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Abstract

Driven by exploring the power of quantum computation with a limited number of qubits,
we present a novel complete characterization for space-bounded quantum computation,
which encompasses settings with one-sided error (unitary coRQL) and two-sided error (BQL),
approached from a quantum (mixed) state testing perspective:

• The first family of natural complete problems for unitary coRQL, namely space-bounded
quantum state certification for trace distance and Hilbert-Schmidt distance;

• A new family of (arguably simpler) natural complete problems for BQL, namely space-
bounded quantum state testing for trace distance, Hilbert-Schmidt distance, and (von
Neumann) entropy difference.

In the space-bounded quantum state testing problem, we consider two logarithmic-qubit
quantum circuits (devices) denoted as Q0 and Q1, which prepare quantum states ρ0 and ρ1,
respectively, with access to their “source code”. Our goal is to decide whether ρ0 is ϵ1-close
to or ϵ2-far from ρ1 with respect to a specified distance-like measure. Interestingly, un-
like time-bounded state testing problems, which exhibit computational hardness depending
on the chosen distance-like measure (either QSZK-complete or BQP-complete), our results
reveal that the space-bounded state testing problems, considering all three measures, are
computationally as easy as preparing quantum states.

Our results primarily build upon a space-efficient variant of the quantum singular value
transformation (QSVT) introduced by Gilyén, Su, Low, and Wiebe (STOC 2019), which is
of independent interest. Our technique provides a unified approach for designing space-
bounded quantum algorithms. Specifically, we show that implementing QSVT for any
bounded polynomial that approximates a piecewise-smooth function incurs only a constant
overhead in terms of the space required for (special forms of) the projected unitary encoding.
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1 Introduction

In recent years, exciting experimental advancements in quantum computing have been achieved,
but concerns about their scalability persist. It thus becomes essential to characterize the com-
putational power of feasible models of quantum computation that operate under restricted re-
sources, such as time (i.e., the number of gates in the circuit) and space (i.e., the number of
qubits on which the circuit acts). This paper specifically focuses on the latter aspect: what is
the computational power of quantum computation with a limited number of qubits?

Previous studies [Wat99,Wat03,vMW12] on complete problems of space-bounded quantum
computation have primarily focused on well-conditioned versions of standard linear-algebraic
problems [TS13,FL18,FR21] and have been limited to the two-sided error scenario. In contrast,
we propose a novel family of complete problems that not only characterize the one-sided error
scenario (and extend to the two-sided scenario) but also arise from a quantum property testing
perspective. Our new complete problems are arguably more natural and simpler, driven by
recent intriguing challenges of verifying the intended functionality of quantum devices.

Consider the situation where a quantum device is designed to prepare a quantum (mixed)
state ρ0, but a possibly malicious party could provide another quantum device that outputs
a different n-qubit (mixed) state ρ1, claiming that ρ0 ≈ϵ ρ1. The problem of testing whether
ρ0 is ϵ1-close to or ϵ2-far from ρ1 with respect to a specified distance-like measure, given the
ability to produce copies of ρ0 and ρ1, is known as quantum state testing [MdW16, Section 4].
Quantum state testing (resp., distribution testing) typically involves utilizing sample accesses
to quantum states ρ0 and ρ1 (resp., distributions D0 and D1) and determining the number
of samples required to test the closeness between quantum states (resp., distributions). This
problem is a quantum (non-commutative) generalization of classical property testing, which
is a fundamental problem in theoretical computer science (see [Gol17]), specifically (tolerant)
distribution testing (see [Can20]). Moreover, this problem is an instance of the emerging field
of quantum property testing (see [MdW16]), which aims at designing quantum testers for the
properties of quantum objects.

In this paper, we investigate quantum state testing problems where quantum states ρ0 and ρ1
are preparable by computationally constrained resources, specifically state-preparation circuits
(viewed as the “source code” of devices) that are (log)space-bounded. Our main result conveys a
conceptual message that testing quantum states prepared in bounded space is (computationally)
as easy as preparing these states in a space-bounded manner. Consequently, we can introduce
the first family of natural coRQUL-complete promise problems since Watrous [Wat01] introduced
unitary RQL and coRQL (known as RQUL and coRQUL, respectively) in 2001, as well as a new
family of natural BQL-complete promise problems.

Our main technique is a space-efficient variant of the quantum singular value transforma-
tion (QSVT) [GSLW19], distinguishing itself from prior works primarily focused on time-efficient
QSVT. As time-efficient QSVT provides a unified framework for designing time-efficient quantum
algorithms [GSLW19,MRTC21], we believe our work indicates a unified approach to designing
space-bounded quantum algorithms, potentially facilitating the discovery of new complete prob-
lems for BQL and its one-sided error variants. Subsequently, we will first state our main results
and then provide justifications for the significance of our results from various perspectives.

1.1 Main results

We will commence by providing definitions for time- and space-bounded quantum circuits.
We say that a quantum circuit Q is (poly)time-bounded if Q is polynomial-size and acts on
poly(n) qubits. Likewise, we say that a quantum circuit Q is (log)space-bounded if Q is
polynomial-size and acts on O(log n) qubits. It is worthwhile to note that primary complexity
classes, e.g., BQL, coRQUL, and BPL, mentioned in this paper correspond to promise problems.
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Complete characterizations of quantum logspace from state testing. While prior
works [TS13,FL18,FR21] on BQL-complete problems have mainly focused on well-conditioned
versions of standard linear-algebraic problems (in DET∗), our work takes a different perspective
by exploring quantum property testing. Specifically, we investigate the problem of space-bounded
quantum state testing, which aims to test the closeness between two quantum states that are
preparable by (log)space-bounded quantum circuits (devices), with access to the corresponding
“source code” of these devices.

We begin by considering a computational problem that serves as a “white-box” space-bounded
counterpart of quantum state certification [BOW19], equivalent to quantum state testing with
one-sided error. Our first main theorem (Theorem 1.1) demonstrates the first family of natural
coRQUL-complete problems in the context of space-bounded quantum state certification with
respect to the trace distance (td) and the squared Hilbert-Schmidt distance (HS2).

Theorem 1.1 (Informal of Theorem 4.5). The following (log)space-bounded quantum state cer-
tification problems are coRQUL-complete: for any α(n) ≥ 1/ poly(n), decide whether

(1) CertQSDlog: ρ0 = ρ1 or td(ρ0, ρ1) ≥ α(n);

(2) CertQHSlog: ρ0 = ρ1 or HS2(ρ0, ρ1) ≥ α(n);

By extending the error requirement from one-sided to two-sided, we broaden the scope of
space-bounded quantum state testing to include two more distance-like measures: the quan-
tum entropy difference, denoted by S(ρ0)− S(ρ1), and the quantum Jensen-Shannon divergence
(QJS2). As a result, we establish our second main theorem, introducing a new family of natural
BQL-complete problems:

Theorem 1.2 (Informal of Theorem 4.6). The following (log)space-bounded quantum state test-
ing problems are BQL-complete: for any α(n) and β(n) such that α(n)− β(n) ≥ 1/poly(n), or
for any g(n) ≥ 1/ poly(n), decide whether

(1) GapQSDlog: td(ρ0, ρ1) ≥ α(n) or td(ρ0, ρ1) ≤ β(n);

(2) GapQEDlog: S(ρ0)− S(ρ1) ≥ g(n) or S(ρ1)− S(ρ0) ≥ g(n);

(3) GapQJSlog: QJS2(ρ0, ρ1) ≥ α(n) or QJS2(ρ0, ρ1) ≤ β(n);

(4) GapQHSlog: HS2(ρ0, ρ1) ≥ α(n) or HS2(ρ0, ρ1) ≤ β(n);

Notably, Theorem 1.2(1) demonstrates that our algorithm for GapQSDlog exhibits a poly-
nomial advantage in space over the best-known classical algorithms [Wat02], since Watrous
implicitly showed in [Wat02, Proposition 21] that GapQSDlog is contained in (classical) poly-
logarithmic space.1

Space-efficient quantum singular value transformation. Proving our main theorems
mentioned above poses a significant challenge: establishing the containment in the relevant
class (BQL or coRQUL), which is also the difficult direction for showing the known family of
BQL-complete problems [TS13,FL18,FR21].

Proving the containment for the one-sided error scenario is not an effortless task: such a task
is not only already relatively complicated for CertQHSlog, but also additionally requires novel
techniques for CertQSDlog. On the other hand, for two-sided error scenarios, while showing
the containment is straightforward for GapQHSlog, it still demands sophisticated techniques for
all other problems, such as GapQSDlog, GapQEDlog, and GapQJSlog.

1Notably, our algorithm for GapQSDlog provides an alternating proof for the original statement that (α, β)-
QSD is in PSPACE when α(n)− β(n) ≥ exp(−poly(n)). In particular, Watrous [Wat02] provided an algorithm
in NC to solve the Trace Norm Approximation problem on estimating ∥X∥1 with polynomial precision, given
that the polynomial-size matrix X enables evaluation of all entries in deterministic O(logn) space.
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As explained in Section 1.4, our primary technical contribution and proof technique involve
developing a space-efficient variant of the quantum singular value transformation (QSVT), which
constitutes our third main theorem (Theorem 1.4).

1.2 Background on space-bounded quantum computation

Watrous [Wat99, Wat03] initiated research on space-bounded quantum computation and
showed that fundamental properties, including closure under complement, hold for BQSPACE[s(n)]
with s(n) ≥ Ω(log n). Watrous also investigated classical simulations of space-bounded quantum
computation (with unbounded error), presenting deterministic simulations in O(s2(n)) space
and unbounded-error randomized simulations in O(s(n)) space. A decade later, van Melke-
beek and Watson [vMW12] provided a simultaneous Õ(t(n)) time and O(s(n) + log t(n)) space
unbounded-error randomized simulation for a bounded-error quantum algorithm in t(n) time
and s(n) space. The complexity class corresponding to space-bounded quantum computation
with s(n) = Θ(log(n)) is known as BQL, or BQUL if only unitary gates are permitted.

Significantly, several developments over the past two decades have shown that BQL is well-
defined, independent of the following factors in chronological order:

• The choice of gateset. The Solovey-Kitaev theorem [Kit97] establishes that most quan-
tum classes are gateset-independent, given that the gateset is closed under adjoint and all
entries in gates have reasonable precision. The work of [vMW12] presented a space-efficient
counterpart of the Solovay-Kitaev theorem, implying that BQL is also gateset-independent.

• Error reduction. Repeating BQUL sequentially necessitates reusing the workspace, mak-
ing it unclear how to reduce errors for BQUL as intermediate measurements are not allowed.
To address this issue, the work of [FKL+16] adapted the witness-preserving error reduction
for QMA [MW05] with several other ideas to the space-efficient setting.

• Intermediate measurements. In the space-bounded scenario, the principle of deferred
measurement is not applicable since this approach leads to an exponential increase in space
complexity. Initially, BQL appeared to be seemingly more powerful than BQUL since we
cannot directly demonstrate that BPL ⊆ BQUL. Recently, Fefferman and Remscrim [FR21]
(as well as [GRZ21,GR22]) proved the equivalence between BQL and BQUL, indicating a
space-efficient approach to eliminating intermediate measurements.

BQL-complete problems. Identifying natural complete problems for the class BQL (or BQUL)
is a crucial and intriguing question. Ta-Shma [TS13] proposed the first candidate BQL-complete
problem, building upon the work of Harrow, Hassidim, and Lloyd [HHL09] which established a
BQP-complete problem for inverting a (polynomial-size) well-conditioned matrix. Specifically,
Ta-Shma showed that inverting a well-conditioned matrix with polynomial precision is in BQL.
Similarly, computing eigenvalues of an Hermitian matrix is also in BQL. These algorithms offer
a quadratic space advantage over the best-known classical algorithms that saturate the classical
simulation bound [Wat99,Wat03,vMW12]. Fefferman and Lin [FL18] later improved upon this
result to obtain the first natural BQUL-complete problem by ingeniously utilizing amplitude
estimation to avoid intermediate measurements.

More recently, Fefferman and Remscrim [FR21] further extended this natural BQUL-complete
problem (or BQL-complete, equivalently) to a family of natural BQL-complete problems. They
showed that a well-conditioned version of standard DET∗-complete problems is BQL-complete,
where DET∗ denotes the class of problems that are NC1 (Turing) reducible to intDET, including
well-conditioned integer determinant (DET), well-conditioned matrix powering (MATPOW),
and well-conditioned iterative matrix product (ITMATPROD), among others.

RQUL- and coRQUL-complete problems. Watrous [Wat01] introduced the one-sided error
counterpart of BQUL, namely RQUL and coRQUL, and developed error reduction techniques.
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Moreover, Watrous proved that the undirected graph connectivity problem (USTCON) is in
RQUL ∩ coRQUL whereas Reingold [Rei08] demonstrated that USTCON is in L several years
later. Recently, Fefferman and Remscrim [FR21] proposed a “verification” version of the well-
conditioned iterative matrix product problem (vITMATPROD) as a candidate coRQL-complete
problem. However, although this problem is known to be coRQL-hard, its containment remains
unresolved. Specifically, vITMATPROD requires to decide whether a single entry in the product
of polynomially many well-conditioned matrices is equal to zero.

1.3 Time-bounded and space-bounded distribution and state testing

We summarize prior works and our main results for time-bounded2 and space-bounded dis-
tribution and state testing with respect to ℓ1 norm, entropy difference, and ℓ2 norm in Table 1.

Interestingly, the sample complexity of testing the closeness of quantum states (resp., distri-
butions) depends on the choice of distance-like measures,3 including the one-sided error coun-
terpart known as quantum state certification [BOW19]. In particular, for distance-like measures
such as the ℓ1 norm, called total variation distance in the case of distributions [CDVV14] and
trace distance in the case of states [BOW19], as well as classical entropy difference [JVHW15,
WY16] and its quantum analog [AISW20, OW21], the sample complexity of distribution and
state testing is polynomial in the dimension N . However, for distance-like measures such as the
ℓ2 norm, called Euclidean distance in the case of distributions [CDVV14] and Hilbert-Schmidt
distance in the case of states [BOW19], the sample complexity is independent of dimension N .

ℓ1 norm ℓ2 norm Entropy

Classical
Time-bounded

SZK-complete5

[SV03,GSV98]
BPP-complete

Folklore
SZK-complete
[GV99,GSV98]

Quantum
Time-bounded

QSZK-complete6

[Wat02,Wat09]
BQP-complete

[BCWdW01,RASW23]
QSZK-complete
[BASTS10,Wat09]

Quantum
Space-bounded

BQL-complete
Theorem 1.2(1)

BQL-complete
[BCWdW01] and Theorem 1.2(4)

BQL-complete
Theorem 1.2(2)

Table 1: Time- and space-bounded distribution or state testing.

As depicted in Table 1, this phenomenon that the required sample complexity for distribution
and state testing, with polynomial precision and exponential dimension, depends on the choice
of distance-like measure has reflections on time-bounded quantum state testing:

• For ℓ1 norm and entropy difference, the time-bounded scenario is seemingly much harder
than preparing states or distributions since QSZK ⊆ BQP and SZK ⊆ BPP are unlikely.

• For ℓ2 norm, the time-bounded scenario is as easy as preparing states or distributions.

However, interestingly, a similar phenomenon does not appear for space-bounded quan-
tum state testing. Although no direct classical counterpart has been investigated before in a
complexity-theoretic fashion, namely space-bounded distribution testing, there is another closely
related model (a version of streaming distribution testing) that does not demonstrate an analo-
gous phenomenon either, as we will discuss in Section 1.3.2.

2The problem of time-bounded distribution (resp., state) testing aims to test the closeness between two distribu-
tions (resp., states) that are preparable by (poly)time-bounded circuits (devices), with access to the corresponding
“source code” of these devices.

3It is noteworthy that the quantum entropy difference is not a distance.
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1.3.1 Time-bounded distribution and state testing

We review prior works on time-bounded state (resp., distribution) testing, with a particular
focus on testing the closeness between states (resp., distributions) are preparable by (poly)time-
bounded quantum (resp., classical) circuits (device), with access to the “source code” of cor-
responding devices. For time-bounded distribution testing, we also recommend a brief sur-
vey [GV11] by Goldreich and Vadhan.

ℓ1 norm scenarios. Sahai and Vadhan [SV03] initiated the study of the time-bounded dis-
tribution testing problem, where distributions D0 and D1 are efficiently samplable, and the
distance-like measure is the total variation distance. Their work named this problem Statisti-
cal Difference (SD). In particular, the promise problem (α, β)-SD asks whether D0 is α-far
from or β-close to D1 with respect to ∥D0 −D1∥TV. Although sampling from the distribution
is in BPP,4 testing the closeness between these distributions is SZK-complete [SV03, GSV98],
where SZK is the class of promise problems possessing statistical zero-knowledge proofs. It is
noteworthy that the SZK containment of (α, β)-SD for any α(n)−β(n) ≥ 1/ poly(n) is currently
unknown.5 In addition, we note that SZK is contained in AM ∩ coAM [For87,AH91].

Following the pioneering work [SV03], Watrous [Wat02] introduced the time-bounded quan-
tum state testing problem, where two quantum states ρ0 and ρ1 that are preparable by time-
bounded quantum circuits Q0 and Q1, respectively, as well as the distance-like measure is the
trace distance. This problem is known as the Quantum State Distinguishability (QSD),
specifically, (α, β)-QSD asks whether ρ0 is α-far from or β-close to ρ1 with respect to td(ρ0, ρ1).
Analogous to its classical counterpart, QSD is QSZK-complete [Wat02, Wat09], whereas the
QSZK containment for any α(n)− β(n) ≥ 1/ poly(n) remains an open question.6 Additionally,
it is worth noting that QIP(2) contains QSZK [Wat02,Wat09].

Entropy difference scenarios. Beyond ℓ1 norm, another distance-like measure commonly con-
sidered in time-bounded quantum state testing (or distribution testing) is the (quantum) entropy
difference, which also corresponds to the (quantum) Jensen-Shannon divergence. The promise
problem Entropy Difference (ED), first introduced by Goldreich and Vadhan [GV99] fol-
lowing the work of [SV03], asks whether efficiently samplable distributions D0 and D1 satisfy
H(D0) − H(D1) ≥ g or H(D1) − H(D0) ≥ g for g = 1. They demonstrated that ED is SZK-
complete. Ben-Aroya, Schwartz, and Ta-Shma [BASTS10] further investigated the promise
problem Quantum Entropy Difference (QED), which asks whether S(ρ0) − S(ρ1) ≥ g or
S(ρ1) − S(ρ0) ≥ g, for efficiently preparable quantum states ρ0 and ρ1 and g = 1/2. They
showed that QED is QSZK-complete. Moreover, the SZK (resp., QSZK) containment for ED
(resp., QED) automatically holds for any g(n) ≥ 1/ poly(n).

Furthermore, Berman, Degwekar, Rothblum, and Vasudevan [BDRV19] demonstrated that
the Jensen-Shannon divergence problem (JSP), asking whether JS(D0, D1) ≥ α or JS(D0, D1) ≤
β for efficiently samplable distributions D0 and D1, is SZK-complete. Their work accomplished
this result by reducing the problem to ED, and this containment applies to α(n) − β(n) ≥
1/ poly(n). Recently, Liu [Liu23] showed a quantum counterpart, referred to as the Quantum
Jensen-Shannon Divergence Problem (QJSP), is QSZK-complete. Notably, the quantum

4Rigorously speaking, as an instance in SD, sample-generating circuits are not necessarily (poly)time-uniform.
5The works of [SV03, GSV98] demonstrated that (α, β)-SD is in SZK for any constant α2 − β > 0. The

same technique works for the parameter regime α2(n) − β(n) ≥ 1/O(logn). However, further improvement of
the parameter regime requires new ideas, as clarified in [Gol19]. Recently, the work of [BDRV19] improved the
parameter regime to α2(n)−β(n) ≥ 1/ poly(n) by utilizing a series of tailor-made reductions. Currently, we only
know that (α, β)-SD for α(n)− β(n) ≥ 1/ poly(n) is also in AM ∩ coAM [BL13].

6Like SD and SZK, the techniques in [Wat02,Wat09] show that (α, β)-QSD is in QSZK for α2(n) − β(n) ≥
1/O(logn), and the same limitation also applies to the quantum settings. A recent result [Liu23] following the
line of work of [BDRV19] improved the parameter regime to α2(n)−

√
2 ln 2β(n) ≥ 1/poly(n), but the differences

between classical and quantum distances make it challenging to push the bound further. In [Wat02, Proposition
21], Watrous implicitly proved a PSPACE upper bound for the parameter regime α(n)−β(n) ≥ exp(− poly(n)).
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Jensen-Shannon divergence is a special instance of the Holevo χ quantity [Hol73].7

ℓ2 norm scenarios. For the quantum setting, it is straightforward that applying the SWAP
test [BCWdW01]8 to efficiently preparable quantum states ρ0 and ρ1 can lead to a BQP contain-
ment, in particular, additive-error estimations of Tr(ρ20), Tr(ρ21), and Tr(ρ0ρ1) with polynomial
precision. Recently, the work of [RASW23] observed that time-bounded quantum state testing
with respect to the squared Hilbert-Schmidt distance is BQP-complete. For the classical setting,
namely the squared Euclidean distance, the BPP-completeness is relatively effortless.9

1.3.2 Space-bounded distribution and state testing

To the best of our knowledge, no prior work has specifically focused on space-bounded
distribution testing from a complexity-theoretic perspective. Instead, we will review prior works
that are (closely) related to this computational problem. Afterward, we will delve into space-
bounded quantum state testing, which constitutes the main contribution of our work.

Space-bounded distribution testing and related works. We focus on a computational
problem involving two poly(n)-size classical circuits C0 and C1, which generate samples from
the distributions D0 and D1 respectively. Each circuit contains a read-once polynomial-length
random-coins tape.10 The input length and output length of the circuits are O(log n). The task
is to decide whether D0 is α-far from or β-close to D1 with respect to some distance-like measure.
Additionally, we can easily observe that space-bounded distribution testing with respect to the
squared Euclidean distance (ℓ2 norm) is BPL-complete, much like its time-bounded counterpart.

Several models related to space-bounded distribution testing have been investigated previ-
ously. Earlier streaming-algorithmic works [FKSV02,GMV06] utilize entries of the distribution
as the data stream, with entries given in different orders for different models. On the other
hand, a later work [CLM10] considered a data stream consisting of a sequence of i.i.d. samples
drawn from distributions and studied low-space streaming algorithms for distribution testing.

Regarding (Shannon) entropy estimation, previous streaming algorithms considered worst-
case ordered samples drawn from N -dimensional distributions and required poly log(N/ϵ) space,
where ϵ is the additive error. Recently, Acharya, Bhadane, Indyk, and Sun [ABIS19] addressed
the entropy estimation problem with i.i.d. samples drawn from distributions as the data stream
and demonstrated the first O(log(N/ϵ)) space streaming algorithm. The sample complexity,
viewed as the time complexity, was subsequently improved in [AMNW22].

However, for the total variation distance (ℓ1 norm), previous works focused on the trade-off
between the sample complexity and the space complexity (memory constraints), achieving only
a nearly-log-squared space streaming algorithm [DGKR19].

Notably, the main differences between the computational and streaming settings lie in how
we access the sampling devices.11 In the computational problem, we have access to the “source
code” of the devices and can potentially use them for purposes like “reverse engineering”. Con-
versely, the streaming setting utilizes the sampling devices in a “black-box” manner, obtaining
i.i.d. samples. As a result, a logspace streaming algorithm will result in a BPL containment.12

7In particular, the quantum Jensen-Shannon divergence coincides with the Holevo χ quantity on size-2 en-
sembles with a uniform distribution, which arises in the Holevo bound [Hol73]. See [NC02, Theorem 12.1].

8We note that the SWAP test also applies to mixed states, see Proposition 9 in [KMY09].
9Specifically, we achieve BPP containment by following the approach in [BCH+19, Theorem 7.1]. On the

other hand, the BPP hardness owes to the fact that the squared Euclidean distance between the distribution
(pacc, 1− pacc) from the output bit of any BPP algorithm and the distribution (1, 0) is (1− pacc)

2.
10It is noteworthy that random coins are provided as input to classical circuits C0 and C1 for generating samples

from the corresponding distributions in the time-bounded scenario, such as SD and ED.
11Of course, not all distributions can be described as a polynomial-size circuit (i.e., a succinct description).
12In particular, the sample-generating circuits C0 and C1 in space-bounded distribution testing can produce

the i.i.d. samples in the data stream.
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Space-bounded quantum state testing. Among the prior works on streaming distribution
testing, particularly entropy estimation, the key takeaway is that the space complexity of the
corresponding computational problem is O(log(N/ϵ)). This observation leads to a conjecture
that the computational hardness of space-bounded distribution and state testing is independent
of the choice of commonplace distance-like measures. Our work, in turn, provides a positive
answer for space-bounded quantum state testing.

Space-bounded state testing with respect to the squared Hilbert-Schmidt distance (ℓ2 norm)
is BQL-complete, as shown in Theorem 1.2(4). Specifically, the BQL containment follows from
the SWAP test [BCWdW01], similar to the time-bounded scenario. Moreover, proving BQL
hardness, as well as coRQUL-hardness for state certification, are also straightforward.13

Regarding space-bounded state testing with respect to the trace distance (ℓ1 norm), we note
that [Wat02, Proposition 21] implicitly established an NC containment. The BQL-hardness, as
well as coRQUL-hardness for state certification, is adapted from [RASW23]. Similarly, we derive
the BQL-hardness for space-bounded state testing with respect to the quantum Jensen-Shannon
divergence and the quantum entropy difference from previous works [Liu23].

Finally, we devote the remainder of this section to our main technique (Theorem 1.4), and
consequently, we present BQL (resp., coRQUL) containment for state testing (resp., certification)
problems for other distance-like measures beyond the squared Hilbert-Schmidt distance.

1.4 Proof technique: Space-efficient quantum singular value transformation

The quantum singular value transformation (QSVT) [GSLW19] is a powerful and efficient
framework for manipulating the singular values {σi}i of a linear operator A, using a corre-
sponding projected unitary encoding U of A = Π̃UΠ for projectors Π̃ and Π. The sin-
gular value decomposition is A =

∑
i σi|ψ̃i⟩⟨ψi| where |ψ̃i⟩ and |ψi⟩ are left and right sin-

gular vectors, respectively. QSVT has numerous applications in quantum algorithm design,
and is even considered a grand unification of quantum algorithms [MRTC21]. To implement
the transformation f (SV)(A) = f (SV)(Π̃UΠ), we require a degree-d polynomial P̂d(x) that
satisfies two conditions. Firstly, P̂d well-approximates f on the interval of interest I, with
maxx∈I\Iδ |P̂d(x)− f(x)| ≤ ϵ, where Iδ ⊆ I ⊆ [−1, 1] and typically Iδ := (−δ, δ). Secondly, P̂d

is bounded, with maxx∈[−1,1] |P̂d(x)| ≤ 1. The degree of P̂d depends on the precision parameters
δ and ϵ, with d = O(δ−1 log ϵ−1), and all coefficients of P̂d can be computed efficiently.

According to [GSLW19], we can use an alternating phase modulation to implement P̂ (SV)
d (Π̃UΠ),14

which requires a sequence of rotation angles Φ ∈ Rd. For instance, consider P̂d(x) = Td(x) where
Td(x) is the d-th Chebyshev polynomial (of the first kind), then we know that ϕ1 = (1− d)π/2
and ϕj = π/2 for all j ∈ {2, 3, · · · , d}. QSVT techniques, including classical pre-processing and
quantum circuit implementation, are generally time-efficient. Additionally, the quantum circuit
implementation of QSVT is already space-efficient because implementing QSVT with a degree-
d bounded polynomial for any s(n)-qubit projected unitary encoding requires O(s(n)) qubits,
where s(n) ≥ Ω(log n). However, the classical pre-processing in the QSVT techniques is typi-
cally not space-efficient. Indeed, prior works on classical pre-processing for QSVT, specifically
angle-finding algorithms in [Haa19, CDG+20, DMWL21], which have time complexity polyno-
mially dependent on the degree d, do not consider the space-efficiency. Therefore, the use of
previous angle-finding algorithms may lead to an exponential increase in space complexity. This
raises a fundamental question on making the classical pre-processing space-efficient as well:

Problem 1.3 (Space-efficient QSVT). Can we implement a degree-d QSVT for any s(n)-qubit
13In particular, considering any BQL circuit Cx that accepts with probability pacc = ||1⟩⟨1|outCx|0̄⟩|22, we can

construct a new circuit C′
x from Cx such that C′

x accepts with probability ||0̄⟩⟨0̄|C′
x|0̄⟩|22 = pacc2 = Tr(ρ0ρ1) =

1−HS2(ρ0, ρ1), where pure states ρ0 = |0̄⟩⟨0̄| and ρ1 = C′
x|0̄⟩⟨0̄|C′

x
†. See Lemma 4.17 for details.

