, u and v are locally equivalent.

We will use the following variant of Claim 7.19.

Claim 7.22. Let B be a width-3 standard-order ROBP, and let ρ be a restriction. Suppose that layer
i is not colliding in B, but it is colliding in MergeEquiv(B|ρ). Then the width of layer i is smaller in
MergeEquiv(B|ρ) than it is in B, whereas the width of layer i− 1 is the same in MergeEquiv(B|ρ) as it is
in B.

18An edge case is when j′ = j = i + 1, so we cannot say that layer j′ − 1 has width three. To handle this case, if ℓ > 0,
we can observe that the interval (i, j] only contains a single interval. On the other hand, if ℓ = 0, then B does not have
any colliding layers, and its final layer has at most two vertices, so B and MergeEquiv(B) are the same program.
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Figure 7: The program MergeEquiv(B|ρ) in the proof of Claim 7.23. For each newly-created
colliding layer (k), we identify a corresponding layer (a) that was colliding in B but that is no
longer colliding in MergeEquiv(B|ρ).

Proof. Since layer i is not colliding in B, it is also not colliding in B|ρ. Therefore, by Claim 7.19, the
width of layer i is smaller in MergeEquiv(B|ρ) than it is in B|ρ, whereas the width of layer i− 1 is
the same in MergeEquiv(B|ρ) as it is in B|ρ. Finally, each layer has the same width in B|ρ as it does
in B.

Using Claim 7.22 and Claim 7.21, we can prove the following claim, which says that between
any two width-2 layers, the total number of colliding layers can never increase when we apply a
restriction and then apply the MergeEquiv(·) operation. Think of I as an unruly interval.

Claim 7.23. Let B be a width-3 standard-order ROBP with no duplicate vertices, and let ρ be a restriction.
Let I = (i, j] where i < j. Suppose that layers i and j have width at most two in B, and suppose that q of
the layers in I are colliding in B. Then at most q of the layers in I are colliding in MergeEquiv(B|ρ).

Proof. Let S be the set of layers in I that are colliding in B, and let S ′ be the set of layers in I that
are colliding in MergeEquiv(B|ρ). We will define an injective function ϕ : S ′ → S . The existence of
such a function will imply that |S ′| ≤ |S| = q.

Fix k ∈ S ′. If k ∈ S , then we define ϕ(k) = k. Assume now that k /∈ S , i.e., k is a “newly-
created” colliding layer. By Claim 7.22, the width of layer k is smaller in MergeEquiv(B|ρ) than it
is in B. In contrast, observe that the width of layer j must be the same in MergeEquiv(B|ρ) as it is
in B, because it already has width at most 2 in B, and if it had width 1 in MergeEquiv(B|ρ), then all
previous layers would also have width 1, contradicting the fact that layer k is a colliding layer in
MergeEquiv(B|ρ). Therefore, j > k, and if we let a be the first layer after k that has the same width
in MergeEquiv(B|ρ) as it has in B, then a ∈ I . By Claim 7.21, there are two distinct vertices u, v in
layer a− 1 of B|ρ that are locally equivalent. Since B has no duplicate vertices, u and v must not be
locally equivalent in B. Therefore, ρa ∈ {0, 1} and layer a is colliding in B, i.e., a ∈ S . Let ϕ(k) = a,
and note that ϕ(k) > k. (See Figure 7.)

To show that ϕ is injective, let k′ ∈ S ′ with k′ ̸= k. We will show that ϕ(k) ̸= ϕ(k′). First,
suppose k′ ∈ S , so ϕ(k′) = k′ ∈ S ′. Observe that a /∈ S ′, because ρa ∈ {0, 1}. Therefore,
ϕ(k) ̸= ϕ(k′) in this case.

Now, suppose instead that k′ /∈ S , i.e., k′ is a “newly-created” colliding layer (like k). By
swapping the roles of k and k′ if necessary, we may assume without loss of generality that k′ > k.
Recall that a is the first layer after k that has the same width in MergeEquiv(B|ρ) as it has in
B. Therefore, by Claim 7.22, there are no newly-created colliding layers in the interval (k, a].
Therefore, ϕ(k′) > k′ > a = ϕ(k), so ϕ(k′) ̸= ϕ(k).

Using Claim 7.23, we now show that if a restriction assigns values to enough variables, then
the parameter ℓ decreases, while r only increases by a modest amount.
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Claim 7.24 (Restrictions eliminate colliding layers). Let B be a (3, i, ℓ, m, r) program with no duplicate
vertices. Let ρ be a restriction such that in all but k of the ordinary intervals, ρ assigns values to all but at
most ℓ′ colliding layers. Then MergeEquiv(B|ρ) is a (3, i, ℓ′ + 1, m′, r + ℓk) program for some m′.

Proof. Let i ≤ j < j′, suppose that layers j and j′ have width at most two in MergeEquiv(B|ρ),
and suppose that layers j + 1, j + 2, . . . , j′ − 1 all have width three in MergeEquiv(B|ρ). Since the
MergeEquiv(·) operator can never increase the width of a layer, the interval (j, j′] must be entirely
contained within either an ordinary interval of B or an unruly interval of B.

Suppose first that (j, j′] is contained in an ordinary interval I of B, and furthermore, suppose
that ρ assigns values to all but at most ℓ′ of the layers in I that are colliding in B. In this
case, we will consider (j, j′] to be an ordinary interval of MergeEquiv(B|ρ). Whenever ρ assigns
a value to some layer, that layer cannot be colliding in MergeEquiv(B|ρ). Furthermore, by
Claim 7.22, any layer in the interval (j, j′) that is colliding in MergeEquiv(B|ρ) must have already
been colliding in B. Therefore, at most ℓ′ of the layers in the interval (j, j′) can be colliding in
MergeEquiv(B|ρ). Including layer j′, at most ℓ′+ 1 of the layers in the interval (j, j′] can be colliding
in MergeEquiv(B|ρ).

Otherwise, we designate (j, j′] as an unruly interval of MergeEquiv(B|ρ). Claim 7.23 implies
that among all these unruly intervals, the total number of colliding layers in MergeEquiv(B|ρ) is
indeed at most r + ℓk.

Claim 7.24 implies that if a distribution over restrictions ρ has a certain mild “pseudorandom-
ness” property, and if we initially start with m ≤ exp(O(ℓ)), then with high probability, after we
apply ρ and we apply the MergeEquiv(·) operation, the parameter ℓ will decrease by a factor of
two:

Claim 7.25 (ℓ → ℓ/2). For each constant C ∈ N, there is a constant p such that the following holds. Let
B be a (3, i, ℓ, Cℓ, r) program with no duplicate vertices where ℓ ≥ 4. Let ρ be a random variable distributed
over {0, 1, ⋆}n with the property that for every set S ⊆ [n] with |S| ≤ log(1/δ), we have

Pr[ρS = ⋆S] ≤ p|S| + δ.

Then with probability at least 1 −
√

δ, the program MergeEquiv(B|ρ) is a (3, i, ℓ/2, m′, r + log(1/δ))
program for some m′.

Note that the assumption on ρ is implied by the condition of being log(1/δ)-wise δ-close to
Rp.

Proof. Let k = log2C(0.5/
√

δ)/ℓ. For any set of k ordinary intervals, the probability that ρ leaves
at least ℓ/2− 1 colliding layers alive in each interval is at most

2ℓk · (p(ℓ/2−1)·k + δ) ≤ 2ℓk · (pℓk/4 + δ) ≤ 2ℓk · 2δ,

provided we choose p = p(C) to be a small enough constant. Therefore, the probability that
there exist k ordinary intervals in which ρ leaves at least ℓ/2− 1 colliding layers alive is at most
(Cℓ)k · 2ℓk · 2δ = (2C)ℓk · 2δ =

√
δ. If this bad event does not occur, then by Claim 7.24, the program

MergeEquiv(B|ρ) is a (3, i, ℓ/2, m′, r + ℓk) program for some m′.
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7.4 Approximation by Suffix Programs

We would like to apply Claim 7.25 repeatedly, so we can continue to decrease ℓ. However,
Claim 7.25 is only applicable when m ≤ exp(O(ℓ)). To ensure that this assumption holds, similar
to Meka, Reingold, and Tal [MRT19], we will approximate an ROBP using one of its “suffixes,” i.e.,
layers i through n for some i > 0. We measure the error of the approximation using the following
definition.

Definition 7.26 (Error when approximating a program using a suffix). Let B be a standard-order
ROBP with vertex set V(B) = V(0) ∪ · · · ∪V(n). Let i ∈ {0, . . . , n}. We define

Err(B, i) = Pr
x∈{0,1}n

[there exist u, v ∈ V(i) such that B←u(x) ̸= B←v(x)].

Note that if the bad event above does not occur, then B(x) = B←v(x) for every v ∈ V(i), and
thus the first i steps of the computation have no effect on the final outcome. The most important
case to keep in mind is when layer i has width 2, say V(i) = {u, v}, so Err(B, i) = Prx[B←u(x) ̸=
B←v(x)]. This case is ultimately the only one that “matters” in our analysis, but we use the more
general definition of Err(B, i) for ease of exposition.

Remark 7.27. In Meka, Reingold, and Tal’s analysis [MRT19], they look at the suffix (layers i, i+ 1, . . . , n)
as a program of length n− i, and they think of it as having “multiple start vertices” in a certain sense. The
intuition behind our argument is the same, but we use a different formalism, as stipulated by Definition 7.26.

Consider a (3, 0, ℓ, m, r) program B. We wish to argue that if layers i, . . . , n include exp(Θ(ℓ))
ordinary intervals, then Err(B, i) is low. This will allow us to ignore the layers before layer i and
thus effectively ensure m = exp(Θ(ℓ)). To prove it, the idea is that if an interval starts with a
width-two layer {u, v} and it has a colliding layer, then that colliding layer is an “opportunity”
for the two paths from u and v to collide, which would imply that B←u(x) = B←v(x). For this
argument to make sense, we need to ensure that the collision can actually be realized. To do so,
we wish to understand the colliding layers that remain after deleting unreachable vertices from the
program. Under the assumption that there are neither unreachable vertices nor duplicate vertices
(see Definition 7.8 and Definition 7.17), Meka, Reingold, and Tal showed [MRT19] that indeed,
there is a noticeable chance that the two paths from u and v collide:

Claim 7.28 ([MRT19, Claims 7.5, 7.6, and 7.7]). Let B be a width-3 ROBP with no unreachable vertices
and no duplicate vertices. Let i < j, and suppose that layers i and j have width at most 2. Let V(i) = {u, v}.
Suppose that the number of colliding layers in the interval (i, j] is at least one and at most ℓ. Pick
U ∈ {0, 1}j−i uniformly at random. Then

Pr
[

B[u,U ] = B[v,U ]
]
≥ 4−(ℓ+1).

Remark 7.29. Claim 7.28 assumes that B has no duplicate vertices. This is the reason that we must merge
equivalent vertices after each round of restrictions.

Using Claim 7.28, we now show that a program is indeed approximated by a suffix with
m = exp(Θ(ℓ)).

Claim 7.30 (m→ Cℓ). Let δ > 0 and let B be a (3, i, ℓ, m, r) program with no unreachable vertices and no
duplicate vertices, where ℓ ≥ log ln(1/δ) and ℓ ≥ 1. Then there exists a value j ≥ i such that:

• B is a (3, j, ℓ, Cℓ, r) program where C = 32.
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• Err(B, j) ≤ max{δ, Err(B, i)}.

Proof. If B is a (3, i, ℓ, Cℓ, r) program, then we can take j = i. Otherwise, let j be the smallest value
such that B is a (3, j, ℓ, Cℓ, r) program, and note that each of the Cℓ ordinary intervals has at least
one colliding layer. (Otherwise, we could treat it as an unruly layer and decrease j.) By Claim 7.28,
when B reads a uniform random input, in each such interval, a collision occurs with probability
at least 4−(ℓ+1) ≥ 4−2ℓ. Therefore,

Err(B, j) ≤ (1− 4−2ℓ)Cℓ ≤ exp(−(C/16)ℓ) ≤ δ.