14This procedure is a generalization of quantum signal processing, as explained in [MRTC21, Section II.A].
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projected unitary encoding with d ≤ 2O(s(n)), using only O(s(n)) space in both classical pre-
processing and quantum circuit implementation?

QSVT via Chebyshev interpolation. Recently, Metger and Yuen [MY23] constructed
bounded polynomial approximations of the sign and square root functions with exponential pre-
cision in polynomial space by utilizing Chebyshev interpolation, which offers a partial solution
to Problem 1.3.15 The key ingredient behind their approach is the near-minimax approximation
by Chebyshev interpolation [Pow67]. More precisely, for any continuous function f : [−1, 1] → R,
if there is a degree-d polynomial P̂d satisfying maxx∈[−1,1] |f(x) − P̂d(x)| ≤ ϵ, then we have a
Chebyshev interpolation polynomial Pd(x) := c0

2 +
∑d

k=1 ckTk where ck := 2
π

∫ 1
−1

f(x)Tk(x)√
1−x2

dx

such that maxx∈[−1,1] |Pd(x)− f(x)| ≤ O(ϵ log d). As the angles for any Chebyshev polynomial
Tk(x) are explicitly known, the implementation involves applying a Chebyshev polynomial to
a bitstring indexed encoding, which additionally requires projectors Π̃ and Π span on the cor-
responding subset of {|0⟩, |1⟩}⊗s,16 and implementing the Chebyshev interpolation polynomial
by LCU techniques [BCC+15]. It is noteworthy that combining the aforementioned techniques
causes a super-quadratic dependence of the degree d in the query complexity to U .

A refined analysis indicates that applying a Chebyshev interpolation polynomial to a bitstring
indexed encoding for any d ≤ 2O(s(n)) and ϵ ≥ 2−O(s(n)) requires O(s(n)) qubits and determin-
istic O(s(n)) space, provided that an evaluation oracle EvalPd

estimates coefficients {ck}dk=0 of
the Chebyshev interpolation polynomial with O(log(ϵ/d)) precision. This result leads to the
establishment of a space-efficient variant of QSVT:

Theorem 1.4 (Space-efficient QSVT, informal of Theorem 3.4). Let f : R → R be a continuous
function bounded on I ⊆ [−1, 1]. If there exists a degree-d polynomial P̂d that approximates
h : [−1, 1] → R, where h approximates f only on I, such that maxx∈[−1,1] |h(x)−P̂d(x)| ≤ ϵ, then
Chebyshev interpolation yields another degree-d polynomial Pd satisfying the following conditions:
maxx∈I |f(x)− Pd(x)| ≤ O(ϵ log d) and maxx∈[−1,1] |Pd(x)| ≤ 1.
Furthermore, we have an algorithm Af that computes any coefficient {ck}dk=0 of the Chebyshev
interpolation polynomial Pd space-efficiently. The algorithm is deterministic for bounded f ,
and bounded-error randomized for piecewise-smooth f . Additionally, for any s(n)-qubit bitstring
indexed encoding U of A = Π̃UΠ with d ≤ 2O(s(n)), we can implement the quantum singular
value transformation P

(SV)
d (A) using O(d2∥c∥1) queries17 In addition, ∥c∥1 is generally upper-

bounded by O(d) for all piecewise-smooth functions. However, for specific functions, such as the
sign function, we can improve the upper bound to O(log d). to U with O(s(n)) qubits.

Our techniques in Theorem 1.4 offer two advantages over the techniques proposed by [MY23].
Firstly, our techniques can handle any piecewise-smooth function, such as the normalized loga-
rithmic function lnβ(x) :=

ln(1/x)
2 ln(2/β) on the interval I = [β, 1] for any β ≥ 2−O(s(n)), whereas the

techniques from [MY23] are restricted to functions that are bounded on the interval I = [−1, 1].
Secondly, our technique is constant overhead in terms of the space complexity of the bitstring
indexed encoding U , while the techniques from [MY23] are only poly-logarithmic overhead.

In addition, it is noteworthy that applying the space-efficient QSVT with the sign function
will imply a unified approach to error reduction for the classes BQUL, coRQUL and RQUL.

Computing the coefficients. We will implement the evaluation oracle EvalPd
to prove The-

orem 1.4. To estimate the coefficients {ck}dk=0 resulting from Chebyshev interpolation for any
15To clarify, we can see from [MY23] that directly adapting their construction shows that implementing QSVT

for any s(n)-qubit block-encoding with O(s(n))-bit precision requires poly(s(n)) classical and quantum space for
any s(n) ≥ Ω(logn). However, Problem 1.3 (space-efficient QSVT) seeks to reduce the dependence of s(n) in the
space complexity from polynomial to linear.

16To ensure that Π̃UΠ admits a matrix representation, we require the basis of projectors Π̃ and Π to have a
well-defined order, leading us to focus exclusively on bitstring indexed encoding. Additionally, for simplicity, we
assume no ancillary qubits are used here, and refer to Definition 3.1 for a formal definition.

17The dependence of ∥c∥1 arises from renormalizing the bitstring indexed encoding via amplitude amplification.
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function f that is bounded on the interval I = [−1, 1], we can use standard numerical integral
techniques,18 given that the integrand’s second derivative in {ck}dk=0 is bounded by poly(d).

However, implementing the evaluation oracle for piecewise-smooth functions f on an interval
I ⊊ [−1, 1] is relatively convoluted. We cannot simply apply Chebyshev interpolation to f .
Instead, we consider a low-degree Fourier approximation g resulting from implementing smooth
functions to Hamiltonians [vAGGdW20, Appendix B]. We then make the error vanish outside
I by multiplying with a Gaussian error function, resulting in h which approximates f only on
I. Therefore, we can apply Chebyshev interpolation and our algorithm for bounded functions
to h through a somewhat complicated calculation.

Finally, we need to compute the coefficients of the low-degree Fourier approximation g.
Interestingly, this step involves the stochastic matrix powering problem, which lies at the heart
of space-bounded derandomization, e.g., [SZ99, CDSTS23, PP23]. We utilize space-bounded
random walks on a directed graph to estimate the power of a stochastic matrix. Consequently,
we can only develop a bounded-error randomized algorithm Af for piecewise-smooth functions.19

1.5 Proof overview: A general framework for quantum state testing

Our framework enables space-bounded quantum state testing, specifically for proving The-
orem 1.1 and Theorem 1.2, and is based on the one-bit precision phase estimation [Kit95],
also known as the Hadamard test [AJL09]. Prior works [TS13, FL18] have employed (one-bit
precision) phase estimation in space-bounded quantum computation.

To address quantum state testing problems, we reduce them to estimating Tr(Pd(A)ρ), where
ρ is a (mixed) quantum state prepared by a quantum circuit Qρ, A is an Hermitian operator
block-encoded in a unitary operator UA, and Pd is a space-efficiently computable degree-d poly-
nomial. This approach has been applied in time-bounded quantum state testing, including fidelity
estimation [GP22] and subsequently trace distance estimation [WZ23a].

|0⟩ H H

|0̄⟩
UPd(A)

|0̄⟩
Qρ

|0̄⟩

Figure 1: General framework for quantum state testing T (Qρ, UA, Pd).

To implement a unitary operator UPd(A) that (approximately) block-encodes Pd(A) in a
space-efficient manner, we require Pd to meet the conditions specified in Theorem 1.4. As
illustrated in Figure 1, we denote the quantum circuit as T (Qρ, UA, Pd), where we exclude the
precision for simplicity. The measurement outcome of T (Qρ, UA, Pd) will be 0 with a probability
close to 1+Tr(Pd(A)ρ)

2 . This property allows us to estimate Tr(Pd(A)ρ) within an additive error ϵ
using O(1/ϵ2) sequential repetitions, resulting in a BQL containment.

As an example of the application, T (Qi, U ρ0−ρ1
2

, P sgn
d ) is utilized in GapQSD, where U ρ0−ρ1

2

is a block-encoding of ρ0−ρ1
2 , and P sgn

d is a space-efficient polynomial approximation of the

18We remark that using a more efficient numerical integral technique, such as the exponentially convergent
trapezoidal rule, may improve the required space complexity for computing coefficients by a constant factor.

19The classical pre-processing in space-efficient QSVT is not part of the deterministic Turing machine producing
the quantum circuit description in the BQL model (Definition 2.6). Instead, we treat it as a component of quantum
computation, allowing the use of randomized algorithms since BPL ⊆ BQL [FR21].
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sign function. Similarly, T (Qi, Uρi , P
ln
d ) is utilized in GapQED, where Uρi is a block-encoding

of ρi for i ∈ {0, 1}, and P ln
d is a space-efficient polynomial approximation of the normalized

logarithmic function. Both P sgn
d and P ln

d can be obtained by employing Theorem 1.4.20

Making the error one-sided. The main challenge is constructing a unitary U of interest, such
as T (Qρ, UA, Pd), that accepts with a certain fixed probability p for yes instances (ρ0 = ρ1),
while having a probability that polynomially deviates from p for no instances. As an example,
we consider CertQHSlog and express HS2(ρ0, ρ1) as a linear combination of Tr(ρ20), Tr(ρ21), and
Tr(ρ0ρ1). We thus design a unitary quantum algorithm employing the LCU technique, which
accepts with probability

(
1
2 + 1

4HS
2(ρ0, ρ1)

)2, equal 1/4 for yes instances. Applying the exact
amplitude amplification [BBHT98,BHMT02], we achieve perfect completeness, and the analysis
demonstrates that the acceptance probability polynomially deviates from 1 for no instances. By
applying error reduction for coRQUL, the resulting algorithm is indeed in coRQUL.

Moving on to CertQSDlog, we consider the quantum circuit Ui = T (Qi, U ρ0−ρ1
2

, P sgn
d ) for i ∈

{0, 1}. Let pi be the probability that the measurement outcome of Ui|0̄⟩ in Figure 1 is 0. Since our
space-efficient QSVT preserves parity, specifically the approximation polynomial P sgn

d satisfies
P sgn
d (0) = 0,21 we obtain p0 = p1 = 1/2 for yes instances (ρ0 = ρ1). With a simple modification,
U0 and U1 enable algorithm A to meet the condition of exact amplitude amplification for yes
instances. Further analysis shows that A accepts with probability polynomially away from 1 for
no instances. We thus can conclude a coRQUL containment similar to CertQHSlog.

1.6 Discussion and open problems

Since space-efficient quantum singular value transformation (QSVT) offers a unified frame-
work for designing quantum logspace algorithms, it suggests a new direction to find applications
of space-bounded quantum computation. An intriguing candidate is solving positive semidefi-
nite programming (SDP) programs with constant precision [JY11,AZLO16]. A major challenge
in achieving a BQL containment for this problem is that iteratively applying the space-efficient
QSVT super-constantly many times may lead to a bitstring indexed encoding requiring ω(log n)
ancillary qubits, raising the question:

(i) Is it possible to have an approximation scheme (possibly under certain conditions) that
introduces merely O(1) additional ancillary qubits in the bitstring indexed encoding per
iteration, such that applying space-efficient QSVT log n times results in a bitstring indexed
encoding with at most O(log n) ancillary qubits?

Furthermore, as quantum distances investigated in this work are all instances of a quantum
analog of symmetric f -divergence, there is a natural question on other instances:

(ii) Can we demonstrate that space-bounded quantum state testing problems with respect
to other quantum distances are also BQL-complete, such as quantum analogs of squared
Hellinger distance or quantum analogs of triangular discrimination [Liu23]?

In addition, there is a question on improving the efficiency of the space-efficient QSVT:
(iii) Can we improve the query complexity of U and U † in the space-efficient QSVT implemen-

tation (e.g., for the sign function) from O(d2 log d) to O(d)?
Notably, classical pre-processing in QSVT techniques usually involves finding the sequence

of z-axis rotation angles, while our approach instead uses Chebyshev interpolation and the
LCU technique. A solution thus involves developing a space-efficient angle-finding algorithm.
An interesting direction from a recent work [MW23], which investigated QSVT with SU(2)
rotations, may shed light on Question (iii) since finding SU(2) rotation angles appears easier.

20In particular, P sgn
d is given in Corollary 3.7, as well as P ln

d is given in Corollary 3.10.
21Let f be any odd function such that space-efficient QSVT associated with f can be implemented by Theo-

rem 1.4. It follows that the corresponding approximation polynomial P (f)
d is also odd. See Remark 3.12.
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1.7 Related works: more on quantum state testing problems

Testing the spectrum of quantum states was studied in [OW21]: for example, whether a
quantum state is maximally mixed or ϵ-far away in trace distance from mixed states can be tested
using Θ(N/ϵ2) samples. Later, it was generalized in [BOW19] to quantum state certification
with respect to fidelity and trace distance. Estimating distinguishability measures of quantum
states [RASW23] is another topic, including the estimation of fidelity [FL11, WZC+23, GP22]
and trace distance [WGL+22,WZ23a].

Entropy estimation of quantum states has been widely studied in the literature. Given
quantum purified access, it was shown in [GL20] that the von Neumann entropy S(ρ) can be
estimated within additive error ϵ with query complexity Õ(N/ϵ1.5). If we know the reciprocal
κ of the minimum non-zero eigenvalue of ρ, then S(ρ) can be estimated with query complexity
Õ(κ2/ϵ) [CLW20]. We can estimate S(ρ) within multiplicative error ϵ with query complexity
Õ(n

1
2
+ 1+η

2ϵ2 ) [GHS21], provided that S(ρ) = Ω(ϵ + 1/η). If ρ is of rank r, then S(ρ) can be
estimated with query complexity Õ(r2/ϵ2) [WGL+22]. Estimating the Rényi entropy Sα(ρ)
given quantum purified access was first studied in [GHS21], and then was improved in [WGL+22,
LWZ22]. In addition, the work of [GH20] investigates the (conditional) hardness of GapQED
with logarithmic depth or constant depth.

Paper organization. Our paper begins by introducing key concepts in Section 2, including
quantum distance and divergences, space-bounded quantum computation, Chebyshev polynomi-
als and interpolation, and a toolkit for space-bounded randomized and quantum computation.
In Section 3, we demonstrate our space-efficient variant of quantum singular value transforma-
tion (Theorem 1.4) and offer examples for bounded functions and piecewise-smooth functions.
We also provide a simple proof of space-efficient error reduction for unitary quantum computa-
tion. Then, in Section 4, we formally define space-bounded quantum state testing problems with
four distance-like measures, and present the first family of natural coRQUL-complete problems
(Theorem 1.1), as well as a novel family of natural BQL-complete problems (Theorem 1.2).

2 Preliminaries

We assume that the reader is familiar with quantum computation and the theory of quantum
information. For an introduction, the textbooks by [NC02] and [dW19] provide a good starting
point, while for a more comprehensive survey on quantum complexity theory, refer to [Wat08].

In addition, we adopt the convention that the logarithmic function log has a base of 2,
denoted by log(x) := log2(x) for any x ∈ R+. For the purpose of clarity, we will denote the
operator norm as ∥A∥ := ∥A∥2→2. Moreover, for the sake of simplicity, we utilize the notation
|0̄⟩ to represent |0⟩⊗a with a > 1.

2.1 Distances and divergences for quantum states

We will provide an overview of relevant quantum distances and divergences, along with
useful inequalities among different quantum distance-like measures. Additionally, we recom-
mend [BOW19, Section 3.1] for a nice survey on quantum distance and divergences.

Definition 2.1 (Quantum distances and divergences). For any quantum states ρ0 and ρ1, we
define several distance-like measures and relevant quantities:

• Trace distance. td(ρ0, ρ1) :=
1
2Tr|ρ0 − ρ1| = 1

2Tr(((ρ0 − ρ1)
†(ρ0 − ρ1))

1/2).

• (Uhlmann) Fidelity. F(ρ0, ρ1) := Tr|√ρ0
√
ρ1|.

• Squared Hilbert-Schmidt distance. HS2(ρ0, ρ1) :=
1
2Tr(ρ0 − ρ1)

2.
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• von Neumann entropy. S(ρ) := −Tr(ρ ln ρ) for any quantum state ρ.

• Quantum Jensen-Shannon divergence. QJS(ρ0, ρ1) := S
(ρ0+ρ1

2

)
− S(ρ0)+S(ρ1)

2 .

The trace distance and the squared Hilbert-Schmidt distance reach the minimum of 0 when
ρ0 equals ρ1, while the fidelity attains a maximum value of 1. Additionally, there are two
equalities when at least one of the two states is a pure state:

• For a pure state ρ0 and a mixed state ρ1, F2(ρ0, ρ1) = Tr(ρ0ρ1).

• For two pure states ρ0 and ρ1, Tr(ρ0ρ1) = 1−HS2(ρ0, ρ1).

Moreover, we have HS2(ρ0, ρ1) =
1
2(Tr(ρ

2
0)+Tr(ρ21))−Tr(ρ0ρ1). Additionally, Fuchs and van

de Graaf [FvdG99] showed a well-known inequality between the trace distance and the fidelity:

Lemma 2.2 (Trace distance vs. fidelity, adapted from [FvdG99]). For any states ρ0 and ρ1,

1− F(ρ0, ρ1) ≤ td(ρ0, ρ1) ≤
√
1− F2(ρ0, ρ1).

The joint entropy theorem (Lemma 2.3) enhances our understanding of entropy in classical-
quantum states and is necessary for our usages of the von Neumann entropy.

Lemma 2.3 (Joint entropy theorem, adapted from Theorem 11.8(5) in [NC02]). Suppose pi are
probabilities corresponding to a distribution D, |i⟩ are orthogonal state of a system A, and {ρi}i is
any set of density operators for another system B. Then S

(∑
i pi|i⟩⟨i|⊗ρi

)
= H(D)+

∑
i piS(ρi).

Let us now turn our attention to the quantum Jensen-Shannon divergence, which is defined
in [MLP05]. For simplicity, we define QJS2(ρ0, ρ1) := QJS(ρ0, ρ1)/ ln 2 using the base-2 (matrix)
logarithmic function. Notably, when considering size-2 ensembles with a uniform distribution,
the renowned Holevo bound [Hol73] (see Theorem 12.1 in [NC02]) indicates that the quantum
Shannon distinguishability studied in [FvdG99] is at most the quantum Jensen-Shannon diver-
gence. Consequently, this observation yields inequalities between the trace distance and the
quantum Jensen-Shannon divergence.22

Lemma 2.4 (Trace distance vs. quantum Jensen-Shannon divergence, adapted from [FvdG99,
Hol73,BH09]). For any quantum states ρ0 and ρ1, we have

1−H2

(
1−td(ρ0,ρ1)

2

)
≤ QJS2(ρ0, ρ1) ≤ td(ρ0, ρ1).

Here, the binary entropy H2(p) := −p log(p)− (1− p) log(1− p).

2.2 Space-bounded quantum computation

We say that a function s(n) is space-constructible if there exists a deterministic space s(n)
Turing machine that takes 1n as an input and output s(n) in the unary encoding. Moreover, we
say that a function f(n) is s(n)-space computable if there exists a deterministic space s(n) Turing
machine that takes 1n as an input and output f(n). Our definitions of space-bounded quantum
computation are formulated in terms of quantum circuits, whereas many prior works focused on
quantum Turing machines [Wat09,Wat03,vMW12]. For a discussion on the equivalence between
space-bounded quantum computation using quantum circuits and quantum Turing machines, we
refer readers to [FL18, Appendix A] and [FR21, Section 2.2].

We begin by defining time-bounded and space-bounded quantum circuit families, and then
proceed to the corresponding complexity class BQUSPACE[s(n)]. It is worth noting that we use
the abbreviated notation Cx to denote that the circuit C|x| takes input x.

22For a detailed proof of these inequalities, please refer to [Liu23, Appendix B].
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Definition 2.5 (Time- and space-bounded quantum circuit families). A (unitary) quantum
circuit is a sequence of quantum gates, each of which belongs to some fixed gateset that is
universal for quantum computation, such as {Hadamard,CNOT,T}. For a promise problem
L = (Lyes,Lno), we say that a family of quantum circuits {Cx : x ∈ L} is t(n)-time-bounded if
there is a deterministic Turing machine that, on any input x ∈ L, runs in time O(t(|x|)), and
outputs a description of Cx such that Cx accepts (resp., rejects) if x ∈ Lyes (resp., x ∈ Lno).
Similarly, we say that a family of quantum circuits {Cx : x ∈ L} is s(n)-space-bounded if there
is a deterministic Turing machine that, on any input x ∈ L, runs in space O(s(|x|)) (and hence
time 2O(s(|x|))), and outputs a description of Cx such that Cx accepts (resp., rejects) if x ∈ Lyes

(resp., x ∈ Lno), as well as Cx is acting on O(s(|x|)) qubits and has 2O(s(|x|) gates..

Definition 2.6 (BQUSPACE[s(n), a(n), b(n)], adapted from Definition 5 in [FR21]). Let s : N →
N be a space-constructible function such that s(n) ≥ Ω(log n). Let a(n) and b(n) be func-
tions that are computable in deterministic space s(n). A promise problem (Lyes,Lno) is in
BQUSPACE[s(n), a(n), b(n)] if there exists a family of s(n)-space-bounded (unitary) quantum
circuits {Cx}x∈L, where n = |x|, satisfying the following:

• The output qubit is measured in the computational basis after applying Cx. We say that
Cx accepts x if the measurement outcome is 1, whereas Cx rejects x if the outcome is 0.

• Pr[Cx accepts x] ≥ a(|x|) if x ∈ Lyes, whereas Pr[Cx accepts x] ≤ b(|x|) if x ∈ Lno.

We remark that Definition 2.6 is gateset-independent, given that the gateset is closed under
adjoint and all entries in chosen gates have reasonable precision. This property is due to the
space-efficient Solovay-Kitaev theorem presented in [vMW12]. Moreover, we can achieve error
reduction for BQUSPACE[s(n), a(n), b(n)] as long as a(n) − b(n) ≥ 2−O(s(n)), which follows
from [FKL+16] or our space-efficient QSVT-based construction in Section 3.4. We thereby define
BQUSPACE[s(n)] := BQUSPACE[s(n), 2/3, 1/3] to represent (two-sided) bounded-error unitary
quantum space, and BQUL := BQUSPACE[O(log n)] to denote unitary quantum logspace.

We next consider general space-bounded quantum computation, which allows intermediate
quantum measurements. As indicated in [AKN98, Section 4.1], for any quantum channel Φ
mapping from density matrices on k1 qubits to density matrices on k2 qubits, we can exactly
simulate this quantum channel Φ by a unitary quantum circuit acting on 2k1 + k2 qubits.
Therefore, we extend Definition 2.5 to general quantum circuits, which allows local operations,
such as intermediate measurements in the computational basis, resetting qubits to their initial
states, and tracing out qubits. Now we proceed with a definition on BQSPACE[s(n)].

Definition 2.7 (BQSPACE[s(n), a(n), b(n)], adapted from Definition 7 in [FR21]). Let s : N → N
be a space-constructible function such that s(n) ≥ Ω(log n). Let a(n) and b(n) be func-
tions that are computable in deterministic space s(n). A promise problem (Lyes,Lno) is in
BQSPACE[s(n), a(n), b(n)] if there exists a family of s(n)-space-bounded general quantum cir-
cuits {Φx}x∈L, where n = |x|, satisfying the following holds:

• The output qubit is measured in the computational basis after applying Φx. We say that
Φx accepts x if the measurement outcome is 1, whereas Φx rejects x if the outcome is 0.

• Pr[Φx accepts x] ≥ a(|x|) if x ∈ Lyes, whereas Pr[Φx accepts x] ≤ b(|x|) if x ∈ Lno.

It is noteworthy that unitary quantum circuits, which correspond to unitary channels, are
a specific instance of general quantum circuits that correspond to quantum channels. we thus
infer that BQUSPACE[s(n)] ⊆ BQSPACE[s(n)] for any s(n) ≥ Ω(log n). However, the opposite
direction was a long-standing open problem. Recently, Fefferman and Remscrim [FR21] demon-
strated a remarkable result that BQSPACE[s(n)] ⊆ BQUSPACE[O(s(n))]. In addition, it is evi-
dent that BQSPACE[s(n)] can achieve error reduction since it admits sequential repetition simply
by resetting working qubits. Therefore, we define BQSPACE[s(n)] := BQSPACE[s(n), 2/3, 1/3]
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to represent (two-sided) bounded-error general quantum space, and denote general quantum
logspace by BQL := BQSPACE[O(log n)].

We now turn our attention to one-sided bounded-error unitary quantum space RQUSPACE[s(n)]
and coRQUSPACE[s(n)] for s(n) ≥ Ω(log n). These complexity classes were first introduced by
Watrous [Wat01] and have been further discussed in [FR21]. We proceed with the definitions:

• RQUSPACE[s(n), a(n)] := BQUSPACE[s(n), a(n), 0];

• coRQUSPACE[s(n), b(n)] := BQUSPACE[s(n), 1, b(n)].

Note that RQUSPACE[s(n), a(n)] and coRQUSPACE[s(n), b(n)] can achieve error reduction, as
shown in [Wat01] or our space-efficient QSVT-based construction in Section 3.4. We define

RQUSPACE[s(n)] := BQUSPACE
[
s(n), 12 , 0

]
and coRQUSPACE[s(n)] := BQUSPACE

[
s(n), 1, 12

]
to represent one-sided bounded-error unitary quantum space, as well as logspace counterparts

RQUL := RQUSPACE[O(log n)] and coRQUL := coRQUSPACE[O(log n)].

Remark 2.8 (RQUL and coRQUL are gateset-dependent). We observe that changing the gate-
set in space-efficient Solovay-Kitaev theorem [vMW12] can cause errors, revealing the gateset-
dependence of unitary quantum space classes with one-sided bounded-error. To address this
issue, we adopt a larger gateset G for RQUSPACE[s(n)] and coRQUSPACE[s(n)], which includes
any single-qubit gates whose amplitudes can be computed in deterministic O(s(n)) space.

2.3 Near-minimax approximation by Chebyshev interpolation

We will define Chebyshev polynomials and introduce Chebyshev interpolation, which is no-
table for providing near-minimax approximations. These concepts are essential to our space-
efficient quantum singular value transformation techniques (Section 3).

Definition 2.9 (Chebyshev polynomials). The Chebyshev polynomials (of the first kind) Tk(x)
are defined via the following recurrence relation: T0(x) := 1, T1(x) := x, and Tk+1(x) :=
2xTk(x)− Tk−1(x). For x ∈ [−1, 1], an equivalent definition is Tk(cos θ) = cos(kθ).

In order to use Chebyshev polynomials for interpolation, we first need to define an inner
product between two functions, f and g, as long as the following integral exists:

⟨f, g⟩ := 2

π

∫ 1

−1

f(x)g(x)√
1− x2

dx =
2

π

∫ 0

−π
f(cos θ)g(cos θ)dθ.

The Chebyshev polynomials form an orthonormal basis in this inner product space induced
by ⟨·, ·⟩. As a result, any degree-d polynomial Pd can be represented as a linear combination
of Chebyshev polynomials using a technique called Chebyshev interpolation, see [MH02, Section
6.5] for the details. In particular, Pd = 1

2⟨T0, Pd⟩ +
∑d

k=1⟨Tk, Pd⟩Tk. It is noteworthy that
Lemma 2.10 is first proven in [Pow67].

Lemma 2.10 (Near-minimax approximation by Chebyshev interpolation, adapted from The-
orem 6.13 in [MH02]). For any continuous function f : [−1, 1] → R, if there exists an explicit
degree-d polynomial P̂d ∈ R[x] such that maxx∈[−1,1] |f(x) − P̂d(x)| ≤ ϵ, then we know that
Pd = 1

2⟨T0, f⟩+
∑d

k=1⟨Tk, f⟩Tk satisfies maxx∈[−1,1] |f(x)− Pd(x)| ≤ O(ϵ log d).

2.4 Tools for space-bounded randomized and quantum algorithms

Our convention assumes that for any algorithm A in bounded-error randomized time t(n)
and space s(n), A outputs the correct value with probability at least 2/3 (viewed as “success
probability”). We first proceed with space-efficient success probability estimation.
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Lemma 2.11 (Space-efficient success probability estimation by sequential repetitions). Let A
be a randomized (resp., quantum) algorithm that outputs the correct value with probability p, has
time complexity t(n), and space complexity s(n). We can obtain an additive-error estimation
p̂ such that |p − p̂| ≤ ϵ, where ϵ ≥ 2−O(s(n)). Moreover, this estimation can be computed in
bounded-error randomized (resp., quantum) time O(ϵ−2t(n)) and space O(s(n)).

Proof. Consider a m-time sequential repetition of the algorithm A, and let Xi be a random
variable indicating whether the i-th repetition succeeds, then we obtain a random variable X =
1
m

∑m
i=1Xi such that E[X] = p. Now let X̂ = 1

m

∑m
i=1 X̂i be the additive-error estimation, where

X̂i is the outcome of A in the i-th repetition. By the Chernoff-Hoeffding bound (e.g., Theorem
4.12 in [MU17]), we know that Pr

[
|X̂ − p| ≥ ϵ

]
≤ 2 exp(−2mϵ2). By choosing m = 2ϵ−2, this

choice of m ensures that each run of A succeeds with probability at least 2/3.
Furthermore, the space complexity of our algorithm is O(s(n)) since we can simply reuse the

workspace. Also, the time complexity is m · t(n) = O(ϵ−2t(n)) as desired.

Notably, when applying Lemma 2.11 to a quantum algorithm, we introduce intermediate
measurements to retain space complexity through reusing working qubits. While space-efficient
success probability estimation without intermediate measurements is possible,23 we will use
Lemma 2.11 for convenience, given that BQL = BQUL [FR21].

The SWAP test was originally proposed for pure states in [BCWdW01]. Subsequently,
in [KMY09], it was demonstrated that the SWAP test can also be applied to mixed states.

Lemma 2.12 (SWAP test for mixed states, adapted from [KMY09, Proposition 9]). Suppose
ρ0 and ρ1 are two n-qubit mixed quantum states. There is a (2n + 1)-qubit quantum circuit
that outputs 0 with probability 1+Tr(ρ0ρ1)

2 , using 1 sample of each ρ0 and ρ1 and O(n) one- and
two-qubit quantum gates.

A matrix B is said to be sub-stochastic if all its entries are non-negative and the sum of entries
in each row (respectively, column) is strictly less than 1. Moreover, a matrix B is row-stochastic
if all its entries are non-negative and the sum of entries in each row is equal to 1.

Lemma 2.13 (Sub-stochastic matrix powering in bounded space). Let B be an l × l sub-
stochastic matrix, where each entry of B requires at most ℓ-bit precision. Then, there exists
an explicit randomized algorithm that computes the matrix power Bk[s, t] in log(l+1) space and
O(ℓk) time. Specifically, the algorithm accepts with probability Bk[s, t].

Proof. Our randomized algorithm leverages the equivalence between space-bounded randomized
computation and Markov chains, see [Sak96, Section 2.4] for a detailed introduction.

First, we construct a row-stochastic matrix B̂ from B by adding an additional column and
row. Let B̂[i, j] denote the entry at the i-th column and the j-th row of B̂. Specifically,

B̂[i, j] :=


B[i, j], if 1 ≤ i, j ≤ l;

1−
∑l+1−i

j=1 b
(1)
j , if i = l + 1 and 1 ≤ j ≤ l + 1;

0, if 1 ≤ i ≤ l and j = l + 1.

Next, we view B̂ as a transition matrix of a Markov chain since B̂ is row-stochastic. We
consequently have a random walk on the directed graphG = (V,E) where V = {1, 2, · · · , l}∪{⊥}
and (u, v) ∈ E iff B̂(u, v) > 0. In particular, the probability that a k-step random walk starting
at node s and ending at node t is exactly B̂k[s, t] = Bk[s, t]. This is because the walker who
visits the dummy node ⊥ will not reach other nodes.

23Fefferman and Lin [FL18] noticed that one can achieve space-efficient success probability estimation for
quantum algorithms without intermediate measurements via quantum amplitude estimation [BHMT02].
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Finally, note that B̂ is a (l+1)× (l+1) matrix, the matrix powering of B̂k can be computed
in log(l) space. In addition, the overall time complexity is O(ℓk) since we simulate the dyadic
rationals (with ℓ-bit precision) of a single transition exactly by ℓ coin flips.

3 Space-efficient quantum singular value transformations

We begin by defining the projected unitary encoding and its special forms, viz. the bitstring
indexed encoding and the block-encoding, as well as notations on singular value decomposition
and singular value transformation.

Definition 3.1 (Projected unitary encoding and its special forms, adapted from [GSLW19]).
Let U be an (α, a, ϵ)-projected unitary encoding of a linear operator A if ∥A − αΠ̃UΠ∥ ≤ ϵ,
where U and orthogonal projectors Π̃ and Π act on s+a qubits, and both rank(Π̃) and rank(Π)
are at least 2a (a is viewed as the number of ancillary qubits). Furthermore, we are interested
in two special forms of the projected unitary encoding:

• Bitstring indexed encoding. We say that a projected unitary encoding is a bitstring
indexed encoding if both orthogonal projectors Π̃ and Π span on S̃, S ⊆ {|0⟩, |1⟩}⊗(a+s),
respectively.24 In particular, for any |s̃i⟩ ∈ S̃ and |sj⟩ ∈ S, we have a matrix representation
AS̃,S(i, j) := ⟨s̃i|U |sj⟩ of A.

• Block-encoding. We say that a projected unitary encoding is a block-encoding if both
orthogonal projectors are of the form Π = Π̃ = |0⟩⟨0|⊗a ⊗ Is. We use the shorthand
A = (⟨0̄| ⊗ Is)U(|0̄⟩ ⊗ Is) for convenience.

Definition 3.2 (Singular value decomposition of a projected unitary, adapted from Definition
7 in [GSLW19]). Given a projected unitary encoding of A, denoted by U , associated with
orthogonal projectors Π and Π̃ on a finite-dimensional Hilbert space HU . Namely, A = Π̃UΠ.
Then there exists orthonormal bases of Π and Π̃ such that Π: {|ψi⟩ : i ∈ [d]}, where d :=
rank(Π), of a subspace Img(Π) = span {|ψi⟩}; Π̃:

{
|ψ̃i⟩ : i ∈ [d̃]

}
, where d̃ := rank(Π̃), of

a subspace Img(Π̃) = span
{
|ψ̃i⟩

}
. These bases ensure that the singular value decomposition

Π̃UΠ =
∑min{d,d̃}

i=1 σi|ψ̃i⟩⟨ψi| where singular values σi > σj for any i < j ∈ [min{d, d̃}].

Definition 3.3 (Singular value transformation by even or odd functions, adapted from Definition
9 in [GSLW19]). Let f : R → C be an even or odd function. We consider a linear operator
A ∈ Cd̃×d satisfying the singular value decomposition A =

∑min{d,d̃}
i=1 σi|ψ̃i⟩⟨ψ̃i|. We define the

singular value transformation corresponding to f as follows:

f (SV)(A) :=

{∑min{d,d̃}
i=1 f(σi)|ψ̃i⟩⟨ψi|, for odd f,∑d
i=1 f(σi)|ψi⟩⟨ψi|, for even f.

Here, for i ∈ {min{d, d̃}+ 1, · · · , d− 1, d}, we define σi := 0.
It is worth noting that f (SV)(A) = f(A) when A is an Hermitian matrix.

With these definitions in place, we present the main (informal) theorem in this section:

Theorem 3.4 (Space-efficient QSVT). Let f : R → R be a continuous function bounded on the
closed interval of interest I ⊆ [−1, 1]. If there exists a degree-d polynomial P̂d that approximates
h : [−1, 1] → R, where h approximates f only on I, such that maxx∈[−1,1] |h(x)−P̂d(x)| ≤ ϵ, then
Chebyshev interpolation yields another degree-d polynomial Pd satisfying the following conditions:
maxx∈I |f(x)− Pd(x)| ≤ O(ϵ log d) and maxx∈[−1,1] |Pd(x)| ≤ 1.

24Typically, to ensure these orthogonal projectors coincide with space-bounded quantum computation, we
additionally require the corresponding subsets S̃ and S admit space-efficient set membership, namely deciding
the membership of these subsets is in deterministic O(s+ a) space.
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Moreover, we have space-efficient classical algorithms for computing any entry in the coefficient
vector c of the Chebyshev interpolation polynomial Pd:

• If f is a bounded function,25 then any entry in the coefficient vector c can be computed in
deterministic O(log d) space;

• If f is a piecewise-smooth function, then any entry in the coefficient vector c can be com-
puted in bounded-error randomized O(log d) space.

Furthermore, for any (1, a, 0)-bitstring indexed encoding U of A = Π̃UΠ, acting on s+ a qubits
where a(n) ≤ s(n), and any Pd with d ≤ 2O(s(n)), we can implement the quantum singular value
transformation P

(SV)
d (A) that acts on O(s(n)) qubits by using O(d2∥c∥1) queries to U .

We remark that we can apply Theorem 3.4 to general forms of the projected unitary encoding
U with orthogonal projectors Π and Π̃, as long as such an encoding meets the conditions: (1)
The basis of Π and Π̃ admits a well-defined order; (2) Both controlled-Π and controlled-Π̃ admit
computationally efficient implementation. We note that bitstring indexed encoding defined
in Definition 3.1 trivially meets the first condition, and a sufficient condition for the second
condition is that the corresponding subsets S and S̃ have space-efficient set membership.

Specifically, we elaborate on three main technical contributions that culminate in our space-
efficient quantum singular value transformations (Theorem 3.4):

• We provide deterministic space-efficient polynomial approximations for bounded functions
(Lemma 3.5), including the sign function (Corollary 3.7). Our approach leads to a simple
proof of space-efficient error reduction for unitary quantum computations (Section 3.4).

• We present bounded-error randomized space-efficient polynomial approximations for piecewise-
smooth functions (Theorem 3.8), such as the normalized logarithmic function (Corollary 3.10).

• We propose QSVT implementations using Chebyshev interpolation polynomials (Theo-
rem 3.11), including those for the sign function (Corollary 3.16) and the normalized loga-
rithmic function (Corollary 3.17).

3.1 Space-efficient bounded polynomial approximations

We provide a systematic approach for constructing space-efficient polynomial approximations
of real-valued piecewise-smooth functions, which is a space-efficient counterpart of Corollary 23
in [GSLW19]. It is worth mentioning that our algorithm (Lemma 3.5) is deterministic for contin-
uous functions that are bounded on the interval [−1, 1]. However, for general piecewise-smooth
functions, we only introduce a randomized algorithm (Theorem 3.8). In addition, please refer
to Section 2.3 as a brief introduction to Chebyshev polynomials and Chebyshev interpolation.

3.1.1 Bounded functions

We propose a space-efficient algorithm for computing the coefficients of a polynomial approx-
imation with high accuracy for bounded functions. Our approach uses Chebyshev interpolation
and numerical integration, building upon the methodology outlined in Lemma 2.10 of [MY23]
with meticulous analysis.

Lemma 3.5 (Space-efficient polynomial approximations for bounded functions). Consider a
continuous function f , and let P̂ (f)

d be a degree-d polynomial with the same parity as f , such
that maxx∈[−1,1]|f(x)− P̂

(f)
d (x)| ≤ ϵ, where f is bounded with maxx∈[−1,1] |f(x)| ≤ B. By using

25This conclusion also applies to a linear combination of bounded functions, provided that the coefficients are
bounded and can be computed deterministically and space-efficiently.
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Chebyshev interpolation, we can obtain another degree-d polynomial P (f)
d that has the same parity

as P̂ (f)
d and satisfies maxx∈[−1,1] |f(x) − P

(f)
d (x)| ≤ O(ϵ log d). This polynomial P (f)

d is defined
as a linear combination of Chebyshev polynomials Tk(cos θ) = cos(kθ):

P
(f)
d (x) =

c0
2

+

d∑
k=1

ckTk(x) where ck :=
2

π

∫ 0

−π
Fk(θ)dθ and Fk(θ) := cos(kθ)f(cos θ).

If the integrand Fk(θ) satisfies maxξ∈[−π,0] |F ′′
k (ξ)| ≤ O(dγ) for some constant γ, then any entry

of the coefficient vector c = (c0, · · · , cd) can be computed in deterministic time O(d(γ+1)/2ϵ−1/2t(ℓ))
and space O(log(dγ+1ϵ−1B)), where evaluating F (θ) in ℓ-bit precision is in deterministic time
t(ℓ) and space O(ℓ) for ℓ = O(log(d(γ+1)/2ϵ−3/2)). Furthermore, the coefficient vector c has a
norm bounded by ∥c∥1 ≤ O(Bd).

Proof. To apply Chebyshev interpolation to a bounded continuous function f(x), we begin with
a degree-d polynomial P̂ (f)

d such that maxx∈[−1,1] |f(x)− P̂
(f)
d (x)| ≤ ϵ. By utilizing Lemma 2.10,

we can construct a degree-d Chebyshev interpolation of f(x) denoted as P (f)
d . This interpolation

is expressed as P (f)
d = c0/2+

∑d
k=1 ckTk, where ck = 2

π

∫ 0
−π Fk(θ)dθ and Fk(θ) := cos(kθ)f(cos θ),

and additionally satisfies the error bound: maxx∈[−1,1]

∣∣∣f(x)− P
(f)
d (x)

∣∣∣ ≤ O(ϵ log d).

Computing the coefficients. It is left to compute the coefficients ck for 0 ≤ k ≤ d. We can
estimate the numerical integration using the composite trapezium rule, as described in [SM03,
Section 7.5]. The application of this method yields the following result:∫ 0

−π
Fk(x)dx ≈ π

m

(Fk(x0)

2
+

m∑
l=1

Fk(xl) +
Fk(xm)

2

)
where xl := −π +

πl

m
for l = 0, 1, · · · ,m.

(3.1)
Moreover, we know the upper bound on the numerical errors for computing the coefficient ck:

ε
(f)
d,k :=

m∑
l=1

∣∣∣ ∫ xi

xi−1

Fk(x)dx− π

2m
· (Fk(xi−1) + Fk(xi))

∣∣∣ ≤ π3

12m2
max

ξ∈[−π,π]

∣∣F ′′
k (ξ)

∣∣ . (3.2)

To obtain an upper bound on the number of intervals m, we need to ensure that the error of the
numerical integration is within ε(f)d =

∑d
k=1 ε

(f)
d,k ≤ ϵ. Plugging the assumption |F ′′

k (x)| ≤ O(dγ)

into Equation (3.2), by choosing an appropriate value of m = O(ϵ−1/2d(γ+1)/2), we establish that
ε
(f)
d ≤ O(dγ+1/m2) ≤ O(ϵ). Moreover, to guarantee that the accumulated error is O(ϵ) in Equa-

tion (3.1), we need to evaluate the integrand F (θ) with ℓ-bit precision, where ℓ = O(log (m/ϵ)) =
O(log(ϵ−3/2d(γ+1)/2)). In addition, note that ck = 2

π

∫ 0
−π Fk(θ)dθ ≤ 2 ·maxx∈[−1,1] |f(x)| ≤ 2B,

we know that the coefficient vector c satisfies ∥c∥1 =
∑d

k=0 |ci| ≤ O(Bd).

Analyzing time and space complexity. The presented numerical integration algorithm
is deterministic, and therefore, the time complexity for computing the integral is O(mt(ℓ)),
where t(ℓ) is the time complexity for evaluating the integrand Fk(θ) within 2−ℓ accuracy (i.e.,
ℓ-bit precision) in O(ℓ) space. The space complexity required for computing the numerical
integration is the number of bits required to index the integral intervals and represent the
resulting coefficients. To be specific, the space complexity is

max
{
O(logm), O

(
log m

ϵ

)
, log ∥c∥∞

}
≤ O

(
max

{
log

(
ϵ−

3
2d−

γ+1
2
)
, logB

})
≤ O

(
log

(
ϵ−

3
2d−

γ+1
2 B

))
.

Here, ∥c∥∞ = max
0≤k≤d

2
π |

∫ 0
−π cos(kθ)f(cos θ)dθ| ≤ max

0≤k≤d
max

−π≤θ≤0
O(|f(cos θ)|) ≤ O(B), and the

last inequality is due to the fact that Θ(max{logA, logB}) = Θ(log(AB)) for any A,B > 0.

It is worth noting that evaluating a large family of functions, called holonomic functions,
with ℓ-bit precision requires only deterministic O(ℓ) space:
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Remark 3.6 (Space-efficient evaluation of holonomic functions). Holonomic functions encompass
several commonly used functions,26 such as polynomials, rational functions, sine and cosine func-
tions (but not other trigonometric functions such as tangent or secant), exponential functions,
logarithms (to any base), the Gaussian error function, and the normalized binomial coefficients.
In [CGKZ05,Mez12], these works have demonstrated that evaluating a holonomic function with
ℓ-bit precision is achievable in deterministic time Õ(ℓ) and space O(ℓ). Prior works achieved the
same time complexity, but with a space complexity of O(ℓ log ℓ).

We now present an example of bounded functions, specifically the sign function.

Corollary 3.7 (Space-efficient approximation to the sign function). For any δ, ϵ > 0, there is an
explicit odd polynomial P sgn

d := c0
2 +

∑d
k=1 ckTk ∈ R[x] of degree d ≤ C̃sgnδ

−1 log ϵ−1, where C̃sgn

is a universal constant. Any entry of the coefficient vector c := (c0, · · · , cd) can be computed
in deterministic time Õ

(
ϵ−1/2d2

)
and space O(log(ϵ−1d4)). Furthermore, the polynomial P sgn

d

satisfies the following conditions:

∀x ∈ [−1, 1] \ [−δ, δ],
∣∣sgn(x)− P sgn

d (x)
∣∣ ≤ Csgnϵ log d, where Csgn is a universal constant,

∀x ∈ [−1, 1],
∣∣P sgn

d (x)
∣∣ ≤ 1.

Additionally, the coefficient vector c has a norm bounded by ∥c∥1 ≤ Ĉsgn log d, where Ĉsgn is
another universal constant. Without loss of generality. we assume that all constants Csgn, Ĉsgn,
and C̃sgn are at least 1.

Proof. We start from a degree-d polynomial P̂ sgn
d that well-approximates sgn(x).

Proposition 3.7.1 (Polynomial approximation of the sign function, adapted from Lemma 10
and Corollary 4 in [LC17]). For any δ > 0, x ∈ R, ϵ ∈ (0,

√
2eπ). Let κ = 2

δ log
1/2

( √
2√
πϵ

)
, Then

gδ,ϵ(x) := erf(κx) satisfies that |gδ,ϵ(x)| ≤ 1 and max
|x|≥δ/2

|gδ,ϵ(x)− sgn(x)| ≤ ϵ.

Moreover, there is an explicit odd polynomial P̂ sgn
d ∈ R[x] of degree d = O(

√
(κ2 + log ϵ−1) log ϵ−1)

such that maxx∈[−1,1]

∣∣∣P̂ sgn
d (x)− erf(κx)

∣∣∣ ≤ ϵ

By applying Proposition 3.7.1, we obtain a polynomial P̂ sgn
d that well approximates the

function erf(κx) where κ = O(δ−1
√

log ϵ−1). Consequently, this polynomial P̂ sgn
d has a degree

of d ≤ C̃sgnδ
−1 log ϵ−1, where C̃sgn is a universal constant. Note that the Gaussian error function

is bounded, namely | erf(κx)| ≤ 1 for any x. To utilize Lemma 3.5, it suffices to upper bound
maxξ∈[−π,0] |F ′′

k (ξ)| for any 0 ≤ k ≤ d, as specified in Fact 3.7.2 and the proof is deferred to
Appendix A.1.1.

Fact 3.7.2. Let Fk(θ) := erf(κ cos θ) cos(kθ), max
0≤k≤d

max
ξ∈[−π,0]

|F ′′
k (ξ)| ≤

2√
π
κ+k2+ 4√

π
κ3+ 4√

π
kκ.

Note that κ ≤ O(d) and k ≤ d, Fact 3.7.2 indicates that maxξ∈[−π,0] |F ′′
k (ξ)| ≤ O(d3) for any

0 ≤ k ≤ d. Hence, we result in an approximation polynomial P̃ sgn
d by Lemma 3.5 satisfies that

maxx∈[−1,1] | erf(κx)− P̃ sgn
d (x)| ≤ O(ϵ log d), which additionally derives that

max
x∈[−1,1]

|sgn(x)− P̃ sgn
d (x)| ≤ ϵ+ max

x∈[−1,1]
| erf(κx)− P̃ sgn

d (x)| ≤ Csgnϵ log d.

Here, Csgn is a universal constant. Moreover, we specify the bound of ∥c̃sgn∥1 in Fact 3.7.3, and
the proof is deferred to Appendix A.1.1:

Fact 3.7.3 (Implicit in [MY23, Lemma 2.10]). For the coefficient vector c̃sgn corresponding to
a degree-d polynomial P̃ sgn

d , we have ∥c̃sgn∥1 ≤ Ĉsgn log d where Ĉsgn is a universal constant.

26For a more detailed introduction, please refer to [BZ10, Section 4.9.2].
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In addition, the coefficient vector c̃sgn can be computed in deterministic space O(log(dϵ−1)).
As the evaluation of the integrand F (θ) requires ℓ-bit precision where ℓ = O(log(ϵ−3/2d2)),
together with Remark 3.6, c̃sgn can be computed in deterministic time Õ(ϵ−1/2d2).

Finally, we obtain that |P̃ sgn
d (x)| ≤ 1+ ϵ for any x ∈ [−1, 1] since |sgn(x)| ≤ 1 for any x. We

finish the proof by normalizing P̃ sgn
d , in particular, considering P sgn

d (x) := (1 + ϵ)−1P̃ sgn
d . It is

evident to verify that P sgn
d is an odd polynomial that satisfies all desired requirements.

3.1.2 Piecewise-smooth functions

We present a randomized algorithm for constructing bounded polynomial approximations of
piecewise-smooth functions, which can be seen as a space-efficient alternative to Corollary 23
in [GSLW19], as described in Theorem 3.8. Our algorithm leverages Lemma 3.5 and Lemma 3.9.

Theorem 3.8 (Taylor series based space-efficient bounded polynomial approximations). Con-
sider a real-valued function f : [−x0− r− δ, x0+ r+ δ] → R such that f(x0+x) =

∑∞
l=0 alx

l for
all x ∈ [−r−δ, r+δ], where x0 ∈ [−1, 1], r ∈ (0, 2], δ ∈ (0, r]. Assume that

∑∞
l=0(r+δ)

l|al| ≤ B
where B > 0. Let ϵ ∈ (0, 1

2B ] such that B > ϵ, then there is a polynomial P ∈ R[x] of degree
O(δ−1 log(ϵ−1B)), such that any entry of the coefficient vector c(P ) can be computed in bounded-
error randomized time Õ(max{(δ′)−5ϵ−2B2, d2ϵ−1/2B}) and space O(log(d4(δ′)−4ϵ−1B)) where
δ′ := δ

2(r+δ) , such that

∥f(x)− P (x)∥[x0−r,x0+r] ≤ O(ϵ log d),

∥P (x)∥[−1,1] ≤ O(ϵ log d) + ∥f(x)∥[x0−r−δ/2,x0+r+δ/2] ≤ O(ϵ log d) +B,

∥P (x)∥[−1,1]\[x0−r−δ/2,x0+r+δ/2] ≤ O(ϵ log d).

Furthermore, the coefficient vector c(P ) of P has a norm bounded by ∥c(P )∥1 ≤ O(Bd).

The main ingredient, and the primary challenge, for demonstrating Theorem 3.8 is to con-
struct a low-weight approximation using Fourier series, as shown in Lemma 37 of [vAGGdW20],
which requires computing the powers of sub-stochastic matrices in bounded space (Lemma 2.13).

Lemma 3.9 (Space-efficient low-weight approximation by Fourier series). Let 0 < δ, ϵ < 1 and
f : R → R be a real-valued function such that |f(x) −

∑K
k=0 akx

k| ≤ ϵ/4 for all x ∈ Iδ, the
interval Iδ := [−1 + δ, 1 − δ] and ∥a∥1 ≤ O(max{ϵ−1, δ−1}). Then there is a coefficient vector
c ∈ C2M+1 such that

• For even functions,
∣∣∣f(x)−∑M

m=−M c
(even)
m cos(πxm)

∣∣∣ ≤ ϵ for any x ∈ Iδ;

• For odd functions,
∣∣∣f(x)−∑M

m=−M c
(odd)
m sin

(
πx

(
m+ 1

2

))∣∣∣ ≤ ϵ for any x ∈ Iδ;

• Otherwise,
∣∣∣f(x)−∑M

m=−M

(
c
(even)
m cos(πxm)+c

(odd)
m sin

(
πx

(
m+ 1

2

)) )∣∣∣≤ϵ for any x ∈ Iδ.

Here M := max
(
2⌈δ−1 ln(4∥a∥1ϵ−1)⌉, 0

)
and ∥c∥1 ≤ ∥a∥1. Moreover, the coefficient vector c

can be computed in bounded-error randomized time Õ(δ−5ϵ−2) and space O(log(δ−4ϵ−1)).

Proof. We begin by defining ∥f∥∞ := sup{|f(x)| : x ∈ [−1+δ, 1−δ]}. It is worth noting that the
truncation error of

∑K
k=0 akx

k, as shown in [SM03, Theorem A.4], is (1− δ)k+1 ≤ e−δ(k+1) ≤ ϵ,
implying that K ≥ Ω(δ−1 ln ϵ−1). Without loss of generality, we can assume that ∥a∥1 ≥ ϵ/2.27

Construction of polynomial approximations. Our construction involves three approxima-
tions, as described in Lemma 37 of [vAGGdW20]. We defer the detailed proofs of all three
approximations to Appendix A.1.2.

The first approximation combines the assumed
∑K

k=0 akx
k with arcsin(x)’s Taylor series.

27This is because if ∥a∥1 < ϵ/2, then ∥f∥∞ ≤ ∥f(x) −
∑K

k=0 akx
k∥∞ + ∥

∑K
k=0 akx

k∥∞ ≤ ϵ/4 + ∥a∥1 < ϵ,
implying that M = 0 and c = 0.
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Proposition 3.9.1 (First approximation). Let f̂1(x) :=
∑K

k=0 akx
k such that ∥f − f̂1∥∞ ≤ ϵ/4.

Then we know that f̂1(x) =
∑K

k=0 ak
∑∞

l=0 b
(k)
l sinl

(
xπ
2

)
where the coefficients b(k)l satisfy that

b
(k+1)
l =

l∑
l′=0

b
(k)
l′ b

(1)
l−l′ where b(1)l =

{
0 if l is even,(l−1

l−1
2

)
2−l+1

l · 2
π if l is odd.

(3.3)

Furthermore, the coefficients {b(k)l } satisfies the following: (1) ∥b(k)∥1 = 1 for all k ≥ 1; (2)
b(k) is entry-wise non-negative for all k ≥ 1; (3) b(k)l = 0 if l and k have different parities.

The second approximation truncates the series at l = L, and bounds the truncation error.

Proposition 3.9.2 (Second approximation). Let f̂2(x) :=
∑K

k=0 ak
∑L

l=0 b
(k)
l sinl

(
xπ
2

)
where

L := ⌈δ−2 ln(4∥a∥1ϵ−1)⌉, then we have that ∥f̂1 − f̂2∥∞ ≤ ϵ/4.