7.5 Preserving Expectation and Approximation Error: Forbes-Kelley Restrictions

To prove Theorem 7.10, our plan is essentially to alternately apply Claim 7.25 and Claim 7.30
(similar to Meka, Reingold, and Tal [MRT19]) until ℓ = O(log log(1/δ)) and m = polylog(1/δ).19

At that point, we will be in good shape, because programs with few total colliding layers have
low weight. However, two issues remain:

• We need to ensure that our pseudorandom restrictions preserve the expectation of B, as
asserted by Theorem 7.10.

• We need to ensure that our pseudorandom restrictions do not significantly increase the
approximation error Err(B, i), so that the layers before layer i do not have too much weight.

As indicated previously, we accomplish both of these goals by using pseudorandom restrictions
due to Forbes and Kelley [FK18]. For any constant p, Forbes and Kelley designed a pseudorandom
restriction that uses Õ(log(n/δ)) random bits to assign values to approximately a (1− p)-fraction
of the input variables, while changing the acceptance probability of any constant-width ROBP by
at most δ. Furthermore, Forbes and Kelley’s pseudorandom restriction is k-wise δ-close to a truly
random restriction:

Lemma 7.31 (Forbes-Kelley restrictions [FK18, Lemma 7.2]). Let p ∈ (0, 1) be any constant power of
1/2. For any w, n ∈ N and δ > 0, there is an explicit restriction generator R : {0, 1}s → {0, 1, ⋆}n with
seed length s = Õ(w log(n/δ)) such that if we sample ρ = R(Us), then

1. If B is a width-w standard-order ROBP, then the restriction ρ preserves the expectation of B up to
error δ. That is,

|Eρ,U [B|ρ(U )]−E[B]| ≤ δ,

where U is sampled uniformly at random and independently of ρ.

2. The restriction ρ is k-wise (δ/n)-close toRp where k = log(n/δ).

Remark 7.32. Lemma 7.31 as stated above does not literally appear in Forbes and Kelley’s work [FK18],
but it follows immediately from their analysis. Indeed, they show that if D is a small-bias distribution and
T is almost k-wise independent, then D + T ∧ U fools B, where U is uniform random [FK18, Lemma
7.2]. The vectors D and T define a restriction where T indicates the locations of the stars and D assigns
values to the remaining coordinates. The small-bias property implies that this restriction is k-wise close to
R1/2 [NN93]. The restriction generatorR samples O(1) copies of this restriction and composes them.

19In contrast, Meka, Reingold, and Tal’s analysis [MRT19] roughly corresponds to reaching ℓ = O(log(1/δ)) and
m = poly(1/δ).
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Observe that the the seed length is Õ(log(n/δ)) if w is any constant. Indeed, we will apply the
Lemma with w = 5, because certain width-5 programs naturally arise in our proof that restrictions
do not significantly increase Err(B, i). To be more precise, we will show that Err(B, i) does not blow
up if we apply a restriction, then apply the MergeEquiv(·) and DelUnreach(·) operators:

Claim 7.33. Let B be a width-3 length-n standard-order ROBP. Let ρ = R(Us) ∈ {0, 1, ⋆}n be
the pseudorandom restriction from Lemma 7.31 with w = 5 and any values for p and δ. Let B′ =
DelUnreach(MergeEquiv(B|ρ)). Then for any i ∈ {0, . . . , n},

E[Err(B′, i)] ≤ Err(B, i) + δ.

Proof. Merging equivalent vertices has no effect on Err, and deleting unreachable vertices can only
decrease Err, so Err(B′, i) ≤ Err(B|ρ, i). Let g be the predicate

g(x) = 1 ⇐⇒ there exist u, v ∈ V(i) such that B←u(x) ̸= B←v(x).

The function g can be computed by a standard-order ROBP that simulates B from all possible start
vertices in V(i) simultaneously. At any given moment, each of the |V(i)| computations is in one of
up to three possible states, so we can compute g by a program of width 33 = 27. We can be more
economical by observing that we only need to keep track of the unordered set of current states, and
furthermore, all singleton sets can be handled by a single “reject” state. Thus, the width is at most
(3

3) + (3
2) + 1 = 5. Consequently, ρ preserves the expectation of g up to error δ. Therefore,

Eρ[Err(B|ρ, i)] = Eρ,U [g|ρ(U )] ≤ E[g] + δ = Err(B, i) + δ.

7.6 Composing Several Rounds of Restrictions

To prove Theorem 7.10, we will iteratively alternate between applying a Forbes-Kelley restriction
and applying the MergeEquiv(·) and DelUnreach(·) operators. The following lemma will help us to
reason about the overall impact of these MergeEquiv(·) and DelUnreach(·) operators. The lemma
says that the program MergeEquiv(DelUnreach(B)) only depends on the functional behavior of
B, not its graphical structure. Indeed, in some sense, MergeEquiv(DelUnreach(B)) is the unique
“minimal” ROBP computing whatever function B computes.

Lemma 7.34 (Characterizing MergeEquiv(DelUnreach(B))). Let B be a standard-order ROBP, and let
B′ = MergeEquiv(DelUnreach(B)). For each 0 ≤ i ≤ n, define an equivalence relation ∼ on {0, 1}i by
the rule

x ∼ y ⇐⇒ ∀z, B(xz) = B(yz).

Let [x] denote the equivalence class containing the string x. Define another standard-order ROBP B′′ as
follows. Layer i consists of the equivalence classes into which {0, 1}i is partitioned by∼. The outgoing edge
from vertex [x] with label b leads to the vertex [xb]. In the final layer, [x] is an accepting state if and only if
B(x) = 1. Then B′ is isomorphic to B′′, i.e., one can be obtained from the other by renaming vertices.

Proof. For each vertex [x] of B′′, let ϕ([x]) be the vertex of B′ that is reached by reading the string
x. This is well-defined, because if x ∼ y, then MergeEquiv(·) merges the two vertices reached by
x and by y. The function ϕ is injective, because B′ computes the same function as B. The function
ϕ is surjective, because every vertex v in B′ is reachable, hence there is some string x such that
ϕ([x]) = v. Finally, it is clear that ϕ preserves the outgoing edges of the programs, the start vertex,
and the set of accepting vertices.
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Claim 7.35 (ℓ → log log(1/δ)). Let B be a width-3 length-n ROBP. Let ρ0, . . . , ρt be independent
copies of the pseudorandom restriction from Lemma 7.31 with w = 5, with p a small enough constant,
and with δ ≤ 1/(log log n)5, for a certain value t = O(log log(n/δ)). Let ρ = ρt ◦ · · · ◦ ρ0 and
B′ = MergeEquiv(DelUnreach(B|ρ)). Then except with probability δ1/4, there is a value i such that:

• B′ is a (3, i, ℓ, m, r) program where ℓ = O(log log(1/δ)), m = O(log5(1/δ)), and r =
O(log(1/δ) · log log(n/δ)).

• Err(B′, i) ≤ δ1/4.

Proof. Let C = 32, let B̂ = DelUnreach(MergeEquiv(B)), and let B0 = MergeEquiv(DelUnreach(B̂|ρ0)).
In the program B̂, the first layer has width 1 and the last layer has width at most 2. Therefore, by
Claim 7.16 and Claim 7.20, except with probability 2δ, B0 is a (3, i0, ℓ0, Cℓ0 , r0) program with i0 = 0,
ℓ0 = O(log(n/δ)), and r0 = 0. Trivially, Err(B0, i0) = 0.

In each subsequent round, we start with a program Bj−1 that is a (3, ij−1, ℓj−1, Cℓj−1 , rj−1)

program and that has no duplicate vertices. Let Bj = DelUnreach(MergeEquiv(Bj−1|ρj)). Let
ℓj = ℓj−1/2 and rj = rj−1 + log(1/δ). By Claim 7.25, except with probability

√
δ/n, the program

MergeEquiv(Bj−1|ρj) is a (3, ij−1, ℓj, m′, rj) program for some m′. Deleting unreachable vertices
cannot create new colliding layers, so Bj is also a (3, ij−1, ℓj, m′, rj) program. This program Bj

has no duplicate vertices and no unreachable vertices, so we may apply Claim 7.30 to conclude
that there exists some ij such that Bj is a (3, ij, ℓj, Cℓj , rj) program, and furthermore

Err(Bj, ij)) ≤ max{δ, Err(Bj, ij−1))} ≤ Err(Bj, ij−1) + δ.

(In the unlikely event that MergeEquiv(Bj−1|ρj is not a (3, ij−1, ℓj, m′, rj) program, then we define
ij = ij−1. This ensures that the equation above still holds.) We terminate the process after t rounds,
where t is the largest value such that ℓt ≥ log ln(1/δ). (That way, the hypotheses of Claim 7.30 are
always satisfied.)

Overall, except with probability 2δ + t
√

δ/n, the program Bt is a (3, i, ℓ, m, r) program, where
i = it, ℓ ≤ 2 log ln(1/δ), m ≤ Cℓ ≤ (ln(1/δ))5, and r = rt ≤ t log(1/δ). Furthermore,

E[Err(Bt, it)] ≤ δ + E[Err(Bt, it−1)] ≤ 2δ + E[Err(Bt−1, it−1)] ≤ · · · ≤ 2tδ.

Therefore, by Markov’s inequality, except with probability
√

2tδ, we have Err(Bt, it) ≤
√

2tδ. Since
2δ + t

√
δ/n +

√
2tδ < δ1/4, the program Bt satisfies the conclusions of the claim.

Finally, we claim that the programs Bt and B′ are isomorphic. To see why, observe first that
B|ρ and Bt−1|ρt compute the same function f : {0, 1}n → {0, 1}, because neither the DelUnreach(·)
operator nor the MergeEquiv(·) operator affects the function that is computed by the program.
Next, observe that even though we defined Bt as DelUnreach(MergeEquiv(Bt−1|ρt), we can equally
well say that Bt = MergeEquiv(DelUnreach(Bt−1|ρt)), because applying MergeEquiv and then
DelUnreach is equivalent to applying DelUnreach followed by MergeEquiv. To conclude, observe
that by Lemma 7.34, B′ and Bt are both isomorphic to a program that is defined only based on the
input-output behavior of f .

7.7 Few Colliding Layers Implies Bounded Weight

We are nearing the end of the proof of Theorem 7.10. The conclusion of Claim 7.35 says that B′ is
a (3, i, ℓ, m, r) program where ℓ, m, r, and Err(B′, i) are small. We now show that it follows that B′

has low weight.
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Claim 7.36 (Few colliding layers =⇒ low weight). Let B be a (w, i, ℓ, m, r) program. Then

Weight(B) ≤ 2w · i · Err(B, i) + O(w2 · (ℓm + r + 1)).

Proof. Let the layers of B be V(0), . . . , V(n). Let e = (u, v) be an edge where v ∈ V(1) ∪ · · · ∪ V(i).
Then

Weight(e) = |E[B←u]−E[B←v| ≤ Pr
U
[B←u(U ) ̸= B←v(U )] ≤ Err(B, i),

where U ∈ {0, 1}n is selected uniformly at random. Therefore, the sum of weights of edges prior
to V(i) is at most 2w · i · Err(B, i).

There are at most ℓm + r colliding layers in the interval (i, n]. Each of these colliding
layers trivially has weight at most 2w. Finally, consider a region between two colliding layers.
Say layers j, j + 1, . . . , k are all non-colliding. Then the results of Braverman, Rao, Raz, and
Yehudayoff [BRRY14] show that the total weight of these layers is at most O(w2).20 The claim
follows.