The third approximation approximates the functions sinl(x) in f̂2(x) using a tail bound of
the binomial distribution. Notably, this construction not only quadratically improves the depen-
dence on δ, but also ensures that the integrand’s second derivative is bounded when combined
with Lemma 3.5.

Proposition 3.9.3 (Third approximation). Let f̂3(x) be polynomial approximations of f that
depends on the parity of f such that ∥f̂2−f̂3∥≤ϵ/2 and M=⌊δ−1 ln(4∥a∥1ϵ−1)⌋, then we have

f̂
(even)
3 (x) :=

K∑
k=0

ak
L/2∑̂
l=0

(−1)l̂2−2l̂b
(k)

2l̂

l̂+M∑
m′=l̂−M

(−1)m
′( 2l̂

m′

)
cos(πx(m′ − l̂)),

f̂
(odd)
3 (x) :=

K∑
k=0

ak
(L−1)/2∑̂

l=0

(−1)l̂+12−2l̂−1b
(k)

2l̂+1

l̂+1+M∑
m′=l̂+1−M

(−1)m
′(2l̂+1

m′

)
sin

(
πx

(
m′ − l̂ − 1

2

))
.

Therefore, we have that f̂3(x) := f̂
(even)
3 (x) if f is even, whereas f̂3(x) := f̂

(odd)
3 (x) if f is odd.

In addition, if f is neither even or odd, then f̂3(x) := f̂
(even)
3 (x) + f̂

(odd)
3 (x).

We adopt the third approximation as our construction by rearranging the summations and
introducing a new parameter m. The value of m is defined as m := m′ − l̂ if f is even and
m := m′ − l̂− 1 if f is odd. Moreover, the definition of m depends on the parity of l = 2l̂+ 128

if f is neither even nor odd. By applying this approach, we can derive the following:

f̂
(even)
3 (x)=

M∑
m=−M

c
(even)
m cos(πxm) where c(even)m :=(−1)m

K∑
k=0

ak
L/2∑̂
l=0

b
(k)

2l̂

( 2l̂
m+l̂

)
2−2l̂;

f̂
(odd)
3 (x)=

M∑
m=−M

c
(odd)
m sin

(
πx

(
m+ 1

2

))
where c(odd)m :=(−1)m

K∑
k=0

ak
(L−1)/2∑̂

l=0

b
(k)

2l̂+1

( 2l̂+1
m+l̂+1

)
2−2l̂−1.

(3.4)

We then notice that the rearrangement of terms in Equation (3.4) can be directly applied
to the definition of f̂3(x) in Proposition 3.9.3. As a consequence, we obtain the following bound
on the accumulative error: ∥f−f̂3∥∞ ≤ ∥f−f̂1∥∞ + ∥f̂1−f̂2∥∞ + ∥f̂2−f̂3∥∞ ≤ ϵ. Additionally,
we remark that ∥c∥1 ≤ ∥a∥1, since ∥b(k)∥1 = 1 (see Proposition 3.9.1) and

∑l
m=0

(
l
m

)
= 2l.

Analyzing time and space complexity. To evaluate the bounded polynomial approximation
f̂3(x) with ϵ accuracy, it is necessary to approximate the summand with ℓ-bit precision, where
ℓ = O(log(KLMϵ−1)) = O(log(δ−4ϵ−1)). Since the summand is a product of a constant number
of holonomic functions, approximating b(k)l with ℓ-bit precision is sufficient. Other quantities in
the summand can be evaluated with the desired accuracy in deterministic time Õ(ℓ) and space
O(ℓ) as stated in Remark 3.6.

28In particular, the summand in f̂3(x) is c(even)m cos(πxm) + c
(odd)
m sin

(
πx

(
m+ 1

2

))
if f is neither even nor odd.
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We now present a bounded-error randomized algorithm for estimating b(k)l . As b(1) is entry-
wise non-negative and

∑l
i=1 b

(1)
i < ∥b(1)∥1 = 1 following Proposition 3.9.1, we can express the

recursive formula in Equation (3.3) as the matrix powering of a sub-stochastic matrix B1:

Bk
1 :=


b
(1)
1 b

(1)
2 · · · b

(1)
l−1 b

(1)
l

0 b
(1)
1 · · · b

(1)
l−2 b

(1)
l−1

...
...

. . .
...

...
0 0 · · · b

(1)
1 b

(1)
2

0 0 · · · 0 b
(1)
1



k

=


b
(k)
1 b

(k)
2 · · · b

(k)
l−1 b

(k)
l

0 b
(k)
1 · · · b

(k)
l−2 b

(k)
l−1

...
...

. . .
...

...
0 0 · · · b

(k)
1 b

(k)
2

0 0 · · · 0 b
(k)
1

 := Bk.

In addition, we approximate the sub-stochastic matrix B1 by dyadic rationals with ℓ-bit
precision, denoted as B̂1. Utilizing Lemma 2.13, we can compute any entry B̂k

1 [s, t] with a
randomized algorithm that runs in O(ℓk) time and log(l+1) space with acceptance probability
B̂k

1 [s, t]. To evaluate B̂k
1 [s, t] with an additive error of ϵ, we use the sequential repetitions outlined

in Lemma 2.11. Specifically, we repeat the algorithm m = 2ϵ−2 ln(KLM) = O(ϵ−2 log(δ−4))
times, and each turn succeeds with probability at least 1− 1/(3KLM). Note that the number
of the evaluation of b(k)l for computing f̂3(x) is O(KLM), and by the union bound, we can
conclude that the success probability of evaluating all coefficients in c is at least 2/3.

Finally, we complete the proof by analyzing the overall computational complexity. It is
evident that our algorithm utilizes O(ℓ + logm) = O(log(δ−4ϵ−3)) space because indexing m
repetitions requires additional O(logm) bits. Moreover, since there are O(KLM) summands in
f̂3(x), and evaluating b(k)l takes m repetitions with time complexity O(ℓK) for a single turn, the
overall time complexity is O(KLM · ℓK · ϵ−2 log(KLM)) = Õ(δ−5ϵ−2).

Now we present the proof of Theorem 3.8, which is a space-efficient and randomized algorithm
for constructing bounded polynomial approximations of piecewise-smooth functions.

Proof of Theorem 3.8. Our approach is based on Theorem 40 in [vAGGdW20] and Corollary
23 in [GSLW19]. Firstly, we obtain a Fourier approximation f̂(x) of the given function f(x)
by truncating it using Lemma 3.9. Next, we ensure that f̂(x) is negligible outside the interval
[−x0 − r, x0 + r] by multiplying it with a suitable rectangle function, denoted as h(x). Finally,
we derive a space-efficient polynomial approximation ĥ(x) of h(x) by applying Lemma 3.5.

Construction of a bounded function. Let us begin by defining a linear transformation
L(x) := x−x0

r+δ that maps [x0 − r − δ, x0 + r + δ] to [−1, 1]. For convenience, we denote g(y) :=
f(L−1(y)) and bl := al(r + δ)l, then it is evident that g(y) :=

∑∞
l=0 bly

l for any y ∈ [−1, 1].
To construct a Fourier approximation by Lemma 3.9, we need to bound the truncation error

ε
(g)
J . We define δ′ := δ

2(r+δ) and J := ⌈(δ′)−1 log(12Bϵ−1)⌉. This ensures that the truncation

error ε(g)J :=
∣∣g(y)−∑J−1

j=0 bjy
j
∣∣ for any y ∈ [−1 + δ′, 1− δ′] satisfies the following:

ε
(g)
J =

∣∣∣ ∞∑
j=J

bjy
j
∣∣∣ ≤ ∞∑

j=J

∣∣bj(1− δ′)j
∣∣ ≤ (1− δ′)J

∞∑
j=J

|bj | ≤ (1− δ′)JB ≤ e−δ′JB ≤ ϵ

12
:=

ϵ′

4
.

Afterward, let b̂ := (b0, b1, · · · , bJ−1), then we know that ∥b̂∥1 ≤ ∥b∥1 ≤ B by the assumption.
Now we utilize Lemma 3.9 and obtain the Fourier approximation ĝ(y):

ĝ(y) :=


∑M

m=−M c
(even)
m cos(πym), if f is even∑M

m=−M c
(odd)
m sin

(
πy

(
m+ 1

2

))
, if f is odd∑M

m=−M

(
c
(even)
m cos(πym) + c

(odd)
m sin

(
πy

(
m+ 1

2

)))
, otherwise

. (3.5)
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By appropriately choosing M = O
(
(δ′)−1log

(
∥b̂∥1/ϵ′

))
= O

(
rδ−1log

(
B/ϵ

))
, we obtain that

the vectors of coefficients c(even) and c(odd) satisfy ∥c(even)∥1 ≤ ∥b̂∥1 ≤ ∥b∥1 ≤ B and similarly
∥c(odd)∥1 ≤ B. Plugging f(x) = g(L(x)) into Equation (3.5), we conclude that f̂(x) = ĝ(L(x)) is
a Fourier approximation of f with an additive error of ϵ/3 on the interval [x0−r−δ/2, x0+r+δ/2]:

f̂(x) = ĝ
(x−x0
r+δ

)
=



M∑
m=−M

c
(even)
m cos

(
πm

(
x−x0
r+δ

))
, if f is even

M∑
m=−M

c
(odd)
m sin

(
π
(
m+ 1

2

)(
x−x0
r+δ

))
, if f is odd

M∑
m=−M

c
(even)
m cos

(
πm

(
x−x0
r+δ

))
+ c

(odd)
m sin

(
π
(
m+ 1

2

)(
x−x0
r+δ

))
, otherwise

.

Making the error negligible outside the interval. Subsequently, we define the function
h(x) = f̂(x) · R(x) such that it becomes negligible outside the interval of interest, i.e., [x0 −
r − δ/2, x0 + r + δ/2]. Here, the approximate rectangle function R(x) is ϵ̃-close to 1 on the
interval [x0 − r, x0 + r], and is ϵ̃-close to 0 on the interval [−1, 1] \ [x0 − r − 2δ̃, x0 + r + 2δ̃],
where ϵ̃ := ϵ/(3B) and δ̃ := δ/4. Moreover, |R(x)| ≤ 1 for any x ∈ [−1, 1]. Similar to Lemma
29 in [GSLW19], R(x) can be expressed as a linear combination of Gaussian error functions:

R(x) := 1
2

[
erf

(
κ(x−x0+r+δ′)

)
−erf

(
κ(x−x0−r−δ′)

)]
where κ := 2

δ′ log
1
2

√
2√
πϵ′

= 8
δ log

1
2

√
18B√
πϵ
. (3.6)

Bounded polynomial approximation with Chebyshev interpolation. We here present
an algorithmic, space-efficient, randomized polynomial approximation method using Chebyshev
interpolation to approximate the function h(x) := f̂(x)·R(x). As suggested in Proposition 3.8.1,
we use an explicit polynomial approximation P̂ (x) of the bounded function h(x) of degree
d = O(δ−1 log(Bϵ−1)) that satisfies the conditions specified in Equation (3.7).

Proposition 3.8.1 (Bounded polynomial approximations based on a local Taylor series, adapted
from [GSLW19, Corollary 23]). Let x0 ∈ [−1, 1], r ∈ (0, 2], δ ∈ (0, r] and let f : [−x0−r−δ, x0+
r+δ] → R and be such that f(x0+x) :=

∑∞
l=0 alx

l for all x ∈ [−r−δ, r+δ]. Suppose B > 0 is such
that

∑∞
l=0(r + δ)l|al| ≤ B. Let ϵ ∈

(
0, 1

2B

]
, there is a ϵ/3-precise Fourier approximation f̃(x) of

f(x) on the interval [x0− r+δ/2, x0+r+δ/2], where f̂(x) :=
∑M

m=−MRe
[
c̃me

− iπm
2(r+δ)

x0e
iπm

2(r+δ)
x
]

and ∥c̃∥1 ≤ B. We have a time-efficient polynomial P ∗ ∈ R[x] of degree O(δ−1 log(Bϵ−1)) s.t.

∥f̂(x)R(x)− P ∗(x)∥[x0−r,x0+r] ≤ ϵ,

∥P ∗(x)∥[−1,1] ≤ ϵ+ ∥f̂(x)R(x)∥[x0−r−δ/2,x0+r+δ/2] ≤ ϵ+B,

∥P ∗(x)∥[−1,1]\[x0−r−δ/2,x0+r+δ/2] ≤ ϵ.

(3.7)

To utilize Lemma 3.5, we need to bound the second derivative maxξ∈[−π,0] |F ′′
k (ξ)|, where the

integrand Fk(cos θ) := cos(kθ)h(cos θ) for any 0 ≤ k ≤ d. We will calculate this upper bound
directly in Fact 3.8.2, and the proof is deferred to Appendix A.1.3.

Fact 3.8.2. Consider the integrand Fk(θ)=
∑M

m=−M
cm
2

(
H

(+)
k,m−H(−)

k,m

)
for any function f which

is either even or odd. If f is even, we have that cm = c
(even)
m defined in Lemma 3.9, and

H
(±)
k,m(θ) := cos

(
πm

(cos θ − x0
r + δ

))
· cos(kθ) · erf

(
κ
(
cos θ − x0 ± r ± δ

4

))
. (3.8)

Likewise, if f is odd, we know that cm = c
(odd)
m defined in Lemma 3.9, and

H
(±)
k,m(θ) := sin

(
π
(
m+

1

2

)(cos θ − x0
r + δ

))
· cos(kθ) · erf

(
κ
(
cos θ − x0 ± r ± δ

4

))
. (3.9)

Moreover, the integrand is Fk(θ)=
∑M

m=−M

(
c
(even)
m
2

(
Ĥ

(+)
k,m−Ĥ(−)

k,m

)
+ c

(odd)
m
2

(
H̃

(+)
k,m−H̃(−)

k,m

))
when f

is neither even nor odd, where Ĥ(±)
k,m and H̃(±)

k,m follow from Equation (3.8) and Equation (3.9),
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respectively. Regardless of the parity of f , we have that the second derivative F ′′
k (θ) ≤ O(Bd3).

Together with Fact 3.8.2, we are ready to apply Lemma 3.5 to h(x) = f̂(x)R(x), resulting in
a degree-d polynomial P (x). Since P (x) is the minimax approximation of P ∗(x) by Chebyshev
interpolation and satisfies Equation (3.7), we can define intervals Iint := [x0 − r, x0 + r] and
Iext := [x0 − r − δ/2, x0 + r + δ/2] to obtain:

∥f(x)− P (x)∥Iint ≤ ∥f(x)− h(x)∥Iint + ∥h(x)− P (x)∥Iint ≤ ϵ+O(ϵ log d) = O(ϵ log d),

∥P (x)− 0∥Iext ≤ ∥P (x)− h(x)∥Iext + ∥h(x)− 0∥Iext ≤ O(ϵ log d) +O(ϵ) ≤ O(ϵ log d).
(3.10)

We can achieve the desired error bound by observing that Equation (3.10) implies |P (x)|[−1,1] ≤
O(ϵ log d)+ |P (x)|[−1,1]\Iext ≤ O(ϵ log d)+B. Moreover, we note that the norm of the coefficient
vector c(P ) of the polynomial P (x) is bounded by |c(P )| ≤ O(Bd) · (1 + O(ϵ log d)) = O(Bd),
which follows directly from our utilization of Lemma 3.5.

Analyzing time and space complexity. The construction of f̂(x) can be implemented in
bounded-error randomized time Õ((δ′)−5ϵ−2B2) and space O(log((δ′)−4ϵ−1B)), given that this
construction uses Lemma 3.9 with δ′ = δ

2(r+δ) ∈ (0, 12 ] and ϵ′ = ϵ
3B . Having f̂(x), we can

construct a bounded polynomial approximation ĥ(x) deterministically using Lemma 3.5. This
construction can be implemented in deterministic time Õ(d2ϵ−1/2B) and space O(log(d4ϵ−1B))
since the integrand Fk(θ) is a product of a constant number of (compositions of) holonomic
functions (Remark 3.6). Therefore, our construction can be implemented in bounded-error
randomized time Õ(max

{
(δ′)−5ϵ−2B2, d2ϵ−1/2B

}
) and space O(log(d4(δ′)−4ϵ−1B)).

With the aid of Theorem 3.8, we can provide a space-efficient polynomial approximation to
the normalized logarithmic function utilized in Lemma 11 of [GL20].

Corollary 3.10 (Space-efficient polynomial approximation to the normalized logarithmic func-
tion). Let β ∈ (0, 1] and ϵ ∈ (0, 1/2), there is an even polynomial P of degree d ≤ C̃lnβ

−1 log ϵ−1

where C̃ln is a universal constant such that

∀x ∈ [β, 1],
∣∣∣P (x)− ln(1/x)

2 ln(2/β)

∣∣∣ ≤ Clnϵ log d, where Cln is a universal constant,

∀x ∈ [−1, 1],|P (x)| ≤ 1.

Moreover, the coefficient vector c(P ) of P has a norm bounded by ∥c(P )∥1 ≤ Ĉlnd, where Ĉln

is another universal constant. In addition, any entry of the coefficient vector c(P ) can be com-
puted in bounded-error randomized time Õ(max{β−5ϵ−2, d2ϵ−1/2}) and space O(log(d4β−4ϵ−1)).
Without loss of generality, we assume that all constants Cln, Ĉln, and C̃ln are at least 1.

Proof. Consider the function f(x) := ln(1/x)
2 ln(2/β) . We apply Theorem 3.8 to f(x) by choosing

the same parameters as in Lemma 11 of [GL20], specifically ϵ′ = ϵ/2, x0 = 1, r = 1 − β,
δ = β/2, and B = 1/2.29 This results in a space-efficient randomized polynomial approximation
P̃ ∈ R[x] of degree d = O(δ−1 log(ϵ−1B)) ≤ C̃lnβ

−1 log ϵ−1, where C̃ln is a universal constant.
By appropriately choosing η ≤ 1/2 such that C ′

lnϵ log d = η/4 for a universal constant C ′
ln, the

approximation guarantees the following inequalities:

∥f(x)− P̃ (x)∥[β,2−β] ≤ C ′
lnϵ log d = η

4

∥P̃ (x)∥[−1,1] ≤ B + C ′
lnϵ log d ≤ 1

2 + C ′
lnϵ log d = 1

2 + η
4

∥P̃ (x)∥[−1,β/2] ≤ C ′
lnϵ log d = η

4 .

(3.11)

29As indicated in Lemma 11 of [GL20], since the Taylor series of f(x) at x = 1 is 1
2 ln(2/β)

∑∞
l=1

(−1)lxl

l
, we

obtain that B = f
(
β
2
− 1

)
= 1

2 ln(2/β)

∑∞
l=1

(1−β/2)l

l
= − 1

2 ln(2/β)

∑∞
l=1

(−1)l−1

l
(β/2− 1)l = − 1

2 ln(2/β)
ln β

2
= 1

2
.
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Additionally, the coefficient vector c(P̃ ) of P̃ satisfies that ∥c(P̃ )∥1 ≤ O(Bd) ≤ Ĉlnd where Ĉln is
a universal constant. Notice that δ′ = δ

2(r+δ) =
β/2

2(1−β+β/2) =
β

4(1−β/2) = Θ(β), our utilization of
Theorem 3.8 yields a bounded-error randomized algorithm that requires O(log(d4(δ′)−4ϵ−1B)) =
O(log(d4β−4ϵ−1)) space and Õ(max{(δ′)−5ϵ−2B2, d2ϵ−1/2B}) = Õ(max{β−5ϵ−2, d2ϵ−1/2}) time.

Furthermore, note that the real-valued function f(x) only defines when x > 0, then P̃ (x) is
not an even polynomial in general. Instead, we consider P (x) := (1 + η)−1(P̃ (x) + P̃ (−x)) for
all x ∈ [−1, 1]. Together with Equation (3.11), we have derived that:

∥f(x)− P (x)∥[β,1] ≤
∥∥f(x)− 1

1+η P̃ (x)
∥∥
[β,1]

+
∥∥ 1
1+η P̃ (−x)

∥∥
[β,1]

≤
∥∥f(x)− P̃ (x)

∥∥
[β,1]

+
∥∥P̃ (x)− 1

1+η P̃ (x)
∥∥
[β,1]

+
∥∥ 1
1+η P̃ (−x)

∥∥
[β,1]

≤ η
4 + η

1+η ·
(
1
2 + η

4

)
+ 1

1+η · η
4

= η
4 + η

1+η · 1+η
4 + 1

1+η · η
2

≤ η.

(3.12)

Here, the last line owes to the fact that η > 0. Consequently, Equation (3.12) implies that
∥f(x)− P (x)∥[β,1] ≤ 4C ′

lnϵ log d := Clnϵ log d for another universal constant Cln. Notice P (x) is
an even polynomial with deg(P ) ≤ C̃lnβ

−1 log ϵ−1, Equation (3.11) yields that:

∥P (x)∥[−1,1] = ∥P (x)∥[0,1] ≤ ∥ 1
1+η P̃ (x)∥[0,1] + ∥ 1

1+η P̃ (x)∥[−1,0] ≤ 1
1+η · 1+η

2 + 1
1+η · η

2 ≤ 1.

We now complete the proof by noticing η ≤ 1/2.

3.2 Applying Chebyshev interpolation to bitstring indexed encodings

Equipped with space-efficient bounded polynomial approximations of piecewise-smooth func-
tions, it suffices to implement Chebyshev interpolation on bitstring indexed encodings, as spec-
ified in Theorem 3.11. The proof follows from combining Lemma 3.13 and Lemma 3.14.

Theorem 3.11 (Chebyshev interpolation applied to bitstring indexed encodings). Let A be an
Hermitian matrix acting on s qubits, and let U be a (1, a, ϵ1)-bitstring indexed encoding of A that
acts on s+a qubits. For any degree-d polynomial Pd(x) =

c0
2 +

∑d
k=1 ckTk(x) where d ≤ 2O(s(n))

and Tk is the k-th Chebyshev polynomial (of the first kind), equipped with an evaluation oracle
Eval that returns ĉk with precision ε := O(ϵ22/d), then we have a (1, a′, 144d

√
ϵ1∥c∥21+36ϵ2∥c∥1)-

bitstring indexed encoding V of Pd(A) that acts on s + a′ qubits where a′ := a + ⌈log d⌉ + 3.
This implementation requires O(d2∥c∥1) uses of U , U †, CΠNOT, CΠ̃NOT, and O(d2∥c∥1)
multi-controlled single-qubit gates.30 Moreover, we can compute the description of the resulting
quantum circuit in deterministic time Õ(d2∥c∥1 log(d/ϵ2)) and space O(max{s(n), log(d/ϵ22)})31,
also O(d2∥c∥1) oracle calls to Eval with precision ε.
Furthermore, our construction straightforwardly extends to any linear (possibly non-Hermitian)
operator A by simply replacing Pd(A) with P (SV)

d (A) defined in Definition 3.3.

Remark 3.12 (QSVT implementations of Chebyshev interpolation preserve the parity). As shown
in Proposition 3.13.1, we can implement the quantum singular value transformation Tk(A) ex-
actly for any Hermitian matrix that admits a bitstring indexed encoding, because we observe
that the rotation angles corresponding to the k-th Chebyshev polynomials are either π/2 or
(1−k)π/2, indicating that Tk(0) = 0 for any odd k. We then implement the QSVT correspond-
ing to the Chebyshev interpolation polynomial Pd(x) =

∑(d−1)/2
l=0 c2l+1T2l+1(x), as described in

Theorem 3.11, although the actual implementation results in a slightly different polynomial,
P̂d(x) =

∑(d−1)/2
l=0 ĉ2l+1T2l+1(x). However, we still have P̂d(0) = 0 = Pd(0), indicating that the

implementations in Theorem 3.11 preserve the parity.
30As indicated in Figure 3(c) of [GSLW19] (see also Lemma 19 in [GSLW18]), we replace the single-qubit gates

used in Lemma 3.13 with multi-controlled (or “multiply controlled”) single-qubit gates.
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We first demonstrate an approach, based on Lemma 3.12 in [MY23], that constructs Cheby-
shev polynomials of bitstring indexed encodings in a space-efficient manner.

Lemma 3.13 (Chebyshev polynomials applied to bitstring indexed encodings). Let A be a
linear operator acting on s qubits, and let U be a (1, a, ϵ)-bitstring indexed encoding of A that
acts on s+ a qubits. Then, for the k-th Chebyshev polynomial (of the first kind) Tk(x) of degree
k ≤ 2O(s), there exists a new (1, a+1, 4k

√
ϵ)-bitstring indexed encoding V of T (SV)

k (A) that acts
on s + a + 1 qubits. This implementation requires k uses of U , U †, CΠNOT, CΠ̃NOT, and k
single-qubit gates. Moreover, we can compute the description of the resulting quantum circuit in
deterministic time k and space O(s).
Furthermore, consider A′ := Π̃UΠ, where Π̃ and Π are the corresponding orthogonal projectors
of the bitstring indexed encoding U . If A and A′ satisfy the conditions ∥A−A′∥+

∥∥A+A′

2

∥∥2 ≤ 1

and
∥∥A+A′

2

∥∥2 ≤ ζ, then V is a
(
1, a+ 1,

√
2√

1−ζ
kϵ
)
-bitstring indexed encoding of T (SV)

k (A).

Proof. As specified in Proposition 3.13.1, we first notice that we can derive the sequence of
rotation angles corresponding to Chebyshev polynomials Tk(x) by directly factorizing them.

Proposition 3.13.1 (Chebyshev polynomials in quantum signal processing, adapted from Lemma
6 in [GSLW19]). Let Tk ∈ R[x] be the k-th Chebyshev polynomial (of the first kind). Consider
the corresponding sequence of rotation angles Φ ∈ Rk such that ϕ1 := (1− k)π/2, and ϕj := π/2

for all j ∈ [k] \ {1}, then we know that
∏k

j=1

[(
exp(iϕj) 0

0 exp(−iϕj)

)(
x

√
1−x2

√
1−x2 −x

)]
= ( Tk ·

· · ).

Then we implement the quantum singular value transformation T
(SV)
k (A), utilizing an al-

ternating phase modulation (Proposition 3.13.2) with the aforementioned sequence of rotation
angles, denoted by V .

Proposition 3.13.2 (QSVT by alternating phase modulation, adapted from Theorem 10 and
Figure 3 in [GSLW19]). Suppose P ∈ C[x] is a polynomial, and let Φ ∈ Rn be the corresponding

sequence of rotation angles. We can construct P (SV)(Π̃UΠ) =

{
Π̃UΦΠ, if n is odd
ΠUΦΠ, if n is even

with a

single ancillary qubit. Moreover, this implementation in [GSLW19, Figure 3] makes k uses of
U , U †, CΠNOT, CΠ̃NOT, and single-qubit gates.

Owing to the robustness of QSVT (Lemma 22 in [GSLW18], full version of [GSLW19]), we
have that

∥∥T (SV)
k (U) − T

(SV)
k (U ′)

∥∥ ≤ 4k
√

∥A−A′∥ = 4k
√
ϵ, where U ′ is a (1, a, 0)-bitstring

indexed encoding of A. Moreover, with a tighter bound for A and A′, namely ∥A − A′∥ +∥∥A+A′

2

∥∥2 ≤ 1, we can deduce that ∥T (SV)
k (U) − T

(SV)
k (U ′)∥ ≤ k

√
2√

1−∥(A+A′)/2∥2
∥A − A′∥ ≤

√
2√

1−ζ
kϵ following [GSLW18, Lemma 23], indicating an improved dependence of ϵ. Finally, we

can compute the description of the resulting quantum circuits in O(log k) = O(s(n)) space and
O(k) times because of the implementation specified in Proposition 3.13.2.

We then proceed by presenting a linear combination of bitstring indexed encodings, which
adapts the LCU technique proposed by Berry, Childs, Cleve, Kothari, and Somma in [BCC+15],
and incorporates a space-efficient state preparation operator. We say that Py is an ϵ-state
preparation operator for y if Py|0̄⟩ :=

∑m
i=1

√
ŷi|i⟩ for some ŷ such that ∥y/∥y∥1 − ŷ∥1 ≤ ϵ.

Lemma 3.14 (Linear combinations of bitstring indexed encodings, adapted from Lemma 29
in [GSLW19]). Given a matrix A =

∑m−1
i=0 yiAi such that each linear operator Ai (1 ≤ i ≤ m)

acts on s qubits with the corresponding (∥y∥1, a, ϵ1)-bitstring indexed encoding Ui acting on s+a
qubits associated with projections Π̃i and Πi. Also each yi (1 ≤ i ≤ m) can be expressed in
O(s(n)) bits with an evaluation oracle Eval that returns ŷi with precision ε := O(ϵ22/m). Then
utilizing an ϵ2-state preparation operator Py for y acting on O(logm) qubits, and a (s + a +
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⌈logm⌉)-qubit unitary W =
∑m−1

i=0 |i⟩⟨i| ⊗ Ui +
(
I −

∑m−1
i=0 |i⟩⟨i|

)
⊗ I, we can implement a

(∥y∥1, a + ⌈logm⌉, ϵ1∥y∥21 + ϵ2∥y∥1)-bitstring indexed encoding of A acting on s + a + ⌈logm⌉
qubits with a single use of W , Py, P

†
y. In addition, the classical pre-processing can be implemented

in deterministic time Õ(m2 log(m/ϵ2)) and space O(log(m/ϵ22)),
31 as well as m2 oracle calls to

Eval with precision ε.

Proof. For the ϵ2-state preparation operator Py such that Py|0̄⟩ =
∑m

i=1

√
ŷi|i⟩, we utilize a

scheme introduced by Zalka [Zal98] (also independently rediscovered in [GR02] and [KM01]).
We make an additional analysis of the required classical computational complexity, and the proof
can be found in Appendix A.2.

Proposition 3.14.1 (Space-efficient state preparation, adapted from [Zal98, KM01, GR02]).
Given an l-qubit quantum state |ψ⟩ :=

∑m
i=1

√
ŷi|i⟩, where l = ⌈logm⌉ and ŷi are real amplitudes

associated with an evaluation oracle Eval(i, ε) that returns ŷi up to accuracy ε we can prepare
|ψ⟩ up to accuracy ϵ in deterministic time Õ(m2 log(m/ϵ)) and space O(log(m/ϵ2)), together
with m2 evaluation oracle calls with precision ε := O(ϵ2/m).

Now consider the bitstring indexed encoding
(
P †
y⊗Is

)
W

(
Py⊗Is

)
ofA acting on s+a+⌈logm⌉

qubits. Let y′i := yi/∥y∥1, then we obtain the implementation error:∥∥A− ∥y∥1
(
|0̄⟩⟨0̄| ⊗ Π̃

)(
P †
y ⊗ Is

)
W

(
Py ⊗ Is

)
(|0̄⟩⟨0̄| ⊗Π)

∥∥
=
∥∥A− ∥y∥1

∑m−1
i=0 ŷiΠ̃iUiΠi

∥∥
≤
∥∥A− ∥y∥1

∑m−1
i=0 y′iΠ̃iUiΠi

∥∥+ ∥y∥1
∑m−1

i=0 (y′i − ŷi)∥Π̃iUiΠi∥
≤∥y∥1

∑m−1
i=0 y′i∥Ai − Π̃iUiΠi∥+ ϵ2∥y∥1

≤ϵ1∥y∥21 + ϵ2∥y∥1.
Here, the third line is due to the triangle inequality, the fourth line owes to Proposition 3.14.1,
and the fifth line is because Ui is a (1, a, ϵ1)-bitstring indexed encoding of Ai for 0 ≤ i < m.

To make the resulting bitstring indexed encoding from Lemma 3.14 with α = 1, we need to
perform a renormalization procedure to construct a new encoding with the desired α. We achieve
this by extending the proof strategy outlined by Gilyen [Gil19, Page 52] for block-encodings to
bitstring indexed encodings. The renormalization procedure is provided in Lemma 3.15, and the
complete proof is available in Appendix A.2. Additionally, similar results have been established
in [MY23, Lemma 3.10] and [WZ23b, Corollary 2.8].

Lemma 3.15 (Renormalizing bitstring indexed encoding). Let U be an (α, a, ϵ)-bitstring indexed
encoding of A, where α > 1 and 0 < ϵ < 1, and A is a linear operator acting on s(n) qubits.
We can implement a quantum circuit V , serving as a normalization of U , such that V is a
(1, a + 2, 36ϵ)-bitstring indexed encoding of A. This implementation requires O(α) uses of U ,
U †, CΠNOT, CΠ̃NOT, and O(α) single-qubit gates. Moreover, the description of the resulting
quantum circuit can be computed in deterministic time O(α) and space O(s).

Finally, we combine Lemma 3.14 and Lemma 3.13 to proceed with the proof of Theorem 3.11.

Proof of Theorem 3.11. By using Lemma 3.13, we have Pd(A) =
c0
2 +

∑d
k=1 ckTk(A) where Tk(A)

corresponding to a (1, a+1, 4k
√
ϵ1)-bitstring indexed encoding Vk. Employing Lemma 3.14, we

result in a (∥c∥1, â, 4k
√
ϵ1∥c∥21+ϵ2∥c∥1)-bitstring indexed encoding V̂ where â := a+⌈log d⌉+1.

Moreover, by utilizing Lemma 3.15, we obtain a (1, a′, 144k
√
ϵ1∥c∥21+36ϵ2∥c∥1)-bitstring indexed

encoding V acts on s+a′ qubits where a′ := â+2 = a+⌈log d⌉+3. A direct calculation demon-
strates that this implementation makes

∑d
k=1 k ·O(∥c∥1) = O(d2∥c∥1) uses of U , U †, CΠNOT,

31It is noteworthy that we define Õ(f) := O(f poly log(f)).
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CΠ̃NOT, also
∑d

k=0 k · O(∥c∥1) = O(d2∥c∥1) uses of multi-controlled single-qubit gates. In
addition, the descriptions of quantum circuits {Vk}dk=0 can be computed in O(s(n)) space and∑d

k=0 k · O(∥c∥1) = O(d2∥c∥1) time. Therefore, the description of the quantum circuit V can
be computed in deterministic time max{Õ(d2∥c∥1 log(d/ϵ2)), O(d2∥c∥1)} = Õ(d2∥c∥1 log(d/ϵ2))
and space O(max{s(n), d/ϵ22}), as well as O(d2∥c∥1) oracle calls to Eval with precision ε.

Finally, we can extend our construction to any linear operator A by replacing Pd(A) with
P

(SV)
d as defined in Definition 3.3, taking into account that the Chebyshev polynomial (of the

first kind) Tk is either an even or an odd function.

3.3 Examples: the sign function and the normalized logarithmic function

In this subsection, we provide explicit examples that illustrate the usage of the space-efficient
quantum singular value transformation (QSVT) technique. We define two functions:

sgn(x) :=


1, x > 0

−1, x < 0

0, x = 0

and lnβ(x) :=
ln(1/x)

2 ln(2/β)
.

In particular, the sign function is a bounded function, and we derive the corresponding bitstring
indexed encoding with deterministic space-efficient classical pre-processing in Corollary 3.7. On
the other hand, the logarithmic function is a piecewise-smooth function that is bounded by 1,
and we deduce the corresponding bitstring indexed encoding with randomized space-efficient
classical pre-processing in Corollary 3.10.

Corollary 3.16 (Sign polynomial with space-efficient coefficients applied to bitstring indexed
encodings). Let A be an Hermitian matrix that acts on s qubits, where s(n) ≥ Ω(log(n)). Let U
be a (1, a, ϵ1)-bitstring indexed encoding of A that acts on s+a qubits. Then, for any d ≤ 2O(s(n))

and ϵ2 ≥ 2−O(s(n)), we have an
(
1, a+⌈log d⌉+3, 144Ĉ2

sgndϵ
1/2
1 log2(d)+36Ĉsgnϵ2 log(d))

)
-bitstring

indexed encoding V of P sgn
d (A), where P sgn

d is a space-efficient bounded polynomial approxima-
tion of the sign function specified in Corollary 3.7, and Ĉsgn is a universal constant. This
implementation requires O(d2 log d) uses of U , U †, CΠNOT, CΠ̃NOT, and O(d2 log d) multi-
controlled single-qubit gates30. Moreover, we can compute the description of V in deterministic
time Õ(ϵ−1

2 d9/2) and space O(s(n)).
Furthermore, our construction straightforwardly extends to any non-Hermitian (but linear) ma-
trix A by simply replacing P sgn

d (A) with P (SV)
sgn,d(A) defined in the same way as Definition 3.3.

Proof. In Corollary 3.7, we can express P sgn
d (x) as c0

2 +
∑d

k=1 ckTk(x), where d = O(δ−1 log ϵ−1).
For all x ∈ [−1, 1]\[−δ, δ], we have |sgn(x)−P sgn

d (x)| ≤ O(ϵ log d) := ϵ2. To implement Eval with
precision ε, we can compute the corresponding entry ci of the coefficient vector, which requires
O(log(ε−1d4)) = O(log(ϵ−2

2 d5)) space and Õ(ε−1/2d2) = Õ(ϵ−1
2 d5/2) time. Using Theorem 3.11,

we can conclude that P sgn
d has a

(
1, a′, 144dC2

sgnϵ
1/2
1 log2(d) + 36Ĉsgnϵ2 log d

)
-bitstring indexed

encoding V that acts on s+ a′ qubits, where a′ := a+ ⌈log d⌉+ 3 and ∥c∥1 ≤ Ĉsgn log d.
Furthermore, the quantum circuit of V makes O(d2 log d) uses of U , U †, CΠNOT, and

CΠ̃NOT as well as O(d2 log d) multi-controlled single-qubit gates. We note that d ≤ 2O(s(n))

and ϵ2 ≥ 2−O(s(n)). Moreover, we can compute the description of V in O(s(n)) space since each
oracle call to Eval with precision ε can be computed in O(log(ϵ−2

2 d5)) space. Additionally, the
time complexity for computing the description of V is

max{Õ(d2 log d log(d/ϵ2)), d
2 log d · Õ(ϵ−1

2 d5/2)} = Õ(ϵ−1
2 d9/2).

Corollary 3.17 (Log polynomial with space-efficient coefficients applied to bitstring indexed
encodings). Let A be an Hermitian matrix that acts on s qubits, where s(n) ≥ Ω(log(n)). Let U
be a (1, a, ϵ1)-bitstring indexed encoding of A that acts on s+a qubits. Then, for any d ≤ 2O(s(n)),

28



ϵ2 ≥ 2−O(s(n)), and β ≥ 2−O(s(n)), we have a (1, a+⌈log d⌉+3, 144Ĉlnϵ
1/2
1 d3+36Ĉlnϵ2d)-bitstring

indexed encoding V of P ln
d (A), where P ln

d is a space-efficient bounded polynomial approximation
of the normalized log function specified in Corollary 3.10, and Ĉln is a universal constant. This
implementation requires O(d3) uses of U , U †, CΠNOT, CΠ̃NOT, and O(d3) multi-controlled
single-qubit gates30. Moreover, we can compute the description of the resulting quantum circuit
in bounded-error randomized time Õ(max{β−5ϵ−4

2 d5, ϵ−1
2 d11/2}) and space O(s(n)).

Proof. In Corollary 3.10, we can express P ln
d (x) as c0

2 +
∑d

k=1 ckTk(x), where d = O(δ−1 log ϵ−1).
For any lnβ(x), we have | lnβ(x) − P ln

d (x)| ≤ O(ϵ log d) := ϵ2 for all x ∈ [β, 1]. To implement
Eval with precision ε, we can compute the corresponding entry ci of the coefficient vector by
a bounded-error randomized algorithm. This requires O(log(ε−1d4β−4)) = O(log(β−4ϵ−2

2 d5))
space and Õ(max{β−5ε−2, ε−1/2d2}) = Õ(max{β−5ϵ−4

2 d2, ϵ−1
2 }d5/2) time. Using Theorem 3.11,

we conclude that P ln
d has a (1, a′, 144C2

lnϵ
1/2
1 d3 + 36Ĉlnϵ2d)-bitstring indexed encoding V that

acts on s+ a′ qubits, where a′ := a+ ⌈log d⌉+ 3 and ∥c∥1 ≤ Ĉlnd.
Furthermore, the quantum circuit of V makes O(d3) uses of U , U †, CΠNOT, and CΠ̃NOT

as well as O(d3) multi-controlled single-qubit gates. We note that d ≤ 2O(s(n)), ϵ2 ≥ 2−O(s(n)),
and β ≥ 2−O(s(n)). Additionally, we can compute the description of V in O(s(n)) space since
each oracle call to Eval with precision ε can be computed in O(log(β−4ϵ−2

2 d5)) space. The time
complexity for computing the description of V is given by:

max{Õ(d3 log(d/ϵ2)), d
3 · Õ(max{β−5ϵ−4

2 d2, ϵ−1
2 d5/2}) = Õ(max{β−5ϵ−4

2 d5, ϵ−1
2 d11/2}). (3.13)

Finally, to guarantee that the probability that all O(d3) oracle calls to Eval succeed is at least
2/3, we use a (4 ln d)-time sequential repetition of Eval for each oracle call. Together with the
Chernoff-Hoeffding bound and the union bound, the resulting randomized algorithm succeeds
with probability at least 1− d3 · 2 exp(−4 ln d) ≥ 2/3. We further note that the time complexity
specified in Equation (3.13) only increase by a 4 ln d factor.

3.4 Application: space-efficient error reduction for unitary quantum com-
putations

We provide a unified space-efficient error reduction for unitary quantum computations. In
particular, one-sided error scenarios (e.g., RQUL and coRQUL) have been proven in [Wat01], and
the two-sided error scenario (e.g., BQUL) has been demonstrated in [FKL+16].

Theorem 3.18 (Space-efficient error reduction for unitary quantum computations). Let s(n)
be a space-constructible function, and let a(n), b(n), and l(n) be deterministic O(s(n)) space
computable functions such that a(n) − b(n) ≥ 2−O(s(n)), we know that for any l(n) ≤ O(s(n)),
there is d := l(n)/max{

√
a−

√
b,
√
1− b−

√
1− a} such that

BQUSPACE[s(n), a(n), b(n)] ⊆ BQUSPACE
[
s(n) + ⌈log d⌉+ 1, 1− 2−l(n), 2−l(n)

]
.

Furthermore, for one-sided error scenarios, we have that for any l(n) ≤ 2O(s(n)):

RQUSPACE[s(n), a(n)] ⊆ RQUSPACE
[
s(n) + ⌈log d0⌉+ 1, 1− 2−l(n)

]
where d0 :=

l(n)

max{
√
a,1−

√
1−a} ,

coRQUSPACE[s(n), b(n)] ⊆ coRQUSPACE
[
s(n) + ⌈log d1⌉+ 1, 2−l(n)

]
where d1 :=

l(n)

max{1−
√
b,
√
1−b} .

By choosing s(n) = Θ(log(n)), we derive error reduction for logarithmic-space quantum
computation in a unified approach:

Corollary 3.19 (Error reduction for BQUL, RQUL, and coRQUL). For deterministic logspace
computable functions a(n), b(n), and l(n) satisfying a(n) − b(n) ≥ 1/ poly(n) and l(n) ≤
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O(log n), we have the following inclusions:

BQUL[a(n), b(n)] ⊆ BQUL[1− 2−l(n), 2−l(n)],

RQUL[a(n)] ⊆ RQUL[1− 2−l(n)],

coRQUL[b(n)] ⊆ coRQUL[2−l(n)].

The construction specified in Theorem 3.18 crucially relies on Lemma 3.20. And the proof of
Lemma 3.20 directly follows from Theorem 20 in [GSLW19], which is deferred to Appendix A.3.

Lemma 3.20 (Space-efficient singular value discrimination). Let 0 ≤ α < β ≤ 1 and A :=
Π̃UΠ be a (1, 0, 0)-bitstring indexed encoding where U acts on s qubits and s(n) ≥ Ω(log n).
Consider an unknown quantum state |ψ⟩, with the promise that it is a right singular vector of
A with a singular value either above α or below β. We can distinguish the two cases with error
probability at most ε := O(ϵ log d) using a degree-d quantum singular value transformation where
d = log 1/ϵ

max{β−α,
√
1−α2−

√
1−β2}

. Moreover, we can make the error one-sided if α = 0 or β = 1.

In particular, the implementation requires O(d2 log d) uses of U , U †, CΠNOT, CΠ̃NOT, and
O(d2 log d) multi-controlled single-qubit gates. Also, we can compute the description of the im-
plementation in deterministic time Õ(ε−1d9/2) and space O(s(n)).

Finally, we provide the proof of Theorem 3.18, which closely relates to Theorem 38 in [GSLW18]
(the full version of [GSLW19]).

Proof of Theorem 3.18. It suffices to amplify the promise gap by QSVT. Note that the proba-
bility that a BQUSPACE[s(n)] circuit Cx accepts is Pr[Cx accepts] = ∥|1⟩⟨1|outCx|0k+m⟩∥22 ≥ a
for yes instances, whereas Pr[Cx accepts ] = ∥|1⟩⟨1|outCx|0k+m⟩∥22 ≤ b for no instances. Then
consider a (1, 0, 0)-bitstring indexed encoding Mx := ΠoutCxΠin such that ∥Mx∥ ≥

√
a for

yes instances while ∥Mx∥ ≤
√
b for no instances, where Πin := |0⟩ ⟨0|⊗k+m and Πout :=

|1⟩⟨1|out ⊗ Im+k−1. Since ∥Mx∥ = σmax(Mx) where σmax(Mx) is the largest singular value of
Mx, it suffices to distinguish the largest singular value of Mx are either above

√
a or below

√
b.

By setting α :=
√
a, β :=

√
b and ε := 2−l(n), this task is a direct corollary of Lemma 3.20.

4 Space-bounded quantum state testing

We begin by defining the problem of quantum state testing in a space-bounded manner:

Definition 4.1 (Space-bounded Quantum State Testing). Given polynomial-size quantum cir-
cuits (devices)Q0 and Q1 that act on O(log n) qubits and have a succinct description (the “source
code” of devices), with r(n) specified output qubits, where r(n) is a deterministic logspace com-
putable function such that 0 < r(n) ≤ O(log(n)). Let ρi denote the mixed state obtained by
running Qi on the all-zero state |0̄⟩ and tracing out the non-output qubits.
We define a space-bounded quantum state testing problem, with respect to a specified distance-
like measure, to decide whether ρ0 and ρ1 are easily distinguished or almost indistinguishable.
Likewise, we also define a space-bounded quantum state certification problem to decide whether
ρ0 and ρ1 are easily distinguished or exactly indistinguishable.

We remark that space-bounded quantum state certification, defined in Definition 4.1, repre-
sents a “white-box” (log)space-bounded counterpart of quantum state certification [BOW19].

Remark 4.2 (Lifting to exponential-size instances by succinct encodings). For s(n) space-uniform
quantum circuits Q0 and Q1 acting on O(s(n)) qubits, if these circuits admit a succinct en-
coding,32 namely there is a deterministic O(s(n))-space Turing machine with time complexity

32For instance, the construction in [FL18, Remark 11], or [PY86,BLT92] in general.
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poly(s(n)) can uniformly generate the corresponding gate sequences, then Definition 4.1 can be
extended to any s(n) satisfying Ω(log n) ≤ s(n) ≤ poly(n).33

Next, we define space-bounded quantum state testing problems, based on Definition 4.1,
with respect to four commonplace distance-like measures.

Definition 4.3 (Space-bounded Quantum State Distinguishability Problem, GapQSDlog).
Consider deterministic logspace computable functions α(n) and β(n), satisfying 0 ≤ β(n) <
α(n) ≤ 1 and α(n)− β(n) ≥ 1/ poly(n). Then the promise is that one of the following holds:

• Yes instances: A pair of quantum circuits (Q0, Q1) such that td(ρ0, ρ1) ≥ α(n);

• No instances: A pair of quantum circuits (Q0, Q1) such that td(ρ0, ρ1) ≤ β(n).
Moreover, we also define the certification counterpart of GapQSDlog, referred to as CertQSDlog,
given that β = 0. Specifically, CertQSDlog[α(n)] := GapQSDlog[α(n), 0].

Likewise, we can define GapQJSlog and GapQHSlog, also the certification version CertQHSlog,
in a similar manner to Definition 4.3 by replacing the distance-like measure accordingly:

• GapQJSlog[α(n), β(n)]: Decide whether QJS2(ρ0, ρ1) ≥ α(n) or QJS2(ρ0, ρ1) ≤ β(n);

• GapQHSlog[α(n), β(n)]: Decide whether HS2(ρ0, ρ1) ≥ α(n) or HS2(ρ0, ρ1) ≤ β(n).

Furthermore, we use the notation CertQSDlog to indicate the complement of CertQSDlog
with respect to the chosen parameter α(n), and so does CertQHSlog.

Definition 4.4 (Space-bounded Quantum Entropy Difference Problem, GapQEDlog). Consider
a deterministic logspace computable function g : N → R+, satisfying g(n) ≥ 1/ poly(n). Then
the promise is that one of the following cases holds:

• Yes instance: A pair of quantum circuits (Q0, Q1) such that S(ρ0)− S(ρ1) ≥ g(n);

• No instance: A pair of quantum circuits (Q0, Q1) such that S(ρ1)− S(ρ0) ≥ g(n).

Novel complete characterizations for space-bounded quantum computation. We now
present the main theorems in this section and the paper. Theorem 4.5 establishes the first family
of natural coRQUL-complete problems. By relaxing the error requirement from one-sided to two-
sided, Theorem 4.6 identifies a new family of natural BQL-complete problems on space-bounded
quantum state testing.

Theorem 4.5. The computational hardness of the following (log)space-bounded quantum state
certification problems, for any deterministic logspace computable α(n) ≥ 1/ poly(n), is as follows:

(1) CertQSDlog[α(n)] is coRQUL-complete;

(2) CertQHSlog[α(n)] is coRQUL-complete.

Theorem 4.6. The computational hardness of the following (log)space-bounded quantum state
testing problems, where α(n) − β(n) ≥ 1/ poly(n) or g(n) ≥ 1/ poly(n) as well as α(n), β(n),
g(n) can be computed in deterministic logspace, is as follows:

(1) GapQSDlog[α(n), β(n)] is BQL-complete;

(2) GapQEDlog[g(n)] is BQL-complete;

(3) GapQJSlog[α(n), β(n)] is BQL-complete;
33It is noteworthy that Definition 4.1 (mostly) coincides with the case of s(n) = Θ(O(logn)) and directly takes

the corresponding gate sequence of Q0 and Q1 as an input.
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(4) GapQHSlog[α(n), β(n)] is BQL-complete.

It is noteworthy that we can naturally extend Theorem 4.5 and Theorem 4.6 to their
exponential-size up-scaling counterparts with 2−O(s(n))-precision, employing the extended ver-
sion of Definition 4.1 outlined in Remark 4.2, thus achieving the complete characterizations for
coRQUSPACE[s(n)] and BQPSPACE[s(n)], respectively.

In the remainder of this section, we first address problems with two-sided errors. Specifically,
by employing a general framework for space-bounded quantum state testing demonstrated in
Section 4.1, we demonstrate the BQL containment of GapQSDlog in Section 4.2, as well as the
BQL containment of GapQEDlog and GapQJSlog in Section 4.3. Subsequently, in Section 4.4,
we focus on making the error one-sided and establish the coRQUL containment of CertQSDlog
and CertQHSlog. Additionally, we show the BQL containment of GapQHSlog in Appendix B.
The corresponding hardness proof for all these problems is provided in Section 4.5.

4.1 Space-bounded quantum state testing: a general framework

In this subsection, we introduce a general framework for quantum state testing that utilizes
a quantum tester T . Specifically, the space-efficient tester T succeeds (outputting the value “0”)
with probability x, which is linearly dependent on some quantity closely related to the distance-
like measure of interest. Consequently, we can obtain an additive-error estimation x̃ of x with
high probability through sequential repetition (Lemma 2.11).

To construct T , we combine the one-bit precision phase estimation [Kit95], commonly known
as the Hadamard test [AJL09], for block-encodings (Lemma 4.9), with our space-efficient quan-
tum singular value transformation (QSVT) technique, which we describe in Section 3.

|0⟩ H H x

|0̄⟩
UPd(A)

|0⟩⊗r

Q

|0̄⟩

Figure 2: Quantum tester T (Q,UA, Pd, ϵ): the circuit implementation.

Constructing a space-efficient quantum tester. We now provide a formal definition and
the detailed construction of the quantum tester T . The quantum circuit shown in Figure 2
defines the quantum tester T (Q,UA, Pd, ϵ) using the following parameters with s(n) = Θ(log n):

• A s(n)-qubit quantum circuit Q prepares the purification of an r(n)-qubit quantum state
ρ where ρ is the quantum state of interest;

• UA is a (1, s− r, 0)-block-encoding of an r(n)-qubit Hermitian operator A where A relates
to the quantum states of interest and r(n) ≤ s(n);

• Pd is a degree-d bounded polynomial with a particular form Pd = c0
2 +

∑d
k=1 ckTk ∈ R[x]

where Tk is the k-th Chebyshev polynomial, with d ≤ 2O(s(n)), such that the coefficients
c := (c0, · · · , cd) can be computed in bounded-error randomized space O(s(n));

• ϵ is the precision parameter used in the estimation of x, with ϵ ≥ 2−O(s(n)).
Moreover, we define the corresponding estimation procedure, denoted as T̂ (Q,UA, Pd, ϵ, ϵH , δ),

namely a quantum algorithm that computes an additive-error estimation x̃ of the output x from
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the tester T (Q,UA, Pd, ϵ). Technically speaking, T̂ outputs x̃ such that |x−x̃| ≤ ϵ∥c∥1+ϵH with
probability at least 1−δ. Now we will demonstrate that both the tester T and the corresponding
estimation procedure T̂ are space-efficient:

Lemma 4.7 (Quantum tester T and estimation procedure T̂ are space-efficient). The quantum
tester T (Q,UA, Pd, ϵ), as specified in Figure 2, accepts (outputting the value “0”) with probability
1
2(1 + Re(Tr(Pd(A)ρ))) ± 1

2ϵ∥c∥1. Moreover, we can compute the quantum circuit description
of T in deterministic space O(s + log(1/ϵ)) given the coefficient vector c of Pd. Furthermore,
we can implement the corresponding estimation procedure T̂ (Q,UA, Pd, ϵ, ϵH , δ) in bounded-error
quantum space O(s+ log(1/ϵ) + log(1/ϵH) + log log(1/δ)).

We first provide two useful lemmas for implementing our quantum tester T . It is noteworthy
that Lemma 4.8 originates from [LC19], as well as Lemma 4.9 is a specific version of one-bit
precision phase estimation (or the Hadamard test) [Kit95,AJL09].

Lemma 4.8 (Purified density matrix, [GSLW19, Lemma 25]). Suppose ρ is an s-qubit density
operator and U is an (a + s)-qubit unitary operator such that U |0⟩⊗a|0⟩⊗s = |ρ⟩ and ρ =
Tra(|ρ⟩⟨ρ|). Then, we can construct an O(a+s)-qubit quantum circuit Ũ that is an (O(a+s), 0)-
block-encoding of ρ, using O(1) queries to U and O(a+ s) one- and two-qubit quantum gates.

Lemma 4.9 (Hadamard test for block-encodings, adapted from [GP22, Lemma 9]). Suppose U
is an (a + s)-qubit unitary operator that is a block-encoding of s(n)-qubit operator A. We can
implement an O(a+ s)-qubit quantum circuit that, on input s(n)-qubit quantum state ρ, outputs
0 with probability 1+Re(Tr(Aρ))

2 .

Finally, we proceed with the actual proof of Lemma 4.7.