Combining Claim 7.35 with Claim 7.36 shows that with high probability, the program
MergeEquiv(DelUnreach(B|ρ)) has low weight. The following claim helps us conclude that
DelUnreach(B|ρ) has low weight (even without merging vertices).

Claim 7.37. Let B be a width-w standard-order ROBP. Then

Weight(B) ≤ w ·Weight(MergeEquiv(B)).

Proof. Let b ∈ {0, 1}, let i ∈ [n], and let (u, v) be an edge from layer i − 1 to layer i of B. The
MergeEquiv(·) operator merges u with all vertices in layer i− 1 that are equivalent to u, leading to
a vertex u′. Let (u′, v′) be the outgoing edge of u′ in MergeEquiv(B) that is labeled b. Then

E[B←u] = E[MergeEquiv(B)←u′ ]

and
E[B←v] = E[MergeEquiv(B)←v′ ],

so Weight((u, v)) = Weight((u′, v′)). Therefore, if we let S be the set of edges leading to layer i of
B with label b, and we let T be the set of edges leading to layer i of MergeEquiv(B) with label b,
then there is a function f : S→ T such that

∑
e∈S

Weight(e) = ∑
e∈S

Weight( f (e)) ≤ |S| ·max
e∈T

Weight(e) ≤ w · ∑
e∈T

Weight(e).

Summing over all i and b completes the proof.

Putting everything together proves Theorem 7.10, as we now explain.

Proof of Theorem 7.10. The restriction generator R samples t independent copies ρ0, . . . , ρt of the
pseudorandom restriction from Lemma 7.31 with w = 5, with p a small enough constant, and
with δ = (ε/n)4, where t = O(log log(n/ε)) is the value from Claim 7.35. Then, R outputs their
composition: ρ = ρt ◦ · · · ◦ ρ0.

20Label each vertex v with the acceptance probability from that vertex, E[B←v]. In this way, we can view layers
j, j + 1, . . . , k as a regular “evaluation program” of length k − j, to use the language of Braverman, Rao, Raz, and
Yehudayoff [BRRY14]. All of the vertex labels are in the interval [0, 1], so this regular evaluation program has weight
O(w2) [BRRY14, Lemma 6].
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By Lemma 7.31, each restriction ρi preserves the expectation of B up to error δ. Therefore, ρ
preserves the expectation of B up to error tδ < ε. To show the second conclusion of Theorem 7.10,
let B′ = MergeEquiv(DelUnreach(B|ρ)). By Claim 7.35, with probability 1 − ε, there is a value i
such that B′ is a (w, i, ℓ, m, r) program where w = 3, ℓ = O(log log(n/ε)), m = O(log5(n/ε)), and
r = Õ(log(n/ε)), and furthermore, Err(B′, i) ≤ ε/n. Consequently, by Claim 7.36, we have

Weight(B′) ≤ 2w · i · Err(B′, i) + O(w2 · (ℓm + r + 1)) = Õ(log5(n/ε)).

Finally, by Claim 7.37,

Weight(DelUnreach(B|ρ)) ≤ w ·Weight(B′) = Õ(log5(n/ε)).

Remark 7.38. Theorem 7.10 guarantees that with high probability over ρ, we have Weight(DelUnreach(B|ρ)) ≤
polylog(n/ε). The proof actually shows something stronger, which is that with high probability over
ρ, every standard-order ROBP B′ that computes the function B|ρ satisfies Weight(DelUnreach(B′)) ≤
w · polylog(n/ε), where w is the width of B′.

8 Simplified Non-Black-Box Derandomization of Regular ROBPs

In this section, we give a relatively elementary proof of the main result in Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan’s work [AKMPSV20] (Theorem 1.10). As a reminder, they
gave a nearly-logarithmic space algorithm for estimating the acceptance probability of a given
regular standard-order ROBP.

As explained in Section 3, our proof is based on the concept of singular-value approximation,
introduced by Ahmadinejad, Peebles, Pyne, Sidford, and Vadhan [APPSV23].

Reminder of Definition 3.1. Let W̃, W ∈ Rw×w be doubly stochastic matrices. We say W̃ τ-singular-
value approximates W, denoted as W̃

sv≈ τ W, if for every x, y ∈ Rw,∣∣∣yT
(

W̃−W
)

x
∣∣∣ ≤ τ

4
·
(
∥x∥2

I−WTW + ∥y∥2
I−WWT

)
.

Our new proof of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s main
result [AKMPSV20] can be decomposed into the following two steps. The first step is to show
that a recursive application of (a version of) Rozenman and Vadhan’s “derandomized squaring”
operation [RV05] computes a singular-value approximation to the random walk matrix of the
given regular ROBP in Õ(log n) space with 1/polylog(n) error. Formally:

Theorem 8.1 (Space-efficient moderate-error sv-approximation). There is a deterministic algorithm
that, given a regular width-w length-n standard-order ROBP B, outputs a matrix W̃n←0 ∈ Rw×w such that
W̃n←0

sv≈ τ0 Wn←0, where Wn←0 is defined from B as in Section 4 and τ0 = 1/(64 · log2 n). Furthermore,
the algorithm uses Õ(log(nw)) bits of space.

Theorem 8.1 readily follows from the analysis by Ahmadinejad, Peebles, Pyne, Sidford, and
Vadhan [APPSV23]. For the sake of completeness, we include our own proof of Theorem 8.1, but
we defer it to Appendix A. By applying Theorem 8.1 once for each edge (ℓ, r) ∈ E(SCn), we
can construct21 an approximation ensemble W̃ that has moderate error in the following “singular
value” sense:

21That is, to construct W̃r←ℓ, we apply Theorem 8.1 to the branching program obtained from B by replacing the edges
prior to layer ℓ and subsequent to layer r with trivial identity edges.
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Definition 8.2 (τ-sv-accurate). Let B be a width-w length-n standard-order regular ROBP, and let
W̃ = {W̃r←ℓ : (ℓ, r) ∈ E(SCn)} be an approximation ensemble. We say W̃ is τ-sv-accurate (with
respect to B), if for every (ℓ, r) ∈ E(SCn), the matrix W̃r←ℓ is doubly stochastic, and W̃r←ℓ

sv≈ τ Wr←ℓ,
where Wr←ℓ is defined from B as in Section 4.

The second step of our proof of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan’s
main result [AKMPSV20] is an error reduction procedure. Given a regular ROBP B, and given an
approximation ensemble that is τ-sv-accurate with a moderate error τ = 1/polylog(n), we show
how to compute the acceptance probability E[B] to within any tiny error ±ε, using space that is
doubly logarithmic in 1/ε.

Theorem 8.3 (Non-black-box error reduction for regular ROBPs). Let B be a width-w length-
n standard-order regular ROBP. Let W be an approximation ensemble that is τ0-sv-accurate, where
τ0 = 1/(64 · log2 n). There is a deterministic algorithm that, given B, W̃ , and ε ∈ (0, 1), outputs a
number that is within ±ε of E[B]. The algorithm uses O(log(nw) · log log(nw/ε)) bits of space.

Combining the two algorithms above gives the desired algorithm for estimating the acceptance
probability of a given regular ROBP, i.e., it proves Theorem 1.10, which we restate below as a
reminder.

Theorem 8.4 (Theorem 1.10, restated). There is a deterministic algorithm that uses Õ(log(wn) ·
log log(1/ε)) bits of space and outputs a value that is within ±ε of E[B], given a width-w length-n
standard-order regular ROBP B and a value ε ∈ (0, 1) as inputs.

The remainder of this section consists of the proof of Theorem 8.3.

8.1 The F-Seminorm

The proof of Theorem 8.3 uses our error reduction framework described in Section 4. As explained
in Section 4, the regular branching program B has a Laplacian matrix L, and the ensemble W̃
induces matrices Am, ∆W, etc. For convenience, we will assume that the length-one walks in W̃
have zero error, i.e., W̃j+1←j = Wj+1←j for each j ∈ {0, . . . , n− 1}. This assumption is without loss
of generality, because we can compute Wj+1←j from B exactly using O(log(nw)) bits of space.

In order to use our error reduction framework, we must show that ∥L−1∆W∥ is moderately
small, where ∥ · ∥ is some extended submultiplicative matrix seminorm (see Theorem 4.4). In
Section 6, we chose ∥ · ∥ = ∥ · ∥∞. In this section, we will use a more sophisticated seminorm, the
“F-seminorm,” which takes into account the structure of the branching program B.

Toward defining the F-seminorm, let Φ : Rw → R≥0 be the function

Φ(u) := ∥u∥2
2.

We use this notation Φ(u) because we think of Φ(u) as a “potential function.” This perspective
will be crucial for our analysis. For a vector u ∈ Rw and 0 ≤ ℓ ≤ r ≤ n, we define

∥u∥2
ℓ� r

= ∥u∥2
I−WT

r←ℓWr←ℓ
= Φ(u)−Φ(Wr←ℓ · u).

Intuitively, the quantity above measures the drop of potential starting from the ℓ-th layer with
vector u and moving along Wr←ℓ to arrive at the r-th layer with vector Wr←ℓ · u. Note that because
B is a regular branching program, the matrix Wr←ℓ is doubly stochastic, and hence ∥ · ∥ℓ� r

is indeed
a seminorm.
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Let x ∈ R(n+1)w, and write it as a block vector x = (x[0], . . . , x[n]), where x[j] ∈ Rw×w is the
restriction of x to the j-th layer of the branching program B. Recall from Definition 4.1 that Uk is
the set of multiples of 2k up to n, i.e.,

Uk = {i · 2k : i ∈ Z∩ [0, n/2k]} = {0, 2k, 2 · 2k, 3 · 2k, . . . , n}.

We define the Fk-seminorm of x as

∥x∥2
Fk

= ∑
j∈Uk

∥∥∥x[j]
∥∥∥2

j� j + 2k
.

In particular, in the corner case when j = n, we let Wn+2k←n = 0, so the term is simply ∥x[n]∥2
2.

By the equation above, we see that ∥x∥2
Fk

measures the total amount of potential drop made in 2k

steps from all the sub-vectors of x on the layers in Uk.
Next, we define the F-seminorm of a vector x as22

∥x∥2
F =

log n

∑
k=1
∥x∥2

Fk
.

Finally, this vector seminorm ∥ · ∥F induces an extended submultiplicative matrix seminorm ∥ · ∥F,
as explained in Definition 2.4:

∥M∥F = min{λ ∈ R∪ {∞} : ∀x, ∥Mx∥F ≤ λ · ∥x∥F}.

Our main job is to prove the following lemma.

Lemma 8.5 (Main Lemma). Let B be a width-w length-n standard-order regular ROBP. Let W̃ be a τ-
sv-accurate approximation ensemble, where τ ∈ (0, 1

64·log2 n
]. Let L and ∆W be defined from B and W̃ as

in Section 4. Then ∥∥∥L−1∆W
∥∥∥2

F
≤ 4 · log2 n · τ.

Lemma 8.5 enables us to use our error reduction framework. After proving Lemma 8.5, we
will show that this error reduction framework implies Theorem 8.3.

8.2 Bounding ∥L−1∆W(i)x∥Fk When i ≤ k

The proof of Lemma 8.5 relies on the following simple lemma regarding singular-value approxi-
mation, whose proof can be found in Appendix C.

Lemma 8.6. Let W1, W2, W̃1, W̃2, W̃ be doubly stochastic matrices. Let W = W2W1. Assume that
W̃1

sv≈ ε W1, W̃2
sv≈ ε W2, and W̃

sv≈ ε W. Then

W2W1 + (W̃− W̃2W̃1)
sv≈ 2ε(1+ε/4) W2W1.