Proof of Lemma 4.7. By applying Chebyshev interpolation on UA (Theorem 3.11 with the choice
of ϵ1 = 0 and ϵ2 = ϵ/36), we can implement an O(s(n))-qubit quantum circuit UPd(A) that is
a (1, a, 0)-block-encoding of A′

Pd
using O(d2∥c∥1) queries to UA, where a = s − r + ⌈log d⌉ + 3

and A′
Pd

is specified in Theorem 3.11 satisfying ∥Pd(A) − A′
Pd
∥ ≤ ϵ∥c∥1. Additionally, we can

compute the quantum circuit description of UPd(A) in deterministic space O(s+ log(1/ϵ)) given
the coefficient vector c of Pd. As the quantum tester T (Q,UA, Pd, ϵ) is mainly based on the
Hadamard test, by employing Lemma 4.9, we have that T outputs 0 with probability

Pr[x = 0] =
1

2

(
1 + Re(Tr(A′

Pd
ρ))

)
=

1

2
(1 + Re(Tr(Pd(A)ρ)))±

1

2
ϵ∥c∥1.

It is left to construct the estimation procedure T̂ . As detailed in in Lemma 2.11, we can
obtain an estimation x̃ by sequentially repeating the quantum tester T (Q,UA, Pd, ϵ) for O(1/ϵ2H)
times. This repetition ensures that |x̃−Re(Tr(A′

Pd
ρ))| ≤ ϵH holds with probability at least Ω(1),

and derives an further implication on Pd(A):

Pr[|x̃− Re(Tr(Pd(A)ρ))| ≤ ϵ∥c∥1 + ϵH ] ≥ Ω(1).

We thus conclude that construction of the estimation procedure T̂ (Q,UA, Pd, ϵ, ϵH , δ) by uti-
lizing O(log(1/δ)/ϵ2H) sequential repetitions of T (Q,UA, Pd, ϵ). Similarly following Lemma 2.11,
T̂ (Q,UA, Pd, ϵ, ϵH , δ) outputs an estimation x̃ satisfies the following condition:

Pr[|x̃− Re(Tr(Pd(A)ρ))| ≤ ϵ∥c∥1 + ϵH ] ≥ 1− δ.

In addition, a direct calculation indicates that we can implement T̂ (Q,UA, Pd, ϵ, ϵH , δ) in quan-
tum space O(s+ log(1/ϵ) + log(1/ϵH) + log log(1/δ)) as desired.

4.2 GapQSDlog is in BQL

In this subsection, we demonstrate Theorem 4.10 by constructing a quantum algorithm that
incorporates testers T (Qi, U ρ0−ρ1

2

, P sgn
d , ϵ) for i ∈ {0, 1}, where the construction of testers utilizes

the space-efficient QSVT associated with the sign function.
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Theorem 4.10. For any functions α(n) and β(n) that can be computed in deterministic logspace
and satisfy α(n)− β(n) ≥ 1/ poly(n), we have that GapQSDlog[α(n), β(n)] is in BQL.

Proof. Inspired by time-efficient algorithms for the low-rank variant of GapQSD [WZ23a], we
devise a space-efficient algorithm for GapQSDlog, present formally in Algorithm 1.

Algorithm 1: Space-efficient algorithm for GapQSDlog.
Input : Quantum circuits Qi that prepares the purification of ρi for i ∈ {0, 1}.
Output: An additive-error estimation of td(ρ0, ρ1).

Params: ε := α−β
4 , δ := ε

2r+3 , ϵ := ε
2(Ĉsgn+2Csgn)C̃sgn2r+3

· 1

2 log
(
2(Ĉsgn+2Csgn)C̃sgn2r+3/ε

) ,

d := C̃sgnδ
−1 log ϵ−1, εH := ε

4 .

1. Construct block-encodings of ρ0 and ρ1, denoted by Uρ0 and Uρ1 , respectively, using
O(1) queries to Q0 and Q1 and O(s(n)) ancillary qubits by Lemma 4.8;

2. Construct a block-encoding of ρ0−ρ1
2 , denoted by Uρ0−ρ1

2
, using O(1) queries to Uρ0

and Uρ1 and O(s(n)) ancillary qubits by Lemma 3.14;

Let P sgn
d be the degree-d polynomial specified in Corollary 3.7 with parameters δ and ϵ

such that its Chebyshev coefficients are computable in deterministic space O(log(d/ϵ));

3. Set x0 := T̂ (Q0, U ρ0−ρ1
2

, P sgn
d , ϵ, ϵH , 1/10), x1 := T̂ (Q1, U ρ0−ρ1

2

, P sgn
d , ϵ, ϵH , 1/10);

4. Compute x = (x0 − x1)/2. Return “yes” if x > (α+ β)/2, and “no” otherwise.

Let us demonstrate the correctness of Algorithm 1 and analyze the computational complexity.
We focus on the setting with s(n) = Θ(log n). We set ε := (α − β)/4 ≥ 2−O(s) and assume
that Q0 and Q1 are s(n)-qubit quantum circuits that prepare the purifications of ρ0 and ρ1,
respectively. According to Lemma 4.8, we can construct O(s)-qubit quantum circuits Uρ0 and
Uρ1 that encode ρ0 and ρ1 as (1, O(s), 0)-block-encodings, using O(1) queries to Q0 and Q1 as
well as O(1) one- and two-qubit quantum gates. Next, we apply Lemma 3.14 to construct a
(1, O(s), 0)-block-encoding U ρ0−ρ1

2

of ρ0−ρ1
2 , using O(1) queries to Qρ0 and Qρ1 , as well as O(1)

one- and two-qubit quantum gates.
Let δ := ε

2r+3 , ϵ := ε
2(Ĉsgn+2Csgn)C̃sgn2r+3

· 1

2 log
(
2(Ĉsgn+2Csgn)C̃sgn2r+3/ε

) and d := C̃sgnδ
−1 log ϵ−1 =

2O(s) where C̃sgn comes from Corollary 3.7. Let P sgn
d ∈ R[x] be the polynomial specified in Corol-

lary 3.7. Let ϵH = ε/4. By employing Corollary 3.16 and the corresponding estimation procedure
T̂ (Qi, U ρ0−ρ1

2

, P sgn
d , ϵ, ϵH , 1/10) from Lemma 4.7, we obtain the values xi for i ∈ {0, 1}, ensuring

the following inequalities:

Pr

[∣∣∣∣xi − Tr

(
P sgn
d

(
ρ0 − ρ1

2

)
ρi

)∣∣∣∣ ≤ Ĉsgnϵ log d+ ϵH

]
≥ 9

10
for i ∈ {0, 1}. (4.1)

Here, the implementation uses O(d2 log d) queries to U ρ0−ρ1
2

and O(d2 log d) multi-controlled

single-qubit gates. Moreover, the circuit descriptions of T̂ (Qi, U ρ0−ρ1
2

, P sgn
d , ϵ, ϵH , 1/10) can be

computed in deterministic time Õ(d9/2/ϵ) and space O(s).

Now let x := (x0 − x1)/2. We will finish the correctness analysis of Algorithm 1 by showing
Pr[|x− td(ρ0, ρ1)| ≤ ε] > 0.8 through Equation (4.1). By considering the approximation error
of P sgn

d in Corollary 3.7 and the QSVT implementation error in Corollary 3.16, we derive the
following inequality in Proposition 4.10.1, and the proof is deferred to Appendix B.1:

Proposition 4.10.1. Pr
[
|x− td(ρ0, ρ1)| ≤ Ĉsgnϵ log d+ ϵH + 2Csgnϵ log d+ 2r+1δ

]
> 0.8.
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Consequently, it is left to show that Ĉsgnϵ log d + ϵH + 2Csgnϵ log d + 2r+1δ ≤ ε for the
aforementioned choice of δ, ϵ, and ϵH . Note that ϵH = ε/4 and 2r+1δ = ε/4, we complete the
correctness analysis by choosing ϵ := δ′/2 log(δ′−1) with δ′ := δ/

(
2(Ĉsgn + 2Csgn)C̃sgn

)
≤ 1/2

and subsequently deriving the following inequality:

(Ĉsgn + 2Csgn)ϵ log d ≤ (Ĉsgn + 2Csgn)ϵ log(δ
′−1 log(ϵ−1)) ≤ (Ĉsgn + 2Csgn)δ

′ ≤ ε/2.

Here, the second inequality results from the fact that γ log(ε−1 log γ−1) ≤ ε for 0 < ε ≤ 1/2,
with γ := ε/2 log(ε−1), and the last inequality owes to the chosen δ′, along with the facts that
δ := ϵ/2r+3 ≤ ε and C̃sgn ≥ 1.

Finally, we analyze the computational resources required for Algorithm 1. According to
Lemma 4.7, we can compute x in BQL, with the resulting algorithm requiring O(d2 log d/ϵ2H) =
Õ(22r/ε4) queries to Q0 and Q1. In addition, its circuit description can be computed in deter-
ministic time Õ(d9/2/ε) = Õ(24.5r/ε5.5).

4.3 GapQEDlog and GapQJSlog are in BQL

In this subsection, we will demonstrate Theorem 4.11 by devising a quantum algorithm that
encompasses testers T (Qi, Uρi , P

ln
d , ϵ) for i ∈ {0, 1}, where the construction of testers employs

the space-efficient QSVT associated with the normalized logarithmic function. Consequently,
we can deduce that GapQJSlog is in BQL via a reduction from GapQJSlog to GapQEDlog.

Theorem 4.11. For any deterministic logspace computable function g(n) that satisfies g(n) ≥
1/poly(n), we have that GapQEDlog[g(n)] is in BQL.

Proof. We begin with a formal algorithm in Algorithm 2.

Algorithm 2: Space-efficient algorithm for GapQEDlog.
Input : Quantum circuits Qi that prepares the purification of ρi for i ∈ {0, 1}.
Output: An additive-error estimation of S(ρ0)− S(ρ1).

Params: ε := g
4 , β := min{ ε

2r+5 ln(2r+4/ε)
, 14}, d := C̃ln · 1

β log 1
ϵ ,

ϵ := βε

4C̃ln(Ĉln+Cln) ln(1/β)
· 1

4 log
(
4C̃ln(Ĉln+Cln) ln(1/β)/(βε)

) , ϵH := ε
8 ln(1/β) .

1. Construct block-encodings of ρ0 and ρ1, denoted by Uρ0 and Uρ1 , respectively, using
O(1) queries to Q0 and Q1 and O(s(n)) ancillary qubits by Lemma 4.8;

Let P ln
d be the degree-d polynomial specified in Corollary 3.10 with parameters δ and ϵ

such that its Chebyshev coefficients are computable in bounded-error randomized space
O(log(d/ϵ));

2. Set x0 := T̂ (Q0, Uρ0 , P
ln
d , ϵ, ϵH , 1/10), x1 := T̂ (Q1, Uρ1 , P

ln
d , ϵ, ϵH , 1/10);

3. Compute x = (x0 − x1) ln(2/β). Return “yes” if x > 0, and “no” otherwise.

Let us now demonstrate the correctness and computational complexity of Algorithm 2. We
concentrate on the scenario with s(n) = Θ(log n) and ε = g/4 ≥ 2−O(s). Our strategy is to
estimate the entropy of each of ρ0 and ρ1, respectively. We assume that Q0 and Q1 are s-qubit
quantum circuits that prepare the purifications of ρ0 and ρ1, respectively. By Lemma 4.8, we
can construct (1, O(s), 0)-block-encodings Uρ0 and Uρ1 of ρ0 and ρ1, respectively, using O(1)
queries to Q0 and Q1 as well as O(1) one- and two-qubit quantum gates.

Let β = min{ ε
2r+5 ln(2r+4/ε)

, 14}, ϵ := βε

4C̃ln(Ĉln+Cln) ln(1/β)
· 1

4 log
(
4C̃ln(Ĉln+Cln) ln(1/β)/(βε)

) and

d = C̃lnβ
−1 log ϵ−1 = 2O(s(n)) where C̃ln comes from Corollary 3.10. Let P ln

d ∈ R[x] be the
polynomial specified in Corollary 3.10. Let ϵH = ε

8 ln(1/β) . By utilizing Corollary 3.17 and the
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corresponding estimation procedure T̂ (Qi, Uρi , P
ln
d , ϵ, ϵH , 1/10) from Lemma 4.7, we obtain the

values xi for i ∈ {0, 1}, ensuring the following inequalities:

Pr
[∣∣∣xi − Tr

(
P ln
d (ρi) ρi

)∣∣∣ ≤ Ĉlnϵd+ ϵH

]
≥ 9

10
for i ∈ {0, 1}. (4.2)

Here, the implementation uses O(d3) queries to Uρ0 and O(d3) multi-controlled single-qubit
gates. Moreover, the circuit descriptions of T̂ (Qi, Uρi , P

ln
d , ϵ, ϵH , 1/10) can be computed in

bounded-error time Õ(d9/ϵ4) and space O(s).

We will finish the correctness analysis of Algorithm 2 by demonstrating Pr[|xi − S(ρi)| ≤ ε] ≥
0.9 through Equation (4.2). By considering the approximation error of P ln

d in Corollary 3.10
and the QSVT implementation error in Corollary 3.17, we derive the following inequality in
Proposition 4.11.1, and the proof is deferred to Appendix B.1:

Proposition 4.11.1. The following inequality holds for i ∈ {0, 1}:

Pr
[
|xi ln

(
2
β

)
− S(ρi)| ≤ 2 ln

(
1
β

) (
Ĉlnϵd+ ϵH + Clnϵ log d+ 2r+1β

) ]
≥ 9

10 .

Consequently, it is left to show that 2 ln
(
1
β

) (
Ĉlnϵd+ ϵH + Clnϵ log d+ 2r+1β

)
≤ ε for

the aforementioned choice of β, ϵ, and ϵH . Note that 2 ln(1/β)ϵH = ε/4 and 2 ln(1/β) ·
2r+1β ≤ ε/4, we complete the correctness analysis by choosing ϵ := δ/4 · log(1/δ) with δ :=

βε

4C̃ln(Ĉln+Cln) ln(1/β)
≤ 1/2, and subsequently deriving the following inequality:

2 ln(β−1)(Ĉlnϵd+ Clnϵ log(d)) ≤ 2 ln(β−1)(Ĉln + Cln)ϵd

= 2 ln(β−1)(Ĉln + Cln)C̃lnβ
−1ϵ log(ϵ−1)

≤ 2 ln(β−1)(Ĉln + Cln)C̃lnβ
−1δ

= ε/2.

Here, the first line is because of log(d) ≤ d, the third line owes to the fact that ϵ log(ϵ−1) ≤ δ,
and the last line is due to choice of δ.

Finally, we analyze the computational resources required for Algorithm 2. As per Lemma 4.7,
we can compute x in BQL, with the resulting algorithm requiring O(d3/ϵ2H) = Õ(23r/ε4) queries
toQ0 andQ1. Furthermore, its circuit description can be computed in bounded-error randomized
time Õ(d11/ε4) = Õ(211r/ε15).

GapQJSlog is in BQL. It is noteworthy that we can achieve GapQJSlog ∈ BQL by employing
the estimation procedure T̂ in Algorithm 2 for three according states, given that the quantum
Jensen-Shannon divergence QJS(ρ0, ρ1) is a linear combination of S(ρ0),S(ρ1), and S

(ρ0+ρ1
2

)
.

Nevertheless, the log-space Karp reduction from GapQJSlog to GapQEDlog (Corollary 4.12)
allows us to utilize T̂ for only two states. Furthermore, our construction is adapted from the
time-bounded scenario [Liu23, Lemma 4.3].

Corollary 4.12. For any functions α(n) and β(n) that can be computed in deterministic logspace
and satisfy α(n)− β(n) ≥ 1/ poly(n), we have that GapQJSlog[α(n), β(n)] is in BQL.

Proof. Let Q0 and Q1 be the given s(n)-qubit quantum circuits where s(n) = Θ(log n). Consider
a classical-quantum mixed state on a classical register B and a quantum register Y, denoted by
ρ′1 :=

1
2 |0⟩⟨0| ⊗ ρ0 +

1
2 |1⟩⟨1| ⊗ ρ1, where ρ0 and ρ1 are the state obtained by running Q0 and Q1,

respectively, and tracing out the non-output qubits. We utilize our reduction to output classical-
quantum mixed states ρ′0 and ρ′1, which are the output of (s(n) + 2)-qubit quantum circuits Q′

0
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and Q′
1,34 respectively, where ρ′0 := (p0|0⟩⟨0| + p1|1⟩⟨1|) ⊗ (12ρ0 +

1
2ρ1) and B′ := (p0, p1) is an

independent random bit with entropy H(B′) = 1 − 1
2 [α(n) + β(n)]. Let S2(ρ) := S(ρ)/ ln 2 for

any quantum state ρ, we then have derived that:

S2(ρ
′
0)− S2(ρ

′
1) = S2(B

′,Y)ρ′0 − S2(B,Y)ρ′1
= [H(B′) + S2(Y|B′)ρ′0 ]− [H(B) + S2(Y|B)ρ′1 ]
= S2(Y)ρ′0 − S2(Y|B)ρ′1 +H(B′)−H(B)

= S2(Y)ρ′0 − S2(Y|B)ρ′1 −
1
2 [α(n) + β(n)]

= S2
(
1
2ρ0 +

1
2ρ1

)
− 1

2(S2(ρ0) + S2(ρ1))− 1
2 [α(n) + β(n)]

= QJS2(ρ0, ρ1)− 1
2 [α(n) + β(n)].

(4.3)

Here, the second line derives from the definition of quantum conditional entropy and acknowl-
edges that both B and B′ are classical registers. The third line owes to the independence of B′

as a random bit. Furthermore, the fifth line relies on the Joint entropy theorem (Lemma 2.3).
By plugging Equation (4.3) into the promise of GapQJSlog[α(n), β(n)], we can define g(n) :=

ln 2
2

(
α(n− 1)− β(n− 1)

)
and conclude that:

• If QJS2(ρ0, ρ1) ≥ α(n), then S(ρ′0)− S(ρ′1) ≥ ln 2
2

(
α(n)− β(n)

)
= g(n+ 1);

• If QJS2(ρ0, ρ1) ≤ β(n), then S(ρ′0)− S(ρ′1) ≤ − ln 2
2

(
α(n)− β(n)

)
= −g(n+ 1).

As ρ′1 and ρ′0 are r′(n)-qubit states where r′(n) := r(n)+1, the output length of the corresponding
space-bounded quantum circuits Q′

0 and Q′
1 is r′(n). Therefore, GapQJSs(n)[α(n), β(n)] is

logspace Karp reducible to GapQEDs+1[g(n)] by mapping (Q0, Q1) to (Q′
0, Q

′
1).

4.4 CertQSDlog and CertQHSlog are in coRQUL

To make the error one-sided, we adapt the Grover search when the number of solutions is
one quarter [BBHT98], also known as the exact amplitude amplification [BHMT02].

Lemma 4.13 (Exact amplitude amplification, adapted from [BHMT02, Equation 8]). Suppose
U is a unitary of interest such that U |0̄⟩ = sin(θ)|ψ0⟩ + cos(θ)|ψ1⟩, where |ψ0⟩ and |ψ1⟩ are
normalized pure states and ⟨ψ0|ψ1⟩ = 0. Let G = −U(I−2|0̄⟩⟨0̄|)U †(I−2|ψ0⟩⟨ψ0|) be the Grover
operator. Then, for every integer j ≥ 0, we have GjU |0̄⟩ = sin((2j+1)θ)|ψ0⟩+cos((2j+1)θ)|ψ1⟩.
In particular, with a single application of G, we obtain GU |0̄⟩ = sin(3θ)|ψ0⟩ + cos(3θ)|ψ1⟩,
signifying that GU |0̄⟩ = |ψ0⟩ when sin(θ) = 1/2.

Notably, when dealing with the unitary of interest with the property specified in Lemma 4.13,
which is typically a quantum algorithm with acceptance probability linearly dependent on the
chosen distance-like measure (e.g., a tester T from Lemma 4.7), Lemma 4.13 guarantees that the
resulting algorithm A accepts with probability exactly 1 for yes instances (ρ0 = ρ1). However,
achieving A to accept with probability polynomially deviating from 1 for no instances requires
additional efforts, leading to the coRQUL containment established through error reduction for
coRQUL (Corollary 3.19). In a nutshell, demonstrating coRQUL containment entails satisfying
the desired property, which is achieved differently for CertQSDlog and CertQHSlog.

34To constructQ′
1, we follow these steps: We start by applying a Hadamard gate on B followed by a CNOTB→R

gate where B and R are single-qubit quantum registers initialized on |0⟩. Next, we apply the controlled-Q1 gate
on the qubits from B to S, where S = (Y,Z) is an s(n)-qubit register initialized on |0̄⟩. We then apply X gate
on B followed by the controlled-Q0 gate on the qubits from B to S, and we apply X gate on B again. Finally, we
obtain ρ′1 by tracing out R and the qubits in Z. In addition, we can construct Q′

0 similarly.
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4.4.1 CertQSDlog is in coRQUL

Our algorithm in Theorem 4.14 relies on the quantum tester T (Qi, U ρ0−ρ1
2

, P sgn
d , ϵ) specified

in Algorithm 1. Note that the exact implementation of the space-efficient QSVT associated with
odd polynomials preserves the original point (Remark 3.12). Consequently, T (Qi, U ρ0−ρ1

2

, P sgn
d , ϵ)

outputs 0 with probability exactly 1/2 when ρ0 = ρ1, enabling us to derive the coRQUL con-
tainment through a relatively involved analysis for cases when td(ρ0, ρ1) ≥ α:

Theorem 4.14. For any deterministic logspace computable function α(n) ≥ 1/ poly(n), we have
that CertQSDlog[α(n)] is in coRQUL.

Proof. We first present a formal algorithm in Algorithm 3:

Algorithm 3: Space-efficient algorithm for CertQSDlog.
Input : Quantum circuits Qi that prepares the purification of ρi for i ∈ {0, 1}.
Output: Return “yes” if ρ0 = ρ1, and “no” otherwise.

Params: ε := α
2 , δ := ε

2r+3 , ϵ := ε
2(Ĉsgn+2Csgn)C̃sgn2r+3

· 1

2 log
(
2(Ĉsgn+2Csgn)C̃sgn2r+3/ε

) ,

d := C̃sgnδ
−1 log ϵ−1.

1. Construct block-encodings of ρ0 and ρ1, denoted by Uρ0 and Uρ1 , respectively, using
O(1) queries to Q0 and Q1 and O(s(n)) ancillary qubits by Lemma 4.8;

2. Construct a block-encoding of ρ0−ρ1
2 , denoted by U ρ0−ρ1

2

, using O(1) queries to Uρ0

and Uρ1 and O(s(n)) ancillary qubits by Lemma 3.14;

Let P sgn
d be the degree-d odd polynomial specified in Corollary 3.7 with parameters δ and ϵ

such that its Chebyshev coefficients are computable in deterministic space O(log(d/ϵ));

3. Let U0 := T (Q0, U ρ0−ρ1
2

, P sgn
d , ϵ) and U1 := T (Q1, U ρ0−ρ1

2

, P sgn
d , ϵ);

4. Let Gi := −(H ⊗ Ui)(I − 2|0̄⟩⟨0̄|)(H ⊗ U †
i )(I − 2Π0) for i ∈ {0, 1}, where Π0 is the

projector onto the subspace spanned by {|0⟩|0⟩|φ⟩} over all |φ⟩;
5. Measure the first two qubits of Gi(H ⊗ Ui)|0⟩|0⟩|0̄⟩, and let xi0 and xi1 be the
outcomes, respectively. Return “yes” if x00 = x01 = x10 = x11 = 0, and “no” otherwise.

Constructing the unitary of interest via the space-efficient QSVT. We consider the
setting with s(n) = Θ(log n) and ε = α/2. Suppose Q0 and Q1 are s(n)-qubit quantum circuits
that prepare the purifications of ρ0 and ρ1, respectively. Similar to Algorithm 1, we first construct
an O(s)-qubit quantum circuit U ρ0−ρ1

2

that is a (1, O(s), 0)-block-encoding of ρ0−ρ1
2 , using O(1)

queries to Qρ0 and Qρ1 and O(1) one- and two-qubit quantum gates.
Let δ = ε

2r+3 , ϵ := ε
2(Ĉsgn+2Csgn)C̃sgn2r+3

· 1

2 log
(
2(Ĉsgn+2Csgn)C̃sgn2r+3/ε

) and d := C̃sgnδ
−1 log ϵ−1 =

2O(s) where C̃sgn comes from Corollary 3.7. Let P sgn
d ∈ R[x] be the odd polynomial specified

in Corollary 3.7. Let Ui := T (Qi, U ρ0−ρ1
2

, P sgn
d , ϵ) for i ∈ {0, 1}, then we have the following

equalities with 0 ≤ p0, p1 ≤ 1:

U0|0⟩|0̄⟩ =
√
p0|0⟩|ψ0⟩+

√
1− p0|1⟩|ψ1⟩,

U1|0⟩|0̄⟩ =
√
p1|0⟩|ϕ0⟩+

√
1− p1|1⟩|ϕ1⟩.

Let H be the Hadamard gate, then we derive the following equality for i ∈ {0, 1}:

(H ⊗ Ui)|0⟩|0⟩|0̄⟩ =
√
pi
2
|0⟩|0⟩|ψ0⟩+

√
pi
2
|0⟩|1⟩|ψ0⟩+

√
1− pi

2
|1⟩|0⟩|ψ1⟩+

√
1− pi

2
|1⟩|1⟩|ψ1⟩︸ ︷︷ ︸√

1− pi
2
|⊥i⟩

.
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Making the error one-sided by exact amplitude amplification. Consider the Grover
operator Gi := −(H ⊗ Ui)(I − 2|0̄⟩⟨0̄|)(H ⊗ U †

i )(I − 2Π0), where Π0 is the projector onto the
subspace spanned by {|0⟩|0⟩|φ⟩} over all |φ⟩. By employing the exact amplitude amplification
(Lemma 4.13), we can obtain that:

Gi(H⊗Ui)|0⟩|0⟩|0̄⟩ = sin(3θi)|0⟩|0⟩|ψ0⟩+ cos(3θi)|⊥i⟩ where sin2(θi)=
pi
2 when θi∈

[
0,π4

]
. (4.4)

Let xi0 and xi1 be the measurement outcomes of the first two qubits of Gi(H ⊗ Ui)|0⟩|0⟩|0̄⟩ for
i ∈ {0, 1}. Algorithm 3 returns “yes” if x00 = x01 = x10 = x11 = 0, and “no” otherwise. We will
show the correctness of our algorithm as follows:

• For yes instances (ρ0 = ρ1), UP sgn
d

(
ρ0−ρ1

2

) is a (1, O(s), 0)-block-encoding of the zero op-

erator, following from Remark 3.12. Consequently, T (Qi, U ρ0−ρ1
2

, Pd, ϵ) outputs 0 with
probability 1/2 for i ∈ {0, 1}, i.e., p0 = p1 = 1/2. As a result, we have θ0 = θ1 = π/6 and
sin2(3θ0) = sin2(3θ1) = 1. Substituting these values into Equation (4.4), we can conclude
that x00 = x01 = x10 = x11 = 0 with certainty, which completes the analysis.

• For no instances (td(ρ0, ρ1) ≥ α), U
P sgn
d

(
ρ0−ρ1

2

) is a (1, O(s), 0)-block-encoding of A satis-

fying
∥∥A− P sgn

d

(ρ0−ρ1
2

)∥∥ ≤ Ĉsgnϵ log d. Let pi be the probability that T (Qi, U ρ0−ρ1
2

, Pd, ϵ)

outputs 0 for i ∈ {0, 1}, then pi = 1
2

(
1+Re(Tr(ρiA))

)
following from Lemma 4.7. A direct

calculation similar to Proposition 4.10.1 indicates that:

|(p0 − p1)− td(ρ0, ρ1)| ≤ Ĉsgnϵ log d+ 2Csgnϵ log d+ 2r+1δ.

Under the choice of δ, ϵ, and d in the proof of Theorem 4.11, we obtain that |(p0 − p1) −
td(ρ0, ρ1)| ≤ ε which yields that max{|p0 − 1/2|, |p1 − 1/2|} ≥ ε/2.35

Note that Pr[xi0 = xi1 = 0] = sin2(3θi) for i ∈ {0, 1}, Algorithm 3 will return “yes” with
probability pyes = sin2(3θ0) sin

2(3θ1). We provide an upper bound for pyes in Proposi-
tion 4.14.1, with the proof deferred to Appendix B.2:

Proposition 4.14.1. Let f(θ0, θ1) := sin2(3θ0) sin
2(3θ1) be a function such that sin2(θi) =

pi/2 for i ∈ {0, 1} and max{|p0 − 1/2|, |p1 − 1/2|} ≥ ε/2, then f(θ0, θ1) ≤ 1− ε2/4.