In other words, for all vectors x, y,∣∣∣yT
(

W̃− W̃2W̃1

)
x
∣∣∣ ≤ ε · (1 + ε/4)

2
·
(
∥x∥2

I−WTW + ∥y∥2
I−WWT

)
.

22In the definition of the F-seminorm, we do not include a k = 0 term. This is essentially for convenience, and it
corresponds to our assumption that W̃j+1←j = Wj+1←j for each j.
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The proof of Lemma 8.5 also relies on the following simple fact, which says that when taking
two consecutive steps of a random walk using transition matrices W and WT, the decrease in
potential of the latter step is always smaller than that of the former.

Fact 8.7. For any matrix W ∈ Rw×w and z ∈ Rw, we have

Φ(z)−Φ(Wz) ≥ Φ(Wz)−Φ(WTWz).

Note that if W is doubly stochastic, the inequality above can also be written as

∥z∥2
I−WTW ≥ ∥Wz∥2

I−WWT .

Proof. Because I−WTW is symmetric, we have23

(Φ(z)−Φ(Wz))− (Φ(Wz)−Φ(WTWz)) = zT
[
(I−WTW)− (WTW− (WTW)2)

]
z

= zT(I−WTW)2z

=
∥∥∥(I−WTW) · z

∥∥∥2

2
≥ 0.

The core of the proof of Lemma 8.5 is the following variant of Lemma 8.5, in which we focus
on the “level-i” and “level-k” edges in the shortcut graph SCn.

Lemma 8.8. Let B and W̃ be as in Lemma 8.5. Let L−1 and ∆W(i) be defined as in Section 4. For every
i, k ∈ [log n] and every x ∈ R(n+1)w, we have∥∥∥L−1∆W(i)x

∥∥∥2

Fk
≤ 4τ · ∥x∥2

Fi
.

In the remainder of this subsection, we focus on proving Lemma 8.8 in the special case i ≤ k.
We handle the case i > k in the next subsection.

Proof of Lemma 8.8 assuming i ≤ k. Let z = L−1∆W(i)x, so our goal is to bound ∥z∥2
Fk

. Like before,
we write x = (x[0], . . . , x[n]), where x[i] is the restriction of x to layer i of B, and similarly
z = (z[0], . . . , z[n]). We observe the following recursion formula: for every j ∈ Uk \ {n}, we have

z[j+2k ] = Wj+2k←j · z[j] + ∑
ℓ∈Ui∩[j,j+2k)

Wj+2k←ℓ+2i · ∆W(i)
(ℓ+2i)←ℓ

x[ℓ].

For convenience, we define Wn+2k←n to be the zero matrix and z[n+2k ] to be the zero vector, so the
equation above holds even for j = n. For each layer j ∈ Uk, we define

z̃[j+2k ] = Wj+2k←j · z[j] and s[j+2k ] = ∑
ℓ∈Ui∩[j,j+2k)

Wj+2k←ℓ+2i · ∆W(i)
(ℓ+2i)←ℓ

x[ℓ],

so that z[j+2k ] = z̃[j+2k ] + s[j+2k ]. Then by definition,

∥z∥2
Fk

= ∑
j∈Uk

∥z[j]∥2
j� j + 2k = ∑

j∈Uk

(
Φ(z[j])−Φ(z̃[j+2k ])

)
︸ ︷︷ ︸

(∗)

= Φ(z[0])−Φ(z[n+2k ]) + ∑
j∈Uk

(
Φ(z[j+2k ])−Φ(z̃[j+2k ])

)
= ∑

j∈Uk

(
Φ(z[j+2k ])−Φ(z̃[j+2k ])

)
︸ ︷︷ ︸

(∗∗)

. (15)

23We used ChatGPT as part of our process for developing this proof.
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(Quantity (∗) is the decrease in potential at step j. We think of quantity (∗∗) as the amount of
error in step j. See Figure 3.) Fix j ∈ Uk. We now turn to bounding quantity (∗∗):

Φ(z[j+2k ]) = Φ(z̃[j+2k ] + s[j+2k ]) = Φ(z̃[j+2k ]) + 2⟨z̃[j+2k ], s[j+2k ]⟩+ ⟨s[j+2k ], s[j+2k ]⟩. (16)

To bound the last two terms, we use the following claim:

Claim 8.9. For every u ∈ Rw, we have∣∣∣⟨u, s[j+2k ]⟩
∣∣∣ ≤ τ · ∥u∥2

I−Wj+2k←jW
T
j+2k←j

+ τ · ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i
.

Proof. By the definition of s[j+2k ],

∣∣∣⟨u, s[j+2k ]⟩
∣∣∣ =

∣∣∣∣∣∣ ∑
ℓ∈Ui∩[j,j+2k)

(uTWj+2k←ℓ+2i) · (∆W(i))(ℓ+2i)←ℓ · x[ℓ]
∣∣∣∣∣∣

≤ ∑
ℓ∈Ui∩[j,j+2k)

∣∣∣(uTWj+2k←ℓ+2i) · (∆W(i))(ℓ+2i)←ℓ · x[ℓ]
∣∣∣

SinceW is τ-sv-accurate, and τ ≤ 1
64 , by Lemma 8.6,

∣∣∣⟨u, s[j+2k ]⟩
∣∣∣ ≤ τ ·

 ∑
ℓ∈Ui∩[j,j+2k)

∥WT
j+2k←ℓ+2i u∥2

I−W
ℓ+2i←ℓ

WT
ℓ+2i←ℓ

+ ∑
ℓ∈Ui∩[j,j+2k)

∥x[ℓ]∥2
ℓ� ℓ+ 2i


We further observe that the former sum in the right-hand side is telescopic:

∑
ℓ∈Ui∩[j,j+2k)

∥WT
j+2k←ℓ+2i u∥2

I−W
ℓ+2i←ℓ

WT
ℓ+2i←ℓ

= ∥u∥2
I−Wj+2k←jW

T
j+2k←j

,

which completes the proof of Claim 8.9.

We now continue the proof of Lemma 8.8 where we left off (Equation 16). By Claim 8.9 with
u = z̃[j+2k ], we have

2|⟨z̃[j+2k ], s[j+2k ]⟩| ≤ 2τ · ∥z̃[j+2k ]∥2
I−Wj+2k←jW

T
j+2k←j

+ 2τ · ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i

= 2τ · ∥Wj+2k←j · z[j]∥2
I−Wj+2k←jW

T
j+2k←j

+ 2τ · ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i

(Def. of z̃[j+2k ])

≤ 2τ · ∥z[j]∥2
j� j + 2k + 2τ · ∑

ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i
. (Fact 8.7)

We also use Claim 8.9 on u = s[j+2k ] to obtain

⟨s[j+2k ], s[j+2k ]⟩ ≤ τ · ∥s[j+2k ]∥2
I−Wj+2k←jW

T
j+2k←j

+ τ · ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i

≤ τ · ⟨s[j+2k ], s[j+2k ]⟩+ τ · ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i
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and thus

⟨s[j+2k ], s[j+2k ]⟩ ≤ τ

1− τ
· ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i

≤ 1.5τ ∑
ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i
,

since τ ≤ 1
64 . Plugging the above into (16), we have∣∣∣Φ(z[j+2k ])−Φ(z̃[j+2k ])

∣∣∣ ≤ 2τ · ∥z[j]∥2
j� j + 2k + 3.5τ · ∑

ℓ∈Ui∩[j,j+2k)

∥∥∥x[ℓ]
∥∥∥2

ℓ� ℓ+ 2i
.

Therefore, summing up and using (15), we get

∥z∥2
Fk
≤ ∑

j∈Uk

∣∣∣Φ(z[j+2k ])−Φ(z̃[j+2k ])
∣∣∣ ≤ 2τ

(
∑

j∈Uk

∥z[j]∥2
j� j + 2k

)
+ 3.5τ

(
∑
ℓ∈Ui

∥x[ℓ]∥2
ℓ� ℓ+ 2i

)
= 2τ∥z∥2

Fk
+ 3.5τ∥x∥2

Fi
.

Since τ ≤ 1
64 , it follows that

∥z∥2
Fk
≤ 3.5τ

1− 2τ
· ∥x∥2

Fi
≤ 4τ · ∥x∥2

Fi
,

completing the proof of Lemma 8.8 in the case k ≥ i.

8.3 Bounding ∥L−1∆W(i)x∥Fk When i > k

In the previous subsection, we proved Lemma 8.8 under the assumption that i ≤ k. To handle the
case i > k, we reduce it to the case i = k:

Lemma 8.10. Under the same setup as Lemma 8.8, for every i, k ∈ [log n] such that k < i, we have∥∥∥L−1∆W(i)x
∥∥∥2

Fk
=
∥∥∥L−1∆W(i)x

∥∥∥2

Fi
.

Proof. Let β = ∆W(i)x. The key observation here is that β[j] is only non-zero for those j ∈ Ui.
Letting z = L−1β, our goal is to show ∥z∥2

Fk
= ∥z∥2

Fi
.

Since we wish to compute ∥z∥2
Fk

, we are only interested in z[ℓ] for those ℓ ∈ Uk. First, we have
z[0] = x[0]. From the definition z = L−1β, for every j ∈ Uk that j ≥ 2k, we have

z[j] =

{
Wj←(j−2k) · z[j−2k ] j ∈ Uk \Ui

Wj←(j−2k) · z[j−2k ] + β[j] j ∈ Ui.

In particular, for ℓ ∈ Uk, let j be the largest element of Ui such that j ≤ ℓ. We have

z[ℓ] = Wℓ←j · z[j]. (17)

By the definition of Fk and Fi, we have

∥z∥2
Fk

= ∑
j∈Uk

∥∥∥z[j]
∥∥∥2

j� j + 2k
and ∥z∥2

Fi
= ∑

j∈Ui

∥∥∥z[j]
∥∥∥2

j� j + 2i
.

59



For every j ∈ Ui, by the recursion (17), it holds that

∑
ℓ∈Uk∩[j,j+2i)

∥z[ℓ]∥2
ℓ� ℓ+ 2k = ∑

ℓ∈Uk∩[j,j+2i)

∥∥∥Wℓ←j · z[j]
∥∥∥2

ℓ� ℓ+ 2k

= ∑
ℓ∈Uk∩[j,j+2i)

∥∥∥Wℓ←j · z[j]
∥∥∥2

2
−
∥∥∥Wℓ+2k←j · z[j]

∥∥∥2

2

=
∥∥∥z[j]

∥∥∥2

2
−
∥∥∥Wj+2i←j · z[j]

∥∥∥2

2
(Telescoping sum)

=
∥∥∥z[j]

∥∥∥2

j� j + 2i

Summing up j ∈ Ui proves the lemma.

Combining Lemma 8.10 with the proof in the previous subsection completes the proof of
Lemma 8.8. Having proven Lemma 8.8, Lemma 8.5 readily follows:

Proof of Lemma 8.5. Fix k ∈ [log n]. By subadditivity of the norm, we have∥∥∥L−1∆Wx
∥∥∥

Fk
≤

log n

∑
i=1

∥∥∥L−1∆W(i)x
∥∥∥

Fk

≤
√

log n ·
(

log n

∑
i=1

∥∥∥L−1∆W(i)x
∥∥∥2

Fk

)1/2

≤
√

log n ·
(

4τ ·
log n

∑
i=1
∥x∥2

Fi

)1/2

. (by Lemma 8.8)

Hence, ∥∥∥L−1∆Wx
∥∥∥2

Fk
≤ log n · 4τ · ∥x∥2

F .

Summing up k ∈ [log(n)], we get,∥∥∥L−1∆Wx
∥∥∥2

F
≤ log2 n · 4τ · ∥x∥2

F .

8.4 Applying the Error Reduction Framework

Lemma 8.5 allows us to apply our error reduction framework. Recall from Section 4 that our
framework gives us a matrix Am such that ∥I−AmL∥F is low. The following lemma translates this
F-seminorm bound into a more useful bound.