Consequently, we finish the analysis by noticing pyes = f(θ0, θ1) ≤ 1− ε2/4 = 1− α2/16.

Now we analyze the complexity of Algorithm 3. Following Lemma 4.7, we can compute
x00, x01, x10, x11 in BQL. The quantum circuit that computes x00, x01, x10, x11 takes O(d2 log d) =
Õ(22r/α2) queries to Q0 and Q1, and its circuit description can be computed in deterministic
time Õ(d9/2/α) = Õ(24.5r/α5.5). Finally, we conclude the coRQUL containment of CertQSDlog
by applying error reduction for coRQUL(Corollary 3.19) to Algorithm 3.

4.4.2 CertQHSlog is in coRQUL

Our algorithm in Theorem 4.15 is based on the observation that by expressing HS2(ρ0, ρ1)
as a summation of 1

2Tr(ρ
2
0),

1
2Tr(ρ

2
1), and −Tr(ρ0ρ1), we can devise a hybrid algorithm with two

random coins using the SWAP test. However, to ensure unitary, we design another algorithm
employing the LCU technique, which serves as the unitary of interest with the desired property.

Theorem 4.15. For any deterministic logspace computation function α(n) ≥ 1/poly(n), we
have that CertQHSlog[α(n)] is in coRQUL.

Proof. We first provide a formal algorithm in Algorithm 4.
35This inequality is because |p0 − p1| ≥ td(ρ0, ρ1)− ε ≥ 2ε− ε = ε.
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Algorithm 4: Space-efficient algorithm for CertQHSlog.
Input : Quantum circuits Qi that prepares the purification of ρi for i ∈ {0, 1}.
Output: Return “yes” if ρ0 = ρ1, and “no” otherwise.

1. Construct subroutines Tij := SWAP(ρi, ρj) for (i, j) ∈ {(0, 0), (1, 1), (0, 1)}, which
output 0 with probability pij . The subroutine SWAP(ρi, ρj) involves applying Qi and
Qj to prepare quantum states ρi and ρj , respectively, and then employing the SWAP
test (Lemma 2.12) on these states ρi and ρj ;

2. Construct a block-encoding of ϱ
(
1
2 + HS2(ρ0,ρ1)

4

)
where ϱ(p) := p|0⟩⟨0|+ (1− p)|1⟩⟨1|,

denoted by U , using O(1) queries to T00, T11, and T01 by Lemma 3.14;

3. Let G := −U(I − 2|0̄⟩⟨0̄|)U †(I − 2|0̄⟩⟨0̄|);
4. Measure all qubits of GU |0̄⟩ in the computational basis. Return “yes” if the
measurement outcome is an all-zero string, and “no” otherwise.

Constructing the unitary of interest via the SWAP test. We consider the setting with
s(n) = Θ(s(n)). Our main building block is the circuit implementation of the SWAP test
(Lemma 2.12). Specifically, we utilize the subroutine SWAP(ρi, ρj) for i, j ∈ {0, 1}, which in-
volves applying Qi and Qj to prepare quantum states ρi and ρj , respectively, and then employing
the SWAP test on these states ρi and ρj . We denote by pij the probability that SWAP(ρi, ρj)
outputs 0 based on the measurement outcome of the control qubit in the SWAP test. Following
Lemma 2.12, we have pij = 1

2

(
1 + Tr(ρiρj)

)
for i, j ∈ {0, 1}.

We define Tij := SWAP(ρi, ρj) for (i, j) ∈ I := {(0, 0), 1, 1, 0, 1}, with the control qubit
in SWAP(ρi, ρj) serving as the output qubit of Tij . By introducing another ancillary qubit,
we construct T ′

ij := CNOT(I ⊗ Tij) for (i, j) ∈ I, where CNOT is controlled by the output
qubit of Tij and targets on the new ancillary qubit. It is effortless to see that T ′

ij prepares the
purification of ϱ(pij) with ϱ(pij) := pij |0⟩⟨0|+ (1− pij)|1⟩⟨1| for (i, j) ∈ I.

By applying Lemma 4.8, we can construct quantum circuits T ′′
ij for (i, j) ∈ I that serve as

(1, O(s), 0)-block-encoding of ϱ(pij), using O(1) queries to T ′
ij and O(1) one- and two-qubit quan-

tum gates. Notably, (X ⊗ I)T ′′
01, with X acting on the qubit of ϱ(p2), prepares the purification

of Xϱ(p01)X† = p01|1⟩⟨1|+ (1− p01)|0⟩⟨0| = ϱ(1− p01), leading to the equality:

ϱ(ρ0, ρ1) :=
1

4
ϱ(p00) +

1

4
ϱ(p11) +

1

2
ϱ(1− p01) = ϱ

(
1

2
+

HS2(ρ0, ρ1)

4

)
.

Consequently, we employ Lemma 3.14 to construct a unitary quantum circuit U that is a
(1,m, 0)-block-encoding of ϱ

(
1
2 +

HS2(ρ0,ρ1)
4

)
using O(1) queries to T ′′

00, T ′′
11, (X⊗I)T ′′

01, and O(1)
one- and two-qubit quantum gates, where m := O(s). The construction ensures the following:

U |0⟩|0⟩⊗m =

(
1

2
+

HS2(ρ0, ρ1)

4

)
︸ ︷︷ ︸

sin(θ)

|0⟩|0⟩⊗m + cos(θ)|⊥⟩, where ⟨0|⟨0|⊗m|⊥⟩ = 0. (4.5)

Making the error one-sided. Let us consider the Grover operator G := −U(I−2|0̄⟩⟨0̄|)U †(I−
2|0̄⟩⟨0̄|). By applying Lemma 4.13, we derive that GU |0⟩|0⟩⊗m = sin(3θ)|0⟩|0⟩⊗m + cos(3θ)|⊥⟩.
Subsequently, we measure all qubits of GU |0⟩|0⟩⊗m in the computational basis, represented as
x ∈ {0, 1}m+1. Hence, Algorithm 4 returns “yes” if the outcome x is 0m+1 and “no” otherwise.
Algorithm 4 accepts with probability sin2(3θ). Now we analyze the correctness of the algorithm:

• For yes instances (ρ0 = ρ1), we have HS2(ρ0, ρ1) = 0. Following Equation (4.5), we obtain
sin(θ) = 1/2 and thus sin2(3θ) = 1. We conclude that Algorithm 4 will always return “yes”.
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• For no instances, we have HS2(ρ0, ρ1) ≥ α. According to Equation (4.5), we derive that:

sin(θ)=
1

2
+
HS2(ρ0,ρ1)

4
≥ 1

2
+
α

4
and

1

4
≤ sin2(θ)=

(1
2
+
HS2(ρ0,ρ1)

4

)2
≤

(1
2
+
1

4

)2
=

9

16
. (4.6)

As a result, considering the fact that sin2(3θ) = f(sin2(θ)) where f(x) := 16x3−24x2+9x,
we require Proposition 4.15.1 and the proof is deferred to Appendix B.2:

Proposition 4.15.1. The polynomial function f(x) := 16x3 − 24x2 + 9x is monotonically
decreasing in [1/4, 9/16]. Moreover, we have f

((
1
2 + α

4

)2) ≤ 1− α2

2 for any 0 ≤ α ≤ 1.

Combining Equation (4.6) and Proposition 4.15.1, we have that sin2(3θ) = f(sin2(θ)) ≤
f
((

1
2 +

α
4

)2) ≤ 1− α2

2 . Hence, Algorithm 4 will return "no" with probability at least α2/2.

Regarding the computational complexity of Algorithm 4, this algorithm requires O(s(n))
qubits and performs O(1) queries to Q0 and Q1. Finally, we finish the proof by applying error
reduction from coRQUL (Corollary 3.19) to Algorithm 3.

4.5 BQL- and coRQUL-hardness for space-bounded state testing problems

We will prove that space-bounded state testing problems mentioned in Theorem 4.6 are
BQUL-hard, which implies their BQL-hardness since BQL=BQUL [FR21]. Similarly, all space-
bounded state certification problems mentioned in Theorem 4.5 are coRQUL-hard.

4.5.1 Hardness results for GapQSDlog, GapQHSlog, and their certification version

Employing analogous constructions, we can establish the BQUL-hardness of both GapQSDlog
and GapQHSlog. The former involves a single-qubit pure state and a single-qubit mixed state,
while the latter involves two pure states.

Lemma 4.16 (GapQSDlog is BQUL-hard). For any deterministic logspace computable functions
a(n) and b(n) such that a(n)−b(n) ≥ 1/poly(n), we have that GapQSDlog[1−

√
a(n),

√
1− b(n)]

is BQUL[a(n), b(n)]-hard.

Proof. Consider a promise problem (Lyes,Lno) ∈ BQUL[a(n), b(n)], then we know that the
acceptance probability Pr[Cx accepts] ≥ a(n) if x ∈ Lyes, whereas Pr[Cx accepts] ≤ b(n) if
x ∈ Lno. Now we notice that the acceptance probability is the fidelity between a single-qubit
pure state ρ0 and a single-qubit mixed state ρ1 that generates by two logarithmic-qubit quantum
circuits Q0 and Q1, respectively:

Pr[Cx accepts] = ∥|1⟩⟨1|outCx|0̄⟩∥22
=Tr

(
|1⟩⟨1|outTrout

(
Cx|0̄⟩⟨0̄|C†

x

))
=F2

(
|1⟩⟨1|out,Trout

(
Cx|0̄⟩⟨0̄|C†

x

))
:=F2(ρ0, ρ1).

(4.7)

In particular, the corresponding Q0 is simply flipping the designated output qubit, as well as
the corresponding Q1 is exactly the circuit Cx, then we prepare ρ0 and ρ1 by tracing out all
non-output qubits. By utilizing Lemma 2.2, we have derived that:

• For yes instances, F2(ρ0, ρ1) ≥ a(n) deduces that td(ρ0, ρ1) ≤ 1−
√
a(n);

• For no instances, F2(ρ0, ρ1) ≤ b(n) yields that td(ρ0, ρ1) ≥
√
1− b(n)

Therefore, we demonstrate that GapQSDlog[1−
√
a(n),

√
1− b(n)] is BQL[a(n), b(n)]-hard.

To construct pure states, adapted from the construction in Lemma 4.16, we replace the final
measurement in the BQL circuit Cx with a quantum gate (CNOT) and design a new algorithm
based on Cx with the final measurement on all qubits in the computational basis.
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Lemma 4.17 (GapQHSlog is BQUL-hard). For any deterministic logspace computable functions
a(n) and b(n) such that a(n)− b(n) ≥ 1/ poly(n), we have that GapQHSlog[1−a2(n), 1− b2(n)]
is BQUL[a(n), b(n)]-hard.

Proof. For any promise problem (Lyes,Lno) ∈ BQUL[a(n), b(n)], we have that the acceptance
probability Pr[Cx accepts] ≥ a(n) if x ∈ Lyes, whereas Pr[Cx accepts] ≤ b(n) if x ∈ Lno. For
convenience, let the output qubit be the register O. Now we construct a new quantum circuit
C ′
x with an additional ancillary qubit on the register F initialized to zero:

C ′
x := C†

xX
†
OCNOTO→FXOCx.

And we say that C ′
x accepts if the measurement outcome of all qubits (namely the working qubit

of Cx and F) are all zero. Through a direct calculation, we obtain:

Pr
[
C ′
x accepts

]
=

∥∥(|0̄⟩⟨0̄| ⊗ |0⟩⟨0|F)C†
xXOCNOTO→FXOCx(|0̄⟩ ⊗ |0⟩F)

∥∥2
2

=
∣∣(⟨0̄| ⊗ ⟨0|F)C†

x(|1⟩⟨1|O ⊗ IF + |0⟩⟨0|O ⊗XF)Cx(|0̄⟩ ⊗ |0⟩F)
∣∣2

=
∣∣⟨0̄|C†

x|1⟩⟨1|OCx|0̄⟩
∣∣2

= Pr2 [Cx accepts] .

(4.8)

Here, the second line owes to CNOTO→F = |0⟩⟨0|O ⊗ IF + |1⟩⟨1|O ⊗ XF, and the last line is
because of Equation (4.7). Interestingly, by defining two pure states ρ0 := |0̄⟩⟨0̄| ⊗ |0⟩⟨0|F and
ρ1 := C ′

x(|0̄⟩⟨0̄|⊗ |0⟩⟨0|F)C ′†
x corresponding to Q0 = I and Q1 = C ′

x, respectively, we deduce the
following from Equation (4.8):

Pr
[
C ′
x accepts

]
= Tr(ρ0ρ1) = 1−HS2(ρ0, ρ1). (4.9)

Combining Equation (4.8) and Equation (4.9), we conclude that:
• For yes instances, Pr[Cx accepts] ≥ a(n) implies that HS2(ρ0, ρ1) ≤ 1− a2(n);

• For no instances, Pr[Cx accepts] ≤ b(n) yields that HS2(ρ0, ρ1) ≥ 1− b2(n).
We thus complete the proof of GapQHSlog[1− a2(n), 1− b2(n)] is BQUL[a(n), b(n)]-hard.

Our constructions in the proof of Lemma 4.16 and Lemma 4.17 are somewhat analogous to
Theorem 12 and Theorem 13 in [RASW23]. Then we proceed with a few direct corollaries of
Lemma 4.16 and Lemma 4.17.

Corollary 4.18 (BQUL- and coRQUL-hardness). For any functions a(n) and b(n) are com-
putable in deterministic logspace such that a(n) − b(n) ≥ 1/poly(n), the following holds for
some polynomial p(n) which can be computed in deterministic logspace:

(1) GapQSDlog[α(n), β(n)] is BQUL-hard for α ≤ 1− 1/p(n) and β ≥ 1/p(n);

(2) CertQSDlog[γ(n)] is coRQUL-hard for γ ≤ 1− 1/p(n);

(3) GapQHSlog[α(n), β(n)] is BQUL-hard for α ≤ 1− 1/p(n) and β ≥ 1/p(n);

(4) CertQHSlog[γ(n)] is coRQUL-hard for γ ≤ 1− 1/p(n).

Proof. Firstly, it is important to note that BQUL is closed under complement, as demon-
strated in [Wat99, Corollary 4.8]. By combining error reduction for BQUL (Corollary 3.19) and
Lemma 4.16 (resp., Lemma 4.17), we can derive the first statement (resp., the third statement).

Moreover, to obtain the second statement (resp., the fourth statement), we can utilize error
reduction for coRQUL (Corollary 3.19) and set a = 1 in Lemma 4.16 (resp., Lemma 4.17).
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4.5.2 Hardness results for GapQJSlog and GapQEDlog

We demonstrate the BQUL-hardness of GapQJSlog by reducing GapQSDlog to GapQJSlog,
following a similar approach as shown in [Liu23, Lemma 4.11].

Lemma 4.19 (GapQJSlog is BQUL-hard). For any functions α(n) and β(n) are computable in
deterministic logspace, we have GapQJSlog[α(n), β(n)] is BQUL-hard for α(n) ≤ 1−

√
2/
√
p(n)

and β(n) ≥ 1/p(n), where p(n) is some deterministic logspace computable polynomial.

Proof. By employing Corollary 4.18, it suffices to reduce GapQSDlog[1 − 1/p(n), 1/p(n)] to
GapQJSlog[α(n), β(n)]. Consider logarithmic-qubit quantum circuits Q0 and Q1, which is an
instance of GapQSDlog. We will obtain ρk by performing Qk on |0n⟩ and tracing out the
non-output qubits for k ∈ {0, 1}. We then have the following:

• If td(ρ0, ρ1) ≥ 1− 1/p(n), then Lemma 2.4 yields that

QJS2(ρ0, ρ1) ≥ 1−H2

(
1−td(ρ0,ρ1)

2

)
≥ 1−H2

(
1

2p(n)

)
≥ 1−

√
2√

p(n)
≥ α(n),

where the third inequality owing to H2(x) ≤ 2
√
x for all x ∈ [0, 1].

• If td(ρ0, ρ1) ≤ 1/p(n), then Lemma 2.4 indicates that

QJS2(ρ0, ρ1) ≤ td(ρ0, ρ1) ≤ 1
p(n) ≤ β(n).

Therefore, we can utilize the same quantum circuits Q0 and Q1, along with their corre-
sponding quantum states ρ0 and ρ1, respectively, to establish a logspace Karp reduction from
GapQSDlog[1− 1/p(n), 1/p(n)] to GapQJSlog[α(n), β(n)], as required.

By combining the reduction from GapQSDlog to GapQJSlog (Lemma 4.19) and the reduc-
tion from GapQJSlog to GapQEDlog (Corollary 4.12), we will demonstrate that the BQUL-
hardness for GapQEDlog through reducing GapQSDlog to GapQEDlog.

Corollary 4.20 (GapQEDlog is BQUL-hard). For any function g(n) are computable in deter-
ministic logspace, we have GapQEDlog[g(n)] is BQUL-hard for g(n) ≤ ln 2

2

(
1−

√
2√

p(n−1)
− 1

p(n−1)

)
,

where p(n) is some polynomial that can be computed in deterministic logspace.

Proof. By combining Corollary 4.18 and Lemma 4.19, we establish that GapQJSlog[α(n), β(n)]

is BQUL-hard for α(n) ≤ 1 −
√
2/
√
p(n) and β(n) ≥ 1/p(n), where p(n) is some deterministic

logspace computable polynomial. The hard instances specified in Corollary 4.18 consist of s(n)-
qubit quantum circuits Q0 and Q1 that prepares a purification of r(n)-qubit (mixed) quantum
states ρ0 and ρ1, respectively, where 1 ≤ r(n) ≤ s(n) = Θ(log n).

Subsequently, by employing Corollary 4.12, we construct (s + 1)-qubit quantum circuits
Q′

0 and Q′
1 that prepares a purification of (r + 1)-qubit quantum states ρ′0 =

(
p|0⟩⟨0| + (1 −

p)|1⟩⟨1|
)
⊗(12ρ0+

1
2ρ1) satisfying H2(p) = 1− 1

2

(
α(n)+β(n)

)
and ρ′1 =

1
2 |0⟩⟨0|⊗ρ0+

1
2 |1⟩⟨1|⊗ρ1,

respectively. Following Corollary 4.12, GapQEDlog[g(n)] is BQUL-hard as long as

g(n) = ln 2
2

(
α(n− 1)− β(n− 1)

)
≤ ln 2

2

(
1−

√
2√

p(n−1)
− 1

p(n−1)

)
.

Therefore, GapQSDs(n)[α(n), β(n)] is logspace Karp reducible to GapQEDs+1[g(n)] by map-
ping (Q0, Q1) to (Q′

0, Q
′
1).
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A Omitted proofs in space-efficient QSVT

In this section, we will present all Omitted proofs in Section 3.
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A.1 Space-efficient bounded polynomial approximations

A.1.1 Omitted proofs in Corollary 3.7

Fact 3.7.2. Let Fk(θ) := erf(κ cos θ) cos(kθ), max
0≤k≤d

max
ξ∈[−π,0]

|F ′′
k (ξ)| ≤

2√
π
κ+k2+ 4√

π
κ3+ 4√

π
kκ.

Proof. Through a straightforward calculation, we have derived that

|F ′′
k (θ)| =

2√
π

∣∣κ exp(−κ2 cos2 θ) cos θ cos(κθ)∣∣+ ∣∣k2 cos(kθ) erf(κ cos(θ))∣∣
+

4√
π

∣∣κ3 exp(−κ2 cos2 θ) cos θ cos(kθ) sin2 θ∣∣
+

4√
π

∣∣kκ exp(−κ2 cos2 θ) sin θ sin(kθ)∣∣
≤ 2√

π
κ+ k2 +

4√
π
κ3 +

4√
π
kκ.

(A.1)

Here the last line owes to the facts that | erf(x)| ≤ 1, exp(−x2) ≤ 1, | sinx| ≤ 1, and | cosx| ≤ 1
for any x. We thus complete the proof by noting that Equation (A.1) holds for any 0 ≤ k ≤ d.

Fact 3.7.3 (Implicit in [MY23, Lemma 2.10]). For the coefficient vector c̃sgn corresponding to
a degree-d polynomial P̃ sgn

d , we have ∥c̃sgn∥1 ≤ Ĉsgn log d where Ĉsgn is a universal constant.

Proof. Consider c′k := ⟨Tk, sgn⟩, and a direct integration yields c′k = (−1)(k−1)/2 4
πk for odd k

which implies that ∥c′∥1 =
∑2l≤d+1

l=1 |c′2l−1| = O(log d), as per the Euler–Maclaurin formula.
By observing that | erf(κx) − sgn(x)| ≤ 1 on the interval [−δ, δ], and | erf(κx) − sgn(x)| ≤ ϵ
elsewhere, it follows that |c̃k − c′k| ≤ O(max{δ, ϵ}). This observation leads us to the conclusion
that |∥c̃∥1 − ∥c′∥1| ≤ O(dmax{δ, ϵ}), which implies that ∥c̃∥1 ≤ Ĉsgn log d for some universal
constant Ĉsgn.

A.1.2 Omitted proofs in Lemma 3.9

Proposition 3.9.1 (First approximation). Let f̂1(x) :=
∑K

k=0 akx
k such that ∥f − f̂1∥∞ ≤ ϵ/4.

Then we know that f̂1(x) =
∑K

k=0 ak
∑∞

l=0 b
(k)
l sinl

(
xπ
2

)
where the coefficients b(k)l satisfy that

b
(k+1)
l =

l∑
l′=0

b
(k)
l′ b

(1)
l−l′ where b(1)l =

{
0 if l is even,(l−1

l−1
2

)
2−l+1

l · 2
π if l is odd.

(3.3)

Furthermore, the coefficients {b(k)l } satisfies the following: (1) ∥b(k)∥1 = 1 for all k ≥ 1; (2)
b(k) is entry-wise non-negative for all k ≥ 1; (3) b(k)l = 0 if l and k have different parities.

Proof. We construct a Fourier series by a linear combination of the power of sines. We first note
that x = 2

π · arcsin
(
sin

(
xπ
2

))
for all x ∈ [−1, 1], and plug it into f̂1(x) :=

∑K
k=0 akx

k, which

deduces that ∥f − f̂1∥ ≤ ϵ/4 by the assumption. Let b(k) be the coefficients of
(
arcsin y
π/2

)k
=∑∞

l=0 b
(k)
l yl for all y ∈ [−1, 1], then we result in our first approximation. Moreover, we observe

that π
2 ·b

(1) is exactly the Taylor series of arcsin, whereas we know that
(
arcsin y
π/2

)k+1
=

(
arcsin y
π/2

)k
·(∑∞

l=0 b
(1)
l yl

)
for k > 1, which derives Equation (3.3) by comparing the coefficients. In addition,

notice that ∥b(k)∥1 =
∑∞

l=0 b
(k)
l 1l =

(
arcsin 1
π/2

)k
= 1, together with straightforward reasoning

follows from Equation (3.3), we deduce the desired property for {b(k)l }.

Proposition 3.9.2 (Second approximation). Let f̂2(x) :=
∑K

k=0 ak
∑L

l=0 b
(k)
l sinl

(
xπ
2

)
where

L := ⌈δ−2 ln(4∥a∥1ϵ−1)⌉, then we have that ∥f̂1 − f̂2∥∞ ≤ ϵ/4.
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Proof. We truncate the summation over l in f1(x) at l = L, and it suffices to bound the
truncation error. For all k ∈ N and x ∈ [−1 + δ, 1− δ], we obtain the error bound:∣∣∣∣∣

∞∑
l=⌊L⌋

b
(k)
l sinl

(
xπ
2

) ∣∣∣∣∣≤
∞∑

l=⌊L⌋

b
(k)
l

∣∣∣ sinl(xπ2 ) ∣∣∣≤ ∞∑
l=⌊L⌋

b
(k)
l |1− δ2|l ≤ (1− δ2)L

∞∑
l=⌊L⌋

b
(k)
l ≤ (1− δ2)L.

Here, the second inequality owing to ∀δ ∈ [0, 1], sin
(
(1− δ)π2

)
≤ 1− δ2, and the last inequality

is due to∥b(k)∥1 = 1 in Proposition 3.9.1. By appropriately choosing L := δ−2 ln(4∥a∥1ϵ−1), we
obtain that ∥f̂1 − f̂2∥∞ ≤

∑K
k=0 ak(1− δ2)L ≤ ∥a∥1 · exp(−δ2L) ≤ ϵ/4.

Proposition 3.9.3 (Third approximation). Let f̂3(x) be polynomial approximations of f that
depends on the parity of f such that ∥f̂2−f̂3∥≤ϵ/2 and M=⌊δ−1 ln(4∥a∥1ϵ−1)⌋, then we have

f̂
(even)
3 (x) :=

K∑
k=0

ak
L/2∑̂
l=0

(−1)l̂2−2l̂b
(k)

2l̂

l̂+M∑
m′=l̂−M

(−1)m
′( 2l̂

m′

)
cos(πx(m′ − l̂)),

f̂
(odd)
3 (x) :=

K∑
k=0

ak
(L−1)/2∑̂

l=0

(−1)l̂+12−2l̂−1b
(k)

2l̂+1

l̂+1+M∑
m′=l̂+1−M

(−1)m
′(2l̂+1

m′

)
sin

(
πx

(
m′ − l̂ − 1

2

))
.

Therefore, we have that f̂3(x) := f̂
(even)
3 (x) if f is even, whereas f̂3(x) := f̂

(odd)
3 (x) if f is odd.

In addition, if f is neither even or odd, then f̂3(x) := f̂
(even)
3 (x) + f̂

(odd)
3 (x).

Proof. We upper-bound sinl(x) in f̂2(x) defined in Proposition 3.9.2 using a tail bound of bino-
mial coefficients. We obtain that sinl(z) =

(
e−iz−eiz

−2i

)l
=

(
i
2

)l ∑l
m=0 exp(iz(2m− l)) by a direct

calculation, which implies the counterpart for real-valued functions:

sinl(z) =

{
2−l(−1)(l+1)/2

∑l
m′=0(−1)m

′( l
m′

)
sin(z(2m′ − l)), if l is odd;

2−l(−1)l/2
∑l

m′=0(−1)m
′( l

m′

)
cos(z(2m′ − l)), if l is even.

(A.2)

Recall that the Chernoff bound (e.g., Corollary A.1.7 [AS16]) which corresponds a tail bound of
binomial coefficients, and assume that l ≤ L, we have derived that:

⌊l/2⌋−M∑
m′=0

2−l

(
l

m′

)
=

l∑
m′=⌈l/2⌉+M

2−l

(
l

m′

)
≤ e−

2M2

l ≤ e−
2M2

L ≤
( ϵ

4∥a∥1

)2
≤ ϵ

4∥a∥1
. (A.3)

Here, we choose M = ⌈δ−1 ln(4∥a∥1ϵ−1)⌉, and the last inequality is because of the assumption
ϵ ≤ 2∥a∥1. As stated in Proposition 3.9.1, b(k)l = 0 if k and l have different parities. Conse-
quently, we only need to consider all odd (resp., even) l ≤ L for odd (resp., even) functions. If
the function f is neither even nor odd, we must consider all l ≤ L. Plugging Equation A.3 into
Equation A.2, we can derive that:

If l is odd,
∥∥∥ sinl(z)− 2−l(−1)(l+1)/2

(l+1)/2+M∑
m′=(l+1)/2−M

(−1)m
′( l

m′

)
sin(z(2m′ − l))

∥∥∥
∞

≤ ϵ

2∥a∥1
;

If l is even,
∥∥∥ sinl(z)− 2−l(−1)l/2

l/2+M∑
m′=l/2−M

(−1)m
′( l

m′

)
cos(z(2m′ − l))

∥∥∥
∞

≤ ϵ

2∥a∥1
;

(A.4)

Plugging Equation (A.4) into f̂2(x), and substituting z = xπ/2, this equation leads to
f̂3(x) as desired. In addition, combining

∑K
k=0 |ak|

∑⌊L⌋
l=0 |b

(k)
l | ≤

∑K
k=0 |ak| = ∥a∥1 with Equa-

tion (A.4), we achieve that ∥f̂2 − f̂3∥∞ ≤ ϵ/2.
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A.1.3 Omitted proof in Theorem 3.8

Fact 3.8.2. Consider the integrand Fk(θ)=
∑M

m=−M
cm
2

(
H

(+)
k,m−H(−)

k,m

)
for any function f which

is either even or odd. If f is even, we have that cm = c
(even)
m defined in Lemma 3.9, and

H
(±)
k,m(θ) := cos

(
πm

(cos θ − x0
r + δ

))
· cos(kθ) · erf

(
κ
(
cos θ − x0 ± r ± δ

4

))
. (3.8)

Likewise, if f is odd, we know that cm = c
(odd)
m defined in Lemma 3.9, and

H
(±)
k,m(θ) := sin

(
π
(
m+

1

2

)(cos θ − x0
r + δ

))
· cos(kθ) · erf

(
κ
(
cos θ − x0 ± r ± δ

4

))
. (3.9)

Moreover, the integrand is Fk(θ)=
∑M

m=−M

(
c
(even)
m
2

(
Ĥ

(+)
k,m−Ĥ(−)

k,m

)
+ c

(odd)
m
2

(
H̃

(+)
k,m−H̃(−)

k,m

))
when f

is neither even nor odd, where Ĥ(±)
k,m and H̃(±)

k,m follow from Equation (3.8) and Equation (3.9),
respectively. Regardless of the parity of f , we have that the second derivative F ′′

k (θ) ≤ O(Bd3).

Proof. We begin by deriving an upper bound of the second derivative of the integrand Fk(θ):

|F ′′
k (θ)|≤

M∑
m=−M

cm
2

∣∣∣ d2

dθ2
H

(+)
k,m(θ)− d2

dθ2
H

(−)
k,m(θ)

∣∣∣≤ ∥c∥
2 max
−π≤θ≤0

(∣∣∣ d2

dθ2
H

(+)
k,m(θ)

∣∣∣+∣∣∣ d2

dθ2
H

(−)
k,m(θ)

∣∣∣). (A.5)

By a straightforward calculation, we have the second derivatives of H±
k,m(θ) if f is even:

d2

dθ2
H

(±)
k,m(θ)=− k2 cos(kθ) cos

(πm(cos θ−x0)
δ+r

)
erf

(
κ
(
cos θ − x0 ∓ r ∓ δ

4

))
− π2m2

(δ+r)2
sin2(θ) cos(kθ) cos

(πm(cos θ−x0)
δ+r

)
erf

(
κ
(
cos θ − x0 ∓ r ∓ δ

4

))
+ πm

δ+r cos θ cos(kθ) sin
(πm(cos θ−x0)

δ+r

)
erf

(
κ
(
cos θ − x0 ∓ r ∓ δ

4

))
− 2πkm

δ+r sin(θ) sin(kθ) sin
(πm(cos θ−x0)

δ+r

)
erf

(
κ
(
cos θ − x0 ∓ r ∓ δ

4

))
− 2κ√

π
cos θ cos(kθ) cos

(πm(cos θ−x0)
δ+r

)
e−κ2

(
cos θ−x0∓r∓ δ

4

)2
− 4

√
πκm

δ+r sin2(θ) cos(kθ) sin
(πm(cos θ−x0)

δ+r

)
e−κ2

(
cos θ−x0∓r∓ δ

4

)2
+ 4κk√

π
sin(θ) sin(kθ) cos

(πm(cos θ−x0)
δ+r

)
e−κ2

(
cos θ−x0∓r∓ δ

4

)2
− 4κ3

√
π
sin2(θ) cos(kθ) cos

(πm(cos θ−x0)
δ+r

)(
cos θ − x0 ∓ r ∓ δ

4

)
e−κ2

(
cos θ−x0∓r∓ δ

4

)2
.

Note that all functions appear in d2

dθ2
H

(±)
k,m(θ), viz. sinx, cosx, exp(−x2), and erf(x), are at

most 1, as well as |x0 ± r ± δ/4| ≤ 7/2, then we obtain that∣∣ d2

dθ2
H

(±)
k,m(θ)

∣∣ ≤ k2 + 2κ√
π
+ 4κk√

π
+ 18κ3

√
π

+m ·
(

π
δ+r +

2πk
δ+r +

4
√
πκ

δ+r

)
+m2 · π2

(δ+r)2

≤ d2 +O(d) +O(d2) +O(d3) + M
δ+r · (O(1) +O(d) +O(d)) +M2 · O(1)

(δ+r)2

= O(d3).

(A.6)

Here, the second line according to k ≤ d and κ ≤ O(d), also the last line is due to facts
that M ≤ O(rd) and 1/2 ≤ r/(δ + r) ≤ 1 if 0 < δ ≤ r and 0 < r ≤ 2. Additionally, a similar
argument shows that the upper bound in Equation (A.6) applies to odd functions and functions
that are neither even nor odd as well. This is because a direct computation yields the second
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derivatives of H(±)
k,m(θ) when f is odd:

d2

dθ2
H

(±)
k,m(θ)=− k2 cos(kx) sin

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
erf

(
κ
(
cos(x)− x0 ∓ r ∓ δ

4

))
− π

(
m+

1
2

)
δ+r cos(x) cos(kx) cos

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
erf

(
κ
(
cos(x)− x0 ∓ r ∓ δ

4

))
− π2

(
m+

1
2

)2
(δ+r)2

sin2(x) cos(kx) sin
(π(m+

1
2

)
(cos(x)−x0)

δ+r

)
erf

(
κ
(
cos(x)− x0 ∓ r ∓ δ

4

))
+

2πk
(
m+

1
2

)
δ+r sin(x) sin(kx) cos

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
erf

(
κ
(
cos(x)− x0 ∓ r ∓ δ

4

))
+

4
√
πκ
(
m+

1
2

)
δ+r sin2(x) cos(kx) cos

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4

)2
− 2κ√

π
cos(x) cos(kx) sin

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4

)2
+ 4κk√

π
sin(x) sin(kx) sin

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4

)2
− 4κ3

√
π
sin2(x) cos(kx)

(
cos(x)−x0∓r∓ δ

4

)
sin

(π(m+
1
2

)
(cos(x)−x0)

δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4

)2
.

Substituting Equation (A.6) into Equation (A.5), and noticing that the coefficient vector
∥c(even) + c(odd)∥1 ≤ B regardless of the parity of f , we conclude that |F ′′

k (θ)| ≤ O(Bd3).

A.2 Applying arbitrary polynomials of bitstring indexed encodings

Proposition 3.14.1 (Space-efficient state preparation, adapted from [Zal98, KM01, GR02]).
Given an l-qubit quantum state |ψ⟩ :=

∑m
i=1

√
ŷi|i⟩, where l = ⌈logm⌉ and ŷi are real amplitudes

associated with an evaluation oracle Eval(i, ε) that returns ŷi up to accuracy ε we can prepare
|ψ⟩ up to accuracy ϵ in deterministic time Õ(m2 log(m/ϵ)) and space O(log(m/ϵ2)), together
with m2 evaluation oracle calls with precision ε := O(ϵ2/m).

Proof. We follow the analysis presented in [MP16, Section III.A], with a particular focus on the
classical computational complexity required for this state preparation procedure. The algorithm
for preparing the state |ψ⟩ expresses the weight Wx as a telescoping product, given by

∀x ∈ {0, 1}l, Wx =Wx1 ·
Wx1x2
Wx1

· Wx1x2x3
Wx1x2

· · · Wx
Wx1···xn−1

where Wx :=
∑

y∈{0,1}l−|x| |⟨xy|ψ⟩|2.
(A.7)

To estimate |ψ⟩ up to accuracy ϵ in the ℓ2 norm, it suffices to approximate each weight Wx

up to additive error ε := O(ϵ2/m), as indicated in [MP16, Section III.A]. To compute Wx′ , we
need 2l−|x′| oracle calls to Eval(·, ε). Evaluating all terms in Equation (A.7) requires computing
Wx1 ,Wx1x2 , · · · ,Wx for any x ∈ {0, 1}l, which can be achieved by 2l−1 + 2l−2 + · · · + 1 = 2l

oracle calls to Eval(·, ε). As we need to compute Equation (A.7) for all x ∈ {0, 1}l, the overall
number of oracle calls to Eval(·, ε) is 22l = m2. The remaining computation can be achieved in
deterministic time Õ(m2 log(m/ϵ)) and space O(log(m/ϵ)) where the time complexity is because
of the iterated integer multiplication.

Lemma 3.15 (Renormalizing bitstring indexed encoding). Let U be an (α, a, ϵ)-bitstring indexed
encoding of A, where α > 1 and 0 < ϵ < 1, and A is a linear operator acting on s(n) qubits.
We can implement a quantum circuit V , serving as a normalization of U , such that V is a
(1, a + 2, 36ϵ)-bitstring indexed encoding of A. This implementation requires O(α) uses of U ,
U †, CΠNOT, CΠ̃NOT, and O(α) single-qubit gates. Moreover, the description of the resulting
quantum circuit can be computed in deterministic time O(α) and space O(s).

Proof. Following Definition 3.1, we have ∥A−αΠ̃UΠ∥ ≤ ϵ, where Π̃ and Π are the corresponding
orthogonal projectors. Because U is a (1, a, ϵ/α)-bitstring indexed encoding A/α, we obtain that
∥A/α∥ ≤ ∥U∥+ ϵ/α = 1 + ϵ/α, equivalently ∥A∥ ≤ α+ ϵ.
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Adjusting the encoding through a single-qubit rotation. Consider an odd integer k :=
2⌈π(α + 1)/2⌉ + 1 ≤ 9α = O(α) and γ := (α + ϵ) sin(π/2k) ≤ 1. We define new orthogonal
projectors Π̃′ := Π̃ ⊗ |0⟩⟨0| and Π′ := Π ⊗ |0⟩⟨0|, and combine them with U ′ = U ⊗ Rγ ,

where Rγ =

(
γ −

√
1−γ2

√
1−γ2 γ

)
. By noting that Π̃′U ′Π′ = γΠ̃UΠ ⊗ |0⟩⟨0|, we deduce that

U ′ is a (1, a + 1, γϵ/α)-bitstring indexed encoding of γA/α ⊗ |0⟩⟨0|, which is consequently a
(1, a+ 1, 2γϵ/α)-bitstring indexed encoding of sin(2π/k) · (A⊗ |0⟩⟨0|). An error bound follows:∥∥∥γ

α
A− sin

( π
2k

)
A
∥∥∥ =

∥∥∥ ϵ
α
sin

( π
2k

)
A
∥∥∥ ≤ ϵ

α
sin

( π
2k

)
(α+ ϵ) =

γϵ

α
.

Renormalizing the encoding via robust oblivious amplitude amplification. We follow
the construction in [GSLW18, Theorem 28], full version of [GSLW19], and perform a meticulous
analysis on the computational resources. We observe that it suffices to consider k ≥ 3, as for U ′

is already a (1, a+1, 2γϵ/α)-bitstring indexed encoding of A⊗|0⟩⟨0| when k = 1. Let ε := 2γϵ/α,
and for simplicity, we first start by considering the case with ε = 0. By Definition 3.1, we have
Π̃′U ′Π′ = α sin

(
π
2k

)
Π̃UΠ ⊗ |0⟩⟨0|. Let Tk ∈ R[x] be the degree-k Chebyshev polynomial (of

the first kind). By employing Lemma 3.13, we can apply the QSVT associated with Tk to the
bitstring indexed encoding U ′, yielding:

Π̃′T
(SV)
k (U ′)Π′ = αTk

(
sin

( π
2k

))
Π̃UΠ⊗ |0⟩⟨0| = cos

(k − 1

2
π
)
A⊗ |0⟩⟨0| = A⊗ |0⟩⟨0|.

Here, the second equality is due to Tk
(
sin

(
π
2k

))
= Tk

(
cos

(
π
2 − π

2k

))
= cos

(
k−1
2 π

)
, and the last

equality holds because k is odd.
Next, we move on the case with ε > 0 and restrict it to ε ≤ 1/3.36 Let A′ := Π̃′U ′Π′

and Â := γA ⊗ |0⟩⟨0|, then we have ∥A′ − Â∥ ≤ ε, indicating that
∥∥A′+Â

2

∥∥2 ≤ 4
9 := ζ37 and

∥A′− Â∥+
∥∥A′+Â

2

∥∥2 ≤ 1
3 +

4
9 < 1. By employing Lemma 3.13, as well as the facts that

√
2√

1−ζ
< 2

and 2kε = 4kγϵ/α ≤ 36ϵ, we can construct a (1, a + 2, 36ϵ)-bitstring indexed encoding of A,
denoted by V .

Finally, we provide the computational resources required for implementing V . As shown in
Lemma 3.13, the implementation of V requires O(α) uses of U , U †, CΠNOT, CΠ̃NOT, and
O(α) single-qubit gates. Furthermore, the description of the resulting quantum circuit can be
computed in deterministic time O(α) and space O(s).

A.3 Application: space-efficient error reduction for unitary quantum com-
putations

Lemma 3.20 (Space-efficient singular value discrimination). Let 0 ≤ α < β ≤ 1 and A :=
Π̃UΠ be a (1, 0, 0)-bitstring indexed encoding where U acts on s qubits and s(n) ≥ Ω(log n).
Consider an unknown quantum state |ψ⟩, with the promise that it is a right singular vector of
A with a singular value either above α or below β. We can distinguish the two cases with error
probability at most ε := O(ϵ log d) using a degree-d quantum singular value transformation where
d = log 1/ϵ

max{β−α,
√
1−α2−

√
1−β2}

. Moreover, we can make the error one-sided if α = 0 or β = 1.

In particular, the implementation requires O(d2 log d) uses of U , U †, CΠNOT, CΠ̃NOT, and
O(d2 log d) multi-controlled single-qubit gates. Also, we can compute the description of the im-
plementation in deterministic time Õ(ε−1d9/2) and space O(s(n)).

Proof of Lemma 3.20. Given a (1, 0, 0)-bitstring indexed encoding Π̃UΠ with a singular value
decomposition WΣV †. Utilizing Corollary 3.16, it suffices to construct an even polynomial P

36If ε > 1/3, then ∥Π̃′U ′Π′ −A⊗|0⟩⟨0|∥ ≤ 2 = 2 · 3 · 1
3

always holds, implying that we can directly use U ′ as V.
37This is because ∥A′ + Â∥ ≤ ∥A′∥+ ∥A′∥+ ∥A′ − Â∥ ≤ 2 sin(π/2k) + ε ≤ 2 sin(π/6) + 1/3 = 4/3.
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associated a (1, ϵ)-bitstring indexed encoding UP such that∥∥∥Π′
≥t+δUPΠ≥t+δ−I ⊗

∑
i:σi≥t+δ

|ψ̃i⟩⟨ψi|
∥∥∥ ≤ ϵ∥∥(⟨+| ⊗Π′

≤t−δ)UP (|+⟩ ⊗Π≤t−δ)− 0
∥∥ ≤ ϵ.

where Π′ :=

{
Π̃, if β−α≥

√
1−α2−

√
1−β2

I − Π̃, otherwise.

(A.8)
Here singular value threshold projectors are defined as Π≥δ := ΠV Σ≥δV

†Π, so does Π≤δ. Like-
wise, Π′

≥δ := Π′Uσ≥δU
†Π′ and so does Π′

≤δ. In addition, the definition of Π′ in Equation (A.8)
in accordance with the proof presented in [GSLW19, Theorem 20].38

With the construction of the resulting bitstring indexed encoding Π′UPΠ for an odd poly-
nomial P , we then apply an ϵ-approximate singular value projector by choosing t = (α + β)/2
and δ = (β − α)/2. Then, we measure |+⟩⟨+| ⊗ Π′: If the final state is in Img(|+⟩⟨+| ⊗ Π′),
there exists a singular value σi above α (resp.,

√
1− β2); Otherwise, all singular value σi must

be below β (resp.,
√
1− α2). Furthermore, we make the error one-sided since an odd quantum

singular value transformation always preserves 0 singular values. It is left to implement singular
value threshold projectors for an odd polynomial P .

Implementing singular value threshold projectors. We begin by constructing an odd
polynomial P ∈ R[x] of degreem = O(δ−1 log ϵ−2), which approximates an odd function Q(x) :=
1
2 [(1−ϵ)·sgn(x+t)+(1−ϵ)·sgn(x−t)+2ϵ·sgn(x)] on the interval [−1, 1]\(−t−δ,−t+δ)∪(t−δ, t+δ)
with ϵ2/4 precision. By leveraging the space-efficient odd degree-d polynomial approximation
P sgn
d (x) of the sign function, as specified in Corollary 3.7, we then obtain:

P (x) = 1
2

[
(1− ϵ) · P sgn

d (x+ t) + (1− ϵ) · P sgn
d (x− t) + 2ϵ · P sgn

d (x)
]
. (A.9)

Hence, we ensure that |P (x)| ≤ 1 for any −1 ≤ x ≤ 1, and (−1)zP (x) ∈ [0, ϵ] if (−1)zx ∈
[0, t − δ], as well as (−1)zP (x) ∈ [1 − ϵ, 1] if (−1)z ∈ [t + δ, 1] for z ∈ {0, 1}. To achieve the
resulting bitstring indexed encoding UP of P (SV )(Π̃UΠ) with the desired precision, we apply
Corollary 3.16 to P (x) described in Equation (A.9). And then the implementation error of UP

is evidently upper-bounded by ε = O(ϵ log d).

B Omitted proofs in space-bounded quantum state testing

Theorem B.1. For any functions α(n) and β(n) that can be computed in deterministic logspace
and satisfy α(n)− β(n) ≥ 1/ poly(n), we have that GapQHSlog[α(n), β(n)] is in BQL.

Proof. Note that HS2(ρ0, ρ1) = 1
2

(
Tr(ρ20) + Tr(ρ21)

)
−Tr(ρ0ρ1). Let ε := (α−β)/100. According

to Lemma 2.12, we can use the SWAP test to estimate Tr(ρ20), Tr(ρ21), and Tr(ρ0ρ1), and hence
HS2(ρ0, ρ1), within additive error ε with high probability by performing O(1/ε2) sequential
repetitions. Therefore, we can conclude that GapQHSlog[α(n), β(n)] is in BQL.

B.1 Omitted proofs in BQL containments

Proposition 4.10.1. Pr
[
|x− td(ρ0, ρ1)| ≤ Ĉsgnϵ log d+ ϵH + 2Csgnϵ log d+ 2r+1δ

]
> 0.8.

Proof of Proposition 4.10.1. By applying the triangle inequality, we have obtained the following
38By applying [GSLW18, Definition 12] (the full version of [GSLW19]) to Π′ := I − Π̃, we know that |ψ⟩ is

a singular vector of Π′UΠ with a singular value of at least
√
1− a2 in the first case, or with a singular value

of at most
√
1− b2 in the second case. Additionally, in one-sided error scenarios, if a = 0, then b − a = b ≥

1−
√
1− b2 =

√
1− a2 −

√
1− b2; while if b = 1, then b− a = 1− a ≤

√
1− a2 =

√
1− a2 −

√
1− b2.
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inequality from Equation (4.1), which holds with probability at least 0.92 > 0.8:∣∣∣∣x0 − x1
2

− td(ρ0, ρ1)

∣∣∣∣ = ∣∣∣∣x0 − x1
2

− Tr
(ρ0 − ρ1

2
sgn

(ρ0 − ρ1
2

))∣∣∣∣
≤

∣∣∣∣x0 − x1
2

− Tr
(ρ0 − ρ1

2
P sgn
d

(ρ0 − ρ1
2

))∣∣∣∣
+

∣∣∣∣Tr(ρ0 − ρ1
2

P sgn
d

(ρ0 − ρ1
2

))
− Tr

(ρ0 − ρ1
2

sgn
(ρ0 − ρ1

2

))∣∣∣∣ .
For the first term, by noting the QSVT implementation error in Corollary 3.16, we know that∣∣∣∣x0 − x1

2
− Tr

(ρ0 − ρ1
2

P sgn
d

(ρ0 − ρ1
2

))∣∣∣∣ ≤ Ĉsgnϵ log d+ ϵH . (B.1)

For the second term, let ρ0−ρ1
2 =

∑
j λj |ψj⟩⟨ψj |, where {|ψj⟩} is an orthonormal basis. Then,∣∣∣∣Tr(ρ0−ρ12

P sgn
d

(ρ0−ρ1
2

))
− Tr

(ρ0−ρ1
2

sgn
(ρ0−ρ1

2

))∣∣∣∣ ≤ ∑
j

∣∣λjP sgn
d (λj)−λjsgn(λj)

∣∣ . (B.2)

We split the summation over j into three separate summations:
∑

j =
∑

λj<−δ +
∑

λj>δ +
∑

−δ≤λj≤δ .

By noticing the approximation error of P sgn
d in Corollary 3.7, we can then obtain the following

results for each of the three summations:∑
λ>δ

∣∣λjP sgn
d (λj)− λjsgn(λj)

∣∣ = ∑
λ>δ

|λj |
∣∣P sgn

d (λj)− 1
∣∣ ≤ ∑

λ>δ

|λj |Csgnϵ log d ≤ Csgnϵ log d,

∑
λ<−δ

∣∣λjP sgn
d (λj)− λjsgn(λj)

∣∣ = ∑
λ<−δ

|λj |
∣∣P sgn

d (λj) + 1
∣∣ ≤ ∑

λ<−δ

|λj |Csgnϵ log d ≤ Csgnϵ log d,

∑
−δ≤λj≤δ

∣∣λjP sgn
d (λj)− λjsgn(λj)

∣∣ ≤ ∑
−δ≤λj≤δ

2|λj | ≤ 2r+1δ.

Hence, we derive the following inequality by summing over the aforementioned three inequalities:∑
j

∣∣λjP sgn
d (λj)− λjsgn(λj)

∣∣ ≤ 2r+1δ + 2Csgnϵ log d. (B.3)

By combining Equation (B.1), Equation (B.2), and Equation (B.3), we conclude that∣∣∣∣x0 − x1
2

− td(ρ0, ρ1)

∣∣∣∣ ≤ Ĉsgnϵ log d+ ϵH + 2Csgnϵ log d+ 2r+1δ.

Proposition 4.11.1. The following inequality holds for i ∈ {0, 1}:

Pr
[
|xi ln

(
2
β

)
− S(ρi)| ≤ 2 ln

(
1
β

) (
Ĉlnϵd+ ϵH + Clnϵ log d+ 2r+1β

) ]
≥ 9

10 .

Proof of Proposition 4.11.1. We only prove the case with i = 0 while the case with i = 1 follows
straightforwardly. By applying the triangle inequality on Equation (4.2) with i = 0, we have:

|x0 ln(2/β)− S(ρ0)| =
∣∣∣x0 ln(2/β)− ln(2/β)Tr

(
P ln
d (ρ0) ρ0

)∣∣∣+∣∣∣ln(2/β)Tr(P ln
d (ρ0) ρ0

)
− S(ρ0)

∣∣∣ .
For the first term, by noting the QSVT implementation error in Corollary 3.17, we have∣∣∣x0 ln(2/β)− ln(2/β)Tr

(
P ln
d (ρ0) ρ0

)∣∣∣ ≤ 2 ln(1/β)
(
Ĉlnϵd+ ϵH

)
. (B.4)

For the second term, let ρ0 =
∑

j λj |ψj⟩⟨ψj |, where {|ψj⟩} is an orthonormal basis. Then,∣∣∣ln(2/β)Tr(P ln
d (ρ0) ρ0

)
− S(ρ0)

∣∣∣ ≤ ∑
j

∣∣∣λjP ln
d (λj) ln(2/β)− λj ln(1/λj)

∣∣∣ . (B.5)

We split the summation over j into two separate summations:
∑

j =
∑

λj>δ +
∑

λ≤δ . By noticing
the approximation error of P ln

d in Corollary 3.10, e can then obtain the following results for each
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of the two summations:∑
λj>δ

∣∣∣λjP ln
d (λj) ln(2/β)− λj ln(1/λj)

∣∣∣ = ∑
λj>δ

|λj |
∣∣∣P ln

d (λj) ln(2/β)− ln(1/λj)
∣∣∣

≤
∑
λj>δ

|λj |Clnϵ log d ln(2/β)

≤ 2Clnϵ log d ln(1/β),∑
λj≤δ

∣∣∣λjP ln
d (λj) ln(2/β)− λj ln(1/λj)

∣∣∣ ≤ ∑
λj≤δ

(|λj | ln(2/β) + |λj | ln(1/β)) ≤ 2r+2δ ln(1/β).

Hence, we have derived the following inequality by summing over the aforementioned inequalities:∑
j

∣∣∣λjP ln
d (λj) ln(2/β)− λj ln(1/λj)

∣∣∣ ≤ 2Clnϵ log d ln(1/β) + 2r+2δ ln(1/β). (B.6)

By combining Equation (B.4), Equation (B.5), and Equation (B.6), we conclude that

|x0 ln(2/β)− S(ρ0)| ≤ 2 ln(1/β)
(
Ĉlnϵd+ ϵH + Clnϵ log d+ 2r+1β

)
.

B.2 Omitted proofs in coRQUL containments

Proposition 4.14.1. Let f(θ0, θ1) := sin2(3θ0) sin
2(3θ1) be a function such that sin2(θi) = pi/2

for i ∈ {0, 1} and max{|p0 − 1/2|, |p1 − 1/2|} ≥ ε/2, then f(θ0, θ1) ≤ 1− ε2/4.

Proof. We begin by stating the facts that sin2(θi) = pi/2 for i ∈ {0, 1} and sin2(3θ) = sin6(θ)−
6 cos2(θ) sin4(θ) + 9 cos4(θ) sin2(θ). Then we notice that 0 ≤ p0, p1 ≤ 1 and complete the proof
by a direct calculation:

f(θ0, θ1) =
(
2p30 − 6p20 +

9
2p0

) (
2p31 − 6p21 +

9
2p1

)
≤

(
1−

(
p0 − 1

2

)2)(
1−

(
p1 − 1

2

)2)
≤ 1−

(
max

{∣∣p0 − 1
2

∣∣ , ∣∣p1 − 1
2

∣∣})2
≤ 1− ε2

4 .

Proposition 4.15.1. The polynomial function f(x) := 16x3 − 24x2 + 9x is monotonically
decreasing in [1/4, 9/16]. Moreover, we have f

((
1
2 + α

4

)2) ≤ 1− α2

2 for any 0 ≤ α ≤ 1.

Proof. Through a direct calculation, we have f ′(x) = 48x2−48x+9 ≤ 0 for x ∈ [1/4, 3/4], then
f(x) is monotonically decreasing in [1/4, 9/16] ⊆ [1/4, 3/4]. Moreover, it is left to show that:

f
((

1
2 + α

4

)2)
= α6

256 + 3α5

64 + 9α4

64 − α3

8 − 3α2

4 + 1 ≤ 1− α2

2 .

Equivalently, it suffices to show that g(x):=− x4

256 −
3x3

64 − 9x2

64 + x
8 +

1
4 ≥ 0 for 0 ≤ x ≤ 1. We first

compute the first derivative of g(x), which is g′(x) = −x3

64 −
9x2

64 − 9x
32 +

1
8 . Setting g′(x) equal to

zero, we obtain three roots: x1 = −4, x2 = 1
2(−

√
33− 5) < 0, and x3 = 1

2(
√
33− 5) ∈ (0, 1).

Since g′(0) = 1/8 > 0 and g′(1) = −5/16 < 0, we conclude that g(x) is monotonically
increasing in [0, x3] and monotonically decreasing in [x3, 1]. Therefore, we can determine the
minimum value of g(x) by evaluating g(0) = 1

4 and g(1) = 47
256 . Since both values are greater

than zero, we conclude that min{g(0), g(1)} =
{
1
4 ,

47
256

}
> 0, as desired.
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