Lemma 8.11. Let B, W̃ , and τ be as in Lemma 8.5. Let m ∈ N and let Am be as defined in Section 4. Let
V = V(0) ∪ · · · ∪V(n) be the vertices of B. Let b, y ∈ RV , where Supp(b) ⊆ V(0) and Supp(y) ⊆ V(n).
Then ∣∣∣yTAmb− yTL−1b

∣∣∣ ≤ (4 ·
√

τ · log n)(m+1) · ∥y∥2 · ∥b∥2.

Proof. Let x∗ = L−1b. By the definition of the ∥ · ∥Fi norm, we have ∥(Amb − x∗)[n]∥2 ≤
∥Amb− x∗∥Fi for all i ∈ [log n]. Consequently,

∥(Amb− x∗)[n]∥2 ≤
1√

log n
· ∥Amb− x∗∥F.
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By Lemma 8.5, ∥L−1∆W∥F ≤ 2
√

τ · log n ≤ 1/4. By Theorem 4.4, it follows that ∥I−AmL∥F ≤ α,
where

α = (4 ·
√

τ · log n)(m+1).

Consequently, ∥x∗ −AmLx∗∥F ≤ α · ∥x∗∥F, i.e.,

∥Amb− x∗∥F ≤ α · ∥x∗∥F = α ·

√√√√log n

∑
i=1
∥x∗∥2

Fi
.

By a telescoping sum, for every i ∈ [log n], we have

∥x∗∥2
Fi
= ∑

j∈Ui

∥∥∥Wj←0 · b[0]
∥∥∥2

j� j + 2i
= ∑

j∈Ui

[∥∥∥Wj←0 · b[0]
∥∥∥2

2
−
∥∥∥Wj+2i←0 · b[0]

∥∥∥2

2

]
≤
∥∥∥b[0]

∥∥∥2

2
= ∥b∥2

2.

Chaining everything together, we get

∥(Amb− x∗)[n]∥2 ≤
1√

log n
· α ·

√
log n · ∥b∥2 = α · ∥b∥2,

and hence yT(Amb− L−1b) ≤ α · ∥y∥2 · ∥b∥2.

Finally, Theorem 8.3 readily follows from Lemma 8.11:

Proof of Theorem 8.3. Let b ∈ {0, 1}(n+1)w be the indicator vector for the start state of B, and let
y ∈ {0, 1}(n+1)·w be the indicator vector for the accepting states of B. Note that ∥b∥2 = 1 and
∥y∥2 ≤

√
w. By Lemma 8.11, it suffices to compute yTAmb for m = log(∥y∥2/ε) ≤ log(w/ε), which

can be done in Õ(log(nw) · log log(1/ε)) space; see Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan’s work for details [AKMPSV20, Section 7.3].

9 Improved WPRG for Unbounded-Width Permutation ROBPs

In this section, we present our improved WPRG for unbounded-width standard-order permuta-
tion ROBPs (Theorem 1.9). The WPRG construction is closely related to the non-black-box deran-
domization algorithm for regular ROBPs that we presented in the previous section.

9.1 PRG with Moderate SV-Error

Recall that the first step of the non-black-box derandomization algorithm was showing that re-
cursively applying a version of the derandomized square operation gives a moderate-error sv-
approximation (Theorem 8.1). In the context of permutation programs, it is well known [RV05;
HPV21] that the derandomized square operation corresponds to the Impagliazzo-Nisan-Wigderson
(INW) PRG [INW94]. Consequently, the INW generator fools permutation programs with moder-
ately low “sv-error,” as defined below:

Definition 9.1 (Fooling with sv-error). Let G : {0, 1}s → {0, 1}n be a PRG. LetF be a class of functions
B : {0, 1}n → {0, 1}w×w. We say that G fools F with sv-error ε if for every B ∈ F , if we let W = E[B]
and W̃ = Ez∈{0,1}s [B(G(z))], then W̃

sv≈ ε W.

Specifically, the INW generator achieves the following parameters:

61



Theorem 9.2 (PRG for permutation programs with moderate sv-error). For every n ∈N and τ > 0,
there is an explicit PRG G : {0, 1}s → {0, 1}n with seed length

s = O (log n · (log log n + log(1/τ)))

that fools unbounded-width standard-order permutation ROBPs with sv-error τ.

Like Theorem 8.1, Theorem 9.2 readily follows from the analysis by Ahmadinejad, Peebles,
Pyne, Sidford, and Vadhan [APPSV23]. See Appendix B. We remark that Theorem 9.2 strengthens
Hoza, Pyne, and Vadhan’s analysis of the INW generator [HPV21], because singular-value
approximation implies entrywise approximation and “unit-circle” approximation.

9.2 Low-Error High-Seed-Length WPRG: Independent Seeds

To construct our low-error WPRG, we will combine Theorem 9.2 with an error reduction
procedure. Fix ε > 0, and fix some PRG G : {0, 1}s → {0, 1}n that fools unbounded-width
standard-order permutation ROBPs with sv-error τ, where ε < τ < 1/polylog(n). We will show
hot convert G into a WPRG that fools unbounded-width length-n single-accept-state standard-
order permutation ROBPs with error ε and seed length

Õ
(

s +
log n · log(1/ε)

log(1/τ)
+ log(1/ε)

)
.

To conclude, we will choose τ ≈ 2−
√

log(1/ε).
The first stage of this error reduction procedure corresponds to the error reduction step

of our non-black-box derandomization algorithm from Section 8. For our non-black-box
derandomization algorithm, we used our general error reduction framework described in
Section 4. To construct a WPRG, we instead apply the black-box version of our error reduction
framework, described in Section 5. In particular, Section 5 explains how to convert G into a
pseudodistribution X (m). We now argue that X (m) fools permutation ROBPs with low entrywise
error.

Claim 9.3 (X (m) fools permutation ROBPs with low entrywise error). Let n ∈ N, let τ ∈
(0, 1

64 log2 n
), and let G be a PRG that fools unbounded-width length-n standard-order permutation ROBPs

with sv-error τ. Let m ∈N, let X (m) be the corresponding pseudodistibution constructed in Section 5, and
let

α = (4 ·
√

τ · log n)(m+1).

Let B be an unbounded-width length-n standard-order permutation ROBP, and let B : {0, 1}n →
{0, 1}w×w be the corresponding matrix-valued function. Then X (m) fools B with entrywise error α, i.e., for
every u, v, we have ∣∣∣Ẽ[B(X (m))]v,u −E[B]v,u

∣∣∣ ≤ α.

Proof. Recall from Section 5 that G and B induce an approximation ensemble W̃ = {W̃j←i :
(i, j) ∈ E(SC)}. Because G fools B with sv-error τ, and more generally each prefix Gi→j fools the
subprogram Bj←i with sv-error τ, the ensemble W̃ is τ-sv-accurate with respect to B. Therefore,
we may apply Lemma 8.11. By letting b, y ∈ R(n+1)·w be the indicator vectors for the states (0, u)
and (n, v) respectively, Lemma 8.11 gives us

|(Am − L−1)(n,v),(0,u)| ≤ α,
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where L is the Laplacian matrix of B and Am is defined in Section 4. As explained in Section 4,
E[B] is the (n, 0) block of L−1, and as explained in Section 5 (Claim 5.7), Ẽ[B(X (m))] is the (n, 0)
block of Am.

9.3 Final WPRG Construction: Correlated Seeds

Claim 9.3 shows that X (m) fools unbounded-width single-accept-state permutation ROBPs with
low error. Now, similar to Section 6.3, we show how to decrease the seed length of X (m) by using
an additional INW PRG [INW94]. This step is almost exactly the same as our construction and
analysis Section 6.3; the main difference is that we invoke Hoza, Pyne, and Vadhan’s analysis of
the INW PRG [HPV21]. We present further details below.

The final WPRG construction. Just like in Section 6.3, we can write X (m) in the form

X (m) =
K

∑
i=1

σi · ∑
y(1),...,y(r)∈{0,1}s

2−sr · Gi,1(y(1)) ◦ · · · ◦ Gi,r(y(r)),

where K = nO(m), K is a power of two, r = O(m log n), σi ∈ {−1, 0,+1}, Gi,j maps {0, 1}s →
{0, 1}ni,j for some 0 ≤ ni,j ≤ n, and ◦ denotes string concatenation. This time, let Y be
a distribution over ({0, 1}s)r that γ-fools unbounded-width standard-order permutation ROBPs
over the alphabet {0, 1}s that have a single accepting vertex, where γ = ε

2K . Hoza, Pyne, and
Vadhan [HPV21] show (using the INW construction [INW94]) that we can explicitly sample Y
using a seed of length

q = O(s + (log(1/γ) + log log r) · log r) = O(s + log(1/γ) · log r).

Just like in Section 6.3, write Y using pseudodistribution notation as

Y = ∑
z∈{0,1}q

2−q · y(1)z ◦ · · · ◦ y(r)z ,

where y(j)
z ∈ {0, 1}s for each j ∈ [r]. Our final pseudodistribution Z over {0, 1}n is given by the

formula

Z =
K

∑
i=1

σi · ∑
z∈{0,1}q

2−q · Gi,1(y
(1)
z ) ◦ · · · ◦ Gi,r(y

(r)
z ).

Error and seed length. Let B be an unbounded-width length-n standard-order permutation
ROBP with a single accepting vertex. Just like in Section 6.3, one can show that∣∣∣E[B(Z)]−E[B(X (m))]

∣∣∣ ≤ ε/2.

We will choose τ < 1/(64 · log3 n) and m = Θ( log(1/ε)
log(1/τ)

), so the error α in Claim 9.3 is at most ε/2.
This ensures that Z fools B with error ε.

The pseudodistribution Z corresponds to a WPRG with seed length

log K + q = O(s + log K + log(1/γ) · log r)
= O(s + (m log n + log(1/ε)) · (log m + log log n))

≤ O
(

s +
(

log n · log(1/ε)

log(1/τ)
+ log(1/ε)

)
· log log(n/ε)

)
.
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We take G to be the PRG from Theorem 9.2, so s = O(log n · (log(1/τ) + log log n)). Furthermore,
we choose

τ = min

{
2−
√

log(1/ε)·log log(n/ε),
1

64 log3 n

}
.

Therefore, the overall seed length becomes

O
(

log n ·
√

log(1/ε) · log log(n/ε) + log(1/ε) · log log(n/ε)

)
,

completing the proof of Theorem 1.9.
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A Derandomized Products and Singular-Value Approximation

In this section, we prove Theorem 8.1. In fact, we will prove the more general version below.

Theorem A.1 (General version of Theorem 8.1). There is a deterministic algorithm that, given a regular
width-w length-n standard-order ROBP B and a value τ ∈ (0, 1), outputs a matrix W̃n←0 ∈ Rw×w

such that W̃j←0
sv≈ τ Wn←0, where Wn←0 is defined from B as in Section 4. The algorithm uses

Õ(log(nw) · log(1/τ)) bits of space.

The algorithm will essentially be a repeated application of Rozenman and Vadhan’s deran-
domized squaring operation [RV05]. (We assume that n is a power of two; this is without loss
of generality because we can always pad B with identity transitions without changing its func-
tionality.) This is essentially the same as the base case algorithm used by Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan [AKMPSV20, Section 7.3]. We reiterate that the fact that
the iterated derandomized square computes a moderate-error sv-approximation already follows
from the work of Ahmadinejad, Peebles, Pyne, Sidford, and Vadhan [APPSV23]; we include our
proof primarily for the sake of having a relatively self-contained presentation.

A.1 Labelings, Rotation Maps, and Derandomized Products

To describe the algorithm, we first need to recall (variations of) some standard definitions from
the literature [RVW02; RV05].
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Definition A.2 (Regular bigraph). A bigraph is a triple G = (U, V, E), where U and V are sets of
vertices and E is a set of directed edges going from U to V. The transition matrix of G is the matrix
W ∈ RV×U in which Wv,u is the fraction of outgoing edges from u that lead to v. We say that G is
d-regular if each vertex u ∈ U has precisely d outgoing edges and each vertex v ∈ V has precisely d
incoming edges. (In this case, W is doubly stochastic.)

Definition A.3 (One-way labeling). A one-way labeling of a d-regular bigraph G = (U, V, E) assigns
each edge e ∈ E a label in [d] such that for every u ∈ U, the outgoing edges of u have distinct labels. If G
has a one-way labeling, then we write G[u, i] = v when there is an edge (u, v) with label i.

Definition A.4 (Two-way labeling). A two-way labeling of a d-regular bigraph G = (U, V, E) is a
labeling of the edges in G such that

1. Every edge (u, v) has two labels in [d], an “outgoing label” and an “incoming label.”

2. For every vertex u ∈ U, the outgoing labels of the outgoing edges of u are distinct.

3. For every vertex v ∈ V, the incoming labels of the incoming edges of v are distinct.

A two-way labeling induces a one-way labeling by considering only the outgoing labels.

Definition A.5 (Rotation map). Let G = (U, V, E) be a d-regular bigraph with a two-way labeling. The
rotation map RotG : U × [d] → V × [d] is defined as follows: RotG(u, i) = (v, j) if there is an edge
(u, v) ∈ E with outgoing label i and incoming label j. Note that in this case, we have G[u, i] = v.

As mentioned previously, our algorithm is based on the “derandomized square” construction
by Rozenman and Vadhan [RV05]. We slightly generalize it to a “derandomized product”
construction.

Definition A.6 (Derandomized Product). Let G1 = (U, V, E1) and G2 = (V, W, E2) be d-regular
bigraphs, where G1 has a two-way labeling and G2 has a one-way labeling. Let H = ([d], [d], EH) be
a c-regular bigraph with a one-way labeling. The derandomized product G2 p⃝H G1 = (U, W, E) is
(c · d)-regular bigraph with a one-way labeling defined as follows. To compute (G2 p⃝H G1)[v0, (i0, j0)]
where v0 ∈ U and (i0, j0) ∈ [d]× [c]:

1. Let (v1, i1) = RotG1(v0, i0).

2. Let i2 = H[i1, j0].

3. Let v2 = G2[v1, i2].

4. Output (G2 p⃝H G1)[v0, (i0, j0)] := v2.

Remark A.7 (Incoming edge labels for G2 p⃝H G1). Ultimately, we wish to apply Definition A.6
recursively. However, Definition A.6 requires that G1 has a two-way labeling, whereas it merely defines a
one-way labeling for G2 p⃝H G1. If we wish to apply the operation multiple times, say G3 p⃝H′ (G2 p⃝H G1),
we must first assign incoming edge labels to G2 p⃝H G1.

Following prior work going back to Rozenman and Vadhan’s paper [RV05], we will study two distinct
methods of assigning incoming edge labels to G2 p⃝H G1. One method (explained in Section A.4) works
in the general setting of regular ROBPs, but unfortunately it leads to non-black-box algorithms. The other
method (explained in Appendix B) can be interpreted as a black-box algorithm – indeed, it is essentially
equivalent to the Impagliazzo-Nisan-Wigderson PRG [INW94] – but unfortunately it only works in the
special case of permutation ROBPs.

Before explaining either of these methods of assigning incoming edge labels, we first analyze the
derandomized product operation in a way that is agnostic about the issue of incoming edge labels.
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Remark A.8. Murtagh, Reingold, Sidford, and Vadhan also defined a “derandomized product” operation
and used the notation p⃝ [MRSV21]. Our definition is similar but not identical to theirs.

A.2 The Derandomized Product SV-Approximates the Exact Product

Recall that the derandomized product G2 p⃝H G1 is parameterized by an auxiliary graph H. We
will take H to be a spectral expander, a concept that we review in the two definitions below.

Definition A.9 (Complete bigraph). For each d ∈N, let Kd,d = ([d], [d], [d]× [d]) denote the complete
bigraph, and let Jd×d denote the transition matrix of Kd,d. That is, Jd×d is a d× d matrix, and every entry
of Jd×d is 1/d. When the dimension d is clear from context, we simply write J.

Definition A.10 (Spectral expansion [Mih89]). Let H = (U, V, EH) be a regular bigraph with
transition matrix H ∈ RV×U , where |U| = |V|. We define

λ(H) = ∥J−H∥2.

The spectral expansion of H is the quantity 1− λ(H).

(Definition A.10 considers the general case of a c-regular bigraph, but our expanders will
always be induced by c-regular undirected graphs that are expanders in the standard spectral
sense.)

Definition A.11 (Parallel and perpendicular components). Let 1d denote the d-dimensional vector
in which every coordinate is 1. When the dimension d is clear from context, we simply write 1. For a
vector z ∈ Rd, let z∥ and z⊥ denote the projections of z onto the subspace parallel and perpendicular to 1d,
respectively. Formally, we define z∥ = J · z and z⊥ = z− z∥.

Note that if H is a regular bigraph with transition matrix H, then H · 1 = 1, so

∥(J−H) · z∥2 ≤ λ(H) · ∥z⊥∥2.

We will use the following additional pieces of notation to analyze the derandomized product.

Definition A.12 (Transpose bigraph). If G = (U, V, E) is a bigraph, then the transpose bigraph GT is
defined by reversing the direction of each edge e ∈ E. If G has a two-way labeling, then we define a two-way
labeling on GT by the rule

RotGT ≡ (RotG)
−1.

Definition A.13 (Restrictions with respect to v). Let G1 = (U, V, E1) and G2 = (V, W, E2) be d-
regular bigraphs. Assume that G1 has a two-way labeling and G2 has a one-way labeling. Let x ∈ RU and
y ∈ RW be vectors over the vertices in U and W respectively. For each v ∈ V, we define the restriction of
y with respect to v, denoted y(v) ∈ Rd, to be the subvector of y indexed by out-neighbors of v, i.e.,

y(v)i = yG2[v,i] for every i ∈ [d].

Similarly, we define the restriction of x with respect to v, denoted x(v) ∈ Rd, to be the subvector of x
indexed by in-neighbors of v, i.e.,

x(v)i = xGT
1 [v,i] for every i ∈ [d].
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Remark A.14. For convenience, we write x(v)∥ to denote the parallel component of the restriction of x with

respect to v, i.e., x(v)∥ = (x(v))∥. Note that in general, this vector (the parallel component of the restriction)

is different than (x∥)(v) (the restriction of the parallel component). Similarly, we omit parentheses in the

expressions x(v)⊥ , y(v)∥ , and y(v)⊥ .

The following lemma is the key to analyzing the derandomized product operation.

Lemma A.15 (Approximation property of derandomized product). Let G1 = (U, V, E1) and
G2 = (V, W, E2) be d-regular bigraphs, where G1 has a two-way labeling and G2 has a one-way labeling.
Let H = ([d], [d], EH) be a regular bigraph with a one-way labeling. Let W1 and W2 be the transition
matrices of G1 and G2 respectively, and let W̃ be the transition matrix of G2 p⃝H G1. Then for every
x ∈ RU and y ∈ RW , we have∣∣∣yT(W2W1 − W̃)x

∣∣∣ ≤ λ(H)

d
· ∑

v∈V

∥∥∥x(v)⊥
∥∥∥

2
·
∥∥∥y(v)⊥

∥∥∥
2

.

Proof. Let H be the transition matrix of H. By Definition A.6, we have

yTW̃x =
1
d
· ∑

v∈V
∑

i1∈[d]
∑

i2∈[d]
yG2[v,i2] ·Hi2,i1 · xGT

1 [v,i1],

i.e., we sum yw ·Hi2,i1 · xu over all length-two paths (u, v, w), where i1 and i2 are the labels of the
incoming and outgoing edges of v in the path. By Definition A.13, this can be written as

yTW̃x =
1
d ∑

v∈V
(y(v))T ·H · x(v). (18)

Observe that W2W1 is the transition matrix of G2 p⃝Kd,d
G1. Therefore, as a special case of (18), we

have
yTW2W1x =

1
d ∑

v∈V
(y(v))T · Jd×d · x(v).

Therefore, by the spectral expansion property, we have

|yT(W2W1 − W̃)x| = 1
d

∣∣∣∣∣∑v
(y(v))T · (Jd×d −H) · x(v)

∣∣∣∣∣ ≤ λ(H)

d
·∑

v

∥∥∥y(v)⊥
∥∥∥

2
·
∥∥∥x(v)⊥

∥∥∥
2

,

as desired.

Using Lemma A.15, we can now prove that the derandomized product singular-value
approximates the exact product:

Corollary A.16 (Derandomized product sv-approximates exact product). Under the assumptions of
Lemma A.15, we have W̃

sv≈ 2λ(H) W2W1.

Proof. Let W21 = W2W1. Let x ∈ RV and y ∈ RW . By Lemma A.15, we have

|yT(W21 − W̃)x| ≤ λ(H)

d ∑
v

∥∥∥y(v)⊥
∥∥∥

2

∥∥∥x(v)⊥
∥∥∥

2
(19)

≤ λ(H)

d

√
∑
v

∥∥∥y(v)⊥
∥∥∥2

2
·
√

∑
v

∥∥∥x(v)⊥
∥∥∥2

2
.
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We can rewrite

∑
v

∥∥∥y(v)⊥
∥∥∥2

2
= ∑

v

(∥∥∥y(v)
∥∥∥2

2
−
∥∥∥y(v)∥

∥∥∥2

2

)

∑
v

∥∥∥x(v)⊥
∥∥∥2

2
= ∑

v

(∥∥∥x(v)
∥∥∥2

2
−
∥∥∥x(v)∥

∥∥∥2

2

)
.

We first calculate ∑v ∥y(v)∥2. By Definition A.13, each yw, w ∈ W contributes to exactly d entries
among y(v)i (v ∈ V and i ∈ [d]). Also, each y(v)i = yw for some w ∈W. Therefore,

∑
v

∥∥∥y(v)
∥∥∥2

2
= ∑

v
∑

i
(y(v)i )2 = d ·∑

w
y2

w = d · ∥y∥2
2 .

Next, we calculate ∥y(v)∥ ∥
2
2. Observe that y(v)∥ = 1d · cv where cv = (yTW2)v. Hence,

∑
v

∥∥∥y(v)∥
∥∥∥2

2
= ∑

v
d · |(yTW2)v|2 = d · yTW2WT

2 y,

and

∑
v

∥∥∥y(v)⊥
∥∥∥2

2
= d ·

(
∥y∥2

2 − yTW2WT
2 y
)
= d · ∥y∥2

I−W2WT
2

.

Symmetrically,

∑
v

∥∥∥x(v)
∥∥∥2

2
= d · ∥x∥2

2 ,

∑
v

∥∥∥x(v)∥
∥∥∥2

2
= ∑

v
d · |(W1x)v|2 = d · xTWT

1 W1x,

and

∑
v

∥∥∥x(v)⊥
∥∥∥2

2
= d ·

(
∥x∥2

2 − xTWT
1 W1x

)
= d · ∥x∥2

I−WT
1 W1

.

Therefore, by the AM-GM inequality,

|yT(W21 − W̃)x| ≤ λ(H) · ∥x∥I−WT
1 W1
· ∥y∥I−W2WT

2
≤ λ(H)

2
·
(
∥x∥2

I−WT
1 W1

+ ∥y∥2
I−W2WT

2

)
.

Since W2 is doubly stochastic, we have ∥W21x∥2 ≤ ∥W1x∥2, and therefore

∥x∥I−WT
1 W1
≤ ∥x∥I−WT

21W21
.

Similarly, since W1 is doubly stochastic, we have ∥WT
21y∥2 ≤ ∥WT

2 y∥2, and therefore

∥y∥I−W2WT
2
≤ ∥y∥I−W21WT

21
.

Therefore,

|yT(W21 − W̃)x| ≤ λ(H)

2
·
(
∥x∥2

I−WT
21W21

+ ∥y∥2
I−W21WT

21

)
.
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A.3 Recursive Derandomized Product: Accumulation of Error

We have shown that a single application of the derandomized product operation has bounded
error in the sense of sv-approximation. To analyze multiple applications of the derandomized
product operation, we must establish a few facts about sv-approximation. The proofs are relatively
short and only use elementary linear algebra. The first lemma allows us to bound ∥(W̃−W)x∥2

in terms of ∥x∥I−WTW assuming W̃
sv≈ W.

Lemma A.17. Let W, W̃ be doubly stochastic w × w matrices, and suppose W̃
sv≈ ε W. Then, for all

x, y ∈ Rw, we have

∥(W̃−W)x∥2 ≤
ε

2
· ∥x∥I−WTW and ∥(W̃−W)Ty∥2 ≤

ε

2
· ∥y∥I−WWT .

Proof. We prove the claim for the x side. The y side follows by taking transposes. Let

η :=
∥(W̃−W)x∥2

∥x∥I−WTW
.

We have

∥(W̃−W)x∥2
2 = xT(W̃−W)T(W̃−W)x

=
(

1√
η x
)T

(W̃−W)T(W̃−W)(
√

ηx)

≤ ε

4

(
∥√ηx∥2

I−WTW +

∥∥∥∥(W̃−W) · x
√

η

∥∥∥∥2

I−WWT

)

=
ε

4

(
η · ∥x∥2

I−WTW +
1
η
∥(W̃−W)x∥2

I−WWT

)
≤ ε

4

(
η · ∥x∥2

I−WTW +
1
η
∥(W̃−W)x∥2

2

)
(since ∥·∥I−WWT ≤ ∥·∥2)

≤ ε

2
· ∥(W̃−W)x∥2 · ∥x∥I−WTW.

Re-arranging proves that ∥(W̃−W)x∥2 ≤ (ε/2) · ∥x∥I−WTW as desired.

The next lemma shows that if W̃1
sv≈ W1 and W̃2

sv≈ W2, then W̃2 · W̃1
sv≈ W2 ·W1. Note

that versions of this lemma and the next can also be found in the recent work by Ahmadinejad,
Peebles, Pyne, Sidford, and Vadhan [APPSV23]. Still, we include proofs here in the interest of
having a self-contained presentation. Also, our proofs appear to be more elementary.

Lemma A.18 (Product of sv-approximations is sv-approximation of product). Let W1, W2, W̃1, W̃2

be doubly stochastic w× w matrices. Assume that W̃1
sv≈ ε W1 and W̃2

sv≈ ε W2. Then

W̃2 · W̃1
sv≈ ε·(1+ε/2) W2 ·W1.

Proof. For convenience, write W21 = W2 ·W1. Let x, y ∈ Rw. We use the following decomposition:

yT(W21 − W̃2W̃1)x = yT(W2 − W̃2)W1x︸ ︷︷ ︸
(*)

+ yTW2(W1 − W̃1)x︸ ︷︷ ︸
(**)

− yT(W2 − W̃2)(W1 − W̃1)x︸ ︷︷ ︸
(***)

.
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We bound the three terms separately. First,

|(*)| = |yT(W2 − W̃2)W1x| ≤ ε

4

(
∥y∥2

I−W2WT
2
+ ∥W1x∥2

I−WT
2 W2

)
.

Symmetrically,

|(**)| ≤ ε

4

(
∥WT

2 y∥2
I−W1WT

1
+ ∥x∥2

I−WT
1 W1

)
.

Next, we bound (***) as

|(***)| = |yT(W2 − W̃2)(W1 − W̃1)x|
≤ ∥(W2 − W̃2)

Ty∥2 · ∥(W1 − W̃1)x∥2

≤ ε2

4
∥y∥I−W2WT

2
· ∥x∥I−WT

1 W1
(Lemma A.17)

≤ ε2

8

(
∥x∥2

I−WT
1 W1

+ ∥y∥2
I−W2WT

2

)
≤ ε2

8

(
∥x∥2

I−WT
21W21

+ ∥y∥2
I−W21WT

21

)
.

We finish the proof by utilizing the following equations:

∥x∥2
I−WT

1 W1
+ ∥W1x∥2

I−WT
2 W2

= ∥x∥2
I−WT

21W21
,

∥y∥2
I−W2WT

2
+ ∥WT

2 y∥2
I−W1WT

1
= ∥y∥2

I−W21WT
21

,

and adding up the three bounds on quantities (*), (**), and (***).

The next lemma shows that singular-value approximation is transitive (with some modest loss
in the approximation parameter).

Lemma A.19 (Transitivity of sv-approximation). Let A, B, C ∈ Rw×w be three doubly stochastic
matrices. Suppose A

sv≈ ε1 B and B
sv≈ ε2 C where ε2 ∈ [0, 4]. Then A

sv≈ ε C, where ε = ε1 + ε2 + 2ε1ε2.
In particular, if ε2 ∈ [0, 1/2], then ε ≤ 2ε1 + ε2.

Proof. Let x, y ∈ Rw be arbitrary. Our job is to show that

|yT(A−C)x| ≤ ε

4
(
∥x∥2

I−CTC + ∥y∥2
I−CCT

)
. (20)

To show this, we first use the triangle inequality and get

|yT(A−C)x| ≤ |yT(A− B)x|+ |yT(B−C)x|.

We bound the right-hand side now. The second term is easy:

|yT(B−C)x| ≤ ε2

4
(
∥x∥2

I−CTC + ∥y∥2
I−CCT

)
.

For the first term, we start with the inequality

|yT(A− B)x| ≤ ε1

4
(
∥x∥2

I−BTB + ∥y∥2
I−BBT

)
=

ε1

4
(
∥x∥2

I−CTC + ∥y∥2
I−CCT

)
+

ε1

4

(
∥Cx∥2 − ∥Bx∥2 + ∥CTy∥2 − ∥BTy∥2

)
.
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Now, it is clear that, to show (20), it suffices to show the following inequalities.

∥Cx∥2 − ∥Bx∥2 ≤ 2ε2∥x∥2
I−CTC, and

∥CTy∥2 − ∥BTy∥2 ≤ 2ε2∥y∥2
I−CCT .

In the following, we show the proof of the first inequality. The second one can be verified via a
symmetric argument. We observe that

∥Cx∥2 − ∥Bx∥2 = xT(CTC− BTB)x

= xT
(
(CT − BT)C + CT(C− B)− (CT − BT)(C− B)

)
x

≤ 2 · |xTCT(C− B)x|+ |xT(CT − BT)(C− B)x|

≤ ε2

2
(
∥x∥2

I−CTC + ∥Cx∥2
I−CCT

)
+

ε2
2

4
∥x∥2

I−CTC (Lemma A.17)

≤ (ε2 + ε2
2/4)∥x∥2

I−CTC (∥Cx∥2
I−CCT ≤ ∥x∥2

I−CTC, by Fact 8.7)

≤ 2ε2∥x∥2
I−CTC, (Assumption on ε2)

as desired.

Now we are ready to analyze the recursive derandomized product. We will prove the
following bound.

Lemma A.20 (Recursive derandomized product sv-approximates the exact product). Let n, d, c ∈
N. For each t ∈ {0, 1, . . . , log n} and each j ∈ Ut \ {n}, let G̃j+2t←j = (V(j), V(j+2t), E(j+2t←j)) be a
(d · ct)-regular bigraph with a two-way labeling. Furthermore, let λ ∈ (0, 1

6 log2 n
), and for each t ∈ [log n],

let Ht = ([d · ct−1], [d · ct−1], EHt) be a c-regular bigraph with a one-way labeling satisfying λ(Ht) ≤ λ.
Assume also that for each t ∈ [log n] and each j ∈ Ut \ {n}, we have

G̃j+2t←j = G̃j+2t←j+2t−1 p⃝Ht G̃j+2t−1←j

(where the equation above merely denotes equality as graphs with one-way labelings). For each (i, j) ∈
E(SCn), let W̃j←i be the transition matrix of G̃j←i, and let Wj←i = W̃j←j−1 · W̃j−1←j−2 · · · W̃i+1←i. Then

W̃n←0
sv≈ 11λ·log n Wn←0.

To be clear, the conclusion of Lemma A.20 holds regardless of how the incoming edge labels are
defined in G̃j+2t←j.

Proof. We will indeed prove the following stronger claim, from which the lemma above will
immediately follow.

Claim A.21. For every t ∈ [log n] and j ∈ Ut \ {n}, we have W̃j+2t←j
sv≈ εt Wj+2t←j, where

εt = (1 + 6λ · log n)t−1 · t · 4λ.

Proof. We prove the claim by induction on t. For the case t = 1, this claim is saying for every
j ∈ U1 \ {n}, we have

W̃j+2←j
sv≈ 4λ Wj+2←j,

which is true by Corollary A.16.
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Suppose the claim is true for t − 1. We verify the case of t > 1. Fix j ∈ Ut \ {n}. By
Corollary A.16, we have

W̃j+2t←j
sv≈ 2λ W̃j+2t←j+2t−1 · W̃j+2t−1←j. (21)

By the induction hypothesis, we obtain

W̃j+2t←j+2t−1
sv≈ εt−1 Wj+2t←j+2t−1 ,

W̃j+2t−1←j
sv≈ εt−1 Wj+2t−1←j.

By Lemma A.18, we get

W̃j+2t←j+2t−1 · W̃j+2t−1←j
sv≈ εt−1·(1+εt−1/2) Wj+2t←j. (22)

By our assumption λ ≤ 1/(6 log2 n) and the fact that t ≤ log n, we have

1 + εt−1/2 = 1 + (1 + 6λ · log n)t−2 · t · 2λ ≤ 1 + e · t · 2λ ≤ 1 + 6λ · log n.

Therefore,
εt−1 · (1 + εt−1/2) ≤ (1 + 6λ · log n)t−1 · (t− 1) · 4λ ≤ 1/2,

and furthermore,
4λ + εt−1 · (1 + εt−1/2) ≤ εt.

By Lemma A.19 applied to (21) and (22), it follows that W̃j+2t←j
sv≈ εt Wj+2t←j, which completes

the induction step, and the proof of the claim.

Finally, since λ ∈
(

0, 1
6 log2 n

)
, it follows that (1 + 6λ · log n)log n−1 · log n · 4λ < 4e · λ · log n ≤

11λ · log n. This completes the proof of the lemma.

A.4 The Algorithm: Assigning Incoming Edge Labels

Having completed our analysis of the derandomized product operation, we now discuss
“implementing” the recursive derandomized product and thereby proving Theorem A.1. For the
auxiliary graph H, we will use the following family of space-efficient expanders:

Lemma A.22 (Space-efficient expanders). For every d ∈N that is a power of two, for every λ ∈ (0, 1),
there is a bigraph H = ([d], [d], EH) with a two-way labeling satisfying the following.

• λ(H) ≤ λ.

• H is c-regular where c is a power of two and c ≤ poly(1/λ).

• RotH can be evaluated in space that is linear in its input length, i.e., space O(log(d/λ)).

Proof sketch. We begin by constructing a c0-regular (undirected) graph H0, with transition matrix
H0, such that c0 = O(1), c0 is a power of two, and ∥J−H0∥2 ≤ 1−Ω(1):

• If d is a power of four, then d is a perfect square, so we can let H0 be the Margulis-Gabber-
Galil graph [Mar73; GG81], which can be taken to have degree c0 = 8 [Gol11].

• If d is not a power of four, then d/2 is a power of four. Therefore, we take H0 to be the tensor
product of the Margulis-Gabber-Galil graph with the complete graph on two vertices (with
self loops), so we get c0 = 16.
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Next, we let H′0 be the O(log(1/λ))-th power of H0. Finally, to construct H, we include two
directed edges (u, v) and (v, u) for each undirected edge {u, v} in H′0.

Let us now describe the algorithm of Theorem A.1. Recall that we are given a regular width-w
length-n standard-order ROBP B and a value δ0 ∈ (0, 1). Let V(0), . . . , V(n) be the vertex layers
of B, and let E(1), . . . , E(n) be the edge layers, so E(i) ⊆ V(i−1) × V(i). For each j ∈ {0, . . . , n− 1},
let G̃j+1←j = (V(j), V(j+1), E(j+1)), so G̃j+1←j is a d-regular bigraph with a one-way labeling where
d = 2. In this initial stage, we arbitrarily assign distinct incoming labels to the incoming edges of
each vertex v ∈ V(j+1), so G̃j+1←j has a two-way labeling.

Our plan is to recursively multiply these bigraphs G̃j+1←j using the derandomized product
operation. Define

λ = min

{
τ

11 log n
,

1
6 log2 n

}
,

and for each t ∈ [log n], let Ht = ([d · ci−1], [d · ci−1], EHt) be the c-regular bigraph with λ(Ht) ≤ λ
from Lemma A.22. Fix (j, j + 2t) ∈ E(SCn) where t ≥ 1. Let G1 = G̃j+2t−1←j, let G2 = G̃j+2t←j+2t−1 ,
and let H = Ht. By induction, we have already defined G1 and G2 to be (d · ct−1)-regular bigraphs
with two-way labelings. Roughly speaking, we wish to set

G̃j+2t←j = G2 p⃝H G1. (23)

However, the derandomized product operation only assigns outgoing edge labels, and we need
G̃j+2t←j to have a two-way labeling (for future rounds of the inductive process), so we need to
assign incoming edge labels. Following prior work [RV05; AKMPSV20], we therefore define
G̃j+2t←j by the following rotation map. To compute RotG̃j+2t←j

(v0, (i0, j0)):

1. Let (v1, i1) = RotG1(v0, i0).

2. Let (i2, j1) = RotH(i1, j0).

3. Let (v2, i3) = RotG2(v1, i2).

4. Output RotG̃j+2t←j
(v0, (i0, j0)) := (v2, (i3, j1)).

Observe that this definition is compatible with the derandomized product definition, i.e., it
ensures that (23) holds as an equality of graphs with one-way labelings.

Claim A.23 (Space efficiency of recursive derandomized product). Let W̃j←i be the transition matrix
of the graph G̃j←i defined above. Given B and τ, the matrix W̃n←0 can be computed in space

O(log w + log n · log(1/τ) + log n · log log n).

Since our derandomized graph product is slightly different than the formalisms in prior work,
we include a sketch of the proof of Claim A.23, but we stress that there is no real novelty here; the
proof is essentially the same as the corresponding proofs in prior work.

Proof sketch. Let v ∈ V(0) and e = (e0, e1, . . . , elog n) ∈ [d]× [c]log n. Given v and e, one can compute
RotG̃n←0

(v, e) by the following algorithm, which essentially consists of “unrolling” the recursive

definition of G̃n←0:

1. For i = 1 to n:
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(a) Update (v, e0)← RotG̃i←i−1
(v, e0), so now v ∈ V(i).

(b) If i < n:

i. Let t ∈ [log n] be the smallest positive integer such that i is not a multiple of 2t, i.e.,
the binary expansion of i has precisely t− 1 trailing zeroes.

ii. Update (e0, . . . , et−1)← RotHt((e0, . . . , et−1), et).

2. Output (v, e).

The algorithm above uses O(log w + log n · log c) bits of space for storing i, v, e, etc., doing
arithmetic, and computing RotG̃i←i−1

, plus O(log n · log c) additional bits for computing RotHt .
Since c = poly(1/λ) = poly((log n)/τ), the total space complexity is O(log w+ log n · log(1/τ) +
log n · log log n). Finally, to compute the (v, u) entry of the matrix W̃n←0, we compute RotG̃n←0

(u, e)
for every e, and count how many times it outputs a pair of the form (v, e′).

Combining Claim A.23 and Lemma A.20 completes the proof of Theorem A.1, because
11λ · log n ≤ τ.

B The INW Generator

In this section, we prove Theorem 9.2, which states that there is an explicit PRG that fools
permutation ROBPs with sv-error τ and seed length Õ(log n · log(1/τ)). Briefly, the PRG is the
famous Impagliazzo-Nisan-Wigderson (INW) PRG [INW94]. Rozenman and Vadhan observed
that the INW generator is closely related to their derandomized squaring operation [RV05].
Because of this connection, we will be able to apply the analysis in Appendix A to finish the
proof.

In more detail, let us begin by reviewing the construction of the INW generator.

Definition B.1 (The INW Pseudorandom Generator [INW94]). Let n and c be powers of two, let
d = 2, and for each t ∈ [log n], let Ht be a c-regular bigraph Ht = ([d · ct−1], [d · ct−1], EHt) with a
one-way labeling. Relative to this family (H1, . . . , Hlog n), we recursively define the INW generator as
follows.

Define INW0 : {0, 1}1 → {0, 1}1 as the trivial PRG, namely INW0(x) = x. For each t ∈ [log n],
having defined INWt−1 : {0, 1}1+(t−1)·log c → {0, 1}2t−1

, we define INWt : {0, 1}1+t·log c → {0, 1}2t
as

INWt(x, y) = INWt−1(x) ◦ INWt−1(Ht[x, y]), where ◦ denotes string concatenation.

The INW generator is connected to the derandomized product operation via the notion of a
consistent one-way labeling, defined next.

Definition B.2 (Consistent one-way labeling). Let G = (U, V, E) be a d-regular bigraph. A consistent
one-way labeling for G is a one-way labeling such that for each v ∈ V, the incoming edges of v have
distinct labels. That is, G[u, i] = G[v, i] implies u = v. In this case, we can extend G to a graph G with a
two-way labeling defined by

RotG(u, i) = (G[u, i], i),

i.e., the incoming label of an edge is equal to its outgoing label.

The derandomized product operation preserves the property of having a consistent one-way
labeling:
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Lemma B.3 ([RV05]). Let G1 = (U, V, E1) and G2 = (V, W, E2) be d-regular bigraphs with consistent
one-way labelings. Let H = ([d], [d], EH) be a c-regular bigraph with a one-way labeling. Then G2 p⃝H G1
has a consistent one-way labeling.

Proof. Let u0, u′0 ∈ U, let i0 ∈ [d], and let j0 ∈ [c]. Suppose that (G2 p⃝H G1)[u0, (i0, j0)] =
(G2 p⃝H G1)[u′0, (i0, j0)]. By the definitions of G1 and the derandomized product, this implies that

G2[u1, i2] = G2[u′1, i2],

where u1 = G1[u0, i0], u′1 = G1[u′0, i0], and i2 = H[i0, j0]. Because G2 has a consistent one-way
labeling, it follows that u′1 = u1, i.e., G1[u0, i0] = G1[u′0, u0]. Because G1 has a consistent one-way
labeling, it follows that u0 = u′0.

Let n, c, d, H1, . . . , Hlog n, INW0, . . . , INWlog n be as in Definition B.1. Let B be a width-w length-n
standard-order permutation ROBP with vertex layers V(0), . . . , V(n) and edge layers E(1), . . . , E(n).
For j ∈ {0, . . . , n− 1}, let G̃j+1←j = (V(j), V(j+1), E(j+1)), so G̃j+1←j is a 2-regular bigraph.

Because B is a permutation ROBP, each such graph G̃j+1←j has a consistent one-way labeling.
This fact enables us to recursively multiply these graphs via the derandomized product as follows.
Let t ∈ [log n] and let (j, j + 2t) ∈ E(SCn). Let G1 = G̃j+2t−1←j, let G̃j+2t←j+2t−1 , and let H = Ht. By
induction, the graphs G1 and G2 have consistent one-way labelings. Define

G̃j+2t←j = G2 p⃝H G1,

and observe that G̃j+2t←j has a consistent one-way labeling by Lemma B.3.
The construction above “corresponds to” the INW generator in the following sense.

Lemma B.4 (INW generator ↔ derandomized product). Assume the setup described above. Let
t ∈ {0, 1, . . . , log n}, let j ∈ Ut \ {n}, let u ∈ V(j), and let x ∈ {0, 1}1+t·log c. Then

G̃j+2t←j[u, x] = B[u, INWt(x)].

Proof. We use induction on t. The case of t = 0 follows by definition. For t ≥ 1, recall that
INWt(x, y) = INWt−1(x) ◦ INWt−1(H[x, y]), where H = Ht. Therefore, the vertex B[u, INWt(x, y)]
can be computed as follows:

1. Let v = B[u, INWt−1(x)].

2. Let z = H[x, y].

3. Output B[v, INWt−1(z)].

Let G1 = G̃j+2t−1←j and G2 = G̃j+2t←j+2t−1 . By the induction hypothesis, the procedure above is
equivalent to the following:

1. Let v = G1[u, x].

2. Let z = H[x, y].

3. Output G2[v, z].

This is precisely the same as the procedure to compute (G2 p⃝H G1)[u, (x, y)].

Combining Lemma B.4 with our analysis in Appendix A yields Theorem 9.2:
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Proof of Theorem 9.2. Let λ = min{τ/(11 log n), 1/(6 log2 n)}. Let d = 2, and for each t ∈ [log n],
let Ht = ([d · ct−1], [d · ct−1], EHt) be the c-regular bigraph with λ(Ht) ≤ λ from Lemma A.22.
Let INW0, . . . , INWlog n be the corresponding INW generators, and let G = INWlog n, so G has seed
length

O(log n · log c) = O(log n · (log(1/τ) + log log n)).

Let B be an unbounded-width length-n standard-order permutation ROBP, and let G̃j+2t←j be the
corresponding graphs as defined above Lemma B.4. Let V(0), . . . , V(n) be the layers of B. By
Lemma B.4, for every u ∈ V(0) and every seed x,

B[u,G(x)] = G̃n←0[u, x].

Therefore, if we let B : {0, 1}n → {0, 1}w×w be the matrix-valued function corresponding to B
(namely B(x)v,u = Bv←u(x)), then E[B] = Wn←0 and Ex[B(G(x))] = W̃n←0, where W̃j←i is the
transition matrix of G̃j←i and Wn←0 = W̃n←n−1 · W̃n−1←n−2 · · · W̃1←0. By Lemma A.20, it follows

that Ex[B(G(x))]
sv≈ τ E[B], and hence G fools B with sv-error τ.

C Product of Singular-Value Approximations

In this section, we prove Lemma 8.6, which is restated below.

Lemma C.1 (Lemma 8.6, restated). Let W1, W2, W̃1, W̃2, W̃ be doubly stochastic matrices. Let W =

W2W1. Assume that W̃1
sv≈ ε W1, W̃2

sv≈ ε W2, and W̃
sv≈ ε W. Then

W2W1 + (W̃− W̃2W̃1)
sv≈ 2ε(1+ε/4) W2W1.

Proof. By Lemma A.18, we have W̃2W̃1
sv≈ ε(1+ε/2) W2W1. Therefore, for any vectors x and y, we

have

|xT(W̃− W̃2W̃1)y| ≤ |xT(W̃−W1W2)y|+ |xT(W̃2W̃1 −W1W2)y|

≤
(

ε

4
+

ε · (1 + ε/2)
4

)
·
(
∥x∥2

I−WTW + ∥y∥2
I−WWT

)
.

The lemma follows.
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